hotspot/src/share/vm/opto/macro.cpp

Print this page
rev 611 : Merge
   1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)macro.cpp    1.33 07/10/04 14:36:00 JVM"
   3 #endif
   4 /*
   5  * Copyright 2005-2007 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  


  40     Node *uin = use->in(j);
  41     if (uin == oldref) {
  42       if (j < req)
  43         use->set_req(j, newref);
  44       else
  45         use->set_prec(j, newref);
  46       nreplacements++;
  47     } else if (j >= req && uin == NULL) {
  48       break;
  49     }
  50   }
  51   return nreplacements;
  52 }
  53 
  54 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  55   // Copy debug information and adjust JVMState information
  56   uint old_dbg_start = oldcall->tf()->domain()->cnt();
  57   uint new_dbg_start = newcall->tf()->domain()->cnt();
  58   int jvms_adj  = new_dbg_start - old_dbg_start;
  59   assert (new_dbg_start == newcall->req(), "argument count mismatch");


  60   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  61     newcall->add_req(oldcall->in(i));











  62   }

  63   newcall->set_jvms(oldcall->jvms());
  64   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
  65     jvms->set_map(newcall);
  66     jvms->set_locoff(jvms->locoff()+jvms_adj);
  67     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
  68     jvms->set_monoff(jvms->monoff()+jvms_adj);

  69     jvms->set_endoff(jvms->endoff()+jvms_adj);
  70   }
  71 }
  72 
  73 Node* PhaseMacroExpand::opt_iff(Node* region, Node* iff) {
  74   IfNode *opt_iff = transform_later(iff)->as_If();









  75 
  76   // Fast path taken; set region slot 2
  77   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(opt_iff) );
  78   region->init_req(2,fast_taken); // Capture fast-control
  79 
  80   // Fast path not-taken, i.e. slow path
  81   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(opt_iff) );






  82   return slow_taken;

  83 }
  84 
  85 //--------------------copy_predefined_input_for_runtime_call--------------------
  86 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
  87   // Set fixed predefined input arguments
  88   call->init_req( TypeFunc::Control, ctrl );
  89   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
  90   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
  91   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
  92   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
  93 }
  94 
  95 //------------------------------make_slow_call---------------------------------
  96 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
  97 
  98   // Slow-path call
  99   int size = slow_call_type->domain()->cnt();
 100  CallNode *call = leaf_name
 101    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 102    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );


 152           _ioproj_catchall = pn;
 153         else
 154           _ioproj_fallthrough = pn;
 155         break;
 156       case TypeFunc::Memory:
 157         if (pn->_is_io_use)
 158           _memproj_catchall = pn;
 159         else
 160           _memproj_fallthrough = pn;
 161         break;
 162       case TypeFunc::Parms:
 163         _resproj = pn;
 164         break;
 165       default:
 166         assert(false, "unexpected projection from allocation node.");
 167     }
 168   }
 169 
 170 }
 171 












































































































































































































































































































































































































































































































































































































































































 172 
 173 //---------------------------set_eden_pointers-------------------------
 174 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
 175   if (UseTLAB) {                // Private allocation: load from TLS
 176     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
 177     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
 178     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
 179     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
 180     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
 181   } else {                      // Shared allocation: load from globals
 182     CollectedHeap* ch = Universe::heap();
 183     address top_adr = (address)ch->top_addr();
 184     address end_adr = (address)ch->end_addr();
 185     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
 186     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
 187   }
 188 }
 189 
 190 
 191 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
 192   Node* adr = basic_plus_adr(base, offset);
 193   const TypePtr* adr_type = TypeRawPtr::BOTTOM;
 194   Node* value = LoadNode::make(C, ctl, mem, adr, adr_type, value_type, bt);
 195   transform_later(value);
 196   return value;
 197 }
 198 
 199 
 200 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
 201   Node* adr = basic_plus_adr(base, offset);
 202   mem = StoreNode::make(C, ctl, mem, adr, NULL, value, bt);
 203   transform_later(mem);
 204   return mem;
 205 }
 206 
 207 //=============================================================================
 208 // 
 209 //                              A L L O C A T I O N 
 210 //
 211 // Allocation attempts to be fast in the case of frequent small objects.
 212 // It breaks down like this: 
 213 //
 214 // 1) Size in doublewords is computed.  This is a constant for objects and
 215 // variable for most arrays.  Doubleword units are used to avoid size
 216 // overflow of huge doubleword arrays.  We need doublewords in the end for
 217 // rounding.
 218 //
 219 // 2) Size is checked for being 'too large'.  Too-large allocations will go
 220 // the slow path into the VM.  The slow path can throw any required
 221 // exceptions, and does all the special checks for very large arrays.  The
 222 // size test can constant-fold away for objects.  For objects with


 256 // code shape produced here, so if you are changing this code shape
 257 // make sure the GC info for the heap-top is correct in and around the
 258 // slow-path call.
 259 //
 260 
 261 void PhaseMacroExpand::expand_allocate_common(
 262             AllocateNode* alloc, // allocation node to be expanded
 263             Node* length,  // array length for an array allocation
 264             const TypeFunc* slow_call_type, // Type of slow call
 265             address slow_call_address  // Address of slow call
 266     )
 267 {
 268 
 269   Node* ctrl = alloc->in(TypeFunc::Control);
 270   Node* mem  = alloc->in(TypeFunc::Memory);
 271   Node* i_o  = alloc->in(TypeFunc::I_O);
 272   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
 273   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
 274   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
 275 
 276   Node* eden_top_adr;
 277   Node* eden_end_adr;
 278   set_eden_pointers(eden_top_adr, eden_end_adr);



 279 
 280   uint raw_idx = C->get_alias_index(TypeRawPtr::BOTTOM);
 281   assert(ctrl != NULL, "must have control");
 282 
 283   // Load Eden::end.  Loop invariant and hoisted.
 284   //
 285   // Note: We set the control input on "eden_end" and "old_eden_top" when using
 286   //       a TLAB to work around a bug where these values were being moved across
 287   //       a safepoint.  These are not oops, so they cannot be include in the oop
 288   //       map, but the can be changed by a GC.   The proper way to fix this would
 289   //       be to set the raw memory state when generating a  SafepointNode.  However
 290   //       this will require extensive changes to the loop optimization in order to
 291   //       prevent a degradation of the optimization.
 292   //       See comment in memnode.hpp, around line 227 in class LoadPNode.
 293   Node* eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
 294 
 295   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
 296   // they will not be used if "always_slow" is set
 297   enum { slow_result_path = 1, fast_result_path = 2 };
 298   Node *result_region;
 299   Node *result_phi_rawmem;
 300   Node *result_phi_rawoop;
 301   Node *result_phi_i_o;
 302 
 303   // The initial slow comparison is a size check, the comparison
 304   // we want to do is a BoolTest::gt
 305   bool always_slow = false;
 306   int tv = _igvn.find_int_con(initial_slow_test, -1);
 307   if (tv >= 0) {
 308     always_slow = (tv == 1);
 309     initial_slow_test = NULL;
 310   } else {
 311     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
 312   }
 313 
 314   if (DTraceAllocProbes) {


 315     // Force slow-path allocation
 316     always_slow = true;
 317     initial_slow_test = NULL;
 318   }
 319 

 320   enum { too_big_or_final_path = 1, need_gc_path = 2 };
 321   Node *slow_region = NULL;
 322   Node *toobig_false = ctrl;
 323 
 324   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
 325   // generate the initial test if necessary
 326   if (initial_slow_test != NULL ) {
 327     slow_region = new (C, 3) RegionNode(3);
 328 
 329     // Now make the initial failure test.  Usually a too-big test but
 330     // might be a TRUE for finalizers or a fancy class check for
 331     // newInstance0.
 332     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
 333     transform_later(toobig_iff);
 334     // Plug the failing-too-big test into the slow-path region
 335     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
 336     transform_later(toobig_true);
 337     slow_region    ->init_req( too_big_or_final_path, toobig_true );
 338     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
 339     transform_later(toobig_false);
 340   } else {         // No initial test, just fall into next case
 341     toobig_false = ctrl;
 342     debug_only(slow_region = NodeSentinel);
 343   }
 344 
 345   Node *slow_mem = mem;  // save the current memory state for slow path
 346   // generate the fast allocation code unless we know that the initial test will always go slow
 347   if (!always_slow) {

















 348     // allocate the Region and Phi nodes for the result
 349     result_region = new (C, 3) RegionNode(3);
 350     result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
 351     result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
 352     result_phi_i_o    = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
 353 
 354     // We need a Region for the loop-back contended case.
 355     enum { fall_in_path = 1, contended_loopback_path = 2 };
 356     Node *contended_region;
 357     Node *contended_phi_rawmem;
 358     if( UseTLAB ) {
 359       contended_region = toobig_false;
 360       contended_phi_rawmem = mem;
 361     } else {
 362       contended_region = new (C, 3) RegionNode(3);
 363       contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
 364       // Now handle the passing-too-big test.  We fall into the contended
 365       // loop-back merge point.
 366       contended_region    ->init_req( fall_in_path, toobig_false );
 367       contended_phi_rawmem->init_req( fall_in_path, mem );


 618 }
 619 
 620 
 621 // Helper for PhaseMacroExpand::expand_allocate_common.
 622 // Initializes the newly-allocated storage.
 623 Node*
 624 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
 625                                     Node* control, Node* rawmem, Node* object,
 626                                     Node* klass_node, Node* length,
 627                                     Node* size_in_bytes) {
 628   InitializeNode* init = alloc->initialization();
 629   // Store the klass & mark bits
 630   Node* mark_node = NULL;
 631   // For now only enable fast locking for non-array types
 632   if (UseBiasedLocking && (length == NULL)) {
 633     mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
 634   } else {
 635     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
 636   }
 637   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);

 638   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
 639   int header_size = alloc->minimum_header_size();  // conservatively small
 640 
 641   // Array length
 642   if (length != NULL) {         // Arrays need length field
 643     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
 644     // conservatively small header size:
 645     header_size = sizeof(arrayOopDesc);
 646     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
 647     if (k->is_array_klass())    // we know the exact header size in most cases:
 648       header_size = Klass::layout_helper_header_size(k->layout_helper());
 649   }
 650 
 651   // Clear the object body, if necessary.
 652   if (init == NULL) {
 653     // The init has somehow disappeared; be cautious and clear everything.
 654     //
 655     // This can happen if a node is allocated but an uncommon trap occurs
 656     // immediately.  In this case, the Initialize gets associated with the
 657     // trap, and may be placed in a different (outer) loop, if the Allocate
 658     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
 659     // there can be two Allocates to one Initialize.  The answer in all these
 660     // edge cases is safety first.  It is always safe to clear immediately
 661     // within an Allocate, and then (maybe or maybe not) clear some more later.
 662     if (!ZeroTLAB)
 663       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
 664                                             header_size, size_in_bytes,
 665                                             &_igvn);
 666   } else {
 667     if (!init->is_complete()) {
 668       // Try to win by zeroing only what the init does not store.
 669       // We can also try to do some peephole optimizations,
 670       // such as combining some adjacent subword stores.
 671       rawmem = init->complete_stores(control, rawmem, object,
 672                                      header_size, size_in_bytes, &_igvn);
 673     }
 674 
 675     // We have no more use for this link, since the AllocateNode goes away:
 676     init->set_req(InitializeNode::RawAddress, top());
 677     // (If we keep the link, it just confuses the register allocator,
 678     // who thinks he sees a real use of the address by the membar.)
 679   }
 680 
 681   return rawmem;
 682 }
 683 
 684 // Generate prefetch instructions for next allocations.
 685 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false, 
 686                                         Node*& contended_phi_rawmem, 
 687                                         Node* old_eden_top, Node* new_eden_top, 
 688                                         Node* length) {
 689    if( UseTLAB && AllocatePrefetchStyle == 2 ) { 
 690       // Generate prefetch allocation with watermark check.
 691       // As an allocation hits the watermark, we will prefetch starting 
 692       // at a "distance" away from watermark.
 693       enum { fall_in_path = 1, pf_path = 2 };
 694 


 799 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
 800   expand_allocate_common(alloc, NULL,
 801                          OptoRuntime::new_instance_Type(),
 802                          OptoRuntime::new_instance_Java());
 803 }
 804 
 805 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
 806   Node* length = alloc->in(AllocateNode::ALength);
 807   expand_allocate_common(alloc, length,
 808                          OptoRuntime::new_array_Type(),
 809                          OptoRuntime::new_array_Java());
 810 }
 811 
 812 
 813 // we have determined that this lock/unlock can be eliminated, we simply
 814 // eliminate the node without expanding it.
 815 //
 816 // Note:  The membar's associated with the lock/unlock are currently not
 817 //        eliminated.  This should be investigated as a future enhancement.
 818 //
 819 void PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {








































































 820   Node* mem = alock->in(TypeFunc::Memory);












 821 
 822   // The memory projection from a lock/unlock is RawMem
 823   // The input to a Lock is merged memory, so extract its RawMem input
 824   // (unless the MergeMem has been optimized away.)
 825   if (alock->is_Lock()) {
 826     if (mem->is_MergeMem())
 827       mem = mem->as_MergeMem()->in(Compile::AliasIdxRaw);
















 828   }
 829 
 830   extract_call_projections(alock);
 831   // There are 2 projections from the lock.  The lock node will
 832   // be deleted when its last use is subsumed below.
 833   assert(alock->outcnt() == 2 && _fallthroughproj != NULL &&
 834           _memproj_fallthrough != NULL, "Unexpected projections from Lock/Unlock");
 835   _igvn.hash_delete(_fallthroughproj);
 836   _igvn.subsume_node(_fallthroughproj, alock->in(TypeFunc::Control));
 837   _igvn.hash_delete(_memproj_fallthrough);
 838   _igvn.subsume_node(_memproj_fallthrough, mem);
 839   return;











 840 }
 841 
 842 
 843 //------------------------------expand_lock_node----------------------
 844 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
 845 
 846   Node* ctrl = lock->in(TypeFunc::Control);
 847   Node* mem = lock->in(TypeFunc::Memory);
 848   Node* obj = lock->obj_node();
 849   Node* box = lock->box_node();
 850   Node *flock = lock->fastlock_node();
 851 
 852   if (lock->is_eliminated()) {
 853     eliminate_locking_node(lock);
 854     return;
















































































 855   }

 856 
 857   // Make the merge point
 858   Node *region = new (C, 3) RegionNode(3);






































































































 859   
 860   Node *bol = transform_later(new (C, 2) BoolNode(flock,BoolTest::ne));
 861   Node *iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 862   // Optimize test; set region slot 2
 863   Node *slow_path = opt_iff(region,iff);


 864   
 865   // Make slow path call
 866   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
 867 
 868   extract_call_projections(call);
 869 
 870   // Slow path can only throw asynchronous exceptions, which are always
 871   // de-opted.  So the compiler thinks the slow-call can never throw an
 872   // exception.  If it DOES throw an exception we would need the debug
 873   // info removed first (since if it throws there is no monitor).
 874   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
 875            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
 876 
 877   // Capture slow path
 878   // disconnect fall-through projection from call and create a new one
 879   // hook up users of fall-through projection to region
 880   Node *slow_ctrl = _fallthroughproj->clone();
 881   transform_later(slow_ctrl);
 882   _igvn.hash_delete(_fallthroughproj);
 883   _fallthroughproj->disconnect_inputs(NULL);
 884   region->init_req(1, slow_ctrl);
 885   // region inputs are now complete
 886   transform_later(region);
 887   _igvn.subsume_node(_fallthroughproj, region);
 888 
 889   // create a Phi for the memory state
 890   Node *mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
 891   Node *memproj = transform_later( new (C, 1) ProjNode(call, TypeFunc::Memory) );
 892   mem_phi->init_req(1, memproj );
 893   mem_phi->init_req(2, mem);
 894   transform_later(mem_phi);
 895     _igvn.hash_delete(_memproj_fallthrough);
 896   _igvn.subsume_node(_memproj_fallthrough, mem_phi);
 897 
 898 
 899 }
 900 
 901 //------------------------------expand_unlock_node----------------------
 902 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
 903 
 904   Node *ctrl = unlock->in(TypeFunc::Control);
 905   Node* mem = unlock->in(TypeFunc::Memory);
 906   Node* obj = unlock->obj_node();
 907   Node* box = unlock->box_node();
 908 
 909 
 910   if (unlock->is_eliminated()) {
 911     eliminate_locking_node(unlock);
 912     return;
 913   }
 914 
 915   // No need for a null check on unlock
 916 
 917   // Make the merge point
 918   RegionNode *region = new (C, 3) RegionNode(3);



















 919 
 920   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
 921   funlock = transform_later( funlock )->as_FastUnlock();
 922   Node *bol = transform_later(new (C, 2) BoolNode(funlock,BoolTest::ne));
 923   Node *iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 924   // Optimize test; set region slot 2
 925   Node *slow_path = opt_iff(region,iff);
 926 
 927   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
 928   
 929   extract_call_projections(call);
 930 
 931   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
 932            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
 933 
 934   // No exceptions for unlocking
 935   // Capture slow path
 936   // disconnect fall-through projection from call and create a new one
 937   // hook up users of fall-through projection to region
 938   Node *slow_ctrl = _fallthroughproj->clone();
 939   transform_later(slow_ctrl);
 940   _igvn.hash_delete(_fallthroughproj);
 941   _fallthroughproj->disconnect_inputs(NULL);
 942   region->init_req(1, slow_ctrl);
 943   // region inputs are now complete
 944   transform_later(region);
 945   _igvn.subsume_node(_fallthroughproj, region);
 946 
 947   // create a Phi for the memory state
 948   Node *mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
 949   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
 950   mem_phi->init_req(1, memproj );
 951   mem_phi->init_req(2, mem);
 952   transform_later(mem_phi);
 953     _igvn.hash_delete(_memproj_fallthrough);
 954   _igvn.subsume_node(_memproj_fallthrough, mem_phi);
 955 
 956 
 957 }
 958 
 959 //------------------------------expand_macro_nodes----------------------
 960 //  Returns true if a failure occurred.
 961 bool PhaseMacroExpand::expand_macro_nodes() {
 962   if (C->macro_count() == 0)
 963     return false;
 964   // Make sure expansion will not cause node limit to be exceeded.  Worst case is a
 965   // macro node gets expanded into about 50 nodes.  Allow 50% more for optimization













































 966   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
 967     return true;

 968   // expand "macro" nodes
 969   // nodes are removed from the macro list as they are processed
 970   while (C->macro_count() > 0) {
 971     Node * n = C->macro_node(0);

 972     assert(n->is_macro(), "only macro nodes expected here");
 973     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
 974       // node is unreachable, so don't try to expand it
 975       C->remove_macro_node(n);
 976       continue;
 977     }
 978     switch (n->class_id()) {
 979     case Node::Class_Allocate:
 980       expand_allocate(n->as_Allocate());
 981       break;
 982     case Node::Class_AllocateArray:
 983       expand_allocate_array(n->as_AllocateArray());
 984       break;
 985     case Node::Class_Lock:
 986       expand_lock_node(n->as_Lock());
 987       break;
 988     case Node::Class_Unlock:
 989       expand_unlock_node(n->as_Unlock());
 990       break;
 991     default:
 992       assert(false, "unknown node type in macro list");
 993     }

 994     if (C->failing())  return true;
 995   }


 996   _igvn.optimize();
 997   return false;
 998 }
 999 
   1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)macro.cpp    1.33 07/10/04 14:36:00 JVM"
   3 #endif
   4 /*
   5  * Copyright 2005-2008 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  


  40     Node *uin = use->in(j);
  41     if (uin == oldref) {
  42       if (j < req)
  43         use->set_req(j, newref);
  44       else
  45         use->set_prec(j, newref);
  46       nreplacements++;
  47     } else if (j >= req && uin == NULL) {
  48       break;
  49     }
  50   }
  51   return nreplacements;
  52 }
  53 
  54 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  55   // Copy debug information and adjust JVMState information
  56   uint old_dbg_start = oldcall->tf()->domain()->cnt();
  57   uint new_dbg_start = newcall->tf()->domain()->cnt();
  58   int jvms_adj  = new_dbg_start - old_dbg_start;
  59   assert (new_dbg_start == newcall->req(), "argument count mismatch");
  60 
  61   Dict* sosn_map = new Dict(cmpkey,hashkey);
  62   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  63     Node* old_in = oldcall->in(i);
  64     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
  65     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
  66       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
  67       uint old_unique = C->unique();
  68       Node* new_in = old_sosn->clone(jvms_adj, sosn_map);
  69       if (old_unique != C->unique()) {
  70         new_in = transform_later(new_in); // Register new node.
  71       }
  72       old_in = new_in;
  73     }
  74     newcall->add_req(old_in);
  75   }
  76 
  77   newcall->set_jvms(oldcall->jvms());
  78   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
  79     jvms->set_map(newcall);
  80     jvms->set_locoff(jvms->locoff()+jvms_adj);
  81     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
  82     jvms->set_monoff(jvms->monoff()+jvms_adj);
  83     jvms->set_scloff(jvms->scloff()+jvms_adj);
  84     jvms->set_endoff(jvms->endoff()+jvms_adj);
  85   }
  86 }
  87 
  88 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
  89   Node* cmp;
  90   if (mask != 0) {
  91     Node* and_node = transform_later(new (C, 3) AndXNode(word, MakeConX(mask)));
  92     cmp = transform_later(new (C, 3) CmpXNode(and_node, MakeConX(bits)));
  93   } else {
  94     cmp = word;
  95   }
  96   Node* bol = transform_later(new (C, 2) BoolNode(cmp, BoolTest::ne));
  97   IfNode* iff = new (C, 2) IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
  98   transform_later(iff);
  99 
 100   // Fast path taken.
 101   Node *fast_taken = transform_later( new (C, 1) IfFalseNode(iff) );

 102 
 103   // Fast path not-taken, i.e. slow path
 104   Node *slow_taken = transform_later( new (C, 1) IfTrueNode(iff) );
 105 
 106   if (return_fast_path) {
 107     region->init_req(edge, slow_taken); // Capture slow-control
 108     return fast_taken;
 109   } else {
 110     region->init_req(edge, fast_taken); // Capture fast-control
 111     return slow_taken;
 112   }
 113 }
 114 
 115 //--------------------copy_predefined_input_for_runtime_call--------------------
 116 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 117   // Set fixed predefined input arguments
 118   call->init_req( TypeFunc::Control, ctrl );
 119   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 120   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 121   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 122   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 123 }
 124 
 125 //------------------------------make_slow_call---------------------------------
 126 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type, address slow_call, const char* leaf_name, Node* slow_path, Node* parm0, Node* parm1) {
 127 
 128   // Slow-path call
 129   int size = slow_call_type->domain()->cnt();
 130  CallNode *call = leaf_name
 131    ? (CallNode*)new (C, size) CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 132    : (CallNode*)new (C, size) CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );


 182           _ioproj_catchall = pn;
 183         else
 184           _ioproj_fallthrough = pn;
 185         break;
 186       case TypeFunc::Memory:
 187         if (pn->_is_io_use)
 188           _memproj_catchall = pn;
 189         else
 190           _memproj_fallthrough = pn;
 191         break;
 192       case TypeFunc::Parms:
 193         _resproj = pn;
 194         break;
 195       default:
 196         assert(false, "unexpected projection from allocation node.");
 197     }
 198   }
 199 
 200 }
 201 
 202 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
 203 void PhaseMacroExpand::eliminate_card_mark(Node *p2x) {
 204   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
 205   Node *shift = p2x->unique_out();
 206   Node *addp = shift->unique_out();
 207   for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 208     Node *st = addp->last_out(j);
 209     assert(st->is_Store(), "store required");
 210     _igvn.replace_node(st, st->in(MemNode::Memory));
 211   }
 212 }
 213 
 214 // Search for a memory operation for the specified memory slice.
 215 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 216   Node *orig_mem = mem;
 217   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 218   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 219   while (true) {
 220     if (mem == alloc_mem || mem == start_mem ) {
 221       return mem;  // hit one of our sentinals
 222     } else if (mem->is_MergeMem()) {
 223       mem = mem->as_MergeMem()->memory_at(alias_idx);
 224     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 225       Node *in = mem->in(0);
 226       // we can safely skip over safepoints, calls, locks and membars because we
 227       // already know that the object is safe to eliminate.
 228       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 229         return in;
 230       } else if (in->is_Call()) {
 231         CallNode *call = in->as_Call();
 232         if (!call->may_modify(tinst, phase)) {
 233           mem = call->in(TypeFunc::Memory);
 234         }
 235         mem = in->in(TypeFunc::Memory);
 236       } else if (in->is_MemBar()) {
 237         mem = in->in(TypeFunc::Memory);
 238       } else {
 239         assert(false, "unexpected projection");
 240       }
 241     } else if (mem->is_Store()) {
 242       const TypePtr* atype = mem->as_Store()->adr_type();
 243       int adr_idx = Compile::current()->get_alias_index(atype);
 244       if (adr_idx == alias_idx) {
 245         assert(atype->isa_oopptr(), "address type must be oopptr");
 246         int adr_offset = atype->offset();
 247         uint adr_iid = atype->is_oopptr()->instance_id();
 248         // Array elements references have the same alias_idx
 249         // but different offset and different instance_id.
 250         if (adr_offset == offset && adr_iid == alloc->_idx)
 251           return mem;
 252       } else {
 253         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 254       }
 255       mem = mem->in(MemNode::Memory);
 256     } else {
 257       return mem;
 258     }
 259     assert(mem != orig_mem, "dead memory loop");
 260   }
 261 }
 262 
 263 //
 264 // Given a Memory Phi, compute a value Phi containing the values from stores
 265 // on the input paths.
 266 // Note: this function is recursive, its depth is limied by the "level" argument
 267 // Returns the computed Phi, or NULL if it cannot compute it.
 268 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, Node *alloc, Node_Stack *value_phis, int level) {
 269   assert(mem->is_Phi(), "sanity");
 270   int alias_idx = C->get_alias_index(adr_t);
 271   int offset = adr_t->offset();
 272   int instance_id = adr_t->instance_id();
 273 
 274   // Check if an appropriate value phi already exists.
 275   Node* region = mem->in(0);
 276   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 277     Node* phi = region->fast_out(k);
 278     if (phi->is_Phi() && phi != mem &&
 279         phi->as_Phi()->is_same_inst_field(phi_type, instance_id, alias_idx, offset)) {
 280       return phi;
 281     }
 282   }
 283   // Check if an appropriate new value phi already exists.
 284   Node* new_phi = NULL;
 285   uint size = value_phis->size();
 286   for (uint i=0; i < size; i++) {
 287     if ( mem->_idx == value_phis->index_at(i) ) {
 288       return value_phis->node_at(i);
 289     }
 290   }
 291 
 292   if (level <= 0) {
 293     return NULL; // Give up: phi tree too deep
 294   }
 295   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 296   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 297 
 298   uint length = mem->req();
 299   GrowableArray <Node *> values(length, length, NULL);
 300 
 301   // create a new Phi for the value
 302   PhiNode *phi = new (C, length) PhiNode(mem->in(0), phi_type, NULL, instance_id, alias_idx, offset);
 303   transform_later(phi);
 304   value_phis->push(phi, mem->_idx);
 305 
 306   for (uint j = 1; j < length; j++) {
 307     Node *in = mem->in(j);
 308     if (in == NULL || in->is_top()) {
 309       values.at_put(j, in);
 310     } else  {
 311       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 312       if (val == start_mem || val == alloc_mem) {
 313         // hit a sentinel, return appropriate 0 value
 314         values.at_put(j, _igvn.zerocon(ft));
 315         continue;
 316       }
 317       if (val->is_Initialize()) {
 318         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 319       }
 320       if (val == NULL) {
 321         return NULL;  // can't find a value on this path
 322       }
 323       if (val == mem) {
 324         values.at_put(j, mem);
 325       } else if (val->is_Store()) {
 326         values.at_put(j, val->in(MemNode::ValueIn));
 327       } else if(val->is_Proj() && val->in(0) == alloc) {
 328         values.at_put(j, _igvn.zerocon(ft));
 329       } else if (val->is_Phi()) {
 330         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 331         if (val == NULL) {
 332           return NULL;
 333         }
 334         values.at_put(j, val);
 335       } else {
 336         assert(false, "unknown node on this path");
 337         return NULL;  // unknown node on this path
 338       }
 339     }
 340   }
 341   // Set Phi's inputs
 342   for (uint j = 1; j < length; j++) {
 343     if (values.at(j) == mem) {
 344       phi->init_req(j, phi);
 345     } else {
 346       phi->init_req(j, values.at(j));
 347     }
 348   }
 349   return phi;
 350 }
 351 
 352 // Search the last value stored into the object's field.
 353 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, Node *alloc) {
 354   assert(adr_t->is_known_instance_field(), "instance required");
 355   int instance_id = adr_t->instance_id();
 356   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 357 
 358   int alias_idx = C->get_alias_index(adr_t);
 359   int offset = adr_t->offset();
 360   Node *start_mem = C->start()->proj_out(TypeFunc::Memory);
 361   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 362   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 363   Arena *a = Thread::current()->resource_area();
 364   VectorSet visited(a);
 365 
 366 
 367   bool done = sfpt_mem == alloc_mem;
 368   Node *mem = sfpt_mem;
 369   while (!done) {
 370     if (visited.test_set(mem->_idx)) {
 371       return NULL;  // found a loop, give up
 372     }
 373     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 374     if (mem == start_mem || mem == alloc_mem) {
 375       done = true;  // hit a sentinel, return appropriate 0 value
 376     } else if (mem->is_Initialize()) {
 377       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 378       if (mem == NULL) {
 379         done = true; // Something go wrong.
 380       } else if (mem->is_Store()) {
 381         const TypePtr* atype = mem->as_Store()->adr_type();
 382         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 383         done = true;
 384       }
 385     } else if (mem->is_Store()) {
 386       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 387       assert(atype != NULL, "address type must be oopptr");
 388       assert(C->get_alias_index(atype) == alias_idx &&
 389              atype->is_known_instance_field() && atype->offset() == offset &&
 390              atype->instance_id() == instance_id, "store is correct memory slice");
 391       done = true;
 392     } else if (mem->is_Phi()) {
 393       // try to find a phi's unique input
 394       Node *unique_input = NULL;
 395       Node *top = C->top();
 396       for (uint i = 1; i < mem->req(); i++) {
 397         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 398         if (n == NULL || n == top || n == mem) {
 399           continue;
 400         } else if (unique_input == NULL) {
 401           unique_input = n;
 402         } else if (unique_input != n) {
 403           unique_input = top;
 404           break;
 405         }
 406       }
 407       if (unique_input != NULL && unique_input != top) {
 408         mem = unique_input;
 409       } else {
 410         done = true;
 411       }
 412     } else {
 413       assert(false, "unexpected node");
 414     }
 415   }
 416   if (mem != NULL) {
 417     if (mem == start_mem || mem == alloc_mem) {
 418       // hit a sentinel, return appropriate 0 value
 419       return _igvn.zerocon(ft);
 420     } else if (mem->is_Store()) {
 421       return mem->in(MemNode::ValueIn);
 422     } else if (mem->is_Phi()) {
 423       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 424       Node_Stack value_phis(a, 8);
 425       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 426       if (phi != NULL) {
 427         return phi;
 428       } else {
 429         // Kill all new Phis
 430         while(value_phis.is_nonempty()) {
 431           Node* n = value_phis.node();
 432           _igvn.hash_delete(n);
 433           _igvn.subsume_node(n, C->top());
 434           value_phis.pop();
 435         }
 436       }
 437     }
 438   }
 439   // Something go wrong.
 440   return NULL;
 441 }
 442 
 443 // Check the possibility of scalar replacement.
 444 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 445   //  Scan the uses of the allocation to check for anything that would
 446   //  prevent us from eliminating it.
 447   NOT_PRODUCT( const char* fail_eliminate = NULL; )
 448   DEBUG_ONLY( Node* disq_node = NULL; )
 449   bool  can_eliminate = true;
 450 
 451   Node* res = alloc->result_cast();
 452   const TypeOopPtr* res_type = NULL;
 453   if (res == NULL) {
 454     // All users were eliminated.
 455   } else if (!res->is_CheckCastPP()) {
 456     alloc->_is_scalar_replaceable = false;  // don't try again
 457     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 458     can_eliminate = false;
 459   } else {
 460     res_type = _igvn.type(res)->isa_oopptr();
 461     if (res_type == NULL) {
 462       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 463       can_eliminate = false;
 464     } else if (res_type->isa_aryptr()) {
 465       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 466       if (length < 0) {
 467         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 468         can_eliminate = false;
 469       }
 470     }
 471   }
 472 
 473   if (can_eliminate && res != NULL) {
 474     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 475                                j < jmax && can_eliminate; j++) {
 476       Node* use = res->fast_out(j);
 477 
 478       if (use->is_AddP()) {
 479         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 480         int offset = addp_type->offset();
 481 
 482         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 483           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
 484           can_eliminate = false;
 485           break;
 486         }
 487         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 488                                    k < kmax && can_eliminate; k++) {
 489           Node* n = use->fast_out(k);
 490           if (!n->is_Store() && n->Opcode() != Op_CastP2X) {
 491             DEBUG_ONLY(disq_node = n;)
 492             if (n->is_Load() || n->is_LoadStore()) {
 493               NOT_PRODUCT(fail_eliminate = "Field load";)
 494             } else {
 495               NOT_PRODUCT(fail_eliminate = "Not store field referrence";)
 496             }
 497             can_eliminate = false;
 498           }
 499         }
 500       } else if (use->is_SafePoint()) {
 501         SafePointNode* sfpt = use->as_SafePoint();
 502         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 503           // Object is passed as argument.
 504           DEBUG_ONLY(disq_node = use;)
 505           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 506           can_eliminate = false;
 507         }
 508         Node* sfptMem = sfpt->memory();
 509         if (sfptMem == NULL || sfptMem->is_top()) {
 510           DEBUG_ONLY(disq_node = use;)
 511           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
 512           can_eliminate = false;
 513         } else {
 514           safepoints.append_if_missing(sfpt);
 515         }
 516       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 517         if (use->is_Phi()) {
 518           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 519             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 520           } else {
 521             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 522           }
 523           DEBUG_ONLY(disq_node = use;)
 524         } else {
 525           if (use->Opcode() == Op_Return) {
 526             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 527           }else {
 528             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 529           }
 530           DEBUG_ONLY(disq_node = use;)
 531         }
 532         can_eliminate = false;
 533       }
 534     }
 535   }
 536 
 537 #ifndef PRODUCT
 538   if (PrintEliminateAllocations) {
 539     if (can_eliminate) {
 540       tty->print("Scalar ");
 541       if (res == NULL)
 542         alloc->dump();
 543       else
 544         res->dump();
 545     } else {
 546       tty->print("NotScalar (%s)", fail_eliminate);
 547       if (res == NULL)
 548         alloc->dump();
 549       else
 550         res->dump();
 551 #ifdef ASSERT
 552       if (disq_node != NULL) {
 553           tty->print("  >>>> ");
 554           disq_node->dump();
 555       }
 556 #endif /*ASSERT*/
 557     }
 558   }
 559 #endif
 560   return can_eliminate;
 561 }
 562 
 563 // Do scalar replacement.
 564 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 565   GrowableArray <SafePointNode *> safepoints_done;
 566 
 567   ciKlass* klass = NULL;
 568   ciInstanceKlass* iklass = NULL;
 569   int nfields = 0;
 570   int array_base;
 571   int element_size;
 572   BasicType basic_elem_type;
 573   ciType* elem_type;
 574 
 575   Node* res = alloc->result_cast();
 576   const TypeOopPtr* res_type = NULL;
 577   if (res != NULL) { // Could be NULL when there are no users
 578     res_type = _igvn.type(res)->isa_oopptr();
 579   }
 580 
 581   if (res != NULL) {
 582     klass = res_type->klass();
 583     if (res_type->isa_instptr()) {
 584       // find the fields of the class which will be needed for safepoint debug information
 585       assert(klass->is_instance_klass(), "must be an instance klass.");
 586       iklass = klass->as_instance_klass();
 587       nfields = iklass->nof_nonstatic_fields();
 588     } else {
 589       // find the array's elements which will be needed for safepoint debug information
 590       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 591       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
 592       elem_type = klass->as_array_klass()->element_type();
 593       basic_elem_type = elem_type->basic_type();
 594       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 595       element_size = type2aelembytes(basic_elem_type);
 596     }
 597   }
 598   //
 599   // Process the safepoint uses
 600   //
 601   while (safepoints.length() > 0) {
 602     SafePointNode* sfpt = safepoints.pop();
 603     Node* mem = sfpt->memory();
 604     uint first_ind = sfpt->req();
 605     SafePointScalarObjectNode* sobj = new (C, 1) SafePointScalarObjectNode(res_type,
 606 #ifdef ASSERT
 607                                                  alloc,
 608 #endif
 609                                                  first_ind, nfields);
 610     sobj->init_req(0, sfpt->in(TypeFunc::Control));
 611     transform_later(sobj);
 612 
 613     // Scan object's fields adding an input to the safepoint for each field.
 614     for (int j = 0; j < nfields; j++) {
 615       intptr_t offset;
 616       ciField* field = NULL;
 617       if (iklass != NULL) {
 618         field = iklass->nonstatic_field_at(j);
 619         offset = field->offset();
 620         elem_type = field->type();
 621         basic_elem_type = field->layout_type();
 622       } else {
 623         offset = array_base + j * (intptr_t)element_size;
 624       }
 625 
 626       const Type *field_type;
 627       // The next code is taken from Parse::do_get_xxx().
 628       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
 629         if (!elem_type->is_loaded()) {
 630           field_type = TypeInstPtr::BOTTOM;
 631         } else if (field != NULL && field->is_constant()) {
 632           // This can happen if the constant oop is non-perm.
 633           ciObject* con = field->constant_value().as_object();
 634           // Do not "join" in the previous type; it doesn't add value,
 635           // and may yield a vacuous result if the field is of interface type.
 636           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 637           assert(field_type != NULL, "field singleton type must be consistent");
 638         } else {
 639           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 640         }
 641         if (UseCompressedOops) {
 642           field_type = field_type->make_narrowoop();
 643           basic_elem_type = T_NARROWOOP;
 644         }
 645       } else {
 646         field_type = Type::get_const_basic_type(basic_elem_type);
 647       }
 648 
 649       const TypeOopPtr *field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 650 
 651       Node *field_val = value_from_mem(mem, basic_elem_type, field_type, field_addr_type, alloc);
 652       if (field_val == NULL) {
 653         // we weren't able to find a value for this field,
 654         // give up on eliminating this allocation
 655         alloc->_is_scalar_replaceable = false;  // don't try again
 656         // remove any extra entries we added to the safepoint
 657         uint last = sfpt->req() - 1;
 658         for (int k = 0;  k < j; k++) {
 659           sfpt->del_req(last--);
 660         }
 661         // rollback processed safepoints
 662         while (safepoints_done.length() > 0) {
 663           SafePointNode* sfpt_done = safepoints_done.pop();
 664           // remove any extra entries we added to the safepoint
 665           last = sfpt_done->req() - 1;
 666           for (int k = 0;  k < nfields; k++) {
 667             sfpt_done->del_req(last--);
 668           }
 669           JVMState *jvms = sfpt_done->jvms();
 670           jvms->set_endoff(sfpt_done->req());
 671           // Now make a pass over the debug information replacing any references
 672           // to SafePointScalarObjectNode with the allocated object.
 673           int start = jvms->debug_start();
 674           int end   = jvms->debug_end();
 675           for (int i = start; i < end; i++) {
 676             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 677               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 678               if (scobj->first_index() == sfpt_done->req() &&
 679                   scobj->n_fields() == (uint)nfields) {
 680                 assert(scobj->alloc() == alloc, "sanity");
 681                 sfpt_done->set_req(i, res);
 682               }
 683             }
 684           }
 685         }
 686 #ifndef PRODUCT
 687         if (PrintEliminateAllocations) {
 688           if (field != NULL) {
 689             tty->print("=== At SafePoint node %d can't find value of Field: ",
 690                        sfpt->_idx);
 691             field->print();
 692             int field_idx = C->get_alias_index(field_addr_type);
 693             tty->print(" (alias_idx=%d)", field_idx);
 694           } else { // Array's element
 695             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 696                        sfpt->_idx, j);
 697           }
 698           tty->print(", which prevents elimination of: ");
 699           if (res == NULL)
 700             alloc->dump();
 701           else
 702             res->dump();
 703         }
 704 #endif
 705         return false;
 706       }
 707       if (UseCompressedOops && field_type->isa_narrowoop()) {
 708         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
 709         // to be able scalar replace the allocation.
 710         if (field_val->is_EncodeP()) {
 711           field_val = field_val->in(1);
 712         } else {
 713           field_val = transform_later(new (C, 2) DecodeNNode(field_val, field_val->bottom_type()->make_ptr()));
 714         }
 715       }
 716       sfpt->add_req(field_val);
 717     }
 718     JVMState *jvms = sfpt->jvms();
 719     jvms->set_endoff(sfpt->req());
 720     // Now make a pass over the debug information replacing any references
 721     // to the allocated object with "sobj"
 722     int start = jvms->debug_start();
 723     int end   = jvms->debug_end();
 724     for (int i = start; i < end; i++) {
 725       if (sfpt->in(i) == res) {
 726         sfpt->set_req(i, sobj);
 727       }
 728     }
 729     safepoints_done.append_if_missing(sfpt); // keep it for rollback
 730   }
 731   return true;
 732 }
 733 
 734 // Process users of eliminated allocation.
 735 void PhaseMacroExpand::process_users_of_allocation(AllocateNode *alloc) {
 736   Node* res = alloc->result_cast();
 737   if (res != NULL) {
 738     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
 739       Node *use = res->last_out(j);
 740       uint oc1 = res->outcnt();
 741 
 742       if (use->is_AddP()) {
 743         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
 744           Node *n = use->last_out(k);
 745           uint oc2 = use->outcnt();
 746           if (n->is_Store()) {
 747             _igvn.replace_node(n, n->in(MemNode::Memory));
 748           } else {
 749             assert( n->Opcode() == Op_CastP2X, "CastP2X required");
 750             eliminate_card_mark(n);
 751           }
 752           k -= (oc2 - use->outcnt());
 753         }
 754       } else {
 755         assert( !use->is_SafePoint(), "safepoint uses must have been already elimiated");
 756         assert( use->Opcode() == Op_CastP2X, "CastP2X required");
 757         eliminate_card_mark(use);
 758       }
 759       j -= (oc1 - res->outcnt());
 760     }
 761     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
 762     _igvn.remove_dead_node(res);
 763   }
 764 
 765   //
 766   // Process other users of allocation's projections
 767   //
 768   if (_resproj != NULL && _resproj->outcnt() != 0) {
 769     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
 770       Node *use = _resproj->last_out(j);
 771       uint oc1 = _resproj->outcnt();
 772       if (use->is_Initialize()) {
 773         // Eliminate Initialize node.
 774         InitializeNode *init = use->as_Initialize();
 775         assert(init->outcnt() <= 2, "only a control and memory projection expected");
 776         Node *ctrl_proj = init->proj_out(TypeFunc::Control);
 777         if (ctrl_proj != NULL) {
 778            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
 779           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
 780         }
 781         Node *mem_proj = init->proj_out(TypeFunc::Memory);
 782         if (mem_proj != NULL) {
 783           Node *mem = init->in(TypeFunc::Memory);
 784 #ifdef ASSERT
 785           if (mem->is_MergeMem()) {
 786             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
 787           } else {
 788             assert(mem == _memproj_fallthrough, "allocation memory projection");
 789           }
 790 #endif
 791           _igvn.replace_node(mem_proj, mem);
 792         }
 793       } else if (use->is_AddP()) {
 794         // raw memory addresses used only by the initialization
 795         _igvn.hash_delete(use);
 796         _igvn.subsume_node(use, C->top());
 797       } else  {
 798         assert(false, "only Initialize or AddP expected");
 799       }
 800       j -= (oc1 - _resproj->outcnt());
 801     }
 802   }
 803   if (_fallthroughcatchproj != NULL) {
 804     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
 805   }
 806   if (_memproj_fallthrough != NULL) {
 807     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
 808   }
 809   if (_memproj_catchall != NULL) {
 810     _igvn.replace_node(_memproj_catchall, C->top());
 811   }
 812   if (_ioproj_fallthrough != NULL) {
 813     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
 814   }
 815   if (_ioproj_catchall != NULL) {
 816     _igvn.replace_node(_ioproj_catchall, C->top());
 817   }
 818   if (_catchallcatchproj != NULL) {
 819     _igvn.replace_node(_catchallcatchproj, C->top());
 820   }
 821 }
 822 
 823 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
 824 
 825   if (!EliminateAllocations || !alloc->_is_scalar_replaceable) {
 826     return false;
 827   }
 828 
 829   extract_call_projections(alloc);
 830 
 831   GrowableArray <SafePointNode *> safepoints;
 832   if (!can_eliminate_allocation(alloc, safepoints)) {
 833     return false;
 834   }
 835 
 836   if (!scalar_replacement(alloc, safepoints)) {
 837     return false;
 838   }
 839 
 840   process_users_of_allocation(alloc);
 841 
 842 #ifndef PRODUCT
 843 if (PrintEliminateAllocations) {
 844   if (alloc->is_AllocateArray())
 845     tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
 846   else
 847     tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
 848 }
 849 #endif
 850 
 851   return true;
 852 }
 853 
 854 
 855 //---------------------------set_eden_pointers-------------------------
 856 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
 857   if (UseTLAB) {                // Private allocation: load from TLS
 858     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
 859     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
 860     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
 861     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
 862     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
 863   } else {                      // Shared allocation: load from globals
 864     CollectedHeap* ch = Universe::heap();
 865     address top_adr = (address)ch->top_addr();
 866     address end_adr = (address)ch->end_addr();
 867     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
 868     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
 869   }
 870 }
 871 
 872 
 873 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
 874   Node* adr = basic_plus_adr(base, offset);
 875   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
 876   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt);
 877   transform_later(value);
 878   return value;
 879 }
 880 
 881 
 882 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
 883   Node* adr = basic_plus_adr(base, offset);
 884   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt);
 885   transform_later(mem);
 886   return mem;
 887 }
 888 
 889 //=============================================================================
 890 // 
 891 //                              A L L O C A T I O N 
 892 //
 893 // Allocation attempts to be fast in the case of frequent small objects.
 894 // It breaks down like this: 
 895 //
 896 // 1) Size in doublewords is computed.  This is a constant for objects and
 897 // variable for most arrays.  Doubleword units are used to avoid size
 898 // overflow of huge doubleword arrays.  We need doublewords in the end for
 899 // rounding.
 900 //
 901 // 2) Size is checked for being 'too large'.  Too-large allocations will go
 902 // the slow path into the VM.  The slow path can throw any required
 903 // exceptions, and does all the special checks for very large arrays.  The
 904 // size test can constant-fold away for objects.  For objects with


 938 // code shape produced here, so if you are changing this code shape
 939 // make sure the GC info for the heap-top is correct in and around the
 940 // slow-path call.
 941 //
 942 
 943 void PhaseMacroExpand::expand_allocate_common(
 944             AllocateNode* alloc, // allocation node to be expanded
 945             Node* length,  // array length for an array allocation
 946             const TypeFunc* slow_call_type, // Type of slow call
 947             address slow_call_address  // Address of slow call
 948     )
 949 {
 950 
 951   Node* ctrl = alloc->in(TypeFunc::Control);
 952   Node* mem  = alloc->in(TypeFunc::Memory);
 953   Node* i_o  = alloc->in(TypeFunc::I_O);
 954   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
 955   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
 956   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
 957 
 958   // With escape analysis, the entire memory state was needed to be able to
 959   // eliminate the allocation.  Since the allocations cannot be eliminated,
 960   // optimize it to the raw slice.
 961   if (mem->is_MergeMem()) {
 962     mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
 963   }
 964 

 965   assert(ctrl != NULL, "must have control");













 966   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
 967   // they will not be used if "always_slow" is set
 968   enum { slow_result_path = 1, fast_result_path = 2 };
 969   Node *result_region;
 970   Node *result_phi_rawmem;
 971   Node *result_phi_rawoop;
 972   Node *result_phi_i_o;
 973 
 974   // The initial slow comparison is a size check, the comparison
 975   // we want to do is a BoolTest::gt
 976   bool always_slow = false;
 977   int tv = _igvn.find_int_con(initial_slow_test, -1);
 978   if (tv >= 0) {
 979     always_slow = (tv == 1);
 980     initial_slow_test = NULL;
 981   } else {
 982     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
 983   }
 984 
 985   if (DTraceAllocProbes ||
 986       !UseTLAB && (!Universe::heap()->supports_inline_contig_alloc() ||
 987                    (UseConcMarkSweepGC && CMSIncrementalMode))) {
 988     // Force slow-path allocation
 989     always_slow = true;
 990     initial_slow_test = NULL;
 991   }
 992 
 993 
 994   enum { too_big_or_final_path = 1, need_gc_path = 2 };
 995   Node *slow_region = NULL;
 996   Node *toobig_false = ctrl;
 997 
 998   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
 999   // generate the initial test if necessary
1000   if (initial_slow_test != NULL ) {
1001     slow_region = new (C, 3) RegionNode(3);
1002 
1003     // Now make the initial failure test.  Usually a too-big test but
1004     // might be a TRUE for finalizers or a fancy class check for
1005     // newInstance0.
1006     IfNode *toobig_iff = new (C, 2) IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1007     transform_later(toobig_iff);
1008     // Plug the failing-too-big test into the slow-path region
1009     Node *toobig_true = new (C, 1) IfTrueNode( toobig_iff );
1010     transform_later(toobig_true);
1011     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1012     toobig_false = new (C, 1) IfFalseNode( toobig_iff );
1013     transform_later(toobig_false);
1014   } else {         // No initial test, just fall into next case
1015     toobig_false = ctrl;
1016     debug_only(slow_region = NodeSentinel);
1017   }
1018 
1019   Node *slow_mem = mem;  // save the current memory state for slow path
1020   // generate the fast allocation code unless we know that the initial test will always go slow
1021   if (!always_slow) {
1022     Node* eden_top_adr;
1023     Node* eden_end_adr;
1024 
1025     set_eden_pointers(eden_top_adr, eden_end_adr);
1026 
1027     // Load Eden::end.  Loop invariant and hoisted.
1028     //
1029     // Note: We set the control input on "eden_end" and "old_eden_top" when using
1030     //       a TLAB to work around a bug where these values were being moved across
1031     //       a safepoint.  These are not oops, so they cannot be include in the oop
1032     //       map, but the can be changed by a GC.   The proper way to fix this would
1033     //       be to set the raw memory state when generating a  SafepointNode.  However
1034     //       this will require extensive changes to the loop optimization in order to
1035     //       prevent a degradation of the optimization.
1036     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1037     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1038 
1039     // allocate the Region and Phi nodes for the result
1040     result_region = new (C, 3) RegionNode(3);
1041     result_phi_rawmem = new (C, 3) PhiNode( result_region, Type::MEMORY, TypeRawPtr::BOTTOM );
1042     result_phi_rawoop = new (C, 3) PhiNode( result_region, TypeRawPtr::BOTTOM );
1043     result_phi_i_o    = new (C, 3) PhiNode( result_region, Type::ABIO ); // I/O is used for Prefetch
1044 
1045     // We need a Region for the loop-back contended case.
1046     enum { fall_in_path = 1, contended_loopback_path = 2 };
1047     Node *contended_region;
1048     Node *contended_phi_rawmem;
1049     if( UseTLAB ) {
1050       contended_region = toobig_false;
1051       contended_phi_rawmem = mem;
1052     } else {
1053       contended_region = new (C, 3) RegionNode(3);
1054       contended_phi_rawmem = new (C, 3) PhiNode( contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1055       // Now handle the passing-too-big test.  We fall into the contended
1056       // loop-back merge point.
1057       contended_region    ->init_req( fall_in_path, toobig_false );
1058       contended_phi_rawmem->init_req( fall_in_path, mem );


1309 }
1310 
1311 
1312 // Helper for PhaseMacroExpand::expand_allocate_common.
1313 // Initializes the newly-allocated storage.
1314 Node*
1315 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1316                                     Node* control, Node* rawmem, Node* object,
1317                                     Node* klass_node, Node* length,
1318                                     Node* size_in_bytes) {
1319   InitializeNode* init = alloc->initialization();
1320   // Store the klass & mark bits
1321   Node* mark_node = NULL;
1322   // For now only enable fast locking for non-array types
1323   if (UseBiasedLocking && (length == NULL)) {
1324     mark_node = make_load(NULL, rawmem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeRawPtr::BOTTOM, T_ADDRESS);
1325   } else {
1326     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1327   }
1328   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1329 
1330   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_OBJECT);
1331   int header_size = alloc->minimum_header_size();  // conservatively small
1332 
1333   // Array length
1334   if (length != NULL) {         // Arrays need length field
1335     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1336     // conservatively small header size:
1337     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1338     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1339     if (k->is_array_klass())    // we know the exact header size in most cases:
1340       header_size = Klass::layout_helper_header_size(k->layout_helper());
1341   }
1342 
1343   // Clear the object body, if necessary.
1344   if (init == NULL) {
1345     // The init has somehow disappeared; be cautious and clear everything.
1346     //
1347     // This can happen if a node is allocated but an uncommon trap occurs
1348     // immediately.  In this case, the Initialize gets associated with the
1349     // trap, and may be placed in a different (outer) loop, if the Allocate
1350     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1351     // there can be two Allocates to one Initialize.  The answer in all these
1352     // edge cases is safety first.  It is always safe to clear immediately
1353     // within an Allocate, and then (maybe or maybe not) clear some more later.
1354     if (!ZeroTLAB)
1355       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1356                                             header_size, size_in_bytes,
1357                                             &_igvn);
1358   } else {
1359     if (!init->is_complete()) {
1360       // Try to win by zeroing only what the init does not store.
1361       // We can also try to do some peephole optimizations,
1362       // such as combining some adjacent subword stores.
1363       rawmem = init->complete_stores(control, rawmem, object,
1364                                      header_size, size_in_bytes, &_igvn);
1365     }

1366     // We have no more use for this link, since the AllocateNode goes away:
1367     init->set_req(InitializeNode::RawAddress, top());
1368     // (If we keep the link, it just confuses the register allocator,
1369     // who thinks he sees a real use of the address by the membar.)
1370   }
1371 
1372   return rawmem;
1373 }
1374 
1375 // Generate prefetch instructions for next allocations.
1376 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false, 
1377                                         Node*& contended_phi_rawmem, 
1378                                         Node* old_eden_top, Node* new_eden_top, 
1379                                         Node* length) {
1380    if( UseTLAB && AllocatePrefetchStyle == 2 ) { 
1381       // Generate prefetch allocation with watermark check.
1382       // As an allocation hits the watermark, we will prefetch starting 
1383       // at a "distance" away from watermark.
1384       enum { fall_in_path = 1, pf_path = 2 };
1385 


1490 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
1491   expand_allocate_common(alloc, NULL,
1492                          OptoRuntime::new_instance_Type(),
1493                          OptoRuntime::new_instance_Java());
1494 }
1495 
1496 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
1497   Node* length = alloc->in(AllocateNode::ALength);
1498   expand_allocate_common(alloc, length,
1499                          OptoRuntime::new_array_Type(),
1500                          OptoRuntime::new_array_Java());
1501 }
1502 
1503 
1504 // we have determined that this lock/unlock can be eliminated, we simply
1505 // eliminate the node without expanding it.
1506 //
1507 // Note:  The membar's associated with the lock/unlock are currently not
1508 //        eliminated.  This should be investigated as a future enhancement.
1509 //
1510 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
1511 
1512   if (!alock->is_eliminated()) {
1513     return false;
1514   }
1515   if (alock->is_Lock() && !alock->is_coarsened()) {
1516       // Create new "eliminated" BoxLock node and use it
1517       // in monitor debug info for the same object.
1518       BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
1519       Node* obj = alock->obj_node();
1520       if (!oldbox->is_eliminated()) {
1521         BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
1522         newbox->set_eliminated();
1523         transform_later(newbox);
1524         // Replace old box node with new box for all users
1525         // of the same object.
1526         for (uint i = 0; i < oldbox->outcnt();) {
1527 
1528           bool next_edge = true;
1529           Node* u = oldbox->raw_out(i);
1530           if (u == alock) {
1531             i++;
1532             continue; // It will be removed below
1533           }
1534           if (u->is_Lock() &&
1535               u->as_Lock()->obj_node() == obj &&
1536               // oldbox could be referenced in debug info also
1537               u->as_Lock()->box_node() == oldbox) {
1538             assert(u->as_Lock()->is_eliminated(), "sanity");
1539             _igvn.hash_delete(u);
1540             u->set_req(TypeFunc::Parms + 1, newbox);
1541             next_edge = false;
1542 #ifdef ASSERT
1543           } else if (u->is_Unlock() && u->as_Unlock()->obj_node() == obj) {
1544             assert(u->as_Unlock()->is_eliminated(), "sanity");
1545 #endif
1546           }
1547           // Replace old box in monitor debug info.
1548           if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
1549             SafePointNode* sfn = u->as_SafePoint();
1550             JVMState* youngest_jvms = sfn->jvms();
1551             int max_depth = youngest_jvms->depth();
1552             for (int depth = 1; depth <= max_depth; depth++) {
1553               JVMState* jvms = youngest_jvms->of_depth(depth);
1554               int num_mon  = jvms->nof_monitors();
1555               // Loop over monitors
1556               for (int idx = 0; idx < num_mon; idx++) {
1557                 Node* obj_node = sfn->monitor_obj(jvms, idx);
1558                 Node* box_node = sfn->monitor_box(jvms, idx);
1559                 if (box_node == oldbox && obj_node == obj) {
1560                   int j = jvms->monitor_box_offset(idx);
1561                   _igvn.hash_delete(u);
1562                   u->set_req(j, newbox);
1563                   next_edge = false;
1564                 }
1565               } // for (int idx = 0;
1566             } // for (int depth = 1;
1567           } // if (u->is_SafePoint()
1568           if (next_edge) i++;
1569         } // for (uint i = 0; i < oldbox->outcnt();)
1570       } // if (!oldbox->is_eliminated())
1571   } // if (alock->is_Lock() && !lock->is_coarsened())
1572 
1573   #ifndef PRODUCT
1574   if (PrintEliminateLocks) {
1575     if (alock->is_Lock()) {
1576       tty->print_cr("++++ Eliminating: %d Lock", alock->_idx);
1577     } else {
1578       tty->print_cr("++++ Eliminating: %d Unlock", alock->_idx);
1579     }
1580   }
1581   #endif
1582 
1583   Node* mem  = alock->in(TypeFunc::Memory);
1584   Node* ctrl = alock->in(TypeFunc::Control);
1585 
1586   extract_call_projections(alock);
1587   // There are 2 projections from the lock.  The lock node will
1588   // be deleted when its last use is subsumed below.
1589   assert(alock->outcnt() == 2 &&
1590          _fallthroughproj != NULL &&
1591          _memproj_fallthrough != NULL,
1592          "Unexpected projections from Lock/Unlock");
1593 
1594   Node* fallthroughproj = _fallthroughproj;
1595   Node* memproj_fallthrough = _memproj_fallthrough;
1596 
1597   // The memory projection from a lock/unlock is RawMem
1598   // The input to a Lock is merged memory, so extract its RawMem input
1599   // (unless the MergeMem has been optimized away.)
1600   if (alock->is_Lock()) {
1601     // Seach for MemBarAcquire node and delete it also.
1602     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
1603     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquire, "");
1604     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
1605     Node* memproj = membar->proj_out(TypeFunc::Memory);
1606     _igvn.hash_delete(ctrlproj);
1607     _igvn.subsume_node(ctrlproj, fallthroughproj);
1608     _igvn.hash_delete(memproj);
1609     _igvn.subsume_node(memproj, memproj_fallthrough);
1610 
1611     // Delete FastLock node also if this Lock node is unique user
1612     // (a loop peeling may clone a Lock node).
1613     Node* flock = alock->as_Lock()->fastlock_node();
1614     if (flock->outcnt() == 1) {
1615       assert(flock->unique_out() == alock, "sanity");
1616       _igvn.hash_delete(flock);
1617       _igvn.subsume_node(flock, top());
1618     }
1619   }
1620 
1621   // Seach for MemBarRelease node and delete it also.
1622   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
1623       ctrl->in(0)->is_MemBar()) {
1624     MemBarNode* membar = ctrl->in(0)->as_MemBar();
1625     assert(membar->Opcode() == Op_MemBarRelease &&
1626            mem->is_Proj() && membar == mem->in(0), "");
1627     _igvn.hash_delete(fallthroughproj);
1628     _igvn.subsume_node(fallthroughproj, ctrl);
1629     _igvn.hash_delete(memproj_fallthrough);
1630     _igvn.subsume_node(memproj_fallthrough, mem);
1631     fallthroughproj = ctrl;
1632     memproj_fallthrough = mem;
1633     ctrl = membar->in(TypeFunc::Control);
1634     mem  = membar->in(TypeFunc::Memory);
1635   }
1636 
1637   _igvn.hash_delete(fallthroughproj);
1638   _igvn.subsume_node(fallthroughproj, ctrl);
1639   _igvn.hash_delete(memproj_fallthrough);
1640   _igvn.subsume_node(memproj_fallthrough, mem);
1641   return true;
1642 }
1643 
1644 
1645 //------------------------------expand_lock_node----------------------
1646 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
1647 
1648   Node* ctrl = lock->in(TypeFunc::Control);
1649   Node* mem = lock->in(TypeFunc::Memory);
1650   Node* obj = lock->obj_node();
1651   Node* box = lock->box_node();
1652   Node* flock = lock->fastlock_node();
1653 
1654   // Make the merge point
1655   Node *region;
1656   Node *mem_phi;
1657   Node *slow_path;
1658 
1659   if (UseOptoBiasInlining) {
1660     /*
1661      *  See the full descrition in MacroAssembler::biased_locking_enter().
1662      *
1663      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
1664      *    // The object is biased.
1665      *    proto_node = klass->prototype_header;
1666      *    o_node = thread | proto_node;
1667      *    x_node = o_node ^ mark_word;
1668      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
1669      *      // Done.
1670      *    } else {
1671      *      if( (x_node & biased_lock_mask) != 0 ) {
1672      *        // The klass's prototype header is no longer biased.
1673      *        cas(&mark_word, mark_word, proto_node)
1674      *        goto cas_lock;
1675      *      } else {
1676      *        // The klass's prototype header is still biased.
1677      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
1678      *          old = mark_word;
1679      *          new = o_node;
1680      *        } else {
1681      *          // Different thread or anonymous biased.
1682      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
1683      *          new = thread | old;
1684      *        }
1685      *        // Try to rebias.
1686      *        if( cas(&mark_word, old, new) == 0 ) {
1687      *          // Done.
1688      *        } else {
1689      *          goto slow_path; // Failed.
1690      *        }
1691      *      }
1692      *    }
1693      *  } else {
1694      *    // The object is not biased.
1695      *    cas_lock:
1696      *    if( FastLock(obj) == 0 ) {
1697      *      // Done.
1698      *    } else {
1699      *      slow_path:
1700      *      OptoRuntime::complete_monitor_locking_Java(obj);
1701      *    }
1702      *  }
1703      */
1704 
1705     region  = new (C, 5) RegionNode(5);
1706     // create a Phi for the memory state
1707     mem_phi = new (C, 5) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1708 
1709     Node* fast_lock_region  = new (C, 3) RegionNode(3);
1710     Node* fast_lock_mem_phi = new (C, 3) PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1711 
1712     // First, check mark word for the biased lock pattern.
1713     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
1714 
1715     // Get fast path - mark word has the biased lock pattern.
1716     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
1717                          markOopDesc::biased_lock_mask_in_place,
1718                          markOopDesc::biased_lock_pattern, true);
1719     // fast_lock_region->in(1) is set to slow path.
1720     fast_lock_mem_phi->init_req(1, mem);
1721 
1722     // Now check that the lock is biased to the current thread and has
1723     // the same epoch and bias as Klass::_prototype_header.
1724 
1725     // Special-case a fresh allocation to avoid building nodes:
1726     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
1727     if (klass_node == NULL) {
1728       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1729       klass_node = transform_later( LoadKlassNode::make(_igvn, mem, k_adr, _igvn.type(k_adr)->is_ptr()) );
1730 #ifdef _LP64
1731       if (UseCompressedOops && klass_node->is_DecodeN()) {
1732         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
1733         klass_node->in(1)->init_req(0, ctrl);
1734       } else
1735 #endif
1736       klass_node->init_req(0, ctrl);
1737     }
1738     Node *proto_node = make_load(ctrl, mem, klass_node, Klass::prototype_header_offset_in_bytes() + sizeof(oopDesc), TypeX_X, TypeX_X->basic_type());
1739 
1740     Node* thread = transform_later(new (C, 1) ThreadLocalNode());
1741     Node* cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1742     Node* o_node = transform_later(new (C, 3) OrXNode(cast_thread, proto_node));
1743     Node* x_node = transform_later(new (C, 3) XorXNode(o_node, mark_node));
1744 
1745     // Get slow path - mark word does NOT match the value.
1746     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
1747                                       (~markOopDesc::age_mask_in_place), 0);
1748     // region->in(3) is set to fast path - the object is biased to the current thread.
1749     mem_phi->init_req(3, mem);
1750 
1751 
1752     // Mark word does NOT match the value (thread | Klass::_prototype_header).
1753 
1754 
1755     // First, check biased pattern.
1756     // Get fast path - _prototype_header has the same biased lock pattern.
1757     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
1758                           markOopDesc::biased_lock_mask_in_place, 0, true);
1759 
1760     not_biased_ctrl = fast_lock_region->in(2); // Slow path
1761     // fast_lock_region->in(2) - the prototype header is no longer biased
1762     // and we have to revoke the bias on this object.
1763     // We are going to try to reset the mark of this object to the prototype
1764     // value and fall through to the CAS-based locking scheme.
1765     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
1766     Node* cas = new (C, 5) StoreXConditionalNode(not_biased_ctrl, mem, adr,
1767                                                  proto_node, mark_node);
1768     transform_later(cas);
1769     Node* proj = transform_later( new (C, 1) SCMemProjNode(cas));
1770     fast_lock_mem_phi->init_req(2, proj);
1771 
1772 
1773     // Second, check epoch bits.
1774     Node* rebiased_region  = new (C, 3) RegionNode(3);
1775     Node* old_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1776     Node* new_phi = new (C, 3) PhiNode( rebiased_region, TypeX_X);
1777 
1778     // Get slow path - mark word does NOT match epoch bits.
1779     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
1780                                       markOopDesc::epoch_mask_in_place, 0);
1781     // The epoch of the current bias is not valid, attempt to rebias the object
1782     // toward the current thread.
1783     rebiased_region->init_req(2, epoch_ctrl);
1784     old_phi->init_req(2, mark_node);
1785     new_phi->init_req(2, o_node);
1786 
1787     // rebiased_region->in(1) is set to fast path.
1788     // The epoch of the current bias is still valid but we know
1789     // nothing about the owner; it might be set or it might be clear.
1790     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
1791                              markOopDesc::age_mask_in_place |
1792                              markOopDesc::epoch_mask_in_place);
1793     Node* old = transform_later(new (C, 3) AndXNode(mark_node, cmask));
1794     cast_thread = transform_later(new (C, 2) CastP2XNode(ctrl, thread));
1795     Node* new_mark = transform_later(new (C, 3) OrXNode(cast_thread, old));
1796     old_phi->init_req(1, old);
1797     new_phi->init_req(1, new_mark);
1798 
1799     transform_later(rebiased_region);
1800     transform_later(old_phi);
1801     transform_later(new_phi);
1802 
1803     // Try to acquire the bias of the object using an atomic operation.
1804     // If this fails we will go in to the runtime to revoke the object's bias.
1805     cas = new (C, 5) StoreXConditionalNode(rebiased_region, mem, adr,
1806                                            new_phi, old_phi);
1807     transform_later(cas);
1808     proj = transform_later( new (C, 1) SCMemProjNode(cas));
1809 
1810     // Get slow path - Failed to CAS.
1811     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
1812     mem_phi->init_req(4, proj);
1813     // region->in(4) is set to fast path - the object is rebiased to the current thread.
1814 
1815     // Failed to CAS.
1816     slow_path  = new (C, 3) RegionNode(3);
1817     Node *slow_mem = new (C, 3) PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
1818 
1819     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
1820     slow_mem->init_req(1, proj);
1821 
1822     // Call CAS-based locking scheme (FastLock node).
1823 
1824     transform_later(fast_lock_region);
1825     transform_later(fast_lock_mem_phi);
1826 
1827     // Get slow path - FastLock failed to lock the object.
1828     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
1829     mem_phi->init_req(2, fast_lock_mem_phi);
1830     // region->in(2) is set to fast path - the object is locked to the current thread.
1831 
1832     slow_path->init_req(2, ctrl); // Capture slow-control
1833     slow_mem->init_req(2, fast_lock_mem_phi);
1834 
1835     transform_later(slow_path);
1836     transform_later(slow_mem);
1837     // Reset lock's memory edge.
1838     lock->set_req(TypeFunc::Memory, slow_mem);
1839 
1840   } else {
1841     region  = new (C, 3) RegionNode(3);
1842     // create a Phi for the memory state
1843     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1844 


1845     // Optimize test; set region slot 2
1846     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
1847     mem_phi->init_req(2, mem);
1848   }
1849 
1850   // Make slow path call
1851   CallNode *call = make_slow_call( (CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(), OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path, obj, box );
1852 
1853   extract_call_projections(call);
1854 
1855   // Slow path can only throw asynchronous exceptions, which are always
1856   // de-opted.  So the compiler thinks the slow-call can never throw an
1857   // exception.  If it DOES throw an exception we would need the debug
1858   // info removed first (since if it throws there is no monitor).
1859   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
1860            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
1861 
1862   // Capture slow path
1863   // disconnect fall-through projection from call and create a new one
1864   // hook up users of fall-through projection to region
1865   Node *slow_ctrl = _fallthroughproj->clone();
1866   transform_later(slow_ctrl);
1867   _igvn.hash_delete(_fallthroughproj);
1868   _fallthroughproj->disconnect_inputs(NULL);
1869   region->init_req(1, slow_ctrl);
1870   // region inputs are now complete
1871   transform_later(region);
1872   _igvn.subsume_node(_fallthroughproj, region);
1873 
1874   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );


1875   mem_phi->init_req(1, memproj );

1876   transform_later(mem_phi);
1877   _igvn.hash_delete(_memproj_fallthrough);
1878   _igvn.subsume_node(_memproj_fallthrough, mem_phi);


1879 }
1880 
1881 //------------------------------expand_unlock_node----------------------
1882 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
1883 
1884   Node* ctrl = unlock->in(TypeFunc::Control);
1885   Node* mem = unlock->in(TypeFunc::Memory);
1886   Node* obj = unlock->obj_node();
1887   Node* box = unlock->box_node();
1888 






1889   // No need for a null check on unlock
1890 
1891   // Make the merge point
1892   Node *region;
1893   Node *mem_phi;
1894 
1895   if (UseOptoBiasInlining) {
1896     // Check for biased locking unlock case, which is a no-op.
1897     // See the full descrition in MacroAssembler::biased_locking_exit().
1898     region  = new (C, 4) RegionNode(4);
1899     // create a Phi for the memory state
1900     mem_phi = new (C, 4) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1901     mem_phi->init_req(3, mem);
1902 
1903     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
1904     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
1905                          markOopDesc::biased_lock_mask_in_place,
1906                          markOopDesc::biased_lock_pattern);
1907   } else {
1908     region  = new (C, 3) RegionNode(3);
1909     // create a Phi for the memory state
1910     mem_phi = new (C, 3) PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
1911   }
1912 
1913   FastUnlockNode *funlock = new (C, 3) FastUnlockNode( ctrl, obj, box );
1914   funlock = transform_later( funlock )->as_FastUnlock();


1915   // Optimize test; set region slot 2
1916   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
1917 
1918   CallNode *call = make_slow_call( (CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C), "complete_monitor_unlocking_C", slow_path, obj, box );
1919   
1920   extract_call_projections(call);
1921 
1922   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
1923            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
1924 
1925   // No exceptions for unlocking
1926   // Capture slow path
1927   // disconnect fall-through projection from call and create a new one
1928   // hook up users of fall-through projection to region
1929   Node *slow_ctrl = _fallthroughproj->clone();
1930   transform_later(slow_ctrl);
1931   _igvn.hash_delete(_fallthroughproj);
1932   _fallthroughproj->disconnect_inputs(NULL);
1933   region->init_req(1, slow_ctrl);
1934   // region inputs are now complete
1935   transform_later(region);
1936   _igvn.subsume_node(_fallthroughproj, region);
1937 


1938   Node *memproj = transform_later( new(C, 1) ProjNode(call, TypeFunc::Memory) );
1939   mem_phi->init_req(1, memproj );
1940   mem_phi->init_req(2, mem);
1941   transform_later(mem_phi);
1942   _igvn.hash_delete(_memproj_fallthrough);
1943   _igvn.subsume_node(_memproj_fallthrough, mem_phi);


1944 }
1945 
1946 //------------------------------expand_macro_nodes----------------------
1947 //  Returns true if a failure occurred.
1948 bool PhaseMacroExpand::expand_macro_nodes() {
1949   if (C->macro_count() == 0)
1950     return false;
1951   // First, attempt to eliminate locks
1952   bool progress = true;
1953   while (progress) {
1954     progress = false;
1955     for (int i = C->macro_count(); i > 0; i--) {
1956       Node * n = C->macro_node(i-1);
1957       bool success = false;
1958       debug_only(int old_macro_count = C->macro_count(););
1959       if (n->is_AbstractLock()) {
1960         success = eliminate_locking_node(n->as_AbstractLock());
1961       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
1962         _igvn.add_users_to_worklist(n);
1963         _igvn.hash_delete(n);
1964         _igvn.subsume_node(n, n->in(1));
1965         success = true;
1966       }
1967       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
1968       progress = progress || success;
1969     }
1970   }
1971   // Next, attempt to eliminate allocations
1972   progress = true;
1973   while (progress) {
1974     progress = false;
1975     for (int i = C->macro_count(); i > 0; i--) {
1976       Node * n = C->macro_node(i-1);
1977       bool success = false;
1978       debug_only(int old_macro_count = C->macro_count(););
1979       switch (n->class_id()) {
1980       case Node::Class_Allocate:
1981       case Node::Class_AllocateArray:
1982         success = eliminate_allocate_node(n->as_Allocate());
1983         break;
1984       case Node::Class_Lock:
1985       case Node::Class_Unlock:
1986         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
1987         break;
1988       default:
1989         assert(false, "unknown node type in macro list");
1990       }
1991       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
1992       progress = progress || success;
1993     }
1994   }
1995   // Make sure expansion will not cause node limit to be exceeded.
1996   // Worst case is a macro node gets expanded into about 50 nodes.
1997   // Allow 50% more for optimization.
1998   if (C->check_node_count(C->macro_count() * 75, "out of nodes before macro expansion" ) )
1999     return true;
2000 
2001   // expand "macro" nodes
2002   // nodes are removed from the macro list as they are processed
2003   while (C->macro_count() > 0) {
2004     int macro_count = C->macro_count();
2005     Node * n = C->macro_node(macro_count-1);
2006     assert(n->is_macro(), "only macro nodes expected here");
2007     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
2008       // node is unreachable, so don't try to expand it
2009       C->remove_macro_node(n);
2010       continue;
2011     }
2012     switch (n->class_id()) {
2013     case Node::Class_Allocate:
2014       expand_allocate(n->as_Allocate());
2015       break;
2016     case Node::Class_AllocateArray:
2017       expand_allocate_array(n->as_AllocateArray());
2018       break;
2019     case Node::Class_Lock:
2020       expand_lock_node(n->as_Lock());
2021       break;
2022     case Node::Class_Unlock:
2023       expand_unlock_node(n->as_Unlock());
2024       break;
2025     default:
2026       assert(false, "unknown node type in macro list");
2027     }
2028     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
2029     if (C->failing())  return true;
2030   }
2031 
2032   _igvn.set_delay_transform(false);
2033   _igvn.optimize();
2034   return false;
2035 }
2036