1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/dependencies.hpp"
  33 #include "gc_interface/collectedHeap.inline.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/cardTableModRefBS.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/genCollectedHeap.hpp"
  39 #include "memory/genRemSet.hpp"
  40 #include "memory/generation.hpp"
  41 #include "memory/oopFactory.hpp"
  42 #include "memory/permGen.hpp"
  43 #include "memory/space.hpp"
  44 #include "memory/universe.hpp"
  45 #include "memory/universe.inline.hpp"
  46 #include "oops/arrayKlassKlass.hpp"
  47 #include "oops/compiledICHolderKlass.hpp"
  48 #include "oops/constMethodKlass.hpp"
  49 #include "oops/constantPoolKlass.hpp"
  50 #include "oops/constantPoolOop.hpp"
  51 #include "oops/cpCacheKlass.hpp"
  52 #include "oops/cpCacheOop.hpp"
  53 #include "oops/instanceKlass.hpp"
  54 #include "oops/instanceMirrorKlass.hpp"
  55 #include "oops/instanceKlassKlass.hpp"
  56 #include "oops/instanceRefKlass.hpp"
  57 #include "oops/klassKlass.hpp"
  58 #include "oops/klassOop.hpp"
  59 #include "oops/methodDataKlass.hpp"
  60 #include "oops/methodKlass.hpp"
  61 #include "oops/objArrayKlassKlass.hpp"
  62 #include "oops/oop.inline.hpp"
  63 #include "oops/typeArrayKlass.hpp"
  64 #include "oops/typeArrayKlassKlass.hpp"
  65 #include "prims/jvmtiRedefineClassesTrace.hpp"
  66 #include "runtime/aprofiler.hpp"
  67 #include "runtime/arguments.hpp"
  68 #include "runtime/deoptimization.hpp"
  69 #include "runtime/fprofiler.hpp"
  70 #include "runtime/handles.inline.hpp"
  71 #include "runtime/init.hpp"
  72 #include "runtime/java.hpp"
  73 #include "runtime/javaCalls.hpp"
  74 #include "runtime/sharedRuntime.hpp"
  75 #include "runtime/synchronizer.hpp"
  76 #include "runtime/timer.hpp"
  77 #include "runtime/vm_operations.hpp"
  78 #include "services/memoryService.hpp"
  79 #include "utilities/copy.hpp"
  80 #include "utilities/events.hpp"
  81 #include "utilities/hashtable.inline.hpp"
  82 #include "utilities/preserveException.hpp"
  83 #ifdef TARGET_OS_FAMILY_linux
  84 # include "thread_linux.inline.hpp"
  85 #endif
  86 #ifdef TARGET_OS_FAMILY_solaris
  87 # include "thread_solaris.inline.hpp"
  88 #endif
  89 #ifdef TARGET_OS_FAMILY_windows
  90 # include "thread_windows.inline.hpp"
  91 #endif
  92 #ifdef TARGET_OS_FAMILY_bsd
  93 # include "thread_bsd.inline.hpp"
  94 #endif
  95 #ifndef SERIALGC
  96 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  97 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  98 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  99 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
 100 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
 101 #endif
 102 
 103 // Known objects
 104 klassOop Universe::_boolArrayKlassObj                 = NULL;
 105 klassOop Universe::_byteArrayKlassObj                 = NULL;
 106 klassOop Universe::_charArrayKlassObj                 = NULL;
 107 klassOop Universe::_intArrayKlassObj                  = NULL;
 108 klassOop Universe::_shortArrayKlassObj                = NULL;
 109 klassOop Universe::_longArrayKlassObj                 = NULL;
 110 klassOop Universe::_singleArrayKlassObj               = NULL;
 111 klassOop Universe::_doubleArrayKlassObj               = NULL;
 112 klassOop Universe::_typeArrayKlassObjs[T_VOID+1]      = { NULL /*, NULL...*/ };
 113 klassOop Universe::_objectArrayKlassObj               = NULL;
 114 klassOop Universe::_methodKlassObj                    = NULL;
 115 klassOop Universe::_constMethodKlassObj               = NULL;
 116 klassOop Universe::_methodDataKlassObj                = NULL;
 117 klassOop Universe::_klassKlassObj                     = NULL;
 118 klassOop Universe::_arrayKlassKlassObj                = NULL;
 119 klassOop Universe::_objArrayKlassKlassObj             = NULL;
 120 klassOop Universe::_typeArrayKlassKlassObj            = NULL;
 121 klassOop Universe::_instanceKlassKlassObj             = NULL;
 122 klassOop Universe::_constantPoolKlassObj              = NULL;
 123 klassOop Universe::_constantPoolCacheKlassObj         = NULL;
 124 klassOop Universe::_compiledICHolderKlassObj          = NULL;
 125 klassOop Universe::_systemObjArrayKlassObj            = NULL;
 126 oop Universe::_int_mirror                             = NULL;
 127 oop Universe::_float_mirror                           = NULL;
 128 oop Universe::_double_mirror                          = NULL;
 129 oop Universe::_byte_mirror                            = NULL;
 130 oop Universe::_bool_mirror                            = NULL;
 131 oop Universe::_char_mirror                            = NULL;
 132 oop Universe::_long_mirror                            = NULL;
 133 oop Universe::_short_mirror                           = NULL;
 134 oop Universe::_void_mirror                            = NULL;
 135 oop Universe::_mirrors[T_VOID+1]                      = { NULL /*, NULL...*/ };
 136 oop Universe::_main_thread_group                      = NULL;
 137 oop Universe::_system_thread_group                    = NULL;
 138 typeArrayOop Universe::_the_empty_byte_array          = NULL;
 139 typeArrayOop Universe::_the_empty_short_array         = NULL;
 140 typeArrayOop Universe::_the_empty_int_array           = NULL;
 141 objArrayOop Universe::_the_empty_system_obj_array     = NULL;
 142 objArrayOop Universe::_the_empty_class_klass_array    = NULL;
 143 objArrayOop Universe::_the_array_interfaces_array     = NULL;
 144 oop Universe::_the_null_string                        = NULL;
 145 oop Universe::_the_min_jint_string                   = NULL;
 146 LatestMethodOopCache* Universe::_finalizer_register_cache = NULL;
 147 LatestMethodOopCache* Universe::_loader_addClass_cache    = NULL;
 148 LatestMethodOopCache* Universe::_pd_implies_cache         = NULL;
 149 ActiveMethodOopsCache* Universe::_reflect_invoke_cache    = NULL;
 150 oop Universe::_out_of_memory_error_java_heap          = NULL;
 151 oop Universe::_out_of_memory_error_perm_gen           = NULL;
 152 oop Universe::_out_of_memory_error_array_size         = NULL;
 153 oop Universe::_out_of_memory_error_gc_overhead_limit  = NULL;
 154 objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL;
 155 volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0;
 156 bool Universe::_verify_in_progress                    = false;
 157 oop Universe::_null_ptr_exception_instance            = NULL;
 158 oop Universe::_arithmetic_exception_instance          = NULL;
 159 oop Universe::_virtual_machine_error_instance         = NULL;
 160 oop Universe::_vm_exception                           = NULL;
 161 
 162 // These variables are guarded by FullGCALot_lock.
 163 debug_only(objArrayOop Universe::_fullgc_alot_dummy_array = NULL;)
 164 debug_only(int Universe::_fullgc_alot_dummy_next      = 0;)
 165 
 166 
 167 // Heap
 168 int             Universe::_verify_count = 0;
 169 
 170 int             Universe::_base_vtable_size = 0;
 171 bool            Universe::_bootstrapping = false;
 172 bool            Universe::_fully_initialized = false;
 173 
 174 size_t          Universe::_heap_capacity_at_last_gc;
 175 size_t          Universe::_heap_used_at_last_gc = 0;
 176 
 177 CollectedHeap*  Universe::_collectedHeap = NULL;
 178 
 179 NarrowOopStruct Universe::_narrow_oop = { NULL, 0, true };
 180 
 181 
 182 void Universe::basic_type_classes_do(void f(klassOop)) {
 183   f(boolArrayKlassObj());
 184   f(byteArrayKlassObj());
 185   f(charArrayKlassObj());
 186   f(intArrayKlassObj());
 187   f(shortArrayKlassObj());
 188   f(longArrayKlassObj());
 189   f(singleArrayKlassObj());
 190   f(doubleArrayKlassObj());
 191 }
 192 
 193 
 194 void Universe::system_classes_do(void f(klassOop)) {
 195   f(methodKlassObj());
 196   f(constMethodKlassObj());
 197   f(methodDataKlassObj());
 198   f(klassKlassObj());
 199   f(arrayKlassKlassObj());
 200   f(objArrayKlassKlassObj());
 201   f(typeArrayKlassKlassObj());
 202   f(instanceKlassKlassObj());
 203   f(constantPoolKlassObj());
 204   f(systemObjArrayKlassObj());
 205 }
 206 
 207 void Universe::oops_do(OopClosure* f, bool do_all) {
 208 
 209   f->do_oop((oop*) &_int_mirror);
 210   f->do_oop((oop*) &_float_mirror);
 211   f->do_oop((oop*) &_double_mirror);
 212   f->do_oop((oop*) &_byte_mirror);
 213   f->do_oop((oop*) &_bool_mirror);
 214   f->do_oop((oop*) &_char_mirror);
 215   f->do_oop((oop*) &_long_mirror);
 216   f->do_oop((oop*) &_short_mirror);
 217   f->do_oop((oop*) &_void_mirror);
 218 
 219   // It's important to iterate over these guys even if they are null,
 220   // since that's how shared heaps are restored.
 221   for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
 222     f->do_oop((oop*) &_mirrors[i]);
 223   }
 224   assert(_mirrors[0] == NULL && _mirrors[T_BOOLEAN - 1] == NULL, "checking");
 225 
 226   // %%% Consider moving those "shared oops" over here with the others.
 227   f->do_oop((oop*)&_boolArrayKlassObj);
 228   f->do_oop((oop*)&_byteArrayKlassObj);
 229   f->do_oop((oop*)&_charArrayKlassObj);
 230   f->do_oop((oop*)&_intArrayKlassObj);
 231   f->do_oop((oop*)&_shortArrayKlassObj);
 232   f->do_oop((oop*)&_longArrayKlassObj);
 233   f->do_oop((oop*)&_singleArrayKlassObj);
 234   f->do_oop((oop*)&_doubleArrayKlassObj);
 235   f->do_oop((oop*)&_objectArrayKlassObj);
 236   {
 237     for (int i = 0; i < T_VOID+1; i++) {
 238       if (_typeArrayKlassObjs[i] != NULL) {
 239         assert(i >= T_BOOLEAN, "checking");
 240         f->do_oop((oop*)&_typeArrayKlassObjs[i]);
 241       } else if (do_all) {
 242         f->do_oop((oop*)&_typeArrayKlassObjs[i]);
 243       }
 244     }
 245   }
 246   f->do_oop((oop*)&_methodKlassObj);
 247   f->do_oop((oop*)&_constMethodKlassObj);
 248   f->do_oop((oop*)&_methodDataKlassObj);
 249   f->do_oop((oop*)&_klassKlassObj);
 250   f->do_oop((oop*)&_arrayKlassKlassObj);
 251   f->do_oop((oop*)&_objArrayKlassKlassObj);
 252   f->do_oop((oop*)&_typeArrayKlassKlassObj);
 253   f->do_oop((oop*)&_instanceKlassKlassObj);
 254   f->do_oop((oop*)&_constantPoolKlassObj);
 255   f->do_oop((oop*)&_constantPoolCacheKlassObj);
 256   f->do_oop((oop*)&_compiledICHolderKlassObj);
 257   f->do_oop((oop*)&_systemObjArrayKlassObj);
 258   f->do_oop((oop*)&_the_empty_byte_array);
 259   f->do_oop((oop*)&_the_empty_short_array);
 260   f->do_oop((oop*)&_the_empty_int_array);
 261   f->do_oop((oop*)&_the_empty_system_obj_array);
 262   f->do_oop((oop*)&_the_empty_class_klass_array);
 263   f->do_oop((oop*)&_the_array_interfaces_array);
 264   f->do_oop((oop*)&_the_null_string);
 265   f->do_oop((oop*)&_the_min_jint_string);
 266   _finalizer_register_cache->oops_do(f);
 267   _loader_addClass_cache->oops_do(f);
 268   _pd_implies_cache->oops_do(f);
 269   _reflect_invoke_cache->oops_do(f);
 270   f->do_oop((oop*)&_out_of_memory_error_java_heap);
 271   f->do_oop((oop*)&_out_of_memory_error_perm_gen);
 272   f->do_oop((oop*)&_out_of_memory_error_array_size);
 273   f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit);
 274   if (_preallocated_out_of_memory_error_array != (oop)NULL) {   // NULL when DumpSharedSpaces
 275     f->do_oop((oop*)&_preallocated_out_of_memory_error_array);
 276   }
 277   f->do_oop((oop*)&_null_ptr_exception_instance);
 278   f->do_oop((oop*)&_arithmetic_exception_instance);
 279   f->do_oop((oop*)&_virtual_machine_error_instance);
 280   f->do_oop((oop*)&_main_thread_group);
 281   f->do_oop((oop*)&_system_thread_group);
 282   f->do_oop((oop*)&_vm_exception);
 283   debug_only(f->do_oop((oop*)&_fullgc_alot_dummy_array);)
 284 }
 285 
 286 
 287 void Universe::check_alignment(uintx size, uintx alignment, const char* name) {
 288   if (size < alignment || size % alignment != 0) {
 289     ResourceMark rm;
 290     stringStream st;
 291     st.print("Size of %s (%ld bytes) must be aligned to %ld bytes", name, size, alignment);
 292     char* error = st.as_string();
 293     vm_exit_during_initialization(error);
 294   }
 295 }
 296 
 297 
 298 void Universe::genesis(TRAPS) {
 299   ResourceMark rm;
 300   { FlagSetting fs(_bootstrapping, true);
 301 
 302     { MutexLocker mc(Compile_lock);
 303 
 304       // determine base vtable size; without that we cannot create the array klasses
 305       compute_base_vtable_size();
 306 
 307       if (!UseSharedSpaces) {
 308         _klassKlassObj          = klassKlass::create_klass(CHECK);
 309         _arrayKlassKlassObj     = arrayKlassKlass::create_klass(CHECK);
 310 
 311         _objArrayKlassKlassObj  = objArrayKlassKlass::create_klass(CHECK);
 312         _instanceKlassKlassObj  = instanceKlassKlass::create_klass(CHECK);
 313         _typeArrayKlassKlassObj = typeArrayKlassKlass::create_klass(CHECK);
 314 
 315         _boolArrayKlassObj      = typeArrayKlass::create_klass(T_BOOLEAN, sizeof(jboolean), CHECK);
 316         _charArrayKlassObj      = typeArrayKlass::create_klass(T_CHAR,    sizeof(jchar),    CHECK);
 317         _singleArrayKlassObj    = typeArrayKlass::create_klass(T_FLOAT,   sizeof(jfloat),   CHECK);
 318         _doubleArrayKlassObj    = typeArrayKlass::create_klass(T_DOUBLE,  sizeof(jdouble),  CHECK);
 319         _byteArrayKlassObj      = typeArrayKlass::create_klass(T_BYTE,    sizeof(jbyte),    CHECK);
 320         _shortArrayKlassObj     = typeArrayKlass::create_klass(T_SHORT,   sizeof(jshort),   CHECK);
 321         _intArrayKlassObj       = typeArrayKlass::create_klass(T_INT,     sizeof(jint),     CHECK);
 322         _longArrayKlassObj      = typeArrayKlass::create_klass(T_LONG,    sizeof(jlong),    CHECK);
 323 
 324         _typeArrayKlassObjs[T_BOOLEAN] = _boolArrayKlassObj;
 325         _typeArrayKlassObjs[T_CHAR]    = _charArrayKlassObj;
 326         _typeArrayKlassObjs[T_FLOAT]   = _singleArrayKlassObj;
 327         _typeArrayKlassObjs[T_DOUBLE]  = _doubleArrayKlassObj;
 328         _typeArrayKlassObjs[T_BYTE]    = _byteArrayKlassObj;
 329         _typeArrayKlassObjs[T_SHORT]   = _shortArrayKlassObj;
 330         _typeArrayKlassObjs[T_INT]     = _intArrayKlassObj;
 331         _typeArrayKlassObjs[T_LONG]    = _longArrayKlassObj;
 332 
 333         _methodKlassObj             = methodKlass::create_klass(CHECK);
 334         _constMethodKlassObj        = constMethodKlass::create_klass(CHECK);
 335         _methodDataKlassObj         = methodDataKlass::create_klass(CHECK);
 336         _constantPoolKlassObj       = constantPoolKlass::create_klass(CHECK);
 337         _constantPoolCacheKlassObj  = constantPoolCacheKlass::create_klass(CHECK);
 338 
 339         _compiledICHolderKlassObj   = compiledICHolderKlass::create_klass(CHECK);
 340         _systemObjArrayKlassObj     = objArrayKlassKlass::cast(objArrayKlassKlassObj())->allocate_system_objArray_klass(CHECK);
 341 
 342         _the_empty_byte_array       = oopFactory::new_permanent_byteArray(0, CHECK);
 343         _the_empty_short_array      = oopFactory::new_permanent_shortArray(0, CHECK);
 344         _the_empty_int_array        = oopFactory::new_permanent_intArray(0, CHECK);
 345         _the_empty_system_obj_array = oopFactory::new_system_objArray(0, CHECK);
 346 
 347         _the_array_interfaces_array = oopFactory::new_system_objArray(2, CHECK);
 348       }
 349     }
 350 
 351     vmSymbols::initialize(CHECK);
 352 
 353     SystemDictionary::initialize(CHECK);
 354 
 355     klassOop ok = SystemDictionary::Object_klass();
 356 
 357     _the_null_string            = StringTable::intern("null", CHECK);
 358     _the_min_jint_string       = StringTable::intern("-2147483648", CHECK);
 359 
 360     if (UseSharedSpaces) {
 361       // Verify shared interfaces array.
 362       assert(_the_array_interfaces_array->obj_at(0) ==
 363              SystemDictionary::Cloneable_klass(), "u3");
 364       assert(_the_array_interfaces_array->obj_at(1) ==
 365              SystemDictionary::Serializable_klass(), "u3");
 366 
 367       // Verify element klass for system obj array klass
 368       assert(objArrayKlass::cast(_systemObjArrayKlassObj)->element_klass() == ok, "u1");
 369       assert(objArrayKlass::cast(_systemObjArrayKlassObj)->bottom_klass() == ok, "u2");
 370 
 371       // Verify super class for the classes created above
 372       assert(Klass::cast(boolArrayKlassObj()     )->super() == ok, "u3");
 373       assert(Klass::cast(charArrayKlassObj()     )->super() == ok, "u3");
 374       assert(Klass::cast(singleArrayKlassObj()   )->super() == ok, "u3");
 375       assert(Klass::cast(doubleArrayKlassObj()   )->super() == ok, "u3");
 376       assert(Klass::cast(byteArrayKlassObj()     )->super() == ok, "u3");
 377       assert(Klass::cast(shortArrayKlassObj()    )->super() == ok, "u3");
 378       assert(Klass::cast(intArrayKlassObj()      )->super() == ok, "u3");
 379       assert(Klass::cast(longArrayKlassObj()     )->super() == ok, "u3");
 380       assert(Klass::cast(constantPoolKlassObj()  )->super() == ok, "u3");
 381       assert(Klass::cast(systemObjArrayKlassObj())->super() == ok, "u3");
 382     } else {
 383       // Set up shared interfaces array.  (Do this before supers are set up.)
 384       _the_array_interfaces_array->obj_at_put(0, SystemDictionary::Cloneable_klass());
 385       _the_array_interfaces_array->obj_at_put(1, SystemDictionary::Serializable_klass());
 386 
 387       // Set element klass for system obj array klass
 388       objArrayKlass::cast(_systemObjArrayKlassObj)->set_element_klass(ok);
 389       objArrayKlass::cast(_systemObjArrayKlassObj)->set_bottom_klass(ok);
 390 
 391       // Set super class for the classes created above
 392       Klass::cast(boolArrayKlassObj()     )->initialize_supers(ok, CHECK);
 393       Klass::cast(charArrayKlassObj()     )->initialize_supers(ok, CHECK);
 394       Klass::cast(singleArrayKlassObj()   )->initialize_supers(ok, CHECK);
 395       Klass::cast(doubleArrayKlassObj()   )->initialize_supers(ok, CHECK);
 396       Klass::cast(byteArrayKlassObj()     )->initialize_supers(ok, CHECK);
 397       Klass::cast(shortArrayKlassObj()    )->initialize_supers(ok, CHECK);
 398       Klass::cast(intArrayKlassObj()      )->initialize_supers(ok, CHECK);
 399       Klass::cast(longArrayKlassObj()     )->initialize_supers(ok, CHECK);
 400       Klass::cast(constantPoolKlassObj()  )->initialize_supers(ok, CHECK);
 401       Klass::cast(systemObjArrayKlassObj())->initialize_supers(ok, CHECK);
 402       Klass::cast(boolArrayKlassObj()     )->set_super(ok);
 403       Klass::cast(charArrayKlassObj()     )->set_super(ok);
 404       Klass::cast(singleArrayKlassObj()   )->set_super(ok);
 405       Klass::cast(doubleArrayKlassObj()   )->set_super(ok);
 406       Klass::cast(byteArrayKlassObj()     )->set_super(ok);
 407       Klass::cast(shortArrayKlassObj()    )->set_super(ok);
 408       Klass::cast(intArrayKlassObj()      )->set_super(ok);
 409       Klass::cast(longArrayKlassObj()     )->set_super(ok);
 410       Klass::cast(constantPoolKlassObj()  )->set_super(ok);
 411       Klass::cast(systemObjArrayKlassObj())->set_super(ok);
 412     }
 413 
 414     Klass::cast(boolArrayKlassObj()     )->append_to_sibling_list();
 415     Klass::cast(charArrayKlassObj()     )->append_to_sibling_list();
 416     Klass::cast(singleArrayKlassObj()   )->append_to_sibling_list();
 417     Klass::cast(doubleArrayKlassObj()   )->append_to_sibling_list();
 418     Klass::cast(byteArrayKlassObj()     )->append_to_sibling_list();
 419     Klass::cast(shortArrayKlassObj()    )->append_to_sibling_list();
 420     Klass::cast(intArrayKlassObj()      )->append_to_sibling_list();
 421     Klass::cast(longArrayKlassObj()     )->append_to_sibling_list();
 422     Klass::cast(constantPoolKlassObj()  )->append_to_sibling_list();
 423     Klass::cast(systemObjArrayKlassObj())->append_to_sibling_list();
 424   } // end of core bootstrapping
 425 
 426   // Initialize _objectArrayKlass after core bootstraping to make
 427   // sure the super class is set up properly for _objectArrayKlass.
 428   _objectArrayKlassObj = instanceKlass::
 429     cast(SystemDictionary::Object_klass())->array_klass(1, CHECK);
 430   // Add the class to the class hierarchy manually to make sure that
 431   // its vtable is initialized after core bootstrapping is completed.
 432   Klass::cast(_objectArrayKlassObj)->append_to_sibling_list();
 433 
 434   // Compute is_jdk version flags.
 435   // Only 1.3 or later has the java.lang.Shutdown class.
 436   // Only 1.4 or later has the java.lang.CharSequence interface.
 437   // Only 1.5 or later has the java.lang.management.MemoryUsage class.
 438   if (JDK_Version::is_partially_initialized()) {
 439     uint8_t jdk_version;
 440     klassOop k = SystemDictionary::resolve_or_null(
 441         vmSymbols::java_lang_management_MemoryUsage(), THREAD);
 442     CLEAR_PENDING_EXCEPTION; // ignore exceptions
 443     if (k == NULL) {
 444       k = SystemDictionary::resolve_or_null(
 445           vmSymbols::java_lang_CharSequence(), THREAD);
 446       CLEAR_PENDING_EXCEPTION; // ignore exceptions
 447       if (k == NULL) {
 448         k = SystemDictionary::resolve_or_null(
 449             vmSymbols::java_lang_Shutdown(), THREAD);
 450         CLEAR_PENDING_EXCEPTION; // ignore exceptions
 451         if (k == NULL) {
 452           jdk_version = 2;
 453         } else {
 454           jdk_version = 3;
 455         }
 456       } else {
 457         jdk_version = 4;
 458       }
 459     } else {
 460       jdk_version = 5;
 461     }
 462     JDK_Version::fully_initialize(jdk_version);
 463   }
 464 
 465   #ifdef ASSERT
 466   if (FullGCALot) {
 467     // Allocate an array of dummy objects.
 468     // We'd like these to be at the bottom of the old generation,
 469     // so that when we free one and then collect,
 470     // (almost) the whole heap moves
 471     // and we find out if we actually update all the oops correctly.
 472     // But we can't allocate directly in the old generation,
 473     // so we allocate wherever, and hope that the first collection
 474     // moves these objects to the bottom of the old generation.
 475     // We can allocate directly in the permanent generation, so we do.
 476     int size;
 477     if (UseConcMarkSweepGC) {
 478       warning("Using +FullGCALot with concurrent mark sweep gc "
 479               "will not force all objects to relocate");
 480       size = FullGCALotDummies;
 481     } else {
 482       size = FullGCALotDummies * 2;
 483     }
 484     objArrayOop    naked_array = oopFactory::new_system_objArray(size, CHECK);
 485     objArrayHandle dummy_array(THREAD, naked_array);
 486     int i = 0;
 487     while (i < size) {
 488       if (!UseConcMarkSweepGC) {
 489         // Allocate dummy in old generation
 490         oop dummy = instanceKlass::cast(SystemDictionary::Object_klass())->allocate_instance(CHECK);
 491         dummy_array->obj_at_put(i++, dummy);
 492       }
 493       // Allocate dummy in permanent generation
 494       oop dummy = instanceKlass::cast(SystemDictionary::Object_klass())->allocate_permanent_instance(CHECK);
 495       dummy_array->obj_at_put(i++, dummy);
 496     }
 497     {
 498       // Only modify the global variable inside the mutex.
 499       // If we had a race to here, the other dummy_array instances
 500       // and their elements just get dropped on the floor, which is fine.
 501       MutexLocker ml(FullGCALot_lock);
 502       if (_fullgc_alot_dummy_array == NULL) {
 503         _fullgc_alot_dummy_array = dummy_array();
 504       }
 505     }
 506     assert(i == _fullgc_alot_dummy_array->length(), "just checking");
 507   }
 508   #endif
 509 }
 510 
 511 
 512 static inline void* dereference(void* addr) {
 513   return *(void**)addr;
 514 }
 515 
 516 static inline void add_vtable(void** list, int* n, void* o, int count) {
 517   guarantee((*n) < count, "vtable list too small");
 518   void* vtable = dereference(o);
 519   assert(dereference(vtable) != NULL, "invalid vtable");
 520   list[(*n)++] = vtable;
 521 }
 522 
 523 void Universe::init_self_patching_vtbl_list(void** list, int count) {
 524   int n = 0;
 525   { klassKlass o;             add_vtable(list, &n, &o, count); }
 526   { arrayKlassKlass o;        add_vtable(list, &n, &o, count); }
 527   { objArrayKlassKlass o;     add_vtable(list, &n, &o, count); }
 528   { instanceKlassKlass o;     add_vtable(list, &n, &o, count); }
 529   { instanceKlass o;          add_vtable(list, &n, &o, count); }
 530   { instanceMirrorKlass o;    add_vtable(list, &n, &o, count); }
 531   { instanceRefKlass o;       add_vtable(list, &n, &o, count); }
 532   { typeArrayKlassKlass o;    add_vtable(list, &n, &o, count); }
 533   { typeArrayKlass o;         add_vtable(list, &n, &o, count); }
 534   { methodKlass o;            add_vtable(list, &n, &o, count); }
 535   { constMethodKlass o;       add_vtable(list, &n, &o, count); }
 536   { constantPoolKlass o;      add_vtable(list, &n, &o, count); }
 537   { constantPoolCacheKlass o; add_vtable(list, &n, &o, count); }
 538   { objArrayKlass o;          add_vtable(list, &n, &o, count); }
 539   { methodDataKlass o;        add_vtable(list, &n, &o, count); }
 540   { compiledICHolderKlass o;  add_vtable(list, &n, &o, count); }
 541 #ifndef PRODUCT
 542   // In non-product builds CHeapObj is derived from AllocatedObj,
 543   // so symbols in CDS archive should have their vtable pointer patched.
 544   { Symbol o;                 add_vtable(list, &n, &o, count); }
 545 #endif
 546 }
 547 
 548 
 549 class FixupMirrorClosure: public ObjectClosure {
 550  public:
 551   virtual void do_object(oop obj) {
 552     if (obj->is_klass()) {
 553       EXCEPTION_MARK;
 554       KlassHandle k(THREAD, klassOop(obj));
 555       // We will never reach the CATCH below since Exceptions::_throw will cause
 556       // the VM to exit if an exception is thrown during initialization
 557       java_lang_Class::fixup_mirror(k, CATCH);
 558       // This call unconditionally creates a new mirror for k,
 559       // and links in k's component_mirror field if k is an array.
 560       // If k is an objArray, k's element type must already have
 561       // a mirror.  In other words, this closure must process
 562       // the component type of an objArray k before it processes k.
 563       // This works because the permgen iterator presents arrays
 564       // and their component types in order of creation.
 565     }
 566   }
 567 };
 568 
 569 void Universe::initialize_basic_type_mirrors(TRAPS) {
 570   if (UseSharedSpaces) {
 571     assert(_int_mirror != NULL, "already loaded");
 572     assert(_void_mirror == _mirrors[T_VOID], "consistently loaded");
 573   } else {
 574 
 575     assert(_int_mirror==NULL, "basic type mirrors already initialized");
 576     _int_mirror     =
 577       java_lang_Class::create_basic_type_mirror("int",    T_INT, CHECK);
 578     _float_mirror   =
 579       java_lang_Class::create_basic_type_mirror("float",  T_FLOAT,   CHECK);
 580     _double_mirror  =
 581       java_lang_Class::create_basic_type_mirror("double", T_DOUBLE,  CHECK);
 582     _byte_mirror    =
 583       java_lang_Class::create_basic_type_mirror("byte",   T_BYTE, CHECK);
 584     _bool_mirror    =
 585       java_lang_Class::create_basic_type_mirror("boolean",T_BOOLEAN, CHECK);
 586     _char_mirror    =
 587       java_lang_Class::create_basic_type_mirror("char",   T_CHAR, CHECK);
 588     _long_mirror    =
 589       java_lang_Class::create_basic_type_mirror("long",   T_LONG, CHECK);
 590     _short_mirror   =
 591       java_lang_Class::create_basic_type_mirror("short",  T_SHORT,   CHECK);
 592     _void_mirror    =
 593       java_lang_Class::create_basic_type_mirror("void",   T_VOID, CHECK);
 594 
 595     _mirrors[T_INT]     = _int_mirror;
 596     _mirrors[T_FLOAT]   = _float_mirror;
 597     _mirrors[T_DOUBLE]  = _double_mirror;
 598     _mirrors[T_BYTE]    = _byte_mirror;
 599     _mirrors[T_BOOLEAN] = _bool_mirror;
 600     _mirrors[T_CHAR]    = _char_mirror;
 601     _mirrors[T_LONG]    = _long_mirror;
 602     _mirrors[T_SHORT]   = _short_mirror;
 603     _mirrors[T_VOID]    = _void_mirror;
 604     //_mirrors[T_OBJECT]  = instanceKlass::cast(_object_klass)->java_mirror();
 605     //_mirrors[T_ARRAY]   = instanceKlass::cast(_object_klass)->java_mirror();
 606   }
 607 }
 608 
 609 void Universe::fixup_mirrors(TRAPS) {
 610   // Bootstrap problem: all classes gets a mirror (java.lang.Class instance) assigned eagerly,
 611   // but we cannot do that for classes created before java.lang.Class is loaded. Here we simply
 612   // walk over permanent objects created so far (mostly classes) and fixup their mirrors. Note
 613   // that the number of objects allocated at this point is very small.
 614   assert(SystemDictionary::Class_klass_loaded(), "java.lang.Class should be loaded");
 615 
 616   // Cache the start of the static fields
 617   instanceMirrorKlass::init_offset_of_static_fields();
 618 
 619   FixupMirrorClosure blk;
 620   Universe::heap()->permanent_object_iterate(&blk);
 621 }
 622 
 623 
 624 static bool has_run_finalizers_on_exit = false;
 625 
 626 void Universe::run_finalizers_on_exit() {
 627   if (has_run_finalizers_on_exit) return;
 628   has_run_finalizers_on_exit = true;
 629 
 630   // Called on VM exit. This ought to be run in a separate thread.
 631   if (TraceReferenceGC) tty->print_cr("Callback to run finalizers on exit");
 632   {
 633     PRESERVE_EXCEPTION_MARK;
 634     KlassHandle finalizer_klass(THREAD, SystemDictionary::Finalizer_klass());
 635     JavaValue result(T_VOID);
 636     JavaCalls::call_static(
 637       &result,
 638       finalizer_klass,
 639       vmSymbols::run_finalizers_on_exit_name(),
 640       vmSymbols::void_method_signature(),
 641       THREAD
 642     );
 643     // Ignore any pending exceptions
 644     CLEAR_PENDING_EXCEPTION;
 645   }
 646 }
 647 
 648 
 649 // initialize_vtable could cause gc if
 650 // 1) we specified true to initialize_vtable and
 651 // 2) this ran after gc was enabled
 652 // In case those ever change we use handles for oops
 653 void Universe::reinitialize_vtable_of(KlassHandle k_h, TRAPS) {
 654   // init vtable of k and all subclasses
 655   Klass* ko = k_h()->klass_part();
 656   klassVtable* vt = ko->vtable();
 657   if (vt) vt->initialize_vtable(false, CHECK);
 658   if (ko->oop_is_instance()) {
 659     instanceKlass* ik = (instanceKlass*)ko;
 660     for (KlassHandle s_h(THREAD, ik->subklass()); s_h() != NULL; s_h = (THREAD, s_h()->klass_part()->next_sibling())) {
 661       reinitialize_vtable_of(s_h, CHECK);
 662     }
 663   }
 664 }
 665 
 666 
 667 void initialize_itable_for_klass(klassOop k, TRAPS) {
 668   instanceKlass::cast(k)->itable()->initialize_itable(false, CHECK);
 669 }
 670 
 671 
 672 void Universe::reinitialize_itables(TRAPS) {
 673   SystemDictionary::classes_do(initialize_itable_for_klass, CHECK);
 674 
 675 }
 676 
 677 
 678 bool Universe::on_page_boundary(void* addr) {
 679   return ((uintptr_t) addr) % os::vm_page_size() == 0;
 680 }
 681 
 682 
 683 bool Universe::should_fill_in_stack_trace(Handle throwable) {
 684   // never attempt to fill in the stack trace of preallocated errors that do not have
 685   // backtrace. These errors are kept alive forever and may be "re-used" when all
 686   // preallocated errors with backtrace have been consumed. Also need to avoid
 687   // a potential loop which could happen if an out of memory occurs when attempting
 688   // to allocate the backtrace.
 689   return ((throwable() != Universe::_out_of_memory_error_java_heap) &&
 690           (throwable() != Universe::_out_of_memory_error_perm_gen)  &&
 691           (throwable() != Universe::_out_of_memory_error_array_size) &&
 692           (throwable() != Universe::_out_of_memory_error_gc_overhead_limit));
 693 }
 694 
 695 
 696 oop Universe::gen_out_of_memory_error(oop default_err) {
 697   // generate an out of memory error:
 698   // - if there is a preallocated error with backtrace available then return it wth
 699   //   a filled in stack trace.
 700   // - if there are no preallocated errors with backtrace available then return
 701   //   an error without backtrace.
 702   int next;
 703   if (_preallocated_out_of_memory_error_avail_count > 0) {
 704     next = (int)Atomic::add(-1, &_preallocated_out_of_memory_error_avail_count);
 705     assert(next < (int)PreallocatedOutOfMemoryErrorCount, "avail count is corrupt");
 706   } else {
 707     next = -1;
 708   }
 709   if (next < 0) {
 710     // all preallocated errors have been used.
 711     // return default
 712     return default_err;
 713   } else {
 714     // get the error object at the slot and set set it to NULL so that the
 715     // array isn't keeping it alive anymore.
 716     oop exc = preallocated_out_of_memory_errors()->obj_at(next);
 717     assert(exc != NULL, "slot has been used already");
 718     preallocated_out_of_memory_errors()->obj_at_put(next, NULL);
 719 
 720     // use the message from the default error
 721     oop msg = java_lang_Throwable::message(default_err);
 722     assert(msg != NULL, "no message");
 723     java_lang_Throwable::set_message(exc, msg);
 724 
 725     // populate the stack trace and return it.
 726     java_lang_Throwable::fill_in_stack_trace_of_preallocated_backtrace(exc);
 727     return exc;
 728   }
 729 }
 730 
 731 static intptr_t non_oop_bits = 0;
 732 
 733 void* Universe::non_oop_word() {
 734   // Neither the high bits nor the low bits of this value is allowed
 735   // to look like (respectively) the high or low bits of a real oop.
 736   //
 737   // High and low are CPU-specific notions, but low always includes
 738   // the low-order bit.  Since oops are always aligned at least mod 4,
 739   // setting the low-order bit will ensure that the low half of the
 740   // word will never look like that of a real oop.
 741   //
 742   // Using the OS-supplied non-memory-address word (usually 0 or -1)
 743   // will take care of the high bits, however many there are.
 744 
 745   if (non_oop_bits == 0) {
 746     non_oop_bits = (intptr_t)os::non_memory_address_word() | 1;
 747   }
 748 
 749   return (void*)non_oop_bits;
 750 }
 751 
 752 jint universe_init() {
 753   assert(!Universe::_fully_initialized, "called after initialize_vtables");
 754   guarantee(1 << LogHeapWordSize == sizeof(HeapWord),
 755          "LogHeapWordSize is incorrect.");
 756   guarantee(sizeof(oop) >= sizeof(HeapWord), "HeapWord larger than oop?");
 757   guarantee(sizeof(oop) % sizeof(HeapWord) == 0,
 758             "oop size is not not a multiple of HeapWord size");
 759   TraceTime timer("Genesis", TraceStartupTime);
 760   GC_locker::lock();  // do not allow gc during bootstrapping
 761   JavaClasses::compute_hard_coded_offsets();
 762 
 763   // Get map info from shared archive file.
 764   if (DumpSharedSpaces)
 765     UseSharedSpaces = false;
 766 
 767   FileMapInfo* mapinfo = NULL;
 768   if (UseSharedSpaces) {
 769     mapinfo = NEW_C_HEAP_OBJ(FileMapInfo);
 770     memset(mapinfo, 0, sizeof(FileMapInfo));
 771 
 772     // Open the shared archive file, read and validate the header. If
 773     // initialization files, shared spaces [UseSharedSpaces] are
 774     // disabled and the file is closed.
 775 
 776     if (mapinfo->initialize()) {
 777       FileMapInfo::set_current_info(mapinfo);
 778     } else {
 779       assert(!mapinfo->is_open() && !UseSharedSpaces,
 780              "archive file not closed or shared spaces not disabled.");
 781     }
 782   }
 783 
 784   jint status = Universe::initialize_heap();
 785   if (status != JNI_OK) {
 786     return status;
 787   }
 788 
 789   // We have a heap so create the methodOop caches before
 790   // CompactingPermGenGen::initialize_oops() tries to populate them.
 791   Universe::_finalizer_register_cache = new LatestMethodOopCache();
 792   Universe::_loader_addClass_cache    = new LatestMethodOopCache();
 793   Universe::_pd_implies_cache         = new LatestMethodOopCache();
 794   Universe::_reflect_invoke_cache     = new ActiveMethodOopsCache();
 795 
 796   if (UseSharedSpaces) {
 797 
 798     // Read the data structures supporting the shared spaces (shared
 799     // system dictionary, symbol table, etc.).  After that, access to
 800     // the file (other than the mapped regions) is no longer needed, and
 801     // the file is closed. Closing the file does not affect the
 802     // currently mapped regions.
 803 
 804     CompactingPermGenGen::initialize_oops();
 805     mapinfo->close();
 806 
 807   } else {
 808     SymbolTable::create_table();
 809     StringTable::create_table();
 810     ClassLoader::create_package_info_table();
 811   }
 812 
 813   return JNI_OK;
 814 }
 815 
 816 // Choose the heap base address and oop encoding mode
 817 // when compressed oops are used:
 818 // Unscaled  - Use 32-bits oops without encoding when
 819 //     NarrowOopHeapBaseMin + heap_size < 4Gb
 820 // ZeroBased - Use zero based compressed oops with encoding when
 821 //     NarrowOopHeapBaseMin + heap_size < 32Gb
 822 // HeapBased - Use compressed oops with heap base + encoding.
 823 
 824 // 4Gb
 825 static const uint64_t NarrowOopHeapMax = (uint64_t(max_juint) + 1);
 826 // 32Gb
 827 // OopEncodingHeapMax == NarrowOopHeapMax << LogMinObjAlignmentInBytes;
 828 
 829 char* Universe::preferred_heap_base(size_t heap_size, NARROW_OOP_MODE mode) {
 830   size_t base = 0;
 831 #ifdef _LP64
 832   if (UseCompressedOops) {
 833     assert(mode == UnscaledNarrowOop  ||
 834            mode == ZeroBasedNarrowOop ||
 835            mode == HeapBasedNarrowOop, "mode is invalid");
 836     const size_t total_size = heap_size + HeapBaseMinAddress;
 837     // Return specified base for the first request.
 838     if (!FLAG_IS_DEFAULT(HeapBaseMinAddress) && (mode == UnscaledNarrowOop)) {
 839       base = HeapBaseMinAddress;
 840     } else if (total_size <= OopEncodingHeapMax && (mode != HeapBasedNarrowOop)) {
 841       if (total_size <= NarrowOopHeapMax && (mode == UnscaledNarrowOop) &&
 842           (Universe::narrow_oop_shift() == 0)) {
 843         // Use 32-bits oops without encoding and
 844         // place heap's top on the 4Gb boundary
 845         base = (NarrowOopHeapMax - heap_size);
 846       } else {
 847         // Can't reserve with NarrowOopShift == 0
 848         Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 849         if (mode == UnscaledNarrowOop ||
 850             mode == ZeroBasedNarrowOop && total_size <= NarrowOopHeapMax) {
 851           // Use zero based compressed oops with encoding and
 852           // place heap's top on the 32Gb boundary in case
 853           // total_size > 4Gb or failed to reserve below 4Gb.
 854           base = (OopEncodingHeapMax - heap_size);
 855         }
 856       }
 857     } else {
 858       // Can't reserve below 32Gb.
 859       Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 860     }
 861     // Set narrow_oop_base and narrow_oop_use_implicit_null_checks
 862     // used in ReservedHeapSpace() constructors.
 863     // The final values will be set in initialize_heap() below.
 864     if (base != 0 && (base + heap_size) <= OopEncodingHeapMax) {
 865       // Use zero based compressed oops
 866       Universe::set_narrow_oop_base(NULL);
 867       // Don't need guard page for implicit checks in indexed
 868       // addressing mode with zero based Compressed Oops.
 869       Universe::set_narrow_oop_use_implicit_null_checks(true);
 870     } else {
 871       // Set to a non-NULL value so the ReservedSpace ctor computes
 872       // the correct no-access prefix.
 873       // The final value will be set in initialize_heap() below.
 874       Universe::set_narrow_oop_base((address)NarrowOopHeapMax);
 875 #ifdef _WIN64
 876       if (UseLargePages) {
 877         // Cannot allocate guard pages for implicit checks in indexed
 878         // addressing mode when large pages are specified on windows.
 879         Universe::set_narrow_oop_use_implicit_null_checks(false);
 880       }
 881 #endif //  _WIN64
 882     }
 883   }
 884 #endif
 885   return (char*)base; // also return NULL (don't care) for 32-bit VM
 886 }
 887 
 888 jint Universe::initialize_heap() {
 889 
 890   if (UseParallelGC) {
 891 #ifndef SERIALGC
 892     Universe::_collectedHeap = new ParallelScavengeHeap();
 893 #else  // SERIALGC
 894     fatal("UseParallelGC not supported in java kernel vm.");
 895 #endif // SERIALGC
 896 
 897   } else if (UseG1GC) {
 898 #ifndef SERIALGC
 899     G1CollectorPolicy* g1p = new G1CollectorPolicy();
 900     G1CollectedHeap* g1h = new G1CollectedHeap(g1p);
 901     Universe::_collectedHeap = g1h;
 902 #else  // SERIALGC
 903     fatal("UseG1GC not supported in java kernel vm.");
 904 #endif // SERIALGC
 905 
 906   } else {
 907     GenCollectorPolicy *gc_policy;
 908 
 909     if (UseSerialGC) {
 910       gc_policy = new MarkSweepPolicy();
 911     } else if (UseConcMarkSweepGC) {
 912 #ifndef SERIALGC
 913       if (UseAdaptiveSizePolicy) {
 914         gc_policy = new ASConcurrentMarkSweepPolicy();
 915       } else {
 916         gc_policy = new ConcurrentMarkSweepPolicy();
 917       }
 918 #else   // SERIALGC
 919     fatal("UseConcMarkSweepGC not supported in java kernel vm.");
 920 #endif // SERIALGC
 921     } else { // default old generation
 922       gc_policy = new MarkSweepPolicy();
 923     }
 924 
 925     Universe::_collectedHeap = new GenCollectedHeap(gc_policy);
 926   }
 927 
 928   jint status = Universe::heap()->initialize();
 929   if (status != JNI_OK) {
 930     return status;
 931   }
 932 
 933 #ifdef _LP64
 934   if (UseCompressedOops) {
 935     // Subtract a page because something can get allocated at heap base.
 936     // This also makes implicit null checking work, because the
 937     // memory+1 page below heap_base needs to cause a signal.
 938     // See needs_explicit_null_check.
 939     // Only set the heap base for compressed oops because it indicates
 940     // compressed oops for pstack code.
 941     bool verbose = PrintCompressedOopsMode || (PrintMiscellaneous && Verbose);
 942     if (verbose) {
 943       tty->cr();
 944       tty->print("heap address: " PTR_FORMAT ", size: " SIZE_FORMAT " MB",
 945                  Universe::heap()->base(), Universe::heap()->reserved_region().byte_size()/M);
 946     }
 947     if ((uint64_t)Universe::heap()->reserved_region().end() > OopEncodingHeapMax) {
 948       // Can't reserve heap below 32Gb.
 949       Universe::set_narrow_oop_base(Universe::heap()->base() - os::vm_page_size());
 950       Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 951       if (verbose) {
 952         tty->print(", Compressed Oops with base: "PTR_FORMAT, Universe::narrow_oop_base());
 953       }
 954     } else {
 955       Universe::set_narrow_oop_base(0);
 956       if (verbose) {
 957         tty->print(", zero based Compressed Oops");
 958       }
 959 #ifdef _WIN64
 960       if (!Universe::narrow_oop_use_implicit_null_checks()) {
 961         // Don't need guard page for implicit checks in indexed addressing
 962         // mode with zero based Compressed Oops.
 963         Universe::set_narrow_oop_use_implicit_null_checks(true);
 964       }
 965 #endif //  _WIN64
 966       if((uint64_t)Universe::heap()->reserved_region().end() > NarrowOopHeapMax) {
 967         // Can't reserve heap below 4Gb.
 968         Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 969       } else {
 970         Universe::set_narrow_oop_shift(0);
 971         if (verbose) {
 972           tty->print(", 32-bits Oops");
 973         }
 974       }
 975     }
 976     if (verbose) {
 977       tty->cr();
 978       tty->cr();
 979     }
 980   }
 981   assert(Universe::narrow_oop_base() == (Universe::heap()->base() - os::vm_page_size()) ||
 982          Universe::narrow_oop_base() == NULL, "invalid value");
 983   assert(Universe::narrow_oop_shift() == LogMinObjAlignmentInBytes ||
 984          Universe::narrow_oop_shift() == 0, "invalid value");
 985 #endif
 986 
 987   // We will never reach the CATCH below since Exceptions::_throw will cause
 988   // the VM to exit if an exception is thrown during initialization
 989 
 990   if (UseTLAB) {
 991     assert(Universe::heap()->supports_tlab_allocation(),
 992            "Should support thread-local allocation buffers");
 993     ThreadLocalAllocBuffer::startup_initialization();
 994   }
 995   return JNI_OK;
 996 }
 997 
 998 // It's the caller's repsonsibility to ensure glitch-freedom
 999 // (if required).
1000 void Universe::update_heap_info_at_gc() {
1001   _heap_capacity_at_last_gc = heap()->capacity();
1002   _heap_used_at_last_gc     = heap()->used();
1003 }
1004 
1005 
1006 
1007 void universe2_init() {
1008   EXCEPTION_MARK;
1009   Universe::genesis(CATCH);
1010   // Although we'd like to verify here that the state of the heap
1011   // is good, we can't because the main thread has not yet added
1012   // itself to the threads list (so, using current interfaces
1013   // we can't "fill" its TLAB), unless TLABs are disabled.
1014   if (VerifyBeforeGC && !UseTLAB &&
1015       Universe::heap()->total_collections() >= VerifyGCStartAt) {
1016      Universe::heap()->prepare_for_verify();
1017      Universe::verify();   // make sure we're starting with a clean slate
1018   }
1019 }
1020 
1021 
1022 // This function is defined in JVM.cpp
1023 extern void initialize_converter_functions();
1024 
1025 bool universe_post_init() {
1026   assert(!is_init_completed(), "Error: initialization not yet completed!");
1027   Universe::_fully_initialized = true;
1028   EXCEPTION_MARK;
1029   { ResourceMark rm;
1030     Interpreter::initialize();      // needed for interpreter entry points
1031     if (!UseSharedSpaces) {
1032       KlassHandle ok_h(THREAD, SystemDictionary::Object_klass());
1033       Universe::reinitialize_vtable_of(ok_h, CHECK_false);
1034       Universe::reinitialize_itables(CHECK_false);
1035     }
1036   }
1037 
1038   klassOop k;
1039   instanceKlassHandle k_h;
1040   if (!UseSharedSpaces) {
1041     // Setup preallocated empty java.lang.Class array
1042     Universe::_the_empty_class_klass_array = oopFactory::new_objArray(SystemDictionary::Class_klass(), 0, CHECK_false);
1043     // Setup preallocated OutOfMemoryError errors
1044     k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_OutOfMemoryError(), true, CHECK_false);
1045     k_h = instanceKlassHandle(THREAD, k);
1046     Universe::_out_of_memory_error_java_heap = k_h->allocate_permanent_instance(CHECK_false);
1047     Universe::_out_of_memory_error_perm_gen = k_h->allocate_permanent_instance(CHECK_false);
1048     Universe::_out_of_memory_error_array_size = k_h->allocate_permanent_instance(CHECK_false);
1049     Universe::_out_of_memory_error_gc_overhead_limit =
1050       k_h->allocate_permanent_instance(CHECK_false);
1051 
1052     // Setup preallocated NullPointerException
1053     // (this is currently used for a cheap & dirty solution in compiler exception handling)
1054     k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_NullPointerException(), true, CHECK_false);
1055     Universe::_null_ptr_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
1056     // Setup preallocated ArithmeticException
1057     // (this is currently used for a cheap & dirty solution in compiler exception handling)
1058     k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ArithmeticException(), true, CHECK_false);
1059     Universe::_arithmetic_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
1060     // Virtual Machine Error for when we get into a situation we can't resolve
1061     k = SystemDictionary::resolve_or_fail(
1062       vmSymbols::java_lang_VirtualMachineError(), true, CHECK_false);
1063     bool linked = instanceKlass::cast(k)->link_class_or_fail(CHECK_false);
1064     if (!linked) {
1065       tty->print_cr("Unable to link/verify VirtualMachineError class");
1066       return false; // initialization failed
1067     }
1068     Universe::_virtual_machine_error_instance =
1069       instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
1070 
1071     Universe::_vm_exception               = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
1072 
1073   }
1074   if (!DumpSharedSpaces) {
1075     // These are the only Java fields that are currently set during shared space dumping.
1076     // We prefer to not handle this generally, so we always reinitialize these detail messages.
1077     Handle msg = java_lang_String::create_from_str("Java heap space", CHECK_false);
1078     java_lang_Throwable::set_message(Universe::_out_of_memory_error_java_heap, msg());
1079 
1080     msg = java_lang_String::create_from_str("PermGen space", CHECK_false);
1081     java_lang_Throwable::set_message(Universe::_out_of_memory_error_perm_gen, msg());
1082 
1083     msg = java_lang_String::create_from_str("Requested array size exceeds VM limit", CHECK_false);
1084     java_lang_Throwable::set_message(Universe::_out_of_memory_error_array_size, msg());
1085 
1086     msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false);
1087     java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg());
1088 
1089     msg = java_lang_String::create_from_str("/ by zero", CHECK_false);
1090     java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg());
1091 
1092     // Setup the array of errors that have preallocated backtrace
1093     k = Universe::_out_of_memory_error_java_heap->klass();
1094     assert(k->klass_part()->name() == vmSymbols::java_lang_OutOfMemoryError(), "should be out of memory error");
1095     k_h = instanceKlassHandle(THREAD, k);
1096 
1097     int len = (StackTraceInThrowable) ? (int)PreallocatedOutOfMemoryErrorCount : 0;
1098     Universe::_preallocated_out_of_memory_error_array = oopFactory::new_objArray(k_h(), len, CHECK_false);
1099     for (int i=0; i<len; i++) {
1100       oop err = k_h->allocate_permanent_instance(CHECK_false);
1101       Handle err_h = Handle(THREAD, err);
1102       java_lang_Throwable::allocate_backtrace(err_h, CHECK_false);
1103       Universe::preallocated_out_of_memory_errors()->obj_at_put(i, err_h());
1104     }
1105     Universe::_preallocated_out_of_memory_error_avail_count = (jint)len;
1106   }
1107 
1108 
1109   // Setup static method for registering finalizers
1110   // The finalizer klass must be linked before looking up the method, in
1111   // case it needs to get rewritten.
1112   instanceKlass::cast(SystemDictionary::Finalizer_klass())->link_class(CHECK_false);
1113   methodOop m = instanceKlass::cast(SystemDictionary::Finalizer_klass())->find_method(
1114                                   vmSymbols::register_method_name(),
1115                                   vmSymbols::register_method_signature());
1116   if (m == NULL || !m->is_static()) {
1117     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1118       "java.lang.ref.Finalizer.register", false);
1119   }
1120   Universe::_finalizer_register_cache->init(
1121     SystemDictionary::Finalizer_klass(), m, CHECK_false);
1122 
1123   // Resolve on first use and initialize class.
1124   // Note: No race-condition here, since a resolve will always return the same result
1125 
1126   // Setup method for security checks
1127   k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_reflect_Method(), true, CHECK_false);
1128   k_h = instanceKlassHandle(THREAD, k);
1129   k_h->link_class(CHECK_false);
1130   m = k_h->find_method(vmSymbols::invoke_name(), vmSymbols::object_object_array_object_signature());
1131   if (m == NULL || m->is_static()) {
1132     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1133       "java.lang.reflect.Method.invoke", false);
1134   }
1135   Universe::_reflect_invoke_cache->init(k_h(), m, CHECK_false);
1136 
1137   // Setup method for registering loaded classes in class loader vector
1138   instanceKlass::cast(SystemDictionary::ClassLoader_klass())->link_class(CHECK_false);
1139   m = instanceKlass::cast(SystemDictionary::ClassLoader_klass())->find_method(vmSymbols::addClass_name(), vmSymbols::class_void_signature());
1140   if (m == NULL || m->is_static()) {
1141     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1142       "java.lang.ClassLoader.addClass", false);
1143   }
1144   Universe::_loader_addClass_cache->init(
1145     SystemDictionary::ClassLoader_klass(), m, CHECK_false);
1146 
1147   // Setup method for checking protection domain
1148   instanceKlass::cast(SystemDictionary::ProtectionDomain_klass())->link_class(CHECK_false);
1149   m = instanceKlass::cast(SystemDictionary::ProtectionDomain_klass())->
1150             find_method(vmSymbols::impliesCreateAccessControlContext_name(),
1151                         vmSymbols::void_boolean_signature());
1152   // Allow NULL which should only happen with bootstrapping.
1153   if (m != NULL) {
1154     if (m->is_static()) {
1155       // NoSuchMethodException doesn't actually work because it tries to run the
1156       // <init> function before java_lang_Class is linked. Print error and exit.
1157       tty->print_cr("ProtectionDomain.impliesCreateAccessControlContext() has the wrong linkage");
1158       return false; // initialization failed
1159     }
1160     Universe::_pd_implies_cache->init(
1161       SystemDictionary::ProtectionDomain_klass(), m, CHECK_false);;
1162   }
1163 
1164   // The folowing is initializing converter functions for serialization in
1165   // JVM.cpp. If we clean up the StrictMath code above we may want to find
1166   // a better solution for this as well.
1167   initialize_converter_functions();
1168 
1169   // This needs to be done before the first scavenge/gc, since
1170   // it's an input to soft ref clearing policy.
1171   {
1172     MutexLocker x(Heap_lock);
1173     Universe::update_heap_info_at_gc();
1174   }
1175 
1176   // ("weak") refs processing infrastructure initialization
1177   Universe::heap()->post_initialize();
1178 
1179   GC_locker::unlock();  // allow gc after bootstrapping
1180 
1181   MemoryService::set_universe_heap(Universe::_collectedHeap);
1182   return true;
1183 }
1184 
1185 
1186 void Universe::compute_base_vtable_size() {
1187   _base_vtable_size = ClassLoader::compute_Object_vtable();
1188 }
1189 
1190 
1191 // %%% The Universe::flush_foo methods belong in CodeCache.
1192 
1193 // Flushes compiled methods dependent on dependee.
1194 void Universe::flush_dependents_on(instanceKlassHandle dependee) {
1195   assert_lock_strong(Compile_lock);
1196 
1197   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1198 
1199   // CodeCache can only be updated by a thread_in_VM and they will all be
1200   // stopped dring the safepoint so CodeCache will be safe to update without
1201   // holding the CodeCache_lock.
1202 
1203   KlassDepChange changes(dependee);
1204 
1205   // Compute the dependent nmethods
1206   if (CodeCache::mark_for_deoptimization(changes) > 0) {
1207     // At least one nmethod has been marked for deoptimization
1208     VM_Deoptimize op;
1209     VMThread::execute(&op);
1210   }
1211 }
1212 
1213 // Flushes compiled methods dependent on a particular CallSite
1214 // instance when its target is different than the given MethodHandle.
1215 void Universe::flush_dependents_on(Handle call_site, Handle method_handle) {
1216   assert_lock_strong(Compile_lock);
1217 
1218   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1219 
1220   // CodeCache can only be updated by a thread_in_VM and they will all be
1221   // stopped dring the safepoint so CodeCache will be safe to update without
1222   // holding the CodeCache_lock.
1223 
1224   CallSiteDepChange changes(call_site(), method_handle());
1225 
1226   // Compute the dependent nmethods that have a reference to a
1227   // CallSite object.  We use instanceKlass::mark_dependent_nmethod
1228   // directly instead of CodeCache::mark_for_deoptimization because we
1229   // want dependents on the call site class only not all classes in
1230   // the ContextStream.
1231   int marked = 0;
1232   {
1233     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1234     instanceKlass* call_site_klass = instanceKlass::cast(call_site->klass());
1235     marked = call_site_klass->mark_dependent_nmethods(changes);
1236   }
1237   if (marked > 0) {
1238     // At least one nmethod has been marked for deoptimization
1239     VM_Deoptimize op;
1240     VMThread::execute(&op);
1241   }
1242 }
1243 
1244 #ifdef HOTSWAP
1245 // Flushes compiled methods dependent on dependee in the evolutionary sense
1246 void Universe::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
1247   // --- Compile_lock is not held. However we are at a safepoint.
1248   assert_locked_or_safepoint(Compile_lock);
1249   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1250 
1251   // CodeCache can only be updated by a thread_in_VM and they will all be
1252   // stopped dring the safepoint so CodeCache will be safe to update without
1253   // holding the CodeCache_lock.
1254 
1255   // Compute the dependent nmethods
1256   if (CodeCache::mark_for_evol_deoptimization(ev_k_h) > 0) {
1257     // At least one nmethod has been marked for deoptimization
1258 
1259     // All this already happens inside a VM_Operation, so we'll do all the work here.
1260     // Stuff copied from VM_Deoptimize and modified slightly.
1261 
1262     // We do not want any GCs to happen while we are in the middle of this VM operation
1263     ResourceMark rm;
1264     DeoptimizationMarker dm;
1265 
1266     // Deoptimize all activations depending on marked nmethods
1267     Deoptimization::deoptimize_dependents();
1268 
1269     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1270     CodeCache::make_marked_nmethods_not_entrant();
1271   }
1272 }
1273 #endif // HOTSWAP
1274 
1275 
1276 // Flushes compiled methods dependent on dependee
1277 void Universe::flush_dependents_on_method(methodHandle m_h) {
1278   // --- Compile_lock is not held. However we are at a safepoint.
1279   assert_locked_or_safepoint(Compile_lock);
1280 
1281   // CodeCache can only be updated by a thread_in_VM and they will all be
1282   // stopped dring the safepoint so CodeCache will be safe to update without
1283   // holding the CodeCache_lock.
1284 
1285   // Compute the dependent nmethods
1286   if (CodeCache::mark_for_deoptimization(m_h()) > 0) {
1287     // At least one nmethod has been marked for deoptimization
1288 
1289     // All this already happens inside a VM_Operation, so we'll do all the work here.
1290     // Stuff copied from VM_Deoptimize and modified slightly.
1291 
1292     // We do not want any GCs to happen while we are in the middle of this VM operation
1293     ResourceMark rm;
1294     DeoptimizationMarker dm;
1295 
1296     // Deoptimize all activations depending on marked nmethods
1297     Deoptimization::deoptimize_dependents();
1298 
1299     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1300     CodeCache::make_marked_nmethods_not_entrant();
1301   }
1302 }
1303 
1304 void Universe::print() {
1305   print_on(gclog_or_tty);
1306 }
1307 
1308 void Universe::print_on(outputStream* st, bool extended) {
1309   st->print_cr("Heap");
1310   if (!extended) {
1311     heap()->print_on(st);
1312   } else {
1313     heap()->print_extended_on(st);
1314   }
1315 }
1316 
1317 void Universe::print_heap_at_SIGBREAK() {
1318   if (PrintHeapAtSIGBREAK) {
1319     MutexLocker hl(Heap_lock);
1320     print_on(tty);
1321     tty->cr();
1322     tty->flush();
1323   }
1324 }
1325 
1326 void Universe::print_heap_before_gc(outputStream* st, bool ignore_extended) {
1327   st->print_cr("{Heap before GC invocations=%u (full %u):",
1328                heap()->total_collections(),
1329                heap()->total_full_collections());
1330   if (!PrintHeapAtGCExtended || ignore_extended) {
1331     heap()->print_on(st);
1332   } else {
1333     heap()->print_extended_on(st);
1334   }
1335 }
1336 
1337 void Universe::print_heap_after_gc(outputStream* st, bool ignore_extended) {
1338   st->print_cr("Heap after GC invocations=%u (full %u):",
1339                heap()->total_collections(),
1340                heap()->total_full_collections());
1341   if (!PrintHeapAtGCExtended || ignore_extended) {
1342     heap()->print_on(st);
1343   } else {
1344     heap()->print_extended_on(st);
1345   }
1346   st->print_cr("}");
1347 }
1348 
1349 void Universe::verify(bool allow_dirty, bool silent, VerifyOption option) {
1350   if (SharedSkipVerify) {
1351     return;
1352   }
1353 
1354   // The use of _verify_in_progress is a temporary work around for
1355   // 6320749.  Don't bother with a creating a class to set and clear
1356   // it since it is only used in this method and the control flow is
1357   // straight forward.
1358   _verify_in_progress = true;
1359 
1360   COMPILER2_PRESENT(
1361     assert(!DerivedPointerTable::is_active(),
1362          "DPT should not be active during verification "
1363          "(of thread stacks below)");
1364   )
1365 
1366   ResourceMark rm;
1367   HandleMark hm;  // Handles created during verification can be zapped
1368   _verify_count++;
1369 
1370   if (!silent) gclog_or_tty->print("[Verifying ");
1371   if (!silent) gclog_or_tty->print("threads ");
1372   Threads::verify();
1373   heap()->verify(allow_dirty, silent, option);
1374 
1375   if (!silent) gclog_or_tty->print("syms ");
1376   SymbolTable::verify();
1377   if (!silent) gclog_or_tty->print("strs ");
1378   StringTable::verify();
1379   {
1380     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1381     if (!silent) gclog_or_tty->print("zone ");
1382     CodeCache::verify();
1383   }
1384   if (!silent) gclog_or_tty->print("dict ");
1385   SystemDictionary::verify();
1386   if (!silent) gclog_or_tty->print("hand ");
1387   JNIHandles::verify();
1388   if (!silent) gclog_or_tty->print("C-heap ");
1389   os::check_heap();
1390   if (!silent) gclog_or_tty->print("code cache ");
1391   CodeCache::verify_oops();
1392   if (!silent) gclog_or_tty->print_cr("]");
1393 
1394   _verify_in_progress = false;
1395 }
1396 
1397 // Oop verification (see MacroAssembler::verify_oop)
1398 
1399 static uintptr_t _verify_oop_data[2]   = {0, (uintptr_t)-1};
1400 static uintptr_t _verify_klass_data[2] = {0, (uintptr_t)-1};
1401 
1402 
1403 static void calculate_verify_data(uintptr_t verify_data[2],
1404                                   HeapWord* low_boundary,
1405                                   HeapWord* high_boundary) {
1406   assert(low_boundary < high_boundary, "bad interval");
1407 
1408   // decide which low-order bits we require to be clear:
1409   size_t alignSize = MinObjAlignmentInBytes;
1410   size_t min_object_size = CollectedHeap::min_fill_size();
1411 
1412   // make an inclusive limit:
1413   uintptr_t max = (uintptr_t)high_boundary - min_object_size*wordSize;
1414   uintptr_t min = (uintptr_t)low_boundary;
1415   assert(min < max, "bad interval");
1416   uintptr_t diff = max ^ min;
1417 
1418   // throw away enough low-order bits to make the diff vanish
1419   uintptr_t mask = (uintptr_t)(-1);
1420   while ((mask & diff) != 0)
1421     mask <<= 1;
1422   uintptr_t bits = (min & mask);
1423   assert(bits == (max & mask), "correct mask");
1424   // check an intermediate value between min and max, just to make sure:
1425   assert(bits == ((min + (max-min)/2) & mask), "correct mask");
1426 
1427   // require address alignment, too:
1428   mask |= (alignSize - 1);
1429 
1430   if (!(verify_data[0] == 0 && verify_data[1] == (uintptr_t)-1)) {
1431     assert(verify_data[0] == mask && verify_data[1] == bits, "mask stability");
1432   }
1433   verify_data[0] = mask;
1434   verify_data[1] = bits;
1435 }
1436 
1437 
1438 // Oop verification (see MacroAssembler::verify_oop)
1439 #ifndef PRODUCT
1440 
1441 uintptr_t Universe::verify_oop_mask() {
1442   MemRegion m = heap()->reserved_region();
1443   calculate_verify_data(_verify_oop_data,
1444                         m.start(),
1445                         m.end());
1446   return _verify_oop_data[0];
1447 }
1448 
1449 
1450 
1451 uintptr_t Universe::verify_oop_bits() {
1452   verify_oop_mask();
1453   return _verify_oop_data[1];
1454 }
1455 
1456 
1457 uintptr_t Universe::verify_klass_mask() {
1458   /* $$$
1459   // A klass can never live in the new space.  Since the new and old
1460   // spaces can change size, we must settle for bounds-checking against
1461   // the bottom of the world, plus the smallest possible new and old
1462   // space sizes that may arise during execution.
1463   size_t min_new_size = Universe::new_size();   // in bytes
1464   size_t min_old_size = Universe::old_size();   // in bytes
1465   calculate_verify_data(_verify_klass_data,
1466           (HeapWord*)((uintptr_t)_new_gen->low_boundary + min_new_size + min_old_size),
1467           _perm_gen->high_boundary);
1468                         */
1469   // Why doesn't the above just say that klass's always live in the perm
1470   // gen?  I'll see if that seems to work...
1471   MemRegion permanent_reserved;
1472   switch (Universe::heap()->kind()) {
1473   default:
1474     // ???: What if a CollectedHeap doesn't have a permanent generation?
1475     ShouldNotReachHere();
1476     break;
1477   case CollectedHeap::GenCollectedHeap:
1478   case CollectedHeap::G1CollectedHeap: {
1479     SharedHeap* sh = (SharedHeap*) Universe::heap();
1480     permanent_reserved = sh->perm_gen()->reserved();
1481    break;
1482   }
1483 #ifndef SERIALGC
1484   case CollectedHeap::ParallelScavengeHeap: {
1485     ParallelScavengeHeap* psh = (ParallelScavengeHeap*) Universe::heap();
1486     permanent_reserved = psh->perm_gen()->reserved();
1487     break;
1488   }
1489 #endif // SERIALGC
1490   }
1491   calculate_verify_data(_verify_klass_data,
1492                         permanent_reserved.start(),
1493                         permanent_reserved.end());
1494 
1495   return _verify_klass_data[0];
1496 }
1497 
1498 
1499 
1500 uintptr_t Universe::verify_klass_bits() {
1501   verify_klass_mask();
1502   return _verify_klass_data[1];
1503 }
1504 
1505 
1506 uintptr_t Universe::verify_mark_mask() {
1507   return markOopDesc::lock_mask_in_place;
1508 }
1509 
1510 
1511 
1512 uintptr_t Universe::verify_mark_bits() {
1513   intptr_t mask = verify_mark_mask();
1514   intptr_t bits = (intptr_t)markOopDesc::prototype();
1515   assert((bits & ~mask) == 0, "no stray header bits");
1516   return bits;
1517 }
1518 #endif // PRODUCT
1519 
1520 
1521 void Universe::compute_verify_oop_data() {
1522   verify_oop_mask();
1523   verify_oop_bits();
1524   verify_mark_mask();
1525   verify_mark_bits();
1526   verify_klass_mask();
1527   verify_klass_bits();
1528 }
1529 
1530 
1531 void CommonMethodOopCache::init(klassOop k, methodOop m, TRAPS) {
1532   if (!UseSharedSpaces) {
1533     _klass = k;
1534   }
1535 #ifndef PRODUCT
1536   else {
1537     // sharing initilization should have already set up _klass
1538     assert(_klass != NULL, "just checking");
1539   }
1540 #endif
1541 
1542   _method_idnum = m->method_idnum();
1543   assert(_method_idnum >= 0, "sanity check");
1544 }
1545 
1546 
1547 ActiveMethodOopsCache::~ActiveMethodOopsCache() {
1548   if (_prev_methods != NULL) {
1549     for (int i = _prev_methods->length() - 1; i >= 0; i--) {
1550       jweak method_ref = _prev_methods->at(i);
1551       if (method_ref != NULL) {
1552         JNIHandles::destroy_weak_global(method_ref);
1553       }
1554     }
1555     delete _prev_methods;
1556     _prev_methods = NULL;
1557   }
1558 }
1559 
1560 
1561 void ActiveMethodOopsCache::add_previous_version(const methodOop method) {
1562   assert(Thread::current()->is_VM_thread(),
1563     "only VMThread can add previous versions");
1564 
1565   if (_prev_methods == NULL) {
1566     // This is the first previous version so make some space.
1567     // Start with 2 elements under the assumption that the class
1568     // won't be redefined much.
1569     _prev_methods = new (ResourceObj::C_HEAP) GrowableArray<jweak>(2, true);
1570   }
1571 
1572   // RC_TRACE macro has an embedded ResourceMark
1573   RC_TRACE(0x00000100,
1574     ("add: %s(%s): adding prev version ref for cached method @%d",
1575     method->name()->as_C_string(), method->signature()->as_C_string(),
1576     _prev_methods->length()));
1577 
1578   methodHandle method_h(method);
1579   jweak method_ref = JNIHandles::make_weak_global(method_h);
1580   _prev_methods->append(method_ref);
1581 
1582   // Using weak references allows previous versions of the cached
1583   // method to be GC'ed when they are no longer needed. Since the
1584   // caller is the VMThread and we are at a safepoint, this is a good
1585   // time to clear out unused weak references.
1586 
1587   for (int i = _prev_methods->length() - 1; i >= 0; i--) {
1588     jweak method_ref = _prev_methods->at(i);
1589     assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
1590     if (method_ref == NULL) {
1591       _prev_methods->remove_at(i);
1592       // Since we are traversing the array backwards, we don't have to
1593       // do anything special with the index.
1594       continue;  // robustness
1595     }
1596 
1597     methodOop m = (methodOop)JNIHandles::resolve(method_ref);
1598     if (m == NULL) {
1599       // this method entry has been GC'ed so remove it
1600       JNIHandles::destroy_weak_global(method_ref);
1601       _prev_methods->remove_at(i);
1602     } else {
1603       // RC_TRACE macro has an embedded ResourceMark
1604       RC_TRACE(0x00000400, ("add: %s(%s): previous cached method @%d is alive",
1605         m->name()->as_C_string(), m->signature()->as_C_string(), i));
1606     }
1607   }
1608 } // end add_previous_version()
1609 
1610 
1611 bool ActiveMethodOopsCache::is_same_method(const methodOop method) const {
1612   instanceKlass* ik = instanceKlass::cast(klass());
1613   methodOop check_method = ik->method_with_idnum(method_idnum());
1614   assert(check_method != NULL, "sanity check");
1615   if (check_method == method) {
1616     // done with the easy case
1617     return true;
1618   }
1619 
1620   if (_prev_methods != NULL) {
1621     // The cached method has been redefined at least once so search
1622     // the previous versions for a match.
1623     for (int i = 0; i < _prev_methods->length(); i++) {
1624       jweak method_ref = _prev_methods->at(i);
1625       assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
1626       if (method_ref == NULL) {
1627         continue;  // robustness
1628       }
1629 
1630       check_method = (methodOop)JNIHandles::resolve(method_ref);
1631       if (check_method == method) {
1632         // a previous version matches
1633         return true;
1634       }
1635     }
1636   }
1637 
1638   // either no previous versions or no previous version matched
1639   return false;
1640 }
1641 
1642 
1643 methodOop LatestMethodOopCache::get_methodOop() {
1644   if (klass() == NULL) return NULL;
1645   instanceKlass* ik = instanceKlass::cast(klass());
1646   methodOop m = ik->method_with_idnum(method_idnum());
1647   assert(m != NULL, "sanity check");
1648   return m;
1649 }
1650 
1651 
1652 #ifdef ASSERT
1653 // Release dummy object(s) at bottom of heap
1654 bool Universe::release_fullgc_alot_dummy() {
1655   MutexLocker ml(FullGCALot_lock);
1656   if (_fullgc_alot_dummy_array != NULL) {
1657     if (_fullgc_alot_dummy_next >= _fullgc_alot_dummy_array->length()) {
1658       // No more dummies to release, release entire array instead
1659       _fullgc_alot_dummy_array = NULL;
1660       return false;
1661     }
1662     if (!UseConcMarkSweepGC) {
1663       // Release dummy at bottom of old generation
1664       _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
1665     }
1666     // Release dummy at bottom of permanent generation
1667     _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
1668   }
1669   return true;
1670 }
1671 
1672 #endif // ASSERT