1 /*
   2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_LIRAssembler.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "c1/c1_ValueStack.hpp"
  31 #include "ci/ciArrayKlass.hpp"
  32 #include "ci/ciInstance.hpp"
  33 #include "gc_interface/collectedHeap.hpp"
  34 #include "memory/barrierSet.hpp"
  35 #include "memory/cardTableModRefBS.hpp"
  36 #include "nativeInst_sparc.hpp"
  37 #include "oops/objArrayKlass.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 
  40 #define __ _masm->
  41 
  42 
  43 //------------------------------------------------------------
  44 
  45 
  46 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  47   if (opr->is_constant()) {
  48     LIR_Const* constant = opr->as_constant_ptr();
  49     switch (constant->type()) {
  50       case T_INT: {
  51         jint value = constant->as_jint();
  52         return Assembler::is_simm13(value);
  53       }
  54 
  55       default:
  56         return false;
  57     }
  58   }
  59   return false;
  60 }
  61 
  62 
  63 bool LIR_Assembler::is_single_instruction(LIR_Op* op) {
  64   switch (op->code()) {
  65     case lir_null_check:
  66     return true;
  67 
  68 
  69     case lir_add:
  70     case lir_ushr:
  71     case lir_shr:
  72     case lir_shl:
  73       // integer shifts and adds are always one instruction
  74       return op->result_opr()->is_single_cpu();
  75 
  76 
  77     case lir_move: {
  78       LIR_Op1* op1 = op->as_Op1();
  79       LIR_Opr src = op1->in_opr();
  80       LIR_Opr dst = op1->result_opr();
  81 
  82       if (src == dst) {
  83         NEEDS_CLEANUP;
  84         // this works around a problem where moves with the same src and dst
  85         // end up in the delay slot and then the assembler swallows the mov
  86         // since it has no effect and then it complains because the delay slot
  87         // is empty.  returning false stops the optimizer from putting this in
  88         // the delay slot
  89         return false;
  90       }
  91 
  92       // don't put moves involving oops into the delay slot since the VerifyOops code
  93       // will make it much larger than a single instruction.
  94       if (VerifyOops) {
  95         return false;
  96       }
  97 
  98       if (src->is_double_cpu() || dst->is_double_cpu() || op1->patch_code() != lir_patch_none ||
  99           ((src->is_double_fpu() || dst->is_double_fpu()) && op1->move_kind() != lir_move_normal)) {
 100         return false;
 101       }
 102 
 103       if (UseCompressedOops) {
 104         if (dst->is_address() && !dst->is_stack() && (dst->type() == T_OBJECT || dst->type() == T_ARRAY)) return false;
 105         if (src->is_address() && !src->is_stack() && (src->type() == T_OBJECT || src->type() == T_ARRAY)) return false;
 106       }
 107 
 108       if (dst->is_register()) {
 109         if (src->is_address() && Assembler::is_simm13(src->as_address_ptr()->disp())) {
 110           return !PatchALot;
 111         } else if (src->is_single_stack()) {
 112           return true;
 113         }
 114       }
 115 
 116       if (src->is_register()) {
 117         if (dst->is_address() && Assembler::is_simm13(dst->as_address_ptr()->disp())) {
 118           return !PatchALot;
 119         } else if (dst->is_single_stack()) {
 120           return true;
 121         }
 122       }
 123 
 124       if (dst->is_register() &&
 125           ((src->is_register() && src->is_single_word() && src->is_same_type(dst)) ||
 126            (src->is_constant() && LIR_Assembler::is_small_constant(op->as_Op1()->in_opr())))) {
 127         return true;
 128       }
 129 
 130       return false;
 131     }
 132 
 133     default:
 134       return false;
 135   }
 136   ShouldNotReachHere();
 137 }
 138 
 139 
 140 LIR_Opr LIR_Assembler::receiverOpr() {
 141   return FrameMap::O0_oop_opr;
 142 }
 143 
 144 
 145 LIR_Opr LIR_Assembler::osrBufferPointer() {
 146   return FrameMap::I0_opr;
 147 }
 148 
 149 
 150 int LIR_Assembler::initial_frame_size_in_bytes() {
 151   return in_bytes(frame_map()->framesize_in_bytes());
 152 }
 153 
 154 
 155 // inline cache check: the inline cached class is in G5_inline_cache_reg(G5);
 156 // we fetch the class of the receiver (O0) and compare it with the cached class.
 157 // If they do not match we jump to slow case.
 158 int LIR_Assembler::check_icache() {
 159   int offset = __ offset();
 160   __ inline_cache_check(O0, G5_inline_cache_reg);
 161   return offset;
 162 }
 163 
 164 
 165 void LIR_Assembler::osr_entry() {
 166   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
 167   //
 168   //   1. Create a new compiled activation.
 169   //   2. Initialize local variables in the compiled activation.  The expression stack must be empty
 170   //      at the osr_bci; it is not initialized.
 171   //   3. Jump to the continuation address in compiled code to resume execution.
 172 
 173   // OSR entry point
 174   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 175   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 176   ValueStack* entry_state = osr_entry->end()->state();
 177   int number_of_locks = entry_state->locks_size();
 178 
 179   // Create a frame for the compiled activation.
 180   __ build_frame(initial_frame_size_in_bytes());
 181 
 182   // OSR buffer is
 183   //
 184   // locals[nlocals-1..0]
 185   // monitors[number_of_locks-1..0]
 186   //
 187   // locals is a direct copy of the interpreter frame so in the osr buffer
 188   // so first slot in the local array is the last local from the interpreter
 189   // and last slot is local[0] (receiver) from the interpreter
 190   //
 191   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 192   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 193   // in the interpreter frame (the method lock if a sync method)
 194 
 195   // Initialize monitors in the compiled activation.
 196   //   I0: pointer to osr buffer
 197   //
 198   // All other registers are dead at this point and the locals will be
 199   // copied into place by code emitted in the IR.
 200 
 201   Register OSR_buf = osrBufferPointer()->as_register();
 202   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 203     int monitor_offset = BytesPerWord * method()->max_locals() +
 204       (2 * BytesPerWord) * (number_of_locks - 1);
 205     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 206     // the OSR buffer using 2 word entries: first the lock and then
 207     // the oop.
 208     for (int i = 0; i < number_of_locks; i++) {
 209       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 210 #ifdef ASSERT
 211       // verify the interpreter's monitor has a non-null object
 212       {
 213         Label L;
 214         __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 215         __ cmp_and_br_short(O7, G0, Assembler::notEqual, Assembler::pt, L);
 216         __ stop("locked object is NULL");
 217         __ bind(L);
 218       }
 219 #endif // ASSERT
 220       // Copy the lock field into the compiled activation.
 221       __ ld_ptr(OSR_buf, slot_offset + 0, O7);
 222       __ st_ptr(O7, frame_map()->address_for_monitor_lock(i));
 223       __ ld_ptr(OSR_buf, slot_offset + 1*BytesPerWord, O7);
 224       __ st_ptr(O7, frame_map()->address_for_monitor_object(i));
 225     }
 226   }
 227 }
 228 
 229 
 230 // Optimized Library calls
 231 // This is the fast version of java.lang.String.compare; it has not
 232 // OSR-entry and therefore, we generate a slow version for OSR's
 233 void LIR_Assembler::emit_string_compare(LIR_Opr left, LIR_Opr right, LIR_Opr dst, CodeEmitInfo* info) {
 234   Register str0 = left->as_register();
 235   Register str1 = right->as_register();
 236 
 237   Label Ldone;
 238 
 239   Register result = dst->as_register();
 240   {
 241     // Get a pointer to the first character of string0 in tmp0
 242     //   and get string0.length() in str0
 243     // Get a pointer to the first character of string1 in tmp1
 244     //   and get string1.length() in str1
 245     // Also, get string0.length()-string1.length() in
 246     //   o7 and get the condition code set
 247     // Note: some instructions have been hoisted for better instruction scheduling
 248 
 249     Register tmp0 = L0;
 250     Register tmp1 = L1;
 251     Register tmp2 = L2;
 252 
 253     int  value_offset = java_lang_String:: value_offset_in_bytes(); // char array
 254     if (java_lang_String::has_offset_field()) {
 255       int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
 256       int  count_offset = java_lang_String:: count_offset_in_bytes();
 257       __ load_heap_oop(str0, value_offset, tmp0);
 258       __ ld(str0, offset_offset, tmp2);
 259       __ add(tmp0, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
 260       __ ld(str0, count_offset, str0);
 261       __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 262     } else {
 263       __ load_heap_oop(str0, value_offset, tmp1);
 264       __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp0);
 265       __ ld(tmp1, arrayOopDesc::length_offset_in_bytes(), str0);
 266     }
 267 
 268     // str1 may be null
 269     add_debug_info_for_null_check_here(info);
 270 
 271     if (java_lang_String::has_offset_field()) {
 272       int offset_offset = java_lang_String::offset_offset_in_bytes(); // first character position
 273       int  count_offset = java_lang_String:: count_offset_in_bytes();
 274       __ load_heap_oop(str1, value_offset, tmp1);
 275       __ add(tmp0, tmp2, tmp0);
 276 
 277       __ ld(str1, offset_offset, tmp2);
 278       __ add(tmp1, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
 279       __ ld(str1, count_offset, str1);
 280       __ sll(tmp2, exact_log2(sizeof(jchar)), tmp2);
 281       __ add(tmp1, tmp2, tmp1);
 282     } else {
 283       __ load_heap_oop(str1, value_offset, tmp2);
 284       __ add(tmp2, arrayOopDesc::base_offset_in_bytes(T_CHAR), tmp1);
 285       __ ld(tmp2, arrayOopDesc::length_offset_in_bytes(), str1);
 286     }
 287     __ subcc(str0, str1, O7);
 288   }
 289 
 290   {
 291     // Compute the minimum of the string lengths, scale it and store it in limit
 292     Register count0 = I0;
 293     Register count1 = I1;
 294     Register limit  = L3;
 295 
 296     Label Lskip;
 297     __ sll(count0, exact_log2(sizeof(jchar)), limit);             // string0 is shorter
 298     __ br(Assembler::greater, true, Assembler::pt, Lskip);
 299     __ delayed()->sll(count1, exact_log2(sizeof(jchar)), limit);  // string1 is shorter
 300     __ bind(Lskip);
 301 
 302     // If either string is empty (or both of them) the result is the difference in lengths
 303     __ cmp(limit, 0);
 304     __ br(Assembler::equal, true, Assembler::pn, Ldone);
 305     __ delayed()->mov(O7, result);  // result is difference in lengths
 306   }
 307 
 308   {
 309     // Neither string is empty
 310     Label Lloop;
 311 
 312     Register base0 = L0;
 313     Register base1 = L1;
 314     Register chr0  = I0;
 315     Register chr1  = I1;
 316     Register limit = L3;
 317 
 318     // Shift base0 and base1 to the end of the arrays, negate limit
 319     __ add(base0, limit, base0);
 320     __ add(base1, limit, base1);
 321     __ neg(limit);  // limit = -min{string0.length(), string1.length()}
 322 
 323     __ lduh(base0, limit, chr0);
 324     __ bind(Lloop);
 325     __ lduh(base1, limit, chr1);
 326     __ subcc(chr0, chr1, chr0);
 327     __ br(Assembler::notZero, false, Assembler::pn, Ldone);
 328     assert(chr0 == result, "result must be pre-placed");
 329     __ delayed()->inccc(limit, sizeof(jchar));
 330     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
 331     __ delayed()->lduh(base0, limit, chr0);
 332   }
 333 
 334   // If strings are equal up to min length, return the length difference.
 335   __ mov(O7, result);
 336 
 337   // Otherwise, return the difference between the first mismatched chars.
 338   __ bind(Ldone);
 339 }
 340 
 341 
 342 // --------------------------------------------------------------------------------------------
 343 
 344 void LIR_Assembler::monitorexit(LIR_Opr obj_opr, LIR_Opr lock_opr, Register hdr, int monitor_no) {
 345   if (!GenerateSynchronizationCode) return;
 346 
 347   Register obj_reg = obj_opr->as_register();
 348   Register lock_reg = lock_opr->as_register();
 349 
 350   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
 351   Register reg = mon_addr.base();
 352   int offset = mon_addr.disp();
 353   // compute pointer to BasicLock
 354   if (mon_addr.is_simm13()) {
 355     __ add(reg, offset, lock_reg);
 356   }
 357   else {
 358     __ set(offset, lock_reg);
 359     __ add(reg, lock_reg, lock_reg);
 360   }
 361   // unlock object
 362   MonitorAccessStub* slow_case = new MonitorExitStub(lock_opr, UseFastLocking, monitor_no);
 363   // _slow_case_stubs->append(slow_case);
 364   // temporary fix: must be created after exceptionhandler, therefore as call stub
 365   _slow_case_stubs->append(slow_case);
 366   if (UseFastLocking) {
 367     // try inlined fast unlocking first, revert to slow locking if it fails
 368     // note: lock_reg points to the displaced header since the displaced header offset is 0!
 369     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
 370     __ unlock_object(hdr, obj_reg, lock_reg, *slow_case->entry());
 371   } else {
 372     // always do slow unlocking
 373     // note: the slow unlocking code could be inlined here, however if we use
 374     //       slow unlocking, speed doesn't matter anyway and this solution is
 375     //       simpler and requires less duplicated code - additionally, the
 376     //       slow unlocking code is the same in either case which simplifies
 377     //       debugging
 378     __ br(Assembler::always, false, Assembler::pt, *slow_case->entry());
 379     __ delayed()->nop();
 380   }
 381   // done
 382   __ bind(*slow_case->continuation());
 383 }
 384 
 385 
 386 int LIR_Assembler::emit_exception_handler() {
 387   // if the last instruction is a call (typically to do a throw which
 388   // is coming at the end after block reordering) the return address
 389   // must still point into the code area in order to avoid assertion
 390   // failures when searching for the corresponding bci => add a nop
 391   // (was bug 5/14/1999 - gri)
 392   __ nop();
 393 
 394   // generate code for exception handler
 395   ciMethod* method = compilation()->method();
 396 
 397   address handler_base = __ start_a_stub(exception_handler_size);
 398 
 399   if (handler_base == NULL) {
 400     // not enough space left for the handler
 401     bailout("exception handler overflow");
 402     return -1;
 403   }
 404 
 405   int offset = code_offset();
 406 
 407   __ call(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id), relocInfo::runtime_call_type);
 408   __ delayed()->nop();
 409   __ should_not_reach_here();
 410   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
 411   __ end_a_stub();
 412 
 413   return offset;
 414 }
 415 
 416 
 417 // Emit the code to remove the frame from the stack in the exception
 418 // unwind path.
 419 int LIR_Assembler::emit_unwind_handler() {
 420 #ifndef PRODUCT
 421   if (CommentedAssembly) {
 422     _masm->block_comment("Unwind handler");
 423   }
 424 #endif
 425 
 426   int offset = code_offset();
 427 
 428   // Fetch the exception from TLS and clear out exception related thread state
 429   __ ld_ptr(G2_thread, in_bytes(JavaThread::exception_oop_offset()), O0);
 430   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_oop_offset()));
 431   __ st_ptr(G0, G2_thread, in_bytes(JavaThread::exception_pc_offset()));
 432 
 433   __ bind(_unwind_handler_entry);
 434   __ verify_not_null_oop(O0);
 435   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 436     __ mov(O0, I0);  // Preserve the exception
 437   }
 438 
 439   // Preform needed unlocking
 440   MonitorExitStub* stub = NULL;
 441   if (method()->is_synchronized()) {
 442     monitor_address(0, FrameMap::I1_opr);
 443     stub = new MonitorExitStub(FrameMap::I1_opr, true, 0);
 444     __ unlock_object(I3, I2, I1, *stub->entry());
 445     __ bind(*stub->continuation());
 446   }
 447 
 448   if (compilation()->env()->dtrace_method_probes()) {
 449     __ mov(G2_thread, O0);
 450     jobject2reg(method()->constant_encoding(), O1);
 451     __ call(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), relocInfo::runtime_call_type);
 452     __ delayed()->nop();
 453   }
 454 
 455   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 456     __ mov(I0, O0);  // Restore the exception
 457   }
 458 
 459   // dispatch to the unwind logic
 460   __ call(Runtime1::entry_for(Runtime1::unwind_exception_id), relocInfo::runtime_call_type);
 461   __ delayed()->nop();
 462 
 463   // Emit the slow path assembly
 464   if (stub != NULL) {
 465     stub->emit_code(this);
 466   }
 467 
 468   return offset;
 469 }
 470 
 471 
 472 int LIR_Assembler::emit_deopt_handler() {
 473   // if the last instruction is a call (typically to do a throw which
 474   // is coming at the end after block reordering) the return address
 475   // must still point into the code area in order to avoid assertion
 476   // failures when searching for the corresponding bci => add a nop
 477   // (was bug 5/14/1999 - gri)
 478   __ nop();
 479 
 480   // generate code for deopt handler
 481   ciMethod* method = compilation()->method();
 482   address handler_base = __ start_a_stub(deopt_handler_size);
 483   if (handler_base == NULL) {
 484     // not enough space left for the handler
 485     bailout("deopt handler overflow");
 486     return -1;
 487   }
 488 
 489   int offset = code_offset();
 490   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
 491   __ JUMP(deopt_blob, G3_scratch, 0); // sethi;jmp
 492   __ delayed()->nop();
 493   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
 494   __ end_a_stub();
 495 
 496   return offset;
 497 }
 498 
 499 
 500 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 501   if (o == NULL) {
 502     __ set(NULL_WORD, reg);
 503   } else {
 504     int oop_index = __ oop_recorder()->find_index(o);
 505     RelocationHolder rspec = oop_Relocation::spec(oop_index);
 506     __ set(NULL_WORD, reg, rspec); // Will be set when the nmethod is created
 507   }
 508 }
 509 
 510 
 511 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 512   // Allocate a new index in oop table to hold the oop once it's been patched
 513   int oop_index = __ oop_recorder()->allocate_index((jobject)NULL);
 514   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, oop_index);
 515 
 516   AddressLiteral addrlit(NULL, oop_Relocation::spec(oop_index));
 517   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 518   // It may not seem necessary to use a sethi/add pair to load a NULL into dest, but the
 519   // NULL will be dynamically patched later and the patched value may be large.  We must
 520   // therefore generate the sethi/add as a placeholders
 521   __ patchable_set(addrlit, reg);
 522 
 523   patching_epilog(patch, lir_patch_normal, reg, info);
 524 }
 525 
 526 
 527 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 528   Register Rdividend = op->in_opr1()->as_register();
 529   Register Rdivisor  = noreg;
 530   Register Rscratch  = op->in_opr3()->as_register();
 531   Register Rresult   = op->result_opr()->as_register();
 532   int divisor = -1;
 533 
 534   if (op->in_opr2()->is_register()) {
 535     Rdivisor = op->in_opr2()->as_register();
 536   } else {
 537     divisor = op->in_opr2()->as_constant_ptr()->as_jint();
 538     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 539   }
 540 
 541   assert(Rdividend != Rscratch, "");
 542   assert(Rdivisor  != Rscratch, "");
 543   assert(op->code() == lir_idiv || op->code() == lir_irem, "Must be irem or idiv");
 544 
 545   if (Rdivisor == noreg && is_power_of_2(divisor)) {
 546     // convert division by a power of two into some shifts and logical operations
 547     if (op->code() == lir_idiv) {
 548       if (divisor == 2) {
 549         __ srl(Rdividend, 31, Rscratch);
 550       } else {
 551         __ sra(Rdividend, 31, Rscratch);
 552         __ and3(Rscratch, divisor - 1, Rscratch);
 553       }
 554       __ add(Rdividend, Rscratch, Rscratch);
 555       __ sra(Rscratch, log2_intptr(divisor), Rresult);
 556       return;
 557     } else {
 558       if (divisor == 2) {
 559         __ srl(Rdividend, 31, Rscratch);
 560       } else {
 561         __ sra(Rdividend, 31, Rscratch);
 562         __ and3(Rscratch, divisor - 1,Rscratch);
 563       }
 564       __ add(Rdividend, Rscratch, Rscratch);
 565       __ andn(Rscratch, divisor - 1,Rscratch);
 566       __ sub(Rdividend, Rscratch, Rresult);
 567       return;
 568     }
 569   }
 570 
 571   __ sra(Rdividend, 31, Rscratch);
 572   __ wry(Rscratch);
 573   if (!VM_Version::v9_instructions_work()) {
 574     // v9 doesn't require these nops
 575     __ nop();
 576     __ nop();
 577     __ nop();
 578     __ nop();
 579   }
 580 
 581   add_debug_info_for_div0_here(op->info());
 582 
 583   if (Rdivisor != noreg) {
 584     __ sdivcc(Rdividend, Rdivisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 585   } else {
 586     assert(Assembler::is_simm13(divisor), "can only handle simm13");
 587     __ sdivcc(Rdividend, divisor, (op->code() == lir_idiv ? Rresult : Rscratch));
 588   }
 589 
 590   Label skip;
 591   __ br(Assembler::overflowSet, true, Assembler::pn, skip);
 592   __ delayed()->Assembler::sethi(0x80000000, (op->code() == lir_idiv ? Rresult : Rscratch));
 593   __ bind(skip);
 594 
 595   if (op->code() == lir_irem) {
 596     if (Rdivisor != noreg) {
 597       __ smul(Rscratch, Rdivisor, Rscratch);
 598     } else {
 599       __ smul(Rscratch, divisor, Rscratch);
 600     }
 601     __ sub(Rdividend, Rscratch, Rresult);
 602   }
 603 }
 604 
 605 
 606 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 607 #ifdef ASSERT
 608   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 609   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
 610   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
 611 #endif
 612   assert(op->info() == NULL, "shouldn't have CodeEmitInfo");
 613 
 614   if (op->cond() == lir_cond_always) {
 615     __ br(Assembler::always, false, Assembler::pt, *(op->label()));
 616   } else if (op->code() == lir_cond_float_branch) {
 617     assert(op->ublock() != NULL, "must have unordered successor");
 618     bool is_unordered = (op->ublock() == op->block());
 619     Assembler::Condition acond;
 620     switch (op->cond()) {
 621       case lir_cond_equal:         acond = Assembler::f_equal;    break;
 622       case lir_cond_notEqual:      acond = Assembler::f_notEqual; break;
 623       case lir_cond_less:          acond = (is_unordered ? Assembler::f_unorderedOrLess          : Assembler::f_less);           break;
 624       case lir_cond_greater:       acond = (is_unordered ? Assembler::f_unorderedOrGreater       : Assembler::f_greater);        break;
 625       case lir_cond_lessEqual:     acond = (is_unordered ? Assembler::f_unorderedOrLessOrEqual   : Assembler::f_lessOrEqual);    break;
 626       case lir_cond_greaterEqual:  acond = (is_unordered ? Assembler::f_unorderedOrGreaterOrEqual: Assembler::f_greaterOrEqual); break;
 627       default :                         ShouldNotReachHere();
 628     };
 629 
 630     if (!VM_Version::v9_instructions_work()) {
 631       __ nop();
 632     }
 633     __ fb( acond, false, Assembler::pn, *(op->label()));
 634   } else {
 635     assert (op->code() == lir_branch, "just checking");
 636 
 637     Assembler::Condition acond;
 638     switch (op->cond()) {
 639       case lir_cond_equal:        acond = Assembler::equal;                break;
 640       case lir_cond_notEqual:     acond = Assembler::notEqual;             break;
 641       case lir_cond_less:         acond = Assembler::less;                 break;
 642       case lir_cond_lessEqual:    acond = Assembler::lessEqual;            break;
 643       case lir_cond_greaterEqual: acond = Assembler::greaterEqual;         break;
 644       case lir_cond_greater:      acond = Assembler::greater;              break;
 645       case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned; break;
 646       case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;    break;
 647       default:                         ShouldNotReachHere();
 648     };
 649 
 650     // sparc has different condition codes for testing 32-bit
 651     // vs. 64-bit values.  We could always test xcc is we could
 652     // guarantee that 32-bit loads always sign extended but that isn't
 653     // true and since sign extension isn't free, it would impose a
 654     // slight cost.
 655 #ifdef _LP64
 656     if  (op->type() == T_INT) {
 657       __ br(acond, false, Assembler::pn, *(op->label()));
 658     } else
 659 #endif
 660       __ brx(acond, false, Assembler::pn, *(op->label()));
 661   }
 662   // The peephole pass fills the delay slot
 663 }
 664 
 665 
 666 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 667   Bytecodes::Code code = op->bytecode();
 668   LIR_Opr dst = op->result_opr();
 669 
 670   switch(code) {
 671     case Bytecodes::_i2l: {
 672       Register rlo  = dst->as_register_lo();
 673       Register rhi  = dst->as_register_hi();
 674       Register rval = op->in_opr()->as_register();
 675 #ifdef _LP64
 676       __ sra(rval, 0, rlo);
 677 #else
 678       __ mov(rval, rlo);
 679       __ sra(rval, BitsPerInt-1, rhi);
 680 #endif
 681       break;
 682     }
 683     case Bytecodes::_i2d:
 684     case Bytecodes::_i2f: {
 685       bool is_double = (code == Bytecodes::_i2d);
 686       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 687       FloatRegisterImpl::Width w = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 688       FloatRegister rsrc = op->in_opr()->as_float_reg();
 689       if (rsrc != rdst) {
 690         __ fmov(FloatRegisterImpl::S, rsrc, rdst);
 691       }
 692       __ fitof(w, rdst, rdst);
 693       break;
 694     }
 695     case Bytecodes::_f2i:{
 696       FloatRegister rsrc = op->in_opr()->as_float_reg();
 697       Address       addr = frame_map()->address_for_slot(dst->single_stack_ix());
 698       Label L;
 699       // result must be 0 if value is NaN; test by comparing value to itself
 700       __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, rsrc, rsrc);
 701       if (!VM_Version::v9_instructions_work()) {
 702         __ nop();
 703       }
 704       __ fb(Assembler::f_unordered, true, Assembler::pn, L);
 705       __ delayed()->st(G0, addr); // annuled if contents of rsrc is not NaN
 706       __ ftoi(FloatRegisterImpl::S, rsrc, rsrc);
 707       // move integer result from float register to int register
 708       __ stf(FloatRegisterImpl::S, rsrc, addr.base(), addr.disp());
 709       __ bind (L);
 710       break;
 711     }
 712     case Bytecodes::_l2i: {
 713       Register rlo  = op->in_opr()->as_register_lo();
 714       Register rhi  = op->in_opr()->as_register_hi();
 715       Register rdst = dst->as_register();
 716 #ifdef _LP64
 717       __ sra(rlo, 0, rdst);
 718 #else
 719       __ mov(rlo, rdst);
 720 #endif
 721       break;
 722     }
 723     case Bytecodes::_d2f:
 724     case Bytecodes::_f2d: {
 725       bool is_double = (code == Bytecodes::_f2d);
 726       assert((!is_double && dst->is_single_fpu()) || (is_double && dst->is_double_fpu()), "check");
 727       LIR_Opr val = op->in_opr();
 728       FloatRegister rval = (code == Bytecodes::_d2f) ? val->as_double_reg() : val->as_float_reg();
 729       FloatRegister rdst = is_double ? dst->as_double_reg() : dst->as_float_reg();
 730       FloatRegisterImpl::Width vw = is_double ? FloatRegisterImpl::S : FloatRegisterImpl::D;
 731       FloatRegisterImpl::Width dw = is_double ? FloatRegisterImpl::D : FloatRegisterImpl::S;
 732       __ ftof(vw, dw, rval, rdst);
 733       break;
 734     }
 735     case Bytecodes::_i2s:
 736     case Bytecodes::_i2b: {
 737       Register rval = op->in_opr()->as_register();
 738       Register rdst = dst->as_register();
 739       int shift = (code == Bytecodes::_i2b) ? (BitsPerInt - T_BYTE_aelem_bytes * BitsPerByte) : (BitsPerInt - BitsPerShort);
 740       __ sll (rval, shift, rdst);
 741       __ sra (rdst, shift, rdst);
 742       break;
 743     }
 744     case Bytecodes::_i2c: {
 745       Register rval = op->in_opr()->as_register();
 746       Register rdst = dst->as_register();
 747       int shift = BitsPerInt - T_CHAR_aelem_bytes * BitsPerByte;
 748       __ sll (rval, shift, rdst);
 749       __ srl (rdst, shift, rdst);
 750       break;
 751     }
 752 
 753     default: ShouldNotReachHere();
 754   }
 755 }
 756 
 757 
 758 void LIR_Assembler::align_call(LIR_Code) {
 759   // do nothing since all instructions are word aligned on sparc
 760 }
 761 
 762 
 763 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 764   __ call(op->addr(), rtype);
 765   // The peephole pass fills the delay slot, add_call_info is done in
 766   // LIR_Assembler::emit_delay.
 767 }
 768 
 769 
 770 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 771   RelocationHolder rspec = virtual_call_Relocation::spec(pc());
 772   __ set_oop((jobject)Universe::non_oop_word(), G5_inline_cache_reg);
 773   __ relocate(rspec);
 774   __ call(op->addr(), relocInfo::none);
 775   // The peephole pass fills the delay slot, add_call_info is done in
 776   // LIR_Assembler::emit_delay.
 777 }
 778 
 779 
 780 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 781   add_debug_info_for_null_check_here(op->info());
 782   __ load_klass(O0, G3_scratch);
 783   if (Assembler::is_simm13(op->vtable_offset())) {
 784     __ ld_ptr(G3_scratch, op->vtable_offset(), G5_method);
 785   } else {
 786     // This will generate 2 instructions
 787     __ set(op->vtable_offset(), G5_method);
 788     // ld_ptr, set_hi, set
 789     __ ld_ptr(G3_scratch, G5_method, G5_method);
 790   }
 791   __ ld_ptr(G5_method, methodOopDesc::from_compiled_offset(), G3_scratch);
 792   __ callr(G3_scratch, G0);
 793   // the peephole pass fills the delay slot
 794 }
 795 
 796 int LIR_Assembler::store(LIR_Opr from_reg, Register base, int offset, BasicType type, bool wide, bool unaligned) {
 797   int store_offset;
 798   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 799     assert(!unaligned, "can't handle this");
 800     // for offsets larger than a simm13 we setup the offset in O7
 801     __ set(offset, O7);
 802     store_offset = store(from_reg, base, O7, type, wide);
 803   } else {
 804     if (type == T_ARRAY || type == T_OBJECT) {
 805       __ verify_oop(from_reg->as_register());
 806     }
 807     store_offset = code_offset();
 808     switch (type) {
 809       case T_BOOLEAN: // fall through
 810       case T_BYTE  : __ stb(from_reg->as_register(), base, offset); break;
 811       case T_CHAR  : __ sth(from_reg->as_register(), base, offset); break;
 812       case T_SHORT : __ sth(from_reg->as_register(), base, offset); break;
 813       case T_INT   : __ stw(from_reg->as_register(), base, offset); break;
 814       case T_LONG  :
 815 #ifdef _LP64
 816         if (unaligned || PatchALot) {
 817           __ srax(from_reg->as_register_lo(), 32, O7);
 818           __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 819           __ stw(O7,                         base, offset + hi_word_offset_in_bytes);
 820         } else {
 821           __ stx(from_reg->as_register_lo(), base, offset);
 822         }
 823 #else
 824         assert(Assembler::is_simm13(offset + 4), "must be");
 825         __ stw(from_reg->as_register_lo(), base, offset + lo_word_offset_in_bytes);
 826         __ stw(from_reg->as_register_hi(), base, offset + hi_word_offset_in_bytes);
 827 #endif
 828         break;
 829       case T_ADDRESS:
 830         __ st_ptr(from_reg->as_register(), base, offset);
 831         break;
 832       case T_ARRAY : // fall through
 833       case T_OBJECT:
 834         {
 835           if (UseCompressedOops && !wide) {
 836             __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 837             store_offset = code_offset();
 838             __ stw(G3_scratch, base, offset);
 839           } else {
 840             __ st_ptr(from_reg->as_register(), base, offset);
 841           }
 842           break;
 843         }
 844 
 845       case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, offset); break;
 846       case T_DOUBLE:
 847         {
 848           FloatRegister reg = from_reg->as_double_reg();
 849           // split unaligned stores
 850           if (unaligned || PatchALot) {
 851             assert(Assembler::is_simm13(offset + 4), "must be");
 852             __ stf(FloatRegisterImpl::S, reg->successor(), base, offset + 4);
 853             __ stf(FloatRegisterImpl::S, reg,              base, offset);
 854           } else {
 855             __ stf(FloatRegisterImpl::D, reg, base, offset);
 856           }
 857           break;
 858         }
 859       default      : ShouldNotReachHere();
 860     }
 861   }
 862   return store_offset;
 863 }
 864 
 865 
 866 int LIR_Assembler::store(LIR_Opr from_reg, Register base, Register disp, BasicType type, bool wide) {
 867   if (type == T_ARRAY || type == T_OBJECT) {
 868     __ verify_oop(from_reg->as_register());
 869   }
 870   int store_offset = code_offset();
 871   switch (type) {
 872     case T_BOOLEAN: // fall through
 873     case T_BYTE  : __ stb(from_reg->as_register(), base, disp); break;
 874     case T_CHAR  : __ sth(from_reg->as_register(), base, disp); break;
 875     case T_SHORT : __ sth(from_reg->as_register(), base, disp); break;
 876     case T_INT   : __ stw(from_reg->as_register(), base, disp); break;
 877     case T_LONG  :
 878 #ifdef _LP64
 879       __ stx(from_reg->as_register_lo(), base, disp);
 880 #else
 881       assert(from_reg->as_register_hi()->successor() == from_reg->as_register_lo(), "must match");
 882       __ std(from_reg->as_register_hi(), base, disp);
 883 #endif
 884       break;
 885     case T_ADDRESS:
 886       __ st_ptr(from_reg->as_register(), base, disp);
 887       break;
 888     case T_ARRAY : // fall through
 889     case T_OBJECT:
 890       {
 891         if (UseCompressedOops && !wide) {
 892           __ encode_heap_oop(from_reg->as_register(), G3_scratch);
 893           store_offset = code_offset();
 894           __ stw(G3_scratch, base, disp);
 895         } else {
 896           __ st_ptr(from_reg->as_register(), base, disp);
 897         }
 898         break;
 899       }
 900     case T_FLOAT : __ stf(FloatRegisterImpl::S, from_reg->as_float_reg(), base, disp); break;
 901     case T_DOUBLE: __ stf(FloatRegisterImpl::D, from_reg->as_double_reg(), base, disp); break;
 902     default      : ShouldNotReachHere();
 903   }
 904   return store_offset;
 905 }
 906 
 907 
 908 int LIR_Assembler::load(Register base, int offset, LIR_Opr to_reg, BasicType type, bool wide, bool unaligned) {
 909   int load_offset;
 910   if (!Assembler::is_simm13(offset + (type == T_LONG) ? wordSize : 0)) {
 911     assert(base != O7, "destroying register");
 912     assert(!unaligned, "can't handle this");
 913     // for offsets larger than a simm13 we setup the offset in O7
 914     __ set(offset, O7);
 915     load_offset = load(base, O7, to_reg, type, wide);
 916   } else {
 917     load_offset = code_offset();
 918     switch(type) {
 919       case T_BOOLEAN: // fall through
 920       case T_BYTE  : __ ldsb(base, offset, to_reg->as_register()); break;
 921       case T_CHAR  : __ lduh(base, offset, to_reg->as_register()); break;
 922       case T_SHORT : __ ldsh(base, offset, to_reg->as_register()); break;
 923       case T_INT   : __ ld(base, offset, to_reg->as_register()); break;
 924       case T_LONG  :
 925         if (!unaligned) {
 926 #ifdef _LP64
 927           __ ldx(base, offset, to_reg->as_register_lo());
 928 #else
 929           assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
 930                  "must be sequential");
 931           __ ldd(base, offset, to_reg->as_register_hi());
 932 #endif
 933         } else {
 934 #ifdef _LP64
 935           assert(base != to_reg->as_register_lo(), "can't handle this");
 936           assert(O7 != to_reg->as_register_lo(), "can't handle this");
 937           __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_lo());
 938           __ lduw(base, offset + lo_word_offset_in_bytes, O7); // in case O7 is base or offset, use it last
 939           __ sllx(to_reg->as_register_lo(), 32, to_reg->as_register_lo());
 940           __ or3(to_reg->as_register_lo(), O7, to_reg->as_register_lo());
 941 #else
 942           if (base == to_reg->as_register_lo()) {
 943             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
 944             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
 945           } else {
 946             __ ld(base, offset + lo_word_offset_in_bytes, to_reg->as_register_lo());
 947             __ ld(base, offset + hi_word_offset_in_bytes, to_reg->as_register_hi());
 948           }
 949 #endif
 950         }
 951         break;
 952       case T_ADDRESS:  __ ld_ptr(base, offset, to_reg->as_register()); break;
 953       case T_ARRAY : // fall through
 954       case T_OBJECT:
 955         {
 956           if (UseCompressedOops && !wide) {
 957             __ lduw(base, offset, to_reg->as_register());
 958             __ decode_heap_oop(to_reg->as_register());
 959           } else {
 960             __ ld_ptr(base, offset, to_reg->as_register());
 961           }
 962           break;
 963         }
 964       case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, offset, to_reg->as_float_reg()); break;
 965       case T_DOUBLE:
 966         {
 967           FloatRegister reg = to_reg->as_double_reg();
 968           // split unaligned loads
 969           if (unaligned || PatchALot) {
 970             __ ldf(FloatRegisterImpl::S, base, offset + 4, reg->successor());
 971             __ ldf(FloatRegisterImpl::S, base, offset,     reg);
 972           } else {
 973             __ ldf(FloatRegisterImpl::D, base, offset, to_reg->as_double_reg());
 974           }
 975           break;
 976         }
 977       default      : ShouldNotReachHere();
 978     }
 979     if (type == T_ARRAY || type == T_OBJECT) {
 980       __ verify_oop(to_reg->as_register());
 981     }
 982   }
 983   return load_offset;
 984 }
 985 
 986 
 987 int LIR_Assembler::load(Register base, Register disp, LIR_Opr to_reg, BasicType type, bool wide) {
 988   int load_offset = code_offset();
 989   switch(type) {
 990     case T_BOOLEAN: // fall through
 991     case T_BYTE  :  __ ldsb(base, disp, to_reg->as_register()); break;
 992     case T_CHAR  :  __ lduh(base, disp, to_reg->as_register()); break;
 993     case T_SHORT :  __ ldsh(base, disp, to_reg->as_register()); break;
 994     case T_INT   :  __ ld(base, disp, to_reg->as_register()); break;
 995     case T_ADDRESS: __ ld_ptr(base, disp, to_reg->as_register()); break;
 996     case T_ARRAY : // fall through
 997     case T_OBJECT:
 998       {
 999           if (UseCompressedOops && !wide) {
1000             __ lduw(base, disp, to_reg->as_register());
1001             __ decode_heap_oop(to_reg->as_register());
1002           } else {
1003             __ ld_ptr(base, disp, to_reg->as_register());
1004           }
1005           break;
1006       }
1007     case T_FLOAT:  __ ldf(FloatRegisterImpl::S, base, disp, to_reg->as_float_reg()); break;
1008     case T_DOUBLE: __ ldf(FloatRegisterImpl::D, base, disp, to_reg->as_double_reg()); break;
1009     case T_LONG  :
1010 #ifdef _LP64
1011       __ ldx(base, disp, to_reg->as_register_lo());
1012 #else
1013       assert(to_reg->as_register_hi()->successor() == to_reg->as_register_lo(),
1014              "must be sequential");
1015       __ ldd(base, disp, to_reg->as_register_hi());
1016 #endif
1017       break;
1018     default      : ShouldNotReachHere();
1019   }
1020   if (type == T_ARRAY || type == T_OBJECT) {
1021     __ verify_oop(to_reg->as_register());
1022   }
1023   return load_offset;
1024 }
1025 
1026 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
1027   LIR_Const* c = src->as_constant_ptr();
1028   switch (c->type()) {
1029     case T_INT:
1030     case T_FLOAT: {
1031       Register src_reg = O7;
1032       int value = c->as_jint_bits();
1033       if (value == 0) {
1034         src_reg = G0;
1035       } else {
1036         __ set(value, O7);
1037       }
1038       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1039       __ stw(src_reg, addr.base(), addr.disp());
1040       break;
1041     }
1042     case T_ADDRESS: {
1043       Register src_reg = O7;
1044       int value = c->as_jint_bits();
1045       if (value == 0) {
1046         src_reg = G0;
1047       } else {
1048         __ set(value, O7);
1049       }
1050       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1051       __ st_ptr(src_reg, addr.base(), addr.disp());
1052       break;
1053     }
1054     case T_OBJECT: {
1055       Register src_reg = O7;
1056       jobject2reg(c->as_jobject(), src_reg);
1057       Address addr = frame_map()->address_for_slot(dest->single_stack_ix());
1058       __ st_ptr(src_reg, addr.base(), addr.disp());
1059       break;
1060     }
1061     case T_LONG:
1062     case T_DOUBLE: {
1063       Address addr = frame_map()->address_for_double_slot(dest->double_stack_ix());
1064 
1065       Register tmp = O7;
1066       int value_lo = c->as_jint_lo_bits();
1067       if (value_lo == 0) {
1068         tmp = G0;
1069       } else {
1070         __ set(value_lo, O7);
1071       }
1072       __ stw(tmp, addr.base(), addr.disp() + lo_word_offset_in_bytes);
1073       int value_hi = c->as_jint_hi_bits();
1074       if (value_hi == 0) {
1075         tmp = G0;
1076       } else {
1077         __ set(value_hi, O7);
1078       }
1079       __ stw(tmp, addr.base(), addr.disp() + hi_word_offset_in_bytes);
1080       break;
1081     }
1082     default:
1083       Unimplemented();
1084   }
1085 }
1086 
1087 
1088 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
1089   LIR_Const* c = src->as_constant_ptr();
1090   LIR_Address* addr     = dest->as_address_ptr();
1091   Register base = addr->base()->as_pointer_register();
1092   int offset = -1;
1093 
1094   switch (c->type()) {
1095     case T_INT:
1096     case T_FLOAT:
1097     case T_ADDRESS: {
1098       LIR_Opr tmp = FrameMap::O7_opr;
1099       int value = c->as_jint_bits();
1100       if (value == 0) {
1101         tmp = FrameMap::G0_opr;
1102       } else if (Assembler::is_simm13(value)) {
1103         __ set(value, O7);
1104       }
1105       if (addr->index()->is_valid()) {
1106         assert(addr->disp() == 0, "must be zero");
1107         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1108       } else {
1109         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1110         offset = store(tmp, base, addr->disp(), type, wide, false);
1111       }
1112       break;
1113     }
1114     case T_LONG:
1115     case T_DOUBLE: {
1116       assert(!addr->index()->is_valid(), "can't handle reg reg address here");
1117       assert(Assembler::is_simm13(addr->disp()) &&
1118              Assembler::is_simm13(addr->disp() + 4), "can't handle larger addresses");
1119 
1120       LIR_Opr tmp = FrameMap::O7_opr;
1121       int value_lo = c->as_jint_lo_bits();
1122       if (value_lo == 0) {
1123         tmp = FrameMap::G0_opr;
1124       } else {
1125         __ set(value_lo, O7);
1126       }
1127       offset = store(tmp, base, addr->disp() + lo_word_offset_in_bytes, T_INT, wide, false);
1128       int value_hi = c->as_jint_hi_bits();
1129       if (value_hi == 0) {
1130         tmp = FrameMap::G0_opr;
1131       } else {
1132         __ set(value_hi, O7);
1133       }
1134       store(tmp, base, addr->disp() + hi_word_offset_in_bytes, T_INT, wide, false);
1135       break;
1136     }
1137     case T_OBJECT: {
1138       jobject obj = c->as_jobject();
1139       LIR_Opr tmp;
1140       if (obj == NULL) {
1141         tmp = FrameMap::G0_opr;
1142       } else {
1143         tmp = FrameMap::O7_opr;
1144         jobject2reg(c->as_jobject(), O7);
1145       }
1146       // handle either reg+reg or reg+disp address
1147       if (addr->index()->is_valid()) {
1148         assert(addr->disp() == 0, "must be zero");
1149         offset = store(tmp, base, addr->index()->as_pointer_register(), type, wide);
1150       } else {
1151         assert(Assembler::is_simm13(addr->disp()), "can't handle larger addresses");
1152         offset = store(tmp, base, addr->disp(), type, wide, false);
1153       }
1154 
1155       break;
1156     }
1157     default:
1158       Unimplemented();
1159   }
1160   if (info != NULL) {
1161     assert(offset != -1, "offset should've been set");
1162     add_debug_info_for_null_check(offset, info);
1163   }
1164 }
1165 
1166 
1167 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
1168   LIR_Const* c = src->as_constant_ptr();
1169   LIR_Opr to_reg = dest;
1170 
1171   switch (c->type()) {
1172     case T_INT:
1173     case T_ADDRESS:
1174       {
1175         jint con = c->as_jint();
1176         if (to_reg->is_single_cpu()) {
1177           assert(patch_code == lir_patch_none, "no patching handled here");
1178           __ set(con, to_reg->as_register());
1179         } else {
1180           ShouldNotReachHere();
1181           assert(to_reg->is_single_fpu(), "wrong register kind");
1182 
1183           __ set(con, O7);
1184           Address temp_slot(SP, (frame::register_save_words * wordSize) + STACK_BIAS);
1185           __ st(O7, temp_slot);
1186           __ ldf(FloatRegisterImpl::S, temp_slot, to_reg->as_float_reg());
1187         }
1188       }
1189       break;
1190 
1191     case T_LONG:
1192       {
1193         jlong con = c->as_jlong();
1194 
1195         if (to_reg->is_double_cpu()) {
1196 #ifdef _LP64
1197           __ set(con,  to_reg->as_register_lo());
1198 #else
1199           __ set(low(con),  to_reg->as_register_lo());
1200           __ set(high(con), to_reg->as_register_hi());
1201 #endif
1202 #ifdef _LP64
1203         } else if (to_reg->is_single_cpu()) {
1204           __ set(con, to_reg->as_register());
1205 #endif
1206         } else {
1207           ShouldNotReachHere();
1208           assert(to_reg->is_double_fpu(), "wrong register kind");
1209           Address temp_slot_lo(SP, ((frame::register_save_words  ) * wordSize) + STACK_BIAS);
1210           Address temp_slot_hi(SP, ((frame::register_save_words) * wordSize) + (longSize/2) + STACK_BIAS);
1211           __ set(low(con),  O7);
1212           __ st(O7, temp_slot_lo);
1213           __ set(high(con), O7);
1214           __ st(O7, temp_slot_hi);
1215           __ ldf(FloatRegisterImpl::D, temp_slot_lo, to_reg->as_double_reg());
1216         }
1217       }
1218       break;
1219 
1220     case T_OBJECT:
1221       {
1222         if (patch_code == lir_patch_none) {
1223           jobject2reg(c->as_jobject(), to_reg->as_register());
1224         } else {
1225           jobject2reg_with_patching(to_reg->as_register(), info);
1226         }
1227       }
1228       break;
1229 
1230     case T_FLOAT:
1231       {
1232         address const_addr = __ float_constant(c->as_jfloat());
1233         if (const_addr == NULL) {
1234           bailout("const section overflow");
1235           break;
1236         }
1237         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1238         AddressLiteral const_addrlit(const_addr, rspec);
1239         if (to_reg->is_single_fpu()) {
1240           __ patchable_sethi(const_addrlit, O7);
1241           __ relocate(rspec);
1242           __ ldf(FloatRegisterImpl::S, O7, const_addrlit.low10(), to_reg->as_float_reg());
1243 
1244         } else {
1245           assert(to_reg->is_single_cpu(), "Must be a cpu register.");
1246 
1247           __ set(const_addrlit, O7);
1248           __ ld(O7, 0, to_reg->as_register());
1249         }
1250       }
1251       break;
1252 
1253     case T_DOUBLE:
1254       {
1255         address const_addr = __ double_constant(c->as_jdouble());
1256         if (const_addr == NULL) {
1257           bailout("const section overflow");
1258           break;
1259         }
1260         RelocationHolder rspec = internal_word_Relocation::spec(const_addr);
1261 
1262         if (to_reg->is_double_fpu()) {
1263           AddressLiteral const_addrlit(const_addr, rspec);
1264           __ patchable_sethi(const_addrlit, O7);
1265           __ relocate(rspec);
1266           __ ldf (FloatRegisterImpl::D, O7, const_addrlit.low10(), to_reg->as_double_reg());
1267         } else {
1268           assert(to_reg->is_double_cpu(), "Must be a long register.");
1269 #ifdef _LP64
1270           __ set(jlong_cast(c->as_jdouble()), to_reg->as_register_lo());
1271 #else
1272           __ set(low(jlong_cast(c->as_jdouble())), to_reg->as_register_lo());
1273           __ set(high(jlong_cast(c->as_jdouble())), to_reg->as_register_hi());
1274 #endif
1275         }
1276 
1277       }
1278       break;
1279 
1280     default:
1281       ShouldNotReachHere();
1282   }
1283 }
1284 
1285 Address LIR_Assembler::as_Address(LIR_Address* addr) {
1286   Register reg = addr->base()->as_register();
1287   return Address(reg, addr->disp());
1288 }
1289 
1290 
1291 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1292   switch (type) {
1293     case T_INT:
1294     case T_FLOAT: {
1295       Register tmp = O7;
1296       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1297       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1298       __ lduw(from.base(), from.disp(), tmp);
1299       __ stw(tmp, to.base(), to.disp());
1300       break;
1301     }
1302     case T_OBJECT: {
1303       Register tmp = O7;
1304       Address from = frame_map()->address_for_slot(src->single_stack_ix());
1305       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
1306       __ ld_ptr(from.base(), from.disp(), tmp);
1307       __ st_ptr(tmp, to.base(), to.disp());
1308       break;
1309     }
1310     case T_LONG:
1311     case T_DOUBLE: {
1312       Register tmp = O7;
1313       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
1314       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
1315       __ lduw(from.base(), from.disp(), tmp);
1316       __ stw(tmp, to.base(), to.disp());
1317       __ lduw(from.base(), from.disp() + 4, tmp);
1318       __ stw(tmp, to.base(), to.disp() + 4);
1319       break;
1320     }
1321 
1322     default:
1323       ShouldNotReachHere();
1324   }
1325 }
1326 
1327 
1328 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
1329   Address base = as_Address(addr);
1330   return Address(base.base(), base.disp() + hi_word_offset_in_bytes);
1331 }
1332 
1333 
1334 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
1335   Address base = as_Address(addr);
1336   return Address(base.base(), base.disp() + lo_word_offset_in_bytes);
1337 }
1338 
1339 
1340 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type,
1341                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool unaligned) {
1342 
1343   LIR_Address* addr = src_opr->as_address_ptr();
1344   LIR_Opr to_reg = dest;
1345 
1346   Register src = addr->base()->as_pointer_register();
1347   Register disp_reg = noreg;
1348   int disp_value = addr->disp();
1349   bool needs_patching = (patch_code != lir_patch_none);
1350 
1351   if (addr->base()->type() == T_OBJECT) {
1352     __ verify_oop(src);
1353   }
1354 
1355   PatchingStub* patch = NULL;
1356   if (needs_patching) {
1357     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1358     assert(!to_reg->is_double_cpu() ||
1359            patch_code == lir_patch_none ||
1360            patch_code == lir_patch_normal, "patching doesn't match register");
1361   }
1362 
1363   if (addr->index()->is_illegal()) {
1364     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1365       if (needs_patching) {
1366         __ patchable_set(0, O7);
1367       } else {
1368         __ set(disp_value, O7);
1369       }
1370       disp_reg = O7;
1371     }
1372   } else if (unaligned || PatchALot) {
1373     __ add(src, addr->index()->as_register(), O7);
1374     src = O7;
1375   } else {
1376     disp_reg = addr->index()->as_pointer_register();
1377     assert(disp_value == 0, "can't handle 3 operand addresses");
1378   }
1379 
1380   // remember the offset of the load.  The patching_epilog must be done
1381   // before the call to add_debug_info, otherwise the PcDescs don't get
1382   // entered in increasing order.
1383   int offset = code_offset();
1384 
1385   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1386   if (disp_reg == noreg) {
1387     offset = load(src, disp_value, to_reg, type, wide, unaligned);
1388   } else {
1389     assert(!unaligned, "can't handle this");
1390     offset = load(src, disp_reg, to_reg, type, wide);
1391   }
1392 
1393   if (patch != NULL) {
1394     patching_epilog(patch, patch_code, src, info);
1395   }
1396   if (info != NULL) add_debug_info_for_null_check(offset, info);
1397 }
1398 
1399 
1400 void LIR_Assembler::prefetchr(LIR_Opr src) {
1401   LIR_Address* addr = src->as_address_ptr();
1402   Address from_addr = as_Address(addr);
1403 
1404   if (VM_Version::has_v9()) {
1405     __ prefetch(from_addr, Assembler::severalReads);
1406   }
1407 }
1408 
1409 
1410 void LIR_Assembler::prefetchw(LIR_Opr src) {
1411   LIR_Address* addr = src->as_address_ptr();
1412   Address from_addr = as_Address(addr);
1413 
1414   if (VM_Version::has_v9()) {
1415     __ prefetch(from_addr, Assembler::severalWritesAndPossiblyReads);
1416   }
1417 }
1418 
1419 
1420 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1421   Address addr;
1422   if (src->is_single_word()) {
1423     addr = frame_map()->address_for_slot(src->single_stack_ix());
1424   } else if (src->is_double_word())  {
1425     addr = frame_map()->address_for_double_slot(src->double_stack_ix());
1426   }
1427 
1428   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1429   load(addr.base(), addr.disp(), dest, dest->type(), true /*wide*/, unaligned);
1430 }
1431 
1432 
1433 void LIR_Assembler::reg2stack(LIR_Opr from_reg, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1434   Address addr;
1435   if (dest->is_single_word()) {
1436     addr = frame_map()->address_for_slot(dest->single_stack_ix());
1437   } else if (dest->is_double_word())  {
1438     addr = frame_map()->address_for_slot(dest->double_stack_ix());
1439   }
1440   bool unaligned = (addr.disp() - STACK_BIAS) % 8 != 0;
1441   store(from_reg, addr.base(), addr.disp(), from_reg->type(), true /*wide*/, unaligned);
1442 }
1443 
1444 
1445 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1446   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1447     if (from_reg->is_double_fpu()) {
1448       // double to double moves
1449       assert(to_reg->is_double_fpu(), "should match");
1450       __ fmov(FloatRegisterImpl::D, from_reg->as_double_reg(), to_reg->as_double_reg());
1451     } else {
1452       // float to float moves
1453       assert(to_reg->is_single_fpu(), "should match");
1454       __ fmov(FloatRegisterImpl::S, from_reg->as_float_reg(), to_reg->as_float_reg());
1455     }
1456   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1457     if (from_reg->is_double_cpu()) {
1458 #ifdef _LP64
1459       __ mov(from_reg->as_pointer_register(), to_reg->as_pointer_register());
1460 #else
1461       assert(to_reg->is_double_cpu() &&
1462              from_reg->as_register_hi() != to_reg->as_register_lo() &&
1463              from_reg->as_register_lo() != to_reg->as_register_hi(),
1464              "should both be long and not overlap");
1465       // long to long moves
1466       __ mov(from_reg->as_register_hi(), to_reg->as_register_hi());
1467       __ mov(from_reg->as_register_lo(), to_reg->as_register_lo());
1468 #endif
1469 #ifdef _LP64
1470     } else if (to_reg->is_double_cpu()) {
1471       // int to int moves
1472       __ mov(from_reg->as_register(), to_reg->as_register_lo());
1473 #endif
1474     } else {
1475       // int to int moves
1476       __ mov(from_reg->as_register(), to_reg->as_register());
1477     }
1478   } else {
1479     ShouldNotReachHere();
1480   }
1481   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1482     __ verify_oop(to_reg->as_register());
1483   }
1484 }
1485 
1486 
1487 void LIR_Assembler::reg2mem(LIR_Opr from_reg, LIR_Opr dest, BasicType type,
1488                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1489                             bool wide, bool unaligned) {
1490   LIR_Address* addr = dest->as_address_ptr();
1491 
1492   Register src = addr->base()->as_pointer_register();
1493   Register disp_reg = noreg;
1494   int disp_value = addr->disp();
1495   bool needs_patching = (patch_code != lir_patch_none);
1496 
1497   if (addr->base()->is_oop_register()) {
1498     __ verify_oop(src);
1499   }
1500 
1501   PatchingStub* patch = NULL;
1502   if (needs_patching) {
1503     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1504     assert(!from_reg->is_double_cpu() ||
1505            patch_code == lir_patch_none ||
1506            patch_code == lir_patch_normal, "patching doesn't match register");
1507   }
1508 
1509   if (addr->index()->is_illegal()) {
1510     if (!Assembler::is_simm13(disp_value) && (!unaligned || Assembler::is_simm13(disp_value + 4))) {
1511       if (needs_patching) {
1512         __ patchable_set(0, O7);
1513       } else {
1514         __ set(disp_value, O7);
1515       }
1516       disp_reg = O7;
1517     }
1518   } else if (unaligned || PatchALot) {
1519     __ add(src, addr->index()->as_register(), O7);
1520     src = O7;
1521   } else {
1522     disp_reg = addr->index()->as_pointer_register();
1523     assert(disp_value == 0, "can't handle 3 operand addresses");
1524   }
1525 
1526   // remember the offset of the store.  The patching_epilog must be done
1527   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1528   // entered in increasing order.
1529   int offset;
1530 
1531   assert(disp_reg != noreg || Assembler::is_simm13(disp_value), "should have set this up");
1532   if (disp_reg == noreg) {
1533     offset = store(from_reg, src, disp_value, type, wide, unaligned);
1534   } else {
1535     assert(!unaligned, "can't handle this");
1536     offset = store(from_reg, src, disp_reg, type, wide);
1537   }
1538 
1539   if (patch != NULL) {
1540     patching_epilog(patch, patch_code, src, info);
1541   }
1542 
1543   if (info != NULL) add_debug_info_for_null_check(offset, info);
1544 }
1545 
1546 
1547 void LIR_Assembler::return_op(LIR_Opr result) {
1548   // the poll may need a register so just pick one that isn't the return register
1549 #if defined(TIERED) && !defined(_LP64)
1550   if (result->type_field() == LIR_OprDesc::long_type) {
1551     // Must move the result to G1
1552     // Must leave proper result in O0,O1 and G1 (TIERED only)
1553     __ sllx(I0, 32, G1);          // Shift bits into high G1
1554     __ srl (I1, 0, I1);           // Zero extend O1 (harmless?)
1555     __ or3 (I1, G1, G1);          // OR 64 bits into G1
1556 #ifdef ASSERT
1557     // mangle it so any problems will show up
1558     __ set(0xdeadbeef, I0);
1559     __ set(0xdeadbeef, I1);
1560 #endif
1561   }
1562 #endif // TIERED
1563   __ set((intptr_t)os::get_polling_page(), L0);
1564   __ relocate(relocInfo::poll_return_type);
1565   __ ld_ptr(L0, 0, G0);
1566   __ ret();
1567   __ delayed()->restore();
1568 }
1569 
1570 
1571 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1572   __ set((intptr_t)os::get_polling_page(), tmp->as_register());
1573   if (info != NULL) {
1574     add_debug_info_for_branch(info);
1575   } else {
1576     __ relocate(relocInfo::poll_type);
1577   }
1578 
1579   int offset = __ offset();
1580   __ ld_ptr(tmp->as_register(), 0, G0);
1581 
1582   return offset;
1583 }
1584 
1585 
1586 void LIR_Assembler::emit_static_call_stub() {
1587   address call_pc = __ pc();
1588   address stub = __ start_a_stub(call_stub_size);
1589   if (stub == NULL) {
1590     bailout("static call stub overflow");
1591     return;
1592   }
1593 
1594   int start = __ offset();
1595   __ relocate(static_stub_Relocation::spec(call_pc));
1596 
1597   __ set_oop(NULL, G5);
1598   // must be set to -1 at code generation time
1599   AddressLiteral addrlit(-1);
1600   __ jump_to(addrlit, G3);
1601   __ delayed()->nop();
1602 
1603   assert(__ offset() - start <= call_stub_size, "stub too big");
1604   __ end_a_stub();
1605 }
1606 
1607 
1608 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1609   if (opr1->is_single_fpu()) {
1610     __ fcmp(FloatRegisterImpl::S, Assembler::fcc0, opr1->as_float_reg(), opr2->as_float_reg());
1611   } else if (opr1->is_double_fpu()) {
1612     __ fcmp(FloatRegisterImpl::D, Assembler::fcc0, opr1->as_double_reg(), opr2->as_double_reg());
1613   } else if (opr1->is_single_cpu()) {
1614     if (opr2->is_constant()) {
1615       switch (opr2->as_constant_ptr()->type()) {
1616         case T_INT:
1617           { jint con = opr2->as_constant_ptr()->as_jint();
1618             if (Assembler::is_simm13(con)) {
1619               __ cmp(opr1->as_register(), con);
1620             } else {
1621               __ set(con, O7);
1622               __ cmp(opr1->as_register(), O7);
1623             }
1624           }
1625           break;
1626 
1627         case T_OBJECT:
1628           // there are only equal/notequal comparisions on objects
1629           { jobject con = opr2->as_constant_ptr()->as_jobject();
1630             if (con == NULL) {
1631               __ cmp(opr1->as_register(), 0);
1632             } else {
1633               jobject2reg(con, O7);
1634               __ cmp(opr1->as_register(), O7);
1635             }
1636           }
1637           break;
1638 
1639         default:
1640           ShouldNotReachHere();
1641           break;
1642       }
1643     } else {
1644       if (opr2->is_address()) {
1645         LIR_Address * addr = opr2->as_address_ptr();
1646         BasicType type = addr->type();
1647         if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1648         else                    __ ld(as_Address(addr), O7);
1649         __ cmp(opr1->as_register(), O7);
1650       } else {
1651         __ cmp(opr1->as_register(), opr2->as_register());
1652       }
1653     }
1654   } else if (opr1->is_double_cpu()) {
1655     Register xlo = opr1->as_register_lo();
1656     Register xhi = opr1->as_register_hi();
1657     if (opr2->is_constant() && opr2->as_jlong() == 0) {
1658       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles these cases");
1659 #ifdef _LP64
1660       __ orcc(xhi, G0, G0);
1661 #else
1662       __ orcc(xhi, xlo, G0);
1663 #endif
1664     } else if (opr2->is_register()) {
1665       Register ylo = opr2->as_register_lo();
1666       Register yhi = opr2->as_register_hi();
1667 #ifdef _LP64
1668       __ cmp(xlo, ylo);
1669 #else
1670       __ subcc(xlo, ylo, xlo);
1671       __ subccc(xhi, yhi, xhi);
1672       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
1673         __ orcc(xhi, xlo, G0);
1674       }
1675 #endif
1676     } else {
1677       ShouldNotReachHere();
1678     }
1679   } else if (opr1->is_address()) {
1680     LIR_Address * addr = opr1->as_address_ptr();
1681     BasicType type = addr->type();
1682     assert (opr2->is_constant(), "Checking");
1683     if ( type == T_OBJECT ) __ ld_ptr(as_Address(addr), O7);
1684     else                    __ ld(as_Address(addr), O7);
1685     __ cmp(O7, opr2->as_constant_ptr()->as_jint());
1686   } else {
1687     ShouldNotReachHere();
1688   }
1689 }
1690 
1691 
1692 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op){
1693   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1694     bool is_unordered_less = (code == lir_ucmp_fd2i);
1695     if (left->is_single_fpu()) {
1696       __ float_cmp(true, is_unordered_less ? -1 : 1, left->as_float_reg(), right->as_float_reg(), dst->as_register());
1697     } else if (left->is_double_fpu()) {
1698       __ float_cmp(false, is_unordered_less ? -1 : 1, left->as_double_reg(), right->as_double_reg(), dst->as_register());
1699     } else {
1700       ShouldNotReachHere();
1701     }
1702   } else if (code == lir_cmp_l2i) {
1703 #ifdef _LP64
1704     __ lcmp(left->as_register_lo(), right->as_register_lo(), dst->as_register());
1705 #else
1706     __ lcmp(left->as_register_hi(),  left->as_register_lo(),
1707             right->as_register_hi(), right->as_register_lo(),
1708             dst->as_register());
1709 #endif
1710   } else {
1711     ShouldNotReachHere();
1712   }
1713 }
1714 
1715 
1716 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1717   Assembler::Condition acond;
1718   switch (condition) {
1719     case lir_cond_equal:        acond = Assembler::equal;        break;
1720     case lir_cond_notEqual:     acond = Assembler::notEqual;     break;
1721     case lir_cond_less:         acond = Assembler::less;         break;
1722     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    break;
1723     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; break;
1724     case lir_cond_greater:      acond = Assembler::greater;      break;
1725     case lir_cond_aboveEqual:   acond = Assembler::greaterEqualUnsigned;      break;
1726     case lir_cond_belowEqual:   acond = Assembler::lessEqualUnsigned;      break;
1727     default:                         ShouldNotReachHere();
1728   };
1729 
1730   if (opr1->is_constant() && opr1->type() == T_INT) {
1731     Register dest = result->as_register();
1732     // load up first part of constant before branch
1733     // and do the rest in the delay slot.
1734     if (!Assembler::is_simm13(opr1->as_jint())) {
1735       __ sethi(opr1->as_jint(), dest);
1736     }
1737   } else if (opr1->is_constant()) {
1738     const2reg(opr1, result, lir_patch_none, NULL);
1739   } else if (opr1->is_register()) {
1740     reg2reg(opr1, result);
1741   } else if (opr1->is_stack()) {
1742     stack2reg(opr1, result, result->type());
1743   } else {
1744     ShouldNotReachHere();
1745   }
1746   Label skip;
1747 #ifdef _LP64
1748     if  (type == T_INT) {
1749       __ br(acond, false, Assembler::pt, skip);
1750     } else
1751 #endif
1752       __ brx(acond, false, Assembler::pt, skip); // checks icc on 32bit and xcc on 64bit
1753   if (opr1->is_constant() && opr1->type() == T_INT) {
1754     Register dest = result->as_register();
1755     if (Assembler::is_simm13(opr1->as_jint())) {
1756       __ delayed()->or3(G0, opr1->as_jint(), dest);
1757     } else {
1758       // the sethi has been done above, so just put in the low 10 bits
1759       __ delayed()->or3(dest, opr1->as_jint() & 0x3ff, dest);
1760     }
1761   } else {
1762     // can't do anything useful in the delay slot
1763     __ delayed()->nop();
1764   }
1765   if (opr2->is_constant()) {
1766     const2reg(opr2, result, lir_patch_none, NULL);
1767   } else if (opr2->is_register()) {
1768     reg2reg(opr2, result);
1769   } else if (opr2->is_stack()) {
1770     stack2reg(opr2, result, result->type());
1771   } else {
1772     ShouldNotReachHere();
1773   }
1774   __ bind(skip);
1775 }
1776 
1777 
1778 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
1779   assert(info == NULL, "unused on this code path");
1780   assert(left->is_register(), "wrong items state");
1781   assert(dest->is_register(), "wrong items state");
1782 
1783   if (right->is_register()) {
1784     if (dest->is_float_kind()) {
1785 
1786       FloatRegister lreg, rreg, res;
1787       FloatRegisterImpl::Width w;
1788       if (right->is_single_fpu()) {
1789         w = FloatRegisterImpl::S;
1790         lreg = left->as_float_reg();
1791         rreg = right->as_float_reg();
1792         res  = dest->as_float_reg();
1793       } else {
1794         w = FloatRegisterImpl::D;
1795         lreg = left->as_double_reg();
1796         rreg = right->as_double_reg();
1797         res  = dest->as_double_reg();
1798       }
1799 
1800       switch (code) {
1801         case lir_add: __ fadd(w, lreg, rreg, res); break;
1802         case lir_sub: __ fsub(w, lreg, rreg, res); break;
1803         case lir_mul: // fall through
1804         case lir_mul_strictfp: __ fmul(w, lreg, rreg, res); break;
1805         case lir_div: // fall through
1806         case lir_div_strictfp: __ fdiv(w, lreg, rreg, res); break;
1807         default: ShouldNotReachHere();
1808       }
1809 
1810     } else if (dest->is_double_cpu()) {
1811 #ifdef _LP64
1812       Register dst_lo = dest->as_register_lo();
1813       Register op1_lo = left->as_pointer_register();
1814       Register op2_lo = right->as_pointer_register();
1815 
1816       switch (code) {
1817         case lir_add:
1818           __ add(op1_lo, op2_lo, dst_lo);
1819           break;
1820 
1821         case lir_sub:
1822           __ sub(op1_lo, op2_lo, dst_lo);
1823           break;
1824 
1825         default: ShouldNotReachHere();
1826       }
1827 #else
1828       Register op1_lo = left->as_register_lo();
1829       Register op1_hi = left->as_register_hi();
1830       Register op2_lo = right->as_register_lo();
1831       Register op2_hi = right->as_register_hi();
1832       Register dst_lo = dest->as_register_lo();
1833       Register dst_hi = dest->as_register_hi();
1834 
1835       switch (code) {
1836         case lir_add:
1837           __ addcc(op1_lo, op2_lo, dst_lo);
1838           __ addc (op1_hi, op2_hi, dst_hi);
1839           break;
1840 
1841         case lir_sub:
1842           __ subcc(op1_lo, op2_lo, dst_lo);
1843           __ subc (op1_hi, op2_hi, dst_hi);
1844           break;
1845 
1846         default: ShouldNotReachHere();
1847       }
1848 #endif
1849     } else {
1850       assert (right->is_single_cpu(), "Just Checking");
1851 
1852       Register lreg = left->as_register();
1853       Register res  = dest->as_register();
1854       Register rreg = right->as_register();
1855       switch (code) {
1856         case lir_add:  __ add  (lreg, rreg, res); break;
1857         case lir_sub:  __ sub  (lreg, rreg, res); break;
1858         case lir_mul:  __ mult (lreg, rreg, res); break;
1859         default: ShouldNotReachHere();
1860       }
1861     }
1862   } else {
1863     assert (right->is_constant(), "must be constant");
1864 
1865     if (dest->is_single_cpu()) {
1866       Register lreg = left->as_register();
1867       Register res  = dest->as_register();
1868       int    simm13 = right->as_constant_ptr()->as_jint();
1869 
1870       switch (code) {
1871         case lir_add:  __ add  (lreg, simm13, res); break;
1872         case lir_sub:  __ sub  (lreg, simm13, res); break;
1873         case lir_mul:  __ mult (lreg, simm13, res); break;
1874         default: ShouldNotReachHere();
1875       }
1876     } else {
1877       Register lreg = left->as_pointer_register();
1878       Register res  = dest->as_register_lo();
1879       long con = right->as_constant_ptr()->as_jlong();
1880       assert(Assembler::is_simm13(con), "must be simm13");
1881 
1882       switch (code) {
1883         case lir_add:  __ add  (lreg, (int)con, res); break;
1884         case lir_sub:  __ sub  (lreg, (int)con, res); break;
1885         case lir_mul:  __ mult (lreg, (int)con, res); break;
1886         default: ShouldNotReachHere();
1887       }
1888     }
1889   }
1890 }
1891 
1892 
1893 void LIR_Assembler::fpop() {
1894   // do nothing
1895 }
1896 
1897 
1898 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1899   switch (code) {
1900     case lir_sin:
1901     case lir_tan:
1902     case lir_cos: {
1903       assert(thread->is_valid(), "preserve the thread object for performance reasons");
1904       assert(dest->as_double_reg() == F0, "the result will be in f0/f1");
1905       break;
1906     }
1907     case lir_sqrt: {
1908       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1909       FloatRegister src_reg = value->as_double_reg();
1910       FloatRegister dst_reg = dest->as_double_reg();
1911       __ fsqrt(FloatRegisterImpl::D, src_reg, dst_reg);
1912       break;
1913     }
1914     case lir_abs: {
1915       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1916       FloatRegister src_reg = value->as_double_reg();
1917       FloatRegister dst_reg = dest->as_double_reg();
1918       __ fabs(FloatRegisterImpl::D, src_reg, dst_reg);
1919       break;
1920     }
1921     default: {
1922       ShouldNotReachHere();
1923       break;
1924     }
1925   }
1926 }
1927 
1928 
1929 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
1930   if (right->is_constant()) {
1931     if (dest->is_single_cpu()) {
1932       int simm13 = right->as_constant_ptr()->as_jint();
1933       switch (code) {
1934         case lir_logic_and:   __ and3 (left->as_register(), simm13, dest->as_register()); break;
1935         case lir_logic_or:    __ or3  (left->as_register(), simm13, dest->as_register()); break;
1936         case lir_logic_xor:   __ xor3 (left->as_register(), simm13, dest->as_register()); break;
1937         default: ShouldNotReachHere();
1938       }
1939     } else {
1940       long c = right->as_constant_ptr()->as_jlong();
1941       assert(c == (int)c && Assembler::is_simm13(c), "out of range");
1942       int simm13 = (int)c;
1943       switch (code) {
1944         case lir_logic_and:
1945 #ifndef _LP64
1946           __ and3 (left->as_register_hi(), 0,      dest->as_register_hi());
1947 #endif
1948           __ and3 (left->as_register_lo(), simm13, dest->as_register_lo());
1949           break;
1950 
1951         case lir_logic_or:
1952 #ifndef _LP64
1953           __ or3 (left->as_register_hi(), 0,      dest->as_register_hi());
1954 #endif
1955           __ or3 (left->as_register_lo(), simm13, dest->as_register_lo());
1956           break;
1957 
1958         case lir_logic_xor:
1959 #ifndef _LP64
1960           __ xor3 (left->as_register_hi(), 0,      dest->as_register_hi());
1961 #endif
1962           __ xor3 (left->as_register_lo(), simm13, dest->as_register_lo());
1963           break;
1964 
1965         default: ShouldNotReachHere();
1966       }
1967     }
1968   } else {
1969     assert(right->is_register(), "right should be in register");
1970 
1971     if (dest->is_single_cpu()) {
1972       switch (code) {
1973         case lir_logic_and:   __ and3 (left->as_register(), right->as_register(), dest->as_register()); break;
1974         case lir_logic_or:    __ or3  (left->as_register(), right->as_register(), dest->as_register()); break;
1975         case lir_logic_xor:   __ xor3 (left->as_register(), right->as_register(), dest->as_register()); break;
1976         default: ShouldNotReachHere();
1977       }
1978     } else {
1979 #ifdef _LP64
1980       Register l = (left->is_single_cpu() && left->is_oop_register()) ? left->as_register() :
1981                                                                         left->as_register_lo();
1982       Register r = (right->is_single_cpu() && right->is_oop_register()) ? right->as_register() :
1983                                                                           right->as_register_lo();
1984 
1985       switch (code) {
1986         case lir_logic_and: __ and3 (l, r, dest->as_register_lo()); break;
1987         case lir_logic_or:  __ or3  (l, r, dest->as_register_lo()); break;
1988         case lir_logic_xor: __ xor3 (l, r, dest->as_register_lo()); break;
1989         default: ShouldNotReachHere();
1990       }
1991 #else
1992       switch (code) {
1993         case lir_logic_and:
1994           __ and3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
1995           __ and3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
1996           break;
1997 
1998         case lir_logic_or:
1999           __ or3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2000           __ or3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2001           break;
2002 
2003         case lir_logic_xor:
2004           __ xor3 (left->as_register_hi(), right->as_register_hi(), dest->as_register_hi());
2005           __ xor3 (left->as_register_lo(), right->as_register_lo(), dest->as_register_lo());
2006           break;
2007 
2008         default: ShouldNotReachHere();
2009       }
2010 #endif
2011     }
2012   }
2013 }
2014 
2015 
2016 int LIR_Assembler::shift_amount(BasicType t) {
2017   int elem_size = type2aelembytes(t);
2018   switch (elem_size) {
2019     case 1 : return 0;
2020     case 2 : return 1;
2021     case 4 : return 2;
2022     case 8 : return 3;
2023   }
2024   ShouldNotReachHere();
2025   return -1;
2026 }
2027 
2028 
2029 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2030   assert(exceptionOop->as_register() == Oexception, "should match");
2031   assert(exceptionPC->as_register() == Oissuing_pc, "should match");
2032 
2033   info->add_register_oop(exceptionOop);
2034 
2035   // reuse the debug info from the safepoint poll for the throw op itself
2036   address pc_for_athrow  = __ pc();
2037   int pc_for_athrow_offset = __ offset();
2038   RelocationHolder rspec = internal_word_Relocation::spec(pc_for_athrow);
2039   __ set(pc_for_athrow, Oissuing_pc, rspec);
2040   add_call_info(pc_for_athrow_offset, info); // for exception handler
2041 
2042   __ call(Runtime1::entry_for(Runtime1::handle_exception_id), relocInfo::runtime_call_type);
2043   __ delayed()->nop();
2044 }
2045 
2046 
2047 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2048   assert(exceptionOop->as_register() == Oexception, "should match");
2049 
2050   __ br(Assembler::always, false, Assembler::pt, _unwind_handler_entry);
2051   __ delayed()->nop();
2052 }
2053 
2054 
2055 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
2056   Register src = op->src()->as_register();
2057   Register dst = op->dst()->as_register();
2058   Register src_pos = op->src_pos()->as_register();
2059   Register dst_pos = op->dst_pos()->as_register();
2060   Register length  = op->length()->as_register();
2061   Register tmp = op->tmp()->as_register();
2062   Register tmp2 = O7;
2063 
2064   int flags = op->flags();
2065   ciArrayKlass* default_type = op->expected_type();
2066   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
2067   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
2068 
2069 #ifdef _LP64
2070   // higher 32bits must be null
2071   __ sra(dst_pos, 0, dst_pos);
2072   __ sra(src_pos, 0, src_pos);
2073   __ sra(length, 0, length);
2074 #endif
2075 
2076   // set up the arraycopy stub information
2077   ArrayCopyStub* stub = op->stub();
2078 
2079   // always do stub if no type information is available.  it's ok if
2080   // the known type isn't loaded since the code sanity checks
2081   // in debug mode and the type isn't required when we know the exact type
2082   // also check that the type is an array type.
2083   if (op->expected_type() == NULL) {
2084     __ mov(src,     O0);
2085     __ mov(src_pos, O1);
2086     __ mov(dst,     O2);
2087     __ mov(dst_pos, O3);
2088     __ mov(length,  O4);
2089     address copyfunc_addr = StubRoutines::generic_arraycopy();
2090 
2091     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
2092       __ call_VM_leaf(tmp, CAST_FROM_FN_PTR(address, Runtime1::arraycopy));
2093     } else {
2094 #ifndef PRODUCT
2095       if (PrintC1Statistics) {
2096         address counter = (address)&Runtime1::_generic_arraycopystub_cnt;
2097         __ inc_counter(counter, G1, G3);
2098       }
2099 #endif
2100       __ call_VM_leaf(tmp, copyfunc_addr);
2101     }
2102 
2103     if (copyfunc_addr != NULL) {
2104       __ xor3(O0, -1, tmp);
2105       __ sub(length, tmp, length);
2106       __ add(src_pos, tmp, src_pos);
2107       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
2108       __ delayed()->add(dst_pos, tmp, dst_pos);
2109     } else {
2110       __ cmp_zero_and_br(Assembler::less, O0, *stub->entry());
2111       __ delayed()->nop();
2112     }
2113     __ bind(*stub->continuation());
2114     return;
2115   }
2116 
2117   assert(default_type != NULL && default_type->is_array_klass(), "must be true at this point");
2118 
2119   // make sure src and dst are non-null and load array length
2120   if (flags & LIR_OpArrayCopy::src_null_check) {
2121     __ tst(src);
2122     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2123     __ delayed()->nop();
2124   }
2125 
2126   if (flags & LIR_OpArrayCopy::dst_null_check) {
2127     __ tst(dst);
2128     __ brx(Assembler::equal, false, Assembler::pn, *stub->entry());
2129     __ delayed()->nop();
2130   }
2131 
2132   // If the compiler was not able to prove that exact type of the source or the destination
2133   // of the arraycopy is an array type, check at runtime if the source or the destination is
2134   // an instance type.
2135   if (flags & LIR_OpArrayCopy::type_check) {
2136     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
2137       __ load_klass(dst, tmp);
2138       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
2139       __ cmp(tmp2, Klass::_lh_neutral_value);
2140       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
2141       __ delayed()->nop();
2142     }
2143 
2144     if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
2145       __ load_klass(src, tmp);
2146       __ lduw(tmp, in_bytes(Klass::layout_helper_offset()), tmp2);
2147       __ cmp(tmp2, Klass::_lh_neutral_value);
2148       __ br(Assembler::greaterEqual, false, Assembler::pn, *stub->entry());
2149       __ delayed()->nop();
2150     }
2151   }
2152 
2153   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2154     // test src_pos register
2155     __ cmp_zero_and_br(Assembler::less, src_pos, *stub->entry());
2156     __ delayed()->nop();
2157   }
2158 
2159   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2160     // test dst_pos register
2161     __ cmp_zero_and_br(Assembler::less, dst_pos, *stub->entry());
2162     __ delayed()->nop();
2163   }
2164 
2165   if (flags & LIR_OpArrayCopy::length_positive_check) {
2166     // make sure length isn't negative
2167     __ cmp_zero_and_br(Assembler::less, length, *stub->entry());
2168     __ delayed()->nop();
2169   }
2170 
2171   if (flags & LIR_OpArrayCopy::src_range_check) {
2172     __ ld(src, arrayOopDesc::length_offset_in_bytes(), tmp2);
2173     __ add(length, src_pos, tmp);
2174     __ cmp(tmp2, tmp);
2175     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2176     __ delayed()->nop();
2177   }
2178 
2179   if (flags & LIR_OpArrayCopy::dst_range_check) {
2180     __ ld(dst, arrayOopDesc::length_offset_in_bytes(), tmp2);
2181     __ add(length, dst_pos, tmp);
2182     __ cmp(tmp2, tmp);
2183     __ br(Assembler::carrySet, false, Assembler::pn, *stub->entry());
2184     __ delayed()->nop();
2185   }
2186 
2187   int shift = shift_amount(basic_type);
2188 
2189   if (flags & LIR_OpArrayCopy::type_check) {
2190     // We don't know the array types are compatible
2191     if (basic_type != T_OBJECT) {
2192       // Simple test for basic type arrays
2193       if (UseCompressedOops) {
2194         // We don't need decode because we just need to compare
2195         __ lduw(src, oopDesc::klass_offset_in_bytes(), tmp);
2196         __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2197         __ cmp(tmp, tmp2);
2198         __ br(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2199       } else {
2200         __ ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp);
2201         __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2202         __ cmp(tmp, tmp2);
2203         __ brx(Assembler::notEqual, false, Assembler::pt, *stub->entry());
2204       }
2205       __ delayed()->nop();
2206     } else {
2207       // For object arrays, if src is a sub class of dst then we can
2208       // safely do the copy.
2209       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2210 
2211       Label cont, slow;
2212       assert_different_registers(tmp, tmp2, G3, G1);
2213 
2214       __ load_klass(src, G3);
2215       __ load_klass(dst, G1);
2216 
2217       __ check_klass_subtype_fast_path(G3, G1, tmp, tmp2, &cont, copyfunc_addr == NULL ? stub->entry() : &slow, NULL);
2218 
2219       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2220       __ delayed()->nop();
2221 
2222       __ cmp(G3, 0);
2223       if (copyfunc_addr != NULL) { // use stub if available
2224         // src is not a sub class of dst so we have to do a
2225         // per-element check.
2226         __ br(Assembler::notEqual, false, Assembler::pt, cont);
2227         __ delayed()->nop();
2228 
2229         __ bind(slow);
2230 
2231         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2232         if ((flags & mask) != mask) {
2233           // Check that at least both of them object arrays.
2234           assert(flags & mask, "one of the two should be known to be an object array");
2235 
2236           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2237             __ load_klass(src, tmp);
2238           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2239             __ load_klass(dst, tmp);
2240           }
2241           int lh_offset = in_bytes(Klass::layout_helper_offset());
2242 
2243           __ lduw(tmp, lh_offset, tmp2);
2244 
2245           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2246           __ set(objArray_lh, tmp);
2247           __ cmp(tmp, tmp2);
2248           __ br(Assembler::notEqual, false, Assembler::pt,  *stub->entry());
2249           __ delayed()->nop();
2250         }
2251 
2252         Register src_ptr = O0;
2253         Register dst_ptr = O1;
2254         Register len     = O2;
2255         Register chk_off = O3;
2256         Register super_k = O4;
2257 
2258         __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2259         if (shift == 0) {
2260           __ add(src_ptr, src_pos, src_ptr);
2261         } else {
2262           __ sll(src_pos, shift, tmp);
2263           __ add(src_ptr, tmp, src_ptr);
2264         }
2265 
2266         __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2267         if (shift == 0) {
2268           __ add(dst_ptr, dst_pos, dst_ptr);
2269         } else {
2270           __ sll(dst_pos, shift, tmp);
2271           __ add(dst_ptr, tmp, dst_ptr);
2272         }
2273         __ mov(length, len);
2274         __ load_klass(dst, tmp);
2275 
2276         int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
2277         __ ld_ptr(tmp, ek_offset, super_k);
2278 
2279         int sco_offset = in_bytes(Klass::super_check_offset_offset());
2280         __ lduw(super_k, sco_offset, chk_off);
2281 
2282         __ call_VM_leaf(tmp, copyfunc_addr);
2283 
2284 #ifndef PRODUCT
2285         if (PrintC1Statistics) {
2286           Label failed;
2287           __ br_notnull_short(O0, Assembler::pn, failed);
2288           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_cnt, G1, G3);
2289           __ bind(failed);
2290         }
2291 #endif
2292 
2293         __ br_null(O0, false, Assembler::pt,  *stub->continuation());
2294         __ delayed()->xor3(O0, -1, tmp);
2295 
2296 #ifndef PRODUCT
2297         if (PrintC1Statistics) {
2298           __ inc_counter((address)&Runtime1::_arraycopy_checkcast_attempt_cnt, G1, G3);
2299         }
2300 #endif
2301 
2302         __ sub(length, tmp, length);
2303         __ add(src_pos, tmp, src_pos);
2304         __ br(Assembler::always, false, Assembler::pt, *stub->entry());
2305         __ delayed()->add(dst_pos, tmp, dst_pos);
2306 
2307         __ bind(cont);
2308       } else {
2309         __ br(Assembler::equal, false, Assembler::pn, *stub->entry());
2310         __ delayed()->nop();
2311         __ bind(cont);
2312       }
2313     }
2314   }
2315 
2316 #ifdef ASSERT
2317   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2318     // Sanity check the known type with the incoming class.  For the
2319     // primitive case the types must match exactly with src.klass and
2320     // dst.klass each exactly matching the default type.  For the
2321     // object array case, if no type check is needed then either the
2322     // dst type is exactly the expected type and the src type is a
2323     // subtype which we can't check or src is the same array as dst
2324     // but not necessarily exactly of type default_type.
2325     Label known_ok, halt;
2326     jobject2reg(op->expected_type()->constant_encoding(), tmp);
2327     if (UseCompressedOops) {
2328       // tmp holds the default type. It currently comes uncompressed after the
2329       // load of a constant, so encode it.
2330       __ encode_heap_oop(tmp);
2331       // load the raw value of the dst klass, since we will be comparing
2332       // uncompressed values directly.
2333       __ lduw(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2334       if (basic_type != T_OBJECT) {
2335         __ cmp(tmp, tmp2);
2336         __ br(Assembler::notEqual, false, Assembler::pn, halt);
2337         // load the raw value of the src klass.
2338         __ delayed()->lduw(src, oopDesc::klass_offset_in_bytes(), tmp2);
2339         __ cmp_and_br_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2340       } else {
2341         __ cmp(tmp, tmp2);
2342         __ br(Assembler::equal, false, Assembler::pn, known_ok);
2343         __ delayed()->cmp(src, dst);
2344         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2345         __ delayed()->nop();
2346       }
2347     } else {
2348       __ ld_ptr(dst, oopDesc::klass_offset_in_bytes(), tmp2);
2349       if (basic_type != T_OBJECT) {
2350         __ cmp(tmp, tmp2);
2351         __ brx(Assembler::notEqual, false, Assembler::pn, halt);
2352         __ delayed()->ld_ptr(src, oopDesc::klass_offset_in_bytes(), tmp2);
2353         __ cmp_and_brx_short(tmp, tmp2, Assembler::equal, Assembler::pn, known_ok);
2354       } else {
2355         __ cmp(tmp, tmp2);
2356         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2357         __ delayed()->cmp(src, dst);
2358         __ brx(Assembler::equal, false, Assembler::pn, known_ok);
2359         __ delayed()->nop();
2360       }
2361     }
2362     __ bind(halt);
2363     __ stop("incorrect type information in arraycopy");
2364     __ bind(known_ok);
2365   }
2366 #endif
2367 
2368 #ifndef PRODUCT
2369   if (PrintC1Statistics) {
2370     address counter = Runtime1::arraycopy_count_address(basic_type);
2371     __ inc_counter(counter, G1, G3);
2372   }
2373 #endif
2374 
2375   Register src_ptr = O0;
2376   Register dst_ptr = O1;
2377   Register len     = O2;
2378 
2379   __ add(src, arrayOopDesc::base_offset_in_bytes(basic_type), src_ptr);
2380   if (shift == 0) {
2381     __ add(src_ptr, src_pos, src_ptr);
2382   } else {
2383     __ sll(src_pos, shift, tmp);
2384     __ add(src_ptr, tmp, src_ptr);
2385   }
2386 
2387   __ add(dst, arrayOopDesc::base_offset_in_bytes(basic_type), dst_ptr);
2388   if (shift == 0) {
2389     __ add(dst_ptr, dst_pos, dst_ptr);
2390   } else {
2391     __ sll(dst_pos, shift, tmp);
2392     __ add(dst_ptr, tmp, dst_ptr);
2393   }
2394 
2395   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2396   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2397   const char *name;
2398   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2399 
2400   // arraycopy stubs takes a length in number of elements, so don't scale it.
2401   __ mov(length, len);
2402   __ call_VM_leaf(tmp, entry);
2403 
2404   __ bind(*stub->continuation());
2405 }
2406 
2407 
2408 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2409   if (dest->is_single_cpu()) {
2410 #ifdef _LP64
2411     if (left->type() == T_OBJECT) {
2412       switch (code) {
2413         case lir_shl:  __ sllx  (left->as_register(), count->as_register(), dest->as_register()); break;
2414         case lir_shr:  __ srax  (left->as_register(), count->as_register(), dest->as_register()); break;
2415         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2416         default: ShouldNotReachHere();
2417       }
2418     } else
2419 #endif
2420       switch (code) {
2421         case lir_shl:  __ sll   (left->as_register(), count->as_register(), dest->as_register()); break;
2422         case lir_shr:  __ sra   (left->as_register(), count->as_register(), dest->as_register()); break;
2423         case lir_ushr: __ srl   (left->as_register(), count->as_register(), dest->as_register()); break;
2424         default: ShouldNotReachHere();
2425       }
2426   } else {
2427 #ifdef _LP64
2428     switch (code) {
2429       case lir_shl:  __ sllx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2430       case lir_shr:  __ srax  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2431       case lir_ushr: __ srlx  (left->as_register_lo(), count->as_register(), dest->as_register_lo()); break;
2432       default: ShouldNotReachHere();
2433     }
2434 #else
2435     switch (code) {
2436       case lir_shl:  __ lshl  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2437       case lir_shr:  __ lshr  (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2438       case lir_ushr: __ lushr (left->as_register_hi(), left->as_register_lo(), count->as_register(), dest->as_register_hi(), dest->as_register_lo(), G3_scratch); break;
2439       default: ShouldNotReachHere();
2440     }
2441 #endif
2442   }
2443 }
2444 
2445 
2446 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2447 #ifdef _LP64
2448   if (left->type() == T_OBJECT) {
2449     count = count & 63;  // shouldn't shift by more than sizeof(intptr_t)
2450     Register l = left->as_register();
2451     Register d = dest->as_register_lo();
2452     switch (code) {
2453       case lir_shl:  __ sllx  (l, count, d); break;
2454       case lir_shr:  __ srax  (l, count, d); break;
2455       case lir_ushr: __ srlx  (l, count, d); break;
2456       default: ShouldNotReachHere();
2457     }
2458     return;
2459   }
2460 #endif
2461 
2462   if (dest->is_single_cpu()) {
2463     count = count & 0x1F; // Java spec
2464     switch (code) {
2465       case lir_shl:  __ sll   (left->as_register(), count, dest->as_register()); break;
2466       case lir_shr:  __ sra   (left->as_register(), count, dest->as_register()); break;
2467       case lir_ushr: __ srl   (left->as_register(), count, dest->as_register()); break;
2468       default: ShouldNotReachHere();
2469     }
2470   } else if (dest->is_double_cpu()) {
2471     count = count & 63; // Java spec
2472     switch (code) {
2473       case lir_shl:  __ sllx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2474       case lir_shr:  __ srax  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2475       case lir_ushr: __ srlx  (left->as_pointer_register(), count, dest->as_pointer_register()); break;
2476       default: ShouldNotReachHere();
2477     }
2478   } else {
2479     ShouldNotReachHere();
2480   }
2481 }
2482 
2483 
2484 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2485   assert(op->tmp1()->as_register()  == G1 &&
2486          op->tmp2()->as_register()  == G3 &&
2487          op->tmp3()->as_register()  == G4 &&
2488          op->obj()->as_register()   == O0 &&
2489          op->klass()->as_register() == G5, "must be");
2490   if (op->init_check()) {
2491     __ ldub(op->klass()->as_register(),
2492           in_bytes(instanceKlass::init_state_offset()),
2493           op->tmp1()->as_register());
2494     add_debug_info_for_null_check_here(op->stub()->info());
2495     __ cmp(op->tmp1()->as_register(), instanceKlass::fully_initialized);
2496     __ br(Assembler::notEqual, false, Assembler::pn, *op->stub()->entry());
2497     __ delayed()->nop();
2498   }
2499   __ allocate_object(op->obj()->as_register(),
2500                      op->tmp1()->as_register(),
2501                      op->tmp2()->as_register(),
2502                      op->tmp3()->as_register(),
2503                      op->header_size(),
2504                      op->object_size(),
2505                      op->klass()->as_register(),
2506                      *op->stub()->entry());
2507   __ bind(*op->stub()->continuation());
2508   __ verify_oop(op->obj()->as_register());
2509 }
2510 
2511 
2512 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2513   assert(op->tmp1()->as_register()  == G1 &&
2514          op->tmp2()->as_register()  == G3 &&
2515          op->tmp3()->as_register()  == G4 &&
2516          op->tmp4()->as_register()  == O1 &&
2517          op->klass()->as_register() == G5, "must be");
2518 
2519   LP64_ONLY( __ signx(op->len()->as_register()); )
2520   if (UseSlowPath ||
2521       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2522       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2523     __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2524     __ delayed()->nop();
2525   } else {
2526     __ allocate_array(op->obj()->as_register(),
2527                       op->len()->as_register(),
2528                       op->tmp1()->as_register(),
2529                       op->tmp2()->as_register(),
2530                       op->tmp3()->as_register(),
2531                       arrayOopDesc::header_size(op->type()),
2532                       type2aelembytes(op->type()),
2533                       op->klass()->as_register(),
2534                       *op->stub()->entry());
2535   }
2536   __ bind(*op->stub()->continuation());
2537 }
2538 
2539 
2540 void LIR_Assembler::type_profile_helper(Register mdo, int mdo_offset_bias,
2541                                         ciMethodData *md, ciProfileData *data,
2542                                         Register recv, Register tmp1, Label* update_done) {
2543   uint i;
2544   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2545     Label next_test;
2546     // See if the receiver is receiver[n].
2547     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2548                           mdo_offset_bias);
2549     __ ld_ptr(receiver_addr, tmp1);
2550     __ verify_oop(tmp1);
2551     __ cmp_and_brx_short(recv, tmp1, Assembler::notEqual, Assembler::pt, next_test);
2552     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2553                       mdo_offset_bias);
2554     __ ld_ptr(data_addr, tmp1);
2555     __ add(tmp1, DataLayout::counter_increment, tmp1);
2556     __ st_ptr(tmp1, data_addr);
2557     __ ba(*update_done);
2558     __ delayed()->nop();
2559     __ bind(next_test);
2560   }
2561 
2562   // Didn't find receiver; find next empty slot and fill it in
2563   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2564     Label next_test;
2565     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)) -
2566                       mdo_offset_bias);
2567     __ ld_ptr(recv_addr, tmp1);
2568     __ br_notnull_short(tmp1, Assembler::pt, next_test);
2569     __ st_ptr(recv, recv_addr);
2570     __ set(DataLayout::counter_increment, tmp1);
2571     __ st_ptr(tmp1, mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)) -
2572               mdo_offset_bias);
2573     __ ba(*update_done);
2574     __ delayed()->nop();
2575     __ bind(next_test);
2576   }
2577 }
2578 
2579 
2580 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2581                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2582   md = method->method_data_or_null();
2583   assert(md != NULL, "Sanity");
2584   data = md->bci_to_data(bci);
2585   assert(data != NULL,       "need data for checkcast");
2586   assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2587   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, DataLayout::header_offset()) + data->size_in_bytes())) {
2588     // The offset is large so bias the mdo by the base of the slot so
2589     // that the ld can use simm13s to reference the slots of the data
2590     mdo_offset_bias = md->byte_offset_of_slot(data, DataLayout::header_offset());
2591   }
2592 }
2593 
2594 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2595   // we always need a stub for the failure case.
2596   CodeStub* stub = op->stub();
2597   Register obj = op->object()->as_register();
2598   Register k_RInfo = op->tmp1()->as_register();
2599   Register klass_RInfo = op->tmp2()->as_register();
2600   Register dst = op->result_opr()->as_register();
2601   Register Rtmp1 = op->tmp3()->as_register();
2602   ciKlass* k = op->klass();
2603 
2604 
2605   if (obj == k_RInfo) {
2606     k_RInfo = klass_RInfo;
2607     klass_RInfo = obj;
2608   }
2609 
2610   ciMethodData* md;
2611   ciProfileData* data;
2612   int mdo_offset_bias = 0;
2613   if (op->should_profile()) {
2614     ciMethod* method = op->profiled_method();
2615     assert(method != NULL, "Should have method");
2616     setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2617 
2618     Label not_null;
2619     __ br_notnull_short(obj, Assembler::pn, not_null);
2620     Register mdo      = k_RInfo;
2621     Register data_val = Rtmp1;
2622     jobject2reg(md->constant_encoding(), mdo);
2623     if (mdo_offset_bias > 0) {
2624       __ set(mdo_offset_bias, data_val);
2625       __ add(mdo, data_val, mdo);
2626     }
2627     Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2628     __ ldub(flags_addr, data_val);
2629     __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2630     __ stb(data_val, flags_addr);
2631     __ ba(*obj_is_null);
2632     __ delayed()->nop();
2633     __ bind(not_null);
2634   } else {
2635     __ br_null(obj, false, Assembler::pn, *obj_is_null);
2636     __ delayed()->nop();
2637   }
2638 
2639   Label profile_cast_failure, profile_cast_success;
2640   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2641   Label *success_target = op->should_profile() ? &profile_cast_success : success;
2642 
2643   // patching may screw with our temporaries on sparc,
2644   // so let's do it before loading the class
2645   if (k->is_loaded()) {
2646     jobject2reg(k->constant_encoding(), k_RInfo);
2647   } else {
2648     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
2649   }
2650   assert(obj != k_RInfo, "must be different");
2651 
2652   // get object class
2653   // not a safepoint as obj null check happens earlier
2654   __ load_klass(obj, klass_RInfo);
2655   if (op->fast_check()) {
2656     assert_different_registers(klass_RInfo, k_RInfo);
2657     __ cmp(k_RInfo, klass_RInfo);
2658     __ brx(Assembler::notEqual, false, Assembler::pt, *failure_target);
2659     __ delayed()->nop();
2660   } else {
2661     bool need_slow_path = true;
2662     if (k->is_loaded()) {
2663       if ((int) k->super_check_offset() != in_bytes(Klass::secondary_super_cache_offset()))
2664         need_slow_path = false;
2665       // perform the fast part of the checking logic
2666       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, noreg,
2667                                        (need_slow_path ? success_target : NULL),
2668                                        failure_target, NULL,
2669                                        RegisterOrConstant(k->super_check_offset()));
2670     } else {
2671       // perform the fast part of the checking logic
2672       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target,
2673                                        failure_target, NULL);
2674     }
2675     if (need_slow_path) {
2676       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2677       assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2678       __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2679       __ delayed()->nop();
2680       __ cmp(G3, 0);
2681       __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2682       __ delayed()->nop();
2683       // Fall through to success case
2684     }
2685   }
2686 
2687   if (op->should_profile()) {
2688     Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2689     assert_different_registers(obj, mdo, recv, tmp1);
2690     __ bind(profile_cast_success);
2691     jobject2reg(md->constant_encoding(), mdo);
2692     if (mdo_offset_bias > 0) {
2693       __ set(mdo_offset_bias, tmp1);
2694       __ add(mdo, tmp1, mdo);
2695     }
2696     __ load_klass(obj, recv);
2697     type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, success);
2698     // Jump over the failure case
2699     __ ba(*success);
2700     __ delayed()->nop();
2701     // Cast failure case
2702     __ bind(profile_cast_failure);
2703     jobject2reg(md->constant_encoding(), mdo);
2704     if (mdo_offset_bias > 0) {
2705       __ set(mdo_offset_bias, tmp1);
2706       __ add(mdo, tmp1, mdo);
2707     }
2708     Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2709     __ ld_ptr(data_addr, tmp1);
2710     __ sub(tmp1, DataLayout::counter_increment, tmp1);
2711     __ st_ptr(tmp1, data_addr);
2712     __ ba(*failure);
2713     __ delayed()->nop();
2714   }
2715   __ ba(*success);
2716   __ delayed()->nop();
2717 }
2718 
2719 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2720   LIR_Code code = op->code();
2721   if (code == lir_store_check) {
2722     Register value = op->object()->as_register();
2723     Register array = op->array()->as_register();
2724     Register k_RInfo = op->tmp1()->as_register();
2725     Register klass_RInfo = op->tmp2()->as_register();
2726     Register Rtmp1 = op->tmp3()->as_register();
2727 
2728     __ verify_oop(value);
2729     CodeStub* stub = op->stub();
2730     // check if it needs to be profiled
2731     ciMethodData* md;
2732     ciProfileData* data;
2733     int mdo_offset_bias = 0;
2734     if (op->should_profile()) {
2735       ciMethod* method = op->profiled_method();
2736       assert(method != NULL, "Should have method");
2737       setup_md_access(method, op->profiled_bci(), md, data, mdo_offset_bias);
2738     }
2739     Label profile_cast_success, profile_cast_failure, done;
2740     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2741     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2742 
2743     if (op->should_profile()) {
2744       Label not_null;
2745       __ br_notnull_short(value, Assembler::pn, not_null);
2746       Register mdo      = k_RInfo;
2747       Register data_val = Rtmp1;
2748       jobject2reg(md->constant_encoding(), mdo);
2749       if (mdo_offset_bias > 0) {
2750         __ set(mdo_offset_bias, data_val);
2751         __ add(mdo, data_val, mdo);
2752       }
2753       Address flags_addr(mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()) - mdo_offset_bias);
2754       __ ldub(flags_addr, data_val);
2755       __ or3(data_val, BitData::null_seen_byte_constant(), data_val);
2756       __ stb(data_val, flags_addr);
2757       __ ba_short(done);
2758       __ bind(not_null);
2759     } else {
2760       __ br_null_short(value, Assembler::pn, done);
2761     }
2762     add_debug_info_for_null_check_here(op->info_for_exception());
2763     __ load_klass(array, k_RInfo);
2764     __ load_klass(value, klass_RInfo);
2765 
2766     // get instance klass
2767     __ ld_ptr(Address(k_RInfo, objArrayKlass::element_klass_offset()), k_RInfo);
2768     // perform the fast part of the checking logic
2769     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, O7, success_target, failure_target, NULL);
2770 
2771     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
2772     assert(klass_RInfo == G3 && k_RInfo == G1, "incorrect call setup");
2773     __ call(Runtime1::entry_for(Runtime1::slow_subtype_check_id), relocInfo::runtime_call_type);
2774     __ delayed()->nop();
2775     __ cmp(G3, 0);
2776     __ br(Assembler::equal, false, Assembler::pn, *failure_target);
2777     __ delayed()->nop();
2778     // fall through to the success case
2779 
2780     if (op->should_profile()) {
2781       Register mdo  = klass_RInfo, recv = k_RInfo, tmp1 = Rtmp1;
2782       assert_different_registers(value, mdo, recv, tmp1);
2783       __ bind(profile_cast_success);
2784       jobject2reg(md->constant_encoding(), mdo);
2785       if (mdo_offset_bias > 0) {
2786         __ set(mdo_offset_bias, tmp1);
2787         __ add(mdo, tmp1, mdo);
2788       }
2789       __ load_klass(value, recv);
2790       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &done);
2791       __ ba_short(done);
2792       // Cast failure case
2793       __ bind(profile_cast_failure);
2794       jobject2reg(md->constant_encoding(), mdo);
2795       if (mdo_offset_bias > 0) {
2796         __ set(mdo_offset_bias, tmp1);
2797         __ add(mdo, tmp1, mdo);
2798       }
2799       Address data_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
2800       __ ld_ptr(data_addr, tmp1);
2801       __ sub(tmp1, DataLayout::counter_increment, tmp1);
2802       __ st_ptr(tmp1, data_addr);
2803       __ ba(*stub->entry());
2804       __ delayed()->nop();
2805     }
2806     __ bind(done);
2807   } else if (code == lir_checkcast) {
2808     Register obj = op->object()->as_register();
2809     Register dst = op->result_opr()->as_register();
2810     Label success;
2811     emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2812     __ bind(success);
2813     __ mov(obj, dst);
2814   } else if (code == lir_instanceof) {
2815     Register obj = op->object()->as_register();
2816     Register dst = op->result_opr()->as_register();
2817     Label success, failure, done;
2818     emit_typecheck_helper(op, &success, &failure, &failure);
2819     __ bind(failure);
2820     __ set(0, dst);
2821     __ ba_short(done);
2822     __ bind(success);
2823     __ set(1, dst);
2824     __ bind(done);
2825   } else {
2826     ShouldNotReachHere();
2827   }
2828 
2829 }
2830 
2831 
2832 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2833   if (op->code() == lir_cas_long) {
2834     assert(VM_Version::supports_cx8(), "wrong machine");
2835     Register addr = op->addr()->as_pointer_register();
2836     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2837     Register cmp_value_hi = op->cmp_value()->as_register_hi();
2838     Register new_value_lo = op->new_value()->as_register_lo();
2839     Register new_value_hi = op->new_value()->as_register_hi();
2840     Register t1 = op->tmp1()->as_register();
2841     Register t2 = op->tmp2()->as_register();
2842 #ifdef _LP64
2843     __ mov(cmp_value_lo, t1);
2844     __ mov(new_value_lo, t2);
2845     // perform the compare and swap operation
2846     __ casx(addr, t1, t2);
2847     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2848     // overwritten with the original value in "addr" and will be equal to t1.
2849     __ cmp(t1, t2);
2850 #else
2851     // move high and low halves of long values into single registers
2852     __ sllx(cmp_value_hi, 32, t1);         // shift high half into temp reg
2853     __ srl(cmp_value_lo, 0, cmp_value_lo); // clear upper 32 bits of low half
2854     __ or3(t1, cmp_value_lo, t1);          // t1 holds 64-bit compare value
2855     __ sllx(new_value_hi, 32, t2);
2856     __ srl(new_value_lo, 0, new_value_lo);
2857     __ or3(t2, new_value_lo, t2);          // t2 holds 64-bit value to swap
2858     // perform the compare and swap operation
2859     __ casx(addr, t1, t2);
2860     // generate condition code - if the swap succeeded, t2 ("new value" reg) was
2861     // overwritten with the original value in "addr" and will be equal to t1.
2862     // Produce icc flag for 32bit.
2863     __ sub(t1, t2, t2);
2864     __ srlx(t2, 32, t1);
2865     __ orcc(t2, t1, G0);
2866 #endif
2867   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2868     Register addr = op->addr()->as_pointer_register();
2869     Register cmp_value = op->cmp_value()->as_register();
2870     Register new_value = op->new_value()->as_register();
2871     Register t1 = op->tmp1()->as_register();
2872     Register t2 = op->tmp2()->as_register();
2873     __ mov(cmp_value, t1);
2874     __ mov(new_value, t2);
2875     if (op->code() == lir_cas_obj) {
2876       if (UseCompressedOops) {
2877         __ encode_heap_oop(t1);
2878         __ encode_heap_oop(t2);
2879         __ cas(addr, t1, t2);
2880       } else {
2881         __ cas_ptr(addr, t1, t2);
2882       }
2883     } else {
2884       __ cas(addr, t1, t2);
2885     }
2886     __ cmp(t1, t2);
2887   } else {
2888     Unimplemented();
2889   }
2890 }
2891 
2892 void LIR_Assembler::set_24bit_FPU() {
2893   Unimplemented();
2894 }
2895 
2896 
2897 void LIR_Assembler::reset_FPU() {
2898   Unimplemented();
2899 }
2900 
2901 
2902 void LIR_Assembler::breakpoint() {
2903   __ breakpoint_trap();
2904 }
2905 
2906 
2907 void LIR_Assembler::push(LIR_Opr opr) {
2908   Unimplemented();
2909 }
2910 
2911 
2912 void LIR_Assembler::pop(LIR_Opr opr) {
2913   Unimplemented();
2914 }
2915 
2916 
2917 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2918   Address mon_addr = frame_map()->address_for_monitor_lock(monitor_no);
2919   Register dst = dst_opr->as_register();
2920   Register reg = mon_addr.base();
2921   int offset = mon_addr.disp();
2922   // compute pointer to BasicLock
2923   if (mon_addr.is_simm13()) {
2924     __ add(reg, offset, dst);
2925   } else {
2926     __ set(offset, dst);
2927     __ add(dst, reg, dst);
2928   }
2929 }
2930 
2931 
2932 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2933   Register obj = op->obj_opr()->as_register();
2934   Register hdr = op->hdr_opr()->as_register();
2935   Register lock = op->lock_opr()->as_register();
2936 
2937   // obj may not be an oop
2938   if (op->code() == lir_lock) {
2939     MonitorEnterStub* stub = (MonitorEnterStub*)op->stub();
2940     if (UseFastLocking) {
2941       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2942       // add debug info for NullPointerException only if one is possible
2943       if (op->info() != NULL) {
2944         add_debug_info_for_null_check_here(op->info());
2945       }
2946       __ lock_object(hdr, obj, lock, op->scratch_opr()->as_register(), *op->stub()->entry());
2947     } else {
2948       // always do slow locking
2949       // note: the slow locking code could be inlined here, however if we use
2950       //       slow locking, speed doesn't matter anyway and this solution is
2951       //       simpler and requires less duplicated code - additionally, the
2952       //       slow locking code is the same in either case which simplifies
2953       //       debugging
2954       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2955       __ delayed()->nop();
2956     }
2957   } else {
2958     assert (op->code() == lir_unlock, "Invalid code, expected lir_unlock");
2959     if (UseFastLocking) {
2960       assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2961       __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2962     } else {
2963       // always do slow unlocking
2964       // note: the slow unlocking code could be inlined here, however if we use
2965       //       slow unlocking, speed doesn't matter anyway and this solution is
2966       //       simpler and requires less duplicated code - additionally, the
2967       //       slow unlocking code is the same in either case which simplifies
2968       //       debugging
2969       __ br(Assembler::always, false, Assembler::pt, *op->stub()->entry());
2970       __ delayed()->nop();
2971     }
2972   }
2973   __ bind(*op->stub()->continuation());
2974 }
2975 
2976 
2977 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2978   ciMethod* method = op->profiled_method();
2979   int bci          = op->profiled_bci();
2980 
2981   // Update counter for all call types
2982   ciMethodData* md = method->method_data_or_null();
2983   assert(md != NULL, "Sanity");
2984   ciProfileData* data = md->bci_to_data(bci);
2985   assert(data->is_CounterData(), "need CounterData for calls");
2986   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2987   Register mdo  = op->mdo()->as_register();
2988 #ifdef _LP64
2989   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2990   Register tmp1 = op->tmp1()->as_register_lo();
2991 #else
2992   assert(op->tmp1()->is_single_cpu(), "tmp1 must be allocated");
2993   Register tmp1 = op->tmp1()->as_register();
2994 #endif
2995   jobject2reg(md->constant_encoding(), mdo);
2996   int mdo_offset_bias = 0;
2997   if (!Assembler::is_simm13(md->byte_offset_of_slot(data, CounterData::count_offset()) +
2998                             data->size_in_bytes())) {
2999     // The offset is large so bias the mdo by the base of the slot so
3000     // that the ld can use simm13s to reference the slots of the data
3001     mdo_offset_bias = md->byte_offset_of_slot(data, CounterData::count_offset());
3002     __ set(mdo_offset_bias, O7);
3003     __ add(mdo, O7, mdo);
3004   }
3005 
3006   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()) - mdo_offset_bias);
3007   Bytecodes::Code bc = method->java_code_at_bci(bci);
3008   // Perform additional virtual call profiling for invokevirtual and
3009   // invokeinterface bytecodes
3010   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3011       C1ProfileVirtualCalls) {
3012     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3013     Register recv = op->recv()->as_register();
3014     assert_different_registers(mdo, tmp1, recv);
3015     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3016     ciKlass* known_klass = op->known_holder();
3017     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3018       // We know the type that will be seen at this call site; we can
3019       // statically update the methodDataOop rather than needing to do
3020       // dynamic tests on the receiver type
3021 
3022       // NOTE: we should probably put a lock around this search to
3023       // avoid collisions by concurrent compilations
3024       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3025       uint i;
3026       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3027         ciKlass* receiver = vc_data->receiver(i);
3028         if (known_klass->equals(receiver)) {
3029           Address data_addr(mdo, md->byte_offset_of_slot(data,
3030                                                          VirtualCallData::receiver_count_offset(i)) -
3031                             mdo_offset_bias);
3032           __ ld_ptr(data_addr, tmp1);
3033           __ add(tmp1, DataLayout::counter_increment, tmp1);
3034           __ st_ptr(tmp1, data_addr);
3035           return;
3036         }
3037       }
3038 
3039       // Receiver type not found in profile data; select an empty slot
3040 
3041       // Note that this is less efficient than it should be because it
3042       // always does a write to the receiver part of the
3043       // VirtualCallData rather than just the first time
3044       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3045         ciKlass* receiver = vc_data->receiver(i);
3046         if (receiver == NULL) {
3047           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)) -
3048                             mdo_offset_bias);
3049           jobject2reg(known_klass->constant_encoding(), tmp1);
3050           __ st_ptr(tmp1, recv_addr);
3051           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)) -
3052                             mdo_offset_bias);
3053           __ ld_ptr(data_addr, tmp1);
3054           __ add(tmp1, DataLayout::counter_increment, tmp1);
3055           __ st_ptr(tmp1, data_addr);
3056           return;
3057         }
3058       }
3059     } else {
3060       __ load_klass(recv, recv);
3061       Label update_done;
3062       type_profile_helper(mdo, mdo_offset_bias, md, data, recv, tmp1, &update_done);
3063       // Receiver did not match any saved receiver and there is no empty row for it.
3064       // Increment total counter to indicate polymorphic case.
3065       __ ld_ptr(counter_addr, tmp1);
3066       __ add(tmp1, DataLayout::counter_increment, tmp1);
3067       __ st_ptr(tmp1, counter_addr);
3068 
3069       __ bind(update_done);
3070     }
3071   } else {
3072     // Static call
3073     __ ld_ptr(counter_addr, tmp1);
3074     __ add(tmp1, DataLayout::counter_increment, tmp1);
3075     __ st_ptr(tmp1, counter_addr);
3076   }
3077 }
3078 
3079 void LIR_Assembler::align_backward_branch_target() {
3080   __ align(OptoLoopAlignment);
3081 }
3082 
3083 
3084 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
3085   // make sure we are expecting a delay
3086   // this has the side effect of clearing the delay state
3087   // so we can use _masm instead of _masm->delayed() to do the
3088   // code generation.
3089   __ delayed();
3090 
3091   // make sure we only emit one instruction
3092   int offset = code_offset();
3093   op->delay_op()->emit_code(this);
3094 #ifdef ASSERT
3095   if (code_offset() - offset != NativeInstruction::nop_instruction_size) {
3096     op->delay_op()->print();
3097   }
3098   assert(code_offset() - offset == NativeInstruction::nop_instruction_size,
3099          "only one instruction can go in a delay slot");
3100 #endif
3101 
3102   // we may also be emitting the call info for the instruction
3103   // which we are the delay slot of.
3104   CodeEmitInfo* call_info = op->call_info();
3105   if (call_info) {
3106     add_call_info(code_offset(), call_info);
3107   }
3108 
3109   if (VerifyStackAtCalls) {
3110     _masm->sub(FP, SP, O7);
3111     _masm->cmp(O7, initial_frame_size_in_bytes());
3112     _masm->trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2 );
3113   }
3114 }
3115 
3116 
3117 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3118   assert(left->is_register(), "can only handle registers");
3119 
3120   if (left->is_single_cpu()) {
3121     __ neg(left->as_register(), dest->as_register());
3122   } else if (left->is_single_fpu()) {
3123     __ fneg(FloatRegisterImpl::S, left->as_float_reg(), dest->as_float_reg());
3124   } else if (left->is_double_fpu()) {
3125     __ fneg(FloatRegisterImpl::D, left->as_double_reg(), dest->as_double_reg());
3126   } else {
3127     assert (left->is_double_cpu(), "Must be a long");
3128     Register Rlow = left->as_register_lo();
3129     Register Rhi = left->as_register_hi();
3130 #ifdef _LP64
3131     __ sub(G0, Rlow, dest->as_register_lo());
3132 #else
3133     __ subcc(G0, Rlow, dest->as_register_lo());
3134     __ subc (G0, Rhi,  dest->as_register_hi());
3135 #endif
3136   }
3137 }
3138 
3139 
3140 void LIR_Assembler::fxch(int i) {
3141   Unimplemented();
3142 }
3143 
3144 void LIR_Assembler::fld(int i) {
3145   Unimplemented();
3146 }
3147 
3148 void LIR_Assembler::ffree(int i) {
3149   Unimplemented();
3150 }
3151 
3152 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
3153                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3154 
3155   // if tmp is invalid, then the function being called doesn't destroy the thread
3156   if (tmp->is_valid()) {
3157     __ save_thread(tmp->as_register());
3158   }
3159   __ call(dest, relocInfo::runtime_call_type);
3160   __ delayed()->nop();
3161   if (info != NULL) {
3162     add_call_info_here(info);
3163   }
3164   if (tmp->is_valid()) {
3165     __ restore_thread(tmp->as_register());
3166   }
3167 
3168 #ifdef ASSERT
3169   __ verify_thread();
3170 #endif // ASSERT
3171 }
3172 
3173 
3174 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3175 #ifdef _LP64
3176   ShouldNotReachHere();
3177 #endif
3178 
3179   NEEDS_CLEANUP;
3180   if (type == T_LONG) {
3181     LIR_Address* mem_addr = dest->is_address() ? dest->as_address_ptr() : src->as_address_ptr();
3182 
3183     // (extended to allow indexed as well as constant displaced for JSR-166)
3184     Register idx = noreg; // contains either constant offset or index
3185 
3186     int disp = mem_addr->disp();
3187     if (mem_addr->index() == LIR_OprFact::illegalOpr) {
3188       if (!Assembler::is_simm13(disp)) {
3189         idx = O7;
3190         __ set(disp, idx);
3191       }
3192     } else {
3193       assert(disp == 0, "not both indexed and disp");
3194       idx = mem_addr->index()->as_register();
3195     }
3196 
3197     int null_check_offset = -1;
3198 
3199     Register base = mem_addr->base()->as_register();
3200     if (src->is_register() && dest->is_address()) {
3201       // G4 is high half, G5 is low half
3202       if (VM_Version::v9_instructions_work()) {
3203         // clear the top bits of G5, and scale up G4
3204         __ srl (src->as_register_lo(),  0, G5);
3205         __ sllx(src->as_register_hi(), 32, G4);
3206         // combine the two halves into the 64 bits of G4
3207         __ or3(G4, G5, G4);
3208         null_check_offset = __ offset();
3209         if (idx == noreg) {
3210           __ stx(G4, base, disp);
3211         } else {
3212           __ stx(G4, base, idx);
3213         }
3214       } else {
3215         __ mov (src->as_register_hi(), G4);
3216         __ mov (src->as_register_lo(), G5);
3217         null_check_offset = __ offset();
3218         if (idx == noreg) {
3219           __ std(G4, base, disp);
3220         } else {
3221           __ std(G4, base, idx);
3222         }
3223       }
3224     } else if (src->is_address() && dest->is_register()) {
3225       null_check_offset = __ offset();
3226       if (VM_Version::v9_instructions_work()) {
3227         if (idx == noreg) {
3228           __ ldx(base, disp, G5);
3229         } else {
3230           __ ldx(base, idx, G5);
3231         }
3232         __ srax(G5, 32, dest->as_register_hi()); // fetch the high half into hi
3233         __ mov (G5, dest->as_register_lo());     // copy low half into lo
3234       } else {
3235         if (idx == noreg) {
3236           __ ldd(base, disp, G4);
3237         } else {
3238           __ ldd(base, idx, G4);
3239         }
3240         // G4 is high half, G5 is low half
3241         __ mov (G4, dest->as_register_hi());
3242         __ mov (G5, dest->as_register_lo());
3243       }
3244     } else {
3245       Unimplemented();
3246     }
3247     if (info != NULL) {
3248       add_debug_info_for_null_check(null_check_offset, info);
3249     }
3250 
3251   } else {
3252     // use normal move for all other volatiles since they don't need
3253     // special handling to remain atomic.
3254     move_op(src, dest, type, lir_patch_none, info, false, false, false);
3255   }
3256 }
3257 
3258 void LIR_Assembler::membar() {
3259   // only StoreLoad membars are ever explicitly needed on sparcs in TSO mode
3260   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3261 }
3262 
3263 void LIR_Assembler::membar_acquire() {
3264   // no-op on TSO
3265 }
3266 
3267 void LIR_Assembler::membar_release() {
3268   // no-op on TSO
3269 }
3270 
3271 void LIR_Assembler::membar_loadload() {
3272   // no-op
3273   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3274 }
3275 
3276 void LIR_Assembler::membar_storestore() {
3277   // no-op
3278   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3279 }
3280 
3281 void LIR_Assembler::membar_loadstore() {
3282   // no-op
3283   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3284 }
3285 
3286 void LIR_Assembler::membar_storeload() {
3287   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3288 }
3289 
3290 
3291 // Pack two sequential registers containing 32 bit values
3292 // into a single 64 bit register.
3293 // src and src->successor() are packed into dst
3294 // src and dst may be the same register.
3295 // Note: src is destroyed
3296 void LIR_Assembler::pack64(LIR_Opr src, LIR_Opr dst) {
3297   Register rs = src->as_register();
3298   Register rd = dst->as_register_lo();
3299   __ sllx(rs, 32, rs);
3300   __ srl(rs->successor(), 0, rs->successor());
3301   __ or3(rs, rs->successor(), rd);
3302 }
3303 
3304 // Unpack a 64 bit value in a register into
3305 // two sequential registers.
3306 // src is unpacked into dst and dst->successor()
3307 void LIR_Assembler::unpack64(LIR_Opr src, LIR_Opr dst) {
3308   Register rs = src->as_register_lo();
3309   Register rd = dst->as_register_hi();
3310   assert_different_registers(rs, rd, rd->successor());
3311   __ srlx(rs, 32, rd);
3312   __ srl (rs,  0, rd->successor());
3313 }
3314 
3315 
3316 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest) {
3317   LIR_Address* addr = addr_opr->as_address_ptr();
3318   assert(addr->index()->is_illegal() && addr->scale() == LIR_Address::times_1 && Assembler::is_simm13(addr->disp()), "can't handle complex addresses yet");
3319 
3320   __ add(addr->base()->as_pointer_register(), addr->disp(), dest->as_pointer_register());
3321 }
3322 
3323 
3324 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3325   assert(result_reg->is_register(), "check");
3326   __ mov(G2_thread, result_reg->as_register());
3327 }
3328 
3329 
3330 void LIR_Assembler::peephole(LIR_List* lir) {
3331   LIR_OpList* inst = lir->instructions_list();
3332   for (int i = 0; i < inst->length(); i++) {
3333     LIR_Op* op = inst->at(i);
3334     switch (op->code()) {
3335       case lir_cond_float_branch:
3336       case lir_branch: {
3337         LIR_OpBranch* branch = op->as_OpBranch();
3338         assert(branch->info() == NULL, "shouldn't be state on branches anymore");
3339         LIR_Op* delay_op = NULL;
3340         // we'd like to be able to pull following instructions into
3341         // this slot but we don't know enough to do it safely yet so
3342         // only optimize block to block control flow.
3343         if (LIRFillDelaySlots && branch->block()) {
3344           LIR_Op* prev = inst->at(i - 1);
3345           if (prev && LIR_Assembler::is_single_instruction(prev) && prev->info() == NULL) {
3346             // swap previous instruction into delay slot
3347             inst->at_put(i - 1, op);
3348             inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3349 #ifndef PRODUCT
3350             if (LIRTracePeephole) {
3351               tty->print_cr("delayed");
3352               inst->at(i - 1)->print();
3353               inst->at(i)->print();
3354               tty->cr();
3355             }
3356 #endif
3357             continue;
3358           }
3359         }
3360 
3361         if (!delay_op) {
3362           delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), NULL);
3363         }
3364         inst->insert_before(i + 1, delay_op);
3365         break;
3366       }
3367       case lir_static_call:
3368       case lir_virtual_call:
3369       case lir_icvirtual_call:
3370       case lir_optvirtual_call:
3371       case lir_dynamic_call: {
3372         LIR_Op* prev = inst->at(i - 1);
3373         if (LIRFillDelaySlots && prev && prev->code() == lir_move && prev->info() == NULL &&
3374             (op->code() != lir_virtual_call ||
3375              !prev->result_opr()->is_single_cpu() ||
3376              prev->result_opr()->as_register() != O0) &&
3377             LIR_Assembler::is_single_instruction(prev)) {
3378           // Only moves without info can be put into the delay slot.
3379           // Also don't allow the setup of the receiver in the delay
3380           // slot for vtable calls.
3381           inst->at_put(i - 1, op);
3382           inst->at_put(i, new LIR_OpDelay(prev, op->info()));
3383 #ifndef PRODUCT
3384           if (LIRTracePeephole) {
3385             tty->print_cr("delayed");
3386             inst->at(i - 1)->print();
3387             inst->at(i)->print();
3388             tty->cr();
3389           }
3390 #endif
3391         } else {
3392           LIR_Op* delay_op = new LIR_OpDelay(new LIR_Op0(lir_nop), op->as_OpJavaCall()->info());
3393           inst->insert_before(i + 1, delay_op);
3394           i++;
3395         }
3396 
3397 #if defined(TIERED) && !defined(_LP64)
3398         // fixup the return value from G1 to O0/O1 for long returns.
3399         // It's done here instead of in LIRGenerator because there's
3400         // such a mismatch between the single reg and double reg
3401         // calling convention.
3402         LIR_OpJavaCall* callop = op->as_OpJavaCall();
3403         if (callop->result_opr() == FrameMap::out_long_opr) {
3404           LIR_OpJavaCall* call;
3405           LIR_OprList* arguments = new LIR_OprList(callop->arguments()->length());
3406           for (int a = 0; a < arguments->length(); a++) {
3407             arguments[a] = callop->arguments()[a];
3408           }
3409           if (op->code() == lir_virtual_call) {
3410             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3411                                       callop->vtable_offset(), arguments, callop->info());
3412           } else {
3413             call = new LIR_OpJavaCall(op->code(), callop->method(), callop->receiver(), FrameMap::g1_long_single_opr,
3414                                       callop->addr(), arguments, callop->info());
3415           }
3416           inst->at_put(i - 1, call);
3417           inst->insert_before(i + 1, new LIR_Op1(lir_unpack64, FrameMap::g1_long_single_opr, callop->result_opr(),
3418                                                  T_LONG, lir_patch_none, NULL));
3419         }
3420 #endif
3421         break;
3422       }
3423     }
3424   }
3425 }
3426 
3427 
3428 
3429 
3430 #undef __