1 #ifdef USE_PRAGMA_IDENT_HDR
   2 #pragma ident "@(#)loopnode.hpp 1.146 07/10/23 13:12:55 JVM"
   3 #endif
   4 /*
   5  * Copyright 1998-2008 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 class CmpNode;
  29 class CountedLoopEndNode;
  30 class CountedLoopNode;
  31 class IdealLoopTree;
  32 class LoopNode;
  33 class Node;
  34 class PhaseIdealLoop;
  35 class VectorSet;
  36 struct small_cache;
  37 
  38 //
  39 //                  I D E A L I Z E D   L O O P S
  40 //
  41 // Idealized loops are the set of loops I perform more interesting
  42 // transformations on, beyond simple hoisting.  
  43 
  44 //------------------------------LoopNode---------------------------------------
  45 // Simple loop header.  Fall in path on left, loop-back path on right.
  46 class LoopNode : public RegionNode {
  47   // Size is bigger to hold the flags.  However, the flags do not change 
  48   // the semantics so it does not appear in the hash & cmp functions.
  49   virtual uint size_of() const { return sizeof(*this); }
  50 protected:
  51   short _loop_flags;
  52   // Names for flag bitfields
  53   enum { pre_post_main=0, inner_loop=8, partial_peel_loop=16, partial_peel_failed=32  };
  54   char _unswitch_count;
  55   enum { _unswitch_max=3 };
  56 
  57 public:
  58   // Names for edge indices
  59   enum { Self=0, EntryControl, LoopBackControl };
  60 
  61   int is_inner_loop() const { return _loop_flags & inner_loop; }
  62   void set_inner_loop() { _loop_flags |= inner_loop; }
  63 
  64   int is_partial_peel_loop() const { return _loop_flags & partial_peel_loop; }
  65   void set_partial_peel_loop() { _loop_flags |= partial_peel_loop; }
  66   int partial_peel_has_failed() const { return _loop_flags & partial_peel_failed; }
  67   void mark_partial_peel_failed() { _loop_flags |= partial_peel_failed; }
  68 
  69   int unswitch_max() { return _unswitch_max; }
  70   int unswitch_count() { return _unswitch_count; }
  71   void set_unswitch_count(int val) {
  72     assert (val <= unswitch_max(), "too many unswitches");
  73     _unswitch_count = val;
  74   }
  75 
  76   LoopNode( Node *entry, Node *backedge ) : RegionNode(3), _loop_flags(0), _unswitch_count(0) {
  77     init_class_id(Class_Loop);
  78     init_req(EntryControl, entry);
  79     init_req(LoopBackControl, backedge);
  80   }
  81 
  82   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  83   virtual int Opcode() const;
  84   bool can_be_counted_loop(PhaseTransform* phase) const {
  85     return req() == 3 && in(0) != NULL &&
  86       in(1) != NULL && phase->type(in(1)) != Type::TOP &&
  87       in(2) != NULL && phase->type(in(2)) != Type::TOP;
  88   }
  89 #ifndef PRODUCT
  90   virtual void dump_spec(outputStream *st) const;
  91 #endif
  92 };
  93 
  94 //------------------------------Counted Loops----------------------------------
  95 // Counted loops are all trip-counted loops, with exactly 1 trip-counter exit
  96 // path (and maybe some other exit paths).  The trip-counter exit is always
  97 // last in the loop.  The trip-counter does not have to stride by a constant,
  98 // but it does have to stride by a loop-invariant amount; the exit value is
  99 // also loop invariant.
 100 
 101 // CountedLoopNodes and CountedLoopEndNodes come in matched pairs.  The
 102 // CountedLoopNode has the incoming loop control and the loop-back-control
 103 // which is always the IfTrue before the matching CountedLoopEndNode.  The
 104 // CountedLoopEndNode has an incoming control (possibly not the
 105 // CountedLoopNode if there is control flow in the loop), the post-increment
 106 // trip-counter value, and the limit.  The trip-counter value is always of
 107 // the form (Op old-trip-counter stride).  The old-trip-counter is produced
 108 // by a Phi connected to the CountedLoopNode.  The stride is loop invariant.
 109 // The Op is any commutable opcode, including Add, Mul, Xor.  The
 110 // CountedLoopEndNode also takes in the loop-invariant limit value.
 111 
 112 // From a CountedLoopNode I can reach the matching CountedLoopEndNode via the
 113 // loop-back control.  From CountedLoopEndNodes I can reach CountedLoopNodes
 114 // via the old-trip-counter from the Op node.
 115 
 116 //------------------------------CountedLoopNode--------------------------------
 117 // CountedLoopNodes head simple counted loops.  CountedLoopNodes have as
 118 // inputs the incoming loop-start control and the loop-back control, so they
 119 // act like RegionNodes.  They also take in the initial trip counter, the
 120 // loop-invariant stride and the loop-invariant limit value.  CountedLoopNodes 
 121 // produce a loop-body control and the trip counter value.  Since 
 122 // CountedLoopNodes behave like RegionNodes I still have a standard CFG model.
 123 
 124 class CountedLoopNode : public LoopNode {
 125   // Size is bigger to hold _main_idx.  However, _main_idx does not change 
 126   // the semantics so it does not appear in the hash & cmp functions.
 127   virtual uint size_of() const { return sizeof(*this); }
 128 
 129   // For Pre- and Post-loops during debugging ONLY, this holds the index of
 130   // the Main CountedLoop.  Used to assert that we understand the graph shape.
 131   node_idx_t _main_idx;
 132   
 133   // Known trip count calculated by policy_maximally_unroll
 134   int   _trip_count; 
 135 
 136   // Expected trip count from profile data
 137   float _profile_trip_cnt;
 138 
 139   // Log2 of original loop bodies in unrolled loop
 140   int _unrolled_count_log2;
 141 
 142   // Node count prior to last unrolling - used to decide if
 143   // unroll,optimize,unroll,optimize,... is making progress
 144   int _node_count_before_unroll;
 145 
 146 public:
 147   CountedLoopNode( Node *entry, Node *backedge )
 148     : LoopNode(entry, backedge), _trip_count(max_jint),
 149       _profile_trip_cnt(COUNT_UNKNOWN), _unrolled_count_log2(0),
 150       _node_count_before_unroll(0) {
 151     init_class_id(Class_CountedLoop);
 152     // Initialize _trip_count to the largest possible value. 
 153     // Will be reset (lower) if the loop's trip count is known.
 154   }
 155 
 156   virtual int Opcode() const;
 157   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 158 
 159   Node *init_control() const { return in(EntryControl); }
 160   Node *back_control() const { return in(LoopBackControl); }
 161   CountedLoopEndNode *loopexit() const;
 162   Node *init_trip() const;
 163   Node *stride() const;
 164   int   stride_con() const;
 165   bool  stride_is_con() const;
 166   Node *limit() const;
 167   Node *incr() const;
 168   Node *phi() const;
 169 
 170   // Match increment with optional truncation
 171   static Node* match_incr_with_optional_truncation(Node* expr, Node** trunc1, Node** trunc2, const TypeInt** trunc_type);
 172 
 173   // A 'main' loop has a pre-loop and a post-loop.  The 'main' loop
 174   // can run short a few iterations and may start a few iterations in.
 175   // It will be RCE'd and unrolled and aligned.
 176 
 177   // A following 'post' loop will run any remaining iterations.  Used
 178   // during Range Check Elimination, the 'post' loop will do any final
 179   // iterations with full checks.  Also used by Loop Unrolling, where
 180   // the 'post' loop will do any epilog iterations needed.  Basically,
 181   // a 'post' loop can not profitably be further unrolled or RCE'd.
 182 
 183   // A preceding 'pre' loop will run at least 1 iteration (to do peeling),
 184   // it may do under-flow checks for RCE and may do alignment iterations
 185   // so the following main loop 'knows' that it is striding down cache
 186   // lines.
 187 
 188   // A 'main' loop that is ONLY unrolled or peeled, never RCE'd or
 189   // Aligned, may be missing it's pre-loop.
 190   enum { Normal=0, Pre=1, Main=2, Post=3, PrePostFlagsMask=3, Main_Has_No_Pre_Loop=4 };
 191   int is_normal_loop() const { return (_loop_flags&PrePostFlagsMask) == Normal; }
 192   int is_pre_loop   () const { return (_loop_flags&PrePostFlagsMask) == Pre;    }
 193   int is_main_loop  () const { return (_loop_flags&PrePostFlagsMask) == Main;   }
 194   int is_post_loop  () const { return (_loop_flags&PrePostFlagsMask) == Post;   }
 195   int is_main_no_pre_loop() const { return _loop_flags & Main_Has_No_Pre_Loop; }
 196   void set_main_no_pre_loop() { _loop_flags |= Main_Has_No_Pre_Loop; }
 197 
 198   int main_idx() const { return _main_idx; }
 199 
 200 
 201   void set_pre_loop  (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Pre ; _main_idx = main->_idx; }
 202   void set_main_loop (                     ) { assert(is_normal_loop(),""); _loop_flags |= Main;                         }
 203   void set_post_loop (CountedLoopNode *main) { assert(is_normal_loop(),""); _loop_flags |= Post; _main_idx = main->_idx; }
 204   void set_normal_loop(                    ) { _loop_flags &= ~PrePostFlagsMask; }
 205 
 206   void set_trip_count(int tc) { _trip_count = tc; }
 207   int trip_count()            { return _trip_count; }
 208 
 209   void set_profile_trip_cnt(float ptc) { _profile_trip_cnt = ptc; }
 210   float profile_trip_cnt()             { return _profile_trip_cnt; }
 211 
 212   void double_unrolled_count() { _unrolled_count_log2++; }
 213   int  unrolled_count()        { return 1 << MIN2(_unrolled_count_log2, BitsPerInt-3); }
 214 
 215   void set_node_count_before_unroll(int ct) { _node_count_before_unroll = ct; }
 216   int  node_count_before_unroll()           { return _node_count_before_unroll; }
 217 
 218 #ifndef PRODUCT
 219   virtual void dump_spec(outputStream *st) const;
 220 #endif
 221 };
 222 
 223 //------------------------------CountedLoopEndNode-----------------------------
 224 // CountedLoopEndNodes end simple trip counted loops.  They act much like
 225 // IfNodes.
 226 class CountedLoopEndNode : public IfNode {
 227 public:
 228   enum { TestControl, TestValue };
 229 
 230   CountedLoopEndNode( Node *control, Node *test, float prob, float cnt )
 231     : IfNode( control, test, prob, cnt) {
 232     init_class_id(Class_CountedLoopEnd);
 233   }
 234   virtual int Opcode() const;
 235 
 236   Node *cmp_node() const            { return (in(TestValue)->req() >=2) ? in(TestValue)->in(1) : NULL; }
 237   Node *incr() const                { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 238   Node *limit() const               { Node *tmp = cmp_node(); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 239   Node *stride() const              { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(2) : NULL; }
 240   Node *phi() const                 { Node *tmp = incr    (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 241   Node *init_trip() const           { Node *tmp = phi     (); return (tmp && tmp->req()==3) ? tmp->in(1) : NULL; }
 242   int stride_con() const;
 243   bool stride_is_con() const        { Node *tmp = stride  (); return (tmp != NULL && tmp->is_Con()); }
 244   BoolTest::mask test_trip() const  { return in(TestValue)->as_Bool()->_test._test; }
 245   CountedLoopNode *loopnode() const { 
 246     Node *ln = phi()->in(0);
 247     assert( ln->Opcode() == Op_CountedLoop, "malformed loop" );
 248     return (CountedLoopNode*)ln; }
 249 
 250 #ifndef PRODUCT
 251   virtual void dump_spec(outputStream *st) const;
 252 #endif
 253 };
 254 
 255 
 256 inline CountedLoopEndNode *CountedLoopNode::loopexit() const { 
 257   Node *bc = back_control();
 258   if( bc == NULL ) return NULL;
 259   Node *le = bc->in(0);
 260   if( le->Opcode() != Op_CountedLoopEnd )
 261     return NULL;
 262   return (CountedLoopEndNode*)le; 
 263 }
 264 inline Node *CountedLoopNode::init_trip() const { return loopexit() ? loopexit()->init_trip() : NULL; }
 265 inline Node *CountedLoopNode::stride() const { return loopexit() ? loopexit()->stride() : NULL; }
 266 inline int CountedLoopNode::stride_con() const { return loopexit() ? loopexit()->stride_con() : 0; }
 267 inline bool CountedLoopNode::stride_is_con() const { return loopexit() && loopexit()->stride_is_con(); }
 268 inline Node *CountedLoopNode::limit() const { return loopexit() ? loopexit()->limit() : NULL; }
 269 inline Node *CountedLoopNode::incr() const { return loopexit() ? loopexit()->incr() : NULL; }
 270 inline Node *CountedLoopNode::phi() const { return loopexit() ? loopexit()->phi() : NULL; }
 271 
 272 
 273 // -----------------------------IdealLoopTree----------------------------------
 274 class IdealLoopTree : public ResourceObj {
 275 public:
 276   IdealLoopTree *_parent;       // Parent in loop tree
 277   IdealLoopTree *_next;         // Next sibling in loop tree
 278   IdealLoopTree *_child;        // First child in loop tree
 279 
 280   // The head-tail backedge defines the loop.
 281   // If tail is NULL then this loop has multiple backedges as part of the
 282   // same loop.  During cleanup I'll peel off the multiple backedges; merge
 283   // them at the loop bottom and flow 1 real backedge into the loop.
 284   Node *_head;                  // Head of loop
 285   Node *_tail;                  // Tail of loop
 286   inline Node *tail();          // Handle lazy update of _tail field
 287   PhaseIdealLoop* _phase;
 288 
 289   Node_List _body;              // Loop body for inner loops
 290   
 291   uint8 _nest;                  // Nesting depth
 292   uint8 _irreducible:1,         // True if irreducible
 293         _has_call:1,            // True if has call safepoint
 294         _has_sfpt:1,            // True if has non-call safepoint
 295         _rce_candidate:1;       // True if candidate for range check elimination
 296 
 297   Node_List* _required_safept;  // A inner loop cannot delete these safepts;
 298   bool  _allow_optimizations;   // Allow loop optimizations
 299 
 300   IdealLoopTree( PhaseIdealLoop* phase, Node *head, Node *tail )
 301     : _parent(0), _next(0), _child(0),
 302       _head(head), _tail(tail),
 303       _phase(phase),
 304       _required_safept(NULL),
 305       _allow_optimizations(true),
 306       _nest(0), _irreducible(0), _has_call(0), _has_sfpt(0), _rce_candidate(0)
 307   { }
 308 
 309   // Is 'l' a member of 'this'?
 310   int is_member( const IdealLoopTree *l ) const; // Test for nested membership
 311 
 312   // Set loop nesting depth.  Accumulate has_call bits.
 313   int set_nest( uint depth );
 314 
 315   // Split out multiple fall-in edges from the loop header.  Move them to a 
 316   // private RegionNode before the loop.  This becomes the loop landing pad.
 317   void split_fall_in( PhaseIdealLoop *phase, int fall_in_cnt );
 318 
 319   // Split out the outermost loop from this shared header.
 320   void split_outer_loop( PhaseIdealLoop *phase );
 321   
 322   // Merge all the backedges from the shared header into a private Region.
 323   // Feed that region as the one backedge to this loop.
 324   void merge_many_backedges( PhaseIdealLoop *phase );
 325 
 326   // Split shared headers and insert loop landing pads.
 327   // Insert a LoopNode to replace the RegionNode.
 328   // Returns TRUE if loop tree is structurally changed.
 329   bool beautify_loops( PhaseIdealLoop *phase );
 330 
 331   // Perform iteration-splitting on inner loops.  Split iterations to
 332   // avoid range checks or one-shot null checks.  Returns false if the
 333   // current round of loop opts should stop.
 334   bool iteration_split( PhaseIdealLoop *phase, Node_List &old_new );
 335 
 336   // Driver for various flavors of iteration splitting.  Returns false
 337   // if the current round of loop opts should stop.
 338   bool iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new );
 339 
 340   // Given dominators, try to find loops with calls that must always be
 341   // executed (call dominates loop tail).  These loops do not need non-call
 342   // safepoints (ncsfpt).
 343   void check_safepts(VectorSet &visited, Node_List &stack);
 344 
 345   // Allpaths backwards scan from loop tail, terminating each path at first safepoint
 346   // encountered.
 347   void allpaths_check_safepts(VectorSet &visited, Node_List &stack);
 348 
 349   // Convert to counted loops where possible
 350   void counted_loop( PhaseIdealLoop *phase );
 351 
 352   // Check for Node being a loop-breaking test
 353   Node *is_loop_exit(Node *iff) const;
 354 
 355   // Returns true if ctrl is executed on every complete iteration
 356   bool dominates_backedge(Node* ctrl);
 357 
 358   // Remove simplistic dead code from loop body
 359   void DCE_loop_body();
 360 
 361   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
 362   // Replace with a 1-in-10 exit guess.
 363   void adjust_loop_exit_prob( PhaseIdealLoop *phase );
 364 
 365   // Return TRUE or FALSE if the loop should never be RCE'd or aligned.  
 366   // Useful for unrolling loops with NO array accesses.
 367   bool policy_peel_only( PhaseIdealLoop *phase ) const;
 368 
 369   // Return TRUE or FALSE if the loop should be unswitched -- clone
 370   // loop with an invariant test
 371   bool policy_unswitching( PhaseIdealLoop *phase ) const;
 372 
 373   // Micro-benchmark spamming.  Remove empty loops.
 374   bool policy_do_remove_empty_loop( PhaseIdealLoop *phase );
 375 
 376   // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 377   // make some loop-invariant test (usually a null-check) happen before the 
 378   // loop.
 379   bool policy_peeling( PhaseIdealLoop *phase ) const;
 380 
 381   // Return TRUE or FALSE if the loop should be maximally unrolled. Stash any
 382   // known trip count in the counted loop node.
 383   bool policy_maximally_unroll( PhaseIdealLoop *phase ) const;
 384 
 385   // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if 
 386   // the loop is a CountedLoop and the body is small enough.
 387   bool policy_unroll( PhaseIdealLoop *phase ) const;
 388 
 389   // Return TRUE or FALSE if the loop should be range-check-eliminated.
 390   // Gather a list of IF tests that are dominated by iteration splitting;
 391   // also gather the end of the first split and the start of the 2nd split.
 392   bool policy_range_check( PhaseIdealLoop *phase ) const;
 393 
 394   // Return TRUE or FALSE if the loop should be cache-line aligned.
 395   // Gather the expression that does the alignment.  Note that only
 396   // one array base can be aligned in a loop (unless the VM guarentees
 397   // mutual alignment).  Note that if we vectorize short memory ops
 398   // into longer memory ops, we may want to increase alignment.
 399   bool policy_align( PhaseIdealLoop *phase ) const;
 400 
 401   // Compute loop trip count from profile data
 402   void compute_profile_trip_cnt( PhaseIdealLoop *phase );
 403 
 404   // Reassociate invariant expressions.
 405   void reassociate_invariants(PhaseIdealLoop *phase);
 406   // Reassociate invariant add and subtract expressions.
 407   Node* reassociate_add_sub(Node* n1, PhaseIdealLoop *phase);
 408   // Return nonzero index of invariant operand if invariant and variant
 409   // are combined with an Add or Sub. Helper for reassoicate_invariants.
 410   int is_invariant_addition(Node* n, PhaseIdealLoop *phase);
 411 
 412   // Return true if n is invariant
 413   bool is_invariant(Node* n) const;
 414 
 415   // Put loop body on igvn work list
 416   void record_for_igvn();
 417 
 418   bool is_loop()    { return !_irreducible && _tail && !_tail->is_top(); }
 419   bool is_inner()   { return is_loop() && _child == NULL; }
 420   bool is_counted() { return is_loop() && _head != NULL && _head->is_CountedLoop(); }
 421 
 422 #ifndef PRODUCT
 423   void dump_head( ) const;      // Dump loop head only
 424   void dump() const;            // Dump this loop recursively
 425   void verify_tree(IdealLoopTree *loop, const IdealLoopTree *parent) const;
 426 #endif
 427 
 428 };
 429 
 430 // -----------------------------PhaseIdealLoop---------------------------------
 431 // Computes the mapping from Nodes to IdealLoopTrees.  Organizes IdealLoopTrees into a
 432 // loop tree.  Drives the loop-based transformations on the ideal graph.
 433 class PhaseIdealLoop : public PhaseTransform {
 434   friend class IdealLoopTree;
 435   friend class SuperWord;
 436   // Pre-computed def-use info
 437   PhaseIterGVN &_igvn;
 438 
 439   // Head of loop tree
 440   IdealLoopTree *_ltree_root;
 441 
 442   // Array of pre-order numbers, plus post-visited bit.
 443   // ZERO for not pre-visited.  EVEN for pre-visited but not post-visited.
 444   // ODD for post-visited.  Other bits are the pre-order number.
 445   uint *_preorders;
 446   uint _max_preorder;
 447 
 448   // Allocate _preorders[] array
 449   void allocate_preorders() {
 450     _max_preorder = C->unique()+8;
 451     _preorders = NEW_RESOURCE_ARRAY(uint, _max_preorder);
 452     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 453   }
 454 
 455   // Allocate _preorders[] array
 456   void reallocate_preorders() {
 457     if ( _max_preorder < C->unique() ) {
 458       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, C->unique());
 459       _max_preorder = C->unique();
 460     }
 461     memset(_preorders, 0, sizeof(uint) * _max_preorder);
 462   }
 463 
 464   // Check to grow _preorders[] array for the case when build_loop_tree_impl() 
 465   // adds new nodes.
 466   void check_grow_preorders( ) {
 467     if ( _max_preorder < C->unique() ) {
 468       uint newsize = _max_preorder<<1;  // double size of array
 469       _preorders = REALLOC_RESOURCE_ARRAY(uint, _preorders, _max_preorder, newsize);
 470       memset(&_preorders[_max_preorder],0,sizeof(uint)*(newsize-_max_preorder));
 471       _max_preorder = newsize;
 472     }
 473   }
 474   // Check for pre-visited.  Zero for NOT visited; non-zero for visited.
 475   int is_visited( Node *n ) const { return _preorders[n->_idx]; }
 476   // Pre-order numbers are written to the Nodes array as low-bit-set values.
 477   void set_preorder_visited( Node *n, int pre_order ) { 
 478     assert( !is_visited( n ), "already set" );
 479     _preorders[n->_idx] = (pre_order<<1);
 480   };
 481   // Return pre-order number.
 482   int get_preorder( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]>>1; }
 483 
 484   // Check for being post-visited. 
 485   // Should be previsited already (checked with assert(is_visited(n))).
 486   int is_postvisited( Node *n ) const { assert( is_visited(n), "" ); return _preorders[n->_idx]&1; }
 487 
 488   // Mark as post visited
 489   void set_postvisited( Node *n ) { assert( !is_postvisited( n ), "" ); _preorders[n->_idx] |= 1; }
 490 
 491   // Set/get control node out.  Set lower bit to distinguish from IdealLoopTree
 492   // Returns true if "n" is a data node, false if it's a control node.
 493   bool has_ctrl( Node *n ) const { return ((intptr_t)_nodes[n->_idx]) & 1; }
 494 
 495   // clear out dead code after build_loop_late
 496   Node_List _deadlist;
 497 
 498   // Support for faster execution of get_late_ctrl()/dom_lca()
 499   // when a node has many uses and dominator depth is deep.
 500   Node_Array _dom_lca_tags;
 501   void   init_dom_lca_tags();
 502   void   clear_dom_lca_tags();
 503   // Inline wrapper for frequent cases:
 504   // 1) only one use
 505   // 2) a use is the same as the current LCA passed as 'n1'
 506   Node *dom_lca_for_get_late_ctrl( Node *lca, Node *n, Node *tag ) {
 507     assert( n->is_CFG(), "" );
 508     // Fast-path NULL lca
 509     if( lca != NULL && lca != n ) {
 510       assert( lca->is_CFG(), "" );
 511       // find LCA of all uses
 512       n = dom_lca_for_get_late_ctrl_internal( lca, n, tag );
 513     }
 514     return find_non_split_ctrl(n);
 515   }
 516   Node *dom_lca_for_get_late_ctrl_internal( Node *lca, Node *n, Node *tag );
 517   // true if CFG node d dominates CFG node n
 518   bool is_dominator(Node *d, Node *n);
 519 
 520   // Helper function for directing control inputs away from CFG split
 521   // points.
 522   Node *find_non_split_ctrl( Node *ctrl ) const {
 523     if (ctrl != NULL) {
 524       if (ctrl->is_MultiBranch()) {
 525         ctrl = ctrl->in(0);
 526       }
 527       assert(ctrl->is_CFG(), "CFG");
 528     }
 529     return ctrl;
 530   }
 531 
 532 public:
 533   bool has_node( Node* n ) const { return _nodes[n->_idx] != NULL; }
 534   // check if transform created new nodes that need _ctrl recorded
 535   Node *get_late_ctrl( Node *n, Node *early );
 536   Node *get_early_ctrl( Node *n );
 537   void set_early_ctrl( Node *n );
 538   void set_subtree_ctrl( Node *root );
 539   void set_ctrl( Node *n, Node *ctrl ) {
 540     assert( !has_node(n) || has_ctrl(n), "" );
 541     assert( ctrl->in(0), "cannot set dead control node" );
 542     assert( ctrl == find_non_split_ctrl(ctrl), "must set legal crtl" );
 543     _nodes.map( n->_idx, (Node*)((intptr_t)ctrl + 1) );
 544   }
 545   // Set control and update loop membership
 546   void set_ctrl_and_loop(Node* n, Node* ctrl) {
 547     IdealLoopTree* old_loop = get_loop(get_ctrl(n));
 548     IdealLoopTree* new_loop = get_loop(ctrl);
 549     if (old_loop != new_loop) {
 550       if (old_loop->_child == NULL) old_loop->_body.yank(n);
 551       if (new_loop->_child == NULL) new_loop->_body.push(n);
 552     }
 553     set_ctrl(n, ctrl);
 554   }
 555   // Control nodes can be replaced or subsumed.  During this pass they
 556   // get their replacement Node in slot 1.  Instead of updating the block
 557   // location of all Nodes in the subsumed block, we lazily do it.  As we
 558   // pull such a subsumed block out of the array, we write back the final
 559   // correct block.
 560   Node *get_ctrl( Node *i ) {
 561     assert(has_node(i), "");
 562     Node *n = get_ctrl_no_update(i);
 563     _nodes.map( i->_idx, (Node*)((intptr_t)n + 1) );
 564     assert(has_node(i) && has_ctrl(i), "");
 565     assert(n == find_non_split_ctrl(n), "must return legal ctrl" );
 566     return n;
 567   }
 568 
 569 private:
 570   Node *get_ctrl_no_update( Node *i ) const {
 571     assert( has_ctrl(i), "" );
 572     Node *n = (Node*)(((intptr_t)_nodes[i->_idx]) & ~1);
 573     if (!n->in(0)) {        
 574       // Skip dead CFG nodes
 575       do {
 576         n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 577       } while (!n->in(0));
 578       n = find_non_split_ctrl(n);
 579     }
 580     return n;
 581   }
 582 
 583   // Check for loop being set
 584   // "n" must be a control node. Returns true if "n" is known to be in a loop.
 585   bool has_loop( Node *n ) const { 
 586     assert(!has_node(n) || !has_ctrl(n), "");
 587     return has_node(n);
 588   }
 589   // Set loop
 590   void set_loop( Node *n, IdealLoopTree *loop ) {
 591     _nodes.map(n->_idx, (Node*)loop);
 592   }
 593   // Lazy-dazy update of 'get_ctrl' and 'idom_at' mechanisms.  Replace
 594   // the 'old_node' with 'new_node'.  Kill old-node.  Add a reference
 595   // from old_node to new_node to support the lazy update.  Reference
 596   // replaces loop reference, since that is not neede for dead node.
 597 public:
 598   void lazy_update( Node *old_node, Node *new_node ) {
 599     assert( old_node != new_node, "no cycles please" );
 600     //old_node->set_req( 1, new_node /*NO DU INFO*/ );
 601     // Nodes always have DU info now, so re-use the side array slot
 602     // for this node to provide the forwarding pointer.
 603     _nodes.map( old_node->_idx, (Node*)((intptr_t)new_node + 1) );
 604   }
 605   void lazy_replace( Node *old_node, Node *new_node ) {
 606     _igvn.hash_delete(old_node);
 607     _igvn.subsume_node( old_node, new_node );
 608     lazy_update( old_node, new_node );
 609   }
 610   void lazy_replace_proj( Node *old_node, Node *new_node ) {
 611     assert( old_node->req() == 1, "use this for Projs" );
 612     _igvn.hash_delete(old_node); // Must hash-delete before hacking edges
 613     old_node->add_req( NULL );
 614     lazy_replace( old_node, new_node );
 615   }
 616 
 617 private:
 618 
 619   // Place 'n' in some loop nest, where 'n' is a CFG node
 620   void build_loop_tree();
 621   int build_loop_tree_impl( Node *n, int pre_order );
 622   // Insert loop into the existing loop tree.  'innermost' is a leaf of the
 623   // loop tree, not the root.
 624   IdealLoopTree *sort( IdealLoopTree *loop, IdealLoopTree *innermost );
 625 
 626   // Place Data nodes in some loop nest
 627   void build_loop_early( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me );
 628   void build_loop_late ( VectorSet &visited, Node_List &worklist, Node_Stack &nstack, const PhaseIdealLoop *verify_me );
 629   void build_loop_late_post ( Node* n, const PhaseIdealLoop *verify_me );
 630 
 631   // Array of immediate dominance info for each CFG node indexed by node idx
 632 private:
 633   uint _idom_size;
 634   Node **_idom;                 // Array of immediate dominators
 635   uint *_dom_depth;           // Used for fast LCA test    
 636   GrowableArray<uint>* _dom_stk; // For recomputation of dom depth
 637 
 638   Node* idom_no_update(Node* d) const {
 639     assert(d->_idx < _idom_size, "oob"); 
 640     Node* n = _idom[d->_idx];
 641     assert(n != NULL,"Bad immediate dominator info.");
 642     while (n->in(0) == NULL) {  // Skip dead CFG nodes
 643       //n = n->in(1);
 644       n = (Node*)(((intptr_t)_nodes[n->_idx]) & ~1);
 645       assert(n != NULL,"Bad immediate dominator info.");
 646     }
 647     return n;
 648   }
 649   Node *idom(Node* d) const {
 650     uint didx = d->_idx;
 651     Node *n = idom_no_update(d);
 652     _idom[didx] = n;            // Lazily remove dead CFG nodes from table.
 653     return n;
 654   }
 655   uint dom_depth(Node* d) const {                        
 656     assert(d->_idx < _idom_size, "");
 657     return _dom_depth[d->_idx];
 658   }
 659   void set_idom(Node* d, Node* n, uint dom_depth);
 660   // Locally compute IDOM using dom_lca call
 661   Node *compute_idom( Node *region ) const;
 662   // Recompute dom_depth
 663   void recompute_dom_depth();
 664 
 665   // Is safept not required by an outer loop?
 666   bool is_deleteable_safept(Node* sfpt);
 667 
 668 public:
 669   // Dominators for the sea of nodes
 670   void Dominators();
 671   Node *dom_lca( Node *n1, Node *n2 ) const {
 672     return find_non_split_ctrl(dom_lca_internal(n1, n2));
 673   }
 674   Node *dom_lca_internal( Node *n1, Node *n2 ) const;
 675 
 676   // Compute the Ideal Node to Loop mapping
 677   PhaseIdealLoop( PhaseIterGVN &igvn, const PhaseIdealLoop *verify_me, bool do_split_ifs );
 678 
 679   // True if the method has at least 1 irreducible loop
 680   bool _has_irreducible_loops;
 681 
 682   // Per-Node transform
 683   virtual Node *transform( Node *a_node ) { return 0; }
 684 
 685   Node *is_counted_loop( Node *x, IdealLoopTree *loop );
 686 
 687   // Return a post-walked LoopNode
 688   IdealLoopTree *get_loop( Node *n ) const {
 689     // Dead nodes have no loop, so return the top level loop instead
 690     if (!has_node(n))  return _ltree_root;
 691     assert(!has_ctrl(n), "");
 692     return (IdealLoopTree*)_nodes[n->_idx];
 693   }
 694 
 695   // Is 'n' a (nested) member of 'loop'?
 696   int is_member( const IdealLoopTree *loop, Node *n ) const { 
 697     return loop->is_member(get_loop(n)); }
 698 
 699   // This is the basic building block of the loop optimizations.  It clones an
 700   // entire loop body.  It makes an old_new loop body mapping; with this
 701   // mapping you can find the new-loop equivalent to an old-loop node.  All
 702   // new-loop nodes are exactly equal to their old-loop counterparts, all
 703   // edges are the same.  All exits from the old-loop now have a RegionNode
 704   // that merges the equivalent new-loop path.  This is true even for the
 705   // normal "loop-exit" condition.  All uses of loop-invariant old-loop values
 706   // now come from (one or more) Phis that merge their new-loop equivalents.
 707   // Parameter side_by_side_idom:
 708   //   When side_by_size_idom is NULL, the dominator tree is constructed for
 709   //      the clone loop to dominate the original.  Used in construction of
 710   //      pre-main-post loop sequence.
 711   //   When nonnull, the clone and original are side-by-side, both are
 712   //      dominated by the passed in side_by_side_idom node.  Used in
 713   //      construction of unswitched loops.
 714   void clone_loop( IdealLoopTree *loop, Node_List &old_new, int dom_depth,
 715                    Node* side_by_side_idom = NULL);
 716 
 717   // If we got the effect of peeling, either by actually peeling or by
 718   // making a pre-loop which must execute at least once, we can remove
 719   // all loop-invariant dominated tests in the main body.
 720   void peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new );
 721 
 722   // Generate code to do a loop peel for the given loop (and body).
 723   // old_new is a temp array.
 724   void do_peeling( IdealLoopTree *loop, Node_List &old_new );
 725 
 726   // Add pre and post loops around the given loop.  These loops are used
 727   // during RCE, unrolling and aligning loops.
 728   void insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only );
 729   // If Node n lives in the back_ctrl block, we clone a private version of n
 730   // in preheader_ctrl block and return that, otherwise return n.
 731   Node *clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n );
 732 
 733   // Take steps to maximally unroll the loop.  Peel any odd iterations, then
 734   // unroll to do double iterations.  The next round of major loop transforms
 735   // will repeat till the doubled loop body does all remaining iterations in 1
 736   // pass.
 737   void do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new );
 738 
 739   // Unroll the loop body one step - make each trip do 2 iterations.
 740   void do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip );
 741 
 742   // Return true if exp is a constant times an induction var
 743   bool is_scaled_iv(Node* exp, Node* iv, int* p_scale);
 744 
 745   // Return true if exp is a scaled induction var plus (or minus) constant
 746   bool is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth = 0);
 747 
 748   // Eliminate range-checks and other trip-counter vs loop-invariant tests.
 749   void do_range_check( IdealLoopTree *loop, Node_List &old_new );
 750 
 751   // Create a slow version of the loop by cloning the loop
 752   // and inserting an if to select fast-slow versions.
 753   ProjNode* create_slow_version_of_loop(IdealLoopTree *loop,
 754                                         Node_List &old_new);
 755 
 756   // Clone loop with an invariant test (that does not exit) and
 757   // insert a clone of the test that selects which version to
 758   // execute.
 759   void do_unswitching (IdealLoopTree *loop, Node_List &old_new);
 760 
 761   // Find candidate "if" for unswitching
 762   IfNode* find_unswitching_candidate(const IdealLoopTree *loop) const;
 763 
 764   // Range Check Elimination uses this function!
 765   // Constrain the main loop iterations so the affine function:
 766   //    scale_con * I + offset  <  limit
 767   // always holds true.  That is, either increase the number of iterations in
 768   // the pre-loop or the post-loop until the condition holds true in the main
 769   // loop.  Scale_con, offset and limit are all loop invariant.
 770   void add_constraint( int stride_con, int scale_con, Node *offset, Node *limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit );
 771   
 772   // Partially peel loop up through last_peel node.
 773   bool partial_peel( IdealLoopTree *loop, Node_List &old_new );
 774 
 775   // Create a scheduled list of nodes control dependent on ctrl set.
 776   void scheduled_nodelist( IdealLoopTree *loop, VectorSet& ctrl, Node_List &sched );
 777   // Has a use in the vector set
 778   bool has_use_in_set( Node* n, VectorSet& vset );
 779   // Has use internal to the vector set (ie. not in a phi at the loop head)
 780   bool has_use_internal_to_set( Node* n, VectorSet& vset, IdealLoopTree *loop );
 781   // clone "n" for uses that are outside of loop
 782   void clone_for_use_outside_loop( IdealLoopTree *loop, Node* n, Node_List& worklist );
 783   // clone "n" for special uses that are in the not_peeled region
 784   void clone_for_special_use_inside_loop( IdealLoopTree *loop, Node* n,
 785                                           VectorSet& not_peel, Node_List& sink_list, Node_List& worklist );
 786   // Insert phi(lp_entry_val, back_edge_val) at use->in(idx) for loop lp if phi does not already exist
 787   void insert_phi_for_loop( Node* use, uint idx, Node* lp_entry_val, Node* back_edge_val, LoopNode* lp );
 788 #ifdef ASSERT
 789   // Validate the loop partition sets: peel and not_peel
 790   bool is_valid_loop_partition( IdealLoopTree *loop, VectorSet& peel, Node_List& peel_list, VectorSet& not_peel );
 791   // Ensure that uses outside of loop are of the right form
 792   bool is_valid_clone_loop_form( IdealLoopTree *loop, Node_List& peel_list,
 793                                  uint orig_exit_idx, uint clone_exit_idx);
 794   bool is_valid_clone_loop_exit_use( IdealLoopTree *loop, Node* use, uint exit_idx);
 795 #endif
 796 
 797   // Returns nonzero constant stride if-node is a possible iv test (otherwise returns zero.)
 798   int stride_of_possible_iv( Node* iff );
 799   bool is_possible_iv_test( Node* iff ) { return stride_of_possible_iv(iff) != 0; }
 800   // Return the (unique) control output node that's in the loop (if it exists.)
 801   Node* stay_in_loop( Node* n, IdealLoopTree *loop);
 802   // Insert a signed compare loop exit cloned from an unsigned compare.
 803   IfNode* insert_cmpi_loop_exit(IfNode* if_cmpu, IdealLoopTree *loop);
 804   void remove_cmpi_loop_exit(IfNode* if_cmp, IdealLoopTree *loop);
 805   // Utility to register node "n" with PhaseIdealLoop
 806   void register_node(Node* n, IdealLoopTree *loop, Node* pred, int ddepth);
 807   // Utility to create an if-projection
 808   ProjNode* proj_clone(ProjNode* p, IfNode* iff);
 809   // Force the iff control output to be the live_proj
 810   Node* short_circuit_if(IfNode* iff, ProjNode* live_proj);
 811   // Insert a region before an if projection
 812   RegionNode* insert_region_before_proj(ProjNode* proj);
 813   // Insert a new if before an if projection
 814   ProjNode* insert_if_before_proj(Node* left, bool Signed, BoolTest::mask relop, Node* right, ProjNode* proj);
 815 
 816   // Passed in a Phi merging (recursively) some nearly equivalent Bool/Cmps.
 817   // "Nearly" because all Nodes have been cloned from the original in the loop,
 818   // but the fall-in edges to the Cmp are different.  Clone bool/Cmp pairs 
 819   // through the Phi recursively, and return a Bool.
 820   BoolNode *clone_iff( PhiNode *phi, IdealLoopTree *loop );
 821   CmpNode *clone_bool( PhiNode *phi, IdealLoopTree *loop );
 822 
 823 
 824   // Rework addressing expressions to get the most loop-invariant stuff 
 825   // moved out.  We'd like to do all associative operators, but it's especially
 826   // important (common) to do address expressions.
 827   Node *remix_address_expressions( Node *n );
 828 
 829   // Attempt to use a conditional move instead of a phi/branch
 830   Node *conditional_move( Node *n );
 831 
 832   // Reorganize offset computations to lower register pressure.
 833   // Mostly prevent loop-fallout uses of the pre-incremented trip counter
 834   // (which are then alive with the post-incremented trip counter
 835   // forcing an extra register move)
 836   void reorg_offsets( IdealLoopTree *loop );
 837 
 838   // Check for aggressive application of 'split-if' optimization,
 839   // using basic block level info.
 840   void  split_if_with_blocks     ( VectorSet &visited, Node_Stack &nstack );
 841   Node *split_if_with_blocks_pre ( Node *n );
 842   void  split_if_with_blocks_post( Node *n );
 843   Node *has_local_phi_input( Node *n );
 844   // Mark an IfNode as being dominated by a prior test,
 845   // without actually altering the CFG (and hence IDOM info).
 846   void dominated_by( Node *prevdom, Node *iff );
 847 
 848   // Split Node 'n' through merge point
 849   Node *split_thru_region( Node *n, Node *region );
 850   // Split Node 'n' through merge point if there is enough win.
 851   Node *split_thru_phi( Node *n, Node *region, int policy );
 852   // Found an If getting its condition-code input from a Phi in the 
 853   // same block.  Split thru the Region.
 854   void do_split_if( Node *iff );
 855 
 856 private:
 857   // Return a type based on condition control flow
 858   const TypeInt* filtered_type( Node *n, Node* n_ctrl);
 859   const TypeInt* filtered_type( Node *n ) { return filtered_type(n, NULL); }
 860  // Helpers for filtered type
 861   const TypeInt* filtered_type_from_dominators( Node* val, Node *val_ctrl);
 862 
 863   // Helper functions
 864   void register_new_node( Node *n, Node *blk );
 865   Node *spinup( Node *iff, Node *new_false, Node *new_true, Node *region, Node *phi, small_cache *cache );
 866   Node *find_use_block( Node *use, Node *def, Node *old_false, Node *new_false, Node *old_true, Node *new_true );
 867   void handle_use( Node *use, Node *def, small_cache *cache, Node *region_dom, Node *new_false, Node *new_true, Node *old_false, Node *old_true );
 868   bool split_up( Node *n, Node *blk1, Node *blk2 );
 869   void sink_use( Node *use, Node *post_loop );
 870   Node *place_near_use( Node *useblock ) const;
 871 
 872   bool _created_loop_node;
 873 public:
 874   void set_created_loop_node() { _created_loop_node = true; }
 875   bool created_loop_node()     { return _created_loop_node; }
 876 
 877 #ifndef PRODUCT
 878   void dump( ) const;
 879   void dump( IdealLoopTree *loop, uint rpo_idx, Node_List &rpo_list ) const;
 880   void rpo( Node *start, Node_Stack &stk, VectorSet &visited, Node_List &rpo_list ) const;
 881   void verify() const;          // Major slow  :-)
 882   void verify_compare( Node *n, const PhaseIdealLoop *loop_verify, VectorSet &visited ) const;
 883   IdealLoopTree *get_loop_idx(Node* n) const {
 884     // Dead nodes have no loop, so return the top level loop instead
 885     return _nodes[n->_idx] ? (IdealLoopTree*)_nodes[n->_idx] : _ltree_root;
 886   }
 887   // Print some stats
 888   static void print_statistics();
 889   static int _loop_invokes;     // Count of PhaseIdealLoop invokes
 890   static int _loop_work;        // Sum of PhaseIdealLoop x _unique
 891 #endif
 892 };
 893 
 894 inline Node* IdealLoopTree::tail() {
 895 // Handle lazy update of _tail field
 896   Node *n = _tail;
 897   //while( !n->in(0) )  // Skip dead CFG nodes
 898     //n = n->in(1);
 899   if (n->in(0) == NULL)
 900     n = _phase->get_ctrl(n);
 901   _tail = n;
 902   return n;
 903 }
 904 
 905 
 906 // Iterate over the loop tree using a preorder, left-to-right traversal.
 907 //
 908 // Example that visits all counted loops from within PhaseIdealLoop
 909 //
 910 //  for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
 911 //   IdealLoopTree* lpt = iter.current();
 912 //   if (!lpt->is_counted()) continue;
 913 //   ...
 914 class LoopTreeIterator : public StackObj {
 915 private:
 916   IdealLoopTree* _root;
 917   IdealLoopTree* _curnt;
 918 
 919 public:
 920   LoopTreeIterator(IdealLoopTree* root) : _root(root), _curnt(root) {}
 921 
 922   bool done() { return _curnt == NULL; }       // Finished iterating?
 923 
 924   void next();                                 // Advance to next loop tree
 925 
 926   IdealLoopTree* current() { return _curnt; }  // Return current value of iterator.
 927 };
 928