1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/memnode.hpp"
  38 #include "opto/mulnode.hpp"
  39 #include "opto/phaseX.hpp"
  40 #include "opto/regmask.hpp"
  41 
  42 // Portions of code courtesy of Clifford Click
  43 
  44 // Optimization - Graph Style
  45 
  46 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  47 
  48 //=============================================================================
  49 uint MemNode::size_of() const { return sizeof(*this); }
  50 
  51 const TypePtr *MemNode::adr_type() const {
  52   Node* adr = in(Address);
  53   const TypePtr* cross_check = NULL;
  54   DEBUG_ONLY(cross_check = _adr_type);
  55   return calculate_adr_type(adr->bottom_type(), cross_check);
  56 }
  57 
  58 #ifndef PRODUCT
  59 void MemNode::dump_spec(outputStream *st) const {
  60   if (in(Address) == NULL)  return; // node is dead
  61 #ifndef ASSERT
  62   // fake the missing field
  63   const TypePtr* _adr_type = NULL;
  64   if (in(Address) != NULL)
  65     _adr_type = in(Address)->bottom_type()->isa_ptr();
  66 #endif
  67   dump_adr_type(this, _adr_type, st);
  68 
  69   Compile* C = Compile::current();
  70   if( C->alias_type(_adr_type)->is_volatile() )
  71     st->print(" Volatile!");
  72 }
  73 
  74 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  75   st->print(" @");
  76   if (adr_type == NULL) {
  77     st->print("NULL");
  78   } else {
  79     adr_type->dump_on(st);
  80     Compile* C = Compile::current();
  81     Compile::AliasType* atp = NULL;
  82     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  83     if (atp == NULL)
  84       st->print(", idx=?\?;");
  85     else if (atp->index() == Compile::AliasIdxBot)
  86       st->print(", idx=Bot;");
  87     else if (atp->index() == Compile::AliasIdxTop)
  88       st->print(", idx=Top;");
  89     else if (atp->index() == Compile::AliasIdxRaw)
  90       st->print(", idx=Raw;");
  91     else {
  92       ciField* field = atp->field();
  93       if (field) {
  94         st->print(", name=");
  95         field->print_name_on(st);
  96       }
  97       st->print(", idx=%d;", atp->index());
  98     }
  99   }
 100 }
 101 
 102 extern void print_alias_types();
 103 
 104 #endif
 105 
 106 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
 107   const TypeOopPtr *tinst = t_adr->isa_oopptr();
 108   if (tinst == NULL || !tinst->is_known_instance_field())
 109     return mchain;  // don't try to optimize non-instance types
 110   uint instance_id = tinst->instance_id();
 111   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 112   Node *prev = NULL;
 113   Node *result = mchain;
 114   while (prev != result) {
 115     prev = result;
 116     if (result == start_mem)
 117       break;  // hit one of our sentinels
 118     // skip over a call which does not affect this memory slice
 119     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 120       Node *proj_in = result->in(0);
 121       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 122         break;  // hit one of our sentinels
 123       } else if (proj_in->is_Call()) {
 124         CallNode *call = proj_in->as_Call();
 125         if (!call->may_modify(t_adr, phase)) {
 126           result = call->in(TypeFunc::Memory);
 127         }
 128       } else if (proj_in->is_Initialize()) {
 129         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 130         // Stop if this is the initialization for the object instance which
 131         // which contains this memory slice, otherwise skip over it.
 132         if (alloc != NULL && alloc->_idx != instance_id) {
 133           result = proj_in->in(TypeFunc::Memory);
 134         }
 135       } else if (proj_in->is_MemBar()) {
 136         result = proj_in->in(TypeFunc::Memory);
 137       } else {
 138         assert(false, "unexpected projection");
 139       }
 140     } else if (result->is_ClearArray()) {
 141       if (!ClearArrayNode::step_through(&result, instance_id, phase)) {
 142         // Can not bypass initialization of the instance
 143         // we are looking for.
 144         break;
 145       }
 146       // Otherwise skip it (the call updated 'result' value).
 147     } else if (result->is_MergeMem()) {
 148       result = step_through_mergemem(phase, result->as_MergeMem(), t_adr, NULL, tty);
 149     }
 150   }
 151   return result;
 152 }
 153 
 154 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, PhaseGVN *phase) {
 155   const TypeOopPtr *t_oop = t_adr->isa_oopptr();
 156   bool is_instance = (t_oop != NULL) && t_oop->is_known_instance_field();
 157   PhaseIterGVN *igvn = phase->is_IterGVN();
 158   Node *result = mchain;
 159   result = optimize_simple_memory_chain(result, t_adr, phase);
 160   if (is_instance && igvn != NULL  && result->is_Phi()) {
 161     PhiNode *mphi = result->as_Phi();
 162     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 163     const TypePtr *t = mphi->adr_type();
 164     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 165         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 166         t->is_oopptr()->cast_to_exactness(true)
 167          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 168          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 169       // clone the Phi with our address type
 170       result = mphi->split_out_instance(t_adr, igvn);
 171     } else {
 172       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 173     }
 174   }
 175   return result;
 176 }
 177 
 178 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 179   uint alias_idx = phase->C->get_alias_index(tp);
 180   Node *mem = mmem;
 181 #ifdef ASSERT
 182   {
 183     // Check that current type is consistent with the alias index used during graph construction
 184     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 185     bool consistent =  adr_check == NULL || adr_check->empty() ||
 186                        phase->C->must_alias(adr_check, alias_idx );
 187     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 188     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 189                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 190         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 191         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 192           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 193           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 194       // don't assert if it is dead code.
 195       consistent = true;
 196     }
 197     if( !consistent ) {
 198       st->print("alias_idx==%d, adr_check==", alias_idx);
 199       if( adr_check == NULL ) {
 200         st->print("NULL");
 201       } else {
 202         adr_check->dump();
 203       }
 204       st->cr();
 205       print_alias_types();
 206       assert(consistent, "adr_check must match alias idx");
 207     }
 208   }
 209 #endif
 210   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 211   // means an array I have not precisely typed yet.  Do not do any
 212   // alias stuff with it any time soon.
 213   const TypeOopPtr *toop = tp->isa_oopptr();
 214   if( tp->base() != Type::AnyPtr &&
 215       !(toop &&
 216         toop->klass() != NULL &&
 217         toop->klass()->is_java_lang_Object() &&
 218         toop->offset() == Type::OffsetBot) ) {
 219     // compress paths and change unreachable cycles to TOP
 220     // If not, we can update the input infinitely along a MergeMem cycle
 221     // Equivalent code in PhiNode::Ideal
 222     Node* m  = phase->transform(mmem);
 223     // If transformed to a MergeMem, get the desired slice
 224     // Otherwise the returned node represents memory for every slice
 225     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 226     // Update input if it is progress over what we have now
 227   }
 228   return mem;
 229 }
 230 
 231 //--------------------------Ideal_common---------------------------------------
 232 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 233 // Unhook non-raw memories from complete (macro-expanded) initializations.
 234 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 235   // If our control input is a dead region, kill all below the region
 236   Node *ctl = in(MemNode::Control);
 237   if (ctl && remove_dead_region(phase, can_reshape))
 238     return this;
 239   ctl = in(MemNode::Control);
 240   // Don't bother trying to transform a dead node
 241   if( ctl && ctl->is_top() )  return NodeSentinel;
 242 
 243   PhaseIterGVN *igvn = phase->is_IterGVN();
 244   // Wait if control on the worklist.
 245   if (ctl && can_reshape && igvn != NULL) {
 246     Node* bol = NULL;
 247     Node* cmp = NULL;
 248     if (ctl->in(0)->is_If()) {
 249       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 250       bol = ctl->in(0)->in(1);
 251       if (bol->is_Bool())
 252         cmp = ctl->in(0)->in(1)->in(1);
 253     }
 254     if (igvn->_worklist.member(ctl) ||
 255         (bol != NULL && igvn->_worklist.member(bol)) ||
 256         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 257       // This control path may be dead.
 258       // Delay this memory node transformation until the control is processed.
 259       phase->is_IterGVN()->_worklist.push(this);
 260       return NodeSentinel; // caller will return NULL
 261     }
 262   }
 263   // Ignore if memory is dead, or self-loop
 264   Node *mem = in(MemNode::Memory);
 265   if( phase->type( mem ) == Type::TOP ) return NodeSentinel; // caller will return NULL
 266   assert( mem != this, "dead loop in MemNode::Ideal" );
 267 
 268   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 269     // This memory slice may be dead.
 270     // Delay this mem node transformation until the memory is processed.
 271     phase->is_IterGVN()->_worklist.push(this);
 272     return NodeSentinel; // caller will return NULL
 273   }
 274 
 275   Node *address = in(MemNode::Address);
 276   const Type *t_adr = phase->type( address );
 277   if( t_adr == Type::TOP )              return NodeSentinel; // caller will return NULL
 278 
 279   if( can_reshape && igvn != NULL &&
 280       (igvn->_worklist.member(address) ||
 281        igvn->_worklist.size() > 0 && (phase->type(address) != adr_type())) ) {
 282     // The address's base and type may change when the address is processed.
 283     // Delay this mem node transformation until the address is processed.
 284     phase->is_IterGVN()->_worklist.push(this);
 285     return NodeSentinel; // caller will return NULL
 286   }
 287 
 288   // Do NOT remove or optimize the next lines: ensure a new alias index
 289   // is allocated for an oop pointer type before Escape Analysis.
 290   // Note: C++ will not remove it since the call has side effect.
 291   if ( t_adr->isa_oopptr() ) {
 292     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 293   }
 294 
 295 #ifdef ASSERT
 296   Node* base = NULL;
 297   if (address->is_AddP())
 298     base = address->in(AddPNode::Base);
 299   assert(base == NULL || t_adr->isa_rawptr() ||
 300         !phase->type(base)->higher_equal(TypePtr::NULL_PTR), "NULL+offs not RAW address?");
 301 #endif
 302 
 303   // Avoid independent memory operations
 304   Node* old_mem = mem;
 305 
 306   // The code which unhooks non-raw memories from complete (macro-expanded)
 307   // initializations was removed. After macro-expansion all stores catched
 308   // by Initialize node became raw stores and there is no information
 309   // which memory slices they modify. So it is unsafe to move any memory
 310   // operation above these stores. Also in most cases hooked non-raw memories
 311   // were already unhooked by using information from detect_ptr_independence()
 312   // and find_previous_store().
 313 
 314   if (mem->is_MergeMem()) {
 315     MergeMemNode* mmem = mem->as_MergeMem();
 316     const TypePtr *tp = t_adr->is_ptr();
 317 
 318     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 319   }
 320 
 321   if (mem != old_mem) {
 322     set_req(MemNode::Memory, mem);
 323     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 324     return this;
 325   }
 326 
 327   // let the subclass continue analyzing...
 328   return NULL;
 329 }
 330 
 331 // Helper function for proving some simple control dominations.
 332 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 333 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 334 // is not a constant (dominated by the method's StartNode).
 335 // Used by MemNode::find_previous_store to prove that the
 336 // control input of a memory operation predates (dominates)
 337 // an allocation it wants to look past.
 338 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 339   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 340     return false; // Conservative answer for dead code
 341 
 342   // Check 'dom'. Skip Proj and CatchProj nodes.
 343   dom = dom->find_exact_control(dom);
 344   if (dom == NULL || dom->is_top())
 345     return false; // Conservative answer for dead code
 346 
 347   if (dom == sub) {
 348     // For the case when, for example, 'sub' is Initialize and the original
 349     // 'dom' is Proj node of the 'sub'.
 350     return false;
 351   }
 352 
 353   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 354     return true;
 355 
 356   // 'dom' dominates 'sub' if its control edge and control edges
 357   // of all its inputs dominate or equal to sub's control edge.
 358 
 359   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 360   // Or Region for the check in LoadNode::Ideal();
 361   // 'sub' should have sub->in(0) != NULL.
 362   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 363          sub->is_Region(), "expecting only these nodes");
 364 
 365   // Get control edge of 'sub'.
 366   Node* orig_sub = sub;
 367   sub = sub->find_exact_control(sub->in(0));
 368   if (sub == NULL || sub->is_top())
 369     return false; // Conservative answer for dead code
 370 
 371   assert(sub->is_CFG(), "expecting control");
 372 
 373   if (sub == dom)
 374     return true;
 375 
 376   if (sub->is_Start() || sub->is_Root())
 377     return false;
 378 
 379   {
 380     // Check all control edges of 'dom'.
 381 
 382     ResourceMark rm;
 383     Arena* arena = Thread::current()->resource_area();
 384     Node_List nlist(arena);
 385     Unique_Node_List dom_list(arena);
 386 
 387     dom_list.push(dom);
 388     bool only_dominating_controls = false;
 389 
 390     for (uint next = 0; next < dom_list.size(); next++) {
 391       Node* n = dom_list.at(next);
 392       if (n == orig_sub)
 393         return false; // One of dom's inputs dominated by sub.
 394       if (!n->is_CFG() && n->pinned()) {
 395         // Check only own control edge for pinned non-control nodes.
 396         n = n->find_exact_control(n->in(0));
 397         if (n == NULL || n->is_top())
 398           return false; // Conservative answer for dead code
 399         assert(n->is_CFG(), "expecting control");
 400         dom_list.push(n);
 401       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 402         only_dominating_controls = true;
 403       } else if (n->is_CFG()) {
 404         if (n->dominates(sub, nlist))
 405           only_dominating_controls = true;
 406         else
 407           return false;
 408       } else {
 409         // First, own control edge.
 410         Node* m = n->find_exact_control(n->in(0));
 411         if (m != NULL) {
 412           if (m->is_top())
 413             return false; // Conservative answer for dead code
 414           dom_list.push(m);
 415         }
 416         // Now, the rest of edges.
 417         uint cnt = n->req();
 418         for (uint i = 1; i < cnt; i++) {
 419           m = n->find_exact_control(n->in(i));
 420           if (m == NULL || m->is_top())
 421             continue;
 422           dom_list.push(m);
 423         }
 424       }
 425     }
 426     return only_dominating_controls;
 427   }
 428 }
 429 
 430 //---------------------detect_ptr_independence---------------------------------
 431 // Used by MemNode::find_previous_store to prove that two base
 432 // pointers are never equal.
 433 // The pointers are accompanied by their associated allocations,
 434 // if any, which have been previously discovered by the caller.
 435 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 436                                       Node* p2, AllocateNode* a2,
 437                                       PhaseTransform* phase) {
 438   // Attempt to prove that these two pointers cannot be aliased.
 439   // They may both manifestly be allocations, and they should differ.
 440   // Or, if they are not both allocations, they can be distinct constants.
 441   // Otherwise, one is an allocation and the other a pre-existing value.
 442   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 443     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 444   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 445     return (a1 != a2);
 446   } else if (a1 != NULL) {                  // one allocation a1
 447     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 448     return all_controls_dominate(p2, a1);
 449   } else { //(a2 != NULL)                   // one allocation a2
 450     return all_controls_dominate(p1, a2);
 451   }
 452   return false;
 453 }
 454 
 455 
 456 // The logic for reordering loads and stores uses four steps:
 457 // (a) Walk carefully past stores and initializations which we
 458 //     can prove are independent of this load.
 459 // (b) Observe that the next memory state makes an exact match
 460 //     with self (load or store), and locate the relevant store.
 461 // (c) Ensure that, if we were to wire self directly to the store,
 462 //     the optimizer would fold it up somehow.
 463 // (d) Do the rewiring, and return, depending on some other part of
 464 //     the optimizer to fold up the load.
 465 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 466 // specific to loads and stores, so they are handled by the callers.
 467 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 468 //
 469 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 470   Node*         ctrl   = in(MemNode::Control);
 471   Node*         adr    = in(MemNode::Address);
 472   intptr_t      offset = 0;
 473   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 474   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 475 
 476   if (offset == Type::OffsetBot)
 477     return NULL;            // cannot unalias unless there are precise offsets
 478 
 479   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 480 
 481   intptr_t size_in_bytes = memory_size();
 482 
 483   Node* mem = in(MemNode::Memory);   // start searching here...
 484 
 485   int cnt = 50;             // Cycle limiter
 486   for (;;) {                // While we can dance past unrelated stores...
 487     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 488 
 489     if (mem->is_Store()) {
 490       Node* st_adr = mem->in(MemNode::Address);
 491       intptr_t st_offset = 0;
 492       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 493       if (st_base == NULL)
 494         break;              // inscrutable pointer
 495       if (st_offset != offset && st_offset != Type::OffsetBot) {
 496         const int MAX_STORE = BytesPerLong;
 497         if (st_offset >= offset + size_in_bytes ||
 498             st_offset <= offset - MAX_STORE ||
 499             st_offset <= offset - mem->as_Store()->memory_size()) {
 500           // Success:  The offsets are provably independent.
 501           // (You may ask, why not just test st_offset != offset and be done?
 502           // The answer is that stores of different sizes can co-exist
 503           // in the same sequence of RawMem effects.  We sometimes initialize
 504           // a whole 'tile' of array elements with a single jint or jlong.)
 505           mem = mem->in(MemNode::Memory);
 506           continue;           // (a) advance through independent store memory
 507         }
 508       }
 509       if (st_base != base &&
 510           detect_ptr_independence(base, alloc,
 511                                   st_base,
 512                                   AllocateNode::Ideal_allocation(st_base, phase),
 513                                   phase)) {
 514         // Success:  The bases are provably independent.
 515         mem = mem->in(MemNode::Memory);
 516         continue;           // (a) advance through independent store memory
 517       }
 518 
 519       // (b) At this point, if the bases or offsets do not agree, we lose,
 520       // since we have not managed to prove 'this' and 'mem' independent.
 521       if (st_base == base && st_offset == offset) {
 522         return mem;         // let caller handle steps (c), (d)
 523       }
 524 
 525     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 526       InitializeNode* st_init = mem->in(0)->as_Initialize();
 527       AllocateNode*  st_alloc = st_init->allocation();
 528       if (st_alloc == NULL)
 529         break;              // something degenerated
 530       bool known_identical = false;
 531       bool known_independent = false;
 532       if (alloc == st_alloc)
 533         known_identical = true;
 534       else if (alloc != NULL)
 535         known_independent = true;
 536       else if (all_controls_dominate(this, st_alloc))
 537         known_independent = true;
 538 
 539       if (known_independent) {
 540         // The bases are provably independent: Either they are
 541         // manifestly distinct allocations, or else the control
 542         // of this load dominates the store's allocation.
 543         int alias_idx = phase->C->get_alias_index(adr_type());
 544         if (alias_idx == Compile::AliasIdxRaw) {
 545           mem = st_alloc->in(TypeFunc::Memory);
 546         } else {
 547           mem = st_init->memory(alias_idx);
 548         }
 549         continue;           // (a) advance through independent store memory
 550       }
 551 
 552       // (b) at this point, if we are not looking at a store initializing
 553       // the same allocation we are loading from, we lose.
 554       if (known_identical) {
 555         // From caller, can_see_stored_value will consult find_captured_store.
 556         return mem;         // let caller handle steps (c), (d)
 557       }
 558 
 559     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 560       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 561       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 562         CallNode *call = mem->in(0)->as_Call();
 563         if (!call->may_modify(addr_t, phase)) {
 564           mem = call->in(TypeFunc::Memory);
 565           continue;         // (a) advance through independent call memory
 566         }
 567       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 568         mem = mem->in(0)->in(TypeFunc::Memory);
 569         continue;           // (a) advance through independent MemBar memory
 570       } else if (mem->is_ClearArray()) {
 571         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 572           // (the call updated 'mem' value)
 573           continue;         // (a) advance through independent allocation memory
 574         } else {
 575           // Can not bypass initialization of the instance
 576           // we are looking for.
 577           return mem;
 578         }
 579       } else if (mem->is_MergeMem()) {
 580         int alias_idx = phase->C->get_alias_index(adr_type());
 581         mem = mem->as_MergeMem()->memory_at(alias_idx);
 582         continue;           // (a) advance through independent MergeMem memory
 583       }
 584     }
 585 
 586     // Unless there is an explicit 'continue', we must bail out here,
 587     // because 'mem' is an inscrutable memory state (e.g., a call).
 588     break;
 589   }
 590 
 591   return NULL;              // bail out
 592 }
 593 
 594 //----------------------calculate_adr_type-------------------------------------
 595 // Helper function.  Notices when the given type of address hits top or bottom.
 596 // Also, asserts a cross-check of the type against the expected address type.
 597 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 598   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 599   #ifdef PRODUCT
 600   cross_check = NULL;
 601   #else
 602   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 603   #endif
 604   const TypePtr* tp = t->isa_ptr();
 605   if (tp == NULL) {
 606     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 607     return TypePtr::BOTTOM;           // touches lots of memory
 608   } else {
 609     #ifdef ASSERT
 610     // %%%% [phh] We don't check the alias index if cross_check is
 611     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 612     if (cross_check != NULL &&
 613         cross_check != TypePtr::BOTTOM &&
 614         cross_check != TypeRawPtr::BOTTOM) {
 615       // Recheck the alias index, to see if it has changed (due to a bug).
 616       Compile* C = Compile::current();
 617       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 618              "must stay in the original alias category");
 619       // The type of the address must be contained in the adr_type,
 620       // disregarding "null"-ness.
 621       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 622       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 623       assert(cross_check->meet(tp_notnull) == cross_check,
 624              "real address must not escape from expected memory type");
 625     }
 626     #endif
 627     return tp;
 628   }
 629 }
 630 
 631 //------------------------adr_phi_is_loop_invariant----------------------------
 632 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 633 // loop is loop invariant. Make a quick traversal of Phi and associated
 634 // CastPP nodes, looking to see if they are a closed group within the loop.
 635 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 636   // The idea is that the phi-nest must boil down to only CastPP nodes
 637   // with the same data. This implies that any path into the loop already
 638   // includes such a CastPP, and so the original cast, whatever its input,
 639   // must be covered by an equivalent cast, with an earlier control input.
 640   ResourceMark rm;
 641 
 642   // The loop entry input of the phi should be the unique dominating
 643   // node for every Phi/CastPP in the loop.
 644   Unique_Node_List closure;
 645   closure.push(adr_phi->in(LoopNode::EntryControl));
 646 
 647   // Add the phi node and the cast to the worklist.
 648   Unique_Node_List worklist;
 649   worklist.push(adr_phi);
 650   if( cast != NULL ){
 651     if( !cast->is_ConstraintCast() ) return false;
 652     worklist.push(cast);
 653   }
 654 
 655   // Begin recursive walk of phi nodes.
 656   while( worklist.size() ){
 657     // Take a node off the worklist
 658     Node *n = worklist.pop();
 659     if( !closure.member(n) ){
 660       // Add it to the closure.
 661       closure.push(n);
 662       // Make a sanity check to ensure we don't waste too much time here.
 663       if( closure.size() > 20) return false;
 664       // This node is OK if:
 665       //  - it is a cast of an identical value
 666       //  - or it is a phi node (then we add its inputs to the worklist)
 667       // Otherwise, the node is not OK, and we presume the cast is not invariant
 668       if( n->is_ConstraintCast() ){
 669         worklist.push(n->in(1));
 670       } else if( n->is_Phi() ) {
 671         for( uint i = 1; i < n->req(); i++ ) {
 672           worklist.push(n->in(i));
 673         }
 674       } else {
 675         return false;
 676       }
 677     }
 678   }
 679 
 680   // Quit when the worklist is empty, and we've found no offending nodes.
 681   return true;
 682 }
 683 
 684 //------------------------------Ideal_DU_postCCP-------------------------------
 685 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 686 // going away in this pass and we need to make this memory op depend on the
 687 // gating null check.
 688 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 689   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 690 }
 691 
 692 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 693 // some sense; we get to keep around the knowledge that an oop is not-null
 694 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 695 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 696 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 697 // some of the more trivial cases in the optimizer.  Removing more useless
 698 // Phi's started allowing Loads to illegally float above null checks.  I gave
 699 // up on this approach.  CNC 10/20/2000
 700 // This static method may be called not from MemNode (EncodePNode calls it).
 701 // Only the control edge of the node 'n' might be updated.
 702 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 703   Node *skipped_cast = NULL;
 704   // Need a null check?  Regular static accesses do not because they are
 705   // from constant addresses.  Array ops are gated by the range check (which
 706   // always includes a NULL check).  Just check field ops.
 707   if( n->in(MemNode::Control) == NULL ) {
 708     // Scan upwards for the highest location we can place this memory op.
 709     while( true ) {
 710       switch( adr->Opcode() ) {
 711 
 712       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 713         adr = adr->in(AddPNode::Base);
 714         continue;
 715 
 716       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 717         adr = adr->in(1);
 718         continue;
 719 
 720       case Op_EncodeP:
 721         // EncodeP node's control edge could be set by this method
 722         // when EncodeP node depends on CastPP node.
 723         //
 724         // Use its control edge for memory op because EncodeP may go away
 725         // later when it is folded with following or preceding DecodeN node.
 726         if (adr->in(0) == NULL) {
 727           // Keep looking for cast nodes.
 728           adr = adr->in(1);
 729           continue;
 730         }
 731         ccp->hash_delete(n);
 732         n->set_req(MemNode::Control, adr->in(0));
 733         ccp->hash_insert(n);
 734         return n;
 735 
 736       case Op_CastPP:
 737         // If the CastPP is useless, just peek on through it.
 738         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 739           // Remember the cast that we've peeked though. If we peek
 740           // through more than one, then we end up remembering the highest
 741           // one, that is, if in a loop, the one closest to the top.
 742           skipped_cast = adr;
 743           adr = adr->in(1);
 744           continue;
 745         }
 746         // CastPP is going away in this pass!  We need this memory op to be
 747         // control-dependent on the test that is guarding the CastPP.
 748         ccp->hash_delete(n);
 749         n->set_req(MemNode::Control, adr->in(0));
 750         ccp->hash_insert(n);
 751         return n;
 752 
 753       case Op_Phi:
 754         // Attempt to float above a Phi to some dominating point.
 755         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 756           // If we've already peeked through a Cast (which could have set the
 757           // control), we can't float above a Phi, because the skipped Cast
 758           // may not be loop invariant.
 759           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 760             adr = adr->in(1);
 761             continue;
 762           }
 763         }
 764 
 765         // Intentional fallthrough!
 766 
 767         // No obvious dominating point.  The mem op is pinned below the Phi
 768         // by the Phi itself.  If the Phi goes away (no true value is merged)
 769         // then the mem op can float, but not indefinitely.  It must be pinned
 770         // behind the controls leading to the Phi.
 771       case Op_CheckCastPP:
 772         // These usually stick around to change address type, however a
 773         // useless one can be elided and we still need to pick up a control edge
 774         if (adr->in(0) == NULL) {
 775           // This CheckCastPP node has NO control and is likely useless. But we
 776           // need check further up the ancestor chain for a control input to keep
 777           // the node in place. 4959717.
 778           skipped_cast = adr;
 779           adr = adr->in(1);
 780           continue;
 781         }
 782         ccp->hash_delete(n);
 783         n->set_req(MemNode::Control, adr->in(0));
 784         ccp->hash_insert(n);
 785         return n;
 786 
 787         // List of "safe" opcodes; those that implicitly block the memory
 788         // op below any null check.
 789       case Op_CastX2P:          // no null checks on native pointers
 790       case Op_Parm:             // 'this' pointer is not null
 791       case Op_LoadP:            // Loading from within a klass
 792       case Op_LoadN:            // Loading from within a klass
 793       case Op_LoadKlass:        // Loading from within a klass
 794       case Op_LoadNKlass:       // Loading from within a klass
 795       case Op_ConP:             // Loading from a klass
 796       case Op_ConN:             // Loading from a klass
 797       case Op_CreateEx:         // Sucking up the guts of an exception oop
 798       case Op_Con:              // Reading from TLS
 799       case Op_CMoveP:           // CMoveP is pinned
 800       case Op_CMoveN:           // CMoveN is pinned
 801         break;                  // No progress
 802 
 803       case Op_Proj:             // Direct call to an allocation routine
 804       case Op_SCMemProj:        // Memory state from store conditional ops
 805 #ifdef ASSERT
 806         {
 807           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 808           const Node* call = adr->in(0);
 809           if (call->is_CallJava()) {
 810             const CallJavaNode* call_java = call->as_CallJava();
 811             const TypeTuple *r = call_java->tf()->range();
 812             assert(r->cnt() > TypeFunc::Parms, "must return value");
 813             const Type* ret_type = r->field_at(TypeFunc::Parms);
 814             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 815             // We further presume that this is one of
 816             // new_instance_Java, new_array_Java, or
 817             // the like, but do not assert for this.
 818           } else if (call->is_Allocate()) {
 819             // similar case to new_instance_Java, etc.
 820           } else if (!call->is_CallLeaf()) {
 821             // Projections from fetch_oop (OSR) are allowed as well.
 822             ShouldNotReachHere();
 823           }
 824         }
 825 #endif
 826         break;
 827       default:
 828         ShouldNotReachHere();
 829       }
 830       break;
 831     }
 832   }
 833 
 834   return  NULL;               // No progress
 835 }
 836 
 837 
 838 //=============================================================================
 839 uint LoadNode::size_of() const { return sizeof(*this); }
 840 uint LoadNode::cmp( const Node &n ) const
 841 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 842 const Type *LoadNode::bottom_type() const { return _type; }
 843 uint LoadNode::ideal_reg() const {
 844   return Matcher::base2reg[_type->base()];
 845 }
 846 
 847 #ifndef PRODUCT
 848 void LoadNode::dump_spec(outputStream *st) const {
 849   MemNode::dump_spec(st);
 850   if( !Verbose && !WizardMode ) {
 851     // standard dump does this in Verbose and WizardMode
 852     st->print(" #"); _type->dump_on(st);
 853   }
 854 }
 855 #endif
 856 
 857 #ifdef ASSERT
 858 //----------------------------is_immutable_value-------------------------------
 859 // Helper function to allow a raw load without control edge for some cases
 860 bool LoadNode::is_immutable_value(Node* adr) {
 861   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 862           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 863           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 864            in_bytes(JavaThread::osthread_offset())));
 865 }
 866 #endif
 867 
 868 //----------------------------LoadNode::make-----------------------------------
 869 // Polymorphic factory method:
 870 Node *LoadNode::make( PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt ) {
 871   Compile* C = gvn.C;
 872 
 873   // sanity check the alias category against the created node type
 874   assert(!(adr_type->isa_oopptr() &&
 875            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 876          "use LoadKlassNode instead");
 877   assert(!(adr_type->isa_aryptr() &&
 878            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 879          "use LoadRangeNode instead");
 880   // Check control edge of raw loads
 881   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 882           // oop will be recorded in oop map if load crosses safepoint
 883           rt->isa_oopptr() || is_immutable_value(adr),
 884           "raw memory operations should have control edge");
 885   switch (bt) {
 886   case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int()    );
 887   case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int()    );
 888   case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int()    );
 889   case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int()    );
 890   case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int()    );
 891   case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long()   );
 892   case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt              );
 893   case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt              );
 894   case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr()    );
 895   case T_OBJECT:
 896 #ifdef _LP64
 897     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 898       Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop()));
 899       return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
 900     } else
 901 #endif
 902     {
 903       assert(!adr->bottom_type()->is_ptr_to_narrowoop(), "should have got back a narrow oop");
 904       return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr());
 905     }
 906   }
 907   ShouldNotReachHere();
 908   return (LoadNode*)NULL;
 909 }
 910 
 911 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt) {
 912   bool require_atomic = true;
 913   return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), require_atomic);
 914 }
 915 
 916 
 917 
 918 
 919 //------------------------------hash-------------------------------------------
 920 uint LoadNode::hash() const {
 921   // unroll addition of interesting fields
 922   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 923 }
 924 
 925 //---------------------------can_see_stored_value------------------------------
 926 // This routine exists to make sure this set of tests is done the same
 927 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 928 // will change the graph shape in a way which makes memory alive twice at the
 929 // same time (uses the Oracle model of aliasing), then some
 930 // LoadXNode::Identity will fold things back to the equivalence-class model
 931 // of aliasing.
 932 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 933   Node* ld_adr = in(MemNode::Address);
 934 
 935   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 936   Compile::AliasType* atp = tp != NULL ? phase->C->alias_type(tp) : NULL;
 937   if (EliminateAutoBox && atp != NULL && atp->index() >= Compile::AliasIdxRaw &&
 938       atp->field() != NULL && !atp->field()->is_volatile()) {
 939     uint alias_idx = atp->index();
 940     bool final = atp->field()->is_final();
 941     Node* result = NULL;
 942     Node* current = st;
 943     // Skip through chains of MemBarNodes checking the MergeMems for
 944     // new states for the slice of this load.  Stop once any other
 945     // kind of node is encountered.  Loads from final memory can skip
 946     // through any kind of MemBar but normal loads shouldn't skip
 947     // through MemBarAcquire since the could allow them to move out of
 948     // a synchronized region.
 949     while (current->is_Proj()) {
 950       int opc = current->in(0)->Opcode();
 951       if ((final && (opc == Op_MemBarAcquire || opc == Op_MemBarAcquireLock)) ||
 952           opc == Op_MemBarRelease || opc == Op_MemBarCPUOrder ||
 953           opc == Op_MemBarReleaseLock) {
 954         Node* mem = current->in(0)->in(TypeFunc::Memory);
 955         if (mem->is_MergeMem()) {
 956           MergeMemNode* merge = mem->as_MergeMem();
 957           Node* new_st = merge->memory_at(alias_idx);
 958           if (new_st == merge->base_memory()) {
 959             // Keep searching
 960             current = merge->base_memory();
 961             continue;
 962           }
 963           // Save the new memory state for the slice and fall through
 964           // to exit.
 965           result = new_st;
 966         }
 967       }
 968       break;
 969     }
 970     if (result != NULL) {
 971       st = result;
 972     }
 973   }
 974 
 975 
 976   // Loop around twice in the case Load -> Initialize -> Store.
 977   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
 978   for (int trip = 0; trip <= 1; trip++) {
 979 
 980     if (st->is_Store()) {
 981       Node* st_adr = st->in(MemNode::Address);
 982       if (!phase->eqv(st_adr, ld_adr)) {
 983         // Try harder before giving up...  Match raw and non-raw pointers.
 984         intptr_t st_off = 0;
 985         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
 986         if (alloc == NULL)       return NULL;
 987         intptr_t ld_off = 0;
 988         AllocateNode* allo2 = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 989         if (alloc != allo2)      return NULL;
 990         if (ld_off != st_off)    return NULL;
 991         // At this point we have proven something like this setup:
 992         //  A = Allocate(...)
 993         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
 994         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
 995         // (Actually, we haven't yet proven the Q's are the same.)
 996         // In other words, we are loading from a casted version of
 997         // the same pointer-and-offset that we stored to.
 998         // Thus, we are able to replace L by V.
 999       }
1000       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1001       if (store_Opcode() != st->Opcode())
1002         return NULL;
1003       return st->in(MemNode::ValueIn);
1004     }
1005 
1006     intptr_t offset = 0;  // scratch
1007 
1008     // A load from a freshly-created object always returns zero.
1009     // (This can happen after LoadNode::Ideal resets the load's memory input
1010     // to find_captured_store, which returned InitializeNode::zero_memory.)
1011     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1012         st->in(0) == AllocateNode::Ideal_allocation(ld_adr, phase, offset) &&
1013         offset >= st->in(0)->as_Allocate()->minimum_header_size()) {
1014       // return a zero value for the load's basic type
1015       // (This is one of the few places where a generic PhaseTransform
1016       // can create new nodes.  Think of it as lazily manifesting
1017       // virtually pre-existing constants.)
1018       return phase->zerocon(memory_type());
1019     }
1020 
1021     // A load from an initialization barrier can match a captured store.
1022     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1023       InitializeNode* init = st->in(0)->as_Initialize();
1024       AllocateNode* alloc = init->allocation();
1025       if (alloc != NULL &&
1026           alloc == AllocateNode::Ideal_allocation(ld_adr, phase, offset)) {
1027         // examine a captured store value
1028         st = init->find_captured_store(offset, memory_size(), phase);
1029         if (st != NULL)
1030           continue;             // take one more trip around
1031       }
1032     }
1033 
1034     break;
1035   }
1036 
1037   return NULL;
1038 }
1039 
1040 //----------------------is_instance_field_load_with_local_phi------------------
1041 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1042   if( in(MemNode::Memory)->is_Phi() && in(MemNode::Memory)->in(0) == ctrl &&
1043       in(MemNode::Address)->is_AddP() ) {
1044     const TypeOopPtr* t_oop = in(MemNode::Address)->bottom_type()->isa_oopptr();
1045     // Only instances.
1046     if( t_oop != NULL && t_oop->is_known_instance_field() &&
1047         t_oop->offset() != Type::OffsetBot &&
1048         t_oop->offset() != Type::OffsetTop) {
1049       return true;
1050     }
1051   }
1052   return false;
1053 }
1054 
1055 //------------------------------Identity---------------------------------------
1056 // Loads are identity if previous store is to same address
1057 Node *LoadNode::Identity( PhaseTransform *phase ) {
1058   // If the previous store-maker is the right kind of Store, and the store is
1059   // to the same address, then we are equal to the value stored.
1060   Node* mem = in(MemNode::Memory);
1061   Node* value = can_see_stored_value(mem, phase);
1062   if( value ) {
1063     // byte, short & char stores truncate naturally.
1064     // A load has to load the truncated value which requires
1065     // some sort of masking operation and that requires an
1066     // Ideal call instead of an Identity call.
1067     if (memory_size() < BytesPerInt) {
1068       // If the input to the store does not fit with the load's result type,
1069       // it must be truncated via an Ideal call.
1070       if (!phase->type(value)->higher_equal(phase->type(this)))
1071         return this;
1072     }
1073     // (This works even when value is a Con, but LoadNode::Value
1074     // usually runs first, producing the singleton type of the Con.)
1075     return value;
1076   }
1077 
1078   // Search for an existing data phi which was generated before for the same
1079   // instance's field to avoid infinite generation of phis in a loop.
1080   Node *region = mem->in(0);
1081   if (is_instance_field_load_with_local_phi(region)) {
1082     const TypePtr *addr_t = in(MemNode::Address)->bottom_type()->isa_ptr();
1083     int this_index  = phase->C->get_alias_index(addr_t);
1084     int this_offset = addr_t->offset();
1085     int this_id    = addr_t->is_oopptr()->instance_id();
1086     const Type* this_type = bottom_type();
1087     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1088       Node* phi = region->fast_out(i);
1089       if (phi->is_Phi() && phi != mem &&
1090           phi->as_Phi()->is_same_inst_field(this_type, this_id, this_index, this_offset)) {
1091         return phi;
1092       }
1093     }
1094   }
1095 
1096   return this;
1097 }
1098 
1099 
1100 // Returns true if the AliasType refers to the field that holds the
1101 // cached box array.  Currently only handles the IntegerCache case.
1102 static bool is_autobox_cache(Compile::AliasType* atp) {
1103   if (atp != NULL && atp->field() != NULL) {
1104     ciField* field = atp->field();
1105     ciSymbol* klass = field->holder()->name();
1106     if (field->name() == ciSymbol::cache_field_name() &&
1107         field->holder()->uses_default_loader() &&
1108         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1109       return true;
1110     }
1111   }
1112   return false;
1113 }
1114 
1115 // Fetch the base value in the autobox array
1116 static bool fetch_autobox_base(Compile::AliasType* atp, int& cache_offset) {
1117   if (atp != NULL && atp->field() != NULL) {
1118     ciField* field = atp->field();
1119     ciSymbol* klass = field->holder()->name();
1120     if (field->name() == ciSymbol::cache_field_name() &&
1121         field->holder()->uses_default_loader() &&
1122         klass == ciSymbol::java_lang_Integer_IntegerCache()) {
1123       assert(field->is_constant(), "what?");
1124       ciObjArray* array = field->constant_value().as_object()->as_obj_array();
1125       // Fetch the box object at the base of the array and get its value
1126       ciInstance* box = array->obj_at(0)->as_instance();
1127       ciInstanceKlass* ik = box->klass()->as_instance_klass();
1128       if (ik->nof_nonstatic_fields() == 1) {
1129         // This should be true nonstatic_field_at requires calling
1130         // nof_nonstatic_fields so check it anyway
1131         ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1132         cache_offset = c.as_int();
1133       }
1134       return true;
1135     }
1136   }
1137   return false;
1138 }
1139 
1140 // Returns true if the AliasType refers to the value field of an
1141 // autobox object.  Currently only handles Integer.
1142 static bool is_autobox_object(Compile::AliasType* atp) {
1143   if (atp != NULL && atp->field() != NULL) {
1144     ciField* field = atp->field();
1145     ciSymbol* klass = field->holder()->name();
1146     if (field->name() == ciSymbol::value_name() &&
1147         field->holder()->uses_default_loader() &&
1148         klass == ciSymbol::java_lang_Integer()) {
1149       return true;
1150     }
1151   }
1152   return false;
1153 }
1154 
1155 
1156 // We're loading from an object which has autobox behaviour.
1157 // If this object is result of a valueOf call we'll have a phi
1158 // merging a newly allocated object and a load from the cache.
1159 // We want to replace this load with the original incoming
1160 // argument to the valueOf call.
1161 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1162   Node* base = in(Address)->in(AddPNode::Base);
1163   if (base->is_Phi() && base->req() == 3) {
1164     AllocateNode* allocation = NULL;
1165     int allocation_index = -1;
1166     int load_index = -1;
1167     for (uint i = 1; i < base->req(); i++) {
1168       allocation = AllocateNode::Ideal_allocation(base->in(i), phase);
1169       if (allocation != NULL) {
1170         allocation_index = i;
1171         load_index = 3 - allocation_index;
1172         break;
1173       }
1174     }
1175     bool has_load = ( allocation != NULL &&
1176                       (base->in(load_index)->is_Load() ||
1177                        base->in(load_index)->is_DecodeN() &&
1178                        base->in(load_index)->in(1)->is_Load()) );
1179     if (has_load && in(Memory)->is_Phi() && in(Memory)->in(0) == base->in(0)) {
1180       // Push the loads from the phi that comes from valueOf up
1181       // through it to allow elimination of the loads and the recovery
1182       // of the original value.
1183       Node* mem_phi = in(Memory);
1184       Node* offset = in(Address)->in(AddPNode::Offset);
1185       Node* region = base->in(0);
1186 
1187       Node* in1 = clone();
1188       Node* in1_addr = in1->in(Address)->clone();
1189       in1_addr->set_req(AddPNode::Base, base->in(allocation_index));
1190       in1_addr->set_req(AddPNode::Address, base->in(allocation_index));
1191       in1_addr->set_req(AddPNode::Offset, offset);
1192       in1->set_req(0, region->in(allocation_index));
1193       in1->set_req(Address, in1_addr);
1194       in1->set_req(Memory, mem_phi->in(allocation_index));
1195 
1196       Node* in2 = clone();
1197       Node* in2_addr = in2->in(Address)->clone();
1198       in2_addr->set_req(AddPNode::Base, base->in(load_index));
1199       in2_addr->set_req(AddPNode::Address, base->in(load_index));
1200       in2_addr->set_req(AddPNode::Offset, offset);
1201       in2->set_req(0, region->in(load_index));
1202       in2->set_req(Address, in2_addr);
1203       in2->set_req(Memory, mem_phi->in(load_index));
1204 
1205       in1_addr = phase->transform(in1_addr);
1206       in1 =      phase->transform(in1);
1207       in2_addr = phase->transform(in2_addr);
1208       in2 =      phase->transform(in2);
1209 
1210       PhiNode* result = PhiNode::make_blank(region, this);
1211       result->set_req(allocation_index, in1);
1212       result->set_req(load_index, in2);
1213       return result;
1214     }
1215   } else if (base->is_Load() ||
1216              base->is_DecodeN() && base->in(1)->is_Load()) {
1217     if (base->is_DecodeN()) {
1218       // Get LoadN node which loads cached Integer object
1219       base = base->in(1);
1220     }
1221     // Eliminate the load of Integer.value for integers from the cache
1222     // array by deriving the value from the index into the array.
1223     // Capture the offset of the load and then reverse the computation.
1224     Node* load_base = base->in(Address)->in(AddPNode::Base);
1225     if (load_base->is_DecodeN()) {
1226       // Get LoadN node which loads IntegerCache.cache field
1227       load_base = load_base->in(1);
1228     }
1229     if (load_base != NULL) {
1230       Compile::AliasType* atp = phase->C->alias_type(load_base->adr_type());
1231       intptr_t cache_offset;
1232       int shift = -1;
1233       Node* cache = NULL;
1234       if (is_autobox_cache(atp)) {
1235         shift  = exact_log2(type2aelembytes(T_OBJECT));
1236         cache = AddPNode::Ideal_base_and_offset(load_base->in(Address), phase, cache_offset);
1237       }
1238       if (cache != NULL && base->in(Address)->is_AddP()) {
1239         Node* elements[4];
1240         int count = base->in(Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
1241         int cache_low;
1242         if (count > 0 && fetch_autobox_base(atp, cache_low)) {
1243           int offset = arrayOopDesc::base_offset_in_bytes(memory_type()) - (cache_low << shift);
1244           // Add up all the offsets making of the address of the load
1245           Node* result = elements[0];
1246           for (int i = 1; i < count; i++) {
1247             result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
1248           }
1249           // Remove the constant offset from the address and then
1250           // remove the scaling of the offset to recover the original index.
1251           result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-offset)));
1252           if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1253             // Peel the shift off directly but wrap it in a dummy node
1254             // since Ideal can't return existing nodes
1255             result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
1256           } else {
1257             result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
1258           }
1259 #ifdef _LP64
1260           result = new (phase->C) ConvL2INode(phase->transform(result));
1261 #endif
1262           return result;
1263         }
1264       }
1265     }
1266   }
1267   return NULL;
1268 }
1269 
1270 //------------------------------split_through_phi------------------------------
1271 // Split instance field load through Phi.
1272 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1273   Node* mem     = in(MemNode::Memory);
1274   Node* address = in(MemNode::Address);
1275   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1276   const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1277 
1278   assert(mem->is_Phi() && (t_oop != NULL) &&
1279          t_oop->is_known_instance_field(), "invalide conditions");
1280 
1281   Node *region = mem->in(0);
1282   if (region == NULL) {
1283     return NULL; // Wait stable graph
1284   }
1285   uint cnt = mem->req();
1286   for (uint i = 1; i < cnt; i++) {
1287     Node* rc = region->in(i);
1288     if (rc == NULL || phase->type(rc) == Type::TOP)
1289       return NULL; // Wait stable graph
1290     Node *in = mem->in(i);
1291     if (in == NULL) {
1292       return NULL; // Wait stable graph
1293     }
1294   }
1295   // Check for loop invariant.
1296   if (cnt == 3) {
1297     for (uint i = 1; i < cnt; i++) {
1298       Node *in = mem->in(i);
1299       Node* m = MemNode::optimize_memory_chain(in, addr_t, phase);
1300       if (m == mem) {
1301         set_req(MemNode::Memory, mem->in(cnt - i)); // Skip this phi.
1302         return this;
1303       }
1304     }
1305   }
1306   // Split through Phi (see original code in loopopts.cpp).
1307   assert(phase->C->have_alias_type(addr_t), "instance should have alias type");
1308 
1309   // Do nothing here if Identity will find a value
1310   // (to avoid infinite chain of value phis generation).
1311   if (!phase->eqv(this, this->Identity(phase)))
1312     return NULL;
1313 
1314   // Skip the split if the region dominates some control edge of the address.
1315   if (!MemNode::all_controls_dominate(address, region))
1316     return NULL;
1317 
1318   const Type* this_type = this->bottom_type();
1319   int this_index  = phase->C->get_alias_index(addr_t);
1320   int this_offset = addr_t->offset();
1321   int this_iid    = addr_t->is_oopptr()->instance_id();
1322   PhaseIterGVN *igvn = phase->is_IterGVN();
1323   Node *phi = new (igvn->C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1324   for (uint i = 1; i < region->req(); i++) {
1325     Node *x;
1326     Node* the_clone = NULL;
1327     if (region->in(i) == phase->C->top()) {
1328       x = phase->C->top();      // Dead path?  Use a dead data op
1329     } else {
1330       x = this->clone();        // Else clone up the data op
1331       the_clone = x;            // Remember for possible deletion.
1332       // Alter data node to use pre-phi inputs
1333       if (this->in(0) == region) {
1334         x->set_req(0, region->in(i));
1335       } else {
1336         x->set_req(0, NULL);
1337       }
1338       for (uint j = 1; j < this->req(); j++) {
1339         Node *in = this->in(j);
1340         if (in->is_Phi() && in->in(0) == region)
1341           x->set_req(j, in->in(i)); // Use pre-Phi input for the clone
1342       }
1343     }
1344     // Check for a 'win' on some paths
1345     const Type *t = x->Value(igvn);
1346 
1347     bool singleton = t->singleton();
1348 
1349     // See comments in PhaseIdealLoop::split_thru_phi().
1350     if (singleton && t == Type::TOP) {
1351       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1352     }
1353 
1354     if (singleton) {
1355       x = igvn->makecon(t);
1356     } else {
1357       // We now call Identity to try to simplify the cloned node.
1358       // Note that some Identity methods call phase->type(this).
1359       // Make sure that the type array is big enough for
1360       // our new node, even though we may throw the node away.
1361       // (This tweaking with igvn only works because x is a new node.)
1362       igvn->set_type(x, t);
1363       // If x is a TypeNode, capture any more-precise type permanently into Node
1364       // otherwise it will be not updated during igvn->transform since
1365       // igvn->type(x) is set to x->Value() already.
1366       x->raise_bottom_type(t);
1367       Node *y = x->Identity(igvn);
1368       if (y != x) {
1369         x = y;
1370       } else {
1371         y = igvn->hash_find(x);
1372         if (y) {
1373           x = y;
1374         } else {
1375           // Else x is a new node we are keeping
1376           // We do not need register_new_node_with_optimizer
1377           // because set_type has already been called.
1378           igvn->_worklist.push(x);
1379         }
1380       }
1381     }
1382     if (x != the_clone && the_clone != NULL)
1383       igvn->remove_dead_node(the_clone);
1384     phi->set_req(i, x);
1385   }
1386   // Record Phi
1387   igvn->register_new_node_with_optimizer(phi);
1388   return phi;
1389 }
1390 
1391 //------------------------------Ideal------------------------------------------
1392 // If the load is from Field memory and the pointer is non-null, we can
1393 // zero out the control input.
1394 // If the offset is constant and the base is an object allocation,
1395 // try to hook me up to the exact initializing store.
1396 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1397   Node* p = MemNode::Ideal_common(phase, can_reshape);
1398   if (p)  return (p == NodeSentinel) ? NULL : p;
1399 
1400   Node* ctrl    = in(MemNode::Control);
1401   Node* address = in(MemNode::Address);
1402 
1403   // Skip up past a SafePoint control.  Cannot do this for Stores because
1404   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1405   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1406       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1407     ctrl = ctrl->in(0);
1408     set_req(MemNode::Control,ctrl);
1409   }
1410 
1411   intptr_t ignore = 0;
1412   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1413   if (base != NULL
1414       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1415     // Check for useless control edge in some common special cases
1416     if (in(MemNode::Control) != NULL
1417         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1418         && all_controls_dominate(base, phase->C->start())) {
1419       // A method-invariant, non-null address (constant or 'this' argument).
1420       set_req(MemNode::Control, NULL);
1421     }
1422 
1423     if (EliminateAutoBox && can_reshape) {
1424       assert(!phase->type(base)->higher_equal(TypePtr::NULL_PTR), "the autobox pointer should be non-null");
1425       Compile::AliasType* atp = phase->C->alias_type(adr_type());
1426       if (is_autobox_object(atp)) {
1427         Node* result = eliminate_autobox(phase);
1428         if (result != NULL) return result;
1429       }
1430     }
1431   }
1432 
1433   Node* mem = in(MemNode::Memory);
1434   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1435 
1436   if (addr_t != NULL) {
1437     // try to optimize our memory input
1438     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, phase);
1439     if (opt_mem != mem) {
1440       set_req(MemNode::Memory, opt_mem);
1441       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1442       return this;
1443     }
1444     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1445     if (can_reshape && opt_mem->is_Phi() &&
1446         (t_oop != NULL) && t_oop->is_known_instance_field()) {
1447       PhaseIterGVN *igvn = phase->is_IterGVN();
1448       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1449         // Delay this transformation until memory Phi is processed.
1450         phase->is_IterGVN()->_worklist.push(this);
1451         return NULL;
1452       }
1453       // Split instance field load through Phi.
1454       Node* result = split_through_phi(phase);
1455       if (result != NULL) return result;
1456     }
1457   }
1458 
1459   // Check for prior store with a different base or offset; make Load
1460   // independent.  Skip through any number of them.  Bail out if the stores
1461   // are in an endless dead cycle and report no progress.  This is a key
1462   // transform for Reflection.  However, if after skipping through the Stores
1463   // we can't then fold up against a prior store do NOT do the transform as
1464   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1465   // array memory alive twice: once for the hoisted Load and again after the
1466   // bypassed Store.  This situation only works if EVERYBODY who does
1467   // anti-dependence work knows how to bypass.  I.e. we need all
1468   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1469   // the alias index stuff.  So instead, peek through Stores and IFF we can
1470   // fold up, do so.
1471   Node* prev_mem = find_previous_store(phase);
1472   // Steps (a), (b):  Walk past independent stores to find an exact match.
1473   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1474     // (c) See if we can fold up on the spot, but don't fold up here.
1475     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1476     // just return a prior value, which is done by Identity calls.
1477     if (can_see_stored_value(prev_mem, phase)) {
1478       // Make ready for step (d):
1479       set_req(MemNode::Memory, prev_mem);
1480       return this;
1481     }
1482   }
1483 
1484   return NULL;                  // No further progress
1485 }
1486 
1487 // Helper to recognize certain Klass fields which are invariant across
1488 // some group of array types (e.g., int[] or all T[] where T < Object).
1489 const Type*
1490 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1491                                  ciKlass* klass) const {
1492   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1493     // The field is Klass::_modifier_flags.  Return its (constant) value.
1494     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1495     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1496     return TypeInt::make(klass->modifier_flags());
1497   }
1498   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1499     // The field is Klass::_access_flags.  Return its (constant) value.
1500     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1501     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1502     return TypeInt::make(klass->access_flags());
1503   }
1504   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1505     // The field is Klass::_layout_helper.  Return its constant value if known.
1506     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1507     return TypeInt::make(klass->layout_helper());
1508   }
1509 
1510   // No match.
1511   return NULL;
1512 }
1513 
1514 //------------------------------Value-----------------------------------------
1515 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1516   // Either input is TOP ==> the result is TOP
1517   Node* mem = in(MemNode::Memory);
1518   const Type *t1 = phase->type(mem);
1519   if (t1 == Type::TOP)  return Type::TOP;
1520   Node* adr = in(MemNode::Address);
1521   const TypePtr* tp = phase->type(adr)->isa_ptr();
1522   if (tp == NULL || tp->empty())  return Type::TOP;
1523   int off = tp->offset();
1524   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1525   Compile* C = phase->C;
1526 
1527   // Try to guess loaded type from pointer type
1528   if (tp->base() == Type::AryPtr) {
1529     const Type *t = tp->is_aryptr()->elem();
1530     // Don't do this for integer types. There is only potential profit if
1531     // the element type t is lower than _type; that is, for int types, if _type is
1532     // more restrictive than t.  This only happens here if one is short and the other
1533     // char (both 16 bits), and in those cases we've made an intentional decision
1534     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1535     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1536     //
1537     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1538     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1539     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1540     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1541     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1542     // In fact, that could have been the original type of p1, and p1 could have
1543     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1544     // expression (LShiftL quux 3) independently optimized to the constant 8.
1545     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1546         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1547       // t might actually be lower than _type, if _type is a unique
1548       // concrete subclass of abstract class t.
1549       // Make sure the reference is not into the header, by comparing
1550       // the offset against the offset of the start of the array's data.
1551       // Different array types begin at slightly different offsets (12 vs. 16).
1552       // We choose T_BYTE as an example base type that is least restrictive
1553       // as to alignment, which will therefore produce the smallest
1554       // possible base offset.
1555       const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1556       if ((uint)off >= (uint)min_base_off) {  // is the offset beyond the header?
1557         const Type* jt = t->join(_type);
1558         // In any case, do not allow the join, per se, to empty out the type.
1559         if (jt->empty() && !t->empty()) {
1560           // This can happen if a interface-typed array narrows to a class type.
1561           jt = _type;
1562         }
1563 
1564         if (EliminateAutoBox && adr->is_AddP()) {
1565           // The pointers in the autobox arrays are always non-null
1566           Node* base = adr->in(AddPNode::Base);
1567           if (base != NULL &&
1568               !phase->type(base)->higher_equal(TypePtr::NULL_PTR)) {
1569             Compile::AliasType* atp = C->alias_type(base->adr_type());
1570             if (is_autobox_cache(atp)) {
1571               return jt->join(TypePtr::NOTNULL)->is_ptr();
1572             }
1573           }
1574         }
1575         return jt;
1576       }
1577     }
1578   } else if (tp->base() == Type::InstPtr) {
1579     ciEnv* env = C->env();
1580     const TypeInstPtr* tinst = tp->is_instptr();
1581     ciKlass* klass = tinst->klass();
1582     assert( off != Type::OffsetBot ||
1583             // arrays can be cast to Objects
1584             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1585             // unsafe field access may not have a constant offset
1586             C->has_unsafe_access(),
1587             "Field accesses must be precise" );
1588     // For oop loads, we expect the _type to be precise
1589     if (klass == env->String_klass() &&
1590         adr->is_AddP() && off != Type::OffsetBot) {
1591       // For constant Strings treat the final fields as compile time constants.
1592       Node* base = adr->in(AddPNode::Base);
1593       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1594       if (t != NULL && t->singleton()) {
1595         ciField* field = env->String_klass()->get_field_by_offset(off, false);
1596         if (field != NULL && field->is_final()) {
1597           ciObject* string = t->const_oop();
1598           ciConstant constant = string->as_instance()->field_value(field);
1599           if (constant.basic_type() == T_INT) {
1600             return TypeInt::make(constant.as_int());
1601           } else if (constant.basic_type() == T_ARRAY) {
1602             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1603               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
1604             } else {
1605               return TypeOopPtr::make_from_constant(constant.as_object(), true);
1606             }
1607           }
1608         }
1609       }
1610     }
1611     // Optimizations for constant objects
1612     ciObject* const_oop = tinst->const_oop();
1613     if (const_oop != NULL) {
1614       // For constant CallSites treat the target field as a compile time constant.
1615       if (const_oop->is_call_site()) {
1616         ciCallSite* call_site = const_oop->as_call_site();
1617         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1618         if (field != NULL && field->is_call_site_target()) {
1619           ciMethodHandle* target = call_site->get_target();
1620           if (target != NULL) {  // just in case
1621             ciConstant constant(T_OBJECT, target);
1622             const Type* t;
1623             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1624               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1625             } else {
1626               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1627             }
1628             // Add a dependence for invalidation of the optimization.
1629             if (!call_site->is_constant_call_site()) {
1630               C->dependencies()->assert_call_site_target_value(call_site, target);
1631             }
1632             return t;
1633           }
1634         }
1635       }
1636     }
1637   } else if (tp->base() == Type::KlassPtr) {
1638     assert( off != Type::OffsetBot ||
1639             // arrays can be cast to Objects
1640             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1641             // also allow array-loading from the primary supertype
1642             // array during subtype checks
1643             Opcode() == Op_LoadKlass,
1644             "Field accesses must be precise" );
1645     // For klass/static loads, we expect the _type to be precise
1646   }
1647 
1648   const TypeKlassPtr *tkls = tp->isa_klassptr();
1649   if (tkls != NULL && !StressReflectiveCode) {
1650     ciKlass* klass = tkls->klass();
1651     if (klass->is_loaded() && tkls->klass_is_exact()) {
1652       // We are loading a field from a Klass metaobject whose identity
1653       // is known at compile time (the type is "exact" or "precise").
1654       // Check for fields we know are maintained as constants by the VM.
1655       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1656         // The field is Klass::_super_check_offset.  Return its (constant) value.
1657         // (Folds up type checking code.)
1658         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1659         return TypeInt::make(klass->super_check_offset());
1660       }
1661       // Compute index into primary_supers array
1662       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(klassOop);
1663       // Check for overflowing; use unsigned compare to handle the negative case.
1664       if( depth < ciKlass::primary_super_limit() ) {
1665         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1666         // (Folds up type checking code.)
1667         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1668         ciKlass *ss = klass->super_of_depth(depth);
1669         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1670       }
1671       const Type* aift = load_array_final_field(tkls, klass);
1672       if (aift != NULL)  return aift;
1673       if (tkls->offset() == in_bytes(arrayKlass::component_mirror_offset())
1674           && klass->is_array_klass()) {
1675         // The field is arrayKlass::_component_mirror.  Return its (constant) value.
1676         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1677         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1678         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1679       }
1680       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1681         // The field is Klass::_java_mirror.  Return its (constant) value.
1682         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1683         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1684         return TypeInstPtr::make(klass->java_mirror());
1685       }
1686     }
1687 
1688     // We can still check if we are loading from the primary_supers array at a
1689     // shallow enough depth.  Even though the klass is not exact, entries less
1690     // than or equal to its super depth are correct.
1691     if (klass->is_loaded() ) {
1692       ciType *inner = klass->klass();
1693       while( inner->is_obj_array_klass() )
1694         inner = inner->as_obj_array_klass()->base_element_type();
1695       if( inner->is_instance_klass() &&
1696           !inner->as_instance_klass()->flags().is_interface() ) {
1697         // Compute index into primary_supers array
1698         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(klassOop);
1699         // Check for overflowing; use unsigned compare to handle the negative case.
1700         if( depth < ciKlass::primary_super_limit() &&
1701             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1702           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1703           // (Folds up type checking code.)
1704           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1705           ciKlass *ss = klass->super_of_depth(depth);
1706           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1707         }
1708       }
1709     }
1710 
1711     // If the type is enough to determine that the thing is not an array,
1712     // we can give the layout_helper a positive interval type.
1713     // This will help short-circuit some reflective code.
1714     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1715         && !klass->is_array_klass() // not directly typed as an array
1716         && !klass->is_interface()  // specifically not Serializable & Cloneable
1717         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1718         ) {
1719       // Note:  When interfaces are reliable, we can narrow the interface
1720       // test to (klass != Serializable && klass != Cloneable).
1721       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1722       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1723       // The key property of this type is that it folds up tests
1724       // for array-ness, since it proves that the layout_helper is positive.
1725       // Thus, a generic value like the basic object layout helper works fine.
1726       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1727     }
1728   }
1729 
1730   // If we are loading from a freshly-allocated object, produce a zero,
1731   // if the load is provably beyond the header of the object.
1732   // (Also allow a variable load from a fresh array to produce zero.)
1733   const TypeOopPtr *tinst = tp->isa_oopptr();
1734   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1735   if (ReduceFieldZeroing || is_instance) {
1736     Node* value = can_see_stored_value(mem,phase);
1737     if (value != NULL && value->is_Con()) {
1738       assert(value->bottom_type()->higher_equal(_type),"sanity");
1739       return value->bottom_type();
1740     }
1741   }
1742 
1743   if (is_instance) {
1744     // If we have an instance type and our memory input is the
1745     // programs's initial memory state, there is no matching store,
1746     // so just return a zero of the appropriate type
1747     Node *mem = in(MemNode::Memory);
1748     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1749       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1750       return Type::get_zero_type(_type->basic_type());
1751     }
1752   }
1753   return _type;
1754 }
1755 
1756 //------------------------------match_edge-------------------------------------
1757 // Do we Match on this edge index or not?  Match only the address.
1758 uint LoadNode::match_edge(uint idx) const {
1759   return idx == MemNode::Address;
1760 }
1761 
1762 //--------------------------LoadBNode::Ideal--------------------------------------
1763 //
1764 //  If the previous store is to the same address as this load,
1765 //  and the value stored was larger than a byte, replace this load
1766 //  with the value stored truncated to a byte.  If no truncation is
1767 //  needed, the replacement is done in LoadNode::Identity().
1768 //
1769 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1770   Node* mem = in(MemNode::Memory);
1771   Node* value = can_see_stored_value(mem,phase);
1772   if( value && !phase->type(value)->higher_equal( _type ) ) {
1773     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
1774     return new (phase->C) RShiftINode(result, phase->intcon(24));
1775   }
1776   // Identity call will handle the case where truncation is not needed.
1777   return LoadNode::Ideal(phase, can_reshape);
1778 }
1779 
1780 const Type* LoadBNode::Value(PhaseTransform *phase) const {
1781   Node* mem = in(MemNode::Memory);
1782   Node* value = can_see_stored_value(mem,phase);
1783   if (value != NULL && value->is_Con() &&
1784       !value->bottom_type()->higher_equal(_type)) {
1785     // If the input to the store does not fit with the load's result type,
1786     // it must be truncated. We can't delay until Ideal call since
1787     // a singleton Value is needed for split_thru_phi optimization.
1788     int con = value->get_int();
1789     return TypeInt::make((con << 24) >> 24);
1790   }
1791   return LoadNode::Value(phase);
1792 }
1793 
1794 //--------------------------LoadUBNode::Ideal-------------------------------------
1795 //
1796 //  If the previous store is to the same address as this load,
1797 //  and the value stored was larger than a byte, replace this load
1798 //  with the value stored truncated to a byte.  If no truncation is
1799 //  needed, the replacement is done in LoadNode::Identity().
1800 //
1801 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1802   Node* mem = in(MemNode::Memory);
1803   Node* value = can_see_stored_value(mem, phase);
1804   if (value && !phase->type(value)->higher_equal(_type))
1805     return new (phase->C) AndINode(value, phase->intcon(0xFF));
1806   // Identity call will handle the case where truncation is not needed.
1807   return LoadNode::Ideal(phase, can_reshape);
1808 }
1809 
1810 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
1811   Node* mem = in(MemNode::Memory);
1812   Node* value = can_see_stored_value(mem,phase);
1813   if (value != NULL && value->is_Con() &&
1814       !value->bottom_type()->higher_equal(_type)) {
1815     // If the input to the store does not fit with the load's result type,
1816     // it must be truncated. We can't delay until Ideal call since
1817     // a singleton Value is needed for split_thru_phi optimization.
1818     int con = value->get_int();
1819     return TypeInt::make(con & 0xFF);
1820   }
1821   return LoadNode::Value(phase);
1822 }
1823 
1824 //--------------------------LoadUSNode::Ideal-------------------------------------
1825 //
1826 //  If the previous store is to the same address as this load,
1827 //  and the value stored was larger than a char, replace this load
1828 //  with the value stored truncated to a char.  If no truncation is
1829 //  needed, the replacement is done in LoadNode::Identity().
1830 //
1831 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1832   Node* mem = in(MemNode::Memory);
1833   Node* value = can_see_stored_value(mem,phase);
1834   if( value && !phase->type(value)->higher_equal( _type ) )
1835     return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
1836   // Identity call will handle the case where truncation is not needed.
1837   return LoadNode::Ideal(phase, can_reshape);
1838 }
1839 
1840 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
1841   Node* mem = in(MemNode::Memory);
1842   Node* value = can_see_stored_value(mem,phase);
1843   if (value != NULL && value->is_Con() &&
1844       !value->bottom_type()->higher_equal(_type)) {
1845     // If the input to the store does not fit with the load's result type,
1846     // it must be truncated. We can't delay until Ideal call since
1847     // a singleton Value is needed for split_thru_phi optimization.
1848     int con = value->get_int();
1849     return TypeInt::make(con & 0xFFFF);
1850   }
1851   return LoadNode::Value(phase);
1852 }
1853 
1854 //--------------------------LoadSNode::Ideal--------------------------------------
1855 //
1856 //  If the previous store is to the same address as this load,
1857 //  and the value stored was larger than a short, replace this load
1858 //  with the value stored truncated to a short.  If no truncation is
1859 //  needed, the replacement is done in LoadNode::Identity().
1860 //
1861 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1862   Node* mem = in(MemNode::Memory);
1863   Node* value = can_see_stored_value(mem,phase);
1864   if( value && !phase->type(value)->higher_equal( _type ) ) {
1865     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
1866     return new (phase->C) RShiftINode(result, phase->intcon(16));
1867   }
1868   // Identity call will handle the case where truncation is not needed.
1869   return LoadNode::Ideal(phase, can_reshape);
1870 }
1871 
1872 const Type* LoadSNode::Value(PhaseTransform *phase) const {
1873   Node* mem = in(MemNode::Memory);
1874   Node* value = can_see_stored_value(mem,phase);
1875   if (value != NULL && value->is_Con() &&
1876       !value->bottom_type()->higher_equal(_type)) {
1877     // If the input to the store does not fit with the load's result type,
1878     // it must be truncated. We can't delay until Ideal call since
1879     // a singleton Value is needed for split_thru_phi optimization.
1880     int con = value->get_int();
1881     return TypeInt::make((con << 16) >> 16);
1882   }
1883   return LoadNode::Value(phase);
1884 }
1885 
1886 //=============================================================================
1887 //----------------------------LoadKlassNode::make------------------------------
1888 // Polymorphic factory method:
1889 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
1890   Compile* C = gvn.C;
1891   Node *ctl = NULL;
1892   // sanity check the alias category against the created node type
1893   const TypeOopPtr *adr_type = adr->bottom_type()->isa_oopptr();
1894   assert(adr_type != NULL, "expecting TypeOopPtr");
1895 #ifdef _LP64
1896   if (adr_type->is_ptr_to_narrowoop()) {
1897     Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowoop()));
1898     return new (C) DecodeNNode(load_klass, load_klass->bottom_type()->make_ptr());
1899   }
1900 #endif
1901   assert(!adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
1902   return new (C) LoadKlassNode(ctl, mem, adr, at, tk);
1903 }
1904 
1905 //------------------------------Value------------------------------------------
1906 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
1907   return klass_value_common(phase);
1908 }
1909 
1910 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
1911   // Either input is TOP ==> the result is TOP
1912   const Type *t1 = phase->type( in(MemNode::Memory) );
1913   if (t1 == Type::TOP)  return Type::TOP;
1914   Node *adr = in(MemNode::Address);
1915   const Type *t2 = phase->type( adr );
1916   if (t2 == Type::TOP)  return Type::TOP;
1917   const TypePtr *tp = t2->is_ptr();
1918   if (TypePtr::above_centerline(tp->ptr()) ||
1919       tp->ptr() == TypePtr::Null)  return Type::TOP;
1920 
1921   // Return a more precise klass, if possible
1922   const TypeInstPtr *tinst = tp->isa_instptr();
1923   if (tinst != NULL) {
1924     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1925     int offset = tinst->offset();
1926     if (ik == phase->C->env()->Class_klass()
1927         && (offset == java_lang_Class::klass_offset_in_bytes() ||
1928             offset == java_lang_Class::array_klass_offset_in_bytes())) {
1929       // We are loading a special hidden field from a Class mirror object,
1930       // the field which points to the VM's Klass metaobject.
1931       ciType* t = tinst->java_mirror_type();
1932       // java_mirror_type returns non-null for compile-time Class constants.
1933       if (t != NULL) {
1934         // constant oop => constant klass
1935         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
1936           return TypeKlassPtr::make(ciArrayKlass::make(t));
1937         }
1938         if (!t->is_klass()) {
1939           // a primitive Class (e.g., int.class) has NULL for a klass field
1940           return TypePtr::NULL_PTR;
1941         }
1942         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
1943         return TypeKlassPtr::make(t->as_klass());
1944       }
1945       // non-constant mirror, so we can't tell what's going on
1946     }
1947     if( !ik->is_loaded() )
1948       return _type;             // Bail out if not loaded
1949     if (offset == oopDesc::klass_offset_in_bytes()) {
1950       if (tinst->klass_is_exact()) {
1951         return TypeKlassPtr::make(ik);
1952       }
1953       // See if we can become precise: no subklasses and no interface
1954       // (Note:  We need to support verified interfaces.)
1955       if (!ik->is_interface() && !ik->has_subklass()) {
1956         //assert(!UseExactTypes, "this code should be useless with exact types");
1957         // Add a dependence; if any subclass added we need to recompile
1958         if (!ik->is_final()) {
1959           // %%% should use stronger assert_unique_concrete_subtype instead
1960           phase->C->dependencies()->assert_leaf_type(ik);
1961         }
1962         // Return precise klass
1963         return TypeKlassPtr::make(ik);
1964       }
1965 
1966       // Return root of possible klass
1967       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
1968     }
1969   }
1970 
1971   // Check for loading klass from an array
1972   const TypeAryPtr *tary = tp->isa_aryptr();
1973   if( tary != NULL ) {
1974     ciKlass *tary_klass = tary->klass();
1975     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
1976         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
1977       if (tary->klass_is_exact()) {
1978         return TypeKlassPtr::make(tary_klass);
1979       }
1980       ciArrayKlass *ak = tary->klass()->as_array_klass();
1981       // If the klass is an object array, we defer the question to the
1982       // array component klass.
1983       if( ak->is_obj_array_klass() ) {
1984         assert( ak->is_loaded(), "" );
1985         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
1986         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
1987           ciInstanceKlass* ik = base_k->as_instance_klass();
1988           // See if we can become precise: no subklasses and no interface
1989           if (!ik->is_interface() && !ik->has_subklass()) {
1990             //assert(!UseExactTypes, "this code should be useless with exact types");
1991             // Add a dependence; if any subclass added we need to recompile
1992             if (!ik->is_final()) {
1993               phase->C->dependencies()->assert_leaf_type(ik);
1994             }
1995             // Return precise array klass
1996             return TypeKlassPtr::make(ak);
1997           }
1998         }
1999         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2000       } else {                  // Found a type-array?
2001         //assert(!UseExactTypes, "this code should be useless with exact types");
2002         assert( ak->is_type_array_klass(), "" );
2003         return TypeKlassPtr::make(ak); // These are always precise
2004       }
2005     }
2006   }
2007 
2008   // Check for loading klass from an array klass
2009   const TypeKlassPtr *tkls = tp->isa_klassptr();
2010   if (tkls != NULL && !StressReflectiveCode) {
2011     ciKlass* klass = tkls->klass();
2012     if( !klass->is_loaded() )
2013       return _type;             // Bail out if not loaded
2014     if( klass->is_obj_array_klass() &&
2015         tkls->offset() == in_bytes(objArrayKlass::element_klass_offset())) {
2016       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2017       // // Always returning precise element type is incorrect,
2018       // // e.g., element type could be object and array may contain strings
2019       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2020 
2021       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2022       // according to the element type's subclassing.
2023       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2024     }
2025     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2026         tkls->offset() == in_bytes(Klass::super_offset())) {
2027       ciKlass* sup = klass->as_instance_klass()->super();
2028       // The field is Klass::_super.  Return its (constant) value.
2029       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2030       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2031     }
2032   }
2033 
2034   // Bailout case
2035   return LoadNode::Value(phase);
2036 }
2037 
2038 //------------------------------Identity---------------------------------------
2039 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2040 // Also feed through the klass in Allocate(...klass...)._klass.
2041 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
2042   return klass_identity_common(phase);
2043 }
2044 
2045 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
2046   Node* x = LoadNode::Identity(phase);
2047   if (x != this)  return x;
2048 
2049   // Take apart the address into an oop and and offset.
2050   // Return 'this' if we cannot.
2051   Node*    adr    = in(MemNode::Address);
2052   intptr_t offset = 0;
2053   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2054   if (base == NULL)     return this;
2055   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2056   if (toop == NULL)     return this;
2057 
2058   // We can fetch the klass directly through an AllocateNode.
2059   // This works even if the klass is not constant (clone or newArray).
2060   if (offset == oopDesc::klass_offset_in_bytes()) {
2061     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2062     if (allocated_klass != NULL) {
2063       return allocated_klass;
2064     }
2065   }
2066 
2067   // Simplify k.java_mirror.as_klass to plain k, where k is a klassOop.
2068   // Simplify ak.component_mirror.array_klass to plain ak, ak an arrayKlass.
2069   // See inline_native_Class_query for occurrences of these patterns.
2070   // Java Example:  x.getClass().isAssignableFrom(y)
2071   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
2072   //
2073   // This improves reflective code, often making the Class
2074   // mirror go completely dead.  (Current exception:  Class
2075   // mirrors may appear in debug info, but we could clean them out by
2076   // introducing a new debug info operator for klassOop.java_mirror).
2077   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2078       && (offset == java_lang_Class::klass_offset_in_bytes() ||
2079           offset == java_lang_Class::array_klass_offset_in_bytes())) {
2080     // We are loading a special hidden field from a Class mirror,
2081     // the field which points to its Klass or arrayKlass metaobject.
2082     if (base->is_Load()) {
2083       Node* adr2 = base->in(MemNode::Address);
2084       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2085       if (tkls != NULL && !tkls->empty()
2086           && (tkls->klass()->is_instance_klass() ||
2087               tkls->klass()->is_array_klass())
2088           && adr2->is_AddP()
2089           ) {
2090         int mirror_field = in_bytes(Klass::java_mirror_offset());
2091         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2092           mirror_field = in_bytes(arrayKlass::component_mirror_offset());
2093         }
2094         if (tkls->offset() == mirror_field) {
2095           return adr2->in(AddPNode::Base);
2096         }
2097       }
2098     }
2099   }
2100 
2101   return this;
2102 }
2103 
2104 
2105 //------------------------------Value------------------------------------------
2106 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
2107   const Type *t = klass_value_common(phase);
2108   if (t == Type::TOP)
2109     return t;
2110 
2111   return t->make_narrowoop();
2112 }
2113 
2114 //------------------------------Identity---------------------------------------
2115 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2116 // Also feed through the klass in Allocate(...klass...)._klass.
2117 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2118   Node *x = klass_identity_common(phase);
2119 
2120   const Type *t = phase->type( x );
2121   if( t == Type::TOP ) return x;
2122   if( t->isa_narrowoop()) return x;
2123 
2124   return phase->transform(new (phase->C) EncodePNode(x, t->make_narrowoop()));
2125 }
2126 
2127 //------------------------------Value-----------------------------------------
2128 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2129   // Either input is TOP ==> the result is TOP
2130   const Type *t1 = phase->type( in(MemNode::Memory) );
2131   if( t1 == Type::TOP ) return Type::TOP;
2132   Node *adr = in(MemNode::Address);
2133   const Type *t2 = phase->type( adr );
2134   if( t2 == Type::TOP ) return Type::TOP;
2135   const TypePtr *tp = t2->is_ptr();
2136   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2137   const TypeAryPtr *tap = tp->isa_aryptr();
2138   if( !tap ) return _type;
2139   return tap->size();
2140 }
2141 
2142 //-------------------------------Ideal---------------------------------------
2143 // Feed through the length in AllocateArray(...length...)._length.
2144 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2145   Node* p = MemNode::Ideal_common(phase, can_reshape);
2146   if (p)  return (p == NodeSentinel) ? NULL : p;
2147 
2148   // Take apart the address into an oop and and offset.
2149   // Return 'this' if we cannot.
2150   Node*    adr    = in(MemNode::Address);
2151   intptr_t offset = 0;
2152   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2153   if (base == NULL)     return NULL;
2154   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2155   if (tary == NULL)     return NULL;
2156 
2157   // We can fetch the length directly through an AllocateArrayNode.
2158   // This works even if the length is not constant (clone or newArray).
2159   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2160     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2161     if (alloc != NULL) {
2162       Node* allocated_length = alloc->Ideal_length();
2163       Node* len = alloc->make_ideal_length(tary, phase);
2164       if (allocated_length != len) {
2165         // New CastII improves on this.
2166         return len;
2167       }
2168     }
2169   }
2170 
2171   return NULL;
2172 }
2173 
2174 //------------------------------Identity---------------------------------------
2175 // Feed through the length in AllocateArray(...length...)._length.
2176 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2177   Node* x = LoadINode::Identity(phase);
2178   if (x != this)  return x;
2179 
2180   // Take apart the address into an oop and and offset.
2181   // Return 'this' if we cannot.
2182   Node*    adr    = in(MemNode::Address);
2183   intptr_t offset = 0;
2184   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2185   if (base == NULL)     return this;
2186   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2187   if (tary == NULL)     return this;
2188 
2189   // We can fetch the length directly through an AllocateArrayNode.
2190   // This works even if the length is not constant (clone or newArray).
2191   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2192     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2193     if (alloc != NULL) {
2194       Node* allocated_length = alloc->Ideal_length();
2195       // Do not allow make_ideal_length to allocate a CastII node.
2196       Node* len = alloc->make_ideal_length(tary, phase, false);
2197       if (allocated_length == len) {
2198         // Return allocated_length only if it would not be improved by a CastII.
2199         return allocated_length;
2200       }
2201     }
2202   }
2203 
2204   return this;
2205 
2206 }
2207 
2208 //=============================================================================
2209 //---------------------------StoreNode::make-----------------------------------
2210 // Polymorphic factory method:
2211 StoreNode* StoreNode::make( PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt ) {
2212   Compile* C = gvn.C;
2213   assert( C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2214           ctl != NULL, "raw memory operations should have control edge");
2215 
2216   switch (bt) {
2217   case T_BOOLEAN: val = gvn.transform(new (C) AndINode(val, gvn.intcon(0x1))); // Fall through to T_BYTE case
2218   case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val);
2219   case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val);
2220   case T_CHAR:
2221   case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val);
2222   case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val);
2223   case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val);
2224   case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val);
2225   case T_ADDRESS:
2226   case T_OBJECT:
2227 #ifdef _LP64
2228     if (adr->bottom_type()->is_ptr_to_narrowoop() ||
2229         (UseCompressedOops && val->bottom_type()->isa_klassptr() &&
2230          adr->bottom_type()->isa_rawptr())) {
2231       val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2232       return new (C) StoreNNode(ctl, mem, adr, adr_type, val);
2233     } else
2234 #endif
2235     {
2236       return new (C) StorePNode(ctl, mem, adr, adr_type, val);
2237     }
2238   }
2239   ShouldNotReachHere();
2240   return (StoreNode*)NULL;
2241 }
2242 
2243 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val) {
2244   bool require_atomic = true;
2245   return new (C) StoreLNode(ctl, mem, adr, adr_type, val, require_atomic);
2246 }
2247 
2248 
2249 //--------------------------bottom_type----------------------------------------
2250 const Type *StoreNode::bottom_type() const {
2251   return Type::MEMORY;
2252 }
2253 
2254 //------------------------------hash-------------------------------------------
2255 uint StoreNode::hash() const {
2256   // unroll addition of interesting fields
2257   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2258 
2259   // Since they are not commoned, do not hash them:
2260   return NO_HASH;
2261 }
2262 
2263 //------------------------------Ideal------------------------------------------
2264 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2265 // When a store immediately follows a relevant allocation/initialization,
2266 // try to capture it into the initialization, or hoist it above.
2267 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2268   Node* p = MemNode::Ideal_common(phase, can_reshape);
2269   if (p)  return (p == NodeSentinel) ? NULL : p;
2270 
2271   Node* mem     = in(MemNode::Memory);
2272   Node* address = in(MemNode::Address);
2273 
2274   // Back-to-back stores to same address?  Fold em up.  Generally
2275   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2276   // since they must follow each StoreP operation.  Redundant StoreCMs
2277   // are eliminated just before matching in final_graph_reshape.
2278   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
2279       mem->Opcode() != Op_StoreCM) {
2280     // Looking at a dead closed cycle of memory?
2281     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2282 
2283     assert(Opcode() == mem->Opcode() ||
2284            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2285            "no mismatched stores, except on raw memory");
2286 
2287     if (mem->outcnt() == 1 &&           // check for intervening uses
2288         mem->as_Store()->memory_size() <= this->memory_size()) {
2289       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2290       // For example, 'mem' might be the final state at a conditional return.
2291       // Or, 'mem' might be used by some node which is live at the same time
2292       // 'this' is live, which might be unschedulable.  So, require exactly
2293       // ONE user, the 'this' store, until such time as we clone 'mem' for
2294       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2295       if (can_reshape) {  // (%%% is this an anachronism?)
2296         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2297                   phase->is_IterGVN());
2298       } else {
2299         // It's OK to do this in the parser, since DU info is always accurate,
2300         // and the parser always refers to nodes via SafePointNode maps.
2301         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2302       }
2303       return this;
2304     }
2305   }
2306 
2307   // Capture an unaliased, unconditional, simple store into an initializer.
2308   // Or, if it is independent of the allocation, hoist it above the allocation.
2309   if (ReduceFieldZeroing && /*can_reshape &&*/
2310       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2311     InitializeNode* init = mem->in(0)->as_Initialize();
2312     intptr_t offset = init->can_capture_store(this, phase);
2313     if (offset > 0) {
2314       Node* moved = init->capture_store(this, offset, phase);
2315       // If the InitializeNode captured me, it made a raw copy of me,
2316       // and I need to disappear.
2317       if (moved != NULL) {
2318         // %%% hack to ensure that Ideal returns a new node:
2319         mem = MergeMemNode::make(phase->C, mem);
2320         return mem;             // fold me away
2321       }
2322     }
2323   }
2324 
2325   return NULL;                  // No further progress
2326 }
2327 
2328 //------------------------------Value-----------------------------------------
2329 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2330   // Either input is TOP ==> the result is TOP
2331   const Type *t1 = phase->type( in(MemNode::Memory) );
2332   if( t1 == Type::TOP ) return Type::TOP;
2333   const Type *t2 = phase->type( in(MemNode::Address) );
2334   if( t2 == Type::TOP ) return Type::TOP;
2335   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2336   if( t3 == Type::TOP ) return Type::TOP;
2337   return Type::MEMORY;
2338 }
2339 
2340 //------------------------------Identity---------------------------------------
2341 // Remove redundant stores:
2342 //   Store(m, p, Load(m, p)) changes to m.
2343 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2344 Node *StoreNode::Identity( PhaseTransform *phase ) {
2345   Node* mem = in(MemNode::Memory);
2346   Node* adr = in(MemNode::Address);
2347   Node* val = in(MemNode::ValueIn);
2348 
2349   // Load then Store?  Then the Store is useless
2350   if (val->is_Load() &&
2351       val->in(MemNode::Address)->eqv_uncast(adr) &&
2352       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2353       val->as_Load()->store_Opcode() == Opcode()) {
2354     return mem;
2355   }
2356 
2357   // Two stores in a row of the same value?
2358   if (mem->is_Store() &&
2359       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2360       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2361       mem->Opcode() == Opcode()) {
2362     return mem;
2363   }
2364 
2365   // Store of zero anywhere into a freshly-allocated object?
2366   // Then the store is useless.
2367   // (It must already have been captured by the InitializeNode.)
2368   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2369     // a newly allocated object is already all-zeroes everywhere
2370     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2371       return mem;
2372     }
2373 
2374     // the store may also apply to zero-bits in an earlier object
2375     Node* prev_mem = find_previous_store(phase);
2376     // Steps (a), (b):  Walk past independent stores to find an exact match.
2377     if (prev_mem != NULL) {
2378       Node* prev_val = can_see_stored_value(prev_mem, phase);
2379       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2380         // prev_val and val might differ by a cast; it would be good
2381         // to keep the more informative of the two.
2382         return mem;
2383       }
2384     }
2385   }
2386 
2387   return this;
2388 }
2389 
2390 //------------------------------match_edge-------------------------------------
2391 // Do we Match on this edge index or not?  Match only memory & value
2392 uint StoreNode::match_edge(uint idx) const {
2393   return idx == MemNode::Address || idx == MemNode::ValueIn;
2394 }
2395 
2396 //------------------------------cmp--------------------------------------------
2397 // Do not common stores up together.  They generally have to be split
2398 // back up anyways, so do not bother.
2399 uint StoreNode::cmp( const Node &n ) const {
2400   return (&n == this);          // Always fail except on self
2401 }
2402 
2403 //------------------------------Ideal_masked_input-----------------------------
2404 // Check for a useless mask before a partial-word store
2405 // (StoreB ... (AndI valIn conIa) )
2406 // If (conIa & mask == mask) this simplifies to
2407 // (StoreB ... (valIn) )
2408 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2409   Node *val = in(MemNode::ValueIn);
2410   if( val->Opcode() == Op_AndI ) {
2411     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2412     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2413       set_req(MemNode::ValueIn, val->in(1));
2414       return this;
2415     }
2416   }
2417   return NULL;
2418 }
2419 
2420 
2421 //------------------------------Ideal_sign_extended_input----------------------
2422 // Check for useless sign-extension before a partial-word store
2423 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2424 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2425 // (StoreB ... (valIn) )
2426 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2427   Node *val = in(MemNode::ValueIn);
2428   if( val->Opcode() == Op_RShiftI ) {
2429     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2430     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2431       Node *shl = val->in(1);
2432       if( shl->Opcode() == Op_LShiftI ) {
2433         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2434         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2435           set_req(MemNode::ValueIn, shl->in(1));
2436           return this;
2437         }
2438       }
2439     }
2440   }
2441   return NULL;
2442 }
2443 
2444 //------------------------------value_never_loaded-----------------------------------
2445 // Determine whether there are any possible loads of the value stored.
2446 // For simplicity, we actually check if there are any loads from the
2447 // address stored to, not just for loads of the value stored by this node.
2448 //
2449 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2450   Node *adr = in(Address);
2451   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2452   if (adr_oop == NULL)
2453     return false;
2454   if (!adr_oop->is_known_instance_field())
2455     return false; // if not a distinct instance, there may be aliases of the address
2456   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2457     Node *use = adr->fast_out(i);
2458     int opc = use->Opcode();
2459     if (use->is_Load() || use->is_LoadStore()) {
2460       return false;
2461     }
2462   }
2463   return true;
2464 }
2465 
2466 //=============================================================================
2467 //------------------------------Ideal------------------------------------------
2468 // If the store is from an AND mask that leaves the low bits untouched, then
2469 // we can skip the AND operation.  If the store is from a sign-extension
2470 // (a left shift, then right shift) we can skip both.
2471 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2472   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2473   if( progress != NULL ) return progress;
2474 
2475   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2476   if( progress != NULL ) return progress;
2477 
2478   // Finally check the default case
2479   return StoreNode::Ideal(phase, can_reshape);
2480 }
2481 
2482 //=============================================================================
2483 //------------------------------Ideal------------------------------------------
2484 // If the store is from an AND mask that leaves the low bits untouched, then
2485 // we can skip the AND operation
2486 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2487   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2488   if( progress != NULL ) return progress;
2489 
2490   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2491   if( progress != NULL ) return progress;
2492 
2493   // Finally check the default case
2494   return StoreNode::Ideal(phase, can_reshape);
2495 }
2496 
2497 //=============================================================================
2498 //------------------------------Identity---------------------------------------
2499 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2500   // No need to card mark when storing a null ptr
2501   Node* my_store = in(MemNode::OopStore);
2502   if (my_store->is_Store()) {
2503     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2504     if( t1 == TypePtr::NULL_PTR ) {
2505       return in(MemNode::Memory);
2506     }
2507   }
2508   return this;
2509 }
2510 
2511 //=============================================================================
2512 //------------------------------Ideal---------------------------------------
2513 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2514   Node* progress = StoreNode::Ideal(phase, can_reshape);
2515   if (progress != NULL) return progress;
2516 
2517   Node* my_store = in(MemNode::OopStore);
2518   if (my_store->is_MergeMem()) {
2519     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2520     set_req(MemNode::OopStore, mem);
2521     return this;
2522   }
2523 
2524   return NULL;
2525 }
2526 
2527 //------------------------------Value-----------------------------------------
2528 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2529   // Either input is TOP ==> the result is TOP
2530   const Type *t = phase->type( in(MemNode::Memory) );
2531   if( t == Type::TOP ) return Type::TOP;
2532   t = phase->type( in(MemNode::Address) );
2533   if( t == Type::TOP ) return Type::TOP;
2534   t = phase->type( in(MemNode::ValueIn) );
2535   if( t == Type::TOP ) return Type::TOP;
2536   // If extra input is TOP ==> the result is TOP
2537   t = phase->type( in(MemNode::OopStore) );
2538   if( t == Type::TOP ) return Type::TOP;
2539 
2540   return StoreNode::Value( phase );
2541 }
2542 
2543 
2544 //=============================================================================
2545 //----------------------------------SCMemProjNode------------------------------
2546 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2547 {
2548   return bottom_type();
2549 }
2550 
2551 //=============================================================================
2552 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : Node(5) {
2553   init_req(MemNode::Control, c  );
2554   init_req(MemNode::Memory , mem);
2555   init_req(MemNode::Address, adr);
2556   init_req(MemNode::ValueIn, val);
2557   init_req(         ExpectedIn, ex );
2558   init_class_id(Class_LoadStore);
2559 
2560 }
2561 
2562 //=============================================================================
2563 //-------------------------------adr_type--------------------------------------
2564 // Do we Match on this edge index or not?  Do not match memory
2565 const TypePtr* ClearArrayNode::adr_type() const {
2566   Node *adr = in(3);
2567   return MemNode::calculate_adr_type(adr->bottom_type());
2568 }
2569 
2570 //------------------------------match_edge-------------------------------------
2571 // Do we Match on this edge index or not?  Do not match memory
2572 uint ClearArrayNode::match_edge(uint idx) const {
2573   return idx > 1;
2574 }
2575 
2576 //------------------------------Identity---------------------------------------
2577 // Clearing a zero length array does nothing
2578 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2579   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2580 }
2581 
2582 //------------------------------Idealize---------------------------------------
2583 // Clearing a short array is faster with stores
2584 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2585   const int unit = BytesPerLong;
2586   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2587   if (!t)  return NULL;
2588   if (!t->is_con())  return NULL;
2589   intptr_t raw_count = t->get_con();
2590   intptr_t size = raw_count;
2591   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2592   // Clearing nothing uses the Identity call.
2593   // Negative clears are possible on dead ClearArrays
2594   // (see jck test stmt114.stmt11402.val).
2595   if (size <= 0 || size % unit != 0)  return NULL;
2596   intptr_t count = size / unit;
2597   // Length too long; use fast hardware clear
2598   if (size > Matcher::init_array_short_size)  return NULL;
2599   Node *mem = in(1);
2600   if( phase->type(mem)==Type::TOP ) return NULL;
2601   Node *adr = in(3);
2602   const Type* at = phase->type(adr);
2603   if( at==Type::TOP ) return NULL;
2604   const TypePtr* atp = at->isa_ptr();
2605   // adjust atp to be the correct array element address type
2606   if (atp == NULL)  atp = TypePtr::BOTTOM;
2607   else              atp = atp->add_offset(Type::OffsetBot);
2608   // Get base for derived pointer purposes
2609   if( adr->Opcode() != Op_AddP ) Unimplemented();
2610   Node *base = adr->in(1);
2611 
2612   Node *zero = phase->makecon(TypeLong::ZERO);
2613   Node *off  = phase->MakeConX(BytesPerLong);
2614   mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
2615   count--;
2616   while( count-- ) {
2617     mem = phase->transform(mem);
2618     adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
2619     mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero);
2620   }
2621   return mem;
2622 }
2623 
2624 //----------------------------step_through----------------------------------
2625 // Return allocation input memory edge if it is different instance
2626 // or itself if it is the one we are looking for.
2627 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2628   Node* n = *np;
2629   assert(n->is_ClearArray(), "sanity");
2630   intptr_t offset;
2631   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2632   // This method is called only before Allocate nodes are expanded during
2633   // macro nodes expansion. Before that ClearArray nodes are only generated
2634   // in LibraryCallKit::generate_arraycopy() which follows allocations.
2635   assert(alloc != NULL, "should have allocation");
2636   if (alloc->_idx == instance_id) {
2637     // Can not bypass initialization of the instance we are looking for.
2638     return false;
2639   }
2640   // Otherwise skip it.
2641   InitializeNode* init = alloc->initialization();
2642   if (init != NULL)
2643     *np = init->in(TypeFunc::Memory);
2644   else
2645     *np = alloc->in(TypeFunc::Memory);
2646   return true;
2647 }
2648 
2649 //----------------------------clear_memory-------------------------------------
2650 // Generate code to initialize object storage to zero.
2651 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2652                                    intptr_t start_offset,
2653                                    Node* end_offset,
2654                                    PhaseGVN* phase) {
2655   Compile* C = phase->C;
2656   intptr_t offset = start_offset;
2657 
2658   int unit = BytesPerLong;
2659   if ((offset % unit) != 0) {
2660     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
2661     adr = phase->transform(adr);
2662     const TypePtr* atp = TypeRawPtr::BOTTOM;
2663     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2664     mem = phase->transform(mem);
2665     offset += BytesPerInt;
2666   }
2667   assert((offset % unit) == 0, "");
2668 
2669   // Initialize the remaining stuff, if any, with a ClearArray.
2670   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2671 }
2672 
2673 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2674                                    Node* start_offset,
2675                                    Node* end_offset,
2676                                    PhaseGVN* phase) {
2677   if (start_offset == end_offset) {
2678     // nothing to do
2679     return mem;
2680   }
2681 
2682   Compile* C = phase->C;
2683   int unit = BytesPerLong;
2684   Node* zbase = start_offset;
2685   Node* zend  = end_offset;
2686 
2687   // Scale to the unit required by the CPU:
2688   if (!Matcher::init_array_count_is_in_bytes) {
2689     Node* shift = phase->intcon(exact_log2(unit));
2690     zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
2691     zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
2692   }
2693 
2694   Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
2695   Node* zinit = phase->zerocon((unit == BytesPerLong) ? T_LONG : T_INT);
2696 
2697   // Bulk clear double-words
2698   Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
2699   mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
2700   return phase->transform(mem);
2701 }
2702 
2703 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2704                                    intptr_t start_offset,
2705                                    intptr_t end_offset,
2706                                    PhaseGVN* phase) {
2707   if (start_offset == end_offset) {
2708     // nothing to do
2709     return mem;
2710   }
2711 
2712   Compile* C = phase->C;
2713   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2714   intptr_t done_offset = end_offset;
2715   if ((done_offset % BytesPerLong) != 0) {
2716     done_offset -= BytesPerInt;
2717   }
2718   if (done_offset > start_offset) {
2719     mem = clear_memory(ctl, mem, dest,
2720                        start_offset, phase->MakeConX(done_offset), phase);
2721   }
2722   if (done_offset < end_offset) { // emit the final 32-bit store
2723     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
2724     adr = phase->transform(adr);
2725     const TypePtr* atp = TypeRawPtr::BOTTOM;
2726     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT);
2727     mem = phase->transform(mem);
2728     done_offset += BytesPerInt;
2729   }
2730   assert(done_offset == end_offset, "");
2731   return mem;
2732 }
2733 
2734 //=============================================================================
2735 // Do not match memory edge.
2736 uint StrIntrinsicNode::match_edge(uint idx) const {
2737   return idx == 2 || idx == 3;
2738 }
2739 
2740 //------------------------------Ideal------------------------------------------
2741 // Return a node which is more "ideal" than the current node.  Strip out
2742 // control copies
2743 Node *StrIntrinsicNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2744   if (remove_dead_region(phase, can_reshape)) return this;
2745   // Don't bother trying to transform a dead node
2746   if (in(0) && in(0)->is_top())  return NULL;
2747 
2748   if (can_reshape) {
2749     Node* mem = phase->transform(in(MemNode::Memory));
2750     // If transformed to a MergeMem, get the desired slice
2751     uint alias_idx = phase->C->get_alias_index(adr_type());
2752     mem = mem->is_MergeMem() ? mem->as_MergeMem()->memory_at(alias_idx) : mem;
2753     if (mem != in(MemNode::Memory)) {
2754       set_req(MemNode::Memory, mem);
2755       return this;
2756     }
2757   }
2758   return NULL;
2759 }
2760 
2761 //------------------------------Value------------------------------------------
2762 const Type *StrIntrinsicNode::Value( PhaseTransform *phase ) const {
2763   if (in(0) && phase->type(in(0)) == Type::TOP) return Type::TOP;
2764   return bottom_type();
2765 }
2766 
2767 //=============================================================================
2768 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2769   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2770     _adr_type(C->get_adr_type(alias_idx))
2771 {
2772   init_class_id(Class_MemBar);
2773   Node* top = C->top();
2774   init_req(TypeFunc::I_O,top);
2775   init_req(TypeFunc::FramePtr,top);
2776   init_req(TypeFunc::ReturnAdr,top);
2777   if (precedent != NULL)
2778     init_req(TypeFunc::Parms, precedent);
2779 }
2780 
2781 //------------------------------cmp--------------------------------------------
2782 uint MemBarNode::hash() const { return NO_HASH; }
2783 uint MemBarNode::cmp( const Node &n ) const {
2784   return (&n == this);          // Always fail except on self
2785 }
2786 
2787 //------------------------------make-------------------------------------------
2788 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2789   switch (opcode) {
2790   case Op_MemBarAcquire:   return new(C) MemBarAcquireNode(C,  atp, pn);
2791   case Op_MemBarRelease:   return new(C) MemBarReleaseNode(C,  atp, pn);
2792   case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C,  atp, pn);
2793   case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C,  atp, pn);
2794   case Op_MemBarVolatile:  return new(C) MemBarVolatileNode(C, atp, pn);
2795   case Op_MemBarCPUOrder:  return new(C) MemBarCPUOrderNode(C, atp, pn);
2796   case Op_Initialize:      return new(C) InitializeNode(C,     atp, pn);
2797   case Op_MemBarStoreStore: return new(C) MemBarStoreStoreNode(C,  atp, pn);
2798   default:                 ShouldNotReachHere(); return NULL;
2799   }
2800 }
2801 
2802 //------------------------------Ideal------------------------------------------
2803 // Return a node which is more "ideal" than the current node.  Strip out
2804 // control copies
2805 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2806   if (remove_dead_region(phase, can_reshape)) return this;
2807   // Don't bother trying to transform a dead node
2808   if (in(0) && in(0)->is_top())  return NULL;
2809 
2810   // Eliminate volatile MemBars for scalar replaced objects.
2811   if (can_reshape && req() == (Precedent+1) &&
2812       (Opcode() == Op_MemBarAcquire || Opcode() == Op_MemBarVolatile)) {
2813     // Volatile field loads and stores.
2814     Node* my_mem = in(MemBarNode::Precedent);
2815     if (my_mem != NULL && my_mem->is_Mem()) {
2816       const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2817       // Check for scalar replaced object reference.
2818       if( t_oop != NULL && t_oop->is_known_instance_field() &&
2819           t_oop->offset() != Type::OffsetBot &&
2820           t_oop->offset() != Type::OffsetTop) {
2821         // Replace MemBar projections by its inputs.
2822         PhaseIterGVN* igvn = phase->is_IterGVN();
2823         igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2824         igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2825         // Must return either the original node (now dead) or a new node
2826         // (Do not return a top here, since that would break the uniqueness of top.)
2827         return new (phase->C) ConINode(TypeInt::ZERO);
2828       }
2829     }
2830   }
2831   return NULL;
2832 }
2833 
2834 //------------------------------Value------------------------------------------
2835 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
2836   if( !in(0) ) return Type::TOP;
2837   if( phase->type(in(0)) == Type::TOP )
2838     return Type::TOP;
2839   return TypeTuple::MEMBAR;
2840 }
2841 
2842 //------------------------------match------------------------------------------
2843 // Construct projections for memory.
2844 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
2845   switch (proj->_con) {
2846   case TypeFunc::Control:
2847   case TypeFunc::Memory:
2848     return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
2849   }
2850   ShouldNotReachHere();
2851   return NULL;
2852 }
2853 
2854 //===========================InitializeNode====================================
2855 // SUMMARY:
2856 // This node acts as a memory barrier on raw memory, after some raw stores.
2857 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
2858 // The Initialize can 'capture' suitably constrained stores as raw inits.
2859 // It can coalesce related raw stores into larger units (called 'tiles').
2860 // It can avoid zeroing new storage for memory units which have raw inits.
2861 // At macro-expansion, it is marked 'complete', and does not optimize further.
2862 //
2863 // EXAMPLE:
2864 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
2865 //   ctl = incoming control; mem* = incoming memory
2866 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
2867 // First allocate uninitialized memory and fill in the header:
2868 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
2869 //   ctl := alloc.Control; mem* := alloc.Memory*
2870 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
2871 // Then initialize to zero the non-header parts of the raw memory block:
2872 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
2873 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
2874 // After the initialize node executes, the object is ready for service:
2875 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
2876 // Suppose its body is immediately initialized as {1,2}:
2877 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
2878 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
2879 //   mem.SLICE(#short[*]) := store2
2880 //
2881 // DETAILS:
2882 // An InitializeNode collects and isolates object initialization after
2883 // an AllocateNode and before the next possible safepoint.  As a
2884 // memory barrier (MemBarNode), it keeps critical stores from drifting
2885 // down past any safepoint or any publication of the allocation.
2886 // Before this barrier, a newly-allocated object may have uninitialized bits.
2887 // After this barrier, it may be treated as a real oop, and GC is allowed.
2888 //
2889 // The semantics of the InitializeNode include an implicit zeroing of
2890 // the new object from object header to the end of the object.
2891 // (The object header and end are determined by the AllocateNode.)
2892 //
2893 // Certain stores may be added as direct inputs to the InitializeNode.
2894 // These stores must update raw memory, and they must be to addresses
2895 // derived from the raw address produced by AllocateNode, and with
2896 // a constant offset.  They must be ordered by increasing offset.
2897 // The first one is at in(RawStores), the last at in(req()-1).
2898 // Unlike most memory operations, they are not linked in a chain,
2899 // but are displayed in parallel as users of the rawmem output of
2900 // the allocation.
2901 //
2902 // (See comments in InitializeNode::capture_store, which continue
2903 // the example given above.)
2904 //
2905 // When the associated Allocate is macro-expanded, the InitializeNode
2906 // may be rewritten to optimize collected stores.  A ClearArrayNode
2907 // may also be created at that point to represent any required zeroing.
2908 // The InitializeNode is then marked 'complete', prohibiting further
2909 // capturing of nearby memory operations.
2910 //
2911 // During macro-expansion, all captured initializations which store
2912 // constant values of 32 bits or smaller are coalesced (if advantageous)
2913 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
2914 // initialized in fewer memory operations.  Memory words which are
2915 // covered by neither tiles nor non-constant stores are pre-zeroed
2916 // by explicit stores of zero.  (The code shape happens to do all
2917 // zeroing first, then all other stores, with both sequences occurring
2918 // in order of ascending offsets.)
2919 //
2920 // Alternatively, code may be inserted between an AllocateNode and its
2921 // InitializeNode, to perform arbitrary initialization of the new object.
2922 // E.g., the object copying intrinsics insert complex data transfers here.
2923 // The initialization must then be marked as 'complete' disable the
2924 // built-in zeroing semantics and the collection of initializing stores.
2925 //
2926 // While an InitializeNode is incomplete, reads from the memory state
2927 // produced by it are optimizable if they match the control edge and
2928 // new oop address associated with the allocation/initialization.
2929 // They return a stored value (if the offset matches) or else zero.
2930 // A write to the memory state, if it matches control and address,
2931 // and if it is to a constant offset, may be 'captured' by the
2932 // InitializeNode.  It is cloned as a raw memory operation and rewired
2933 // inside the initialization, to the raw oop produced by the allocation.
2934 // Operations on addresses which are provably distinct (e.g., to
2935 // other AllocateNodes) are allowed to bypass the initialization.
2936 //
2937 // The effect of all this is to consolidate object initialization
2938 // (both arrays and non-arrays, both piecewise and bulk) into a
2939 // single location, where it can be optimized as a unit.
2940 //
2941 // Only stores with an offset less than TrackedInitializationLimit words
2942 // will be considered for capture by an InitializeNode.  This puts a
2943 // reasonable limit on the complexity of optimized initializations.
2944 
2945 //---------------------------InitializeNode------------------------------------
2946 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
2947   : _is_complete(Incomplete), _does_not_escape(false),
2948     MemBarNode(C, adr_type, rawoop)
2949 {
2950   init_class_id(Class_Initialize);
2951 
2952   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
2953   assert(in(RawAddress) == rawoop, "proper init");
2954   // Note:  allocation() can be NULL, for secondary initialization barriers
2955 }
2956 
2957 // Since this node is not matched, it will be processed by the
2958 // register allocator.  Declare that there are no constraints
2959 // on the allocation of the RawAddress edge.
2960 const RegMask &InitializeNode::in_RegMask(uint idx) const {
2961   // This edge should be set to top, by the set_complete.  But be conservative.
2962   if (idx == InitializeNode::RawAddress)
2963     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
2964   return RegMask::Empty;
2965 }
2966 
2967 Node* InitializeNode::memory(uint alias_idx) {
2968   Node* mem = in(Memory);
2969   if (mem->is_MergeMem()) {
2970     return mem->as_MergeMem()->memory_at(alias_idx);
2971   } else {
2972     // incoming raw memory is not split
2973     return mem;
2974   }
2975 }
2976 
2977 bool InitializeNode::is_non_zero() {
2978   if (is_complete())  return false;
2979   remove_extra_zeroes();
2980   return (req() > RawStores);
2981 }
2982 
2983 void InitializeNode::set_complete(PhaseGVN* phase) {
2984   assert(!is_complete(), "caller responsibility");
2985   _is_complete = Complete;
2986 
2987   // After this node is complete, it contains a bunch of
2988   // raw-memory initializations.  There is no need for
2989   // it to have anything to do with non-raw memory effects.
2990   // Therefore, tell all non-raw users to re-optimize themselves,
2991   // after skipping the memory effects of this initialization.
2992   PhaseIterGVN* igvn = phase->is_IterGVN();
2993   if (igvn)  igvn->add_users_to_worklist(this);
2994 }
2995 
2996 // convenience function
2997 // return false if the init contains any stores already
2998 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
2999   InitializeNode* init = initialization();
3000   if (init == NULL || init->is_complete())  return false;
3001   init->remove_extra_zeroes();
3002   // for now, if this allocation has already collected any inits, bail:
3003   if (init->is_non_zero())  return false;
3004   init->set_complete(phase);
3005   return true;
3006 }
3007 
3008 void InitializeNode::remove_extra_zeroes() {
3009   if (req() == RawStores)  return;
3010   Node* zmem = zero_memory();
3011   uint fill = RawStores;
3012   for (uint i = fill; i < req(); i++) {
3013     Node* n = in(i);
3014     if (n->is_top() || n == zmem)  continue;  // skip
3015     if (fill < i)  set_req(fill, n);          // compact
3016     ++fill;
3017   }
3018   // delete any empty spaces created:
3019   while (fill < req()) {
3020     del_req(fill);
3021   }
3022 }
3023 
3024 // Helper for remembering which stores go with which offsets.
3025 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3026   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3027   intptr_t offset = -1;
3028   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3029                                                phase, offset);
3030   if (base == NULL)     return -1;  // something is dead,
3031   if (offset < 0)       return -1;  //        dead, dead
3032   return offset;
3033 }
3034 
3035 // Helper for proving that an initialization expression is
3036 // "simple enough" to be folded into an object initialization.
3037 // Attempts to prove that a store's initial value 'n' can be captured
3038 // within the initialization without creating a vicious cycle, such as:
3039 //     { Foo p = new Foo(); p.next = p; }
3040 // True for constants and parameters and small combinations thereof.
3041 bool InitializeNode::detect_init_independence(Node* n,
3042                                               bool st_is_pinned,
3043                                               int& count) {
3044   if (n == NULL)      return true;   // (can this really happen?)
3045   if (n->is_Proj())   n = n->in(0);
3046   if (n == this)      return false;  // found a cycle
3047   if (n->is_Con())    return true;
3048   if (n->is_Start())  return true;   // params, etc., are OK
3049   if (n->is_Root())   return true;   // even better
3050 
3051   Node* ctl = n->in(0);
3052   if (ctl != NULL && !ctl->is_top()) {
3053     if (ctl->is_Proj())  ctl = ctl->in(0);
3054     if (ctl == this)  return false;
3055 
3056     // If we already know that the enclosing memory op is pinned right after
3057     // the init, then any control flow that the store has picked up
3058     // must have preceded the init, or else be equal to the init.
3059     // Even after loop optimizations (which might change control edges)
3060     // a store is never pinned *before* the availability of its inputs.
3061     if (!MemNode::all_controls_dominate(n, this))
3062       return false;                  // failed to prove a good control
3063 
3064   }
3065 
3066   // Check data edges for possible dependencies on 'this'.
3067   if ((count += 1) > 20)  return false;  // complexity limit
3068   for (uint i = 1; i < n->req(); i++) {
3069     Node* m = n->in(i);
3070     if (m == NULL || m == n || m->is_top())  continue;
3071     uint first_i = n->find_edge(m);
3072     if (i != first_i)  continue;  // process duplicate edge just once
3073     if (!detect_init_independence(m, st_is_pinned, count)) {
3074       return false;
3075     }
3076   }
3077 
3078   return true;
3079 }
3080 
3081 // Here are all the checks a Store must pass before it can be moved into
3082 // an initialization.  Returns zero if a check fails.
3083 // On success, returns the (constant) offset to which the store applies,
3084 // within the initialized memory.
3085 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase) {
3086   const int FAIL = 0;
3087   if (st->req() != MemNode::ValueIn + 1)
3088     return FAIL;                // an inscrutable StoreNode (card mark?)
3089   Node* ctl = st->in(MemNode::Control);
3090   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3091     return FAIL;                // must be unconditional after the initialization
3092   Node* mem = st->in(MemNode::Memory);
3093   if (!(mem->is_Proj() && mem->in(0) == this))
3094     return FAIL;                // must not be preceded by other stores
3095   Node* adr = st->in(MemNode::Address);
3096   intptr_t offset;
3097   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3098   if (alloc == NULL)
3099     return FAIL;                // inscrutable address
3100   if (alloc != allocation())
3101     return FAIL;                // wrong allocation!  (store needs to float up)
3102   Node* val = st->in(MemNode::ValueIn);
3103   int complexity_count = 0;
3104   if (!detect_init_independence(val, true, complexity_count))
3105     return FAIL;                // stored value must be 'simple enough'
3106 
3107   return offset;                // success
3108 }
3109 
3110 // Find the captured store in(i) which corresponds to the range
3111 // [start..start+size) in the initialized object.
3112 // If there is one, return its index i.  If there isn't, return the
3113 // negative of the index where it should be inserted.
3114 // Return 0 if the queried range overlaps an initialization boundary
3115 // or if dead code is encountered.
3116 // If size_in_bytes is zero, do not bother with overlap checks.
3117 int InitializeNode::captured_store_insertion_point(intptr_t start,
3118                                                    int size_in_bytes,
3119                                                    PhaseTransform* phase) {
3120   const int FAIL = 0, MAX_STORE = BytesPerLong;
3121 
3122   if (is_complete())
3123     return FAIL;                // arraycopy got here first; punt
3124 
3125   assert(allocation() != NULL, "must be present");
3126 
3127   // no negatives, no header fields:
3128   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3129 
3130   // after a certain size, we bail out on tracking all the stores:
3131   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3132   if (start >= ti_limit)  return FAIL;
3133 
3134   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3135     if (i >= limit)  return -(int)i; // not found; here is where to put it
3136 
3137     Node*    st     = in(i);
3138     intptr_t st_off = get_store_offset(st, phase);
3139     if (st_off < 0) {
3140       if (st != zero_memory()) {
3141         return FAIL;            // bail out if there is dead garbage
3142       }
3143     } else if (st_off > start) {
3144       // ...we are done, since stores are ordered
3145       if (st_off < start + size_in_bytes) {
3146         return FAIL;            // the next store overlaps
3147       }
3148       return -(int)i;           // not found; here is where to put it
3149     } else if (st_off < start) {
3150       if (size_in_bytes != 0 &&
3151           start < st_off + MAX_STORE &&
3152           start < st_off + st->as_Store()->memory_size()) {
3153         return FAIL;            // the previous store overlaps
3154       }
3155     } else {
3156       if (size_in_bytes != 0 &&
3157           st->as_Store()->memory_size() != size_in_bytes) {
3158         return FAIL;            // mismatched store size
3159       }
3160       return i;
3161     }
3162 
3163     ++i;
3164   }
3165 }
3166 
3167 // Look for a captured store which initializes at the offset 'start'
3168 // with the given size.  If there is no such store, and no other
3169 // initialization interferes, then return zero_memory (the memory
3170 // projection of the AllocateNode).
3171 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3172                                           PhaseTransform* phase) {
3173   assert(stores_are_sane(phase), "");
3174   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3175   if (i == 0) {
3176     return NULL;                // something is dead
3177   } else if (i < 0) {
3178     return zero_memory();       // just primordial zero bits here
3179   } else {
3180     Node* st = in(i);           // here is the store at this position
3181     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3182     return st;
3183   }
3184 }
3185 
3186 // Create, as a raw pointer, an address within my new object at 'offset'.
3187 Node* InitializeNode::make_raw_address(intptr_t offset,
3188                                        PhaseTransform* phase) {
3189   Node* addr = in(RawAddress);
3190   if (offset != 0) {
3191     Compile* C = phase->C;
3192     addr = phase->transform( new (C) AddPNode(C->top(), addr,
3193                                                  phase->MakeConX(offset)) );
3194   }
3195   return addr;
3196 }
3197 
3198 // Clone the given store, converting it into a raw store
3199 // initializing a field or element of my new object.
3200 // Caller is responsible for retiring the original store,
3201 // with subsume_node or the like.
3202 //
3203 // From the example above InitializeNode::InitializeNode,
3204 // here are the old stores to be captured:
3205 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3206 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3207 //
3208 // Here is the changed code; note the extra edges on init:
3209 //   alloc = (Allocate ...)
3210 //   rawoop = alloc.RawAddress
3211 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3212 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3213 //   init = (Initialize alloc.Control alloc.Memory rawoop
3214 //                      rawstore1 rawstore2)
3215 //
3216 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3217                                     PhaseTransform* phase) {
3218   assert(stores_are_sane(phase), "");
3219 
3220   if (start < 0)  return NULL;
3221   assert(can_capture_store(st, phase) == start, "sanity");
3222 
3223   Compile* C = phase->C;
3224   int size_in_bytes = st->memory_size();
3225   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3226   if (i == 0)  return NULL;     // bail out
3227   Node* prev_mem = NULL;        // raw memory for the captured store
3228   if (i > 0) {
3229     prev_mem = in(i);           // there is a pre-existing store under this one
3230     set_req(i, C->top());       // temporarily disconnect it
3231     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3232   } else {
3233     i = -i;                     // no pre-existing store
3234     prev_mem = zero_memory();   // a slice of the newly allocated object
3235     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3236       set_req(--i, C->top());   // reuse this edge; it has been folded away
3237     else
3238       ins_req(i, C->top());     // build a new edge
3239   }
3240   Node* new_st = st->clone();
3241   new_st->set_req(MemNode::Control, in(Control));
3242   new_st->set_req(MemNode::Memory,  prev_mem);
3243   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3244   new_st = phase->transform(new_st);
3245 
3246   // At this point, new_st might have swallowed a pre-existing store
3247   // at the same offset, or perhaps new_st might have disappeared,
3248   // if it redundantly stored the same value (or zero to fresh memory).
3249 
3250   // In any case, wire it in:
3251   set_req(i, new_st);
3252 
3253   // The caller may now kill the old guy.
3254   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3255   assert(check_st == new_st || check_st == NULL, "must be findable");
3256   assert(!is_complete(), "");
3257   return new_st;
3258 }
3259 
3260 static bool store_constant(jlong* tiles, int num_tiles,
3261                            intptr_t st_off, int st_size,
3262                            jlong con) {
3263   if ((st_off & (st_size-1)) != 0)
3264     return false;               // strange store offset (assume size==2**N)
3265   address addr = (address)tiles + st_off;
3266   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3267   switch (st_size) {
3268   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3269   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3270   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3271   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3272   default: return false;        // strange store size (detect size!=2**N here)
3273   }
3274   return true;                  // return success to caller
3275 }
3276 
3277 // Coalesce subword constants into int constants and possibly
3278 // into long constants.  The goal, if the CPU permits,
3279 // is to initialize the object with a small number of 64-bit tiles.
3280 // Also, convert floating-point constants to bit patterns.
3281 // Non-constants are not relevant to this pass.
3282 //
3283 // In terms of the running example on InitializeNode::InitializeNode
3284 // and InitializeNode::capture_store, here is the transformation
3285 // of rawstore1 and rawstore2 into rawstore12:
3286 //   alloc = (Allocate ...)
3287 //   rawoop = alloc.RawAddress
3288 //   tile12 = 0x00010002
3289 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3290 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3291 //
3292 void
3293 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3294                                         Node* size_in_bytes,
3295                                         PhaseGVN* phase) {
3296   Compile* C = phase->C;
3297 
3298   assert(stores_are_sane(phase), "");
3299   // Note:  After this pass, they are not completely sane,
3300   // since there may be some overlaps.
3301 
3302   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3303 
3304   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3305   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3306   size_limit = MIN2(size_limit, ti_limit);
3307   size_limit = align_size_up(size_limit, BytesPerLong);
3308   int num_tiles = size_limit / BytesPerLong;
3309 
3310   // allocate space for the tile map:
3311   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3312   jlong  tiles_buf[small_len];
3313   Node*  nodes_buf[small_len];
3314   jlong  inits_buf[small_len];
3315   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3316                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3317   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3318                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3319   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3320                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3321   // tiles: exact bitwise model of all primitive constants
3322   // nodes: last constant-storing node subsumed into the tiles model
3323   // inits: which bytes (in each tile) are touched by any initializations
3324 
3325   //// Pass A: Fill in the tile model with any relevant stores.
3326 
3327   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3328   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3329   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3330   Node* zmem = zero_memory(); // initially zero memory state
3331   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3332     Node* st = in(i);
3333     intptr_t st_off = get_store_offset(st, phase);
3334 
3335     // Figure out the store's offset and constant value:
3336     if (st_off < header_size)             continue; //skip (ignore header)
3337     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3338     int st_size = st->as_Store()->memory_size();
3339     if (st_off + st_size > size_limit)    break;
3340 
3341     // Record which bytes are touched, whether by constant or not.
3342     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3343       continue;                 // skip (strange store size)
3344 
3345     const Type* val = phase->type(st->in(MemNode::ValueIn));
3346     if (!val->singleton())                continue; //skip (non-con store)
3347     BasicType type = val->basic_type();
3348 
3349     jlong con = 0;
3350     switch (type) {
3351     case T_INT:    con = val->is_int()->get_con();  break;
3352     case T_LONG:   con = val->is_long()->get_con(); break;
3353     case T_FLOAT:  con = jint_cast(val->getf());    break;
3354     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3355     default:                              continue; //skip (odd store type)
3356     }
3357 
3358     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3359         st->Opcode() == Op_StoreL) {
3360       continue;                 // This StoreL is already optimal.
3361     }
3362 
3363     // Store down the constant.
3364     store_constant(tiles, num_tiles, st_off, st_size, con);
3365 
3366     intptr_t j = st_off >> LogBytesPerLong;
3367 
3368     if (type == T_INT && st_size == BytesPerInt
3369         && (st_off & BytesPerInt) == BytesPerInt) {
3370       jlong lcon = tiles[j];
3371       if (!Matcher::isSimpleConstant64(lcon) &&
3372           st->Opcode() == Op_StoreI) {
3373         // This StoreI is already optimal by itself.
3374         jint* intcon = (jint*) &tiles[j];
3375         intcon[1] = 0;  // undo the store_constant()
3376 
3377         // If the previous store is also optimal by itself, back up and
3378         // undo the action of the previous loop iteration... if we can.
3379         // But if we can't, just let the previous half take care of itself.
3380         st = nodes[j];
3381         st_off -= BytesPerInt;
3382         con = intcon[0];
3383         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3384           assert(st_off >= header_size, "still ignoring header");
3385           assert(get_store_offset(st, phase) == st_off, "must be");
3386           assert(in(i-1) == zmem, "must be");
3387           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3388           assert(con == tcon->is_int()->get_con(), "must be");
3389           // Undo the effects of the previous loop trip, which swallowed st:
3390           intcon[0] = 0;        // undo store_constant()
3391           set_req(i-1, st);     // undo set_req(i, zmem)
3392           nodes[j] = NULL;      // undo nodes[j] = st
3393           --old_subword;        // undo ++old_subword
3394         }
3395         continue;               // This StoreI is already optimal.
3396       }
3397     }
3398 
3399     // This store is not needed.
3400     set_req(i, zmem);
3401     nodes[j] = st;              // record for the moment
3402     if (st_size < BytesPerLong) // something has changed
3403           ++old_subword;        // includes int/float, but who's counting...
3404     else  ++old_long;
3405   }
3406 
3407   if ((old_subword + old_long) == 0)
3408     return;                     // nothing more to do
3409 
3410   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3411   // Be sure to insert them before overlapping non-constant stores.
3412   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3413   for (int j = 0; j < num_tiles; j++) {
3414     jlong con  = tiles[j];
3415     jlong init = inits[j];
3416     if (con == 0)  continue;
3417     jint con0,  con1;           // split the constant, address-wise
3418     jint init0, init1;          // split the init map, address-wise
3419     { union { jlong con; jint intcon[2]; } u;
3420       u.con = con;
3421       con0  = u.intcon[0];
3422       con1  = u.intcon[1];
3423       u.con = init;
3424       init0 = u.intcon[0];
3425       init1 = u.intcon[1];
3426     }
3427 
3428     Node* old = nodes[j];
3429     assert(old != NULL, "need the prior store");
3430     intptr_t offset = (j * BytesPerLong);
3431 
3432     bool split = !Matcher::isSimpleConstant64(con);
3433 
3434     if (offset < header_size) {
3435       assert(offset + BytesPerInt >= header_size, "second int counts");
3436       assert(*(jint*)&tiles[j] == 0, "junk in header");
3437       split = true;             // only the second word counts
3438       // Example:  int a[] = { 42 ... }
3439     } else if (con0 == 0 && init0 == -1) {
3440       split = true;             // first word is covered by full inits
3441       // Example:  int a[] = { ... foo(), 42 ... }
3442     } else if (con1 == 0 && init1 == -1) {
3443       split = true;             // second word is covered by full inits
3444       // Example:  int a[] = { ... 42, foo() ... }
3445     }
3446 
3447     // Here's a case where init0 is neither 0 nor -1:
3448     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3449     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3450     // In this case the tile is not split; it is (jlong)42.
3451     // The big tile is stored down, and then the foo() value is inserted.
3452     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3453 
3454     Node* ctl = old->in(MemNode::Control);
3455     Node* adr = make_raw_address(offset, phase);
3456     const TypePtr* atp = TypeRawPtr::BOTTOM;
3457 
3458     // One or two coalesced stores to plop down.
3459     Node*    st[2];
3460     intptr_t off[2];
3461     int  nst = 0;
3462     if (!split) {
3463       ++new_long;
3464       off[nst] = offset;
3465       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3466                                   phase->longcon(con), T_LONG);
3467     } else {
3468       // Omit either if it is a zero.
3469       if (con0 != 0) {
3470         ++new_int;
3471         off[nst]  = offset;
3472         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3473                                     phase->intcon(con0), T_INT);
3474       }
3475       if (con1 != 0) {
3476         ++new_int;
3477         offset += BytesPerInt;
3478         adr = make_raw_address(offset, phase);
3479         off[nst]  = offset;
3480         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3481                                     phase->intcon(con1), T_INT);
3482       }
3483     }
3484 
3485     // Insert second store first, then the first before the second.
3486     // Insert each one just before any overlapping non-constant stores.
3487     while (nst > 0) {
3488       Node* st1 = st[--nst];
3489       C->copy_node_notes_to(st1, old);
3490       st1 = phase->transform(st1);
3491       offset = off[nst];
3492       assert(offset >= header_size, "do not smash header");
3493       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3494       guarantee(ins_idx != 0, "must re-insert constant store");
3495       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3496       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3497         set_req(--ins_idx, st1);
3498       else
3499         ins_req(ins_idx, st1);
3500     }
3501   }
3502 
3503   if (PrintCompilation && WizardMode)
3504     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3505                   old_subword, old_long, new_int, new_long);
3506   if (C->log() != NULL)
3507     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3508                    old_subword, old_long, new_int, new_long);
3509 
3510   // Clean up any remaining occurrences of zmem:
3511   remove_extra_zeroes();
3512 }
3513 
3514 // Explore forward from in(start) to find the first fully initialized
3515 // word, and return its offset.  Skip groups of subword stores which
3516 // together initialize full words.  If in(start) is itself part of a
3517 // fully initialized word, return the offset of in(start).  If there
3518 // are no following full-word stores, or if something is fishy, return
3519 // a negative value.
3520 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3521   int       int_map = 0;
3522   intptr_t  int_map_off = 0;
3523   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3524 
3525   for (uint i = start, limit = req(); i < limit; i++) {
3526     Node* st = in(i);
3527 
3528     intptr_t st_off = get_store_offset(st, phase);
3529     if (st_off < 0)  break;  // return conservative answer
3530 
3531     int st_size = st->as_Store()->memory_size();
3532     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3533       return st_off;            // we found a complete word init
3534     }
3535 
3536     // update the map:
3537 
3538     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3539     if (this_int_off != int_map_off) {
3540       // reset the map:
3541       int_map = 0;
3542       int_map_off = this_int_off;
3543     }
3544 
3545     int subword_off = st_off - this_int_off;
3546     int_map |= right_n_bits(st_size) << subword_off;
3547     if ((int_map & FULL_MAP) == FULL_MAP) {
3548       return this_int_off;      // we found a complete word init
3549     }
3550 
3551     // Did this store hit or cross the word boundary?
3552     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3553     if (next_int_off == this_int_off + BytesPerInt) {
3554       // We passed the current int, without fully initializing it.
3555       int_map_off = next_int_off;
3556       int_map >>= BytesPerInt;
3557     } else if (next_int_off > this_int_off + BytesPerInt) {
3558       // We passed the current and next int.
3559       return this_int_off + BytesPerInt;
3560     }
3561   }
3562 
3563   return -1;
3564 }
3565 
3566 
3567 // Called when the associated AllocateNode is expanded into CFG.
3568 // At this point, we may perform additional optimizations.
3569 // Linearize the stores by ascending offset, to make memory
3570 // activity as coherent as possible.
3571 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3572                                       intptr_t header_size,
3573                                       Node* size_in_bytes,
3574                                       PhaseGVN* phase) {
3575   assert(!is_complete(), "not already complete");
3576   assert(stores_are_sane(phase), "");
3577   assert(allocation() != NULL, "must be present");
3578 
3579   remove_extra_zeroes();
3580 
3581   if (ReduceFieldZeroing || ReduceBulkZeroing)
3582     // reduce instruction count for common initialization patterns
3583     coalesce_subword_stores(header_size, size_in_bytes, phase);
3584 
3585   Node* zmem = zero_memory();   // initially zero memory state
3586   Node* inits = zmem;           // accumulating a linearized chain of inits
3587   #ifdef ASSERT
3588   intptr_t first_offset = allocation()->minimum_header_size();
3589   intptr_t last_init_off = first_offset;  // previous init offset
3590   intptr_t last_init_end = first_offset;  // previous init offset+size
3591   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3592   #endif
3593   intptr_t zeroes_done = header_size;
3594 
3595   bool do_zeroing = true;       // we might give up if inits are very sparse
3596   int  big_init_gaps = 0;       // how many large gaps have we seen?
3597 
3598   if (ZeroTLAB)  do_zeroing = false;
3599   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3600 
3601   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3602     Node* st = in(i);
3603     intptr_t st_off = get_store_offset(st, phase);
3604     if (st_off < 0)
3605       break;                    // unknown junk in the inits
3606     if (st->in(MemNode::Memory) != zmem)
3607       break;                    // complicated store chains somehow in list
3608 
3609     int st_size = st->as_Store()->memory_size();
3610     intptr_t next_init_off = st_off + st_size;
3611 
3612     if (do_zeroing && zeroes_done < next_init_off) {
3613       // See if this store needs a zero before it or under it.
3614       intptr_t zeroes_needed = st_off;
3615 
3616       if (st_size < BytesPerInt) {
3617         // Look for subword stores which only partially initialize words.
3618         // If we find some, we must lay down some word-level zeroes first,
3619         // underneath the subword stores.
3620         //
3621         // Examples:
3622         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3623         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3624         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3625         //
3626         // Note:  coalesce_subword_stores may have already done this,
3627         // if it was prompted by constant non-zero subword initializers.
3628         // But this case can still arise with non-constant stores.
3629 
3630         intptr_t next_full_store = find_next_fullword_store(i, phase);
3631 
3632         // In the examples above:
3633         //   in(i)          p   q   r   s     x   y     z
3634         //   st_off        12  13  14  15    12  13    14
3635         //   st_size        1   1   1   1     1   1     1
3636         //   next_full_s.  12  16  16  16    16  16    16
3637         //   z's_done      12  16  16  16    12  16    12
3638         //   z's_needed    12  16  16  16    16  16    16
3639         //   zsize          0   0   0   0     4   0     4
3640         if (next_full_store < 0) {
3641           // Conservative tack:  Zero to end of current word.
3642           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3643         } else {
3644           // Zero to beginning of next fully initialized word.
3645           // Or, don't zero at all, if we are already in that word.
3646           assert(next_full_store >= zeroes_needed, "must go forward");
3647           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3648           zeroes_needed = next_full_store;
3649         }
3650       }
3651 
3652       if (zeroes_needed > zeroes_done) {
3653         intptr_t zsize = zeroes_needed - zeroes_done;
3654         // Do some incremental zeroing on rawmem, in parallel with inits.
3655         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3656         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3657                                               zeroes_done, zeroes_needed,
3658                                               phase);
3659         zeroes_done = zeroes_needed;
3660         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3661           do_zeroing = false;   // leave the hole, next time
3662       }
3663     }
3664 
3665     // Collect the store and move on:
3666     st->set_req(MemNode::Memory, inits);
3667     inits = st;                 // put it on the linearized chain
3668     set_req(i, zmem);           // unhook from previous position
3669 
3670     if (zeroes_done == st_off)
3671       zeroes_done = next_init_off;
3672 
3673     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3674 
3675     #ifdef ASSERT
3676     // Various order invariants.  Weaker than stores_are_sane because
3677     // a large constant tile can be filled in by smaller non-constant stores.
3678     assert(st_off >= last_init_off, "inits do not reverse");
3679     last_init_off = st_off;
3680     const Type* val = NULL;
3681     if (st_size >= BytesPerInt &&
3682         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3683         (int)val->basic_type() < (int)T_OBJECT) {
3684       assert(st_off >= last_tile_end, "tiles do not overlap");
3685       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3686       last_tile_end = MAX2(last_tile_end, next_init_off);
3687     } else {
3688       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3689       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3690       assert(st_off      >= last_init_end, "inits do not overlap");
3691       last_init_end = next_init_off;  // it's a non-tile
3692     }
3693     #endif //ASSERT
3694   }
3695 
3696   remove_extra_zeroes();        // clear out all the zmems left over
3697   add_req(inits);
3698 
3699   if (!ZeroTLAB) {
3700     // If anything remains to be zeroed, zero it all now.
3701     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3702     // if it is the last unused 4 bytes of an instance, forget about it
3703     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3704     if (zeroes_done + BytesPerLong >= size_limit) {
3705       assert(allocation() != NULL, "");
3706       if (allocation()->Opcode() == Op_Allocate) {
3707         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3708         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3709         if (zeroes_done == k->layout_helper())
3710           zeroes_done = size_limit;
3711       }
3712     }
3713     if (zeroes_done < size_limit) {
3714       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3715                                             zeroes_done, size_in_bytes, phase);
3716     }
3717   }
3718 
3719   set_complete(phase);
3720   return rawmem;
3721 }
3722 
3723 
3724 #ifdef ASSERT
3725 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3726   if (is_complete())
3727     return true;                // stores could be anything at this point
3728   assert(allocation() != NULL, "must be present");
3729   intptr_t last_off = allocation()->minimum_header_size();
3730   for (uint i = InitializeNode::RawStores; i < req(); i++) {
3731     Node* st = in(i);
3732     intptr_t st_off = get_store_offset(st, phase);
3733     if (st_off < 0)  continue;  // ignore dead garbage
3734     if (last_off > st_off) {
3735       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
3736       this->dump(2);
3737       assert(false, "ascending store offsets");
3738       return false;
3739     }
3740     last_off = st_off + st->as_Store()->memory_size();
3741   }
3742   return true;
3743 }
3744 #endif //ASSERT
3745 
3746 
3747 
3748 
3749 //============================MergeMemNode=====================================
3750 //
3751 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3752 // contributing store or call operations.  Each contributor provides the memory
3753 // state for a particular "alias type" (see Compile::alias_type).  For example,
3754 // if a MergeMem has an input X for alias category #6, then any memory reference
3755 // to alias category #6 may use X as its memory state input, as an exact equivalent
3756 // to using the MergeMem as a whole.
3757 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
3758 //
3759 // (Here, the <N> notation gives the index of the relevant adr_type.)
3760 //
3761 // In one special case (and more cases in the future), alias categories overlap.
3762 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
3763 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
3764 // it is exactly equivalent to that state W:
3765 //   MergeMem(<Bot>: W) <==> W
3766 //
3767 // Usually, the merge has more than one input.  In that case, where inputs
3768 // overlap (i.e., one is Bot), the narrower alias type determines the memory
3769 // state for that type, and the wider alias type (Bot) fills in everywhere else:
3770 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
3771 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
3772 //
3773 // A merge can take a "wide" memory state as one of its narrow inputs.
3774 // This simply means that the merge observes out only the relevant parts of
3775 // the wide input.  That is, wide memory states arriving at narrow merge inputs
3776 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
3777 //
3778 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
3779 // and that memory slices "leak through":
3780 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
3781 //
3782 // But, in such a cascade, repeated memory slices can "block the leak":
3783 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
3784 //
3785 // In the last example, Y is not part of the combined memory state of the
3786 // outermost MergeMem.  The system must, of course, prevent unschedulable
3787 // memory states from arising, so you can be sure that the state Y is somehow
3788 // a precursor to state Y'.
3789 //
3790 //
3791 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
3792 // of each MergeMemNode array are exactly the numerical alias indexes, including
3793 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
3794 // Compile::alias_type (and kin) produce and manage these indexes.
3795 //
3796 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
3797 // (Note that this provides quick access to the top node inside MergeMem methods,
3798 // without the need to reach out via TLS to Compile::current.)
3799 //
3800 // As a consequence of what was just described, a MergeMem that represents a full
3801 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
3802 // containing all alias categories.
3803 //
3804 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
3805 //
3806 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
3807 // a memory state for the alias type <N>, or else the top node, meaning that
3808 // there is no particular input for that alias type.  Note that the length of
3809 // a MergeMem is variable, and may be extended at any time to accommodate new
3810 // memory states at larger alias indexes.  When merges grow, they are of course
3811 // filled with "top" in the unused in() positions.
3812 //
3813 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
3814 // (Top was chosen because it works smoothly with passes like GCM.)
3815 //
3816 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
3817 // the type of random VM bits like TLS references.)  Since it is always the
3818 // first non-Bot memory slice, some low-level loops use it to initialize an
3819 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
3820 //
3821 //
3822 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
3823 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
3824 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
3825 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
3826 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
3827 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
3828 //
3829 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
3830 // really that different from the other memory inputs.  An abbreviation called
3831 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
3832 //
3833 //
3834 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
3835 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
3836 // that "emerges though" the base memory will be marked as excluding the alias types
3837 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
3838 //
3839 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
3840 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
3841 //
3842 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
3843 // (It is currently unimplemented.)  As you can see, the resulting merge is
3844 // actually a disjoint union of memory states, rather than an overlay.
3845 //
3846 
3847 //------------------------------MergeMemNode-----------------------------------
3848 Node* MergeMemNode::make_empty_memory() {
3849   Node* empty_memory = (Node*) Compile::current()->top();
3850   assert(empty_memory->is_top(), "correct sentinel identity");
3851   return empty_memory;
3852 }
3853 
3854 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
3855   init_class_id(Class_MergeMem);
3856   // all inputs are nullified in Node::Node(int)
3857   // set_input(0, NULL);  // no control input
3858 
3859   // Initialize the edges uniformly to top, for starters.
3860   Node* empty_mem = make_empty_memory();
3861   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
3862     init_req(i,empty_mem);
3863   }
3864   assert(empty_memory() == empty_mem, "");
3865 
3866   if( new_base != NULL && new_base->is_MergeMem() ) {
3867     MergeMemNode* mdef = new_base->as_MergeMem();
3868     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
3869     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
3870       mms.set_memory(mms.memory2());
3871     }
3872     assert(base_memory() == mdef->base_memory(), "");
3873   } else {
3874     set_base_memory(new_base);
3875   }
3876 }
3877 
3878 // Make a new, untransformed MergeMem with the same base as 'mem'.
3879 // If mem is itself a MergeMem, populate the result with the same edges.
3880 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
3881   return new(C) MergeMemNode(mem);
3882 }
3883 
3884 //------------------------------cmp--------------------------------------------
3885 uint MergeMemNode::hash() const { return NO_HASH; }
3886 uint MergeMemNode::cmp( const Node &n ) const {
3887   return (&n == this);          // Always fail except on self
3888 }
3889 
3890 //------------------------------Identity---------------------------------------
3891 Node* MergeMemNode::Identity(PhaseTransform *phase) {
3892   // Identity if this merge point does not record any interesting memory
3893   // disambiguations.
3894   Node* base_mem = base_memory();
3895   Node* empty_mem = empty_memory();
3896   if (base_mem != empty_mem) {  // Memory path is not dead?
3897     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3898       Node* mem = in(i);
3899       if (mem != empty_mem && mem != base_mem) {
3900         return this;            // Many memory splits; no change
3901       }
3902     }
3903   }
3904   return base_mem;              // No memory splits; ID on the one true input
3905 }
3906 
3907 //------------------------------Ideal------------------------------------------
3908 // This method is invoked recursively on chains of MergeMem nodes
3909 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
3910   // Remove chain'd MergeMems
3911   //
3912   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
3913   // relative to the "in(Bot)".  Since we are patching both at the same time,
3914   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
3915   // but rewrite each "in(i)" relative to the new "in(Bot)".
3916   Node *progress = NULL;
3917 
3918 
3919   Node* old_base = base_memory();
3920   Node* empty_mem = empty_memory();
3921   if (old_base == empty_mem)
3922     return NULL; // Dead memory path.
3923 
3924   MergeMemNode* old_mbase;
3925   if (old_base != NULL && old_base->is_MergeMem())
3926     old_mbase = old_base->as_MergeMem();
3927   else
3928     old_mbase = NULL;
3929   Node* new_base = old_base;
3930 
3931   // simplify stacked MergeMems in base memory
3932   if (old_mbase)  new_base = old_mbase->base_memory();
3933 
3934   // the base memory might contribute new slices beyond my req()
3935   if (old_mbase)  grow_to_match(old_mbase);
3936 
3937   // Look carefully at the base node if it is a phi.
3938   PhiNode* phi_base;
3939   if (new_base != NULL && new_base->is_Phi())
3940     phi_base = new_base->as_Phi();
3941   else
3942     phi_base = NULL;
3943 
3944   Node*    phi_reg = NULL;
3945   uint     phi_len = (uint)-1;
3946   if (phi_base != NULL && !phi_base->is_copy()) {
3947     // do not examine phi if degraded to a copy
3948     phi_reg = phi_base->region();
3949     phi_len = phi_base->req();
3950     // see if the phi is unfinished
3951     for (uint i = 1; i < phi_len; i++) {
3952       if (phi_base->in(i) == NULL) {
3953         // incomplete phi; do not look at it yet!
3954         phi_reg = NULL;
3955         phi_len = (uint)-1;
3956         break;
3957       }
3958     }
3959   }
3960 
3961   // Note:  We do not call verify_sparse on entry, because inputs
3962   // can normalize to the base_memory via subsume_node or similar
3963   // mechanisms.  This method repairs that damage.
3964 
3965   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
3966 
3967   // Look at each slice.
3968   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
3969     Node* old_in = in(i);
3970     // calculate the old memory value
3971     Node* old_mem = old_in;
3972     if (old_mem == empty_mem)  old_mem = old_base;
3973     assert(old_mem == memory_at(i), "");
3974 
3975     // maybe update (reslice) the old memory value
3976 
3977     // simplify stacked MergeMems
3978     Node* new_mem = old_mem;
3979     MergeMemNode* old_mmem;
3980     if (old_mem != NULL && old_mem->is_MergeMem())
3981       old_mmem = old_mem->as_MergeMem();
3982     else
3983       old_mmem = NULL;
3984     if (old_mmem == this) {
3985       // This can happen if loops break up and safepoints disappear.
3986       // A merge of BotPtr (default) with a RawPtr memory derived from a
3987       // safepoint can be rewritten to a merge of the same BotPtr with
3988       // the BotPtr phi coming into the loop.  If that phi disappears
3989       // also, we can end up with a self-loop of the mergemem.
3990       // In general, if loops degenerate and memory effects disappear,
3991       // a mergemem can be left looking at itself.  This simply means
3992       // that the mergemem's default should be used, since there is
3993       // no longer any apparent effect on this slice.
3994       // Note: If a memory slice is a MergeMem cycle, it is unreachable
3995       //       from start.  Update the input to TOP.
3996       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
3997     }
3998     else if (old_mmem != NULL) {
3999       new_mem = old_mmem->memory_at(i);
4000     }
4001     // else preceding memory was not a MergeMem
4002 
4003     // replace equivalent phis (unfortunately, they do not GVN together)
4004     if (new_mem != NULL && new_mem != new_base &&
4005         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4006       if (new_mem->is_Phi()) {
4007         PhiNode* phi_mem = new_mem->as_Phi();
4008         for (uint i = 1; i < phi_len; i++) {
4009           if (phi_base->in(i) != phi_mem->in(i)) {
4010             phi_mem = NULL;
4011             break;
4012           }
4013         }
4014         if (phi_mem != NULL) {
4015           // equivalent phi nodes; revert to the def
4016           new_mem = new_base;
4017         }
4018       }
4019     }
4020 
4021     // maybe store down a new value
4022     Node* new_in = new_mem;
4023     if (new_in == new_base)  new_in = empty_mem;
4024 
4025     if (new_in != old_in) {
4026       // Warning:  Do not combine this "if" with the previous "if"
4027       // A memory slice might have be be rewritten even if it is semantically
4028       // unchanged, if the base_memory value has changed.
4029       set_req(i, new_in);
4030       progress = this;          // Report progress
4031     }
4032   }
4033 
4034   if (new_base != old_base) {
4035     set_req(Compile::AliasIdxBot, new_base);
4036     // Don't use set_base_memory(new_base), because we need to update du.
4037     assert(base_memory() == new_base, "");
4038     progress = this;
4039   }
4040 
4041   if( base_memory() == this ) {
4042     // a self cycle indicates this memory path is dead
4043     set_req(Compile::AliasIdxBot, empty_mem);
4044   }
4045 
4046   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4047   // Recursion must occur after the self cycle check above
4048   if( base_memory()->is_MergeMem() ) {
4049     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4050     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4051     if( m != NULL && (m->is_top() ||
4052         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4053       // propagate rollup of dead cycle to self
4054       set_req(Compile::AliasIdxBot, empty_mem);
4055     }
4056   }
4057 
4058   if( base_memory() == empty_mem ) {
4059     progress = this;
4060     // Cut inputs during Parse phase only.
4061     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4062     if( !can_reshape ) {
4063       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4064         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4065       }
4066     }
4067   }
4068 
4069   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4070     // Check if PhiNode::Ideal's "Split phis through memory merges"
4071     // transform should be attempted. Look for this->phi->this cycle.
4072     uint merge_width = req();
4073     if (merge_width > Compile::AliasIdxRaw) {
4074       PhiNode* phi = base_memory()->as_Phi();
4075       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4076         if (phi->in(i) == this) {
4077           phase->is_IterGVN()->_worklist.push(phi);
4078           break;
4079         }
4080       }
4081     }
4082   }
4083 
4084   assert(progress || verify_sparse(), "please, no dups of base");
4085   return progress;
4086 }
4087 
4088 //-------------------------set_base_memory-------------------------------------
4089 void MergeMemNode::set_base_memory(Node *new_base) {
4090   Node* empty_mem = empty_memory();
4091   set_req(Compile::AliasIdxBot, new_base);
4092   assert(memory_at(req()) == new_base, "must set default memory");
4093   // Clear out other occurrences of new_base:
4094   if (new_base != empty_mem) {
4095     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4096       if (in(i) == new_base)  set_req(i, empty_mem);
4097     }
4098   }
4099 }
4100 
4101 //------------------------------out_RegMask------------------------------------
4102 const RegMask &MergeMemNode::out_RegMask() const {
4103   return RegMask::Empty;
4104 }
4105 
4106 //------------------------------dump_spec--------------------------------------
4107 #ifndef PRODUCT
4108 void MergeMemNode::dump_spec(outputStream *st) const {
4109   st->print(" {");
4110   Node* base_mem = base_memory();
4111   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4112     Node* mem = memory_at(i);
4113     if (mem == base_mem) { st->print(" -"); continue; }
4114     st->print( " N%d:", mem->_idx );
4115     Compile::current()->get_adr_type(i)->dump_on(st);
4116   }
4117   st->print(" }");
4118 }
4119 #endif // !PRODUCT
4120 
4121 
4122 #ifdef ASSERT
4123 static bool might_be_same(Node* a, Node* b) {
4124   if (a == b)  return true;
4125   if (!(a->is_Phi() || b->is_Phi()))  return false;
4126   // phis shift around during optimization
4127   return true;  // pretty stupid...
4128 }
4129 
4130 // verify a narrow slice (either incoming or outgoing)
4131 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4132   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4133   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4134   if (Node::in_dump())      return;  // muzzle asserts when printing
4135   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4136   assert(n != NULL, "");
4137   // Elide intervening MergeMem's
4138   while (n->is_MergeMem()) {
4139     n = n->as_MergeMem()->memory_at(alias_idx);
4140   }
4141   Compile* C = Compile::current();
4142   const TypePtr* n_adr_type = n->adr_type();
4143   if (n == m->empty_memory()) {
4144     // Implicit copy of base_memory()
4145   } else if (n_adr_type != TypePtr::BOTTOM) {
4146     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4147     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4148   } else {
4149     // A few places like make_runtime_call "know" that VM calls are narrow,
4150     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4151     bool expected_wide_mem = false;
4152     if (n == m->base_memory()) {
4153       expected_wide_mem = true;
4154     } else if (alias_idx == Compile::AliasIdxRaw ||
4155                n == m->memory_at(Compile::AliasIdxRaw)) {
4156       expected_wide_mem = true;
4157     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4158       // memory can "leak through" calls on channels that
4159       // are write-once.  Allow this also.
4160       expected_wide_mem = true;
4161     }
4162     assert(expected_wide_mem, "expected narrow slice replacement");
4163   }
4164 }
4165 #else // !ASSERT
4166 #define verify_memory_slice(m,i,n) (0)  // PRODUCT version is no-op
4167 #endif
4168 
4169 
4170 //-----------------------------memory_at---------------------------------------
4171 Node* MergeMemNode::memory_at(uint alias_idx) const {
4172   assert(alias_idx >= Compile::AliasIdxRaw ||
4173          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4174          "must avoid base_memory and AliasIdxTop");
4175 
4176   // Otherwise, it is a narrow slice.
4177   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4178   Compile *C = Compile::current();
4179   if (is_empty_memory(n)) {
4180     // the array is sparse; empty slots are the "top" node
4181     n = base_memory();
4182     assert(Node::in_dump()
4183            || n == NULL || n->bottom_type() == Type::TOP
4184            || n->adr_type() == NULL // address is TOP
4185            || n->adr_type() == TypePtr::BOTTOM
4186            || n->adr_type() == TypeRawPtr::BOTTOM
4187            || Compile::current()->AliasLevel() == 0,
4188            "must be a wide memory");
4189     // AliasLevel == 0 if we are organizing the memory states manually.
4190     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4191   } else {
4192     // make sure the stored slice is sane
4193     #ifdef ASSERT
4194     if (is_error_reported() || Node::in_dump()) {
4195     } else if (might_be_same(n, base_memory())) {
4196       // Give it a pass:  It is a mostly harmless repetition of the base.
4197       // This can arise normally from node subsumption during optimization.
4198     } else {
4199       verify_memory_slice(this, alias_idx, n);
4200     }
4201     #endif
4202   }
4203   return n;
4204 }
4205 
4206 //---------------------------set_memory_at-------------------------------------
4207 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4208   verify_memory_slice(this, alias_idx, n);
4209   Node* empty_mem = empty_memory();
4210   if (n == base_memory())  n = empty_mem;  // collapse default
4211   uint need_req = alias_idx+1;
4212   if (req() < need_req) {
4213     if (n == empty_mem)  return;  // already the default, so do not grow me
4214     // grow the sparse array
4215     do {
4216       add_req(empty_mem);
4217     } while (req() < need_req);
4218   }
4219   set_req( alias_idx, n );
4220 }
4221 
4222 
4223 
4224 //--------------------------iteration_setup------------------------------------
4225 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4226   if (other != NULL) {
4227     grow_to_match(other);
4228     // invariant:  the finite support of mm2 is within mm->req()
4229     #ifdef ASSERT
4230     for (uint i = req(); i < other->req(); i++) {
4231       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4232     }
4233     #endif
4234   }
4235   // Replace spurious copies of base_memory by top.
4236   Node* base_mem = base_memory();
4237   if (base_mem != NULL && !base_mem->is_top()) {
4238     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4239       if (in(i) == base_mem)
4240         set_req(i, empty_memory());
4241     }
4242   }
4243 }
4244 
4245 //---------------------------grow_to_match-------------------------------------
4246 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4247   Node* empty_mem = empty_memory();
4248   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4249   // look for the finite support of the other memory
4250   for (uint i = other->req(); --i >= req(); ) {
4251     if (other->in(i) != empty_mem) {
4252       uint new_len = i+1;
4253       while (req() < new_len)  add_req(empty_mem);
4254       break;
4255     }
4256   }
4257 }
4258 
4259 //---------------------------verify_sparse-------------------------------------
4260 #ifndef PRODUCT
4261 bool MergeMemNode::verify_sparse() const {
4262   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4263   Node* base_mem = base_memory();
4264   // The following can happen in degenerate cases, since empty==top.
4265   if (is_empty_memory(base_mem))  return true;
4266   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4267     assert(in(i) != NULL, "sane slice");
4268     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4269   }
4270   return true;
4271 }
4272 
4273 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4274   Node* n;
4275   n = mm->in(idx);
4276   if (mem == n)  return true;  // might be empty_memory()
4277   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4278   if (mem == n)  return true;
4279   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4280     if (mem == n)  return true;
4281     if (n == NULL)  break;
4282   }
4283   return false;
4284 }
4285 #endif // !PRODUCT