#ifdef USE_PRAGMA_IDENT_SRC #pragma ident "@(#)typeArrayKlass.cpp 1.125 07/05/29 09:44:24 JVM" #endif /* * Copyright 1997-2007 Sun Microsystems, Inc. All Rights Reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, * CA 95054 USA or visit www.sun.com if you need additional information or * have any questions. * */ # include "incls/_precompiled.incl" # include "incls/_typeArrayKlass.cpp.incl" bool typeArrayKlass::compute_is_subtype_of(klassOop k) { if (!k->klass_part()->oop_is_typeArray()) { return arrayKlass::compute_is_subtype_of(k); } typeArrayKlass* tak = typeArrayKlass::cast(k); if (dimension() != tak->dimension()) return false; return element_type() == tak->element_type(); } klassOop typeArrayKlass::create_klass(BasicType type, int scale, const char* name_str, TRAPS) { typeArrayKlass o; symbolHandle sym(symbolOop(NULL)); // bootstrapping: don't create sym if symbolKlass not created yet if (Universe::symbolKlassObj() != NULL && name_str != NULL) { sym = oopFactory::new_symbol_handle(name_str, CHECK_NULL); } KlassHandle klassklass (THREAD, Universe::typeArrayKlassKlassObj()); arrayKlassHandle k = base_create_array_klass(o.vtbl_value(), header_size(), klassklass, CHECK_NULL); typeArrayKlass* ak = typeArrayKlass::cast(k()); ak->set_name(sym()); ak->set_layout_helper(array_layout_helper(type)); assert(scale == (1 << ak->log2_element_size()), "scale must check out"); assert(ak->oop_is_javaArray(), "sanity"); assert(ak->oop_is_typeArray(), "sanity"); ak->set_max_length(arrayOopDesc::max_array_length(type)); assert(k()->size() > header_size(), "bad size"); // Call complete_create_array_klass after all instance variables have been initialized. KlassHandle super (THREAD, k->super()); complete_create_array_klass(k, super, CHECK_NULL); return k(); } typeArrayOop typeArrayKlass::allocate(int length, TRAPS) { assert(log2_element_size() >= 0, "bad scale"); if (length >= 0) { if (length <= max_length()) { size_t size = typeArrayOopDesc::object_size(layout_helper(), length); KlassHandle h_k(THREAD, as_klassOop()); typeArrayOop t; CollectedHeap* ch = Universe::heap(); if (size < ch->large_typearray_limit()) { t = (typeArrayOop)CollectedHeap::array_allocate(h_k, (int)size, length, CHECK_NULL); } else { t = (typeArrayOop)CollectedHeap::large_typearray_allocate(h_k, (int)size, length, CHECK_NULL); } assert(t->is_parsable(), "Don't publish unless parsable"); return t; } else { THROW_OOP_0(Universe::out_of_memory_error_array_size()); } } else { THROW_0(vmSymbols::java_lang_NegativeArraySizeException()); } } typeArrayOop typeArrayKlass::allocate_permanent(int length, TRAPS) { if (length < 0) THROW_0(vmSymbols::java_lang_NegativeArraySizeException()); int size = typeArrayOopDesc::object_size(layout_helper(), length); KlassHandle h_k(THREAD, as_klassOop()); typeArrayOop t = (typeArrayOop) CollectedHeap::permanent_array_allocate(h_k, size, length, CHECK_NULL); assert(t->is_parsable(), "Can't publish until parsable"); return t; } oop typeArrayKlass::multi_allocate(int rank, jint* last_size, TRAPS) { // For typeArrays this is only called for the last dimension assert(rank == 1, "just checking"); int length = *last_size; return allocate(length, THREAD); } void typeArrayKlass::copy_array(arrayOop s, int src_pos, arrayOop d, int dst_pos, int length, TRAPS) { assert(s->is_typeArray(), "must be type array"); // Check destination if (!d->is_typeArray() || element_type() != typeArrayKlass::cast(d->klass())->element_type()) { THROW(vmSymbols::java_lang_ArrayStoreException()); } // Check is all offsets and lengths are non negative if (src_pos < 0 || dst_pos < 0 || length < 0) { THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException()); } // Check if the ranges are valid if ( (((unsigned int) length + (unsigned int) src_pos) > (unsigned int) s->length()) || (((unsigned int) length + (unsigned int) dst_pos) > (unsigned int) d->length()) ) { THROW(vmSymbols::java_lang_ArrayIndexOutOfBoundsException()); } // This is an attempt to make the copy_array fast. // NB: memmove takes care of overlapping memory segments. // Potential problem: memmove is not guaranteed to be word atomic // Revisit in Merlin int l2es = log2_element_size(); int ihs = array_header_in_bytes() / wordSize; char* src = (char*) ((oop*)s + ihs) + (src_pos << l2es); char* dst = (char*) ((oop*)d + ihs) + (dst_pos << l2es); memmove(dst, src, length << l2es); } // create a klass of array holding typeArrays klassOop typeArrayKlass::array_klass_impl(bool or_null, int n, TRAPS) { typeArrayKlassHandle h_this(THREAD, as_klassOop()); return array_klass_impl(h_this, or_null, n, THREAD); } klassOop typeArrayKlass::array_klass_impl(typeArrayKlassHandle h_this, bool or_null, int n, TRAPS) { int dimension = h_this->dimension(); assert(dimension <= n, "check order of chain"); if (dimension == n) return h_this(); objArrayKlassHandle h_ak(THREAD, h_this->higher_dimension()); if (h_ak.is_null()) { if (or_null) return NULL; ResourceMark rm; JavaThread *jt = (JavaThread *)THREAD; { MutexLocker mc(Compile_lock, THREAD); // for vtables // Atomic create higher dimension and link into list MutexLocker mu(MultiArray_lock, THREAD); h_ak = objArrayKlassHandle(THREAD, h_this->higher_dimension()); if (h_ak.is_null()) { klassOop oak = objArrayKlassKlass::cast( Universe::objArrayKlassKlassObj())->allocate_objArray_klass( dimension + 1, h_this, CHECK_NULL); h_ak = objArrayKlassHandle(THREAD, oak); h_ak->set_lower_dimension(h_this()); h_this->set_higher_dimension(h_ak()); assert(h_ak->oop_is_objArray(), "incorrect initialization of objArrayKlass"); } } } else { CHECK_UNHANDLED_OOPS_ONLY(Thread::current()->clear_unhandled_oops()); } if (or_null) { return h_ak->array_klass_or_null(n); } return h_ak->array_klass(n, CHECK_NULL); } klassOop typeArrayKlass::array_klass_impl(bool or_null, TRAPS) { return array_klass_impl(or_null, dimension() + 1, THREAD); } int typeArrayKlass::oop_size(oop obj) const { assert(obj->is_typeArray(),"must be a type array"); typeArrayOop t = typeArrayOop(obj); return t->object_size(); } void typeArrayKlass::oop_follow_contents(oop obj) { assert(obj->is_typeArray(),"must be a type array"); // Performance tweak: We skip iterating over the klass pointer since we // know that Universe::typeArrayKlass never moves. } #ifndef SERIALGC void typeArrayKlass::oop_follow_contents(ParCompactionManager* cm, oop obj) { assert(obj->is_typeArray(),"must be a type array"); // Performance tweak: We skip iterating over the klass pointer since we // know that Universe::typeArrayKlass never moves. } #endif // SERIALGC int typeArrayKlass::oop_adjust_pointers(oop obj) { assert(obj->is_typeArray(),"must be a type array"); typeArrayOop t = typeArrayOop(obj); // Performance tweak: We skip iterating over the klass pointer since we // know that Universe::typeArrayKlass never moves. return t->object_size(); } int typeArrayKlass::oop_oop_iterate(oop obj, OopClosure* blk) { assert(obj->is_typeArray(),"must be a type array"); typeArrayOop t = typeArrayOop(obj); // Performance tweak: We skip iterating over the klass pointer since we // know that Universe::typeArrayKlass never moves. return t->object_size(); } int typeArrayKlass::oop_oop_iterate_m(oop obj, OopClosure* blk, MemRegion mr) { assert(obj->is_typeArray(),"must be a type array"); typeArrayOop t = typeArrayOop(obj); // Performance tweak: We skip iterating over the klass pointer since we // know that Universe::typeArrayKlass never moves. return t->object_size(); } #ifndef SERIALGC void typeArrayKlass::oop_copy_contents(PSPromotionManager* pm, oop obj) { assert(obj->is_typeArray(),"must be a type array"); } void typeArrayKlass::oop_push_contents(PSPromotionManager* pm, oop obj) { assert(obj->is_typeArray(),"must be a type array"); } int typeArrayKlass::oop_update_pointers(ParCompactionManager* cm, oop obj) { assert(obj->is_typeArray(),"must be a type array"); return typeArrayOop(obj)->object_size(); } int typeArrayKlass::oop_update_pointers(ParCompactionManager* cm, oop obj, HeapWord* beg_addr, HeapWord* end_addr) { assert(obj->is_typeArray(),"must be a type array"); return typeArrayOop(obj)->object_size(); } #endif // SERIALGC void typeArrayKlass::initialize(TRAPS) { // Nothing to do. Having this function is handy since objArrayKlasses can be // initialized by calling initialize on their bottom_klass, see objArrayKlass::initialize } const char* typeArrayKlass::external_name(BasicType type) { switch (type) { case T_BOOLEAN: return "[Z"; case T_CHAR: return "[C"; case T_FLOAT: return "[F"; case T_DOUBLE: return "[D"; case T_BYTE: return "[B"; case T_SHORT: return "[S"; case T_INT: return "[I"; case T_LONG: return "[J"; default: ShouldNotReachHere(); } return NULL; } #ifndef PRODUCT // Printing static void print_boolean_array(typeArrayOop ta, int print_len, outputStream* st) { for (int index = 0; index < print_len; index++) { st->print_cr(" - %3d: %s", index, (ta->bool_at(index) == 0) ? "false" : "true"); } } static void print_char_array(typeArrayOop ta, int print_len, outputStream* st) { for (int index = 0; index < print_len; index++) { jchar c = ta->char_at(index); st->print_cr(" - %3d: %x %c", index, c, isprint(c) ? c : ' '); } } static void print_float_array(typeArrayOop ta, int print_len, outputStream* st) { for (int index = 0; index < print_len; index++) { st->print_cr(" - %3d: %g", index, ta->float_at(index)); } } static void print_double_array(typeArrayOop ta, int print_len, outputStream* st) { for (int index = 0; index < print_len; index++) { st->print_cr(" - %3d: %g", index, ta->double_at(index)); } } static void print_byte_array(typeArrayOop ta, int print_len, outputStream* st) { for (int index = 0; index < print_len; index++) { jbyte c = ta->byte_at(index); st->print_cr(" - %3d: %x %c", index, c, isprint(c) ? c : ' '); } } static void print_short_array(typeArrayOop ta, int print_len, outputStream* st) { for (int index = 0; index < print_len; index++) { int v = ta->ushort_at(index); st->print_cr(" - %3d: 0x%x\t %d", index, v, v); } } static void print_int_array(typeArrayOop ta, int print_len, outputStream* st) { for (int index = 0; index < print_len; index++) { jint v = ta->int_at(index); st->print_cr(" - %3d: 0x%x %d", index, v, v); } } static void print_long_array(typeArrayOop ta, int print_len, outputStream* st) { for (int index = 0; index < print_len; index++) { jlong v = ta->long_at(index); st->print_cr(" - %3d: 0x%x 0x%x", index, high(v), low(v)); } } void typeArrayKlass::oop_print_on(oop obj, outputStream* st) { arrayKlass::oop_print_on(obj, st); typeArrayOop ta = typeArrayOop(obj); int print_len = MIN2((intx) ta->length(), MaxElementPrintSize); switch (element_type()) { case T_BOOLEAN: print_boolean_array(ta, print_len, st); break; case T_CHAR: print_char_array(ta, print_len, st); break; case T_FLOAT: print_float_array(ta, print_len, st); break; case T_DOUBLE: print_double_array(ta, print_len, st); break; case T_BYTE: print_byte_array(ta, print_len, st); break; case T_SHORT: print_short_array(ta, print_len, st); break; case T_INT: print_int_array(ta, print_len, st); break; case T_LONG: print_long_array(ta, print_len, st); break; default: ShouldNotReachHere(); } int remaining = ta->length() - print_len; if (remaining > 0) { tty->print_cr(" - <%d more elements, increase MaxElementPrintSize to print>", remaining); } } #endif // PRODUCT const char* typeArrayKlass::internal_name() const { return Klass::external_name(); }