1 #ifdef USE_PRAGMA_IDENT_SRC
   2 #pragma ident "@(#)matcher.cpp  1.388 07/09/28 10:33:13 JVM"
   3 #endif
   4 /*
   5  * Copyright 1997-2008 Sun Microsystems, Inc.  All Rights Reserved.
   6  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   7  *
   8  * This code is free software; you can redistribute it and/or modify it
   9  * under the terms of the GNU General Public License version 2 only, as
  10  * published by the Free Software Foundation.
  11  *
  12  * This code is distributed in the hope that it will be useful, but WITHOUT
  13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  15  * version 2 for more details (a copy is included in the LICENSE file that
  16  * accompanied this code).
  17  *
  18  * You should have received a copy of the GNU General Public License version
  19  * 2 along with this work; if not, write to the Free Software Foundation,
  20  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  21  *
  22  * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
  23  * CA 95054 USA or visit www.sun.com if you need additional information or
  24  * have any questions.
  25  *  
  26  */
  27 
  28 #include "incls/_precompiled.incl"
  29 #include "incls/_matcher.cpp.incl"
  30 
  31 OptoReg::Name OptoReg::c_frame_pointer;
  32 
  33 
  34 
  35 const int Matcher::base2reg[Type::lastype] = {
  36   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
  37   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
  38   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
  39   0, 0/*abio*/,
  40   Op_RegP /* Return address */, 0, /* the memories */
  41   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD, 
  42   0  /*bottom*/
  43 };
  44 
  45 const RegMask *Matcher::idealreg2regmask[_last_machine_leaf];
  46 RegMask Matcher::mreg2regmask[_last_Mach_Reg];
  47 RegMask Matcher::STACK_ONLY_mask;
  48 RegMask Matcher::c_frame_ptr_mask;
  49 const uint Matcher::_begin_rematerialize = _BEGIN_REMATERIALIZE;
  50 const uint Matcher::_end_rematerialize   = _END_REMATERIALIZE;
  51 
  52 //---------------------------Matcher-------------------------------------------
  53 Matcher::Matcher( Node_List &proj_list ) :
  54   PhaseTransform( Phase::Ins_Select ),
  55 #ifdef ASSERT
  56   _old2new_map(C->comp_arena()),
  57   _new2old_map(C->comp_arena()),
  58 #endif
  59   _shared_nodes(C->comp_arena()),
  60   _reduceOp(reduceOp), _leftOp(leftOp), _rightOp(rightOp),
  61   _swallowed(swallowed),
  62   _begin_inst_chain_rule(_BEGIN_INST_CHAIN_RULE),
  63   _end_inst_chain_rule(_END_INST_CHAIN_RULE),
  64   _must_clone(must_clone), _proj_list(proj_list),
  65   _register_save_policy(register_save_policy),
  66   _c_reg_save_policy(c_reg_save_policy),
  67   _register_save_type(register_save_type),
  68   _ruleName(ruleName), 
  69   _allocation_started(false),
  70   _states_arena(Chunk::medium_size),
  71   _visited(&_states_arena),
  72   _shared(&_states_arena),
  73   _dontcare(&_states_arena) {
  74   C->set_matcher(this);
  75 
  76   idealreg2spillmask[Op_RegI] = NULL;
  77   idealreg2spillmask[Op_RegN] = NULL;
  78   idealreg2spillmask[Op_RegL] = NULL;
  79   idealreg2spillmask[Op_RegF] = NULL;
  80   idealreg2spillmask[Op_RegD] = NULL;
  81   idealreg2spillmask[Op_RegP] = NULL;
  82 
  83   idealreg2debugmask[Op_RegI] = NULL;
  84   idealreg2debugmask[Op_RegN] = NULL;
  85   idealreg2debugmask[Op_RegL] = NULL;
  86   idealreg2debugmask[Op_RegF] = NULL;
  87   idealreg2debugmask[Op_RegD] = NULL;
  88   idealreg2debugmask[Op_RegP] = NULL;
  89   debug_only(_mem_node = NULL;)   // Ideal memory node consumed by mach node
  90 }
  91 
  92 //------------------------------warp_incoming_stk_arg------------------------
  93 // This warps a VMReg into an OptoReg::Name
  94 OptoReg::Name Matcher::warp_incoming_stk_arg( VMReg reg ) {
  95   OptoReg::Name warped;
  96   if( reg->is_stack() ) {  // Stack slot argument?
  97     warped = OptoReg::add(_old_SP, reg->reg2stack() );
  98     warped = OptoReg::add(warped, C->out_preserve_stack_slots());
  99     if( warped >= _in_arg_limit )
 100       _in_arg_limit = OptoReg::add(warped, 1); // Bump max stack slot seen
 101     if (!RegMask::can_represent(warped)) {
 102       // the compiler cannot represent this method's calling sequence
 103       C->record_method_not_compilable_all_tiers("unsupported incoming calling sequence");
 104       return OptoReg::Bad;
 105     }
 106     return warped;
 107   }
 108   return OptoReg::as_OptoReg(reg);
 109 }
 110 
 111 //---------------------------compute_old_SP------------------------------------
 112 OptoReg::Name Compile::compute_old_SP() {
 113   int fixed    = fixed_slots();
 114   int preserve = in_preserve_stack_slots();
 115   return OptoReg::stack2reg(round_to(fixed + preserve, Matcher::stack_alignment_in_slots()));
 116 }
 117 
 118 
 119 
 120 #ifdef ASSERT
 121 void Matcher::verify_new_nodes_only(Node* xroot) {
 122   // Make sure that the new graph only references new nodes
 123   ResourceMark rm;
 124   Unique_Node_List worklist;
 125   VectorSet visited(Thread::current()->resource_area());
 126   worklist.push(xroot);
 127   while (worklist.size() > 0) {
 128     Node* n = worklist.pop();
 129     visited <<= n->_idx;
 130     assert(C->node_arena()->contains(n), "dead node");
 131     for (uint j = 0; j < n->req(); j++) {
 132       Node* in = n->in(j);
 133       if (in != NULL) {
 134         assert(C->node_arena()->contains(in), "dead node");
 135         if (!visited.test(in->_idx)) {
 136           worklist.push(in);
 137         }
 138       }
 139     }
 140   }
 141 }
 142 #endif
 143 
 144 
 145 //---------------------------match---------------------------------------------
 146 void Matcher::match( ) { 
 147   // One-time initialization of some register masks.
 148   init_spill_mask( C->root()->in(1) );
 149   _return_addr_mask = return_addr();
 150 #ifdef _LP64
 151   // Pointers take 2 slots in 64-bit land
 152   _return_addr_mask.Insert(OptoReg::add(return_addr(),1));
 153 #endif
 154 
 155   // Map a Java-signature return type into return register-value
 156   // machine registers for 0, 1 and 2 returned values.
 157   const TypeTuple *range = C->tf()->range();
 158   if( range->cnt() > TypeFunc::Parms ) { // If not a void function
 159     // Get ideal-register return type
 160     int ireg = base2reg[range->field_at(TypeFunc::Parms)->base()];
 161     // Get machine return register
 162     uint sop = C->start()->Opcode();
 163     OptoRegPair regs = return_value(ireg, false);
 164 
 165     // And mask for same
 166     _return_value_mask = RegMask(regs.first());
 167     if( OptoReg::is_valid(regs.second()) )
 168       _return_value_mask.Insert(regs.second());
 169   }
 170 
 171   // ---------------
 172   // Frame Layout
 173 
 174   // Need the method signature to determine the incoming argument types,
 175   // because the types determine which registers the incoming arguments are
 176   // in, and this affects the matched code.
 177   const TypeTuple *domain = C->tf()->domain();
 178   uint             argcnt = domain->cnt() - TypeFunc::Parms;
 179   BasicType *sig_bt        = NEW_RESOURCE_ARRAY( BasicType, argcnt );
 180   VMRegPair *vm_parm_regs  = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
 181   _parm_regs               = NEW_RESOURCE_ARRAY( OptoRegPair, argcnt );
 182   _calling_convention_mask = NEW_RESOURCE_ARRAY( RegMask, argcnt );
 183   uint i;
 184   for( i = 0; i<argcnt; i++ ) {
 185     sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
 186   }
 187 
 188   // Pass array of ideal registers and length to USER code (from the AD file)
 189   // that will convert this to an array of register numbers.
 190   const StartNode *start = C->start();
 191   start->calling_convention( sig_bt, vm_parm_regs, argcnt );
 192 #ifdef ASSERT
 193   // Sanity check users' calling convention.  Real handy while trying to 
 194   // get the initial port correct.
 195   { for (uint i = 0; i<argcnt; i++) {
 196       if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 197         assert(domain->field_at(i+TypeFunc::Parms)==Type::HALF, "only allowed on halve" );
 198         _parm_regs[i].set_bad();
 199         continue;
 200       }
 201       VMReg parm_reg = vm_parm_regs[i].first();
 202       assert(parm_reg->is_valid(), "invalid arg?");
 203       if (parm_reg->is_reg()) {
 204         OptoReg::Name opto_parm_reg = OptoReg::as_OptoReg(parm_reg);
 205         assert(can_be_java_arg(opto_parm_reg) ||
 206                C->stub_function() == CAST_FROM_FN_PTR(address, OptoRuntime::rethrow_C) ||
 207                opto_parm_reg == inline_cache_reg(),
 208                "parameters in register must be preserved by runtime stubs");
 209       }
 210       for (uint j = 0; j < i; j++) {
 211         assert(parm_reg != vm_parm_regs[j].first(), 
 212                "calling conv. must produce distinct regs");
 213       }
 214     }
 215   }
 216 #endif
 217 
 218   // Do some initial frame layout.
 219 
 220   // Compute the old incoming SP (may be called FP) as
 221   //   OptoReg::stack0() + locks + in_preserve_stack_slots + pad2.
 222   _old_SP = C->compute_old_SP();
 223   assert( is_even(_old_SP), "must be even" );
 224 
 225   // Compute highest incoming stack argument as
 226   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 227   _in_arg_limit = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 228   assert( is_even(_in_arg_limit), "out_preserve must be even" );
 229   for( i = 0; i < argcnt; i++ ) {
 230     // Permit args to have no register
 231     _calling_convention_mask[i].Clear();
 232     if( !vm_parm_regs[i].first()->is_valid() && !vm_parm_regs[i].second()->is_valid() ) {
 233       continue;
 234     }
 235     // calling_convention returns stack arguments as a count of
 236     // slots beyond OptoReg::stack0()/VMRegImpl::stack0.  We need to convert this to
 237     // the allocators point of view, taking into account all the
 238     // preserve area, locks & pad2.
 239 
 240     OptoReg::Name reg1 = warp_incoming_stk_arg(vm_parm_regs[i].first());
 241     if( OptoReg::is_valid(reg1))
 242       _calling_convention_mask[i].Insert(reg1);
 243 
 244     OptoReg::Name reg2 = warp_incoming_stk_arg(vm_parm_regs[i].second());
 245     if( OptoReg::is_valid(reg2))
 246       _calling_convention_mask[i].Insert(reg2);
 247 
 248     // Saved biased stack-slot register number
 249     _parm_regs[i].set_pair(reg2, reg1);
 250   }
 251 
 252   // Finally, make sure the incoming arguments take up an even number of
 253   // words, in case the arguments or locals need to contain doubleword stack 
 254   // slots.  The rest of the system assumes that stack slot pairs (in 
 255   // particular, in the spill area) which look aligned will in fact be 
 256   // aligned relative to the stack pointer in the target machine.  Double 
 257   // stack slots will always be allocated aligned.
 258   _new_SP = OptoReg::Name(round_to(_in_arg_limit, RegMask::SlotsPerLong));
 259 
 260   // Compute highest outgoing stack argument as
 261   //   _new_SP + out_preserve_stack_slots + max(outgoing argument size).
 262   _out_arg_limit = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
 263   assert( is_even(_out_arg_limit), "out_preserve must be even" );
 264 
 265   if (!RegMask::can_represent(OptoReg::add(_out_arg_limit,-1))) {
 266     // the compiler cannot represent this method's calling sequence
 267     C->record_method_not_compilable("must be able to represent all call arguments in reg mask");
 268   }
 269 
 270   if (C->failing())  return;  // bailed out on incoming arg failure
 271 
 272   // ---------------
 273   // Collect roots of matcher trees.  Every node for which
 274   // _shared[_idx] is cleared is guaranteed to not be shared, and thus
 275   // can be a valid interior of some tree.
 276   find_shared( C->root() );
 277   find_shared( C->top() );
 278 
 279   C->print_method("Before Matching");
 280 
 281   // Swap out to old-space; emptying new-space 
 282   Arena *old = C->node_arena()->move_contents(C->old_arena());
 283 
 284   // Save debug and profile information for nodes in old space:
 285   _old_node_note_array = C->node_note_array();
 286   if (_old_node_note_array != NULL) {
 287     C->set_node_note_array(new(C->comp_arena()) GrowableArray<Node_Notes*>
 288                            (C->comp_arena(), _old_node_note_array->length(),
 289                             0, NULL));
 290   }
 291 
 292   // Pre-size the new_node table to avoid the need for range checks.
 293   grow_new_node_array(C->unique());
 294 
 295   // Reset node counter so MachNodes start with _idx at 0
 296   int nodes = C->unique(); // save value
 297   C->set_unique(0);
 298 
 299   // Recursively match trees from old space into new space.
 300   // Correct leaves of new-space Nodes; they point to old-space.
 301   _visited.Clear();             // Clear visit bits for xform call
 302   C->set_cached_top_node(xform( C->top(), nodes ));
 303   if (!C->failing()) {
 304     Node* xroot =        xform( C->root(), 1 );
 305     if (xroot == NULL) {
 306       Matcher::soft_match_failure();  // recursive matching process failed
 307       C->record_method_not_compilable("instruction match failed");
 308     } else {
 309       // During matching shared constants were attached to C->root()
 310       // because xroot wasn't available yet, so transfer the uses to
 311       // the xroot.
 312       for( DUIterator_Fast jmax, j = C->root()->fast_outs(jmax); j < jmax; j++ ) {
 313         Node* n = C->root()->fast_out(j);
 314         if (C->node_arena()->contains(n)) {
 315           assert(n->in(0) == C->root(), "should be control user");
 316           n->set_req(0, xroot);
 317           --j;
 318           --jmax;
 319         }
 320       }
 321 
 322       C->set_root(xroot->is_Root() ? xroot->as_Root() : NULL);
 323 #ifdef ASSERT
 324       verify_new_nodes_only(xroot);
 325 #endif
 326     }
 327   }
 328   if (C->top() == NULL || C->root() == NULL) {
 329     C->record_method_not_compilable("graph lost"); // %%% cannot happen?
 330   }
 331   if (C->failing()) {
 332     // delete old;
 333     old->destruct_contents();
 334     return;
 335   }
 336   assert( C->top(), "" );
 337   assert( C->root(), "" );
 338   validate_null_checks();
 339 
 340   // Now smoke old-space
 341   NOT_DEBUG( old->destruct_contents() );
 342 
 343   // ------------------------
 344   // Set up save-on-entry registers
 345   Fixup_Save_On_Entry( );
 346 }
 347 
 348 
 349 //------------------------------Fixup_Save_On_Entry----------------------------
 350 // The stated purpose of this routine is to take care of save-on-entry 
 351 // registers.  However, the overall goal of the Match phase is to convert into
 352 // machine-specific instructions which have RegMasks to guide allocation.
 353 // So what this procedure really does is put a valid RegMask on each input
 354 // to the machine-specific variations of all Return, TailCall and Halt 
 355 // instructions.  It also adds edgs to define the save-on-entry values (and of
 356 // course gives them a mask).
 357 
 358 static RegMask *init_input_masks( uint size, RegMask &ret_adr, RegMask &fp ) {
 359   RegMask *rms = NEW_RESOURCE_ARRAY( RegMask, size );
 360   // Do all the pre-defined register masks
 361   rms[TypeFunc::Control  ] = RegMask::Empty;
 362   rms[TypeFunc::I_O      ] = RegMask::Empty;
 363   rms[TypeFunc::Memory   ] = RegMask::Empty;
 364   rms[TypeFunc::ReturnAdr] = ret_adr;
 365   rms[TypeFunc::FramePtr ] = fp;
 366   return rms;
 367 }
 368 
 369 //---------------------------init_first_stack_mask-----------------------------
 370 // Create the initial stack mask used by values spilling to the stack.
 371 // Disallow any debug info in outgoing argument areas by setting the
 372 // initial mask accordingly.
 373 void Matcher::init_first_stack_mask() {
 374 
 375   // Allocate storage for spill masks as masks for the appropriate load type.
 376   RegMask *rms = (RegMask*)C->comp_arena()->Amalloc_D(sizeof(RegMask)*12);
 377   idealreg2spillmask[Op_RegN] = &rms[0];
 378   idealreg2spillmask[Op_RegI] = &rms[1];
 379   idealreg2spillmask[Op_RegL] = &rms[2];
 380   idealreg2spillmask[Op_RegF] = &rms[3];
 381   idealreg2spillmask[Op_RegD] = &rms[4];
 382   idealreg2spillmask[Op_RegP] = &rms[5];
 383   idealreg2debugmask[Op_RegN] = &rms[6];
 384   idealreg2debugmask[Op_RegI] = &rms[7];
 385   idealreg2debugmask[Op_RegL] = &rms[8];
 386   idealreg2debugmask[Op_RegF] = &rms[9];
 387   idealreg2debugmask[Op_RegD] = &rms[10];
 388   idealreg2debugmask[Op_RegP] = &rms[11];
 389 
 390   OptoReg::Name i;
 391 
 392   // At first, start with the empty mask
 393   C->FIRST_STACK_mask().Clear();
 394 
 395   // Add in the incoming argument area
 396   OptoReg::Name init = OptoReg::add(_old_SP, C->out_preserve_stack_slots());
 397   for (i = init; i < _in_arg_limit; i = OptoReg::add(i,1))
 398     C->FIRST_STACK_mask().Insert(i);
 399 
 400   // Add in all bits past the outgoing argument area
 401   guarantee(RegMask::can_represent(OptoReg::add(_out_arg_limit,-1)),
 402             "must be able to represent all call arguments in reg mask");
 403   init = _out_arg_limit;
 404   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 405     C->FIRST_STACK_mask().Insert(i);
 406 
 407   // Finally, set the "infinite stack" bit.
 408   C->FIRST_STACK_mask().set_AllStack();
 409 
 410   // Make spill masks.  Registers for their class, plus FIRST_STACK_mask.
 411 #ifdef _LP64
 412   *idealreg2spillmask[Op_RegN] = *idealreg2regmask[Op_RegN];
 413    idealreg2spillmask[Op_RegN]->OR(C->FIRST_STACK_mask());
 414 #endif
 415   *idealreg2spillmask[Op_RegI] = *idealreg2regmask[Op_RegI];
 416    idealreg2spillmask[Op_RegI]->OR(C->FIRST_STACK_mask());
 417   *idealreg2spillmask[Op_RegL] = *idealreg2regmask[Op_RegL]; 
 418    idealreg2spillmask[Op_RegL]->OR(C->FIRST_STACK_mask());
 419   *idealreg2spillmask[Op_RegF] = *idealreg2regmask[Op_RegF]; 
 420    idealreg2spillmask[Op_RegF]->OR(C->FIRST_STACK_mask());
 421   *idealreg2spillmask[Op_RegD] = *idealreg2regmask[Op_RegD]; 
 422    idealreg2spillmask[Op_RegD]->OR(C->FIRST_STACK_mask());
 423   *idealreg2spillmask[Op_RegP] = *idealreg2regmask[Op_RegP]; 
 424    idealreg2spillmask[Op_RegP]->OR(C->FIRST_STACK_mask());
 425 
 426   // Make up debug masks.  Any spill slot plus callee-save registers.
 427   // Caller-save registers are assumed to be trashable by the various
 428   // inline-cache fixup routines.
 429   *idealreg2debugmask[Op_RegN]= *idealreg2spillmask[Op_RegN];
 430   *idealreg2debugmask[Op_RegI]= *idealreg2spillmask[Op_RegI];
 431   *idealreg2debugmask[Op_RegL]= *idealreg2spillmask[Op_RegL];
 432   *idealreg2debugmask[Op_RegF]= *idealreg2spillmask[Op_RegF];
 433   *idealreg2debugmask[Op_RegD]= *idealreg2spillmask[Op_RegD];
 434   *idealreg2debugmask[Op_RegP]= *idealreg2spillmask[Op_RegP];
 435 
 436   // Prevent stub compilations from attempting to reference
 437   // callee-saved registers from debug info
 438   bool exclude_soe = !Compile::current()->is_method_compilation();
 439 
 440   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 441     // registers the caller has to save do not work 
 442     if( _register_save_policy[i] == 'C' ||  
 443         _register_save_policy[i] == 'A' ||
 444         (_register_save_policy[i] == 'E' && exclude_soe) ) {
 445       idealreg2debugmask[Op_RegN]->Remove(i);
 446       idealreg2debugmask[Op_RegI]->Remove(i); // Exclude save-on-call
 447       idealreg2debugmask[Op_RegL]->Remove(i); // registers from debug
 448       idealreg2debugmask[Op_RegF]->Remove(i); // masks
 449       idealreg2debugmask[Op_RegD]->Remove(i);
 450       idealreg2debugmask[Op_RegP]->Remove(i); 
 451     }
 452   }
 453 }
 454 
 455 //---------------------------is_save_on_entry----------------------------------
 456 bool Matcher::is_save_on_entry( int reg ) {
 457   return 
 458     _register_save_policy[reg] == 'E' ||
 459     _register_save_policy[reg] == 'A' || // Save-on-entry register?
 460     // Also save argument registers in the trampolining stubs
 461     (C->save_argument_registers() && is_spillable_arg(reg));
 462 }
 463 
 464 //---------------------------Fixup_Save_On_Entry-------------------------------
 465 void Matcher::Fixup_Save_On_Entry( ) {
 466   init_first_stack_mask();
 467 
 468   Node *root = C->root();       // Short name for root  
 469   // Count number of save-on-entry registers.  
 470   uint soe_cnt = number_of_saved_registers();
 471   uint i;
 472 
 473   // Find the procedure Start Node
 474   StartNode *start = C->start();
 475   assert( start, "Expect a start node" );
 476   
 477   // Save argument registers in the trampolining stubs
 478   if( C->save_argument_registers() ) 
 479     for( i = 0; i < _last_Mach_Reg; i++ ) 
 480       if( is_spillable_arg(i) ) 
 481         soe_cnt++;
 482 
 483   // Input RegMask array shared by all Returns.
 484   // The type for doubles and longs has a count of 2, but
 485   // there is only 1 returned value
 486   uint ret_edge_cnt = TypeFunc::Parms + ((C->tf()->range()->cnt() == TypeFunc::Parms) ? 0 : 1);
 487   RegMask *ret_rms  = init_input_masks( ret_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 488   // Returns have 0 or 1 returned values depending on call signature. 
 489   // Return register is specified by return_value in the AD file.  
 490   if (ret_edge_cnt > TypeFunc::Parms)
 491     ret_rms[TypeFunc::Parms+0] = _return_value_mask;
 492   
 493   // Input RegMask array shared by all Rethrows.
 494   uint reth_edge_cnt = TypeFunc::Parms+1;
 495   RegMask *reth_rms  = init_input_masks( reth_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 496   // Rethrow takes exception oop only, but in the argument 0 slot.
 497   reth_rms[TypeFunc::Parms] = mreg2regmask[find_receiver(false)];
 498 #ifdef _LP64
 499   // Need two slots for ptrs in 64-bit land
 500   reth_rms[TypeFunc::Parms].Insert(OptoReg::add(OptoReg::Name(find_receiver(false)),1));
 501 #endif
 502   
 503   // Input RegMask array shared by all TailCalls
 504   uint tail_call_edge_cnt = TypeFunc::Parms+2;
 505   RegMask *tail_call_rms = init_input_masks( tail_call_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 506 
 507   // Input RegMask array shared by all TailJumps
 508   uint tail_jump_edge_cnt = TypeFunc::Parms+2;
 509   RegMask *tail_jump_rms = init_input_masks( tail_jump_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 510 
 511   // TailCalls have 2 returned values (target & moop), whose masks come
 512   // from the usual MachNode/MachOper mechanism.  Find a sample
 513   // TailCall to extract these masks and put the correct masks into
 514   // the tail_call_rms array.
 515   for( i=1; i < root->req(); i++ ) {
 516     MachReturnNode *m = root->in(i)->as_MachReturn();
 517     if( m->ideal_Opcode() == Op_TailCall ) {
 518       tail_call_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 519       tail_call_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 520       break;
 521     }
 522   }
 523 
 524   // TailJumps have 2 returned values (target & ex_oop), whose masks come
 525   // from the usual MachNode/MachOper mechanism.  Find a sample
 526   // TailJump to extract these masks and put the correct masks into
 527   // the tail_jump_rms array.
 528   for( i=1; i < root->req(); i++ ) {
 529     MachReturnNode *m = root->in(i)->as_MachReturn();
 530     if( m->ideal_Opcode() == Op_TailJump ) {
 531       tail_jump_rms[TypeFunc::Parms+0] = m->MachNode::in_RegMask(TypeFunc::Parms+0);
 532       tail_jump_rms[TypeFunc::Parms+1] = m->MachNode::in_RegMask(TypeFunc::Parms+1);
 533       break;
 534     }
 535   }
 536 
 537   // Input RegMask array shared by all Halts
 538   uint halt_edge_cnt = TypeFunc::Parms;
 539   RegMask *halt_rms = init_input_masks( halt_edge_cnt + soe_cnt, _return_addr_mask, c_frame_ptr_mask );
 540 
 541   // Capture the return input masks into each exit flavor
 542   for( i=1; i < root->req(); i++ ) {
 543     MachReturnNode *exit = root->in(i)->as_MachReturn();
 544     switch( exit->ideal_Opcode() ) {
 545       case Op_Return   : exit->_in_rms = ret_rms;  break;
 546       case Op_Rethrow  : exit->_in_rms = reth_rms; break;
 547       case Op_TailCall : exit->_in_rms = tail_call_rms; break;
 548       case Op_TailJump : exit->_in_rms = tail_jump_rms; break;
 549       case Op_Halt     : exit->_in_rms = halt_rms; break;
 550       default          : ShouldNotReachHere();
 551     }
 552   }
 553 
 554   // Next unused projection number from Start.
 555   int proj_cnt = C->tf()->domain()->cnt();  
 556   
 557   // Do all the save-on-entry registers.  Make projections from Start for 
 558   // them, and give them a use at the exit points.  To the allocator, they 
 559   // look like incoming register arguments.
 560   for( i = 0; i < _last_Mach_Reg; i++ ) {
 561     if( is_save_on_entry(i) ) {
 562 
 563       // Add the save-on-entry to the mask array
 564       ret_rms      [      ret_edge_cnt] = mreg2regmask[i];
 565       reth_rms     [     reth_edge_cnt] = mreg2regmask[i];
 566       tail_call_rms[tail_call_edge_cnt] = mreg2regmask[i];
 567       tail_jump_rms[tail_jump_edge_cnt] = mreg2regmask[i];
 568       // Halts need the SOE registers, but only in the stack as debug info.
 569       // A just-prior uncommon-trap or deoptimization will use the SOE regs.
 570       halt_rms     [     halt_edge_cnt] = *idealreg2spillmask[_register_save_type[i]];
 571 
 572       Node *mproj;
 573 
 574       // Is this a RegF low half of a RegD?  Double up 2 adjacent RegF's
 575       // into a single RegD.
 576       if( (i&1) == 0 &&
 577           _register_save_type[i  ] == Op_RegF &&
 578           _register_save_type[i+1] == Op_RegF &&
 579           is_save_on_entry(i+1) ) {
 580         // Add other bit for double
 581         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 582         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 583         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 584         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 585         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 586         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegD );
 587         proj_cnt += 2;          // Skip 2 for doubles
 588       } 
 589       else if( (i&1) == 1 &&    // Else check for high half of double
 590                _register_save_type[i-1] == Op_RegF &&
 591                _register_save_type[i  ] == Op_RegF &&
 592                is_save_on_entry(i-1) ) {
 593         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 594         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 595         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 596         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 597         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 598         mproj = C->top();
 599       } 
 600       // Is this a RegI low half of a RegL?  Double up 2 adjacent RegI's
 601       // into a single RegL.
 602       else if( (i&1) == 0 &&
 603           _register_save_type[i  ] == Op_RegI &&
 604           _register_save_type[i+1] == Op_RegI &&
 605         is_save_on_entry(i+1) ) {
 606         // Add other bit for long
 607         ret_rms      [      ret_edge_cnt].Insert(OptoReg::Name(i+1));
 608         reth_rms     [     reth_edge_cnt].Insert(OptoReg::Name(i+1));
 609         tail_call_rms[tail_call_edge_cnt].Insert(OptoReg::Name(i+1));
 610         tail_jump_rms[tail_jump_edge_cnt].Insert(OptoReg::Name(i+1));
 611         halt_rms     [     halt_edge_cnt].Insert(OptoReg::Name(i+1));
 612         mproj = new (C, 1) MachProjNode( start, proj_cnt, ret_rms[ret_edge_cnt], Op_RegL );
 613         proj_cnt += 2;          // Skip 2 for longs
 614       } 
 615       else if( (i&1) == 1 &&    // Else check for high half of long
 616                _register_save_type[i-1] == Op_RegI &&
 617                _register_save_type[i  ] == Op_RegI &&
 618                is_save_on_entry(i-1) ) {
 619         ret_rms      [      ret_edge_cnt] = RegMask::Empty;
 620         reth_rms     [     reth_edge_cnt] = RegMask::Empty;
 621         tail_call_rms[tail_call_edge_cnt] = RegMask::Empty;
 622         tail_jump_rms[tail_jump_edge_cnt] = RegMask::Empty;
 623         halt_rms     [     halt_edge_cnt] = RegMask::Empty;
 624         mproj = C->top();
 625       } else {
 626         // Make a projection for it off the Start
 627         mproj = new (C, 1) MachProjNode( start, proj_cnt++, ret_rms[ret_edge_cnt], _register_save_type[i] );
 628       }
 629 
 630       ret_edge_cnt ++;
 631       reth_edge_cnt ++;
 632       tail_call_edge_cnt ++;
 633       tail_jump_edge_cnt ++;
 634       halt_edge_cnt ++;
 635 
 636       // Add a use of the SOE register to all exit paths
 637       for( uint j=1; j < root->req(); j++ ) 
 638         root->in(j)->add_req(mproj); 
 639     } // End of if a save-on-entry register
 640   } // End of for all machine registers
 641 }
 642 
 643 //------------------------------init_spill_mask--------------------------------
 644 void Matcher::init_spill_mask( Node *ret ) {
 645   if( idealreg2regmask[Op_RegI] ) return; // One time only init
 646 
 647   OptoReg::c_frame_pointer = c_frame_pointer();
 648   c_frame_ptr_mask = c_frame_pointer();
 649 #ifdef _LP64
 650   // pointers are twice as big
 651   c_frame_ptr_mask.Insert(OptoReg::add(c_frame_pointer(),1));
 652 #endif
 653 
 654   // Start at OptoReg::stack0()
 655   STACK_ONLY_mask.Clear();
 656   OptoReg::Name init = OptoReg::stack2reg(0);
 657   // STACK_ONLY_mask is all stack bits
 658   OptoReg::Name i;
 659   for (i = init; RegMask::can_represent(i); i = OptoReg::add(i,1))
 660     STACK_ONLY_mask.Insert(i);
 661   // Also set the "infinite stack" bit.
 662   STACK_ONLY_mask.set_AllStack();
 663 
 664   // Copy the register names over into the shared world
 665   for( i=OptoReg::Name(0); i<OptoReg::Name(_last_Mach_Reg); i = OptoReg::add(i,1) ) {
 666     // SharedInfo::regName[i] = regName[i];
 667     // Handy RegMasks per machine register
 668     mreg2regmask[i].Insert(i);
 669   }
 670 
 671   // Grab the Frame Pointer
 672   Node *fp  = ret->in(TypeFunc::FramePtr);
 673   Node *mem = ret->in(TypeFunc::Memory);
 674   const TypePtr* atp = TypePtr::BOTTOM;
 675   // Share frame pointer while making spill ops
 676   set_shared(fp);
 677 
 678   // Compute generic short-offset Loads
 679 #ifdef _LP64
 680   MachNode *spillCP = match_tree(new (C, 3) LoadNNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 681 #endif
 682   MachNode *spillI  = match_tree(new (C, 3) LoadINode(NULL,mem,fp,atp));
 683   MachNode *spillL  = match_tree(new (C, 3) LoadLNode(NULL,mem,fp,atp));
 684   MachNode *spillF  = match_tree(new (C, 3) LoadFNode(NULL,mem,fp,atp));
 685   MachNode *spillD  = match_tree(new (C, 3) LoadDNode(NULL,mem,fp,atp));
 686   MachNode *spillP  = match_tree(new (C, 3) LoadPNode(NULL,mem,fp,atp,TypeInstPtr::BOTTOM));
 687   assert(spillI != NULL && spillL != NULL && spillF != NULL && 
 688          spillD != NULL && spillP != NULL, "");
 689 
 690   // Get the ADLC notion of the right regmask, for each basic type.
 691 #ifdef _LP64
 692   idealreg2regmask[Op_RegN] = &spillCP->out_RegMask();
 693 #endif
 694   idealreg2regmask[Op_RegI] = &spillI->out_RegMask();
 695   idealreg2regmask[Op_RegL] = &spillL->out_RegMask();
 696   idealreg2regmask[Op_RegF] = &spillF->out_RegMask();
 697   idealreg2regmask[Op_RegD] = &spillD->out_RegMask();
 698   idealreg2regmask[Op_RegP] = &spillP->out_RegMask();
 699 }
 700 
 701 #ifdef ASSERT
 702 static void match_alias_type(Compile* C, Node* n, Node* m) {
 703   if (!VerifyAliases)  return;  // do not go looking for trouble by default
 704   const TypePtr* nat = n->adr_type();
 705   const TypePtr* mat = m->adr_type();
 706   int nidx = C->get_alias_index(nat);
 707   int midx = C->get_alias_index(mat);
 708   // Detune the assert for cases like (AndI 0xFF (LoadB p)).
 709   if (nidx == Compile::AliasIdxTop && midx >= Compile::AliasIdxRaw) {
 710     for (uint i = 1; i < n->req(); i++) {
 711       Node* n1 = n->in(i);
 712       const TypePtr* n1at = n1->adr_type();
 713       if (n1at != NULL) {
 714         nat = n1at;
 715         nidx = C->get_alias_index(n1at);
 716       }
 717     }
 718   }
 719   // %%% Kludgery.  Instead, fix ideal adr_type methods for all these cases:
 720   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxRaw) {
 721     switch (n->Opcode()) {
 722     case Op_PrefetchRead:
 723     case Op_PrefetchWrite:
 724       nidx = Compile::AliasIdxRaw;
 725       nat = TypeRawPtr::BOTTOM;
 726       break;
 727     }
 728   }
 729   if (nidx == Compile::AliasIdxRaw && midx == Compile::AliasIdxTop) {
 730     switch (n->Opcode()) {
 731     case Op_ClearArray:
 732       midx = Compile::AliasIdxRaw;
 733       mat = TypeRawPtr::BOTTOM;
 734       break;
 735     }
 736   }
 737   if (nidx == Compile::AliasIdxTop && midx == Compile::AliasIdxBot) {
 738     switch (n->Opcode()) {
 739     case Op_Return:
 740     case Op_Rethrow:
 741     case Op_Halt:
 742     case Op_TailCall:
 743     case Op_TailJump:
 744       nidx = Compile::AliasIdxBot;
 745       nat = TypePtr::BOTTOM;
 746       break;
 747     }
 748   }
 749   if (nidx == Compile::AliasIdxBot && midx == Compile::AliasIdxTop) {
 750     switch (n->Opcode()) {
 751     case Op_StrComp:
 752     case Op_AryEq:
 753     case Op_MemBarVolatile:
 754     case Op_MemBarCPUOrder: // %%% these ideals should have narrower adr_type?
 755       nidx = Compile::AliasIdxTop;
 756       nat = NULL;
 757       break;
 758     }
 759   }
 760   if (nidx != midx) {
 761     if (PrintOpto || (PrintMiscellaneous && (WizardMode || Verbose))) {
 762       tty->print_cr("==== Matcher alias shift %d => %d", nidx, midx);
 763       n->dump();
 764       m->dump();
 765     }
 766     assert(C->subsume_loads() && C->must_alias(nat, midx),
 767            "must not lose alias info when matching");
 768   }
 769 }
 770 #endif
 771 
 772 
 773 //------------------------------MStack-----------------------------------------
 774 // State and MStack class used in xform() and find_shared() iterative methods.
 775 enum Node_State { Pre_Visit,  // node has to be pre-visited
 776                       Visit,  // visit node
 777                  Post_Visit,  // post-visit node
 778              Alt_Post_Visit   // alternative post-visit path
 779                 };
 780 
 781 class MStack: public Node_Stack {
 782   public:
 783     MStack(int size) : Node_Stack(size) { }
 784 
 785     void push(Node *n, Node_State ns) {
 786       Node_Stack::push(n, (uint)ns);
 787     }
 788     void push(Node *n, Node_State ns, Node *parent, int indx) {
 789       ++_inode_top;
 790       if ((_inode_top + 1) >= _inode_max) grow();
 791       _inode_top->node = parent;
 792       _inode_top->indx = (uint)indx;
 793       ++_inode_top;
 794       _inode_top->node = n;
 795       _inode_top->indx = (uint)ns;
 796     }
 797     Node *parent() {
 798       pop();
 799       return node();
 800     }
 801     Node_State state() const {
 802       return (Node_State)index();
 803     }
 804     void set_state(Node_State ns) {
 805       set_index((uint)ns);
 806     }
 807 };
 808 
 809 
 810 //------------------------------xform------------------------------------------
 811 // Given a Node in old-space, Match him (Label/Reduce) to produce a machine
 812 // Node in new-space.  Given a new-space Node, recursively walk his children.
 813 Node *Matcher::transform( Node *n ) { ShouldNotCallThis(); return n; }
 814 Node *Matcher::xform( Node *n, int max_stack ) {
 815   // Use one stack to keep both: child's node/state and parent's node/index
 816   MStack mstack(max_stack * 2 * 2); // C->unique() * 2 * 2
 817   mstack.push(n, Visit, NULL, -1);  // set NULL as parent to indicate root
 818 
 819   while (mstack.is_nonempty()) {
 820     n = mstack.node();          // Leave node on stack
 821     Node_State nstate = mstack.state();
 822     if (nstate == Visit) {
 823       mstack.set_state(Post_Visit);
 824       Node *oldn = n;
 825       // Old-space or new-space check
 826       if (!C->node_arena()->contains(n)) {
 827         // Old space!
 828         Node* m;
 829         if (has_new_node(n)) {  // Not yet Label/Reduced
 830           m = new_node(n);
 831         } else {
 832           if (!is_dontcare(n)) { // Matcher can match this guy
 833             // Calls match special.  They match alone with no children.
 834             // Their children, the incoming arguments, match normally.
 835             m = n->is_SafePoint() ? match_sfpt(n->as_SafePoint()):match_tree(n);
 836             if (C->failing())  return NULL;
 837             if (m == NULL) { Matcher::soft_match_failure(); return NULL; }
 838           } else {                  // Nothing the matcher cares about
 839             if( n->is_Proj() && n->in(0)->is_Multi()) {       // Projections?
 840               // Convert to machine-dependent projection
 841               m = n->in(0)->as_Multi()->match( n->as_Proj(), this );
 842 #ifdef ASSERT
 843               _new2old_map.map(m->_idx, n);
 844 #endif
 845               if (m->in(0) != NULL) // m might be top
 846                 collect_null_checks(m, n);
 847             } else {                // Else just a regular 'ol guy
 848               m = n->clone();       // So just clone into new-space
 849 #ifdef ASSERT
 850               _new2old_map.map(m->_idx, n);
 851 #endif
 852               // Def-Use edges will be added incrementally as Uses
 853               // of this node are matched.
 854               assert(m->outcnt() == 0, "no Uses of this clone yet");
 855             }
 856           }
 857 
 858           set_new_node(n, m);       // Map old to new
 859           if (_old_node_note_array != NULL) {
 860             Node_Notes* nn = C->locate_node_notes(_old_node_note_array,
 861                                                   n->_idx);
 862             C->set_node_notes_at(m->_idx, nn);
 863           }
 864           debug_only(match_alias_type(C, n, m));
 865         }
 866         n = m;    // n is now a new-space node
 867         mstack.set_node(n);
 868       }
 869 
 870       // New space!
 871       if (_visited.test_set(n->_idx)) continue; // while(mstack.is_nonempty())
 872 
 873       int i;
 874       // Put precedence edges on stack first (match them last).
 875       for (i = oldn->req(); (uint)i < oldn->len(); i++) {
 876         Node *m = oldn->in(i);
 877         if (m == NULL) break;
 878         // set -1 to call add_prec() instead of set_req() during Step1
 879         mstack.push(m, Visit, n, -1);
 880       }
 881 
 882       // For constant debug info, I'd rather have unmatched constants.
 883       int cnt = n->req();
 884       JVMState* jvms = n->jvms();
 885       int debug_cnt = jvms ? jvms->debug_start() : cnt;
 886 
 887       // Now do only debug info.  Clone constants rather than matching.
 888       // Constants are represented directly in the debug info without
 889       // the need for executable machine instructions.
 890       // Monitor boxes are also represented directly.
 891       for (i = cnt - 1; i >= debug_cnt; --i) { // For all debug inputs do
 892         Node *m = n->in(i);          // Get input
 893         int op = m->Opcode();
 894         assert((op == Op_BoxLock) == jvms->is_monitor_use(i), "boxes only at monitor sites");
 895         if( op == Op_ConI || op == Op_ConP || op == Op_ConN ||
 896             op == Op_ConF || op == Op_ConD || op == Op_ConL
 897             // || op == Op_BoxLock  // %%%% enable this and remove (+++) in chaitin.cpp
 898             ) {
 899           m = m->clone();
 900 #ifdef ASSERT
 901           _new2old_map.map(m->_idx, n);
 902 #endif
 903           mstack.push(m, Post_Visit, n, i); // Don't neet to visit
 904           mstack.push(m->in(0), Visit, m, 0);
 905         } else {
 906           mstack.push(m, Visit, n, i);
 907         }
 908       }
 909 
 910       // And now walk his children, and convert his inputs to new-space.
 911       for( ; i >= 0; --i ) { // For all normal inputs do
 912         Node *m = n->in(i);  // Get input
 913         if(m != NULL) 
 914           mstack.push(m, Visit, n, i);
 915       }
 916 
 917     }
 918     else if (nstate == Post_Visit) {
 919       // Set xformed input
 920       Node *p = mstack.parent();
 921       if (p != NULL) { // root doesn't have parent
 922         int i = (int)mstack.index();
 923         if (i >= 0)
 924           p->set_req(i, n); // required input
 925         else if (i == -1)
 926           p->add_prec(n);   // precedence input
 927         else
 928           ShouldNotReachHere();
 929       }
 930       mstack.pop(); // remove processed node from stack
 931     }
 932     else {
 933       ShouldNotReachHere();
 934     }
 935   } // while (mstack.is_nonempty())
 936   return n; // Return new-space Node
 937 }
 938 
 939 //------------------------------warp_outgoing_stk_arg------------------------
 940 OptoReg::Name Matcher::warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call ) {
 941   // Convert outgoing argument location to a pre-biased stack offset
 942   if (reg->is_stack()) {
 943     OptoReg::Name warped = reg->reg2stack();
 944     // Adjust the stack slot offset to be the register number used
 945     // by the allocator.
 946     warped = OptoReg::add(begin_out_arg_area, warped);
 947     // Keep track of the largest numbered stack slot used for an arg.
 948     // Largest used slot per call-site indicates the amount of stack
 949     // that is killed by the call.
 950     if( warped >= out_arg_limit_per_call ) 
 951       out_arg_limit_per_call = OptoReg::add(warped,1);
 952     if (!RegMask::can_represent(warped)) {
 953       C->record_method_not_compilable_all_tiers("unsupported calling sequence");
 954       return OptoReg::Bad;
 955     }
 956     return warped;
 957   }
 958   return OptoReg::as_OptoReg(reg);
 959 }
 960 
 961 
 962 //------------------------------match_sfpt-------------------------------------
 963 // Helper function to match call instructions.  Calls match special.
 964 // They match alone with no children.  Their children, the incoming
 965 // arguments, match normally.
 966 MachNode *Matcher::match_sfpt( SafePointNode *sfpt ) {
 967   MachSafePointNode *msfpt = NULL;
 968   MachCallNode      *mcall = NULL;
 969   uint               cnt;
 970   // Split out case for SafePoint vs Call
 971   CallNode *call;
 972   const TypeTuple *domain;
 973   ciMethod*        method = NULL;
 974   if( sfpt->is_Call() ) {
 975     call = sfpt->as_Call();
 976     domain = call->tf()->domain();
 977     cnt = domain->cnt();
 978 
 979     // Match just the call, nothing else
 980     MachNode *m = match_tree(call);
 981     if (C->failing())  return NULL;
 982     if( m == NULL ) { Matcher::soft_match_failure(); return NULL; }
 983 
 984     // Copy data from the Ideal SafePoint to the machine version
 985     mcall = m->as_MachCall();
 986 
 987     mcall->set_tf(         call->tf());
 988     mcall->set_entry_point(call->entry_point());
 989     mcall->set_cnt(        call->cnt());
 990   
 991     if( mcall->is_MachCallJava() ) {
 992       MachCallJavaNode *mcall_java  = mcall->as_MachCallJava();
 993       const CallJavaNode *call_java =  call->as_CallJava();
 994       method = call_java->method();
 995       mcall_java->_method = method;
 996       mcall_java->_bci = call_java->_bci;
 997       mcall_java->_optimized_virtual = call_java->is_optimized_virtual(); 
 998       if( mcall_java->is_MachCallStaticJava() ) 
 999         mcall_java->as_MachCallStaticJava()->_name = 
1000          call_java->as_CallStaticJava()->_name;
1001       if( mcall_java->is_MachCallDynamicJava() ) 
1002         mcall_java->as_MachCallDynamicJava()->_vtable_index = 
1003          call_java->as_CallDynamicJava()->_vtable_index;
1004     } 
1005     else if( mcall->is_MachCallRuntime() ) {
1006       mcall->as_MachCallRuntime()->_name = call->as_CallRuntime()->_name;
1007     }
1008     msfpt = mcall;
1009   }
1010   // This is a non-call safepoint
1011   else {
1012     call = NULL;
1013     domain = NULL;
1014     MachNode *mn = match_tree(sfpt);
1015     if (C->failing())  return NULL;
1016     msfpt = mn->as_MachSafePoint();
1017     cnt = TypeFunc::Parms;
1018   }
1019 
1020   // Advertise the correct memory effects (for anti-dependence computation).
1021   msfpt->set_adr_type(sfpt->adr_type());
1022 
1023   // Allocate a private array of RegMasks.  These RegMasks are not shared.
1024   msfpt->_in_rms = NEW_RESOURCE_ARRAY( RegMask, cnt );
1025   // Empty them all.
1026   memset( msfpt->_in_rms, 0, sizeof(RegMask)*cnt );
1027 
1028   // Do all the pre-defined non-Empty register masks
1029   msfpt->_in_rms[TypeFunc::ReturnAdr] = _return_addr_mask;
1030   msfpt->_in_rms[TypeFunc::FramePtr ] = c_frame_ptr_mask;
1031 
1032   // Place first outgoing argument can possibly be put.
1033   OptoReg::Name begin_out_arg_area = OptoReg::add(_new_SP, C->out_preserve_stack_slots());
1034   assert( is_even(begin_out_arg_area), "" );
1035   // Compute max outgoing register number per call site.  
1036   OptoReg::Name out_arg_limit_per_call = begin_out_arg_area;
1037   // Calls to C may hammer extra stack slots above and beyond any arguments.
1038   // These are usually backing store for register arguments for varargs.
1039   if( call != NULL && call->is_CallRuntime() )
1040     out_arg_limit_per_call = OptoReg::add(out_arg_limit_per_call,C->varargs_C_out_slots_killed());
1041 
1042 
1043   // Do the normal argument list (parameters) register masks
1044   int argcnt = cnt - TypeFunc::Parms;
1045   if( argcnt > 0 ) {          // Skip it all if we have no args
1046     BasicType *sig_bt  = NEW_RESOURCE_ARRAY( BasicType, argcnt );
1047     VMRegPair *parm_regs = NEW_RESOURCE_ARRAY( VMRegPair, argcnt );
1048     int i;
1049     for( i = 0; i < argcnt; i++ ) {
1050       sig_bt[i] = domain->field_at(i+TypeFunc::Parms)->basic_type();
1051     }
1052     // V-call to pick proper calling convention
1053     call->calling_convention( sig_bt, parm_regs, argcnt );
1054 
1055 #ifdef ASSERT
1056     // Sanity check users' calling convention.  Really handy during 
1057     // the initial porting effort.  Fairly expensive otherwise.
1058     { for (int i = 0; i<argcnt; i++) {
1059       if( !parm_regs[i].first()->is_valid() &&
1060           !parm_regs[i].second()->is_valid() ) continue;
1061       VMReg reg1 = parm_regs[i].first();
1062       VMReg reg2 = parm_regs[i].second();
1063       for (int j = 0; j < i; j++) {
1064         if( !parm_regs[j].first()->is_valid() &&
1065             !parm_regs[j].second()->is_valid() ) continue;
1066         VMReg reg3 = parm_regs[j].first();
1067         VMReg reg4 = parm_regs[j].second();
1068         if( !reg1->is_valid() ) {
1069           assert( !reg2->is_valid(), "valid halvsies" );
1070         } else if( !reg3->is_valid() ) {
1071           assert( !reg4->is_valid(), "valid halvsies" );
1072         } else {
1073           assert( reg1 != reg2, "calling conv. must produce distinct regs");
1074           assert( reg1 != reg3, "calling conv. must produce distinct regs");
1075           assert( reg1 != reg4, "calling conv. must produce distinct regs");
1076           assert( reg2 != reg3, "calling conv. must produce distinct regs");
1077           assert( reg2 != reg4 || !reg2->is_valid(), "calling conv. must produce distinct regs");
1078           assert( reg3 != reg4, "calling conv. must produce distinct regs");
1079         }
1080       }
1081     }
1082     }
1083 #endif
1084 
1085     // Visit each argument.  Compute its outgoing register mask.
1086     // Return results now can have 2 bits returned.
1087     // Compute max over all outgoing arguments both per call-site
1088     // and over the entire method.
1089     for( i = 0; i < argcnt; i++ ) {
1090       // Address of incoming argument mask to fill in
1091       RegMask *rm = &mcall->_in_rms[i+TypeFunc::Parms];
1092       if( !parm_regs[i].first()->is_valid() &&
1093           !parm_regs[i].second()->is_valid() ) {
1094         continue;               // Avoid Halves
1095       }
1096       // Grab first register, adjust stack slots and insert in mask.
1097       OptoReg::Name reg1 = warp_outgoing_stk_arg(parm_regs[i].first(), begin_out_arg_area, out_arg_limit_per_call );
1098       if (OptoReg::is_valid(reg1))
1099         rm->Insert( reg1 );
1100       // Grab second register (if any), adjust stack slots and insert in mask.
1101       OptoReg::Name reg2 = warp_outgoing_stk_arg(parm_regs[i].second(), begin_out_arg_area, out_arg_limit_per_call );
1102       if (OptoReg::is_valid(reg2))
1103         rm->Insert( reg2 );
1104     } // End of for all arguments
1105 
1106     // Compute number of stack slots needed to restore stack in case of
1107     // Pascal-style argument popping.
1108     mcall->_argsize = out_arg_limit_per_call - begin_out_arg_area;
1109   }
1110 
1111   // Compute the max stack slot killed by any call.  These will not be 
1112   // available for debug info, and will be used to adjust FIRST_STACK_mask 
1113   // after all call sites have been visited.
1114   if( _out_arg_limit < out_arg_limit_per_call) 
1115     _out_arg_limit = out_arg_limit_per_call;
1116 
1117   if (mcall) {
1118     // Kill the outgoing argument area, including any non-argument holes and
1119     // any legacy C-killed slots.  Use Fat-Projections to do the killing.
1120     // Since the max-per-method covers the max-per-call-site and debug info
1121     // is excluded on the max-per-method basis, debug info cannot land in
1122     // this killed area.
1123     uint r_cnt = mcall->tf()->range()->cnt();
1124     MachProjNode *proj = new (C, 1) MachProjNode( mcall, r_cnt+10000, RegMask::Empty, MachProjNode::fat_proj );
1125     if (!RegMask::can_represent(OptoReg::Name(out_arg_limit_per_call-1))) {
1126       C->record_method_not_compilable_all_tiers("unsupported outgoing calling sequence");
1127     } else {
1128       for (int i = begin_out_arg_area; i < out_arg_limit_per_call; i++)
1129         proj->_rout.Insert(OptoReg::Name(i));
1130     }
1131     if( proj->_rout.is_NotEmpty() )
1132       _proj_list.push(proj);
1133   }
1134   // Transfer the safepoint information from the call to the mcall
1135   // Move the JVMState list
1136   msfpt->set_jvms(sfpt->jvms());
1137   for (JVMState* jvms = msfpt->jvms(); jvms; jvms = jvms->caller()) {
1138     jvms->set_map(sfpt);
1139   }
1140 
1141   // Debug inputs begin just after the last incoming parameter
1142   assert( (mcall == NULL) || (mcall->jvms() == NULL) ||
1143           (mcall->jvms()->debug_start() + mcall->_jvmadj == mcall->tf()->domain()->cnt()), "" );
1144 
1145   // Move the OopMap
1146   msfpt->_oop_map = sfpt->_oop_map;
1147 
1148   // Registers killed by the call are set in the local scheduling pass
1149   // of Global Code Motion.
1150   return msfpt;
1151 }
1152 
1153 //---------------------------match_tree----------------------------------------
1154 // Match a Ideal Node DAG - turn it into a tree; Label & Reduce.  Used as part
1155 // of the whole-sale conversion from Ideal to Mach Nodes.  Also used for
1156 // making GotoNodes while building the CFG and in init_spill_mask() to identify
1157 // a Load's result RegMask for memoization in idealreg2regmask[]
1158 MachNode *Matcher::match_tree( const Node *n ) {
1159   assert( n->Opcode() != Op_Phi, "cannot match" );
1160   assert( !n->is_block_start(), "cannot match" );
1161   // Set the mark for all locally allocated State objects.
1162   // When this call returns, the _states_arena arena will be reset
1163   // freeing all State objects.
1164   ResourceMark rm( &_states_arena );
1165 
1166   LabelRootDepth = 0;
1167 
1168   // StoreNodes require their Memory input to match any LoadNodes
1169   Node *mem = n->is_Store() ? n->in(MemNode::Memory) : (Node*)1 ;
1170 #ifdef ASSERT
1171   Node* save_mem_node = _mem_node;
1172   _mem_node = n->is_Store() ? (Node*)n : NULL;
1173 #endif
1174   // State object for root node of match tree
1175   // Allocate it on _states_arena - stack allocation can cause stack overflow.
1176   State *s = new (&_states_arena) State;
1177   s->_kids[0] = NULL;
1178   s->_kids[1] = NULL;
1179   s->_leaf = (Node*)n;
1180   // Label the input tree, allocating labels from top-level arena
1181   Label_Root( n, s, n->in(0), mem );
1182   if (C->failing())  return NULL;
1183   
1184   // The minimum cost match for the whole tree is found at the root State
1185   uint mincost = max_juint;
1186   uint cost = max_juint;
1187   uint i;
1188   for( i = 0; i < NUM_OPERANDS; i++ ) {
1189     if( s->valid(i) &&                // valid entry and
1190         s->_cost[i] < cost &&         // low cost and 
1191         s->_rule[i] >= NUM_OPERANDS ) // not an operand
1192       cost = s->_cost[mincost=i];
1193   }
1194   if (mincost == max_juint) {
1195 #ifndef PRODUCT
1196     tty->print("No matching rule for:");
1197     s->dump();
1198 #endif
1199     Matcher::soft_match_failure();
1200     return NULL;
1201   }
1202   // Reduce input tree based upon the state labels to machine Nodes
1203   MachNode *m = ReduceInst( s, s->_rule[mincost], mem );
1204 #ifdef ASSERT
1205   _old2new_map.map(n->_idx, m);
1206   _new2old_map.map(m->_idx, (Node*)n);
1207 #endif
1208   
1209   // Add any Matcher-ignored edges
1210   uint cnt = n->req();
1211   uint start = 1;
1212   if( mem != (Node*)1 ) start = MemNode::Memory+1;
1213   if( n->is_AddP() ) {
1214     assert( mem == (Node*)1, "" );
1215     start = AddPNode::Base+1;
1216   }
1217   for( i = start; i < cnt; i++ ) {
1218     if( !n->match_edge(i) ) {
1219       if( i < m->req() )
1220         m->ins_req( i, n->in(i) );
1221       else
1222         m->add_req( n->in(i) ); 
1223     }
1224   }
1225 
1226   debug_only( _mem_node = save_mem_node; )
1227   return m;
1228 }
1229 
1230 
1231 //------------------------------match_into_reg---------------------------------
1232 // Choose to either match this Node in a register or part of the current
1233 // match tree.  Return true for requiring a register and false for matching
1234 // as part of the current match tree.
1235 static bool match_into_reg( const Node *n, Node *m, Node *control, int i, bool shared ) {
1236 
1237   const Type *t = m->bottom_type();
1238 
1239   if( t->singleton() ) {
1240     // Never force constants into registers.  Allow them to match as
1241     // constants or registers.  Copies of the same value will share
1242     // the same register.  See find_shared_node.
1243     return false;
1244   } else {                      // Not a constant
1245     // Stop recursion if they have different Controls.
1246     // Slot 0 of constants is not really a Control.
1247     if( control && m->in(0) && control != m->in(0) ) {
1248 
1249       // Actually, we can live with the most conservative control we
1250       // find, if it post-dominates the others.  This allows us to 
1251       // pick up load/op/store trees where the load can float a little
1252       // above the store.
1253       Node *x = control;
1254       const uint max_scan = 6;   // Arbitrary scan cutoff
1255       uint j;
1256       for( j=0; j<max_scan; j++ ) {
1257         if( x->is_Region() )    // Bail out at merge points
1258           return true;
1259         x = x->in(0);
1260         if( x == m->in(0) )     // Does 'control' post-dominate
1261           break;                // m->in(0)?  If so, we can use it
1262       }
1263       if( j == max_scan )       // No post-domination before scan end?
1264         return true;            // Then break the match tree up
1265     }
1266     if (m->is_DecodeN() && Matcher::clone_shift_expressions) {
1267       // These are commonly used in address expressions and can
1268       // efficiently fold into them on X64 in some cases.
1269       return false;
1270     }
1271   }
1272 
1273   // Not forceably cloning.  If shared, put it into a register.
1274   return shared;
1275 }
1276 
1277 
1278 //------------------------------Instruction Selection--------------------------
1279 // Label method walks a "tree" of nodes, using the ADLC generated DFA to match
1280 // ideal nodes to machine instructions.  Trees are delimited by shared Nodes,
1281 // things the Matcher does not match (e.g., Memory), and things with different
1282 // Controls (hence forced into different blocks).  We pass in the Control 
1283 // selected for this entire State tree.
1284 
1285 // The Matcher works on Trees, but an Intel add-to-memory requires a DAG: the
1286 // Store and the Load must have identical Memories (as well as identical 
1287 // pointers).  Since the Matcher does not have anything for Memory (and 
1288 // does not handle DAGs), I have to match the Memory input myself.  If the
1289 // Tree root is a Store, I require all Loads to have the identical memory.
1290 Node *Matcher::Label_Root( const Node *n, State *svec, Node *control, const Node *mem){
1291   // Since Label_Root is a recursive function, its possible that we might run 
1292   // out of stack space.  See bugs 6272980 & 6227033 for more info.
1293   LabelRootDepth++;
1294   if (LabelRootDepth > MaxLabelRootDepth) {
1295     C->record_method_not_compilable_all_tiers("Out of stack space, increase MaxLabelRootDepth");
1296     return NULL;
1297   }
1298   uint care = 0;                // Edges matcher cares about
1299   uint cnt = n->req();
1300   uint i = 0;
1301 
1302   // Examine children for memory state
1303   // Can only subsume a child into your match-tree if that child's memory state
1304   // is not modified along the path to another input.  
1305   // It is unsafe even if the other inputs are separate roots.
1306   Node *input_mem = NULL;
1307   for( i = 1; i < cnt; i++ ) { 
1308     if( !n->match_edge(i) ) continue;
1309     Node *m = n->in(i);         // Get ith input
1310     assert( m, "expect non-null children" );
1311     if( m->is_Load() ) {
1312       if( input_mem == NULL ) {
1313         input_mem = m->in(MemNode::Memory);
1314       } else if( input_mem != m->in(MemNode::Memory) ) { 
1315         input_mem = NodeSentinel;
1316       }
1317     }
1318   }
1319 
1320   for( i = 1; i < cnt; i++ ){// For my children
1321     if( !n->match_edge(i) ) continue;
1322     Node *m = n->in(i);         // Get ith input
1323     // Allocate states out of a private arena
1324     State *s = new (&_states_arena) State;
1325     svec->_kids[care++] = s;
1326     assert( care <= 2, "binary only for now" );
1327 
1328     // Recursively label the State tree.
1329     s->_kids[0] = NULL;
1330     s->_kids[1] = NULL;
1331     s->_leaf = m;
1332 
1333     // Check for leaves of the State Tree; things that cannot be a part of 
1334     // the current tree.  If it finds any, that value is matched as a 
1335     // register operand.  If not, then the normal matching is used.
1336     if( match_into_reg(n, m, control, i, is_shared(m)) ||
1337         // 
1338         // Stop recursion if this is LoadNode and the root of this tree is a
1339         // StoreNode and the load & store have different memories.
1340         ((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ||
1341         // Can NOT include the match of a subtree when its memory state
1342         // is used by any of the other subtrees
1343         (input_mem == NodeSentinel) ) {
1344 #ifndef PRODUCT
1345       // Print when we exclude matching due to different memory states at input-loads
1346       if( PrintOpto && (Verbose && WizardMode) && (input_mem == NodeSentinel) 
1347         && !((mem!=(Node*)1) && m->is_Load() && m->in(MemNode::Memory) != mem) ) { 
1348         tty->print_cr("invalid input_mem"); 
1349       }
1350 #endif
1351       // Switch to a register-only opcode; this value must be in a register
1352       // and cannot be subsumed as part of a larger instruction.
1353       s->DFA( m->ideal_reg(), m );
1354     
1355     } else {
1356       // If match tree has no control and we do, adopt it for entire tree
1357       if( control == NULL && m->in(0) != NULL && m->req() > 1 )
1358         control = m->in(0);         // Pick up control
1359       // Else match as a normal part of the match tree.
1360       control = Label_Root(m,s,control,mem);
1361       if (C->failing()) return NULL;
1362     }
1363   }
1364 
1365   
1366   // Call DFA to match this node, and return
1367   svec->DFA( n->Opcode(), n );
1368 
1369 #ifdef ASSERT
1370   uint x;
1371   for( x = 0; x < _LAST_MACH_OPER; x++ )
1372     if( svec->valid(x) )
1373       break;
1374 
1375   if (x >= _LAST_MACH_OPER) {
1376     n->dump();
1377     svec->dump();
1378     assert( false, "bad AD file" );
1379   }
1380 #endif
1381   return control;
1382 }
1383 
1384 
1385 // Con nodes reduced using the same rule can share their MachNode
1386 // which reduces the number of copies of a constant in the final
1387 // program.  The register allocator is free to split uses later to
1388 // split live ranges.
1389 MachNode* Matcher::find_shared_node(Node* leaf, uint rule) {
1390   if (!leaf->is_Con() && !leaf->is_DecodeN()) return NULL;
1391 
1392   // See if this Con has already been reduced using this rule.
1393   if (_shared_nodes.Size() <= leaf->_idx) return NULL;
1394   MachNode* last = (MachNode*)_shared_nodes.at(leaf->_idx);
1395   if (last != NULL && rule == last->rule()) {
1396     // Don't expect control change for DecodeN
1397     if (leaf->is_DecodeN())
1398       return last;
1399     // Get the new space root.
1400     Node* xroot = new_node(C->root());
1401     if (xroot == NULL) {
1402       // This shouldn't happen give the order of matching.
1403       return NULL;
1404     }
1405 
1406     // Shared constants need to have their control be root so they
1407     // can be scheduled properly.
1408     Node* control = last->in(0);
1409     if (control != xroot) {
1410       if (control == NULL || control == C->root()) {
1411         last->set_req(0, xroot);
1412       } else {
1413         assert(false, "unexpected control");
1414         return NULL;
1415       }
1416     }
1417     return last;
1418   }
1419   return NULL;
1420 }
1421 
1422 
1423 //------------------------------ReduceInst-------------------------------------
1424 // Reduce a State tree (with given Control) into a tree of MachNodes.
1425 // This routine (and it's cohort ReduceOper) convert Ideal Nodes into 
1426 // complicated machine Nodes.  Each MachNode covers some tree of Ideal Nodes.
1427 // Each MachNode has a number of complicated MachOper operands; each 
1428 // MachOper also covers a further tree of Ideal Nodes.  
1429 
1430 // The root of the Ideal match tree is always an instruction, so we enter
1431 // the recursion here.  After building the MachNode, we need to recurse
1432 // the tree checking for these cases:
1433 // (1) Child is an instruction - 
1434 //     Build the instruction (recursively), add it as an edge.
1435 //     Build a simple operand (register) to hold the result of the instruction.
1436 // (2) Child is an interior part of an instruction -
1437 //     Skip over it (do nothing)
1438 // (3) Child is the start of a operand -
1439 //     Build the operand, place it inside the instruction
1440 //     Call ReduceOper.
1441 MachNode *Matcher::ReduceInst( State *s, int rule, Node *&mem ) {
1442   assert( rule >= NUM_OPERANDS, "called with operand rule" );
1443 
1444   MachNode* shared_node = find_shared_node(s->_leaf, rule);
1445   if (shared_node != NULL) {
1446     return shared_node;
1447   }
1448 
1449   // Build the object to represent this state & prepare for recursive calls
1450   MachNode *mach = s->MachNodeGenerator( rule, C );
1451   mach->_opnds[0] = s->MachOperGenerator( _reduceOp[rule], C );
1452   assert( mach->_opnds[0] != NULL, "Missing result operand" );
1453   Node *leaf = s->_leaf;
1454   // Check for instruction or instruction chain rule
1455   if( rule >= _END_INST_CHAIN_RULE || rule < _BEGIN_INST_CHAIN_RULE ) {
1456     assert(C->node_arena()->contains(s->_leaf) || !has_new_node(s->_leaf),
1457            "duplicating node that's already been matched");
1458     // Instruction
1459     mach->add_req( leaf->in(0) ); // Set initial control
1460     // Reduce interior of complex instruction
1461     ReduceInst_Interior( s, rule, mem, mach, 1 );
1462   } else {
1463     // Instruction chain rules are data-dependent on their inputs
1464     mach->add_req(0);             // Set initial control to none
1465     ReduceInst_Chain_Rule( s, rule, mem, mach );
1466   }
1467 
1468   // If a Memory was used, insert a Memory edge
1469   if( mem != (Node*)1 ) {
1470     mach->ins_req(MemNode::Memory,mem);
1471 #ifdef ASSERT
1472     // Verify adr type after matching memory operation
1473     const MachOper* oper = mach->memory_operand();
1474     if (oper != NULL && oper != (MachOper*)-1 &&
1475         mach->adr_type() != TypeRawPtr::BOTTOM) { // non-direct addressing mode
1476       // It has a unique memory operand.  Find corresponding ideal mem node.
1477       Node* m = NULL;
1478       if (leaf->is_Mem()) {
1479         m = leaf;
1480       } else {
1481         m = _mem_node;
1482         assert(m != NULL && m->is_Mem(), "expecting memory node");
1483       }
1484       const Type* mach_at = mach->adr_type();
1485       // DecodeN node consumed by an address may have different type
1486       // then its input. Don't compare types for such case.
1487       if (m->adr_type() != mach_at && m->in(MemNode::Address)->is_AddP() &&
1488           m->in(MemNode::Address)->in(AddPNode::Address)->is_DecodeN()) {
1489         mach_at = m->adr_type();
1490       }
1491       if (m->adr_type() != mach_at) {
1492         m->dump();
1493         tty->print_cr("mach:");
1494         mach->dump(1);
1495       }
1496       assert(m->adr_type() == mach_at, "matcher should not change adr type");
1497     }
1498 #endif
1499   }
1500 
1501   // If the _leaf is an AddP, insert the base edge
1502   if( leaf->is_AddP() )
1503     mach->ins_req(AddPNode::Base,leaf->in(AddPNode::Base));
1504 
1505   uint num_proj = _proj_list.size();
1506 
1507   // Perform any 1-to-many expansions required
1508   MachNode *ex = mach->Expand(s,_proj_list);
1509   if( ex != mach ) {
1510     assert(ex->ideal_reg() == mach->ideal_reg(), "ideal types should match");
1511     if( ex->in(1)->is_Con() )
1512       ex->in(1)->set_req(0, C->root());
1513     // Remove old node from the graph
1514     for( uint i=0; i<mach->req(); i++ ) {
1515       mach->set_req(i,NULL);
1516     }
1517 #ifdef ASSERT
1518     _new2old_map.map(ex->_idx, s->_leaf);
1519 #endif
1520   }
1521 
1522   // PhaseChaitin::fixup_spills will sometimes generate spill code
1523   // via the matcher.  By the time, nodes have been wired into the CFG,
1524   // and any further nodes generated by expand rules will be left hanging
1525   // in space, and will not get emitted as output code.  Catch this.
1526   // Also, catch any new register allocation constraints ("projections")
1527   // generated belatedly during spill code generation.
1528   if (_allocation_started) {
1529     guarantee(ex == mach, "no expand rules during spill generation");
1530     guarantee(_proj_list.size() == num_proj, "no allocation during spill generation");
1531   }
1532 
1533   if (leaf->is_Con() || leaf->is_DecodeN()) {
1534     // Record the con for sharing
1535     _shared_nodes.map(leaf->_idx, ex);
1536   }
1537 
1538   return ex;
1539 }
1540 
1541 void Matcher::ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach ) {
1542   // 'op' is what I am expecting to receive
1543   int op = _leftOp[rule];
1544   // Operand type to catch childs result
1545   // This is what my child will give me.
1546   int opnd_class_instance = s->_rule[op];
1547   // Choose between operand class or not.
1548   // This is what I will recieve.
1549   int catch_op = (FIRST_OPERAND_CLASS <= op && op < NUM_OPERANDS) ? opnd_class_instance : op;
1550   // New rule for child.  Chase operand classes to get the actual rule.
1551   int newrule = s->_rule[catch_op];
1552 
1553   if( newrule < NUM_OPERANDS ) {
1554     // Chain from operand or operand class, may be output of shared node
1555     assert( 0 <= opnd_class_instance && opnd_class_instance < NUM_OPERANDS,
1556             "Bad AD file: Instruction chain rule must chain from operand");
1557     // Insert operand into array of operands for this instruction
1558     mach->_opnds[1] = s->MachOperGenerator( opnd_class_instance, C );
1559 
1560     ReduceOper( s, newrule, mem, mach );
1561   } else {
1562     // Chain from the result of an instruction
1563     assert( newrule >= _LAST_MACH_OPER, "Do NOT chain from internal operand");
1564     mach->_opnds[1] = s->MachOperGenerator( _reduceOp[catch_op], C );
1565     Node *mem1 = (Node*)1;
1566     debug_only(Node *save_mem_node = _mem_node;)
1567     mach->add_req( ReduceInst(s, newrule, mem1) );
1568     debug_only(_mem_node = save_mem_node;)
1569   }
1570   return;
1571 }
1572 
1573 
1574 uint Matcher::ReduceInst_Interior( State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds ) {
1575   if( s->_leaf->is_Load() ) {
1576     Node *mem2 = s->_leaf->in(MemNode::Memory);
1577     assert( mem == (Node*)1 || mem == mem2, "multiple Memories being matched at once?" );
1578     debug_only( if( mem == (Node*)1 ) _mem_node = s->_leaf;)
1579     mem = mem2;
1580   }
1581   if( s->_leaf->in(0) != NULL && s->_leaf->req() > 1) {
1582     if( mach->in(0) == NULL ) 
1583       mach->set_req(0, s->_leaf->in(0));
1584   }
1585 
1586   // Now recursively walk the state tree & add operand list.
1587   for( uint i=0; i<2; i++ ) {   // binary tree
1588     State *newstate = s->_kids[i];
1589     if( newstate == NULL ) break;      // Might only have 1 child
1590     // 'op' is what I am expecting to receive
1591     int op;
1592     if( i == 0 ) {
1593       op = _leftOp[rule];
1594     } else {
1595       op = _rightOp[rule];
1596     }
1597     // Operand type to catch childs result
1598     // This is what my child will give me.
1599     int opnd_class_instance = newstate->_rule[op];
1600     // Choose between operand class or not.
1601     // This is what I will receive.
1602     int catch_op = (op >= FIRST_OPERAND_CLASS && op < NUM_OPERANDS) ? opnd_class_instance : op;
1603     // New rule for child.  Chase operand classes to get the actual rule.
1604     int newrule = newstate->_rule[catch_op];
1605 
1606     if( newrule < NUM_OPERANDS ) { // Operand/operandClass or internalOp/instruction?
1607       // Operand/operandClass
1608       // Insert operand into array of operands for this instruction
1609       mach->_opnds[num_opnds++] = newstate->MachOperGenerator( opnd_class_instance, C );
1610       ReduceOper( newstate, newrule, mem, mach );
1611 
1612     } else {                    // Child is internal operand or new instruction
1613       if( newrule < _LAST_MACH_OPER ) { // internal operand or instruction?
1614         // internal operand --> call ReduceInst_Interior
1615         // Interior of complex instruction.  Do nothing but recurse.
1616         num_opnds = ReduceInst_Interior( newstate, newrule, mem, mach, num_opnds );
1617       } else {
1618         // instruction --> call build operand(  ) to catch result
1619         //             --> ReduceInst( newrule )
1620         mach->_opnds[num_opnds++] = s->MachOperGenerator( _reduceOp[catch_op], C );
1621         Node *mem1 = (Node*)1;
1622         debug_only(Node *save_mem_node = _mem_node;)
1623         mach->add_req( ReduceInst( newstate, newrule, mem1 ) );
1624         debug_only(_mem_node = save_mem_node;)
1625       }
1626     }
1627     assert( mach->_opnds[num_opnds-1], "" );
1628   }
1629   return num_opnds;
1630 }
1631 
1632 // This routine walks the interior of possible complex operands.
1633 // At each point we check our children in the match tree:
1634 // (1) No children -
1635 //     We are a leaf; add _leaf field as an input to the MachNode
1636 // (2) Child is an internal operand -
1637 //     Skip over it ( do nothing )
1638 // (3) Child is an instruction -
1639 //     Call ReduceInst recursively and
1640 //     and instruction as an input to the MachNode
1641 void Matcher::ReduceOper( State *s, int rule, Node *&mem, MachNode *mach ) {
1642   assert( rule < _LAST_MACH_OPER, "called with operand rule" );
1643   State *kid = s->_kids[0]; 
1644   assert( kid == NULL || s->_leaf->in(0) == NULL, "internal operands have no control" );
1645 
1646   // Leaf?  And not subsumed?
1647   if( kid == NULL && !_swallowed[rule] ) {
1648     mach->add_req( s->_leaf );  // Add leaf pointer
1649     return;                     // Bail out
1650   }
1651 
1652   if( s->_leaf->is_Load() ) {
1653     assert( mem == (Node*)1, "multiple Memories being matched at once?" );
1654     mem = s->_leaf->in(MemNode::Memory);
1655     debug_only(_mem_node = s->_leaf;)
1656   }
1657   if( s->_leaf->in(0) && s->_leaf->req() > 1) {
1658     if( !mach->in(0) ) 
1659       mach->set_req(0,s->_leaf->in(0));
1660     else {
1661       assert( s->_leaf->in(0) == mach->in(0), "same instruction, differing controls?" );
1662     }
1663   }
1664 
1665   for( uint i=0; kid != NULL && i<2; kid = s->_kids[1], i++ ) {   // binary tree
1666     int newrule;
1667     if( i == 0 )
1668       newrule = kid->_rule[_leftOp[rule]];
1669     else
1670       newrule = kid->_rule[_rightOp[rule]];
1671 
1672     if( newrule < _LAST_MACH_OPER ) { // Operand or instruction?
1673       // Internal operand; recurse but do nothing else
1674       ReduceOper( kid, newrule, mem, mach );
1675 
1676     } else {                    // Child is a new instruction
1677       // Reduce the instruction, and add a direct pointer from this
1678       // machine instruction to the newly reduced one.
1679       Node *mem1 = (Node*)1;
1680       debug_only(Node *save_mem_node = _mem_node;)
1681       mach->add_req( ReduceInst( kid, newrule, mem1 ) );
1682       debug_only(_mem_node = save_mem_node;)
1683     }
1684   }
1685 }
1686 
1687 
1688 // -------------------------------------------------------------------------
1689 // Java-Java calling convention
1690 // (what you use when Java calls Java)
1691 
1692 //------------------------------find_receiver----------------------------------
1693 // For a given signature, return the OptoReg for parameter 0.
1694 OptoReg::Name Matcher::find_receiver( bool is_outgoing ) {
1695   VMRegPair regs;
1696   BasicType sig_bt = T_OBJECT;
1697   calling_convention(&sig_bt, &regs, 1, is_outgoing);
1698   // Return argument 0 register.  In the LP64 build pointers
1699   // take 2 registers, but the VM wants only the 'main' name.
1700   return OptoReg::as_OptoReg(regs.first());
1701 }
1702 
1703 // A method-klass-holder may be passed in the inline_cache_reg
1704 // and then expanded into the inline_cache_reg and a method_oop register
1705 //   defined in ad_<arch>.cpp
1706 
1707 
1708 //------------------------------find_shared------------------------------------
1709 // Set bits if Node is shared or otherwise a root
1710 void Matcher::find_shared( Node *n ) {
1711   // Allocate stack of size C->unique() * 2 to avoid frequent realloc
1712   MStack mstack(C->unique() * 2); 
1713   mstack.push(n, Visit);     // Don't need to pre-visit root node
1714   while (mstack.is_nonempty()) {
1715     n = mstack.node();       // Leave node on stack
1716     Node_State nstate = mstack.state();
1717     if (nstate == Pre_Visit) {
1718       if (is_visited(n)) {   // Visited already?
1719         // Node is shared and has no reason to clone.  Flag it as shared.  
1720         // This causes it to match into a register for the sharing.
1721         set_shared(n);       // Flag as shared and
1722         mstack.pop();        // remove node from stack
1723         continue;
1724       }
1725       nstate = Visit; // Not already visited; so visit now
1726     }
1727     if (nstate == Visit) {
1728       mstack.set_state(Post_Visit);
1729       set_visited(n);   // Flag as visited now
1730       bool mem_op = false;
1731 
1732       switch( n->Opcode() ) {  // Handle some opcodes special
1733       case Op_Phi:             // Treat Phis as shared roots
1734       case Op_Parm:
1735       case Op_Proj:            // All handled specially during matching
1736       case Op_SafePointScalarObject:
1737         set_shared(n);
1738         set_dontcare(n);
1739         break;
1740       case Op_If:
1741       case Op_CountedLoopEnd:
1742         mstack.set_state(Alt_Post_Visit); // Alternative way
1743         // Convert (If (Bool (CmpX A B))) into (If (Bool) (CmpX A B)).  Helps
1744         // with matching cmp/branch in 1 instruction.  The Matcher needs the
1745         // Bool and CmpX side-by-side, because it can only get at constants
1746         // that are at the leaves of Match trees, and the Bool's condition acts
1747         // as a constant here.  
1748         mstack.push(n->in(1), Visit);         // Clone the Bool
1749         mstack.push(n->in(0), Pre_Visit);     // Visit control input
1750         continue; // while (mstack.is_nonempty())
1751       case Op_ConvI2D:         // These forms efficiently match with a prior
1752       case Op_ConvI2F:         //   Load but not a following Store
1753         if( n->in(1)->is_Load() &&        // Prior load
1754             n->outcnt() == 1 &&           // Not already shared
1755             n->unique_out()->is_Store() ) // Following store
1756           set_shared(n);       // Force it to be a root
1757         break;
1758       case Op_ReverseBytesI:
1759       case Op_ReverseBytesL:
1760         if( n->in(1)->is_Load() &&        // Prior load
1761             n->outcnt() == 1 )            // Not already shared
1762           set_shared(n);                  // Force it to be a root
1763         break;
1764       case Op_BoxLock:         // Cant match until we get stack-regs in ADLC
1765       case Op_IfFalse:
1766       case Op_IfTrue:
1767       case Op_MachProj:
1768       case Op_MergeMem:
1769       case Op_Catch:
1770       case Op_CatchProj:
1771       case Op_CProj:
1772       case Op_JumpProj:
1773       case Op_JProj:
1774       case Op_NeverBranch:
1775         set_dontcare(n);
1776         break;
1777       case Op_Jump:
1778         mstack.push(n->in(1), Visit);         // Switch Value
1779         mstack.push(n->in(0), Pre_Visit);     // Visit Control input
1780         continue;                             // while (mstack.is_nonempty())                   
1781       case Op_StrComp:
1782       case Op_AryEq:
1783         set_shared(n); // Force result into register (it will be anyways)
1784         break;
1785       case Op_ConP: {  // Convert pointers above the centerline to NUL
1786         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1787         const TypePtr* tp = tn->type()->is_ptr();
1788         if (tp->_ptr == TypePtr::AnyNull) {
1789           tn->set_type(TypePtr::NULL_PTR);
1790         }
1791         break;
1792       }
1793       case Op_ConN: {  // Convert narrow pointers above the centerline to NUL
1794         TypeNode *tn = n->as_Type(); // Constants derive from type nodes
1795         const TypePtr* tp = tn->type()->make_ptr();
1796         if (tp && tp->_ptr == TypePtr::AnyNull) {
1797           tn->set_type(TypeNarrowOop::NULL_PTR);
1798         }
1799         break;
1800       }
1801       case Op_Binary:         // These are introduced in the Post_Visit state.
1802         ShouldNotReachHere();
1803         break;
1804       case Op_StoreB:         // Do match these, despite no ideal reg
1805       case Op_StoreC:
1806       case Op_StoreCM:
1807       case Op_StoreD:
1808       case Op_StoreF:
1809       case Op_StoreI:
1810       case Op_StoreL:
1811       case Op_StoreP:
1812       case Op_StoreN:
1813       case Op_Store16B:
1814       case Op_Store8B:
1815       case Op_Store4B:
1816       case Op_Store8C:
1817       case Op_Store4C:
1818       case Op_Store2C:
1819       case Op_Store4I:
1820       case Op_Store2I:
1821       case Op_Store2L:
1822       case Op_Store4F:
1823       case Op_Store2F:
1824       case Op_Store2D:
1825       case Op_ClearArray:
1826       case Op_SafePoint:
1827         mem_op = true;
1828         break;
1829       case Op_LoadB:
1830       case Op_LoadC:
1831       case Op_LoadD:
1832       case Op_LoadF:
1833       case Op_LoadI:
1834       case Op_LoadKlass:
1835       case Op_LoadNKlass:
1836       case Op_LoadL:
1837       case Op_LoadS:
1838       case Op_LoadP:
1839       case Op_LoadN:
1840       case Op_LoadRange:
1841       case Op_LoadD_unaligned:
1842       case Op_LoadL_unaligned:
1843       case Op_Load16B:
1844       case Op_Load8B:
1845       case Op_Load4B:
1846       case Op_Load4C:
1847       case Op_Load2C:
1848       case Op_Load8C:
1849       case Op_Load8S:
1850       case Op_Load4S:
1851       case Op_Load2S:
1852       case Op_Load4I:
1853       case Op_Load2I:
1854       case Op_Load2L:
1855       case Op_Load4F:
1856       case Op_Load2F:
1857       case Op_Load2D:
1858         mem_op = true;
1859         // Must be root of match tree due to prior load conflict
1860         if( C->subsume_loads() == false ) {
1861           set_shared(n);
1862         }
1863         // Fall into default case
1864       default:
1865         if( !n->ideal_reg() )
1866           set_dontcare(n);  // Unmatchable Nodes
1867       } // end_switch
1868 
1869       for(int i = n->req() - 1; i >= 0; --i) { // For my children
1870         Node *m = n->in(i); // Get ith input
1871         if (m == NULL) continue;  // Ignore NULLs
1872         uint mop = m->Opcode();
1873 
1874         // Must clone all producers of flags, or we will not match correctly.
1875         // Suppose a compare setting int-flags is shared (e.g., a switch-tree)
1876         // then it will match into an ideal Op_RegFlags.  Alas, the fp-flags
1877         // are also there, so we may match a float-branch to int-flags and
1878         // expect the allocator to haul the flags from the int-side to the
1879         // fp-side.  No can do.
1880         if( _must_clone[mop] ) {
1881           mstack.push(m, Visit);
1882           continue; // for(int i = ...)
1883         } 
1884 
1885         // Clone addressing expressions as they are "free" in most instructions
1886         if( mem_op && i == MemNode::Address && mop == Op_AddP ) {
1887           if (m->in(AddPNode::Base)->Opcode() == Op_DecodeN) {
1888             // Bases used in addresses must be shared but since
1889             // they are shared through a DecodeN they may appear
1890             // to have a single use so force sharing here.
1891             set_shared(m->in(AddPNode::Base)->in(1));
1892           }
1893           Node *off = m->in(AddPNode::Offset);
1894           if( off->is_Con() ) {
1895             set_visited(m);  // Flag as visited now
1896             Node *adr = m->in(AddPNode::Address);
1897 
1898             // Intel, ARM and friends can handle 2 adds in addressing mode
1899             if( clone_shift_expressions && adr->is_AddP() &&
1900                 // AtomicAdd is not an addressing expression.
1901                 // Cheap to find it by looking for screwy base.
1902                 !adr->in(AddPNode::Base)->is_top() ) {
1903               set_visited(adr);  // Flag as visited now
1904               Node *shift = adr->in(AddPNode::Offset);
1905               // Check for shift by small constant as well
1906               if( shift->Opcode() == Op_LShiftX && shift->in(2)->is_Con() && 
1907                   shift->in(2)->get_int() <= 3 ) { 
1908                 set_visited(shift);  // Flag as visited now
1909                 mstack.push(shift->in(2), Visit);
1910 #ifdef _LP64
1911                 // Allow Matcher to match the rule which bypass
1912                 // ConvI2L operation for an array index on LP64 
1913                 // if the index value is positive.
1914                 if( shift->in(1)->Opcode() == Op_ConvI2L &&
1915                     shift->in(1)->as_Type()->type()->is_long()->_lo >= 0 ) {
1916                   set_visited(shift->in(1));  // Flag as visited now
1917                   mstack.push(shift->in(1)->in(1), Pre_Visit);
1918                 } else
1919 #endif
1920                 mstack.push(shift->in(1), Pre_Visit);
1921               } else {
1922                 mstack.push(shift, Pre_Visit);
1923               }
1924               mstack.push(adr->in(AddPNode::Address), Pre_Visit);
1925               mstack.push(adr->in(AddPNode::Base), Pre_Visit);
1926             } else {  // Sparc, Alpha, PPC and friends
1927               mstack.push(adr, Pre_Visit);
1928             }
1929 
1930             // Clone X+offset as it also folds into most addressing expressions
1931             mstack.push(off, Visit);
1932             mstack.push(m->in(AddPNode::Base), Pre_Visit);
1933             continue; // for(int i = ...)
1934           } // if( off->is_Con() )
1935         }   // if( mem_op &&
1936         mstack.push(m, Pre_Visit);
1937       }     // for(int i = ...)
1938     }
1939     else if (nstate == Alt_Post_Visit) {
1940       mstack.pop(); // Remove node from stack
1941       // We cannot remove the Cmp input from the Bool here, as the Bool may be
1942       // shared and all users of the Bool need to move the Cmp in parallel.
1943       // This leaves both the Bool and the If pointing at the Cmp.  To 
1944       // prevent the Matcher from trying to Match the Cmp along both paths
1945       // BoolNode::match_edge always returns a zero.
1946 
1947       // We reorder the Op_If in a pre-order manner, so we can visit without
1948       // accidently sharing the Cmp (the Bool and the If make 2 users).
1949       n->add_req( n->in(1)->in(1) ); // Add the Cmp next to the Bool
1950     }
1951     else if (nstate == Post_Visit) {
1952       mstack.pop(); // Remove node from stack
1953 
1954       // Now hack a few special opcodes
1955       switch( n->Opcode() ) {       // Handle some opcodes special
1956       case Op_StorePConditional:
1957       case Op_StoreIConditional:
1958       case Op_StoreLConditional:
1959       case Op_CompareAndSwapI:
1960       case Op_CompareAndSwapL:
1961       case Op_CompareAndSwapP:
1962       case Op_CompareAndSwapN: {   // Convert trinary to binary-tree
1963         Node *newval = n->in(MemNode::ValueIn );
1964         Node *oldval  = n->in(LoadStoreNode::ExpectedIn);
1965         Node *pair = new (C, 3) BinaryNode( oldval, newval );
1966         n->set_req(MemNode::ValueIn,pair);
1967         n->del_req(LoadStoreNode::ExpectedIn);
1968         break;
1969       }
1970       case Op_CMoveD:              // Convert trinary to binary-tree
1971       case Op_CMoveF:
1972       case Op_CMoveI:
1973       case Op_CMoveL:
1974       case Op_CMoveN:
1975       case Op_CMoveP: {
1976         // Restructure into a binary tree for Matching.  It's possible that
1977         // we could move this code up next to the graph reshaping for IfNodes
1978         // or vice-versa, but I do not want to debug this for Ladybird.
1979         // 10/2/2000 CNC.
1980         Node *pair1 = new (C, 3) BinaryNode(n->in(1),n->in(1)->in(1));
1981         n->set_req(1,pair1);
1982         Node *pair2 = new (C, 3) BinaryNode(n->in(2),n->in(3));
1983         n->set_req(2,pair2);
1984         n->del_req(3);
1985         break;
1986       }
1987       default:
1988         break;
1989       }
1990     }
1991     else {
1992       ShouldNotReachHere();
1993     }
1994   } // end of while (mstack.is_nonempty())
1995 }
1996 
1997 #ifdef ASSERT
1998 // machine-independent root to machine-dependent root
1999 void Matcher::dump_old2new_map() {
2000   _old2new_map.dump();
2001 }
2002 #endif
2003 
2004 //---------------------------collect_null_checks-------------------------------
2005 // Find null checks in the ideal graph; write a machine-specific node for
2006 // it.  Used by later implicit-null-check handling.  Actually collects
2007 // either an IfTrue or IfFalse for the common NOT-null path, AND the ideal
2008 // value being tested.
2009 void Matcher::collect_null_checks( Node *proj, Node *orig_proj ) {
2010   Node *iff = proj->in(0);
2011   if( iff->Opcode() == Op_If ) {
2012     // During matching If's have Bool & Cmp side-by-side
2013     BoolNode *b = iff->in(1)->as_Bool();
2014     Node *cmp = iff->in(2);
2015     int opc = cmp->Opcode();
2016     if (opc != Op_CmpP && opc != Op_CmpN) return;
2017 
2018     const Type* ct = cmp->in(2)->bottom_type();
2019     if (ct == TypePtr::NULL_PTR ||
2020         (opc == Op_CmpN && ct == TypeNarrowOop::NULL_PTR)) {
2021 
2022       bool push_it = false;
2023       if( proj->Opcode() == Op_IfTrue ) {
2024         extern int all_null_checks_found;
2025         all_null_checks_found++;
2026         if( b->_test._test == BoolTest::ne ) {
2027           push_it = true;
2028         }
2029       } else {
2030         assert( proj->Opcode() == Op_IfFalse, "" );
2031         if( b->_test._test == BoolTest::eq ) {
2032           push_it = true;
2033         }
2034       }
2035       if( push_it ) {
2036         _null_check_tests.push(proj);
2037         Node* val = cmp->in(1);
2038 #ifdef _LP64
2039         if (UseCompressedOops && !Matcher::clone_shift_expressions &&
2040             val->bottom_type()->isa_narrowoop()) {
2041           //
2042           // Look for DecodeN node which should be pinned to orig_proj.
2043           // On platforms (Sparc) which can not handle 2 adds
2044           // in addressing mode we have to keep a DecodeN node and
2045           // use it to do implicit NULL check in address.
2046           //
2047           // DecodeN node was pinned to non-null path (orig_proj) during
2048           // CastPP transformation in final_graph_reshaping_impl().
2049           //
2050           uint cnt = orig_proj->outcnt();
2051           for (uint i = 0; i < orig_proj->outcnt(); i++) {
2052             Node* d = orig_proj->raw_out(i);
2053             if (d->is_DecodeN() && d->in(1) == val) {
2054               val = d;
2055               val->set_req(0, NULL); // Unpin now.
2056               break;
2057             }
2058           }
2059         }
2060 #endif
2061         _null_check_tests.push(val);
2062       }
2063     }
2064   }
2065 }
2066 
2067 //---------------------------validate_null_checks------------------------------
2068 // Its possible that the value being NULL checked is not the root of a match
2069 // tree.  If so, I cannot use the value in an implicit null check.
2070 void Matcher::validate_null_checks( ) {
2071   uint cnt = _null_check_tests.size();
2072   for( uint i=0; i < cnt; i+=2 ) {
2073     Node *test = _null_check_tests[i];
2074     Node *val = _null_check_tests[i+1];
2075     if (has_new_node(val)) {
2076       // Is a match-tree root, so replace with the matched value 
2077       _null_check_tests.map(i+1, new_node(val));
2078     } else {
2079       // Yank from candidate list
2080       _null_check_tests.map(i+1,_null_check_tests[--cnt]);
2081       _null_check_tests.map(i,_null_check_tests[--cnt]);
2082       _null_check_tests.pop();
2083       _null_check_tests.pop();
2084       i-=2;
2085     }
2086   }  
2087 }
2088 
2089 
2090 // Used by the DFA in dfa_sparc.cpp.  Check for a prior FastLock
2091 // acting as an Acquire and thus we don't need an Acquire here.  We
2092 // retain the Node to act as a compiler ordering barrier.
2093 bool Matcher::prior_fast_lock( const Node *acq ) {
2094   Node *r = acq->in(0);
2095   if( !r->is_Region() || r->req() <= 1 ) return false;
2096   Node *proj = r->in(1);
2097   if( !proj->is_Proj() ) return false;
2098   Node *call = proj->in(0);
2099   if( !call->is_Call() || call->as_Call()->entry_point() != OptoRuntime::complete_monitor_locking_Java() )
2100     return false;
2101 
2102   return true;
2103 }
2104 
2105 // Used by the DFA in dfa_sparc.cpp.  Check for a following FastUnLock
2106 // acting as a Release and thus we don't need a Release here.  We
2107 // retain the Node to act as a compiler ordering barrier.
2108 bool Matcher::post_fast_unlock( const Node *rel ) {
2109   Compile *C = Compile::current();
2110   assert( rel->Opcode() == Op_MemBarRelease, "" );
2111   const MemBarReleaseNode *mem = (const MemBarReleaseNode*)rel;
2112   DUIterator_Fast imax, i = mem->fast_outs(imax); 
2113   Node *ctrl = NULL;
2114   while( true ) {
2115     ctrl = mem->fast_out(i);            // Throw out-of-bounds if proj not found
2116     assert( ctrl->is_Proj(), "only projections here" );
2117     ProjNode *proj = (ProjNode*)ctrl;
2118     if( proj->_con == TypeFunc::Control &&
2119         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2120       break;
2121     i++;
2122   }
2123   Node *iff = NULL;
2124   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2125     Node *x = ctrl->fast_out(j); 
2126     if( x->is_If() && x->req() > 1 && 
2127         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2128       iff = x;
2129       break;
2130     }
2131   }
2132   if( !iff ) return false;
2133   Node *bol = iff->in(1);
2134   // The iff might be some random subclass of If or bol might be Con-Top
2135   if (!bol->is_Bool())  return false;
2136   assert( bol->req() > 1, "" );
2137   return (bol->in(1)->Opcode() == Op_FastUnlock);
2138 }
2139 
2140 // Used by the DFA in dfa_xxx.cpp.  Check for a following barrier or
2141 // atomic instruction acting as a store_load barrier without any
2142 // intervening volatile load, and thus we don't need a barrier here.
2143 // We retain the Node to act as a compiler ordering barrier.
2144 bool Matcher::post_store_load_barrier(const Node *vmb) {
2145   Compile *C = Compile::current();
2146   assert( vmb->is_MemBar(), "" );
2147   assert( vmb->Opcode() != Op_MemBarAcquire, "" );
2148   const MemBarNode *mem = (const MemBarNode*)vmb;
2149 
2150   // Get the Proj node, ctrl, that can be used to iterate forward
2151   Node *ctrl = NULL;
2152   DUIterator_Fast imax, i = mem->fast_outs(imax); 
2153   while( true ) {
2154     ctrl = mem->fast_out(i);         // Throw out-of-bounds if proj not found
2155     assert( ctrl->is_Proj(), "only projections here" );
2156     ProjNode *proj = (ProjNode*)ctrl;
2157     if( proj->_con == TypeFunc::Control &&
2158         !C->node_arena()->contains(ctrl) ) // Unmatched old-space only
2159       break;
2160     i++;
2161   }
2162 
2163   for( DUIterator_Fast jmax, j = ctrl->fast_outs(jmax); j < jmax; j++ ) {
2164     Node *x = ctrl->fast_out(j); 
2165     int xop = x->Opcode();
2166 
2167     // We don't need current barrier if we see another or a lock
2168     // before seeing volatile load. 
2169     //
2170     // Op_Fastunlock previously appeared in the Op_* list below.
2171     // With the advent of 1-0 lock operations we're no longer guaranteed
2172     // that a monitor exit operation contains a serializing instruction. 
2173     
2174     if (xop == Op_MemBarVolatile || 
2175         xop == Op_FastLock ||
2176         xop == Op_CompareAndSwapL ||
2177         xop == Op_CompareAndSwapP ||
2178         xop == Op_CompareAndSwapN ||
2179         xop == Op_CompareAndSwapI)
2180       return true;
2181 
2182     if (x->is_MemBar()) {
2183       // We must retain this membar if there is an upcoming volatile
2184       // load, which will be preceded by acquire membar.
2185       if (xop == Op_MemBarAcquire) 
2186         return false;
2187       // For other kinds of barriers, check by pretending we
2188       // are them, and seeing if we can be removed.
2189       else 
2190         return post_store_load_barrier((const MemBarNode*)x);
2191     }
2192 
2193     // Delicate code to detect case of an upcoming fastlock block
2194     if( x->is_If() && x->req() > 1 && 
2195         !C->node_arena()->contains(x) ) { // Unmatched old-space only
2196       Node *iff = x;
2197       Node *bol = iff->in(1);
2198       // The iff might be some random subclass of If or bol might be Con-Top
2199       if (!bol->is_Bool())  return false;
2200       assert( bol->req() > 1, "" );
2201       return (bol->in(1)->Opcode() == Op_FastUnlock);
2202     }
2203     // probably not necessary to check for these
2204     if (x->is_Call() || x->is_SafePoint() || x->is_block_proj())
2205       return false;
2206   }
2207   return false;
2208 }
2209 
2210 //=============================================================================
2211 //---------------------------State---------------------------------------------
2212 State::State(void) {
2213 #ifdef ASSERT
2214   _id = 0;
2215   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2216   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2217   //memset(_cost, -1, sizeof(_cost));
2218   //memset(_rule, -1, sizeof(_rule));
2219 #endif
2220   memset(_valid, 0, sizeof(_valid));
2221 }
2222 
2223 #ifdef ASSERT
2224 State::~State() {
2225   _id = 99;
2226   _kids[0] = _kids[1] = (State*)(intptr_t) CONST64(0xcafebabecafebabe);
2227   _leaf = (Node*)(intptr_t) CONST64(0xbaadf00dbaadf00d);
2228   memset(_cost, -3, sizeof(_cost));
2229   memset(_rule, -3, sizeof(_rule));
2230 }
2231 #endif
2232 
2233 #ifndef PRODUCT
2234 //---------------------------dump----------------------------------------------
2235 void State::dump() { 
2236   tty->print("\n");
2237   dump(0); 
2238 }
2239 
2240 void State::dump(int depth) { 
2241   for( int j = 0; j < depth; j++ )
2242     tty->print("   ");
2243   tty->print("--N: ");
2244   _leaf->dump();
2245   uint i;
2246   for( i = 0; i < _LAST_MACH_OPER; i++ )
2247     // Check for valid entry
2248     if( valid(i) ) {
2249       for( int j = 0; j < depth; j++ )
2250         tty->print("   ");
2251         assert(_cost[i] != max_juint, "cost must be a valid value");
2252         assert(_rule[i] < _last_Mach_Node, "rule[i] must be valid rule");
2253         tty->print_cr("%s  %d  %s", 
2254                       ruleName[i], _cost[i], ruleName[_rule[i]] );
2255       }
2256   tty->print_cr("");
2257 
2258   for( i=0; i<2; i++ )
2259     if( _kids[i] )
2260       _kids[i]->dump(depth+1);
2261 }
2262 #endif
2263