1 /*
   2  * Copyright (c) 2000, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "c1/c1_Compilation.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_MacroAssembler.hpp"
  30 #include "c1/c1_Runtime1.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "gc_interface/collectedHeap.hpp"
  35 #include "memory/barrierSet.hpp"
  36 #include "memory/cardTableModRefBS.hpp"
  37 #include "nativeInst_x86.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "runtime/sharedRuntime.hpp"
  40 
  41 
  42 // These masks are used to provide 128-bit aligned bitmasks to the XMM
  43 // instructions, to allow sign-masking or sign-bit flipping.  They allow
  44 // fast versions of NegF/NegD and AbsF/AbsD.
  45 
  46 // Note: 'double' and 'long long' have 32-bits alignment on x86.
  47 static jlong* double_quadword(jlong *adr, jlong lo, jlong hi) {
  48   // Use the expression (adr)&(~0xF) to provide 128-bits aligned address
  49   // of 128-bits operands for SSE instructions.
  50   jlong *operand = (jlong*)(((intptr_t)adr) & ((intptr_t)(~0xF)));
  51   // Store the value to a 128-bits operand.
  52   operand[0] = lo;
  53   operand[1] = hi;
  54   return operand;
  55 }
  56 
  57 // Buffer for 128-bits masks used by SSE instructions.
  58 static jlong fp_signmask_pool[(4+1)*2]; // 4*128bits(data) + 128bits(alignment)
  59 
  60 // Static initialization during VM startup.
  61 static jlong *float_signmask_pool  = double_quadword(&fp_signmask_pool[1*2], CONST64(0x7FFFFFFF7FFFFFFF), CONST64(0x7FFFFFFF7FFFFFFF));
  62 static jlong *double_signmask_pool = double_quadword(&fp_signmask_pool[2*2], CONST64(0x7FFFFFFFFFFFFFFF), CONST64(0x7FFFFFFFFFFFFFFF));
  63 static jlong *float_signflip_pool  = double_quadword(&fp_signmask_pool[3*2], CONST64(0x8000000080000000), CONST64(0x8000000080000000));
  64 static jlong *double_signflip_pool = double_quadword(&fp_signmask_pool[4*2], CONST64(0x8000000000000000), CONST64(0x8000000000000000));
  65 
  66 
  67 
  68 NEEDS_CLEANUP // remove this definitions ?
  69 const Register IC_Klass    = rax;   // where the IC klass is cached
  70 const Register SYNC_header = rax;   // synchronization header
  71 const Register SHIFT_count = rcx;   // where count for shift operations must be
  72 
  73 #define __ _masm->
  74 
  75 
  76 static void select_different_registers(Register preserve,
  77                                        Register extra,
  78                                        Register &tmp1,
  79                                        Register &tmp2) {
  80   if (tmp1 == preserve) {
  81     assert_different_registers(tmp1, tmp2, extra);
  82     tmp1 = extra;
  83   } else if (tmp2 == preserve) {
  84     assert_different_registers(tmp1, tmp2, extra);
  85     tmp2 = extra;
  86   }
  87   assert_different_registers(preserve, tmp1, tmp2);
  88 }
  89 
  90 
  91 
  92 static void select_different_registers(Register preserve,
  93                                        Register extra,
  94                                        Register &tmp1,
  95                                        Register &tmp2,
  96                                        Register &tmp3) {
  97   if (tmp1 == preserve) {
  98     assert_different_registers(tmp1, tmp2, tmp3, extra);
  99     tmp1 = extra;
 100   } else if (tmp2 == preserve) {
 101     assert_different_registers(tmp1, tmp2, tmp3, extra);
 102     tmp2 = extra;
 103   } else if (tmp3 == preserve) {
 104     assert_different_registers(tmp1, tmp2, tmp3, extra);
 105     tmp3 = extra;
 106   }
 107   assert_different_registers(preserve, tmp1, tmp2, tmp3);
 108 }
 109 
 110 
 111 
 112 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
 113   if (opr->is_constant()) {
 114     LIR_Const* constant = opr->as_constant_ptr();
 115     switch (constant->type()) {
 116       case T_INT: {
 117         return true;
 118       }
 119 
 120       default:
 121         return false;
 122     }
 123   }
 124   return false;
 125 }
 126 
 127 
 128 LIR_Opr LIR_Assembler::receiverOpr() {
 129   return FrameMap::receiver_opr;
 130 }
 131 
 132 LIR_Opr LIR_Assembler::osrBufferPointer() {
 133   return FrameMap::as_pointer_opr(receiverOpr()->as_register());
 134 }
 135 
 136 //--------------fpu register translations-----------------------
 137 
 138 
 139 address LIR_Assembler::float_constant(float f) {
 140   address const_addr = __ float_constant(f);
 141   if (const_addr == NULL) {
 142     bailout("const section overflow");
 143     return __ code()->consts()->start();
 144   } else {
 145     return const_addr;
 146   }
 147 }
 148 
 149 
 150 address LIR_Assembler::double_constant(double d) {
 151   address const_addr = __ double_constant(d);
 152   if (const_addr == NULL) {
 153     bailout("const section overflow");
 154     return __ code()->consts()->start();
 155   } else {
 156     return const_addr;
 157   }
 158 }
 159 
 160 
 161 void LIR_Assembler::set_24bit_FPU() {
 162   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
 163 }
 164 
 165 void LIR_Assembler::reset_FPU() {
 166   __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
 167 }
 168 
 169 void LIR_Assembler::fpop() {
 170   __ fpop();
 171 }
 172 
 173 void LIR_Assembler::fxch(int i) {
 174   __ fxch(i);
 175 }
 176 
 177 void LIR_Assembler::fld(int i) {
 178   __ fld_s(i);
 179 }
 180 
 181 void LIR_Assembler::ffree(int i) {
 182   __ ffree(i);
 183 }
 184 
 185 void LIR_Assembler::breakpoint() {
 186   __ int3();
 187 }
 188 
 189 void LIR_Assembler::push(LIR_Opr opr) {
 190   if (opr->is_single_cpu()) {
 191     __ push_reg(opr->as_register());
 192   } else if (opr->is_double_cpu()) {
 193     NOT_LP64(__ push_reg(opr->as_register_hi()));
 194     __ push_reg(opr->as_register_lo());
 195   } else if (opr->is_stack()) {
 196     __ push_addr(frame_map()->address_for_slot(opr->single_stack_ix()));
 197   } else if (opr->is_constant()) {
 198     LIR_Const* const_opr = opr->as_constant_ptr();
 199     if (const_opr->type() == T_OBJECT) {
 200       __ push_oop(const_opr->as_jobject());
 201     } else if (const_opr->type() == T_INT) {
 202       __ push_jint(const_opr->as_jint());
 203     } else {
 204       ShouldNotReachHere();
 205     }
 206 
 207   } else {
 208     ShouldNotReachHere();
 209   }
 210 }
 211 
 212 void LIR_Assembler::pop(LIR_Opr opr) {
 213   if (opr->is_single_cpu()) {
 214     __ pop_reg(opr->as_register());
 215   } else {
 216     ShouldNotReachHere();
 217   }
 218 }
 219 
 220 bool LIR_Assembler::is_literal_address(LIR_Address* addr) {
 221   return addr->base()->is_illegal() && addr->index()->is_illegal();
 222 }
 223 
 224 //-------------------------------------------
 225 
 226 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 227   return as_Address(addr, rscratch1);
 228 }
 229 
 230 Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
 231   if (addr->base()->is_illegal()) {
 232     assert(addr->index()->is_illegal(), "must be illegal too");
 233     AddressLiteral laddr((address)addr->disp(), relocInfo::none);
 234     if (! __ reachable(laddr)) {
 235       __ movptr(tmp, laddr.addr());
 236       Address res(tmp, 0);
 237       return res;
 238     } else {
 239       return __ as_Address(laddr);
 240     }
 241   }
 242 
 243   Register base = addr->base()->as_pointer_register();
 244 
 245   if (addr->index()->is_illegal()) {
 246     return Address( base, addr->disp());
 247   } else if (addr->index()->is_cpu_register()) {
 248     Register index = addr->index()->as_pointer_register();
 249     return Address(base, index, (Address::ScaleFactor) addr->scale(), addr->disp());
 250   } else if (addr->index()->is_constant()) {
 251     intptr_t addr_offset = (addr->index()->as_constant_ptr()->as_jint() << addr->scale()) + addr->disp();
 252     assert(Assembler::is_simm32(addr_offset), "must be");
 253 
 254     return Address(base, addr_offset);
 255   } else {
 256     Unimplemented();
 257     return Address();
 258   }
 259 }
 260 
 261 
 262 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 263   Address base = as_Address(addr);
 264   return Address(base._base, base._index, base._scale, base._disp + BytesPerWord);
 265 }
 266 
 267 
 268 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 269   return as_Address(addr);
 270 }
 271 
 272 
 273 void LIR_Assembler::osr_entry() {
 274   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 275   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 276   ValueStack* entry_state = osr_entry->state();
 277   int number_of_locks = entry_state->locks_size();
 278 
 279   // we jump here if osr happens with the interpreter
 280   // state set up to continue at the beginning of the
 281   // loop that triggered osr - in particular, we have
 282   // the following registers setup:
 283   //
 284   // rcx: osr buffer
 285   //
 286 
 287   // build frame
 288   ciMethod* m = compilation()->method();
 289   __ build_frame(initial_frame_size_in_bytes());
 290 
 291   // OSR buffer is
 292   //
 293   // locals[nlocals-1..0]
 294   // monitors[0..number_of_locks]
 295   //
 296   // locals is a direct copy of the interpreter frame so in the osr buffer
 297   // so first slot in the local array is the last local from the interpreter
 298   // and last slot is local[0] (receiver) from the interpreter
 299   //
 300   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 301   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 302   // in the interpreter frame (the method lock if a sync method)
 303 
 304   // Initialize monitors in the compiled activation.
 305   //   rcx: pointer to osr buffer
 306   //
 307   // All other registers are dead at this point and the locals will be
 308   // copied into place by code emitted in the IR.
 309 
 310   Register OSR_buf = osrBufferPointer()->as_pointer_register();
 311   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 312     int monitor_offset = BytesPerWord * method()->max_locals() +
 313       (2 * BytesPerWord) * (number_of_locks - 1);
 314     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 315     // the OSR buffer using 2 word entries: first the lock and then
 316     // the oop.
 317     for (int i = 0; i < number_of_locks; i++) {
 318       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 319 #ifdef ASSERT
 320       // verify the interpreter's monitor has a non-null object
 321       {
 322         Label L;
 323         __ cmpptr(Address(OSR_buf, slot_offset + 1*BytesPerWord), (int32_t)NULL_WORD);
 324         __ jcc(Assembler::notZero, L);
 325         __ stop("locked object is NULL");
 326         __ bind(L);
 327       }
 328 #endif
 329       __ movptr(rbx, Address(OSR_buf, slot_offset + 0));
 330       __ movptr(frame_map()->address_for_monitor_lock(i), rbx);
 331       __ movptr(rbx, Address(OSR_buf, slot_offset + 1*BytesPerWord));
 332       __ movptr(frame_map()->address_for_monitor_object(i), rbx);
 333     }
 334   }
 335 }
 336 
 337 
 338 // inline cache check; done before the frame is built.
 339 int LIR_Assembler::check_icache() {
 340   Register receiver = FrameMap::receiver_opr->as_register();
 341   Register ic_klass = IC_Klass;
 342   const int ic_cmp_size = LP64_ONLY(10) NOT_LP64(9);
 343   const bool do_post_padding = VerifyOops || UseCompressedOops;
 344   if (!do_post_padding) {
 345     // insert some nops so that the verified entry point is aligned on CodeEntryAlignment
 346     while ((__ offset() + ic_cmp_size) % CodeEntryAlignment != 0) {
 347       __ nop();
 348     }
 349   }
 350   int offset = __ offset();
 351   __ inline_cache_check(receiver, IC_Klass);
 352   assert(__ offset() % CodeEntryAlignment == 0 || do_post_padding, "alignment must be correct");
 353   if (do_post_padding) {
 354     // force alignment after the cache check.
 355     // It's been verified to be aligned if !VerifyOops
 356     __ align(CodeEntryAlignment);
 357   }
 358   return offset;
 359 }
 360 
 361 
 362 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo* info) {
 363   jobject o = NULL;
 364   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id);
 365   __ movoop(reg, o);
 366   patching_epilog(patch, lir_patch_normal, reg, info);
 367 }
 368 
 369 
 370 // This specifies the rsp decrement needed to build the frame
 371 int LIR_Assembler::initial_frame_size_in_bytes() {
 372   // if rounding, must let FrameMap know!
 373 
 374   // The frame_map records size in slots (32bit word)
 375 
 376   // subtract two words to account for return address and link
 377   return (frame_map()->framesize() - (2*VMRegImpl::slots_per_word))  * VMRegImpl::stack_slot_size;
 378 }
 379 
 380 
 381 int LIR_Assembler::emit_exception_handler() {
 382   // if the last instruction is a call (typically to do a throw which
 383   // is coming at the end after block reordering) the return address
 384   // must still point into the code area in order to avoid assertion
 385   // failures when searching for the corresponding bci => add a nop
 386   // (was bug 5/14/1999 - gri)
 387   __ nop();
 388 
 389   // generate code for exception handler
 390   address handler_base = __ start_a_stub(exception_handler_size);
 391   if (handler_base == NULL) {
 392     // not enough space left for the handler
 393     bailout("exception handler overflow");
 394     return -1;
 395   }
 396 
 397   int offset = code_offset();
 398 
 399   // the exception oop and pc are in rax, and rdx
 400   // no other registers need to be preserved, so invalidate them
 401   __ invalidate_registers(false, true, true, false, true, true);
 402 
 403   // check that there is really an exception
 404   __ verify_not_null_oop(rax);
 405 
 406   // search an exception handler (rax: exception oop, rdx: throwing pc)
 407   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
 408   __ should_not_reach_here();
 409   guarantee(code_offset() - offset <= exception_handler_size, "overflow");
 410   __ end_a_stub();
 411 
 412   return offset;
 413 }
 414 
 415 
 416 // Emit the code to remove the frame from the stack in the exception
 417 // unwind path.
 418 int LIR_Assembler::emit_unwind_handler() {
 419 #ifndef PRODUCT
 420   if (CommentedAssembly) {
 421     _masm->block_comment("Unwind handler");
 422   }
 423 #endif
 424 
 425   int offset = code_offset();
 426 
 427   // Fetch the exception from TLS and clear out exception related thread state
 428   __ get_thread(rsi);
 429   __ movptr(rax, Address(rsi, JavaThread::exception_oop_offset()));
 430   __ movptr(Address(rsi, JavaThread::exception_oop_offset()), (intptr_t)NULL_WORD);
 431   __ movptr(Address(rsi, JavaThread::exception_pc_offset()), (intptr_t)NULL_WORD);
 432 
 433   __ bind(_unwind_handler_entry);
 434   __ verify_not_null_oop(rax);
 435   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 436     __ mov(rsi, rax);  // Preserve the exception
 437   }
 438 
 439   // Preform needed unlocking
 440   MonitorExitStub* stub = NULL;
 441   if (method()->is_synchronized()) {
 442     monitor_address(0, FrameMap::rax_opr);
 443     stub = new MonitorExitStub(FrameMap::rax_opr, true, 0);
 444     __ unlock_object(rdi, rbx, rax, *stub->entry());
 445     __ bind(*stub->continuation());
 446   }
 447 
 448   if (compilation()->env()->dtrace_method_probes()) {
 449     __ get_thread(rax);
 450     __ movptr(Address(rsp, 0), rax);
 451     __ movoop(Address(rsp, sizeof(void*)), method()->constant_encoding());
 452     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 453   }
 454 
 455   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 456     __ mov(rax, rsi);  // Restore the exception
 457   }
 458 
 459   // remove the activation and dispatch to the unwind handler
 460   __ remove_frame(initial_frame_size_in_bytes());
 461   __ jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
 462 
 463   // Emit the slow path assembly
 464   if (stub != NULL) {
 465     stub->emit_code(this);
 466   }
 467 
 468   return offset;
 469 }
 470 
 471 
 472 int LIR_Assembler::emit_deopt_handler() {
 473   // if the last instruction is a call (typically to do a throw which
 474   // is coming at the end after block reordering) the return address
 475   // must still point into the code area in order to avoid assertion
 476   // failures when searching for the corresponding bci => add a nop
 477   // (was bug 5/14/1999 - gri)
 478   __ nop();
 479 
 480   // generate code for exception handler
 481   address handler_base = __ start_a_stub(deopt_handler_size);
 482   if (handler_base == NULL) {
 483     // not enough space left for the handler
 484     bailout("deopt handler overflow");
 485     return -1;
 486   }
 487 
 488   int offset = code_offset();
 489   InternalAddress here(__ pc());
 490 
 491   __ pushptr(here.addr());
 492   __ jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
 493   guarantee(code_offset() - offset <= deopt_handler_size, "overflow");
 494   __ end_a_stub();
 495 
 496   return offset;
 497 }
 498 
 499 
 500 // This is the fast version of java.lang.String.compare; it has not
 501 // OSR-entry and therefore, we generate a slow version for OSR's
 502 void LIR_Assembler::emit_string_compare(LIR_Opr arg0, LIR_Opr arg1, LIR_Opr dst, CodeEmitInfo* info) {
 503   __ movptr (rbx, rcx); // receiver is in rcx
 504   __ movptr (rax, arg1->as_register());
 505 
 506   // Get addresses of first characters from both Strings
 507   __ load_heap_oop(rsi, Address(rax, java_lang_String::value_offset_in_bytes()));
 508   if (java_lang_String::has_offset_field()) {
 509     __ movptr     (rcx, Address(rax, java_lang_String::offset_offset_in_bytes()));
 510     __ movl       (rax, Address(rax, java_lang_String::count_offset_in_bytes()));
 511     __ lea        (rsi, Address(rsi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 512   } else {
 513     __ movl       (rax, Address(rsi, arrayOopDesc::length_offset_in_bytes()));
 514     __ lea        (rsi, Address(rsi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 515   }
 516 
 517   // rbx, may be NULL
 518   add_debug_info_for_null_check_here(info);
 519   __ load_heap_oop(rdi, Address(rbx, java_lang_String::value_offset_in_bytes()));
 520   if (java_lang_String::has_offset_field()) {
 521     __ movptr     (rcx, Address(rbx, java_lang_String::offset_offset_in_bytes()));
 522     __ movl       (rbx, Address(rbx, java_lang_String::count_offset_in_bytes()));
 523     __ lea        (rdi, Address(rdi, rcx, Address::times_2, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 524   } else {
 525     __ movl       (rbx, Address(rdi, arrayOopDesc::length_offset_in_bytes()));
 526     __ lea        (rdi, Address(rdi, arrayOopDesc::base_offset_in_bytes(T_CHAR)));
 527   }
 528 
 529   // compute minimum length (in rax) and difference of lengths (on top of stack)
 530   __ mov   (rcx, rbx);
 531   __ subptr(rbx, rax); // subtract lengths
 532   __ push  (rbx);      // result
 533   __ cmov  (Assembler::lessEqual, rax, rcx);
 534 
 535   // is minimum length 0?
 536   Label noLoop, haveResult;
 537   __ testptr (rax, rax);
 538   __ jcc (Assembler::zero, noLoop);
 539 
 540   // compare first characters
 541   __ load_unsigned_short(rcx, Address(rdi, 0));
 542   __ load_unsigned_short(rbx, Address(rsi, 0));
 543   __ subl(rcx, rbx);
 544   __ jcc(Assembler::notZero, haveResult);
 545   // starting loop
 546   __ decrement(rax); // we already tested index: skip one
 547   __ jcc(Assembler::zero, noLoop);
 548 
 549   // set rsi.edi to the end of the arrays (arrays have same length)
 550   // negate the index
 551 
 552   __ lea(rsi, Address(rsi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 553   __ lea(rdi, Address(rdi, rax, Address::times_2, type2aelembytes(T_CHAR)));
 554   __ negptr(rax);
 555 
 556   // compare the strings in a loop
 557 
 558   Label loop;
 559   __ align(wordSize);
 560   __ bind(loop);
 561   __ load_unsigned_short(rcx, Address(rdi, rax, Address::times_2, 0));
 562   __ load_unsigned_short(rbx, Address(rsi, rax, Address::times_2, 0));
 563   __ subl(rcx, rbx);
 564   __ jcc(Assembler::notZero, haveResult);
 565   __ increment(rax);
 566   __ jcc(Assembler::notZero, loop);
 567 
 568   // strings are equal up to min length
 569 
 570   __ bind(noLoop);
 571   __ pop(rax);
 572   return_op(LIR_OprFact::illegalOpr);
 573 
 574   __ bind(haveResult);
 575   // leave instruction is going to discard the TOS value
 576   __ mov (rax, rcx); // result of call is in rax,
 577 }
 578 
 579 
 580 void LIR_Assembler::return_op(LIR_Opr result) {
 581   assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == rax, "word returns are in rax,");
 582   if (!result->is_illegal() && result->is_float_kind() && !result->is_xmm_register()) {
 583     assert(result->fpu() == 0, "result must already be on TOS");
 584   }
 585 
 586   // Pop the stack before the safepoint code
 587   __ remove_frame(initial_frame_size_in_bytes());
 588 
 589   bool result_is_oop = result->is_valid() ? result->is_oop() : false;
 590 
 591   // Note: we do not need to round double result; float result has the right precision
 592   // the poll sets the condition code, but no data registers
 593   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 594                               relocInfo::poll_return_type);
 595 
 596   if (Assembler::is_polling_page_far()) {
 597     __ lea(rscratch1, polling_page);
 598     __ relocate(relocInfo::poll_return_type);
 599     __ testl(rax, Address(rscratch1, 0));
 600   } else {
 601     __ testl(rax, polling_page);
 602   }
 603   __ ret(0);
 604 }
 605 
 606 
 607 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
 608   AddressLiteral polling_page(os::get_polling_page() + (SafepointPollOffset % os::vm_page_size()),
 609                               relocInfo::poll_type);
 610   guarantee(info != NULL, "Shouldn't be NULL");
 611   int offset = __ offset();
 612   if (Assembler::is_polling_page_far()) {
 613     __ lea(rscratch1, polling_page);
 614     offset = __ offset();
 615     add_debug_info_for_branch(info);
 616     __ testl(rax, Address(rscratch1, 0));
 617   } else {
 618     add_debug_info_for_branch(info);
 619     __ testl(rax, polling_page);
 620   }
 621   return offset;
 622 }
 623 
 624 
 625 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 626   if (from_reg != to_reg) __ mov(to_reg, from_reg);
 627 }
 628 
 629 void LIR_Assembler::swap_reg(Register a, Register b) {
 630   __ xchgptr(a, b);
 631 }
 632 
 633 
 634 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 635   assert(src->is_constant(), "should not call otherwise");
 636   assert(dest->is_register(), "should not call otherwise");
 637   LIR_Const* c = src->as_constant_ptr();
 638 
 639   switch (c->type()) {
 640     case T_INT: {
 641       assert(patch_code == lir_patch_none, "no patching handled here");
 642       __ movl(dest->as_register(), c->as_jint());
 643       break;
 644     }
 645 
 646     case T_ADDRESS: {
 647       assert(patch_code == lir_patch_none, "no patching handled here");
 648       __ movptr(dest->as_register(), c->as_jint());
 649       break;
 650     }
 651 
 652     case T_LONG: {
 653       assert(patch_code == lir_patch_none, "no patching handled here");
 654 #ifdef _LP64
 655       __ movptr(dest->as_register_lo(), (intptr_t)c->as_jlong());
 656 #else
 657       __ movptr(dest->as_register_lo(), c->as_jint_lo());
 658       __ movptr(dest->as_register_hi(), c->as_jint_hi());
 659 #endif // _LP64
 660       break;
 661     }
 662 
 663     case T_OBJECT: {
 664       if (patch_code != lir_patch_none) {
 665         jobject2reg_with_patching(dest->as_register(), info);
 666       } else {
 667         __ movoop(dest->as_register(), c->as_jobject());
 668       }
 669       break;
 670     }
 671 
 672     case T_FLOAT: {
 673       if (dest->is_single_xmm()) {
 674         if (c->is_zero_float()) {
 675           __ xorps(dest->as_xmm_float_reg(), dest->as_xmm_float_reg());
 676         } else {
 677           __ movflt(dest->as_xmm_float_reg(),
 678                    InternalAddress(float_constant(c->as_jfloat())));
 679         }
 680       } else {
 681         assert(dest->is_single_fpu(), "must be");
 682         assert(dest->fpu_regnr() == 0, "dest must be TOS");
 683         if (c->is_zero_float()) {
 684           __ fldz();
 685         } else if (c->is_one_float()) {
 686           __ fld1();
 687         } else {
 688           __ fld_s (InternalAddress(float_constant(c->as_jfloat())));
 689         }
 690       }
 691       break;
 692     }
 693 
 694     case T_DOUBLE: {
 695       if (dest->is_double_xmm()) {
 696         if (c->is_zero_double()) {
 697           __ xorpd(dest->as_xmm_double_reg(), dest->as_xmm_double_reg());
 698         } else {
 699           __ movdbl(dest->as_xmm_double_reg(),
 700                     InternalAddress(double_constant(c->as_jdouble())));
 701         }
 702       } else {
 703         assert(dest->is_double_fpu(), "must be");
 704         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
 705         if (c->is_zero_double()) {
 706           __ fldz();
 707         } else if (c->is_one_double()) {
 708           __ fld1();
 709         } else {
 710           __ fld_d (InternalAddress(double_constant(c->as_jdouble())));
 711         }
 712       }
 713       break;
 714     }
 715 
 716     default:
 717       ShouldNotReachHere();
 718   }
 719 }
 720 
 721 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 722   assert(src->is_constant(), "should not call otherwise");
 723   assert(dest->is_stack(), "should not call otherwise");
 724   LIR_Const* c = src->as_constant_ptr();
 725 
 726   switch (c->type()) {
 727     case T_INT:  // fall through
 728     case T_FLOAT:
 729       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 730       break;
 731 
 732     case T_ADDRESS:
 733       __ movptr(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jint_bits());
 734       break;
 735 
 736     case T_OBJECT:
 737       __ movoop(frame_map()->address_for_slot(dest->single_stack_ix()), c->as_jobject());
 738       break;
 739 
 740     case T_LONG:  // fall through
 741     case T_DOUBLE:
 742 #ifdef _LP64
 743       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 744                                             lo_word_offset_in_bytes), (intptr_t)c->as_jlong_bits());
 745 #else
 746       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 747                                               lo_word_offset_in_bytes), c->as_jint_lo_bits());
 748       __ movptr(frame_map()->address_for_slot(dest->double_stack_ix(),
 749                                               hi_word_offset_in_bytes), c->as_jint_hi_bits());
 750 #endif // _LP64
 751       break;
 752 
 753     default:
 754       ShouldNotReachHere();
 755   }
 756 }
 757 
 758 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 759   assert(src->is_constant(), "should not call otherwise");
 760   assert(dest->is_address(), "should not call otherwise");
 761   LIR_Const* c = src->as_constant_ptr();
 762   LIR_Address* addr = dest->as_address_ptr();
 763 
 764   int null_check_here = code_offset();
 765   switch (type) {
 766     case T_INT:    // fall through
 767     case T_FLOAT:
 768       __ movl(as_Address(addr), c->as_jint_bits());
 769       break;
 770 
 771     case T_ADDRESS:
 772       __ movptr(as_Address(addr), c->as_jint_bits());
 773       break;
 774 
 775     case T_OBJECT:  // fall through
 776     case T_ARRAY:
 777       if (c->as_jobject() == NULL) {
 778         if (UseCompressedOops && !wide) {
 779           __ movl(as_Address(addr), (int32_t)NULL_WORD);
 780         } else {
 781           __ movptr(as_Address(addr), NULL_WORD);
 782         }
 783       } else {
 784         if (is_literal_address(addr)) {
 785           ShouldNotReachHere();
 786           __ movoop(as_Address(addr, noreg), c->as_jobject());
 787         } else {
 788 #ifdef _LP64
 789           __ movoop(rscratch1, c->as_jobject());
 790           if (UseCompressedOops && !wide) {
 791             __ encode_heap_oop(rscratch1);
 792             null_check_here = code_offset();
 793             __ movl(as_Address_lo(addr), rscratch1);
 794           } else {
 795             null_check_here = code_offset();
 796             __ movptr(as_Address_lo(addr), rscratch1);
 797           }
 798 #else
 799           __ movoop(as_Address(addr), c->as_jobject());
 800 #endif
 801         }
 802       }
 803       break;
 804 
 805     case T_LONG:    // fall through
 806     case T_DOUBLE:
 807 #ifdef _LP64
 808       if (is_literal_address(addr)) {
 809         ShouldNotReachHere();
 810         __ movptr(as_Address(addr, r15_thread), (intptr_t)c->as_jlong_bits());
 811       } else {
 812         __ movptr(r10, (intptr_t)c->as_jlong_bits());
 813         null_check_here = code_offset();
 814         __ movptr(as_Address_lo(addr), r10);
 815       }
 816 #else
 817       // Always reachable in 32bit so this doesn't produce useless move literal
 818       __ movptr(as_Address_hi(addr), c->as_jint_hi_bits());
 819       __ movptr(as_Address_lo(addr), c->as_jint_lo_bits());
 820 #endif // _LP64
 821       break;
 822 
 823     case T_BOOLEAN: // fall through
 824     case T_BYTE:
 825       __ movb(as_Address(addr), c->as_jint() & 0xFF);
 826       break;
 827 
 828     case T_CHAR:    // fall through
 829     case T_SHORT:
 830       __ movw(as_Address(addr), c->as_jint() & 0xFFFF);
 831       break;
 832 
 833     default:
 834       ShouldNotReachHere();
 835   };
 836 
 837   if (info != NULL) {
 838     add_debug_info_for_null_check(null_check_here, info);
 839   }
 840 }
 841 
 842 
 843 void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
 844   assert(src->is_register(), "should not call otherwise");
 845   assert(dest->is_register(), "should not call otherwise");
 846 
 847   // move between cpu-registers
 848   if (dest->is_single_cpu()) {
 849 #ifdef _LP64
 850     if (src->type() == T_LONG) {
 851       // Can do LONG -> OBJECT
 852       move_regs(src->as_register_lo(), dest->as_register());
 853       return;
 854     }
 855 #endif
 856     assert(src->is_single_cpu(), "must match");
 857     if (src->type() == T_OBJECT) {
 858       __ verify_oop(src->as_register());
 859     }
 860     move_regs(src->as_register(), dest->as_register());
 861 
 862   } else if (dest->is_double_cpu()) {
 863 #ifdef _LP64
 864     if (src->type() == T_OBJECT || src->type() == T_ARRAY) {
 865       // Surprising to me but we can see move of a long to t_object
 866       __ verify_oop(src->as_register());
 867       move_regs(src->as_register(), dest->as_register_lo());
 868       return;
 869     }
 870 #endif
 871     assert(src->is_double_cpu(), "must match");
 872     Register f_lo = src->as_register_lo();
 873     Register f_hi = src->as_register_hi();
 874     Register t_lo = dest->as_register_lo();
 875     Register t_hi = dest->as_register_hi();
 876 #ifdef _LP64
 877     assert(f_hi == f_lo, "must be same");
 878     assert(t_hi == t_lo, "must be same");
 879     move_regs(f_lo, t_lo);
 880 #else
 881     assert(f_lo != f_hi && t_lo != t_hi, "invalid register allocation");
 882 
 883 
 884     if (f_lo == t_hi && f_hi == t_lo) {
 885       swap_reg(f_lo, f_hi);
 886     } else if (f_hi == t_lo) {
 887       assert(f_lo != t_hi, "overwriting register");
 888       move_regs(f_hi, t_hi);
 889       move_regs(f_lo, t_lo);
 890     } else {
 891       assert(f_hi != t_lo, "overwriting register");
 892       move_regs(f_lo, t_lo);
 893       move_regs(f_hi, t_hi);
 894     }
 895 #endif // LP64
 896 
 897     // special moves from fpu-register to xmm-register
 898     // necessary for method results
 899   } else if (src->is_single_xmm() && !dest->is_single_xmm()) {
 900     __ movflt(Address(rsp, 0), src->as_xmm_float_reg());
 901     __ fld_s(Address(rsp, 0));
 902   } else if (src->is_double_xmm() && !dest->is_double_xmm()) {
 903     __ movdbl(Address(rsp, 0), src->as_xmm_double_reg());
 904     __ fld_d(Address(rsp, 0));
 905   } else if (dest->is_single_xmm() && !src->is_single_xmm()) {
 906     __ fstp_s(Address(rsp, 0));
 907     __ movflt(dest->as_xmm_float_reg(), Address(rsp, 0));
 908   } else if (dest->is_double_xmm() && !src->is_double_xmm()) {
 909     __ fstp_d(Address(rsp, 0));
 910     __ movdbl(dest->as_xmm_double_reg(), Address(rsp, 0));
 911 
 912     // move between xmm-registers
 913   } else if (dest->is_single_xmm()) {
 914     assert(src->is_single_xmm(), "must match");
 915     __ movflt(dest->as_xmm_float_reg(), src->as_xmm_float_reg());
 916   } else if (dest->is_double_xmm()) {
 917     assert(src->is_double_xmm(), "must match");
 918     __ movdbl(dest->as_xmm_double_reg(), src->as_xmm_double_reg());
 919 
 920     // move between fpu-registers (no instruction necessary because of fpu-stack)
 921   } else if (dest->is_single_fpu() || dest->is_double_fpu()) {
 922     assert(src->is_single_fpu() || src->is_double_fpu(), "must match");
 923     assert(src->fpu() == dest->fpu(), "currently should be nothing to do");
 924   } else {
 925     ShouldNotReachHere();
 926   }
 927 }
 928 
 929 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
 930   assert(src->is_register(), "should not call otherwise");
 931   assert(dest->is_stack(), "should not call otherwise");
 932 
 933   if (src->is_single_cpu()) {
 934     Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
 935     if (type == T_OBJECT || type == T_ARRAY) {
 936       __ verify_oop(src->as_register());
 937       __ movptr (dst, src->as_register());
 938     } else {
 939       __ movl (dst, src->as_register());
 940     }
 941 
 942   } else if (src->is_double_cpu()) {
 943     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix(), lo_word_offset_in_bytes);
 944     Address dstHI = frame_map()->address_for_slot(dest->double_stack_ix(), hi_word_offset_in_bytes);
 945     __ movptr (dstLO, src->as_register_lo());
 946     NOT_LP64(__ movptr (dstHI, src->as_register_hi()));
 947 
 948   } else if (src->is_single_xmm()) {
 949     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 950     __ movflt(dst_addr, src->as_xmm_float_reg());
 951 
 952   } else if (src->is_double_xmm()) {
 953     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 954     __ movdbl(dst_addr, src->as_xmm_double_reg());
 955 
 956   } else if (src->is_single_fpu()) {
 957     assert(src->fpu_regnr() == 0, "argument must be on TOS");
 958     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 959     if (pop_fpu_stack)     __ fstp_s (dst_addr);
 960     else                   __ fst_s  (dst_addr);
 961 
 962   } else if (src->is_double_fpu()) {
 963     assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
 964     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 965     if (pop_fpu_stack)     __ fstp_d (dst_addr);
 966     else                   __ fst_d  (dst_addr);
 967 
 968   } else {
 969     ShouldNotReachHere();
 970   }
 971 }
 972 
 973 
 974 void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
 975   LIR_Address* to_addr = dest->as_address_ptr();
 976   PatchingStub* patch = NULL;
 977   Register compressed_src = rscratch1;
 978 
 979   if (type == T_ARRAY || type == T_OBJECT) {
 980     __ verify_oop(src->as_register());
 981 #ifdef _LP64
 982     if (UseCompressedOops && !wide) {
 983       __ movptr(compressed_src, src->as_register());
 984       __ encode_heap_oop(compressed_src);
 985     }
 986 #endif
 987   }
 988 
 989   if (patch_code != lir_patch_none) {
 990     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 991     Address toa = as_Address(to_addr);
 992     assert(toa.disp() != 0, "must have");
 993   }
 994 
 995   int null_check_here = code_offset();
 996   switch (type) {
 997     case T_FLOAT: {
 998       if (src->is_single_xmm()) {
 999         __ movflt(as_Address(to_addr), src->as_xmm_float_reg());
1000       } else {
1001         assert(src->is_single_fpu(), "must be");
1002         assert(src->fpu_regnr() == 0, "argument must be on TOS");
1003         if (pop_fpu_stack)      __ fstp_s(as_Address(to_addr));
1004         else                    __ fst_s (as_Address(to_addr));
1005       }
1006       break;
1007     }
1008 
1009     case T_DOUBLE: {
1010       if (src->is_double_xmm()) {
1011         __ movdbl(as_Address(to_addr), src->as_xmm_double_reg());
1012       } else {
1013         assert(src->is_double_fpu(), "must be");
1014         assert(src->fpu_regnrLo() == 0, "argument must be on TOS");
1015         if (pop_fpu_stack)      __ fstp_d(as_Address(to_addr));
1016         else                    __ fst_d (as_Address(to_addr));
1017       }
1018       break;
1019     }
1020 
1021     case T_ARRAY:   // fall through
1022     case T_OBJECT:  // fall through
1023       if (UseCompressedOops && !wide) {
1024         __ movl(as_Address(to_addr), compressed_src);
1025       } else {
1026         __ movptr(as_Address(to_addr), src->as_register());
1027       }
1028       break;
1029     case T_ADDRESS:
1030       __ movptr(as_Address(to_addr), src->as_register());
1031       break;
1032     case T_INT:
1033       __ movl(as_Address(to_addr), src->as_register());
1034       break;
1035 
1036     case T_LONG: {
1037       Register from_lo = src->as_register_lo();
1038       Register from_hi = src->as_register_hi();
1039 #ifdef _LP64
1040       __ movptr(as_Address_lo(to_addr), from_lo);
1041 #else
1042       Register base = to_addr->base()->as_register();
1043       Register index = noreg;
1044       if (to_addr->index()->is_register()) {
1045         index = to_addr->index()->as_register();
1046       }
1047       if (base == from_lo || index == from_lo) {
1048         assert(base != from_hi, "can't be");
1049         assert(index == noreg || (index != base && index != from_hi), "can't handle this");
1050         __ movl(as_Address_hi(to_addr), from_hi);
1051         if (patch != NULL) {
1052           patching_epilog(patch, lir_patch_high, base, info);
1053           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1054           patch_code = lir_patch_low;
1055         }
1056         __ movl(as_Address_lo(to_addr), from_lo);
1057       } else {
1058         assert(index == noreg || (index != base && index != from_lo), "can't handle this");
1059         __ movl(as_Address_lo(to_addr), from_lo);
1060         if (patch != NULL) {
1061           patching_epilog(patch, lir_patch_low, base, info);
1062           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1063           patch_code = lir_patch_high;
1064         }
1065         __ movl(as_Address_hi(to_addr), from_hi);
1066       }
1067 #endif // _LP64
1068       break;
1069     }
1070 
1071     case T_BYTE:    // fall through
1072     case T_BOOLEAN: {
1073       Register src_reg = src->as_register();
1074       Address dst_addr = as_Address(to_addr);
1075       assert(VM_Version::is_P6() || src_reg->has_byte_register(), "must use byte registers if not P6");
1076       __ movb(dst_addr, src_reg);
1077       break;
1078     }
1079 
1080     case T_CHAR:    // fall through
1081     case T_SHORT:
1082       __ movw(as_Address(to_addr), src->as_register());
1083       break;
1084 
1085     default:
1086       ShouldNotReachHere();
1087   }
1088   if (info != NULL) {
1089     add_debug_info_for_null_check(null_check_here, info);
1090   }
1091 
1092   if (patch_code != lir_patch_none) {
1093     patching_epilog(patch, patch_code, to_addr->base()->as_register(), info);
1094   }
1095 }
1096 
1097 
1098 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1099   assert(src->is_stack(), "should not call otherwise");
1100   assert(dest->is_register(), "should not call otherwise");
1101 
1102   if (dest->is_single_cpu()) {
1103     if (type == T_ARRAY || type == T_OBJECT) {
1104       __ movptr(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1105       __ verify_oop(dest->as_register());
1106     } else {
1107       __ movl(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()));
1108     }
1109 
1110   } else if (dest->is_double_cpu()) {
1111     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix(), lo_word_offset_in_bytes);
1112     Address src_addr_HI = frame_map()->address_for_slot(src->double_stack_ix(), hi_word_offset_in_bytes);
1113     __ movptr(dest->as_register_lo(), src_addr_LO);
1114     NOT_LP64(__ movptr(dest->as_register_hi(), src_addr_HI));
1115 
1116   } else if (dest->is_single_xmm()) {
1117     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1118     __ movflt(dest->as_xmm_float_reg(), src_addr);
1119 
1120   } else if (dest->is_double_xmm()) {
1121     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1122     __ movdbl(dest->as_xmm_double_reg(), src_addr);
1123 
1124   } else if (dest->is_single_fpu()) {
1125     assert(dest->fpu_regnr() == 0, "dest must be TOS");
1126     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1127     __ fld_s(src_addr);
1128 
1129   } else if (dest->is_double_fpu()) {
1130     assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1131     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1132     __ fld_d(src_addr);
1133 
1134   } else {
1135     ShouldNotReachHere();
1136   }
1137 }
1138 
1139 
1140 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
1141   if (src->is_single_stack()) {
1142     if (type == T_OBJECT || type == T_ARRAY) {
1143       __ pushptr(frame_map()->address_for_slot(src ->single_stack_ix()));
1144       __ popptr (frame_map()->address_for_slot(dest->single_stack_ix()));
1145     } else {
1146 #ifndef _LP64
1147       __ pushl(frame_map()->address_for_slot(src ->single_stack_ix()));
1148       __ popl (frame_map()->address_for_slot(dest->single_stack_ix()));
1149 #else
1150       //no pushl on 64bits
1151       __ movl(rscratch1, frame_map()->address_for_slot(src ->single_stack_ix()));
1152       __ movl(frame_map()->address_for_slot(dest->single_stack_ix()), rscratch1);
1153 #endif
1154     }
1155 
1156   } else if (src->is_double_stack()) {
1157 #ifdef _LP64
1158     __ pushptr(frame_map()->address_for_slot(src ->double_stack_ix()));
1159     __ popptr (frame_map()->address_for_slot(dest->double_stack_ix()));
1160 #else
1161     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 0));
1162     // push and pop the part at src + wordSize, adding wordSize for the previous push
1163     __ pushl(frame_map()->address_for_slot(src ->double_stack_ix(), 2 * wordSize));
1164     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 2 * wordSize));
1165     __ popl (frame_map()->address_for_slot(dest->double_stack_ix(), 0));
1166 #endif // _LP64
1167 
1168   } else {
1169     ShouldNotReachHere();
1170   }
1171 }
1172 
1173 
1174 void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
1175   assert(src->is_address(), "should not call otherwise");
1176   assert(dest->is_register(), "should not call otherwise");
1177 
1178   LIR_Address* addr = src->as_address_ptr();
1179   Address from_addr = as_Address(addr);
1180 
1181   switch (type) {
1182     case T_BOOLEAN: // fall through
1183     case T_BYTE:    // fall through
1184     case T_CHAR:    // fall through
1185     case T_SHORT:
1186       if (!VM_Version::is_P6() && !from_addr.uses(dest->as_register())) {
1187         // on pre P6 processors we may get partial register stalls
1188         // so blow away the value of to_rinfo before loading a
1189         // partial word into it.  Do it here so that it precedes
1190         // the potential patch point below.
1191         __ xorptr(dest->as_register(), dest->as_register());
1192       }
1193       break;
1194   }
1195 
1196   PatchingStub* patch = NULL;
1197   if (patch_code != lir_patch_none) {
1198     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1199     assert(from_addr.disp() != 0, "must have");
1200   }
1201   if (info != NULL) {
1202     add_debug_info_for_null_check_here(info);
1203   }
1204 
1205   switch (type) {
1206     case T_FLOAT: {
1207       if (dest->is_single_xmm()) {
1208         __ movflt(dest->as_xmm_float_reg(), from_addr);
1209       } else {
1210         assert(dest->is_single_fpu(), "must be");
1211         assert(dest->fpu_regnr() == 0, "dest must be TOS");
1212         __ fld_s(from_addr);
1213       }
1214       break;
1215     }
1216 
1217     case T_DOUBLE: {
1218       if (dest->is_double_xmm()) {
1219         __ movdbl(dest->as_xmm_double_reg(), from_addr);
1220       } else {
1221         assert(dest->is_double_fpu(), "must be");
1222         assert(dest->fpu_regnrLo() == 0, "dest must be TOS");
1223         __ fld_d(from_addr);
1224       }
1225       break;
1226     }
1227 
1228     case T_OBJECT:  // fall through
1229     case T_ARRAY:   // fall through
1230       if (UseCompressedOops && !wide) {
1231         __ movl(dest->as_register(), from_addr);
1232       } else {
1233         __ movptr(dest->as_register(), from_addr);
1234       }
1235       break;
1236 
1237     case T_ADDRESS:
1238       __ movptr(dest->as_register(), from_addr);
1239       break;
1240     case T_INT:
1241       __ movl(dest->as_register(), from_addr);
1242       break;
1243 
1244     case T_LONG: {
1245       Register to_lo = dest->as_register_lo();
1246       Register to_hi = dest->as_register_hi();
1247 #ifdef _LP64
1248       __ movptr(to_lo, as_Address_lo(addr));
1249 #else
1250       Register base = addr->base()->as_register();
1251       Register index = noreg;
1252       if (addr->index()->is_register()) {
1253         index = addr->index()->as_register();
1254       }
1255       if ((base == to_lo && index == to_hi) ||
1256           (base == to_hi && index == to_lo)) {
1257         // addresses with 2 registers are only formed as a result of
1258         // array access so this code will never have to deal with
1259         // patches or null checks.
1260         assert(info == NULL && patch == NULL, "must be");
1261         __ lea(to_hi, as_Address(addr));
1262         __ movl(to_lo, Address(to_hi, 0));
1263         __ movl(to_hi, Address(to_hi, BytesPerWord));
1264       } else if (base == to_lo || index == to_lo) {
1265         assert(base != to_hi, "can't be");
1266         assert(index == noreg || (index != base && index != to_hi), "can't handle this");
1267         __ movl(to_hi, as_Address_hi(addr));
1268         if (patch != NULL) {
1269           patching_epilog(patch, lir_patch_high, base, info);
1270           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1271           patch_code = lir_patch_low;
1272         }
1273         __ movl(to_lo, as_Address_lo(addr));
1274       } else {
1275         assert(index == noreg || (index != base && index != to_lo), "can't handle this");
1276         __ movl(to_lo, as_Address_lo(addr));
1277         if (patch != NULL) {
1278           patching_epilog(patch, lir_patch_low, base, info);
1279           patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1280           patch_code = lir_patch_high;
1281         }
1282         __ movl(to_hi, as_Address_hi(addr));
1283       }
1284 #endif // _LP64
1285       break;
1286     }
1287 
1288     case T_BOOLEAN: // fall through
1289     case T_BYTE: {
1290       Register dest_reg = dest->as_register();
1291       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1292       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1293         __ movsbl(dest_reg, from_addr);
1294       } else {
1295         __ movb(dest_reg, from_addr);
1296         __ shll(dest_reg, 24);
1297         __ sarl(dest_reg, 24);
1298       }
1299       break;
1300     }
1301 
1302     case T_CHAR: {
1303       Register dest_reg = dest->as_register();
1304       assert(VM_Version::is_P6() || dest_reg->has_byte_register(), "must use byte registers if not P6");
1305       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1306         __ movzwl(dest_reg, from_addr);
1307       } else {
1308         __ movw(dest_reg, from_addr);
1309       }
1310       break;
1311     }
1312 
1313     case T_SHORT: {
1314       Register dest_reg = dest->as_register();
1315       if (VM_Version::is_P6() || from_addr.uses(dest_reg)) {
1316         __ movswl(dest_reg, from_addr);
1317       } else {
1318         __ movw(dest_reg, from_addr);
1319         __ shll(dest_reg, 16);
1320         __ sarl(dest_reg, 16);
1321       }
1322       break;
1323     }
1324 
1325     default:
1326       ShouldNotReachHere();
1327   }
1328 
1329   if (patch != NULL) {
1330     patching_epilog(patch, patch_code, addr->base()->as_register(), info);
1331   }
1332 
1333   if (type == T_ARRAY || type == T_OBJECT) {
1334 #ifdef _LP64
1335     if (UseCompressedOops && !wide) {
1336       __ decode_heap_oop(dest->as_register());
1337     }
1338 #endif
1339     __ verify_oop(dest->as_register());
1340   }
1341 }
1342 
1343 
1344 void LIR_Assembler::prefetchr(LIR_Opr src) {
1345   LIR_Address* addr = src->as_address_ptr();
1346   Address from_addr = as_Address(addr);
1347 
1348   if (VM_Version::supports_sse()) {
1349     switch (ReadPrefetchInstr) {
1350       case 0:
1351         __ prefetchnta(from_addr); break;
1352       case 1:
1353         __ prefetcht0(from_addr); break;
1354       case 2:
1355         __ prefetcht2(from_addr); break;
1356       default:
1357         ShouldNotReachHere(); break;
1358     }
1359   } else if (VM_Version::supports_3dnow_prefetch()) {
1360     __ prefetchr(from_addr);
1361   }
1362 }
1363 
1364 
1365 void LIR_Assembler::prefetchw(LIR_Opr src) {
1366   LIR_Address* addr = src->as_address_ptr();
1367   Address from_addr = as_Address(addr);
1368 
1369   if (VM_Version::supports_sse()) {
1370     switch (AllocatePrefetchInstr) {
1371       case 0:
1372         __ prefetchnta(from_addr); break;
1373       case 1:
1374         __ prefetcht0(from_addr); break;
1375       case 2:
1376         __ prefetcht2(from_addr); break;
1377       case 3:
1378         __ prefetchw(from_addr); break;
1379       default:
1380         ShouldNotReachHere(); break;
1381     }
1382   } else if (VM_Version::supports_3dnow_prefetch()) {
1383     __ prefetchw(from_addr);
1384   }
1385 }
1386 
1387 
1388 NEEDS_CLEANUP; // This could be static?
1389 Address::ScaleFactor LIR_Assembler::array_element_size(BasicType type) const {
1390   int elem_size = type2aelembytes(type);
1391   switch (elem_size) {
1392     case 1: return Address::times_1;
1393     case 2: return Address::times_2;
1394     case 4: return Address::times_4;
1395     case 8: return Address::times_8;
1396   }
1397   ShouldNotReachHere();
1398   return Address::no_scale;
1399 }
1400 
1401 
1402 void LIR_Assembler::emit_op3(LIR_Op3* op) {
1403   switch (op->code()) {
1404     case lir_idiv:
1405     case lir_irem:
1406       arithmetic_idiv(op->code(),
1407                       op->in_opr1(),
1408                       op->in_opr2(),
1409                       op->in_opr3(),
1410                       op->result_opr(),
1411                       op->info());
1412       break;
1413     default:      ShouldNotReachHere(); break;
1414   }
1415 }
1416 
1417 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
1418 #ifdef ASSERT
1419   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
1420   if (op->block() != NULL)  _branch_target_blocks.append(op->block());
1421   if (op->ublock() != NULL) _branch_target_blocks.append(op->ublock());
1422 #endif
1423 
1424   if (op->cond() == lir_cond_always) {
1425     if (op->info() != NULL) add_debug_info_for_branch(op->info());
1426     __ jmp (*(op->label()));
1427   } else {
1428     Assembler::Condition acond = Assembler::zero;
1429     if (op->code() == lir_cond_float_branch) {
1430       assert(op->ublock() != NULL, "must have unordered successor");
1431       __ jcc(Assembler::parity, *(op->ublock()->label()));
1432       switch(op->cond()) {
1433         case lir_cond_equal:        acond = Assembler::equal;      break;
1434         case lir_cond_notEqual:     acond = Assembler::notEqual;   break;
1435         case lir_cond_less:         acond = Assembler::below;      break;
1436         case lir_cond_lessEqual:    acond = Assembler::belowEqual; break;
1437         case lir_cond_greaterEqual: acond = Assembler::aboveEqual; break;
1438         case lir_cond_greater:      acond = Assembler::above;      break;
1439         default:                         ShouldNotReachHere();
1440       }
1441     } else {
1442       switch (op->cond()) {
1443         case lir_cond_equal:        acond = Assembler::equal;       break;
1444         case lir_cond_notEqual:     acond = Assembler::notEqual;    break;
1445         case lir_cond_less:         acond = Assembler::less;        break;
1446         case lir_cond_lessEqual:    acond = Assembler::lessEqual;   break;
1447         case lir_cond_greaterEqual: acond = Assembler::greaterEqual;break;
1448         case lir_cond_greater:      acond = Assembler::greater;     break;
1449         case lir_cond_belowEqual:   acond = Assembler::belowEqual;  break;
1450         case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;  break;
1451         default:                         ShouldNotReachHere();
1452       }
1453     }
1454     __ jcc(acond,*(op->label()));
1455   }
1456 }
1457 
1458 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
1459   LIR_Opr src  = op->in_opr();
1460   LIR_Opr dest = op->result_opr();
1461 
1462   switch (op->bytecode()) {
1463     case Bytecodes::_i2l:
1464 #ifdef _LP64
1465       __ movl2ptr(dest->as_register_lo(), src->as_register());
1466 #else
1467       move_regs(src->as_register(), dest->as_register_lo());
1468       move_regs(src->as_register(), dest->as_register_hi());
1469       __ sarl(dest->as_register_hi(), 31);
1470 #endif // LP64
1471       break;
1472 
1473     case Bytecodes::_l2i:
1474 #ifdef _LP64
1475       __ movl(dest->as_register(), src->as_register_lo());
1476 #else
1477       move_regs(src->as_register_lo(), dest->as_register());
1478 #endif
1479       break;
1480 
1481     case Bytecodes::_i2b:
1482       move_regs(src->as_register(), dest->as_register());
1483       __ sign_extend_byte(dest->as_register());
1484       break;
1485 
1486     case Bytecodes::_i2c:
1487       move_regs(src->as_register(), dest->as_register());
1488       __ andl(dest->as_register(), 0xFFFF);
1489       break;
1490 
1491     case Bytecodes::_i2s:
1492       move_regs(src->as_register(), dest->as_register());
1493       __ sign_extend_short(dest->as_register());
1494       break;
1495 
1496 
1497     case Bytecodes::_f2d:
1498     case Bytecodes::_d2f:
1499       if (dest->is_single_xmm()) {
1500         __ cvtsd2ss(dest->as_xmm_float_reg(), src->as_xmm_double_reg());
1501       } else if (dest->is_double_xmm()) {
1502         __ cvtss2sd(dest->as_xmm_double_reg(), src->as_xmm_float_reg());
1503       } else {
1504         assert(src->fpu() == dest->fpu(), "register must be equal");
1505         // do nothing (float result is rounded later through spilling)
1506       }
1507       break;
1508 
1509     case Bytecodes::_i2f:
1510     case Bytecodes::_i2d:
1511       if (dest->is_single_xmm()) {
1512         __ cvtsi2ssl(dest->as_xmm_float_reg(), src->as_register());
1513       } else if (dest->is_double_xmm()) {
1514         __ cvtsi2sdl(dest->as_xmm_double_reg(), src->as_register());
1515       } else {
1516         assert(dest->fpu() == 0, "result must be on TOS");
1517         __ movl(Address(rsp, 0), src->as_register());
1518         __ fild_s(Address(rsp, 0));
1519       }
1520       break;
1521 
1522     case Bytecodes::_f2i:
1523     case Bytecodes::_d2i:
1524       if (src->is_single_xmm()) {
1525         __ cvttss2sil(dest->as_register(), src->as_xmm_float_reg());
1526       } else if (src->is_double_xmm()) {
1527         __ cvttsd2sil(dest->as_register(), src->as_xmm_double_reg());
1528       } else {
1529         assert(src->fpu() == 0, "input must be on TOS");
1530         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_trunc()));
1531         __ fist_s(Address(rsp, 0));
1532         __ movl(dest->as_register(), Address(rsp, 0));
1533         __ fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_std()));
1534       }
1535 
1536       // IA32 conversion instructions do not match JLS for overflow, underflow and NaN -> fixup in stub
1537       assert(op->stub() != NULL, "stub required");
1538       __ cmpl(dest->as_register(), 0x80000000);
1539       __ jcc(Assembler::equal, *op->stub()->entry());
1540       __ bind(*op->stub()->continuation());
1541       break;
1542 
1543     case Bytecodes::_l2f:
1544     case Bytecodes::_l2d:
1545       assert(!dest->is_xmm_register(), "result in xmm register not supported (no SSE instruction present)");
1546       assert(dest->fpu() == 0, "result must be on TOS");
1547 
1548       __ movptr(Address(rsp, 0),            src->as_register_lo());
1549       NOT_LP64(__ movl(Address(rsp, BytesPerWord), src->as_register_hi()));
1550       __ fild_d(Address(rsp, 0));
1551       // float result is rounded later through spilling
1552       break;
1553 
1554     case Bytecodes::_f2l:
1555     case Bytecodes::_d2l:
1556       assert(!src->is_xmm_register(), "input in xmm register not supported (no SSE instruction present)");
1557       assert(src->fpu() == 0, "input must be on TOS");
1558       assert(dest == FrameMap::long0_opr, "runtime stub places result in these registers");
1559 
1560       // instruction sequence too long to inline it here
1561       {
1562         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::fpu2long_stub_id)));
1563       }
1564       break;
1565 
1566     default: ShouldNotReachHere();
1567   }
1568 }
1569 
1570 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
1571   if (op->init_check()) {
1572     __ cmpb(Address(op->klass()->as_register(),
1573                     instanceKlass::init_state_offset()),
1574             instanceKlass::fully_initialized);
1575     add_debug_info_for_null_check_here(op->stub()->info());
1576     __ jcc(Assembler::notEqual, *op->stub()->entry());
1577   }
1578   __ allocate_object(op->obj()->as_register(),
1579                      op->tmp1()->as_register(),
1580                      op->tmp2()->as_register(),
1581                      op->header_size(),
1582                      op->object_size(),
1583                      op->klass()->as_register(),
1584                      *op->stub()->entry());
1585   __ bind(*op->stub()->continuation());
1586 }
1587 
1588 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
1589   Register len =  op->len()->as_register();
1590   LP64_ONLY( __ movslq(len, len); )
1591 
1592   if (UseSlowPath ||
1593       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
1594       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
1595     __ jmp(*op->stub()->entry());
1596   } else {
1597     Register tmp1 = op->tmp1()->as_register();
1598     Register tmp2 = op->tmp2()->as_register();
1599     Register tmp3 = op->tmp3()->as_register();
1600     if (len == tmp1) {
1601       tmp1 = tmp3;
1602     } else if (len == tmp2) {
1603       tmp2 = tmp3;
1604     } else if (len == tmp3) {
1605       // everything is ok
1606     } else {
1607       __ mov(tmp3, len);
1608     }
1609     __ allocate_array(op->obj()->as_register(),
1610                       len,
1611                       tmp1,
1612                       tmp2,
1613                       arrayOopDesc::header_size(op->type()),
1614                       array_element_size(op->type()),
1615                       op->klass()->as_register(),
1616                       *op->stub()->entry());
1617   }
1618   __ bind(*op->stub()->continuation());
1619 }
1620 
1621 void LIR_Assembler::type_profile_helper(Register mdo,
1622                                         ciMethodData *md, ciProfileData *data,
1623                                         Register recv, Label* update_done) {
1624   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1625     Label next_test;
1626     // See if the receiver is receiver[n].
1627     __ cmpptr(recv, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
1628     __ jccb(Assembler::notEqual, next_test);
1629     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
1630     __ addptr(data_addr, DataLayout::counter_increment);
1631     __ jmp(*update_done);
1632     __ bind(next_test);
1633   }
1634 
1635   // Didn't find receiver; find next empty slot and fill it in
1636   for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
1637     Label next_test;
1638     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
1639     __ cmpptr(recv_addr, (intptr_t)NULL_WORD);
1640     __ jccb(Assembler::notEqual, next_test);
1641     __ movptr(recv_addr, recv);
1642     __ movptr(Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))), DataLayout::counter_increment);
1643     __ jmp(*update_done);
1644     __ bind(next_test);
1645   }
1646 }
1647 
1648 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
1649   // we always need a stub for the failure case.
1650   CodeStub* stub = op->stub();
1651   Register obj = op->object()->as_register();
1652   Register k_RInfo = op->tmp1()->as_register();
1653   Register klass_RInfo = op->tmp2()->as_register();
1654   Register dst = op->result_opr()->as_register();
1655   ciKlass* k = op->klass();
1656   Register Rtmp1 = noreg;
1657 
1658   // check if it needs to be profiled
1659   ciMethodData* md;
1660   ciProfileData* data;
1661 
1662   if (op->should_profile()) {
1663     ciMethod* method = op->profiled_method();
1664     assert(method != NULL, "Should have method");
1665     int bci = op->profiled_bci();
1666     md = method->method_data_or_null();
1667     assert(md != NULL, "Sanity");
1668     data = md->bci_to_data(bci);
1669     assert(data != NULL,                "need data for type check");
1670     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1671   }
1672   Label profile_cast_success, profile_cast_failure;
1673   Label *success_target = op->should_profile() ? &profile_cast_success : success;
1674   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
1675 
1676   if (obj == k_RInfo) {
1677     k_RInfo = dst;
1678   } else if (obj == klass_RInfo) {
1679     klass_RInfo = dst;
1680   }
1681   if (k->is_loaded() && !UseCompressedOops) {
1682     select_different_registers(obj, dst, k_RInfo, klass_RInfo);
1683   } else {
1684     Rtmp1 = op->tmp3()->as_register();
1685     select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
1686   }
1687 
1688   assert_different_registers(obj, k_RInfo, klass_RInfo);
1689   if (!k->is_loaded()) {
1690     jobject2reg_with_patching(k_RInfo, op->info_for_patch());
1691   } else {
1692 #ifdef _LP64
1693     __ movoop(k_RInfo, k->constant_encoding());
1694 #endif // _LP64
1695   }
1696   assert(obj != k_RInfo, "must be different");
1697 
1698   __ cmpptr(obj, (int32_t)NULL_WORD);
1699   if (op->should_profile()) {
1700     Label not_null;
1701     __ jccb(Assembler::notEqual, not_null);
1702     // Object is null; update MDO and exit
1703     Register mdo  = klass_RInfo;
1704     __ movoop(mdo, md->constant_encoding());
1705     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1706     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1707     __ orl(data_addr, header_bits);
1708     __ jmp(*obj_is_null);
1709     __ bind(not_null);
1710   } else {
1711     __ jcc(Assembler::equal, *obj_is_null);
1712   }
1713   __ verify_oop(obj);
1714 
1715   if (op->fast_check()) {
1716     // get object class
1717     // not a safepoint as obj null check happens earlier
1718 #ifdef _LP64
1719     if (UseCompressedOops) {
1720       __ load_klass(Rtmp1, obj);
1721       __ cmpptr(k_RInfo, Rtmp1);
1722     } else {
1723       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1724     }
1725 #else
1726     if (k->is_loaded()) {
1727       __ cmpoop(Address(obj, oopDesc::klass_offset_in_bytes()), k->constant_encoding());
1728     } else {
1729       __ cmpptr(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
1730     }
1731 #endif
1732     __ jcc(Assembler::notEqual, *failure_target);
1733     // successful cast, fall through to profile or jump
1734   } else {
1735     // get object class
1736     // not a safepoint as obj null check happens earlier
1737     __ load_klass(klass_RInfo, obj);
1738     if (k->is_loaded()) {
1739       // See if we get an immediate positive hit
1740 #ifdef _LP64
1741       __ cmpptr(k_RInfo, Address(klass_RInfo, k->super_check_offset()));
1742 #else
1743       __ cmpoop(Address(klass_RInfo, k->super_check_offset()), k->constant_encoding());
1744 #endif // _LP64
1745       if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
1746         __ jcc(Assembler::notEqual, *failure_target);
1747         // successful cast, fall through to profile or jump
1748       } else {
1749         // See if we get an immediate positive hit
1750         __ jcc(Assembler::equal, *success_target);
1751         // check for self
1752 #ifdef _LP64
1753         __ cmpptr(klass_RInfo, k_RInfo);
1754 #else
1755         __ cmpoop(klass_RInfo, k->constant_encoding());
1756 #endif // _LP64
1757         __ jcc(Assembler::equal, *success_target);
1758 
1759         __ push(klass_RInfo);
1760 #ifdef _LP64
1761         __ push(k_RInfo);
1762 #else
1763         __ pushoop(k->constant_encoding());
1764 #endif // _LP64
1765         __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1766         __ pop(klass_RInfo);
1767         __ pop(klass_RInfo);
1768         // result is a boolean
1769         __ cmpl(klass_RInfo, 0);
1770         __ jcc(Assembler::equal, *failure_target);
1771         // successful cast, fall through to profile or jump
1772       }
1773     } else {
1774       // perform the fast part of the checking logic
1775       __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1776       // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1777       __ push(klass_RInfo);
1778       __ push(k_RInfo);
1779       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1780       __ pop(klass_RInfo);
1781       __ pop(k_RInfo);
1782       // result is a boolean
1783       __ cmpl(k_RInfo, 0);
1784       __ jcc(Assembler::equal, *failure_target);
1785       // successful cast, fall through to profile or jump
1786     }
1787   }
1788   if (op->should_profile()) {
1789     Register mdo  = klass_RInfo, recv = k_RInfo;
1790     __ bind(profile_cast_success);
1791     __ movoop(mdo, md->constant_encoding());
1792     __ load_klass(recv, obj);
1793     Label update_done;
1794     type_profile_helper(mdo, md, data, recv, success);
1795     __ jmp(*success);
1796 
1797     __ bind(profile_cast_failure);
1798     __ movoop(mdo, md->constant_encoding());
1799     Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1800     __ subptr(counter_addr, DataLayout::counter_increment);
1801     __ jmp(*failure);
1802   }
1803   __ jmp(*success);
1804 }
1805 
1806 
1807 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
1808   LIR_Code code = op->code();
1809   if (code == lir_store_check) {
1810     Register value = op->object()->as_register();
1811     Register array = op->array()->as_register();
1812     Register k_RInfo = op->tmp1()->as_register();
1813     Register klass_RInfo = op->tmp2()->as_register();
1814     Register Rtmp1 = op->tmp3()->as_register();
1815 
1816     CodeStub* stub = op->stub();
1817 
1818     // check if it needs to be profiled
1819     ciMethodData* md;
1820     ciProfileData* data;
1821 
1822     if (op->should_profile()) {
1823       ciMethod* method = op->profiled_method();
1824       assert(method != NULL, "Should have method");
1825       int bci = op->profiled_bci();
1826       md = method->method_data_or_null();
1827       assert(md != NULL, "Sanity");
1828       data = md->bci_to_data(bci);
1829       assert(data != NULL,                "need data for type check");
1830       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
1831     }
1832     Label profile_cast_success, profile_cast_failure, done;
1833     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
1834     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
1835 
1836     __ cmpptr(value, (int32_t)NULL_WORD);
1837     if (op->should_profile()) {
1838       Label not_null;
1839       __ jccb(Assembler::notEqual, not_null);
1840       // Object is null; update MDO and exit
1841       Register mdo  = klass_RInfo;
1842       __ movoop(mdo, md->constant_encoding());
1843       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
1844       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
1845       __ orl(data_addr, header_bits);
1846       __ jmp(done);
1847       __ bind(not_null);
1848     } else {
1849       __ jcc(Assembler::equal, done);
1850     }
1851 
1852     add_debug_info_for_null_check_here(op->info_for_exception());
1853     __ load_klass(k_RInfo, array);
1854     __ load_klass(klass_RInfo, value);
1855 
1856     // get instance klass (it's already uncompressed)
1857     __ movptr(k_RInfo, Address(k_RInfo, objArrayKlass::element_klass_offset()));
1858     // perform the fast part of the checking logic
1859     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
1860     // call out-of-line instance of __ check_klass_subtype_slow_path(...):
1861     __ push(klass_RInfo);
1862     __ push(k_RInfo);
1863     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
1864     __ pop(klass_RInfo);
1865     __ pop(k_RInfo);
1866     // result is a boolean
1867     __ cmpl(k_RInfo, 0);
1868     __ jcc(Assembler::equal, *failure_target);
1869     // fall through to the success case
1870 
1871     if (op->should_profile()) {
1872       Register mdo  = klass_RInfo, recv = k_RInfo;
1873       __ bind(profile_cast_success);
1874       __ movoop(mdo, md->constant_encoding());
1875       __ load_klass(recv, value);
1876       Label update_done;
1877       type_profile_helper(mdo, md, data, recv, &done);
1878       __ jmpb(done);
1879 
1880       __ bind(profile_cast_failure);
1881       __ movoop(mdo, md->constant_encoding());
1882       Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
1883       __ subptr(counter_addr, DataLayout::counter_increment);
1884       __ jmp(*stub->entry());
1885     }
1886 
1887     __ bind(done);
1888   } else
1889     if (code == lir_checkcast) {
1890       Register obj = op->object()->as_register();
1891       Register dst = op->result_opr()->as_register();
1892       Label success;
1893       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
1894       __ bind(success);
1895       if (dst != obj) {
1896         __ mov(dst, obj);
1897       }
1898     } else
1899       if (code == lir_instanceof) {
1900         Register obj = op->object()->as_register();
1901         Register dst = op->result_opr()->as_register();
1902         Label success, failure, done;
1903         emit_typecheck_helper(op, &success, &failure, &failure);
1904         __ bind(failure);
1905         __ xorptr(dst, dst);
1906         __ jmpb(done);
1907         __ bind(success);
1908         __ movptr(dst, 1);
1909         __ bind(done);
1910       } else {
1911         ShouldNotReachHere();
1912       }
1913 
1914 }
1915 
1916 
1917 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
1918   if (LP64_ONLY(false &&) op->code() == lir_cas_long && VM_Version::supports_cx8()) {
1919     assert(op->cmp_value()->as_register_lo() == rax, "wrong register");
1920     assert(op->cmp_value()->as_register_hi() == rdx, "wrong register");
1921     assert(op->new_value()->as_register_lo() == rbx, "wrong register");
1922     assert(op->new_value()->as_register_hi() == rcx, "wrong register");
1923     Register addr = op->addr()->as_register();
1924     if (os::is_MP()) {
1925       __ lock();
1926     }
1927     NOT_LP64(__ cmpxchg8(Address(addr, 0)));
1928 
1929   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj ) {
1930     NOT_LP64(assert(op->addr()->is_single_cpu(), "must be single");)
1931     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1932     Register newval = op->new_value()->as_register();
1933     Register cmpval = op->cmp_value()->as_register();
1934     assert(cmpval == rax, "wrong register");
1935     assert(newval != NULL, "new val must be register");
1936     assert(cmpval != newval, "cmp and new values must be in different registers");
1937     assert(cmpval != addr, "cmp and addr must be in different registers");
1938     assert(newval != addr, "new value and addr must be in different registers");
1939 
1940     if ( op->code() == lir_cas_obj) {
1941 #ifdef _LP64
1942       if (UseCompressedOops) {
1943         __ encode_heap_oop(cmpval);
1944         __ mov(rscratch1, newval);
1945         __ encode_heap_oop(rscratch1);
1946         if (os::is_MP()) {
1947           __ lock();
1948         }
1949         // cmpval (rax) is implicitly used by this instruction
1950         __ cmpxchgl(rscratch1, Address(addr, 0));
1951       } else
1952 #endif
1953       {
1954         if (os::is_MP()) {
1955           __ lock();
1956         }
1957         __ cmpxchgptr(newval, Address(addr, 0));
1958       }
1959     } else {
1960       assert(op->code() == lir_cas_int, "lir_cas_int expected");
1961       if (os::is_MP()) {
1962         __ lock();
1963       }
1964       __ cmpxchgl(newval, Address(addr, 0));
1965     }
1966 #ifdef _LP64
1967   } else if (op->code() == lir_cas_long) {
1968     Register addr = (op->addr()->is_single_cpu() ? op->addr()->as_register() : op->addr()->as_register_lo());
1969     Register newval = op->new_value()->as_register_lo();
1970     Register cmpval = op->cmp_value()->as_register_lo();
1971     assert(cmpval == rax, "wrong register");
1972     assert(newval != NULL, "new val must be register");
1973     assert(cmpval != newval, "cmp and new values must be in different registers");
1974     assert(cmpval != addr, "cmp and addr must be in different registers");
1975     assert(newval != addr, "new value and addr must be in different registers");
1976     if (os::is_MP()) {
1977       __ lock();
1978     }
1979     __ cmpxchgq(newval, Address(addr, 0));
1980 #endif // _LP64
1981   } else {
1982     Unimplemented();
1983   }
1984 }
1985 
1986 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1987   Assembler::Condition acond, ncond;
1988   switch (condition) {
1989     case lir_cond_equal:        acond = Assembler::equal;        ncond = Assembler::notEqual;     break;
1990     case lir_cond_notEqual:     acond = Assembler::notEqual;     ncond = Assembler::equal;        break;
1991     case lir_cond_less:         acond = Assembler::less;         ncond = Assembler::greaterEqual; break;
1992     case lir_cond_lessEqual:    acond = Assembler::lessEqual;    ncond = Assembler::greater;      break;
1993     case lir_cond_greaterEqual: acond = Assembler::greaterEqual; ncond = Assembler::less;         break;
1994     case lir_cond_greater:      acond = Assembler::greater;      ncond = Assembler::lessEqual;    break;
1995     case lir_cond_belowEqual:   acond = Assembler::belowEqual;   ncond = Assembler::above;        break;
1996     case lir_cond_aboveEqual:   acond = Assembler::aboveEqual;   ncond = Assembler::below;        break;
1997     default:                    ShouldNotReachHere();
1998   }
1999 
2000   if (opr1->is_cpu_register()) {
2001     reg2reg(opr1, result);
2002   } else if (opr1->is_stack()) {
2003     stack2reg(opr1, result, result->type());
2004   } else if (opr1->is_constant()) {
2005     const2reg(opr1, result, lir_patch_none, NULL);
2006   } else {
2007     ShouldNotReachHere();
2008   }
2009 
2010   if (VM_Version::supports_cmov() && !opr2->is_constant()) {
2011     // optimized version that does not require a branch
2012     if (opr2->is_single_cpu()) {
2013       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
2014       __ cmov(ncond, result->as_register(), opr2->as_register());
2015     } else if (opr2->is_double_cpu()) {
2016       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2017       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
2018       __ cmovptr(ncond, result->as_register_lo(), opr2->as_register_lo());
2019       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), opr2->as_register_hi());)
2020     } else if (opr2->is_single_stack()) {
2021       __ cmovl(ncond, result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()));
2022     } else if (opr2->is_double_stack()) {
2023       __ cmovptr(ncond, result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix(), lo_word_offset_in_bytes));
2024       NOT_LP64(__ cmovptr(ncond, result->as_register_hi(), frame_map()->address_for_slot(opr2->double_stack_ix(), hi_word_offset_in_bytes));)
2025     } else {
2026       ShouldNotReachHere();
2027     }
2028 
2029   } else {
2030     Label skip;
2031     __ jcc (acond, skip);
2032     if (opr2->is_cpu_register()) {
2033       reg2reg(opr2, result);
2034     } else if (opr2->is_stack()) {
2035       stack2reg(opr2, result, result->type());
2036     } else if (opr2->is_constant()) {
2037       const2reg(opr2, result, lir_patch_none, NULL);
2038     } else {
2039       ShouldNotReachHere();
2040     }
2041     __ bind(skip);
2042   }
2043 }
2044 
2045 
2046 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest, CodeEmitInfo* info, bool pop_fpu_stack) {
2047   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
2048 
2049   if (left->is_single_cpu()) {
2050     assert(left == dest, "left and dest must be equal");
2051     Register lreg = left->as_register();
2052 
2053     if (right->is_single_cpu()) {
2054       // cpu register - cpu register
2055       Register rreg = right->as_register();
2056       switch (code) {
2057         case lir_add: __ addl (lreg, rreg); break;
2058         case lir_sub: __ subl (lreg, rreg); break;
2059         case lir_mul: __ imull(lreg, rreg); break;
2060         default:      ShouldNotReachHere();
2061       }
2062 
2063     } else if (right->is_stack()) {
2064       // cpu register - stack
2065       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2066       switch (code) {
2067         case lir_add: __ addl(lreg, raddr); break;
2068         case lir_sub: __ subl(lreg, raddr); break;
2069         default:      ShouldNotReachHere();
2070       }
2071 
2072     } else if (right->is_constant()) {
2073       // cpu register - constant
2074       jint c = right->as_constant_ptr()->as_jint();
2075       switch (code) {
2076         case lir_add: {
2077           __ incrementl(lreg, c);
2078           break;
2079         }
2080         case lir_sub: {
2081           __ decrementl(lreg, c);
2082           break;
2083         }
2084         default: ShouldNotReachHere();
2085       }
2086 
2087     } else {
2088       ShouldNotReachHere();
2089     }
2090 
2091   } else if (left->is_double_cpu()) {
2092     assert(left == dest, "left and dest must be equal");
2093     Register lreg_lo = left->as_register_lo();
2094     Register lreg_hi = left->as_register_hi();
2095 
2096     if (right->is_double_cpu()) {
2097       // cpu register - cpu register
2098       Register rreg_lo = right->as_register_lo();
2099       Register rreg_hi = right->as_register_hi();
2100       NOT_LP64(assert_different_registers(lreg_lo, lreg_hi, rreg_lo, rreg_hi));
2101       LP64_ONLY(assert_different_registers(lreg_lo, rreg_lo));
2102       switch (code) {
2103         case lir_add:
2104           __ addptr(lreg_lo, rreg_lo);
2105           NOT_LP64(__ adcl(lreg_hi, rreg_hi));
2106           break;
2107         case lir_sub:
2108           __ subptr(lreg_lo, rreg_lo);
2109           NOT_LP64(__ sbbl(lreg_hi, rreg_hi));
2110           break;
2111         case lir_mul:
2112 #ifdef _LP64
2113           __ imulq(lreg_lo, rreg_lo);
2114 #else
2115           assert(lreg_lo == rax && lreg_hi == rdx, "must be");
2116           __ imull(lreg_hi, rreg_lo);
2117           __ imull(rreg_hi, lreg_lo);
2118           __ addl (rreg_hi, lreg_hi);
2119           __ mull (rreg_lo);
2120           __ addl (lreg_hi, rreg_hi);
2121 #endif // _LP64
2122           break;
2123         default:
2124           ShouldNotReachHere();
2125       }
2126 
2127     } else if (right->is_constant()) {
2128       // cpu register - constant
2129 #ifdef _LP64
2130       jlong c = right->as_constant_ptr()->as_jlong_bits();
2131       __ movptr(r10, (intptr_t) c);
2132       switch (code) {
2133         case lir_add:
2134           __ addptr(lreg_lo, r10);
2135           break;
2136         case lir_sub:
2137           __ subptr(lreg_lo, r10);
2138           break;
2139         default:
2140           ShouldNotReachHere();
2141       }
2142 #else
2143       jint c_lo = right->as_constant_ptr()->as_jint_lo();
2144       jint c_hi = right->as_constant_ptr()->as_jint_hi();
2145       switch (code) {
2146         case lir_add:
2147           __ addptr(lreg_lo, c_lo);
2148           __ adcl(lreg_hi, c_hi);
2149           break;
2150         case lir_sub:
2151           __ subptr(lreg_lo, c_lo);
2152           __ sbbl(lreg_hi, c_hi);
2153           break;
2154         default:
2155           ShouldNotReachHere();
2156       }
2157 #endif // _LP64
2158 
2159     } else {
2160       ShouldNotReachHere();
2161     }
2162 
2163   } else if (left->is_single_xmm()) {
2164     assert(left == dest, "left and dest must be equal");
2165     XMMRegister lreg = left->as_xmm_float_reg();
2166 
2167     if (right->is_single_xmm()) {
2168       XMMRegister rreg = right->as_xmm_float_reg();
2169       switch (code) {
2170         case lir_add: __ addss(lreg, rreg);  break;
2171         case lir_sub: __ subss(lreg, rreg);  break;
2172         case lir_mul_strictfp: // fall through
2173         case lir_mul: __ mulss(lreg, rreg);  break;
2174         case lir_div_strictfp: // fall through
2175         case lir_div: __ divss(lreg, rreg);  break;
2176         default: ShouldNotReachHere();
2177       }
2178     } else {
2179       Address raddr;
2180       if (right->is_single_stack()) {
2181         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2182       } else if (right->is_constant()) {
2183         // hack for now
2184         raddr = __ as_Address(InternalAddress(float_constant(right->as_jfloat())));
2185       } else {
2186         ShouldNotReachHere();
2187       }
2188       switch (code) {
2189         case lir_add: __ addss(lreg, raddr);  break;
2190         case lir_sub: __ subss(lreg, raddr);  break;
2191         case lir_mul_strictfp: // fall through
2192         case lir_mul: __ mulss(lreg, raddr);  break;
2193         case lir_div_strictfp: // fall through
2194         case lir_div: __ divss(lreg, raddr);  break;
2195         default: ShouldNotReachHere();
2196       }
2197     }
2198 
2199   } else if (left->is_double_xmm()) {
2200     assert(left == dest, "left and dest must be equal");
2201 
2202     XMMRegister lreg = left->as_xmm_double_reg();
2203     if (right->is_double_xmm()) {
2204       XMMRegister rreg = right->as_xmm_double_reg();
2205       switch (code) {
2206         case lir_add: __ addsd(lreg, rreg);  break;
2207         case lir_sub: __ subsd(lreg, rreg);  break;
2208         case lir_mul_strictfp: // fall through
2209         case lir_mul: __ mulsd(lreg, rreg);  break;
2210         case lir_div_strictfp: // fall through
2211         case lir_div: __ divsd(lreg, rreg);  break;
2212         default: ShouldNotReachHere();
2213       }
2214     } else {
2215       Address raddr;
2216       if (right->is_double_stack()) {
2217         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2218       } else if (right->is_constant()) {
2219         // hack for now
2220         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2221       } else {
2222         ShouldNotReachHere();
2223       }
2224       switch (code) {
2225         case lir_add: __ addsd(lreg, raddr);  break;
2226         case lir_sub: __ subsd(lreg, raddr);  break;
2227         case lir_mul_strictfp: // fall through
2228         case lir_mul: __ mulsd(lreg, raddr);  break;
2229         case lir_div_strictfp: // fall through
2230         case lir_div: __ divsd(lreg, raddr);  break;
2231         default: ShouldNotReachHere();
2232       }
2233     }
2234 
2235   } else if (left->is_single_fpu()) {
2236     assert(dest->is_single_fpu(),  "fpu stack allocation required");
2237 
2238     if (right->is_single_fpu()) {
2239       arith_fpu_implementation(code, left->fpu_regnr(), right->fpu_regnr(), dest->fpu_regnr(), pop_fpu_stack);
2240 
2241     } else {
2242       assert(left->fpu_regnr() == 0, "left must be on TOS");
2243       assert(dest->fpu_regnr() == 0, "dest must be on TOS");
2244 
2245       Address raddr;
2246       if (right->is_single_stack()) {
2247         raddr = frame_map()->address_for_slot(right->single_stack_ix());
2248       } else if (right->is_constant()) {
2249         address const_addr = float_constant(right->as_jfloat());
2250         assert(const_addr != NULL, "incorrect float/double constant maintainance");
2251         // hack for now
2252         raddr = __ as_Address(InternalAddress(const_addr));
2253       } else {
2254         ShouldNotReachHere();
2255       }
2256 
2257       switch (code) {
2258         case lir_add: __ fadd_s(raddr); break;
2259         case lir_sub: __ fsub_s(raddr); break;
2260         case lir_mul_strictfp: // fall through
2261         case lir_mul: __ fmul_s(raddr); break;
2262         case lir_div_strictfp: // fall through
2263         case lir_div: __ fdiv_s(raddr); break;
2264         default:      ShouldNotReachHere();
2265       }
2266     }
2267 
2268   } else if (left->is_double_fpu()) {
2269     assert(dest->is_double_fpu(),  "fpu stack allocation required");
2270 
2271     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2272       // Double values require special handling for strictfp mul/div on x86
2273       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias1()));
2274       __ fmulp(left->fpu_regnrLo() + 1);
2275     }
2276 
2277     if (right->is_double_fpu()) {
2278       arith_fpu_implementation(code, left->fpu_regnrLo(), right->fpu_regnrLo(), dest->fpu_regnrLo(), pop_fpu_stack);
2279 
2280     } else {
2281       assert(left->fpu_regnrLo() == 0, "left must be on TOS");
2282       assert(dest->fpu_regnrLo() == 0, "dest must be on TOS");
2283 
2284       Address raddr;
2285       if (right->is_double_stack()) {
2286         raddr = frame_map()->address_for_slot(right->double_stack_ix());
2287       } else if (right->is_constant()) {
2288         // hack for now
2289         raddr = __ as_Address(InternalAddress(double_constant(right->as_jdouble())));
2290       } else {
2291         ShouldNotReachHere();
2292       }
2293 
2294       switch (code) {
2295         case lir_add: __ fadd_d(raddr); break;
2296         case lir_sub: __ fsub_d(raddr); break;
2297         case lir_mul_strictfp: // fall through
2298         case lir_mul: __ fmul_d(raddr); break;
2299         case lir_div_strictfp: // fall through
2300         case lir_div: __ fdiv_d(raddr); break;
2301         default: ShouldNotReachHere();
2302       }
2303     }
2304 
2305     if (code == lir_mul_strictfp || code == lir_div_strictfp) {
2306       // Double values require special handling for strictfp mul/div on x86
2307       __ fld_x(ExternalAddress(StubRoutines::addr_fpu_subnormal_bias2()));
2308       __ fmulp(dest->fpu_regnrLo() + 1);
2309     }
2310 
2311   } else if (left->is_single_stack() || left->is_address()) {
2312     assert(left == dest, "left and dest must be equal");
2313 
2314     Address laddr;
2315     if (left->is_single_stack()) {
2316       laddr = frame_map()->address_for_slot(left->single_stack_ix());
2317     } else if (left->is_address()) {
2318       laddr = as_Address(left->as_address_ptr());
2319     } else {
2320       ShouldNotReachHere();
2321     }
2322 
2323     if (right->is_single_cpu()) {
2324       Register rreg = right->as_register();
2325       switch (code) {
2326         case lir_add: __ addl(laddr, rreg); break;
2327         case lir_sub: __ subl(laddr, rreg); break;
2328         default:      ShouldNotReachHere();
2329       }
2330     } else if (right->is_constant()) {
2331       jint c = right->as_constant_ptr()->as_jint();
2332       switch (code) {
2333         case lir_add: {
2334           __ incrementl(laddr, c);
2335           break;
2336         }
2337         case lir_sub: {
2338           __ decrementl(laddr, c);
2339           break;
2340         }
2341         default: ShouldNotReachHere();
2342       }
2343     } else {
2344       ShouldNotReachHere();
2345     }
2346 
2347   } else {
2348     ShouldNotReachHere();
2349   }
2350 }
2351 
2352 void LIR_Assembler::arith_fpu_implementation(LIR_Code code, int left_index, int right_index, int dest_index, bool pop_fpu_stack) {
2353   assert(pop_fpu_stack  || (left_index     == dest_index || right_index     == dest_index), "invalid LIR");
2354   assert(!pop_fpu_stack || (left_index - 1 == dest_index || right_index - 1 == dest_index), "invalid LIR");
2355   assert(left_index == 0 || right_index == 0, "either must be on top of stack");
2356 
2357   bool left_is_tos = (left_index == 0);
2358   bool dest_is_tos = (dest_index == 0);
2359   int non_tos_index = (left_is_tos ? right_index : left_index);
2360 
2361   switch (code) {
2362     case lir_add:
2363       if (pop_fpu_stack)       __ faddp(non_tos_index);
2364       else if (dest_is_tos)    __ fadd (non_tos_index);
2365       else                     __ fadda(non_tos_index);
2366       break;
2367 
2368     case lir_sub:
2369       if (left_is_tos) {
2370         if (pop_fpu_stack)     __ fsubrp(non_tos_index);
2371         else if (dest_is_tos)  __ fsub  (non_tos_index);
2372         else                   __ fsubra(non_tos_index);
2373       } else {
2374         if (pop_fpu_stack)     __ fsubp (non_tos_index);
2375         else if (dest_is_tos)  __ fsubr (non_tos_index);
2376         else                   __ fsuba (non_tos_index);
2377       }
2378       break;
2379 
2380     case lir_mul_strictfp: // fall through
2381     case lir_mul:
2382       if (pop_fpu_stack)       __ fmulp(non_tos_index);
2383       else if (dest_is_tos)    __ fmul (non_tos_index);
2384       else                     __ fmula(non_tos_index);
2385       break;
2386 
2387     case lir_div_strictfp: // fall through
2388     case lir_div:
2389       if (left_is_tos) {
2390         if (pop_fpu_stack)     __ fdivrp(non_tos_index);
2391         else if (dest_is_tos)  __ fdiv  (non_tos_index);
2392         else                   __ fdivra(non_tos_index);
2393       } else {
2394         if (pop_fpu_stack)     __ fdivp (non_tos_index);
2395         else if (dest_is_tos)  __ fdivr (non_tos_index);
2396         else                   __ fdiva (non_tos_index);
2397       }
2398       break;
2399 
2400     case lir_rem:
2401       assert(left_is_tos && dest_is_tos && right_index == 1, "must be guaranteed by FPU stack allocation");
2402       __ fremr(noreg);
2403       break;
2404 
2405     default:
2406       ShouldNotReachHere();
2407   }
2408 }
2409 
2410 
2411 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
2412   if (value->is_double_xmm()) {
2413     switch(code) {
2414       case lir_abs :
2415         {
2416           if (dest->as_xmm_double_reg() != value->as_xmm_double_reg()) {
2417             __ movdbl(dest->as_xmm_double_reg(), value->as_xmm_double_reg());
2418           }
2419           __ andpd(dest->as_xmm_double_reg(),
2420                     ExternalAddress((address)double_signmask_pool));
2421         }
2422         break;
2423 
2424       case lir_sqrt: __ sqrtsd(dest->as_xmm_double_reg(), value->as_xmm_double_reg()); break;
2425       // all other intrinsics are not available in the SSE instruction set, so FPU is used
2426       default      : ShouldNotReachHere();
2427     }
2428 
2429   } else if (value->is_double_fpu()) {
2430     assert(value->fpu_regnrLo() == 0 && dest->fpu_regnrLo() == 0, "both must be on TOS");
2431     switch(code) {
2432       case lir_log   : __ flog() ; break;
2433       case lir_log10 : __ flog10() ; break;
2434       case lir_abs   : __ fabs() ; break;
2435       case lir_sqrt  : __ fsqrt(); break;
2436       case lir_sin   :
2437         // Should consider not saving rbx, if not necessary
2438         __ trigfunc('s', op->as_Op2()->fpu_stack_size());
2439         break;
2440       case lir_cos :
2441         // Should consider not saving rbx, if not necessary
2442         assert(op->as_Op2()->fpu_stack_size() <= 6, "sin and cos need two free stack slots");
2443         __ trigfunc('c', op->as_Op2()->fpu_stack_size());
2444         break;
2445       case lir_tan :
2446         // Should consider not saving rbx, if not necessary
2447         __ trigfunc('t', op->as_Op2()->fpu_stack_size());
2448         break;
2449       default      : ShouldNotReachHere();
2450     }
2451   } else {
2452     Unimplemented();
2453   }
2454 }
2455 
2456 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2457   // assert(left->destroys_register(), "check");
2458   if (left->is_single_cpu()) {
2459     Register reg = left->as_register();
2460     if (right->is_constant()) {
2461       int val = right->as_constant_ptr()->as_jint();
2462       switch (code) {
2463         case lir_logic_and: __ andl (reg, val); break;
2464         case lir_logic_or:  __ orl  (reg, val); break;
2465         case lir_logic_xor: __ xorl (reg, val); break;
2466         default: ShouldNotReachHere();
2467       }
2468     } else if (right->is_stack()) {
2469       // added support for stack operands
2470       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
2471       switch (code) {
2472         case lir_logic_and: __ andl (reg, raddr); break;
2473         case lir_logic_or:  __ orl  (reg, raddr); break;
2474         case lir_logic_xor: __ xorl (reg, raddr); break;
2475         default: ShouldNotReachHere();
2476       }
2477     } else {
2478       Register rright = right->as_register();
2479       switch (code) {
2480         case lir_logic_and: __ andptr (reg, rright); break;
2481         case lir_logic_or : __ orptr  (reg, rright); break;
2482         case lir_logic_xor: __ xorptr (reg, rright); break;
2483         default: ShouldNotReachHere();
2484       }
2485     }
2486     move_regs(reg, dst->as_register());
2487   } else {
2488     Register l_lo = left->as_register_lo();
2489     Register l_hi = left->as_register_hi();
2490     if (right->is_constant()) {
2491 #ifdef _LP64
2492       __ mov64(rscratch1, right->as_constant_ptr()->as_jlong());
2493       switch (code) {
2494         case lir_logic_and:
2495           __ andq(l_lo, rscratch1);
2496           break;
2497         case lir_logic_or:
2498           __ orq(l_lo, rscratch1);
2499           break;
2500         case lir_logic_xor:
2501           __ xorq(l_lo, rscratch1);
2502           break;
2503         default: ShouldNotReachHere();
2504       }
2505 #else
2506       int r_lo = right->as_constant_ptr()->as_jint_lo();
2507       int r_hi = right->as_constant_ptr()->as_jint_hi();
2508       switch (code) {
2509         case lir_logic_and:
2510           __ andl(l_lo, r_lo);
2511           __ andl(l_hi, r_hi);
2512           break;
2513         case lir_logic_or:
2514           __ orl(l_lo, r_lo);
2515           __ orl(l_hi, r_hi);
2516           break;
2517         case lir_logic_xor:
2518           __ xorl(l_lo, r_lo);
2519           __ xorl(l_hi, r_hi);
2520           break;
2521         default: ShouldNotReachHere();
2522       }
2523 #endif // _LP64
2524     } else {
2525 #ifdef _LP64
2526       Register r_lo;
2527       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
2528         r_lo = right->as_register();
2529       } else {
2530         r_lo = right->as_register_lo();
2531       }
2532 #else
2533       Register r_lo = right->as_register_lo();
2534       Register r_hi = right->as_register_hi();
2535       assert(l_lo != r_hi, "overwriting registers");
2536 #endif
2537       switch (code) {
2538         case lir_logic_and:
2539           __ andptr(l_lo, r_lo);
2540           NOT_LP64(__ andptr(l_hi, r_hi);)
2541           break;
2542         case lir_logic_or:
2543           __ orptr(l_lo, r_lo);
2544           NOT_LP64(__ orptr(l_hi, r_hi);)
2545           break;
2546         case lir_logic_xor:
2547           __ xorptr(l_lo, r_lo);
2548           NOT_LP64(__ xorptr(l_hi, r_hi);)
2549           break;
2550         default: ShouldNotReachHere();
2551       }
2552     }
2553 
2554     Register dst_lo = dst->as_register_lo();
2555     Register dst_hi = dst->as_register_hi();
2556 
2557 #ifdef _LP64
2558     move_regs(l_lo, dst_lo);
2559 #else
2560     if (dst_lo == l_hi) {
2561       assert(dst_hi != l_lo, "overwriting registers");
2562       move_regs(l_hi, dst_hi);
2563       move_regs(l_lo, dst_lo);
2564     } else {
2565       assert(dst_lo != l_hi, "overwriting registers");
2566       move_regs(l_lo, dst_lo);
2567       move_regs(l_hi, dst_hi);
2568     }
2569 #endif // _LP64
2570   }
2571 }
2572 
2573 
2574 // we assume that rax, and rdx can be overwritten
2575 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
2576 
2577   assert(left->is_single_cpu(),   "left must be register");
2578   assert(right->is_single_cpu() || right->is_constant(),  "right must be register or constant");
2579   assert(result->is_single_cpu(), "result must be register");
2580 
2581   //  assert(left->destroys_register(), "check");
2582   //  assert(right->destroys_register(), "check");
2583 
2584   Register lreg = left->as_register();
2585   Register dreg = result->as_register();
2586 
2587   if (right->is_constant()) {
2588     int divisor = right->as_constant_ptr()->as_jint();
2589     assert(divisor > 0 && is_power_of_2(divisor), "must be");
2590     if (code == lir_idiv) {
2591       assert(lreg == rax, "must be rax,");
2592       assert(temp->as_register() == rdx, "tmp register must be rdx");
2593       __ cdql(); // sign extend into rdx:rax
2594       if (divisor == 2) {
2595         __ subl(lreg, rdx);
2596       } else {
2597         __ andl(rdx, divisor - 1);
2598         __ addl(lreg, rdx);
2599       }
2600       __ sarl(lreg, log2_intptr(divisor));
2601       move_regs(lreg, dreg);
2602     } else if (code == lir_irem) {
2603       Label done;
2604       __ mov(dreg, lreg);
2605       __ andl(dreg, 0x80000000 | (divisor - 1));
2606       __ jcc(Assembler::positive, done);
2607       __ decrement(dreg);
2608       __ orl(dreg, ~(divisor - 1));
2609       __ increment(dreg);
2610       __ bind(done);
2611     } else {
2612       ShouldNotReachHere();
2613     }
2614   } else {
2615     Register rreg = right->as_register();
2616     assert(lreg == rax, "left register must be rax,");
2617     assert(rreg != rdx, "right register must not be rdx");
2618     assert(temp->as_register() == rdx, "tmp register must be rdx");
2619 
2620     move_regs(lreg, rax);
2621 
2622     int idivl_offset = __ corrected_idivl(rreg);
2623     add_debug_info_for_div0(idivl_offset, info);
2624     if (code == lir_irem) {
2625       move_regs(rdx, dreg); // result is in rdx
2626     } else {
2627       move_regs(rax, dreg);
2628     }
2629   }
2630 }
2631 
2632 
2633 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
2634   if (opr1->is_single_cpu()) {
2635     Register reg1 = opr1->as_register();
2636     if (opr2->is_single_cpu()) {
2637       // cpu register - cpu register
2638       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2639         __ cmpptr(reg1, opr2->as_register());
2640       } else {
2641         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
2642         __ cmpl(reg1, opr2->as_register());
2643       }
2644     } else if (opr2->is_stack()) {
2645       // cpu register - stack
2646       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
2647         __ cmpptr(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2648       } else {
2649         __ cmpl(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2650       }
2651     } else if (opr2->is_constant()) {
2652       // cpu register - constant
2653       LIR_Const* c = opr2->as_constant_ptr();
2654       if (c->type() == T_INT) {
2655         __ cmpl(reg1, c->as_jint());
2656       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2657         // In 64bit oops are single register
2658         jobject o = c->as_jobject();
2659         if (o == NULL) {
2660           __ cmpptr(reg1, (int32_t)NULL_WORD);
2661         } else {
2662 #ifdef _LP64
2663           __ movoop(rscratch1, o);
2664           __ cmpptr(reg1, rscratch1);
2665 #else
2666           __ cmpoop(reg1, c->as_jobject());
2667 #endif // _LP64
2668         }
2669       } else {
2670         fatal(err_msg("unexpected type: %s", basictype_to_str(c->type())));
2671       }
2672       // cpu register - address
2673     } else if (opr2->is_address()) {
2674       if (op->info() != NULL) {
2675         add_debug_info_for_null_check_here(op->info());
2676       }
2677       __ cmpl(reg1, as_Address(opr2->as_address_ptr()));
2678     } else {
2679       ShouldNotReachHere();
2680     }
2681 
2682   } else if(opr1->is_double_cpu()) {
2683     Register xlo = opr1->as_register_lo();
2684     Register xhi = opr1->as_register_hi();
2685     if (opr2->is_double_cpu()) {
2686 #ifdef _LP64
2687       __ cmpptr(xlo, opr2->as_register_lo());
2688 #else
2689       // cpu register - cpu register
2690       Register ylo = opr2->as_register_lo();
2691       Register yhi = opr2->as_register_hi();
2692       __ subl(xlo, ylo);
2693       __ sbbl(xhi, yhi);
2694       if (condition == lir_cond_equal || condition == lir_cond_notEqual) {
2695         __ orl(xhi, xlo);
2696       }
2697 #endif // _LP64
2698     } else if (opr2->is_constant()) {
2699       // cpu register - constant 0
2700       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
2701 #ifdef _LP64
2702       __ cmpptr(xlo, (int32_t)opr2->as_jlong());
2703 #else
2704       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "only handles equals case");
2705       __ orl(xhi, xlo);
2706 #endif // _LP64
2707     } else {
2708       ShouldNotReachHere();
2709     }
2710 
2711   } else if (opr1->is_single_xmm()) {
2712     XMMRegister reg1 = opr1->as_xmm_float_reg();
2713     if (opr2->is_single_xmm()) {
2714       // xmm register - xmm register
2715       __ ucomiss(reg1, opr2->as_xmm_float_reg());
2716     } else if (opr2->is_stack()) {
2717       // xmm register - stack
2718       __ ucomiss(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
2719     } else if (opr2->is_constant()) {
2720       // xmm register - constant
2721       __ ucomiss(reg1, InternalAddress(float_constant(opr2->as_jfloat())));
2722     } else if (opr2->is_address()) {
2723       // xmm register - address
2724       if (op->info() != NULL) {
2725         add_debug_info_for_null_check_here(op->info());
2726       }
2727       __ ucomiss(reg1, as_Address(opr2->as_address_ptr()));
2728     } else {
2729       ShouldNotReachHere();
2730     }
2731 
2732   } else if (opr1->is_double_xmm()) {
2733     XMMRegister reg1 = opr1->as_xmm_double_reg();
2734     if (opr2->is_double_xmm()) {
2735       // xmm register - xmm register
2736       __ ucomisd(reg1, opr2->as_xmm_double_reg());
2737     } else if (opr2->is_stack()) {
2738       // xmm register - stack
2739       __ ucomisd(reg1, frame_map()->address_for_slot(opr2->double_stack_ix()));
2740     } else if (opr2->is_constant()) {
2741       // xmm register - constant
2742       __ ucomisd(reg1, InternalAddress(double_constant(opr2->as_jdouble())));
2743     } else if (opr2->is_address()) {
2744       // xmm register - address
2745       if (op->info() != NULL) {
2746         add_debug_info_for_null_check_here(op->info());
2747       }
2748       __ ucomisd(reg1, as_Address(opr2->pointer()->as_address()));
2749     } else {
2750       ShouldNotReachHere();
2751     }
2752 
2753   } else if(opr1->is_single_fpu() || opr1->is_double_fpu()) {
2754     assert(opr1->is_fpu_register() && opr1->fpu() == 0, "currently left-hand side must be on TOS (relax this restriction)");
2755     assert(opr2->is_fpu_register(), "both must be registers");
2756     __ fcmp(noreg, opr2->fpu(), op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2757 
2758   } else if (opr1->is_address() && opr2->is_constant()) {
2759     LIR_Const* c = opr2->as_constant_ptr();
2760 #ifdef _LP64
2761     if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2762       assert(condition == lir_cond_equal || condition == lir_cond_notEqual, "need to reverse");
2763       __ movoop(rscratch1, c->as_jobject());
2764     }
2765 #endif // LP64
2766     if (op->info() != NULL) {
2767       add_debug_info_for_null_check_here(op->info());
2768     }
2769     // special case: address - constant
2770     LIR_Address* addr = opr1->as_address_ptr();
2771     if (c->type() == T_INT) {
2772       __ cmpl(as_Address(addr), c->as_jint());
2773     } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
2774 #ifdef _LP64
2775       // %%% Make this explode if addr isn't reachable until we figure out a
2776       // better strategy by giving noreg as the temp for as_Address
2777       __ cmpptr(rscratch1, as_Address(addr, noreg));
2778 #else
2779       __ cmpoop(as_Address(addr), c->as_jobject());
2780 #endif // _LP64
2781     } else {
2782       ShouldNotReachHere();
2783     }
2784 
2785   } else {
2786     ShouldNotReachHere();
2787   }
2788 }
2789 
2790 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
2791   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
2792     if (left->is_single_xmm()) {
2793       assert(right->is_single_xmm(), "must match");
2794       __ cmpss2int(left->as_xmm_float_reg(), right->as_xmm_float_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2795     } else if (left->is_double_xmm()) {
2796       assert(right->is_double_xmm(), "must match");
2797       __ cmpsd2int(left->as_xmm_double_reg(), right->as_xmm_double_reg(), dst->as_register(), code == lir_ucmp_fd2i);
2798 
2799     } else {
2800       assert(left->is_single_fpu() || left->is_double_fpu(), "must be");
2801       assert(right->is_single_fpu() || right->is_double_fpu(), "must match");
2802 
2803       assert(left->fpu() == 0, "left must be on TOS");
2804       __ fcmp2int(dst->as_register(), code == lir_ucmp_fd2i, right->fpu(),
2805                   op->fpu_pop_count() > 0, op->fpu_pop_count() > 1);
2806     }
2807   } else {
2808     assert(code == lir_cmp_l2i, "check");
2809 #ifdef _LP64
2810     Label done;
2811     Register dest = dst->as_register();
2812     __ cmpptr(left->as_register_lo(), right->as_register_lo());
2813     __ movl(dest, -1);
2814     __ jccb(Assembler::less, done);
2815     __ set_byte_if_not_zero(dest);
2816     __ movzbl(dest, dest);
2817     __ bind(done);
2818 #else
2819     __ lcmp2int(left->as_register_hi(),
2820                 left->as_register_lo(),
2821                 right->as_register_hi(),
2822                 right->as_register_lo());
2823     move_regs(left->as_register_hi(), dst->as_register());
2824 #endif // _LP64
2825   }
2826 }
2827 
2828 
2829 void LIR_Assembler::align_call(LIR_Code code) {
2830   if (os::is_MP()) {
2831     // make sure that the displacement word of the call ends up word aligned
2832     int offset = __ offset();
2833     switch (code) {
2834       case lir_static_call:
2835       case lir_optvirtual_call:
2836       case lir_dynamic_call:
2837         offset += NativeCall::displacement_offset;
2838         break;
2839       case lir_icvirtual_call:
2840         offset += NativeCall::displacement_offset + NativeMovConstReg::instruction_size;
2841       break;
2842       case lir_virtual_call:  // currently, sparc-specific for niagara
2843       default: ShouldNotReachHere();
2844     }
2845     while (offset++ % BytesPerWord != 0) {
2846       __ nop();
2847     }
2848   }
2849 }
2850 
2851 
2852 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
2853   assert(!os::is_MP() || (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2854          "must be aligned");
2855   __ call(AddressLiteral(op->addr(), rtype));
2856   add_call_info(code_offset(), op->info());
2857 }
2858 
2859 
2860 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
2861   RelocationHolder rh = virtual_call_Relocation::spec(pc());
2862   __ movoop(IC_Klass, (jobject)Universe::non_oop_word());
2863   assert(!os::is_MP() ||
2864          (__ offset() + NativeCall::displacement_offset) % BytesPerWord == 0,
2865          "must be aligned");
2866   __ call(AddressLiteral(op->addr(), rh));
2867   add_call_info(code_offset(), op->info());
2868 }
2869 
2870 
2871 /* Currently, vtable-dispatch is only enabled for sparc platforms */
2872 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
2873   ShouldNotReachHere();
2874 }
2875 
2876 
2877 void LIR_Assembler::emit_static_call_stub() {
2878   address call_pc = __ pc();
2879   address stub = __ start_a_stub(call_stub_size);
2880   if (stub == NULL) {
2881     bailout("static call stub overflow");
2882     return;
2883   }
2884 
2885   int start = __ offset();
2886   if (os::is_MP()) {
2887     // make sure that the displacement word of the call ends up word aligned
2888     int offset = __ offset() + NativeMovConstReg::instruction_size + NativeCall::displacement_offset;
2889     while (offset++ % BytesPerWord != 0) {
2890       __ nop();
2891     }
2892   }
2893   __ relocate(static_stub_Relocation::spec(call_pc));
2894   __ movoop(rbx, (jobject)NULL);
2895   // must be set to -1 at code generation time
2896   assert(!os::is_MP() || ((__ offset() + 1) % BytesPerWord) == 0, "must be aligned on MP");
2897   // On 64bit this will die since it will take a movq & jmp, must be only a jmp
2898   __ jump(RuntimeAddress(__ pc()));
2899 
2900   assert(__ offset() - start <= call_stub_size, "stub too big");
2901   __ end_a_stub();
2902 }
2903 
2904 
2905 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2906   assert(exceptionOop->as_register() == rax, "must match");
2907   assert(exceptionPC->as_register() == rdx, "must match");
2908 
2909   // exception object is not added to oop map by LinearScan
2910   // (LinearScan assumes that no oops are in fixed registers)
2911   info->add_register_oop(exceptionOop);
2912   Runtime1::StubID unwind_id;
2913 
2914   // get current pc information
2915   // pc is only needed if the method has an exception handler, the unwind code does not need it.
2916   int pc_for_athrow_offset = __ offset();
2917   InternalAddress pc_for_athrow(__ pc());
2918   __ lea(exceptionPC->as_register(), pc_for_athrow);
2919   add_call_info(pc_for_athrow_offset, info); // for exception handler
2920 
2921   __ verify_not_null_oop(rax);
2922   // search an exception handler (rax: exception oop, rdx: throwing pc)
2923   if (compilation()->has_fpu_code()) {
2924     unwind_id = Runtime1::handle_exception_id;
2925   } else {
2926     unwind_id = Runtime1::handle_exception_nofpu_id;
2927   }
2928   __ call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
2929 
2930   // enough room for two byte trap
2931   __ nop();
2932 }
2933 
2934 
2935 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
2936   assert(exceptionOop->as_register() == rax, "must match");
2937 
2938   __ jmp(_unwind_handler_entry);
2939 }
2940 
2941 
2942 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2943 
2944   // optimized version for linear scan:
2945   // * count must be already in ECX (guaranteed by LinearScan)
2946   // * left and dest must be equal
2947   // * tmp must be unused
2948   assert(count->as_register() == SHIFT_count, "count must be in ECX");
2949   assert(left == dest, "left and dest must be equal");
2950   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2951 
2952   if (left->is_single_cpu()) {
2953     Register value = left->as_register();
2954     assert(value != SHIFT_count, "left cannot be ECX");
2955 
2956     switch (code) {
2957       case lir_shl:  __ shll(value); break;
2958       case lir_shr:  __ sarl(value); break;
2959       case lir_ushr: __ shrl(value); break;
2960       default: ShouldNotReachHere();
2961     }
2962   } else if (left->is_double_cpu()) {
2963     Register lo = left->as_register_lo();
2964     Register hi = left->as_register_hi();
2965     assert(lo != SHIFT_count && hi != SHIFT_count, "left cannot be ECX");
2966 #ifdef _LP64
2967     switch (code) {
2968       case lir_shl:  __ shlptr(lo);        break;
2969       case lir_shr:  __ sarptr(lo);        break;
2970       case lir_ushr: __ shrptr(lo);        break;
2971       default: ShouldNotReachHere();
2972     }
2973 #else
2974 
2975     switch (code) {
2976       case lir_shl:  __ lshl(hi, lo);        break;
2977       case lir_shr:  __ lshr(hi, lo, true);  break;
2978       case lir_ushr: __ lshr(hi, lo, false); break;
2979       default: ShouldNotReachHere();
2980     }
2981 #endif // LP64
2982   } else {
2983     ShouldNotReachHere();
2984   }
2985 }
2986 
2987 
2988 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2989   if (dest->is_single_cpu()) {
2990     // first move left into dest so that left is not destroyed by the shift
2991     Register value = dest->as_register();
2992     count = count & 0x1F; // Java spec
2993 
2994     move_regs(left->as_register(), value);
2995     switch (code) {
2996       case lir_shl:  __ shll(value, count); break;
2997       case lir_shr:  __ sarl(value, count); break;
2998       case lir_ushr: __ shrl(value, count); break;
2999       default: ShouldNotReachHere();
3000     }
3001   } else if (dest->is_double_cpu()) {
3002 #ifndef _LP64
3003     Unimplemented();
3004 #else
3005     // first move left into dest so that left is not destroyed by the shift
3006     Register value = dest->as_register_lo();
3007     count = count & 0x1F; // Java spec
3008 
3009     move_regs(left->as_register_lo(), value);
3010     switch (code) {
3011       case lir_shl:  __ shlptr(value, count); break;
3012       case lir_shr:  __ sarptr(value, count); break;
3013       case lir_ushr: __ shrptr(value, count); break;
3014       default: ShouldNotReachHere();
3015     }
3016 #endif // _LP64
3017   } else {
3018     ShouldNotReachHere();
3019   }
3020 }
3021 
3022 
3023 void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
3024   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3025   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3026   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3027   __ movptr (Address(rsp, offset_from_rsp_in_bytes), r);
3028 }
3029 
3030 
3031 void LIR_Assembler::store_parameter(jint c,     int offset_from_rsp_in_words) {
3032   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3033   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3034   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3035   __ movptr (Address(rsp, offset_from_rsp_in_bytes), c);
3036 }
3037 
3038 
3039 void LIR_Assembler::store_parameter(jobject o,  int offset_from_rsp_in_words) {
3040   assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
3041   int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
3042   assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
3043   __ movoop (Address(rsp, offset_from_rsp_in_bytes), o);
3044 }
3045 
3046 
3047 // This code replaces a call to arraycopy; no exception may
3048 // be thrown in this code, they must be thrown in the System.arraycopy
3049 // activation frame; we could save some checks if this would not be the case
3050 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
3051   ciArrayKlass* default_type = op->expected_type();
3052   Register src = op->src()->as_register();
3053   Register dst = op->dst()->as_register();
3054   Register src_pos = op->src_pos()->as_register();
3055   Register dst_pos = op->dst_pos()->as_register();
3056   Register length  = op->length()->as_register();
3057   Register tmp = op->tmp()->as_register();
3058 
3059   CodeStub* stub = op->stub();
3060   int flags = op->flags();
3061   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
3062   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
3063 
3064   // if we don't know anything, just go through the generic arraycopy
3065   if (default_type == NULL) {
3066     Label done;
3067     // save outgoing arguments on stack in case call to System.arraycopy is needed
3068     // HACK ALERT. This code used to push the parameters in a hardwired fashion
3069     // for interpreter calling conventions. Now we have to do it in new style conventions.
3070     // For the moment until C1 gets the new register allocator I just force all the
3071     // args to the right place (except the register args) and then on the back side
3072     // reload the register args properly if we go slow path. Yuck
3073 
3074     // These are proper for the calling convention
3075     store_parameter(length, 2);
3076     store_parameter(dst_pos, 1);
3077     store_parameter(dst, 0);
3078 
3079     // these are just temporary placements until we need to reload
3080     store_parameter(src_pos, 3);
3081     store_parameter(src, 4);
3082     NOT_LP64(assert(src == rcx && src_pos == rdx, "mismatch in calling convention");)
3083 
3084     address C_entry = CAST_FROM_FN_PTR(address, Runtime1::arraycopy);
3085 
3086     address copyfunc_addr = StubRoutines::generic_arraycopy();
3087 
3088     // pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint
3089 #ifdef _LP64
3090     // The arguments are in java calling convention so we can trivially shift them to C
3091     // convention
3092     assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
3093     __ mov(c_rarg0, j_rarg0);
3094     assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
3095     __ mov(c_rarg1, j_rarg1);
3096     assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
3097     __ mov(c_rarg2, j_rarg2);
3098     assert_different_registers(c_rarg3, j_rarg4);
3099     __ mov(c_rarg3, j_rarg3);
3100 #ifdef _WIN64
3101     // Allocate abi space for args but be sure to keep stack aligned
3102     __ subptr(rsp, 6*wordSize);
3103     store_parameter(j_rarg4, 4);
3104     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3105       __ call(RuntimeAddress(C_entry));
3106     } else {
3107 #ifndef PRODUCT
3108       if (PrintC1Statistics) {
3109         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3110       }
3111 #endif
3112       __ call(RuntimeAddress(copyfunc_addr));
3113     }
3114     __ addptr(rsp, 6*wordSize);
3115 #else
3116     __ mov(c_rarg4, j_rarg4);
3117     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3118       __ call(RuntimeAddress(C_entry));
3119     } else {
3120 #ifndef PRODUCT
3121       if (PrintC1Statistics) {
3122         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3123       }
3124 #endif
3125       __ call(RuntimeAddress(copyfunc_addr));
3126     }
3127 #endif // _WIN64
3128 #else
3129     __ push(length);
3130     __ push(dst_pos);
3131     __ push(dst);
3132     __ push(src_pos);
3133     __ push(src);
3134 
3135     if (copyfunc_addr == NULL) { // Use C version if stub was not generated
3136       __ call_VM_leaf(C_entry, 5); // removes pushed parameter from the stack
3137     } else {
3138 #ifndef PRODUCT
3139       if (PrintC1Statistics) {
3140         __ incrementl(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
3141       }
3142 #endif
3143       __ call_VM_leaf(copyfunc_addr, 5); // removes pushed parameter from the stack
3144     }
3145 
3146 #endif // _LP64
3147 
3148     __ cmpl(rax, 0);
3149     __ jcc(Assembler::equal, *stub->continuation());
3150 
3151     if (copyfunc_addr != NULL) {
3152       __ mov(tmp, rax);
3153       __ xorl(tmp, -1);
3154     }
3155 
3156     // Reload values from the stack so they are where the stub
3157     // expects them.
3158     __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3159     __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3160     __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3161     __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3162     __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3163 
3164     if (copyfunc_addr != NULL) {
3165       __ subl(length, tmp);
3166       __ addl(src_pos, tmp);
3167       __ addl(dst_pos, tmp);
3168     }
3169     __ jmp(*stub->entry());
3170 
3171     __ bind(*stub->continuation());
3172     return;
3173   }
3174 
3175   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
3176 
3177   int elem_size = type2aelembytes(basic_type);
3178   int shift_amount;
3179   Address::ScaleFactor scale;
3180 
3181   switch (elem_size) {
3182     case 1 :
3183       shift_amount = 0;
3184       scale = Address::times_1;
3185       break;
3186     case 2 :
3187       shift_amount = 1;
3188       scale = Address::times_2;
3189       break;
3190     case 4 :
3191       shift_amount = 2;
3192       scale = Address::times_4;
3193       break;
3194     case 8 :
3195       shift_amount = 3;
3196       scale = Address::times_8;
3197       break;
3198     default:
3199       ShouldNotReachHere();
3200   }
3201 
3202   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
3203   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
3204   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
3205   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
3206 
3207   // length and pos's are all sign extended at this point on 64bit
3208 
3209   // test for NULL
3210   if (flags & LIR_OpArrayCopy::src_null_check) {
3211     __ testptr(src, src);
3212     __ jcc(Assembler::zero, *stub->entry());
3213   }
3214   if (flags & LIR_OpArrayCopy::dst_null_check) {
3215     __ testptr(dst, dst);
3216     __ jcc(Assembler::zero, *stub->entry());
3217   }
3218 
3219   // check if negative
3220   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
3221     __ testl(src_pos, src_pos);
3222     __ jcc(Assembler::less, *stub->entry());
3223   }
3224   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
3225     __ testl(dst_pos, dst_pos);
3226     __ jcc(Assembler::less, *stub->entry());
3227   }
3228 
3229   if (flags & LIR_OpArrayCopy::src_range_check) {
3230     __ lea(tmp, Address(src_pos, length, Address::times_1, 0));
3231     __ cmpl(tmp, src_length_addr);
3232     __ jcc(Assembler::above, *stub->entry());
3233   }
3234   if (flags & LIR_OpArrayCopy::dst_range_check) {
3235     __ lea(tmp, Address(dst_pos, length, Address::times_1, 0));
3236     __ cmpl(tmp, dst_length_addr);
3237     __ jcc(Assembler::above, *stub->entry());
3238   }
3239 
3240   if (flags & LIR_OpArrayCopy::length_positive_check) {
3241     __ testl(length, length);
3242     __ jcc(Assembler::less, *stub->entry());
3243     __ jcc(Assembler::zero, *stub->continuation());
3244   }
3245 
3246 #ifdef _LP64
3247   __ movl2ptr(src_pos, src_pos); //higher 32bits must be null
3248   __ movl2ptr(dst_pos, dst_pos); //higher 32bits must be null
3249 #endif
3250 
3251   if (flags & LIR_OpArrayCopy::type_check) {
3252     // We don't know the array types are compatible
3253     if (basic_type != T_OBJECT) {
3254       // Simple test for basic type arrays
3255       if (UseCompressedOops) {
3256         __ movl(tmp, src_klass_addr);
3257         __ cmpl(tmp, dst_klass_addr);
3258       } else {
3259         __ movptr(tmp, src_klass_addr);
3260         __ cmpptr(tmp, dst_klass_addr);
3261       }
3262       __ jcc(Assembler::notEqual, *stub->entry());
3263     } else {
3264       // For object arrays, if src is a sub class of dst then we can
3265       // safely do the copy.
3266       Label cont, slow;
3267 
3268       __ push(src);
3269       __ push(dst);
3270 
3271       __ load_klass(src, src);
3272       __ load_klass(dst, dst);
3273 
3274       __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
3275 
3276       __ push(src);
3277       __ push(dst);
3278       __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
3279       __ pop(dst);
3280       __ pop(src);
3281 
3282       __ cmpl(src, 0);
3283       __ jcc(Assembler::notEqual, cont);
3284 
3285       __ bind(slow);
3286       __ pop(dst);
3287       __ pop(src);
3288 
3289       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
3290       if (copyfunc_addr != NULL) { // use stub if available
3291         // src is not a sub class of dst so we have to do a
3292         // per-element check.
3293 
3294         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
3295         if ((flags & mask) != mask) {
3296           // Check that at least both of them object arrays.
3297           assert(flags & mask, "one of the two should be known to be an object array");
3298 
3299           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
3300             __ load_klass(tmp, src);
3301           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
3302             __ load_klass(tmp, dst);
3303           }
3304           int lh_offset = in_bytes(Klass::layout_helper_offset());
3305           Address klass_lh_addr(tmp, lh_offset);
3306           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
3307           __ cmpl(klass_lh_addr, objArray_lh);
3308           __ jcc(Assembler::notEqual, *stub->entry());
3309         }
3310 
3311        // Spill because stubs can use any register they like and it's
3312        // easier to restore just those that we care about.
3313        store_parameter(dst, 0);
3314        store_parameter(dst_pos, 1);
3315        store_parameter(length, 2);
3316        store_parameter(src_pos, 3);
3317        store_parameter(src, 4);
3318 
3319 #ifndef _LP64
3320         __ movptr(tmp, dst_klass_addr);
3321         __ movptr(tmp, Address(tmp, objArrayKlass::element_klass_offset()));
3322         __ push(tmp);
3323         __ movl(tmp, Address(tmp, Klass::super_check_offset_offset()));
3324         __ push(tmp);
3325         __ push(length);
3326         __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3327         __ push(tmp);
3328         __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3329         __ push(tmp);
3330 
3331         __ call_VM_leaf(copyfunc_addr, 5);
3332 #else
3333         __ movl2ptr(length, length); //higher 32bits must be null
3334 
3335         __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3336         assert_different_registers(c_rarg0, dst, dst_pos, length);
3337         __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3338         assert_different_registers(c_rarg1, dst, length);
3339 
3340         __ mov(c_rarg2, length);
3341         assert_different_registers(c_rarg2, dst);
3342 
3343 #ifdef _WIN64
3344         // Allocate abi space for args but be sure to keep stack aligned
3345         __ subptr(rsp, 6*wordSize);
3346         __ load_klass(c_rarg3, dst);
3347         __ movptr(c_rarg3, Address(c_rarg3, objArrayKlass::element_klass_offset()));
3348         store_parameter(c_rarg3, 4);
3349         __ movl(c_rarg3, Address(c_rarg3, Klass::super_check_offset_offset()));
3350         __ call(RuntimeAddress(copyfunc_addr));
3351         __ addptr(rsp, 6*wordSize);
3352 #else
3353         __ load_klass(c_rarg4, dst);
3354         __ movptr(c_rarg4, Address(c_rarg4, objArrayKlass::element_klass_offset()));
3355         __ movl(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
3356         __ call(RuntimeAddress(copyfunc_addr));
3357 #endif
3358 
3359 #endif
3360 
3361 #ifndef PRODUCT
3362         if (PrintC1Statistics) {
3363           Label failed;
3364           __ testl(rax, rax);
3365           __ jcc(Assembler::notZero, failed);
3366           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
3367           __ bind(failed);
3368         }
3369 #endif
3370 
3371         __ testl(rax, rax);
3372         __ jcc(Assembler::zero, *stub->continuation());
3373 
3374 #ifndef PRODUCT
3375         if (PrintC1Statistics) {
3376           __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
3377         }
3378 #endif
3379 
3380         __ mov(tmp, rax);
3381 
3382         __ xorl(tmp, -1);
3383 
3384         // Restore previously spilled arguments
3385         __ movptr   (dst,     Address(rsp, 0*BytesPerWord));
3386         __ movptr   (dst_pos, Address(rsp, 1*BytesPerWord));
3387         __ movptr   (length,  Address(rsp, 2*BytesPerWord));
3388         __ movptr   (src_pos, Address(rsp, 3*BytesPerWord));
3389         __ movptr   (src,     Address(rsp, 4*BytesPerWord));
3390 
3391 
3392         __ subl(length, tmp);
3393         __ addl(src_pos, tmp);
3394         __ addl(dst_pos, tmp);
3395       }
3396 
3397       __ jmp(*stub->entry());
3398 
3399       __ bind(cont);
3400       __ pop(dst);
3401       __ pop(src);
3402     }
3403   }
3404 
3405 #ifdef ASSERT
3406   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
3407     // Sanity check the known type with the incoming class.  For the
3408     // primitive case the types must match exactly with src.klass and
3409     // dst.klass each exactly matching the default type.  For the
3410     // object array case, if no type check is needed then either the
3411     // dst type is exactly the expected type and the src type is a
3412     // subtype which we can't check or src is the same array as dst
3413     // but not necessarily exactly of type default_type.
3414     Label known_ok, halt;
3415     __ movoop(tmp, default_type->constant_encoding());
3416 #ifdef _LP64
3417     if (UseCompressedOops) {
3418       __ encode_heap_oop(tmp);
3419     }
3420 #endif
3421 
3422     if (basic_type != T_OBJECT) {
3423 
3424       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
3425       else                   __ cmpptr(tmp, dst_klass_addr);
3426       __ jcc(Assembler::notEqual, halt);
3427       if (UseCompressedOops) __ cmpl(tmp, src_klass_addr);
3428       else                   __ cmpptr(tmp, src_klass_addr);
3429       __ jcc(Assembler::equal, known_ok);
3430     } else {
3431       if (UseCompressedOops) __ cmpl(tmp, dst_klass_addr);
3432       else                   __ cmpptr(tmp, dst_klass_addr);
3433       __ jcc(Assembler::equal, known_ok);
3434       __ cmpptr(src, dst);
3435       __ jcc(Assembler::equal, known_ok);
3436     }
3437     __ bind(halt);
3438     __ stop("incorrect type information in arraycopy");
3439     __ bind(known_ok);
3440   }
3441 #endif
3442 
3443 #ifndef PRODUCT
3444   if (PrintC1Statistics) {
3445     __ incrementl(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
3446   }
3447 #endif
3448 
3449 #ifdef _LP64
3450   assert_different_registers(c_rarg0, dst, dst_pos, length);
3451   __ lea(c_rarg0, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3452   assert_different_registers(c_rarg1, length);
3453   __ lea(c_rarg1, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3454   __ mov(c_rarg2, length);
3455 
3456 #else
3457   __ lea(tmp, Address(src, src_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3458   store_parameter(tmp, 0);
3459   __ lea(tmp, Address(dst, dst_pos, scale, arrayOopDesc::base_offset_in_bytes(basic_type)));
3460   store_parameter(tmp, 1);
3461   store_parameter(length, 2);
3462 #endif // _LP64
3463 
3464   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
3465   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
3466   const char *name;
3467   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
3468   __ call_VM_leaf(entry, 0);
3469 
3470   __ bind(*stub->continuation());
3471 }
3472 
3473 
3474 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
3475   Register obj = op->obj_opr()->as_register();  // may not be an oop
3476   Register hdr = op->hdr_opr()->as_register();
3477   Register lock = op->lock_opr()->as_register();
3478   if (!UseFastLocking) {
3479     __ jmp(*op->stub()->entry());
3480   } else if (op->code() == lir_lock) {
3481     Register scratch = noreg;
3482     if (UseBiasedLocking) {
3483       scratch = op->scratch_opr()->as_register();
3484     }
3485     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3486     // add debug info for NullPointerException only if one is possible
3487     int null_check_offset = __ lock_object(hdr, obj, lock, scratch, *op->stub()->entry());
3488     if (op->info() != NULL) {
3489       add_debug_info_for_null_check(null_check_offset, op->info());
3490     }
3491     // done
3492   } else if (op->code() == lir_unlock) {
3493     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
3494     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
3495   } else {
3496     Unimplemented();
3497   }
3498   __ bind(*op->stub()->continuation());
3499 }
3500 
3501 
3502 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
3503   ciMethod* method = op->profiled_method();
3504   int bci          = op->profiled_bci();
3505 
3506   // Update counter for all call types
3507   ciMethodData* md = method->method_data_or_null();
3508   assert(md != NULL, "Sanity");
3509   ciProfileData* data = md->bci_to_data(bci);
3510   assert(data->is_CounterData(), "need CounterData for calls");
3511   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
3512   Register mdo  = op->mdo()->as_register();
3513   __ movoop(mdo, md->constant_encoding());
3514   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
3515   Bytecodes::Code bc = method->java_code_at_bci(bci);
3516   // Perform additional virtual call profiling for invokevirtual and
3517   // invokeinterface bytecodes
3518   if ((bc == Bytecodes::_invokevirtual || bc == Bytecodes::_invokeinterface) &&
3519       C1ProfileVirtualCalls) {
3520     assert(op->recv()->is_single_cpu(), "recv must be allocated");
3521     Register recv = op->recv()->as_register();
3522     assert_different_registers(mdo, recv);
3523     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
3524     ciKlass* known_klass = op->known_holder();
3525     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
3526       // We know the type that will be seen at this call site; we can
3527       // statically update the methodDataOop rather than needing to do
3528       // dynamic tests on the receiver type
3529 
3530       // NOTE: we should probably put a lock around this search to
3531       // avoid collisions by concurrent compilations
3532       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
3533       uint i;
3534       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3535         ciKlass* receiver = vc_data->receiver(i);
3536         if (known_klass->equals(receiver)) {
3537           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3538           __ addptr(data_addr, DataLayout::counter_increment);
3539           return;
3540         }
3541       }
3542 
3543       // Receiver type not found in profile data; select an empty slot
3544 
3545       // Note that this is less efficient than it should be because it
3546       // always does a write to the receiver part of the
3547       // VirtualCallData rather than just the first time
3548       for (i = 0; i < VirtualCallData::row_limit(); i++) {
3549         ciKlass* receiver = vc_data->receiver(i);
3550         if (receiver == NULL) {
3551           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
3552           __ movoop(recv_addr, known_klass->constant_encoding());
3553           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
3554           __ addptr(data_addr, DataLayout::counter_increment);
3555           return;
3556         }
3557       }
3558     } else {
3559       __ load_klass(recv, recv);
3560       Label update_done;
3561       type_profile_helper(mdo, md, data, recv, &update_done);
3562       // Receiver did not match any saved receiver and there is no empty row for it.
3563       // Increment total counter to indicate polymorphic case.
3564       __ addptr(counter_addr, DataLayout::counter_increment);
3565 
3566       __ bind(update_done);
3567     }
3568   } else {
3569     // Static call
3570     __ addptr(counter_addr, DataLayout::counter_increment);
3571   }
3572 }
3573 
3574 void LIR_Assembler::emit_delay(LIR_OpDelay*) {
3575   Unimplemented();
3576 }
3577 
3578 
3579 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
3580   __ lea(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
3581 }
3582 
3583 
3584 void LIR_Assembler::align_backward_branch_target() {
3585   __ align(BytesPerWord);
3586 }
3587 
3588 
3589 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest) {
3590   if (left->is_single_cpu()) {
3591     __ negl(left->as_register());
3592     move_regs(left->as_register(), dest->as_register());
3593 
3594   } else if (left->is_double_cpu()) {
3595     Register lo = left->as_register_lo();
3596 #ifdef _LP64
3597     Register dst = dest->as_register_lo();
3598     __ movptr(dst, lo);
3599     __ negptr(dst);
3600 #else
3601     Register hi = left->as_register_hi();
3602     __ lneg(hi, lo);
3603     if (dest->as_register_lo() == hi) {
3604       assert(dest->as_register_hi() != lo, "destroying register");
3605       move_regs(hi, dest->as_register_hi());
3606       move_regs(lo, dest->as_register_lo());
3607     } else {
3608       move_regs(lo, dest->as_register_lo());
3609       move_regs(hi, dest->as_register_hi());
3610     }
3611 #endif // _LP64
3612 
3613   } else if (dest->is_single_xmm()) {
3614     if (left->as_xmm_float_reg() != dest->as_xmm_float_reg()) {
3615       __ movflt(dest->as_xmm_float_reg(), left->as_xmm_float_reg());
3616     }
3617     __ xorps(dest->as_xmm_float_reg(),
3618              ExternalAddress((address)float_signflip_pool));
3619 
3620   } else if (dest->is_double_xmm()) {
3621     if (left->as_xmm_double_reg() != dest->as_xmm_double_reg()) {
3622       __ movdbl(dest->as_xmm_double_reg(), left->as_xmm_double_reg());
3623     }
3624     __ xorpd(dest->as_xmm_double_reg(),
3625              ExternalAddress((address)double_signflip_pool));
3626 
3627   } else if (left->is_single_fpu() || left->is_double_fpu()) {
3628     assert(left->fpu() == 0, "arg must be on TOS");
3629     assert(dest->fpu() == 0, "dest must be TOS");
3630     __ fchs();
3631 
3632   } else {
3633     ShouldNotReachHere();
3634   }
3635 }
3636 
3637 
3638 void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest) {
3639   assert(addr->is_address() && dest->is_register(), "check");
3640   Register reg;
3641   reg = dest->as_pointer_register();
3642   __ lea(reg, as_Address(addr->as_address_ptr()));
3643 }
3644 
3645 
3646 
3647 void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
3648   assert(!tmp->is_valid(), "don't need temporary");
3649   __ call(RuntimeAddress(dest));
3650   if (info != NULL) {
3651     add_call_info_here(info);
3652   }
3653 }
3654 
3655 
3656 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
3657   assert(type == T_LONG, "only for volatile long fields");
3658 
3659   if (info != NULL) {
3660     add_debug_info_for_null_check_here(info);
3661   }
3662 
3663   if (src->is_double_xmm()) {
3664     if (dest->is_double_cpu()) {
3665 #ifdef _LP64
3666       __ movdq(dest->as_register_lo(), src->as_xmm_double_reg());
3667 #else
3668       __ movdl(dest->as_register_lo(), src->as_xmm_double_reg());
3669       __ psrlq(src->as_xmm_double_reg(), 32);
3670       __ movdl(dest->as_register_hi(), src->as_xmm_double_reg());
3671 #endif // _LP64
3672     } else if (dest->is_double_stack()) {
3673       __ movdbl(frame_map()->address_for_slot(dest->double_stack_ix()), src->as_xmm_double_reg());
3674     } else if (dest->is_address()) {
3675       __ movdbl(as_Address(dest->as_address_ptr()), src->as_xmm_double_reg());
3676     } else {
3677       ShouldNotReachHere();
3678     }
3679 
3680   } else if (dest->is_double_xmm()) {
3681     if (src->is_double_stack()) {
3682       __ movdbl(dest->as_xmm_double_reg(), frame_map()->address_for_slot(src->double_stack_ix()));
3683     } else if (src->is_address()) {
3684       __ movdbl(dest->as_xmm_double_reg(), as_Address(src->as_address_ptr()));
3685     } else {
3686       ShouldNotReachHere();
3687     }
3688 
3689   } else if (src->is_double_fpu()) {
3690     assert(src->fpu_regnrLo() == 0, "must be TOS");
3691     if (dest->is_double_stack()) {
3692       __ fistp_d(frame_map()->address_for_slot(dest->double_stack_ix()));
3693     } else if (dest->is_address()) {
3694       __ fistp_d(as_Address(dest->as_address_ptr()));
3695     } else {
3696       ShouldNotReachHere();
3697     }
3698 
3699   } else if (dest->is_double_fpu()) {
3700     assert(dest->fpu_regnrLo() == 0, "must be TOS");
3701     if (src->is_double_stack()) {
3702       __ fild_d(frame_map()->address_for_slot(src->double_stack_ix()));
3703     } else if (src->is_address()) {
3704       __ fild_d(as_Address(src->as_address_ptr()));
3705     } else {
3706       ShouldNotReachHere();
3707     }
3708   } else {
3709     ShouldNotReachHere();
3710   }
3711 }
3712 
3713 
3714 void LIR_Assembler::membar() {
3715   // QQQ sparc TSO uses this,
3716   __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad));
3717 }
3718 
3719 void LIR_Assembler::membar_acquire() {
3720   // No x86 machines currently require load fences
3721   // __ load_fence();
3722 }
3723 
3724 void LIR_Assembler::membar_release() {
3725   // No x86 machines currently require store fences
3726   // __ store_fence();
3727 }
3728 
3729 void LIR_Assembler::membar_loadload() {
3730   // no-op
3731   //__ membar(Assembler::Membar_mask_bits(Assembler::loadload));
3732 }
3733 
3734 void LIR_Assembler::membar_storestore() {
3735   // no-op
3736   //__ membar(Assembler::Membar_mask_bits(Assembler::storestore));
3737 }
3738 
3739 void LIR_Assembler::membar_loadstore() {
3740   // no-op
3741   //__ membar(Assembler::Membar_mask_bits(Assembler::loadstore));
3742 }
3743 
3744 void LIR_Assembler::membar_storeload() {
3745   __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
3746 }
3747 
3748 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
3749   assert(result_reg->is_register(), "check");
3750 #ifdef _LP64
3751   // __ get_thread(result_reg->as_register_lo());
3752   __ mov(result_reg->as_register(), r15_thread);
3753 #else
3754   __ get_thread(result_reg->as_register());
3755 #endif // _LP64
3756 }
3757 
3758 
3759 void LIR_Assembler::peephole(LIR_List*) {
3760   // do nothing for now
3761 }
3762 
3763 
3764 #undef __