1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "classfile/vmSymbols.hpp"
  31 #include "code/codeCache.hpp"
  32 #include "code/dependencies.hpp"
  33 #include "gc_interface/collectedHeap.inline.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "memory/cardTableModRefBS.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/genCollectedHeap.hpp"
  39 #include "memory/genRemSet.hpp"
  40 #include "memory/generation.hpp"
  41 #include "memory/oopFactory.hpp"
  42 #include "memory/permGen.hpp"
  43 #include "memory/space.hpp"
  44 #include "memory/universe.hpp"
  45 #include "memory/universe.inline.hpp"
  46 #include "oops/arrayKlassKlass.hpp"
  47 #include "oops/compiledICHolderKlass.hpp"
  48 #include "oops/constMethodKlass.hpp"
  49 #include "oops/constantPoolKlass.hpp"
  50 #include "oops/constantPoolOop.hpp"
  51 #include "oops/cpCacheKlass.hpp"
  52 #include "oops/cpCacheOop.hpp"
  53 #include "oops/instanceKlass.hpp"
  54 #include "oops/instanceMirrorKlass.hpp"
  55 #include "oops/instanceKlassKlass.hpp"
  56 #include "oops/instanceRefKlass.hpp"
  57 #include "oops/klassKlass.hpp"
  58 #include "oops/klassOop.hpp"
  59 #include "oops/methodDataKlass.hpp"
  60 #include "oops/methodKlass.hpp"
  61 #include "oops/objArrayKlassKlass.hpp"
  62 #include "oops/oop.inline.hpp"
  63 #include "oops/typeArrayKlass.hpp"
  64 #include "oops/typeArrayKlassKlass.hpp"
  65 #include "prims/jvmtiRedefineClassesTrace.hpp"
  66 #include "runtime/aprofiler.hpp"
  67 #include "runtime/arguments.hpp"
  68 #include "runtime/deoptimization.hpp"
  69 #include "runtime/fprofiler.hpp"
  70 #include "runtime/handles.inline.hpp"
  71 #include "runtime/init.hpp"
  72 #include "runtime/java.hpp"
  73 #include "runtime/javaCalls.hpp"
  74 #include "runtime/sharedRuntime.hpp"
  75 #include "runtime/synchronizer.hpp"
  76 #include "runtime/timer.hpp"
  77 #include "runtime/vm_operations.hpp"
  78 #include "services/memoryService.hpp"
  79 #include "utilities/copy.hpp"
  80 #include "utilities/events.hpp"
  81 #include "utilities/hashtable.inline.hpp"
  82 #include "utilities/preserveException.hpp"
  83 #ifdef TARGET_OS_FAMILY_linux
  84 # include "thread_linux.inline.hpp"
  85 #endif
  86 #ifdef TARGET_OS_FAMILY_solaris
  87 # include "thread_solaris.inline.hpp"
  88 #endif
  89 #ifdef TARGET_OS_FAMILY_windows
  90 # include "thread_windows.inline.hpp"
  91 #endif
  92 #ifdef TARGET_OS_FAMILY_bsd
  93 # include "thread_bsd.inline.hpp"
  94 #endif
  95 #ifndef SERIALGC
  96 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  97 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  98 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  99 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
 100 #include "gc_implementation/parallelScavenge/parallelScavengeHeap.hpp"
 101 #endif
 102 
 103 // Known objects
 104 klassOop Universe::_boolArrayKlassObj                 = NULL;
 105 klassOop Universe::_byteArrayKlassObj                 = NULL;
 106 klassOop Universe::_charArrayKlassObj                 = NULL;
 107 klassOop Universe::_intArrayKlassObj                  = NULL;
 108 klassOop Universe::_shortArrayKlassObj                = NULL;
 109 klassOop Universe::_longArrayKlassObj                 = NULL;
 110 klassOop Universe::_singleArrayKlassObj               = NULL;
 111 klassOop Universe::_doubleArrayKlassObj               = NULL;
 112 klassOop Universe::_typeArrayKlassObjs[T_VOID+1]      = { NULL /*, NULL...*/ };
 113 klassOop Universe::_objectArrayKlassObj               = NULL;
 114 klassOop Universe::_methodKlassObj                    = NULL;
 115 klassOop Universe::_constMethodKlassObj               = NULL;
 116 klassOop Universe::_methodDataKlassObj                = NULL;
 117 klassOop Universe::_klassKlassObj                     = NULL;
 118 klassOop Universe::_arrayKlassKlassObj                = NULL;
 119 klassOop Universe::_objArrayKlassKlassObj             = NULL;
 120 klassOop Universe::_typeArrayKlassKlassObj            = NULL;
 121 klassOop Universe::_instanceKlassKlassObj             = NULL;
 122 klassOop Universe::_constantPoolKlassObj              = NULL;
 123 klassOop Universe::_constantPoolCacheKlassObj         = NULL;
 124 klassOop Universe::_compiledICHolderKlassObj          = NULL;
 125 klassOop Universe::_systemObjArrayKlassObj            = NULL;
 126 oop Universe::_int_mirror                             = NULL;
 127 oop Universe::_float_mirror                           = NULL;
 128 oop Universe::_double_mirror                          = NULL;
 129 oop Universe::_byte_mirror                            = NULL;
 130 oop Universe::_bool_mirror                            = NULL;
 131 oop Universe::_char_mirror                            = NULL;
 132 oop Universe::_long_mirror                            = NULL;
 133 oop Universe::_short_mirror                           = NULL;
 134 oop Universe::_void_mirror                            = NULL;
 135 oop Universe::_mirrors[T_VOID+1]                      = { NULL /*, NULL...*/ };
 136 oop Universe::_main_thread_group                      = NULL;
 137 oop Universe::_system_thread_group                    = NULL;
 138 typeArrayOop Universe::_the_empty_byte_array          = NULL;
 139 typeArrayOop Universe::_the_empty_short_array         = NULL;
 140 typeArrayOop Universe::_the_empty_int_array           = NULL;
 141 objArrayOop Universe::_the_empty_system_obj_array     = NULL;
 142 objArrayOop Universe::_the_empty_class_klass_array    = NULL;
 143 objArrayOop Universe::_the_array_interfaces_array     = NULL;
 144 oop Universe::_the_null_string                        = NULL;
 145 oop Universe::_the_min_jint_string                   = NULL;
 146 LatestMethodOopCache* Universe::_finalizer_register_cache = NULL;
 147 LatestMethodOopCache* Universe::_loader_addClass_cache    = NULL;
 148 LatestMethodOopCache* Universe::_pd_implies_cache         = NULL;
 149 ActiveMethodOopsCache* Universe::_reflect_invoke_cache    = NULL;
 150 oop Universe::_out_of_memory_error_java_heap          = NULL;
 151 oop Universe::_out_of_memory_error_perm_gen           = NULL;
 152 oop Universe::_out_of_memory_error_array_size         = NULL;
 153 oop Universe::_out_of_memory_error_gc_overhead_limit  = NULL;
 154 objArrayOop Universe::_preallocated_out_of_memory_error_array = NULL;
 155 volatile jint Universe::_preallocated_out_of_memory_error_avail_count = 0;
 156 bool Universe::_verify_in_progress                    = false;
 157 oop Universe::_null_ptr_exception_instance            = NULL;
 158 oop Universe::_arithmetic_exception_instance          = NULL;
 159 oop Universe::_virtual_machine_error_instance         = NULL;
 160 oop Universe::_vm_exception                           = NULL;
 161 
 162 // These variables are guarded by FullGCALot_lock.
 163 debug_only(objArrayOop Universe::_fullgc_alot_dummy_array = NULL;)
 164 debug_only(int Universe::_fullgc_alot_dummy_next      = 0;)
 165 
 166 
 167 // Heap
 168 int             Universe::_verify_count = 0;
 169 
 170 int             Universe::_base_vtable_size = 0;
 171 bool            Universe::_bootstrapping = false;
 172 bool            Universe::_fully_initialized = false;
 173 
 174 size_t          Universe::_heap_capacity_at_last_gc;
 175 size_t          Universe::_heap_used_at_last_gc = 0;
 176 
 177 CollectedHeap*  Universe::_collectedHeap = NULL;
 178 
 179 NarrowOopStruct Universe::_narrow_oop = { NULL, 0, true };
 180 
 181 
 182 void Universe::basic_type_classes_do(void f(klassOop)) {
 183   f(boolArrayKlassObj());
 184   f(byteArrayKlassObj());
 185   f(charArrayKlassObj());
 186   f(intArrayKlassObj());
 187   f(shortArrayKlassObj());
 188   f(longArrayKlassObj());
 189   f(singleArrayKlassObj());
 190   f(doubleArrayKlassObj());
 191 }
 192 
 193 
 194 void Universe::system_classes_do(void f(klassOop)) {
 195   f(methodKlassObj());
 196   f(constMethodKlassObj());
 197   f(methodDataKlassObj());
 198   f(klassKlassObj());
 199   f(arrayKlassKlassObj());
 200   f(objArrayKlassKlassObj());
 201   f(typeArrayKlassKlassObj());
 202   f(instanceKlassKlassObj());
 203   f(constantPoolKlassObj());
 204   f(systemObjArrayKlassObj());
 205 }
 206 
 207 void Universe::oops_do(OopClosure* f, bool do_all) {
 208 
 209   f->do_oop((oop*) &_int_mirror);
 210   f->do_oop((oop*) &_float_mirror);
 211   f->do_oop((oop*) &_double_mirror);
 212   f->do_oop((oop*) &_byte_mirror);
 213   f->do_oop((oop*) &_bool_mirror);
 214   f->do_oop((oop*) &_char_mirror);
 215   f->do_oop((oop*) &_long_mirror);
 216   f->do_oop((oop*) &_short_mirror);
 217   f->do_oop((oop*) &_void_mirror);
 218 
 219   // It's important to iterate over these guys even if they are null,
 220   // since that's how shared heaps are restored.
 221   for (int i = T_BOOLEAN; i < T_VOID+1; i++) {
 222     f->do_oop((oop*) &_mirrors[i]);
 223   }
 224   assert(_mirrors[0] == NULL && _mirrors[T_BOOLEAN - 1] == NULL, "checking");
 225 
 226   // %%% Consider moving those "shared oops" over here with the others.
 227   f->do_oop((oop*)&_boolArrayKlassObj);
 228   f->do_oop((oop*)&_byteArrayKlassObj);
 229   f->do_oop((oop*)&_charArrayKlassObj);
 230   f->do_oop((oop*)&_intArrayKlassObj);
 231   f->do_oop((oop*)&_shortArrayKlassObj);
 232   f->do_oop((oop*)&_longArrayKlassObj);
 233   f->do_oop((oop*)&_singleArrayKlassObj);
 234   f->do_oop((oop*)&_doubleArrayKlassObj);
 235   f->do_oop((oop*)&_objectArrayKlassObj);
 236   {
 237     for (int i = 0; i < T_VOID+1; i++) {
 238       if (_typeArrayKlassObjs[i] != NULL) {
 239         assert(i >= T_BOOLEAN, "checking");
 240         f->do_oop((oop*)&_typeArrayKlassObjs[i]);
 241       } else if (do_all) {
 242         f->do_oop((oop*)&_typeArrayKlassObjs[i]);
 243       }
 244     }
 245   }
 246   f->do_oop((oop*)&_methodKlassObj);
 247   f->do_oop((oop*)&_constMethodKlassObj);
 248   f->do_oop((oop*)&_methodDataKlassObj);
 249   f->do_oop((oop*)&_klassKlassObj);
 250   f->do_oop((oop*)&_arrayKlassKlassObj);
 251   f->do_oop((oop*)&_objArrayKlassKlassObj);
 252   f->do_oop((oop*)&_typeArrayKlassKlassObj);
 253   f->do_oop((oop*)&_instanceKlassKlassObj);
 254   f->do_oop((oop*)&_constantPoolKlassObj);
 255   f->do_oop((oop*)&_constantPoolCacheKlassObj);
 256   f->do_oop((oop*)&_compiledICHolderKlassObj);
 257   f->do_oop((oop*)&_systemObjArrayKlassObj);
 258   f->do_oop((oop*)&_the_empty_byte_array);
 259   f->do_oop((oop*)&_the_empty_short_array);
 260   f->do_oop((oop*)&_the_empty_int_array);
 261   f->do_oop((oop*)&_the_empty_system_obj_array);
 262   f->do_oop((oop*)&_the_empty_class_klass_array);
 263   f->do_oop((oop*)&_the_array_interfaces_array);
 264   f->do_oop((oop*)&_the_null_string);
 265   f->do_oop((oop*)&_the_min_jint_string);
 266   _finalizer_register_cache->oops_do(f);
 267   _loader_addClass_cache->oops_do(f);
 268   _pd_implies_cache->oops_do(f);
 269   _reflect_invoke_cache->oops_do(f);
 270   f->do_oop((oop*)&_out_of_memory_error_java_heap);
 271   f->do_oop((oop*)&_out_of_memory_error_perm_gen);
 272   f->do_oop((oop*)&_out_of_memory_error_array_size);
 273   f->do_oop((oop*)&_out_of_memory_error_gc_overhead_limit);
 274   if (_preallocated_out_of_memory_error_array != (oop)NULL) {   // NULL when DumpSharedSpaces
 275     f->do_oop((oop*)&_preallocated_out_of_memory_error_array);
 276   }
 277   f->do_oop((oop*)&_null_ptr_exception_instance);
 278   f->do_oop((oop*)&_arithmetic_exception_instance);
 279   f->do_oop((oop*)&_virtual_machine_error_instance);
 280   f->do_oop((oop*)&_main_thread_group);
 281   f->do_oop((oop*)&_system_thread_group);
 282   f->do_oop((oop*)&_vm_exception);
 283   debug_only(f->do_oop((oop*)&_fullgc_alot_dummy_array);)
 284 }
 285 
 286 
 287 void Universe::check_alignment(uintx size, uintx alignment, const char* name) {
 288   if (size < alignment || size % alignment != 0) {
 289     ResourceMark rm;
 290     stringStream st;
 291     st.print("Size of %s (%ld bytes) must be aligned to %ld bytes", name, size, alignment);
 292     char* error = st.as_string();
 293     vm_exit_during_initialization(error);
 294   }
 295 }
 296 
 297 
 298 void Universe::genesis(TRAPS) {
 299   ResourceMark rm;
 300   { FlagSetting fs(_bootstrapping, true);
 301 
 302     { MutexLocker mc(Compile_lock);
 303 
 304       // determine base vtable size; without that we cannot create the array klasses
 305       compute_base_vtable_size();
 306 
 307       if (!UseSharedSpaces) {
 308         _klassKlassObj          = klassKlass::create_klass(CHECK);
 309         _arrayKlassKlassObj     = arrayKlassKlass::create_klass(CHECK);
 310 
 311         _objArrayKlassKlassObj  = objArrayKlassKlass::create_klass(CHECK);
 312         _instanceKlassKlassObj  = instanceKlassKlass::create_klass(CHECK);
 313         _typeArrayKlassKlassObj = typeArrayKlassKlass::create_klass(CHECK);
 314 
 315         _boolArrayKlassObj      = typeArrayKlass::create_klass(T_BOOLEAN, sizeof(jboolean), CHECK);
 316         _charArrayKlassObj      = typeArrayKlass::create_klass(T_CHAR,    sizeof(jchar),    CHECK);
 317         _singleArrayKlassObj    = typeArrayKlass::create_klass(T_FLOAT,   sizeof(jfloat),   CHECK);
 318         _doubleArrayKlassObj    = typeArrayKlass::create_klass(T_DOUBLE,  sizeof(jdouble),  CHECK);
 319         _byteArrayKlassObj      = typeArrayKlass::create_klass(T_BYTE,    sizeof(jbyte),    CHECK);
 320         _shortArrayKlassObj     = typeArrayKlass::create_klass(T_SHORT,   sizeof(jshort),   CHECK);
 321         _intArrayKlassObj       = typeArrayKlass::create_klass(T_INT,     sizeof(jint),     CHECK);
 322         _longArrayKlassObj      = typeArrayKlass::create_klass(T_LONG,    sizeof(jlong),    CHECK);
 323 
 324         _typeArrayKlassObjs[T_BOOLEAN] = _boolArrayKlassObj;
 325         _typeArrayKlassObjs[T_CHAR]    = _charArrayKlassObj;
 326         _typeArrayKlassObjs[T_FLOAT]   = _singleArrayKlassObj;
 327         _typeArrayKlassObjs[T_DOUBLE]  = _doubleArrayKlassObj;
 328         _typeArrayKlassObjs[T_BYTE]    = _byteArrayKlassObj;
 329         _typeArrayKlassObjs[T_SHORT]   = _shortArrayKlassObj;
 330         _typeArrayKlassObjs[T_INT]     = _intArrayKlassObj;
 331         _typeArrayKlassObjs[T_LONG]    = _longArrayKlassObj;
 332 
 333         _methodKlassObj             = methodKlass::create_klass(CHECK);
 334         _constMethodKlassObj        = constMethodKlass::create_klass(CHECK);
 335         _methodDataKlassObj         = methodDataKlass::create_klass(CHECK);
 336         _constantPoolKlassObj       = constantPoolKlass::create_klass(CHECK);
 337         _constantPoolCacheKlassObj  = constantPoolCacheKlass::create_klass(CHECK);
 338 
 339         _compiledICHolderKlassObj   = compiledICHolderKlass::create_klass(CHECK);
 340         _systemObjArrayKlassObj     = objArrayKlassKlass::cast(objArrayKlassKlassObj())->allocate_system_objArray_klass(CHECK);
 341 
 342         _the_empty_byte_array       = oopFactory::new_permanent_byteArray(0, CHECK);
 343         _the_empty_short_array      = oopFactory::new_permanent_shortArray(0, CHECK);
 344         _the_empty_int_array        = oopFactory::new_permanent_intArray(0, CHECK);
 345         _the_empty_system_obj_array = oopFactory::new_system_objArray(0, CHECK);
 346 
 347         _the_array_interfaces_array = oopFactory::new_system_objArray(2, CHECK);
 348       }
 349     }
 350 
 351     vmSymbols::initialize(CHECK);
 352 
 353     SystemDictionary::initialize(CHECK);
 354 
 355     klassOop ok = SystemDictionary::Object_klass();
 356 
 357     _the_null_string            = StringTable::intern("null", CHECK);
 358     _the_min_jint_string       = StringTable::intern("-2147483648", CHECK);
 359 
 360     if (UseSharedSpaces) {
 361       // Verify shared interfaces array.
 362       assert(_the_array_interfaces_array->obj_at(0) ==
 363              SystemDictionary::Cloneable_klass(), "u3");
 364       assert(_the_array_interfaces_array->obj_at(1) ==
 365              SystemDictionary::Serializable_klass(), "u3");
 366 
 367       // Verify element klass for system obj array klass
 368       assert(objArrayKlass::cast(_systemObjArrayKlassObj)->element_klass() == ok, "u1");
 369       assert(objArrayKlass::cast(_systemObjArrayKlassObj)->bottom_klass() == ok, "u2");
 370 
 371       // Verify super class for the classes created above
 372       assert(Klass::cast(boolArrayKlassObj()     )->super() == ok, "u3");
 373       assert(Klass::cast(charArrayKlassObj()     )->super() == ok, "u3");
 374       assert(Klass::cast(singleArrayKlassObj()   )->super() == ok, "u3");
 375       assert(Klass::cast(doubleArrayKlassObj()   )->super() == ok, "u3");
 376       assert(Klass::cast(byteArrayKlassObj()     )->super() == ok, "u3");
 377       assert(Klass::cast(shortArrayKlassObj()    )->super() == ok, "u3");
 378       assert(Klass::cast(intArrayKlassObj()      )->super() == ok, "u3");
 379       assert(Klass::cast(longArrayKlassObj()     )->super() == ok, "u3");
 380       assert(Klass::cast(constantPoolKlassObj()  )->super() == ok, "u3");
 381       assert(Klass::cast(systemObjArrayKlassObj())->super() == ok, "u3");
 382     } else {
 383       // Set up shared interfaces array.  (Do this before supers are set up.)
 384       _the_array_interfaces_array->obj_at_put(0, SystemDictionary::Cloneable_klass());
 385       _the_array_interfaces_array->obj_at_put(1, SystemDictionary::Serializable_klass());
 386 
 387       // Set element klass for system obj array klass
 388       objArrayKlass::cast(_systemObjArrayKlassObj)->set_element_klass(ok);
 389       objArrayKlass::cast(_systemObjArrayKlassObj)->set_bottom_klass(ok);
 390 
 391       // Set super class for the classes created above
 392       Klass::cast(boolArrayKlassObj()     )->initialize_supers(ok, CHECK);
 393       Klass::cast(charArrayKlassObj()     )->initialize_supers(ok, CHECK);
 394       Klass::cast(singleArrayKlassObj()   )->initialize_supers(ok, CHECK);
 395       Klass::cast(doubleArrayKlassObj()   )->initialize_supers(ok, CHECK);
 396       Klass::cast(byteArrayKlassObj()     )->initialize_supers(ok, CHECK);
 397       Klass::cast(shortArrayKlassObj()    )->initialize_supers(ok, CHECK);
 398       Klass::cast(intArrayKlassObj()      )->initialize_supers(ok, CHECK);
 399       Klass::cast(longArrayKlassObj()     )->initialize_supers(ok, CHECK);
 400       Klass::cast(constantPoolKlassObj()  )->initialize_supers(ok, CHECK);
 401       Klass::cast(systemObjArrayKlassObj())->initialize_supers(ok, CHECK);
 402       Klass::cast(boolArrayKlassObj()     )->set_super(ok);
 403       Klass::cast(charArrayKlassObj()     )->set_super(ok);
 404       Klass::cast(singleArrayKlassObj()   )->set_super(ok);
 405       Klass::cast(doubleArrayKlassObj()   )->set_super(ok);
 406       Klass::cast(byteArrayKlassObj()     )->set_super(ok);
 407       Klass::cast(shortArrayKlassObj()    )->set_super(ok);
 408       Klass::cast(intArrayKlassObj()      )->set_super(ok);
 409       Klass::cast(longArrayKlassObj()     )->set_super(ok);
 410       Klass::cast(constantPoolKlassObj()  )->set_super(ok);
 411       Klass::cast(systemObjArrayKlassObj())->set_super(ok);
 412     }
 413 
 414     Klass::cast(boolArrayKlassObj()     )->append_to_sibling_list();
 415     Klass::cast(charArrayKlassObj()     )->append_to_sibling_list();
 416     Klass::cast(singleArrayKlassObj()   )->append_to_sibling_list();
 417     Klass::cast(doubleArrayKlassObj()   )->append_to_sibling_list();
 418     Klass::cast(byteArrayKlassObj()     )->append_to_sibling_list();
 419     Klass::cast(shortArrayKlassObj()    )->append_to_sibling_list();
 420     Klass::cast(intArrayKlassObj()      )->append_to_sibling_list();
 421     Klass::cast(longArrayKlassObj()     )->append_to_sibling_list();
 422     Klass::cast(constantPoolKlassObj()  )->append_to_sibling_list();
 423     Klass::cast(systemObjArrayKlassObj())->append_to_sibling_list();
 424   } // end of core bootstrapping
 425 
 426   // Initialize _objectArrayKlass after core bootstraping to make
 427   // sure the super class is set up properly for _objectArrayKlass.
 428   _objectArrayKlassObj = instanceKlass::
 429     cast(SystemDictionary::Object_klass())->array_klass(1, CHECK);
 430   // Add the class to the class hierarchy manually to make sure that
 431   // its vtable is initialized after core bootstrapping is completed.
 432   Klass::cast(_objectArrayKlassObj)->append_to_sibling_list();
 433 
 434   // Compute is_jdk version flags.
 435   // Only 1.3 or later has the java.lang.Shutdown class.
 436   // Only 1.4 or later has the java.lang.CharSequence interface.
 437   // Only 1.5 or later has the java.lang.management.MemoryUsage class.
 438   if (JDK_Version::is_partially_initialized()) {
 439     uint8_t jdk_version;
 440     klassOop k = SystemDictionary::resolve_or_null(
 441         vmSymbols::java_lang_management_MemoryUsage(), THREAD);
 442     CLEAR_PENDING_EXCEPTION; // ignore exceptions
 443     if (k == NULL) {
 444       k = SystemDictionary::resolve_or_null(
 445           vmSymbols::java_lang_CharSequence(), THREAD);
 446       CLEAR_PENDING_EXCEPTION; // ignore exceptions
 447       if (k == NULL) {
 448         k = SystemDictionary::resolve_or_null(
 449             vmSymbols::java_lang_Shutdown(), THREAD);
 450         CLEAR_PENDING_EXCEPTION; // ignore exceptions
 451         if (k == NULL) {
 452           jdk_version = 2;
 453         } else {
 454           jdk_version = 3;
 455         }
 456       } else {
 457         jdk_version = 4;
 458       }
 459     } else {
 460       jdk_version = 5;
 461     }
 462     JDK_Version::fully_initialize(jdk_version);
 463   }
 464 
 465   #ifdef ASSERT
 466   if (FullGCALot) {
 467     // Allocate an array of dummy objects.
 468     // We'd like these to be at the bottom of the old generation,
 469     // so that when we free one and then collect,
 470     // (almost) the whole heap moves
 471     // and we find out if we actually update all the oops correctly.
 472     // But we can't allocate directly in the old generation,
 473     // so we allocate wherever, and hope that the first collection
 474     // moves these objects to the bottom of the old generation.
 475     // We can allocate directly in the permanent generation, so we do.
 476     int size;
 477     if (UseConcMarkSweepGC) {
 478       warning("Using +FullGCALot with concurrent mark sweep gc "
 479               "will not force all objects to relocate");
 480       size = FullGCALotDummies;
 481     } else {
 482       size = FullGCALotDummies * 2;
 483     }
 484     objArrayOop    naked_array = oopFactory::new_system_objArray(size, CHECK);
 485     objArrayHandle dummy_array(THREAD, naked_array);
 486     int i = 0;
 487     while (i < size) {
 488       if (!UseConcMarkSweepGC) {
 489         // Allocate dummy in old generation
 490         oop dummy = instanceKlass::cast(SystemDictionary::Object_klass())->allocate_instance(CHECK);
 491         dummy_array->obj_at_put(i++, dummy);
 492       }
 493       // Allocate dummy in permanent generation
 494       oop dummy = instanceKlass::cast(SystemDictionary::Object_klass())->allocate_permanent_instance(CHECK);
 495       dummy_array->obj_at_put(i++, dummy);
 496     }
 497     {
 498       // Only modify the global variable inside the mutex.
 499       // If we had a race to here, the other dummy_array instances
 500       // and their elements just get dropped on the floor, which is fine.
 501       MutexLocker ml(FullGCALot_lock);
 502       if (_fullgc_alot_dummy_array == NULL) {
 503         _fullgc_alot_dummy_array = dummy_array();
 504       }
 505     }
 506     assert(i == _fullgc_alot_dummy_array->length(), "just checking");
 507   }
 508   #endif
 509 }
 510 
 511 
 512 static inline void* dereference(void* addr) {
 513   return *(void**)addr;
 514 }
 515 
 516 static inline void add_vtable(void** list, int* n, void* o, int count) {
 517   guarantee((*n) < count, "vtable list too small");
 518   void* vtable = dereference(o);
 519   assert(dereference(vtable) != NULL, "invalid vtable");
 520   list[(*n)++] = vtable;
 521 }
 522 
 523 void Universe::init_self_patching_vtbl_list(void** list, int count) {
 524   int n = 0;
 525   { klassKlass o;             add_vtable(list, &n, &o, count); }
 526   { arrayKlassKlass o;        add_vtable(list, &n, &o, count); }
 527   { objArrayKlassKlass o;     add_vtable(list, &n, &o, count); }
 528   { instanceKlassKlass o;     add_vtable(list, &n, &o, count); }
 529   { instanceKlass o;          add_vtable(list, &n, &o, count); }
 530   { instanceMirrorKlass o;    add_vtable(list, &n, &o, count); }
 531   { instanceRefKlass o;       add_vtable(list, &n, &o, count); }
 532   { typeArrayKlassKlass o;    add_vtable(list, &n, &o, count); }
 533   { typeArrayKlass o;         add_vtable(list, &n, &o, count); }
 534   { methodKlass o;            add_vtable(list, &n, &o, count); }
 535   { constMethodKlass o;       add_vtable(list, &n, &o, count); }
 536   { constantPoolKlass o;      add_vtable(list, &n, &o, count); }
 537   { constantPoolCacheKlass o; add_vtable(list, &n, &o, count); }
 538   { objArrayKlass o;          add_vtable(list, &n, &o, count); }
 539   { methodDataKlass o;        add_vtable(list, &n, &o, count); }
 540   { compiledICHolderKlass o;  add_vtable(list, &n, &o, count); }
 541 #ifndef PRODUCT
 542   // In non-product builds CHeapObj is derived from AllocatedObj,
 543   // so symbols in CDS archive should have their vtable pointer patched.
 544   { Symbol o;                 add_vtable(list, &n, &o, count); }
 545 #endif
 546 }
 547 
 548 
 549 class FixupMirrorClosure: public ObjectClosure {
 550  public:
 551   virtual void do_object(oop obj) {
 552     if (obj->is_klass()) {
 553       EXCEPTION_MARK;
 554       KlassHandle k(THREAD, klassOop(obj));
 555       // We will never reach the CATCH below since Exceptions::_throw will cause
 556       // the VM to exit if an exception is thrown during initialization
 557       java_lang_Class::fixup_mirror(k, CATCH);
 558       // This call unconditionally creates a new mirror for k,
 559       // and links in k's component_mirror field if k is an array.
 560       // If k is an objArray, k's element type must already have
 561       // a mirror.  In other words, this closure must process
 562       // the component type of an objArray k before it processes k.
 563       // This works because the permgen iterator presents arrays
 564       // and their component types in order of creation.
 565     }
 566   }
 567 };
 568 
 569 void Universe::initialize_basic_type_mirrors(TRAPS) {
 570   if (UseSharedSpaces) {
 571     assert(_int_mirror != NULL, "already loaded");
 572     assert(_void_mirror == _mirrors[T_VOID], "consistently loaded");
 573   } else {
 574 
 575     assert(_int_mirror==NULL, "basic type mirrors already initialized");
 576     _int_mirror     =
 577       java_lang_Class::create_basic_type_mirror("int",    T_INT, CHECK);
 578     _float_mirror   =
 579       java_lang_Class::create_basic_type_mirror("float",  T_FLOAT,   CHECK);
 580     _double_mirror  =
 581       java_lang_Class::create_basic_type_mirror("double", T_DOUBLE,  CHECK);
 582     _byte_mirror    =
 583       java_lang_Class::create_basic_type_mirror("byte",   T_BYTE, CHECK);
 584     _bool_mirror    =
 585       java_lang_Class::create_basic_type_mirror("boolean",T_BOOLEAN, CHECK);
 586     _char_mirror    =
 587       java_lang_Class::create_basic_type_mirror("char",   T_CHAR, CHECK);
 588     _long_mirror    =
 589       java_lang_Class::create_basic_type_mirror("long",   T_LONG, CHECK);
 590     _short_mirror   =
 591       java_lang_Class::create_basic_type_mirror("short",  T_SHORT,   CHECK);
 592     _void_mirror    =
 593       java_lang_Class::create_basic_type_mirror("void",   T_VOID, CHECK);
 594 
 595     _mirrors[T_INT]     = _int_mirror;
 596     _mirrors[T_FLOAT]   = _float_mirror;
 597     _mirrors[T_DOUBLE]  = _double_mirror;
 598     _mirrors[T_BYTE]    = _byte_mirror;
 599     _mirrors[T_BOOLEAN] = _bool_mirror;
 600     _mirrors[T_CHAR]    = _char_mirror;
 601     _mirrors[T_LONG]    = _long_mirror;
 602     _mirrors[T_SHORT]   = _short_mirror;
 603     _mirrors[T_VOID]    = _void_mirror;
 604     //_mirrors[T_OBJECT]  = instanceKlass::cast(_object_klass)->java_mirror();
 605     //_mirrors[T_ARRAY]   = instanceKlass::cast(_object_klass)->java_mirror();
 606   }
 607 }
 608 
 609 void Universe::fixup_mirrors(TRAPS) {
 610   // Bootstrap problem: all classes gets a mirror (java.lang.Class instance) assigned eagerly,
 611   // but we cannot do that for classes created before java.lang.Class is loaded. Here we simply
 612   // walk over permanent objects created so far (mostly classes) and fixup their mirrors. Note
 613   // that the number of objects allocated at this point is very small.
 614   assert(SystemDictionary::Class_klass_loaded(), "java.lang.Class should be loaded");
 615 
 616   // Cache the start of the static fields
 617   instanceMirrorKlass::init_offset_of_static_fields();
 618 
 619   FixupMirrorClosure blk;
 620   Universe::heap()->permanent_object_iterate(&blk);
 621 }
 622 
 623 
 624 static bool has_run_finalizers_on_exit = false;
 625 
 626 void Universe::run_finalizers_on_exit() {
 627   if (has_run_finalizers_on_exit) return;
 628   has_run_finalizers_on_exit = true;
 629 
 630   // Called on VM exit. This ought to be run in a separate thread.
 631   if (TraceReferenceGC) tty->print_cr("Callback to run finalizers on exit");
 632   {
 633     PRESERVE_EXCEPTION_MARK;
 634     KlassHandle finalizer_klass(THREAD, SystemDictionary::Finalizer_klass());
 635     JavaValue result(T_VOID);
 636     JavaCalls::call_static(
 637       &result,
 638       finalizer_klass,
 639       vmSymbols::run_finalizers_on_exit_name(),
 640       vmSymbols::void_method_signature(),
 641       THREAD
 642     );
 643     // Ignore any pending exceptions
 644     CLEAR_PENDING_EXCEPTION;
 645   }
 646 }
 647 
 648 
 649 // initialize_vtable could cause gc if
 650 // 1) we specified true to initialize_vtable and
 651 // 2) this ran after gc was enabled
 652 // In case those ever change we use handles for oops
 653 void Universe::reinitialize_vtable_of(KlassHandle k_h, TRAPS) {
 654   // init vtable of k and all subclasses
 655   Klass* ko = k_h()->klass_part();
 656   klassVtable* vt = ko->vtable();
 657   if (vt) vt->initialize_vtable(false, CHECK);
 658   if (ko->oop_is_instance()) {
 659     instanceKlass* ik = (instanceKlass*)ko;
 660     for (KlassHandle s_h(THREAD, ik->subklass());
 661          s_h() != NULL;
 662          s_h = (THREAD, s_h()->klass_part()->next_sibling())) {
 663       reinitialize_vtable_of(s_h, CHECK);
 664     }
 665   }
 666 }
 667 
 668 
 669 void initialize_itable_for_klass(klassOop k, TRAPS) {
 670   instanceKlass::cast(k)->itable()->initialize_itable(false, CHECK);
 671 }
 672 
 673 
 674 void Universe::reinitialize_itables(TRAPS) {
 675   SystemDictionary::classes_do(initialize_itable_for_klass, CHECK);
 676 
 677 }
 678 
 679 
 680 bool Universe::on_page_boundary(void* addr) {
 681   return ((uintptr_t) addr) % os::vm_page_size() == 0;
 682 }
 683 
 684 
 685 bool Universe::should_fill_in_stack_trace(Handle throwable) {
 686   // never attempt to fill in the stack trace of preallocated errors that do not have
 687   // backtrace. These errors are kept alive forever and may be "re-used" when all
 688   // preallocated errors with backtrace have been consumed. Also need to avoid
 689   // a potential loop which could happen if an out of memory occurs when attempting
 690   // to allocate the backtrace.
 691   return ((throwable() != Universe::_out_of_memory_error_java_heap) &&
 692           (throwable() != Universe::_out_of_memory_error_perm_gen)  &&
 693           (throwable() != Universe::_out_of_memory_error_array_size) &&
 694           (throwable() != Universe::_out_of_memory_error_gc_overhead_limit));
 695 }
 696 
 697 
 698 oop Universe::gen_out_of_memory_error(oop default_err) {
 699   // generate an out of memory error:
 700   // - if there is a preallocated error with backtrace available then return it wth
 701   //   a filled in stack trace.
 702   // - if there are no preallocated errors with backtrace available then return
 703   //   an error without backtrace.
 704   int next;
 705   if (_preallocated_out_of_memory_error_avail_count > 0) {
 706     next = (int)Atomic::add(-1, &_preallocated_out_of_memory_error_avail_count);
 707     assert(next < (int)PreallocatedOutOfMemoryErrorCount, "avail count is corrupt");
 708   } else {
 709     next = -1;
 710   }
 711   if (next < 0) {
 712     // all preallocated errors have been used.
 713     // return default
 714     return default_err;
 715   } else {
 716     // get the error object at the slot and set set it to NULL so that the
 717     // array isn't keeping it alive anymore.
 718     oop exc = preallocated_out_of_memory_errors()->obj_at(next);
 719     assert(exc != NULL, "slot has been used already");
 720     preallocated_out_of_memory_errors()->obj_at_put(next, NULL);
 721 
 722     // use the message from the default error
 723     oop msg = java_lang_Throwable::message(default_err);
 724     assert(msg != NULL, "no message");
 725     java_lang_Throwable::set_message(exc, msg);
 726 
 727     // populate the stack trace and return it.
 728     java_lang_Throwable::fill_in_stack_trace_of_preallocated_backtrace(exc);
 729     return exc;
 730   }
 731 }
 732 
 733 static intptr_t non_oop_bits = 0;
 734 
 735 void* Universe::non_oop_word() {
 736   // Neither the high bits nor the low bits of this value is allowed
 737   // to look like (respectively) the high or low bits of a real oop.
 738   //
 739   // High and low are CPU-specific notions, but low always includes
 740   // the low-order bit.  Since oops are always aligned at least mod 4,
 741   // setting the low-order bit will ensure that the low half of the
 742   // word will never look like that of a real oop.
 743   //
 744   // Using the OS-supplied non-memory-address word (usually 0 or -1)
 745   // will take care of the high bits, however many there are.
 746 
 747   if (non_oop_bits == 0) {
 748     non_oop_bits = (intptr_t)os::non_memory_address_word() | 1;
 749   }
 750 
 751   return (void*)non_oop_bits;
 752 }
 753 
 754 jint universe_init() {
 755   assert(!Universe::_fully_initialized, "called after initialize_vtables");
 756   guarantee(1 << LogHeapWordSize == sizeof(HeapWord),
 757          "LogHeapWordSize is incorrect.");
 758   guarantee(sizeof(oop) >= sizeof(HeapWord), "HeapWord larger than oop?");
 759   guarantee(sizeof(oop) % sizeof(HeapWord) == 0,
 760             "oop size is not not a multiple of HeapWord size");
 761   TraceTime timer("Genesis", TraceStartupTime);
 762   GC_locker::lock();  // do not allow gc during bootstrapping
 763   JavaClasses::compute_hard_coded_offsets();
 764 
 765   // Get map info from shared archive file.
 766   if (DumpSharedSpaces)
 767     UseSharedSpaces = false;
 768 
 769   FileMapInfo* mapinfo = NULL;
 770   if (UseSharedSpaces) {
 771     mapinfo = NEW_C_HEAP_OBJ(FileMapInfo);
 772     memset(mapinfo, 0, sizeof(FileMapInfo));
 773 
 774     // Open the shared archive file, read and validate the header. If
 775     // initialization files, shared spaces [UseSharedSpaces] are
 776     // disabled and the file is closed.
 777 
 778     if (mapinfo->initialize()) {
 779       FileMapInfo::set_current_info(mapinfo);
 780     } else {
 781       assert(!mapinfo->is_open() && !UseSharedSpaces,
 782              "archive file not closed or shared spaces not disabled.");
 783     }
 784   }
 785 
 786   jint status = Universe::initialize_heap();
 787   if (status != JNI_OK) {
 788     return status;
 789   }
 790 
 791   // We have a heap so create the methodOop caches before
 792   // CompactingPermGenGen::initialize_oops() tries to populate them.
 793   Universe::_finalizer_register_cache = new LatestMethodOopCache();
 794   Universe::_loader_addClass_cache    = new LatestMethodOopCache();
 795   Universe::_pd_implies_cache         = new LatestMethodOopCache();
 796   Universe::_reflect_invoke_cache     = new ActiveMethodOopsCache();
 797 
 798   if (UseSharedSpaces) {
 799 
 800     // Read the data structures supporting the shared spaces (shared
 801     // system dictionary, symbol table, etc.).  After that, access to
 802     // the file (other than the mapped regions) is no longer needed, and
 803     // the file is closed. Closing the file does not affect the
 804     // currently mapped regions.
 805 
 806     CompactingPermGenGen::initialize_oops();
 807     mapinfo->close();
 808 
 809   } else {
 810     SymbolTable::create_table();
 811     StringTable::create_table();
 812     ClassLoader::create_package_info_table();
 813   }
 814 
 815   return JNI_OK;
 816 }
 817 
 818 // Choose the heap base address and oop encoding mode
 819 // when compressed oops are used:
 820 // Unscaled  - Use 32-bits oops without encoding when
 821 //     NarrowOopHeapBaseMin + heap_size < 4Gb
 822 // ZeroBased - Use zero based compressed oops with encoding when
 823 //     NarrowOopHeapBaseMin + heap_size < 32Gb
 824 // HeapBased - Use compressed oops with heap base + encoding.
 825 
 826 // 4Gb
 827 static const uint64_t NarrowOopHeapMax = (uint64_t(max_juint) + 1);
 828 // 32Gb
 829 // OopEncodingHeapMax == NarrowOopHeapMax << LogMinObjAlignmentInBytes;
 830 
 831 char* Universe::preferred_heap_base(size_t heap_size, NARROW_OOP_MODE mode) {
 832   size_t base = 0;
 833 #ifdef _LP64
 834   if (UseCompressedOops) {
 835     assert(mode == UnscaledNarrowOop  ||
 836            mode == ZeroBasedNarrowOop ||
 837            mode == HeapBasedNarrowOop, "mode is invalid");
 838     const size_t total_size = heap_size + HeapBaseMinAddress;
 839     // Return specified base for the first request.
 840     if (!FLAG_IS_DEFAULT(HeapBaseMinAddress) && (mode == UnscaledNarrowOop)) {
 841       base = HeapBaseMinAddress;
 842     } else if (total_size <= OopEncodingHeapMax && (mode != HeapBasedNarrowOop)) {
 843       if (total_size <= NarrowOopHeapMax && (mode == UnscaledNarrowOop) &&
 844           (Universe::narrow_oop_shift() == 0)) {
 845         // Use 32-bits oops without encoding and
 846         // place heap's top on the 4Gb boundary
 847         base = (NarrowOopHeapMax - heap_size);
 848       } else {
 849         // Can't reserve with NarrowOopShift == 0
 850         Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 851         if (mode == UnscaledNarrowOop ||
 852             mode == ZeroBasedNarrowOop && total_size <= NarrowOopHeapMax) {
 853           // Use zero based compressed oops with encoding and
 854           // place heap's top on the 32Gb boundary in case
 855           // total_size > 4Gb or failed to reserve below 4Gb.
 856           base = (OopEncodingHeapMax - heap_size);
 857         }
 858       }
 859     } else {
 860       // Can't reserve below 32Gb.
 861       Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 862     }
 863     // Set narrow_oop_base and narrow_oop_use_implicit_null_checks
 864     // used in ReservedHeapSpace() constructors.
 865     // The final values will be set in initialize_heap() below.
 866     if (base != 0 && (base + heap_size) <= OopEncodingHeapMax) {
 867       // Use zero based compressed oops
 868       Universe::set_narrow_oop_base(NULL);
 869       // Don't need guard page for implicit checks in indexed
 870       // addressing mode with zero based Compressed Oops.
 871       Universe::set_narrow_oop_use_implicit_null_checks(true);
 872     } else {
 873       // Set to a non-NULL value so the ReservedSpace ctor computes
 874       // the correct no-access prefix.
 875       // The final value will be set in initialize_heap() below.
 876       Universe::set_narrow_oop_base((address)NarrowOopHeapMax);
 877 #ifdef _WIN64
 878       if (UseLargePages) {
 879         // Cannot allocate guard pages for implicit checks in indexed
 880         // addressing mode when large pages are specified on windows.
 881         Universe::set_narrow_oop_use_implicit_null_checks(false);
 882       }
 883 #endif //  _WIN64
 884     }
 885   }
 886 #endif
 887   return (char*)base; // also return NULL (don't care) for 32-bit VM
 888 }
 889 
 890 jint Universe::initialize_heap() {
 891 
 892   if (UseParallelGC) {
 893 #ifndef SERIALGC
 894     Universe::_collectedHeap = new ParallelScavengeHeap();
 895 #else  // SERIALGC
 896     fatal("UseParallelGC not supported in java kernel vm.");
 897 #endif // SERIALGC
 898 
 899   } else if (UseG1GC) {
 900 #ifndef SERIALGC
 901     G1CollectorPolicy* g1p = new G1CollectorPolicy();
 902     G1CollectedHeap* g1h = new G1CollectedHeap(g1p);
 903     Universe::_collectedHeap = g1h;
 904 #else  // SERIALGC
 905     fatal("UseG1GC not supported in java kernel vm.");
 906 #endif // SERIALGC
 907 
 908   } else {
 909     GenCollectorPolicy *gc_policy;
 910 
 911     if (UseSerialGC) {
 912       gc_policy = new MarkSweepPolicy();
 913     } else if (UseConcMarkSweepGC) {
 914 #ifndef SERIALGC
 915       if (UseAdaptiveSizePolicy) {
 916         gc_policy = new ASConcurrentMarkSweepPolicy();
 917       } else {
 918         gc_policy = new ConcurrentMarkSweepPolicy();
 919       }
 920 #else   // SERIALGC
 921     fatal("UseConcMarkSweepGC not supported in java kernel vm.");
 922 #endif // SERIALGC
 923     } else { // default old generation
 924       gc_policy = new MarkSweepPolicy();
 925     }
 926 
 927     Universe::_collectedHeap = new GenCollectedHeap(gc_policy);
 928   }
 929 
 930   jint status = Universe::heap()->initialize();
 931   if (status != JNI_OK) {
 932     return status;
 933   }
 934 
 935 #ifdef _LP64
 936   if (UseCompressedOops) {
 937     // Subtract a page because something can get allocated at heap base.
 938     // This also makes implicit null checking work, because the
 939     // memory+1 page below heap_base needs to cause a signal.
 940     // See needs_explicit_null_check.
 941     // Only set the heap base for compressed oops because it indicates
 942     // compressed oops for pstack code.
 943     bool verbose = PrintCompressedOopsMode || (PrintMiscellaneous && Verbose);
 944     if (verbose) {
 945       tty->cr();
 946       tty->print("heap address: " PTR_FORMAT ", size: " SIZE_FORMAT " MB",
 947                  Universe::heap()->base(), Universe::heap()->reserved_region().byte_size()/M);
 948     }
 949     if ((uint64_t)Universe::heap()->reserved_region().end() > OopEncodingHeapMax) {
 950       // Can't reserve heap below 32Gb.
 951       Universe::set_narrow_oop_base(Universe::heap()->base() - os::vm_page_size());
 952       Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 953       if (verbose) {
 954         tty->print(", Compressed Oops with base: "PTR_FORMAT, Universe::narrow_oop_base());
 955       }
 956     } else {
 957       Universe::set_narrow_oop_base(0);
 958       if (verbose) {
 959         tty->print(", zero based Compressed Oops");
 960       }
 961 #ifdef _WIN64
 962       if (!Universe::narrow_oop_use_implicit_null_checks()) {
 963         // Don't need guard page for implicit checks in indexed addressing
 964         // mode with zero based Compressed Oops.
 965         Universe::set_narrow_oop_use_implicit_null_checks(true);
 966       }
 967 #endif //  _WIN64
 968       if((uint64_t)Universe::heap()->reserved_region().end() > NarrowOopHeapMax) {
 969         // Can't reserve heap below 4Gb.
 970         Universe::set_narrow_oop_shift(LogMinObjAlignmentInBytes);
 971       } else {
 972         Universe::set_narrow_oop_shift(0);
 973         if (verbose) {
 974           tty->print(", 32-bits Oops");
 975         }
 976       }
 977     }
 978     if (verbose) {
 979       tty->cr();
 980       tty->cr();
 981     }
 982   }
 983   assert(Universe::narrow_oop_base() == (Universe::heap()->base() - os::vm_page_size()) ||
 984          Universe::narrow_oop_base() == NULL, "invalid value");
 985   assert(Universe::narrow_oop_shift() == LogMinObjAlignmentInBytes ||
 986          Universe::narrow_oop_shift() == 0, "invalid value");
 987 #endif
 988 
 989   // We will never reach the CATCH below since Exceptions::_throw will cause
 990   // the VM to exit if an exception is thrown during initialization
 991 
 992   if (UseTLAB) {
 993     assert(Universe::heap()->supports_tlab_allocation(),
 994            "Should support thread-local allocation buffers");
 995     ThreadLocalAllocBuffer::startup_initialization();
 996   }
 997   return JNI_OK;
 998 }
 999 
1000 // It's the caller's repsonsibility to ensure glitch-freedom
1001 // (if required).
1002 void Universe::update_heap_info_at_gc() {
1003   _heap_capacity_at_last_gc = heap()->capacity();
1004   _heap_used_at_last_gc     = heap()->used();
1005 }
1006 
1007 
1008 
1009 void universe2_init() {
1010   EXCEPTION_MARK;
1011   Universe::genesis(CATCH);
1012   // Although we'd like to verify here that the state of the heap
1013   // is good, we can't because the main thread has not yet added
1014   // itself to the threads list (so, using current interfaces
1015   // we can't "fill" its TLAB), unless TLABs are disabled.
1016   if (VerifyBeforeGC && !UseTLAB &&
1017       Universe::heap()->total_collections() >= VerifyGCStartAt) {
1018      Universe::heap()->prepare_for_verify();
1019      Universe::verify();   // make sure we're starting with a clean slate
1020   }
1021 }
1022 
1023 
1024 // This function is defined in JVM.cpp
1025 extern void initialize_converter_functions();
1026 
1027 bool universe_post_init() {
1028   assert(!is_init_completed(), "Error: initialization not yet completed!");
1029   Universe::_fully_initialized = true;
1030   EXCEPTION_MARK;
1031   { ResourceMark rm;
1032     Interpreter::initialize();      // needed for interpreter entry points
1033     if (!UseSharedSpaces) {
1034       KlassHandle ok_h(THREAD, SystemDictionary::Object_klass());
1035       Universe::reinitialize_vtable_of(ok_h, CHECK_false);
1036       Universe::reinitialize_itables(CHECK_false);
1037     }
1038   }
1039 
1040   klassOop k;
1041   instanceKlassHandle k_h;
1042   if (!UseSharedSpaces) {
1043     // Setup preallocated empty java.lang.Class array
1044     Universe::_the_empty_class_klass_array = oopFactory::new_objArray(SystemDictionary::Class_klass(), 0, CHECK_false);
1045     // Setup preallocated OutOfMemoryError errors
1046     k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_OutOfMemoryError(), true, CHECK_false);
1047     k_h = instanceKlassHandle(THREAD, k);
1048     Universe::_out_of_memory_error_java_heap = k_h->allocate_permanent_instance(CHECK_false);
1049     Universe::_out_of_memory_error_perm_gen = k_h->allocate_permanent_instance(CHECK_false);
1050     Universe::_out_of_memory_error_array_size = k_h->allocate_permanent_instance(CHECK_false);
1051     Universe::_out_of_memory_error_gc_overhead_limit =
1052       k_h->allocate_permanent_instance(CHECK_false);
1053 
1054     // Setup preallocated NullPointerException
1055     // (this is currently used for a cheap & dirty solution in compiler exception handling)
1056     k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_NullPointerException(), true, CHECK_false);
1057     Universe::_null_ptr_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
1058     // Setup preallocated ArithmeticException
1059     // (this is currently used for a cheap & dirty solution in compiler exception handling)
1060     k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ArithmeticException(), true, CHECK_false);
1061     Universe::_arithmetic_exception_instance = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
1062     // Virtual Machine Error for when we get into a situation we can't resolve
1063     k = SystemDictionary::resolve_or_fail(
1064       vmSymbols::java_lang_VirtualMachineError(), true, CHECK_false);
1065     bool linked = instanceKlass::cast(k)->link_class_or_fail(CHECK_false);
1066     if (!linked) {
1067       tty->print_cr("Unable to link/verify VirtualMachineError class");
1068       return false; // initialization failed
1069     }
1070     Universe::_virtual_machine_error_instance =
1071       instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
1072 
1073     Universe::_vm_exception               = instanceKlass::cast(k)->allocate_permanent_instance(CHECK_false);
1074 
1075   }
1076   if (!DumpSharedSpaces) {
1077     // These are the only Java fields that are currently set during shared space dumping.
1078     // We prefer to not handle this generally, so we always reinitialize these detail messages.
1079     Handle msg = java_lang_String::create_from_str("Java heap space", CHECK_false);
1080     java_lang_Throwable::set_message(Universe::_out_of_memory_error_java_heap, msg());
1081 
1082     msg = java_lang_String::create_from_str("PermGen space", CHECK_false);
1083     java_lang_Throwable::set_message(Universe::_out_of_memory_error_perm_gen, msg());
1084 
1085     msg = java_lang_String::create_from_str("Requested array size exceeds VM limit", CHECK_false);
1086     java_lang_Throwable::set_message(Universe::_out_of_memory_error_array_size, msg());
1087 
1088     msg = java_lang_String::create_from_str("GC overhead limit exceeded", CHECK_false);
1089     java_lang_Throwable::set_message(Universe::_out_of_memory_error_gc_overhead_limit, msg());
1090 
1091     msg = java_lang_String::create_from_str("/ by zero", CHECK_false);
1092     java_lang_Throwable::set_message(Universe::_arithmetic_exception_instance, msg());
1093 
1094     // Setup the array of errors that have preallocated backtrace
1095     k = Universe::_out_of_memory_error_java_heap->klass();
1096     assert(k->klass_part()->name() == vmSymbols::java_lang_OutOfMemoryError(), "should be out of memory error");
1097     k_h = instanceKlassHandle(THREAD, k);
1098 
1099     int len = (StackTraceInThrowable) ? (int)PreallocatedOutOfMemoryErrorCount : 0;
1100     Universe::_preallocated_out_of_memory_error_array = oopFactory::new_objArray(k_h(), len, CHECK_false);
1101     for (int i=0; i<len; i++) {
1102       oop err = k_h->allocate_permanent_instance(CHECK_false);
1103       Handle err_h = Handle(THREAD, err);
1104       java_lang_Throwable::allocate_backtrace(err_h, CHECK_false);
1105       Universe::preallocated_out_of_memory_errors()->obj_at_put(i, err_h());
1106     }
1107     Universe::_preallocated_out_of_memory_error_avail_count = (jint)len;
1108   }
1109 
1110 
1111   // Setup static method for registering finalizers
1112   // The finalizer klass must be linked before looking up the method, in
1113   // case it needs to get rewritten.
1114   instanceKlass::cast(SystemDictionary::Finalizer_klass())->link_class(CHECK_false);
1115   methodOop m = instanceKlass::cast(SystemDictionary::Finalizer_klass())->find_method(
1116                                   vmSymbols::register_method_name(),
1117                                   vmSymbols::register_method_signature());
1118   if (m == NULL || !m->is_static()) {
1119     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1120       "java.lang.ref.Finalizer.register", false);
1121   }
1122   Universe::_finalizer_register_cache->init(
1123     SystemDictionary::Finalizer_klass(), m, CHECK_false);
1124 
1125   // Resolve on first use and initialize class.
1126   // Note: No race-condition here, since a resolve will always return the same result
1127 
1128   // Setup method for security checks
1129   k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_reflect_Method(), true, CHECK_false);
1130   k_h = instanceKlassHandle(THREAD, k);
1131   k_h->link_class(CHECK_false);
1132   m = k_h->find_method(vmSymbols::invoke_name(), vmSymbols::object_object_array_object_signature());
1133   if (m == NULL || m->is_static()) {
1134     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1135       "java.lang.reflect.Method.invoke", false);
1136   }
1137   Universe::_reflect_invoke_cache->init(k_h(), m, CHECK_false);
1138 
1139   // Setup method for registering loaded classes in class loader vector
1140   instanceKlass::cast(SystemDictionary::ClassLoader_klass())->link_class(CHECK_false);
1141   m = instanceKlass::cast(SystemDictionary::ClassLoader_klass())->find_method(vmSymbols::addClass_name(), vmSymbols::class_void_signature());
1142   if (m == NULL || m->is_static()) {
1143     THROW_MSG_(vmSymbols::java_lang_NoSuchMethodException(),
1144       "java.lang.ClassLoader.addClass", false);
1145   }
1146   Universe::_loader_addClass_cache->init(
1147     SystemDictionary::ClassLoader_klass(), m, CHECK_false);
1148 
1149   // Setup method for checking protection domain
1150   instanceKlass::cast(SystemDictionary::ProtectionDomain_klass())->link_class(CHECK_false);
1151   m = instanceKlass::cast(SystemDictionary::ProtectionDomain_klass())->
1152             find_method(vmSymbols::impliesCreateAccessControlContext_name(),
1153                         vmSymbols::void_boolean_signature());
1154   // Allow NULL which should only happen with bootstrapping.
1155   if (m != NULL) {
1156     if (m->is_static()) {
1157       // NoSuchMethodException doesn't actually work because it tries to run the
1158       // <init> function before java_lang_Class is linked. Print error and exit.
1159       tty->print_cr("ProtectionDomain.impliesCreateAccessControlContext() has the wrong linkage");
1160       return false; // initialization failed
1161     }
1162     Universe::_pd_implies_cache->init(
1163       SystemDictionary::ProtectionDomain_klass(), m, CHECK_false);;
1164   }
1165 
1166   // The folowing is initializing converter functions for serialization in
1167   // JVM.cpp. If we clean up the StrictMath code above we may want to find
1168   // a better solution for this as well.
1169   initialize_converter_functions();
1170 
1171   // This needs to be done before the first scavenge/gc, since
1172   // it's an input to soft ref clearing policy.
1173   {
1174     MutexLocker x(Heap_lock);
1175     Universe::update_heap_info_at_gc();
1176   }
1177 
1178   // ("weak") refs processing infrastructure initialization
1179   Universe::heap()->post_initialize();
1180 
1181   GC_locker::unlock();  // allow gc after bootstrapping
1182 
1183   MemoryService::set_universe_heap(Universe::_collectedHeap);
1184   return true;
1185 }
1186 
1187 
1188 void Universe::compute_base_vtable_size() {
1189   _base_vtable_size = ClassLoader::compute_Object_vtable();
1190 }
1191 
1192 
1193 // %%% The Universe::flush_foo methods belong in CodeCache.
1194 
1195 // Flushes compiled methods dependent on dependee.
1196 void Universe::flush_dependents_on(instanceKlassHandle dependee) {
1197   assert_lock_strong(Compile_lock);
1198 
1199   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1200 
1201   // CodeCache can only be updated by a thread_in_VM and they will all be
1202   // stopped dring the safepoint so CodeCache will be safe to update without
1203   // holding the CodeCache_lock.
1204 
1205   KlassDepChange changes(dependee);
1206 
1207   // Compute the dependent nmethods
1208   if (CodeCache::mark_for_deoptimization(changes) > 0) {
1209     // At least one nmethod has been marked for deoptimization
1210     VM_Deoptimize op;
1211     VMThread::execute(&op);
1212   }
1213 }
1214 
1215 // Flushes compiled methods dependent on a particular CallSite
1216 // instance when its target is different than the given MethodHandle.
1217 void Universe::flush_dependents_on(Handle call_site, Handle method_handle) {
1218   assert_lock_strong(Compile_lock);
1219 
1220   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1221 
1222   // CodeCache can only be updated by a thread_in_VM and they will all be
1223   // stopped dring the safepoint so CodeCache will be safe to update without
1224   // holding the CodeCache_lock.
1225 
1226   CallSiteDepChange changes(call_site(), method_handle());
1227 
1228   // Compute the dependent nmethods that have a reference to a
1229   // CallSite object.  We use instanceKlass::mark_dependent_nmethod
1230   // directly instead of CodeCache::mark_for_deoptimization because we
1231   // want dependents on the call site class only not all classes in
1232   // the ContextStream.
1233   int marked = 0;
1234   {
1235     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1236     instanceKlass* call_site_klass = instanceKlass::cast(call_site->klass());
1237     marked = call_site_klass->mark_dependent_nmethods(changes);
1238   }
1239   if (marked > 0) {
1240     // At least one nmethod has been marked for deoptimization
1241     VM_Deoptimize op;
1242     VMThread::execute(&op);
1243   }
1244 }
1245 
1246 #ifdef HOTSWAP
1247 // Flushes compiled methods dependent on dependee in the evolutionary sense
1248 void Universe::flush_evol_dependents_on(instanceKlassHandle ev_k_h) {
1249   // --- Compile_lock is not held. However we are at a safepoint.
1250   assert_locked_or_safepoint(Compile_lock);
1251   if (CodeCache::number_of_nmethods_with_dependencies() == 0) return;
1252 
1253   // CodeCache can only be updated by a thread_in_VM and they will all be
1254   // stopped dring the safepoint so CodeCache will be safe to update without
1255   // holding the CodeCache_lock.
1256 
1257   // Compute the dependent nmethods
1258   if (CodeCache::mark_for_evol_deoptimization(ev_k_h) > 0) {
1259     // At least one nmethod has been marked for deoptimization
1260 
1261     // All this already happens inside a VM_Operation, so we'll do all the work here.
1262     // Stuff copied from VM_Deoptimize and modified slightly.
1263 
1264     // We do not want any GCs to happen while we are in the middle of this VM operation
1265     ResourceMark rm;
1266     DeoptimizationMarker dm;
1267 
1268     // Deoptimize all activations depending on marked nmethods
1269     Deoptimization::deoptimize_dependents();
1270 
1271     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1272     CodeCache::make_marked_nmethods_not_entrant();
1273   }
1274 }
1275 #endif // HOTSWAP
1276 
1277 
1278 // Flushes compiled methods dependent on dependee
1279 void Universe::flush_dependents_on_method(methodHandle m_h) {
1280   // --- Compile_lock is not held. However we are at a safepoint.
1281   assert_locked_or_safepoint(Compile_lock);
1282 
1283   // CodeCache can only be updated by a thread_in_VM and they will all be
1284   // stopped dring the safepoint so CodeCache will be safe to update without
1285   // holding the CodeCache_lock.
1286 
1287   // Compute the dependent nmethods
1288   if (CodeCache::mark_for_deoptimization(m_h()) > 0) {
1289     // At least one nmethod has been marked for deoptimization
1290 
1291     // All this already happens inside a VM_Operation, so we'll do all the work here.
1292     // Stuff copied from VM_Deoptimize and modified slightly.
1293 
1294     // We do not want any GCs to happen while we are in the middle of this VM operation
1295     ResourceMark rm;
1296     DeoptimizationMarker dm;
1297 
1298     // Deoptimize all activations depending on marked nmethods
1299     Deoptimization::deoptimize_dependents();
1300 
1301     // Make the dependent methods not entrant (in VM_Deoptimize they are made zombies)
1302     CodeCache::make_marked_nmethods_not_entrant();
1303   }
1304 }
1305 
1306 void Universe::print() {
1307   print_on(gclog_or_tty);
1308 }
1309 
1310 void Universe::print_on(outputStream* st, bool extended) {
1311   st->print_cr("Heap");
1312   if (!extended) {
1313     heap()->print_on(st);
1314   } else {
1315     heap()->print_extended_on(st);
1316   }
1317 }
1318 
1319 void Universe::print_heap_at_SIGBREAK() {
1320   if (PrintHeapAtSIGBREAK) {
1321     MutexLocker hl(Heap_lock);
1322     print_on(tty);
1323     tty->cr();
1324     tty->flush();
1325   }
1326 }
1327 
1328 void Universe::print_heap_before_gc(outputStream* st, bool ignore_extended) {
1329   st->print_cr("{Heap before GC invocations=%u (full %u):",
1330                heap()->total_collections(),
1331                heap()->total_full_collections());
1332   if (!PrintHeapAtGCExtended || ignore_extended) {
1333     heap()->print_on(st);
1334   } else {
1335     heap()->print_extended_on(st);
1336   }
1337 }
1338 
1339 void Universe::print_heap_after_gc(outputStream* st, bool ignore_extended) {
1340   st->print_cr("Heap after GC invocations=%u (full %u):",
1341                heap()->total_collections(),
1342                heap()->total_full_collections());
1343   if (!PrintHeapAtGCExtended || ignore_extended) {
1344     heap()->print_on(st);
1345   } else {
1346     heap()->print_extended_on(st);
1347   }
1348   st->print_cr("}");
1349 }
1350 
1351 void Universe::verify(bool allow_dirty, bool silent, VerifyOption option) {
1352   if (SharedSkipVerify) {
1353     return;
1354   }
1355 
1356   // The use of _verify_in_progress is a temporary work around for
1357   // 6320749.  Don't bother with a creating a class to set and clear
1358   // it since it is only used in this method and the control flow is
1359   // straight forward.
1360   _verify_in_progress = true;
1361 
1362   COMPILER2_PRESENT(
1363     assert(!DerivedPointerTable::is_active(),
1364          "DPT should not be active during verification "
1365          "(of thread stacks below)");
1366   )
1367 
1368   ResourceMark rm;
1369   HandleMark hm;  // Handles created during verification can be zapped
1370   _verify_count++;
1371 
1372   if (!silent) gclog_or_tty->print("[Verifying ");
1373   if (!silent) gclog_or_tty->print("threads ");
1374   Threads::verify();
1375   heap()->verify(allow_dirty, silent, option);
1376 
1377   if (!silent) gclog_or_tty->print("syms ");
1378   SymbolTable::verify();
1379   if (!silent) gclog_or_tty->print("strs ");
1380   StringTable::verify();
1381   {
1382     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1383     if (!silent) gclog_or_tty->print("zone ");
1384     CodeCache::verify();
1385   }
1386   if (!silent) gclog_or_tty->print("dict ");
1387   SystemDictionary::verify();
1388   if (!silent) gclog_or_tty->print("hand ");
1389   JNIHandles::verify();
1390   if (!silent) gclog_or_tty->print("C-heap ");
1391   os::check_heap();
1392   if (!silent) gclog_or_tty->print("code cache ");
1393   CodeCache::verify_oops();
1394   if (!silent) gclog_or_tty->print_cr("]");
1395 
1396   _verify_in_progress = false;
1397 }
1398 
1399 // Oop verification (see MacroAssembler::verify_oop)
1400 
1401 static uintptr_t _verify_oop_data[2]   = {0, (uintptr_t)-1};
1402 static uintptr_t _verify_klass_data[2] = {0, (uintptr_t)-1};
1403 
1404 
1405 static void calculate_verify_data(uintptr_t verify_data[2],
1406                                   HeapWord* low_boundary,
1407                                   HeapWord* high_boundary) {
1408   assert(low_boundary < high_boundary, "bad interval");
1409 
1410   // decide which low-order bits we require to be clear:
1411   size_t alignSize = MinObjAlignmentInBytes;
1412   size_t min_object_size = CollectedHeap::min_fill_size();
1413 
1414   // make an inclusive limit:
1415   uintptr_t max = (uintptr_t)high_boundary - min_object_size*wordSize;
1416   uintptr_t min = (uintptr_t)low_boundary;
1417   assert(min < max, "bad interval");
1418   uintptr_t diff = max ^ min;
1419 
1420   // throw away enough low-order bits to make the diff vanish
1421   uintptr_t mask = (uintptr_t)(-1);
1422   while ((mask & diff) != 0)
1423     mask <<= 1;
1424   uintptr_t bits = (min & mask);
1425   assert(bits == (max & mask), "correct mask");
1426   // check an intermediate value between min and max, just to make sure:
1427   assert(bits == ((min + (max-min)/2) & mask), "correct mask");
1428 
1429   // require address alignment, too:
1430   mask |= (alignSize - 1);
1431 
1432   if (!(verify_data[0] == 0 && verify_data[1] == (uintptr_t)-1)) {
1433     assert(verify_data[0] == mask && verify_data[1] == bits, "mask stability");
1434   }
1435   verify_data[0] = mask;
1436   verify_data[1] = bits;
1437 }
1438 
1439 
1440 // Oop verification (see MacroAssembler::verify_oop)
1441 #ifndef PRODUCT
1442 
1443 uintptr_t Universe::verify_oop_mask() {
1444   MemRegion m = heap()->reserved_region();
1445   calculate_verify_data(_verify_oop_data,
1446                         m.start(),
1447                         m.end());
1448   return _verify_oop_data[0];
1449 }
1450 
1451 
1452 
1453 uintptr_t Universe::verify_oop_bits() {
1454   verify_oop_mask();
1455   return _verify_oop_data[1];
1456 }
1457 
1458 
1459 uintptr_t Universe::verify_klass_mask() {
1460   /* $$$
1461   // A klass can never live in the new space.  Since the new and old
1462   // spaces can change size, we must settle for bounds-checking against
1463   // the bottom of the world, plus the smallest possible new and old
1464   // space sizes that may arise during execution.
1465   size_t min_new_size = Universe::new_size();   // in bytes
1466   size_t min_old_size = Universe::old_size();   // in bytes
1467   calculate_verify_data(_verify_klass_data,
1468           (HeapWord*)((uintptr_t)_new_gen->low_boundary + min_new_size + min_old_size),
1469           _perm_gen->high_boundary);
1470                         */
1471   // Why doesn't the above just say that klass's always live in the perm
1472   // gen?  I'll see if that seems to work...
1473   MemRegion permanent_reserved;
1474   switch (Universe::heap()->kind()) {
1475   default:
1476     // ???: What if a CollectedHeap doesn't have a permanent generation?
1477     ShouldNotReachHere();
1478     break;
1479   case CollectedHeap::GenCollectedHeap:
1480   case CollectedHeap::G1CollectedHeap: {
1481     SharedHeap* sh = (SharedHeap*) Universe::heap();
1482     permanent_reserved = sh->perm_gen()->reserved();
1483    break;
1484   }
1485 #ifndef SERIALGC
1486   case CollectedHeap::ParallelScavengeHeap: {
1487     ParallelScavengeHeap* psh = (ParallelScavengeHeap*) Universe::heap();
1488     permanent_reserved = psh->perm_gen()->reserved();
1489     break;
1490   }
1491 #endif // SERIALGC
1492   }
1493   calculate_verify_data(_verify_klass_data,
1494                         permanent_reserved.start(),
1495                         permanent_reserved.end());
1496 
1497   return _verify_klass_data[0];
1498 }
1499 
1500 
1501 
1502 uintptr_t Universe::verify_klass_bits() {
1503   verify_klass_mask();
1504   return _verify_klass_data[1];
1505 }
1506 
1507 
1508 uintptr_t Universe::verify_mark_mask() {
1509   return markOopDesc::lock_mask_in_place;
1510 }
1511 
1512 
1513 
1514 uintptr_t Universe::verify_mark_bits() {
1515   intptr_t mask = verify_mark_mask();
1516   intptr_t bits = (intptr_t)markOopDesc::prototype();
1517   assert((bits & ~mask) == 0, "no stray header bits");
1518   return bits;
1519 }
1520 #endif // PRODUCT
1521 
1522 
1523 void Universe::compute_verify_oop_data() {
1524   verify_oop_mask();
1525   verify_oop_bits();
1526   verify_mark_mask();
1527   verify_mark_bits();
1528   verify_klass_mask();
1529   verify_klass_bits();
1530 }
1531 
1532 
1533 void CommonMethodOopCache::init(klassOop k, methodOop m, TRAPS) {
1534   if (!UseSharedSpaces) {
1535     _klass = k;
1536   }
1537 #ifndef PRODUCT
1538   else {
1539     // sharing initilization should have already set up _klass
1540     assert(_klass != NULL, "just checking");
1541   }
1542 #endif
1543 
1544   _method_idnum = m->method_idnum();
1545   assert(_method_idnum >= 0, "sanity check");
1546 }
1547 
1548 
1549 ActiveMethodOopsCache::~ActiveMethodOopsCache() {
1550   if (_prev_methods != NULL) {
1551     for (int i = _prev_methods->length() - 1; i >= 0; i--) {
1552       jweak method_ref = _prev_methods->at(i);
1553       if (method_ref != NULL) {
1554         JNIHandles::destroy_weak_global(method_ref);
1555       }
1556     }
1557     delete _prev_methods;
1558     _prev_methods = NULL;
1559   }
1560 }
1561 
1562 
1563 void ActiveMethodOopsCache::add_previous_version(const methodOop method) {
1564   assert(Thread::current()->is_VM_thread(),
1565     "only VMThread can add previous versions");
1566 
1567   if (_prev_methods == NULL) {
1568     // This is the first previous version so make some space.
1569     // Start with 2 elements under the assumption that the class
1570     // won't be redefined much.
1571     _prev_methods = new (ResourceObj::C_HEAP) GrowableArray<jweak>(2, true);
1572   }
1573 
1574   // RC_TRACE macro has an embedded ResourceMark
1575   RC_TRACE(0x00000100,
1576     ("add: %s(%s): adding prev version ref for cached method @%d",
1577     method->name()->as_C_string(), method->signature()->as_C_string(),
1578     _prev_methods->length()));
1579 
1580   methodHandle method_h(method);
1581   jweak method_ref = JNIHandles::make_weak_global(method_h);
1582   _prev_methods->append(method_ref);
1583 
1584   // Using weak references allows previous versions of the cached
1585   // method to be GC'ed when they are no longer needed. Since the
1586   // caller is the VMThread and we are at a safepoint, this is a good
1587   // time to clear out unused weak references.
1588 
1589   for (int i = _prev_methods->length() - 1; i >= 0; i--) {
1590     jweak method_ref = _prev_methods->at(i);
1591     assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
1592     if (method_ref == NULL) {
1593       _prev_methods->remove_at(i);
1594       // Since we are traversing the array backwards, we don't have to
1595       // do anything special with the index.
1596       continue;  // robustness
1597     }
1598 
1599     methodOop m = (methodOop)JNIHandles::resolve(method_ref);
1600     if (m == NULL) {
1601       // this method entry has been GC'ed so remove it
1602       JNIHandles::destroy_weak_global(method_ref);
1603       _prev_methods->remove_at(i);
1604     } else {
1605       // RC_TRACE macro has an embedded ResourceMark
1606       RC_TRACE(0x00000400, ("add: %s(%s): previous cached method @%d is alive",
1607         m->name()->as_C_string(), m->signature()->as_C_string(), i));
1608     }
1609   }
1610 } // end add_previous_version()
1611 
1612 
1613 bool ActiveMethodOopsCache::is_same_method(const methodOop method) const {
1614   instanceKlass* ik = instanceKlass::cast(klass());
1615   methodOop check_method = ik->method_with_idnum(method_idnum());
1616   assert(check_method != NULL, "sanity check");
1617   if (check_method == method) {
1618     // done with the easy case
1619     return true;
1620   }
1621 
1622   if (_prev_methods != NULL) {
1623     // The cached method has been redefined at least once so search
1624     // the previous versions for a match.
1625     for (int i = 0; i < _prev_methods->length(); i++) {
1626       jweak method_ref = _prev_methods->at(i);
1627       assert(method_ref != NULL, "weak method ref was unexpectedly cleared");
1628       if (method_ref == NULL) {
1629         continue;  // robustness
1630       }
1631 
1632       check_method = (methodOop)JNIHandles::resolve(method_ref);
1633       if (check_method == method) {
1634         // a previous version matches
1635         return true;
1636       }
1637     }
1638   }
1639 
1640   // either no previous versions or no previous version matched
1641   return false;
1642 }
1643 
1644 
1645 methodOop LatestMethodOopCache::get_methodOop() {
1646   if (klass() == NULL) return NULL;
1647   instanceKlass* ik = instanceKlass::cast(klass());
1648   methodOop m = ik->method_with_idnum(method_idnum());
1649   assert(m != NULL, "sanity check");
1650   return m;
1651 }
1652 
1653 
1654 #ifdef ASSERT
1655 // Release dummy object(s) at bottom of heap
1656 bool Universe::release_fullgc_alot_dummy() {
1657   MutexLocker ml(FullGCALot_lock);
1658   if (_fullgc_alot_dummy_array != NULL) {
1659     if (_fullgc_alot_dummy_next >= _fullgc_alot_dummy_array->length()) {
1660       // No more dummies to release, release entire array instead
1661       _fullgc_alot_dummy_array = NULL;
1662       return false;
1663     }
1664     if (!UseConcMarkSweepGC) {
1665       // Release dummy at bottom of old generation
1666       _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
1667     }
1668     // Release dummy at bottom of permanent generation
1669     _fullgc_alot_dummy_array->obj_at_put(_fullgc_alot_dummy_next++, NULL);
1670   }
1671   return true;
1672 }
1673 
1674 #endif // ASSERT