1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/interpreterRuntime.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/universe.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/forte.hpp"
  40 #include "prims/jvmtiExport.hpp"
  41 #include "prims/jvmtiRedefineClassesTrace.hpp"
  42 #include "prims/methodHandles.hpp"
  43 #include "prims/nativeLookup.hpp"
  44 #include "runtime/arguments.hpp"
  45 #include "runtime/biasedLocking.hpp"
  46 #include "runtime/handles.inline.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/interfaceSupport.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #include "runtime/stubRoutines.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "utilities/copy.hpp"
  55 #include "utilities/dtrace.hpp"
  56 #include "utilities/events.hpp"
  57 #include "utilities/hashtable.inline.hpp"
  58 #include "utilities/xmlstream.hpp"
  59 #ifdef TARGET_ARCH_x86
  60 # include "nativeInst_x86.hpp"
  61 # include "vmreg_x86.inline.hpp"
  62 #endif
  63 #ifdef TARGET_ARCH_sparc
  64 # include "nativeInst_sparc.hpp"
  65 # include "vmreg_sparc.inline.hpp"
  66 #endif
  67 #ifdef TARGET_ARCH_zero
  68 # include "nativeInst_zero.hpp"
  69 # include "vmreg_zero.inline.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_arm
  72 # include "nativeInst_arm.hpp"
  73 # include "vmreg_arm.inline.hpp"
  74 #endif
  75 #ifdef TARGET_ARCH_ppc
  76 # include "nativeInst_ppc.hpp"
  77 # include "vmreg_ppc.inline.hpp"
  78 #endif
  79 #ifdef COMPILER1
  80 #include "c1/c1_Runtime1.hpp"
  81 #endif
  82 
  83 // Shared stub locations
  84 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  85 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  86 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  87 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  89 
  90 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  91 RicochetBlob*       SharedRuntime::_ricochet_blob;
  92 
  93 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  95 
  96 #ifdef COMPILER2
  97 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  98 #endif // COMPILER2
  99 
 100 
 101 //----------------------------generate_stubs-----------------------------------
 102 void SharedRuntime::generate_stubs() {
 103   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
 104   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
 105   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
 106   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
 107   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
 108 
 109   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), false);
 110   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), true);
 111 
 112   generate_ricochet_blob();
 113   generate_deopt_blob();
 114 
 115 #ifdef COMPILER2
 116   generate_uncommon_trap_blob();
 117 #endif // COMPILER2
 118 }
 119 
 120 //----------------------------generate_ricochet_blob---------------------------
 121 void SharedRuntime::generate_ricochet_blob() {
 122   if (!EnableInvokeDynamic)  return;  // leave it as a null
 123 
 124   // allocate space for the code
 125   ResourceMark rm;
 126   // setup code generation tools
 127   CodeBuffer buffer("ricochet_blob", 256 LP64_ONLY(+ 256), 256);  // XXX x86 LP64L: 512, 512
 128   MacroAssembler* masm = new MacroAssembler(&buffer);
 129 
 130   int bounce_offset = -1, exception_offset = -1, frame_size_in_words = -1;
 131   MethodHandles::RicochetFrame::generate_ricochet_blob(masm, &bounce_offset, &exception_offset, &frame_size_in_words);
 132 
 133   // -------------
 134   // make sure all code is generated
 135   masm->flush();
 136 
 137   // failed to generate?
 138   if (bounce_offset < 0 || exception_offset < 0 || frame_size_in_words < 0) {
 139     assert(false, "bad ricochet blob");
 140     return;
 141   }
 142 
 143   _ricochet_blob = RicochetBlob::create(&buffer, bounce_offset, exception_offset, frame_size_in_words);
 144 }
 145 
 146 
 147 #include <math.h>
 148 
 149 #ifndef USDT2
 150 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 151 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 152                       char*, int, char*, int, char*, int);
 153 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 154                       char*, int, char*, int, char*, int);
 155 #endif /* !USDT2 */
 156 
 157 // Implementation of SharedRuntime
 158 
 159 #ifndef PRODUCT
 160 // For statistics
 161 int SharedRuntime::_ic_miss_ctr = 0;
 162 int SharedRuntime::_wrong_method_ctr = 0;
 163 int SharedRuntime::_resolve_static_ctr = 0;
 164 int SharedRuntime::_resolve_virtual_ctr = 0;
 165 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 166 int SharedRuntime::_implicit_null_throws = 0;
 167 int SharedRuntime::_implicit_div0_throws = 0;
 168 int SharedRuntime::_throw_null_ctr = 0;
 169 
 170 int SharedRuntime::_nof_normal_calls = 0;
 171 int SharedRuntime::_nof_optimized_calls = 0;
 172 int SharedRuntime::_nof_inlined_calls = 0;
 173 int SharedRuntime::_nof_megamorphic_calls = 0;
 174 int SharedRuntime::_nof_static_calls = 0;
 175 int SharedRuntime::_nof_inlined_static_calls = 0;
 176 int SharedRuntime::_nof_interface_calls = 0;
 177 int SharedRuntime::_nof_optimized_interface_calls = 0;
 178 int SharedRuntime::_nof_inlined_interface_calls = 0;
 179 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 180 int SharedRuntime::_nof_removable_exceptions = 0;
 181 
 182 int SharedRuntime::_new_instance_ctr=0;
 183 int SharedRuntime::_new_array_ctr=0;
 184 int SharedRuntime::_multi1_ctr=0;
 185 int SharedRuntime::_multi2_ctr=0;
 186 int SharedRuntime::_multi3_ctr=0;
 187 int SharedRuntime::_multi4_ctr=0;
 188 int SharedRuntime::_multi5_ctr=0;
 189 int SharedRuntime::_mon_enter_stub_ctr=0;
 190 int SharedRuntime::_mon_exit_stub_ctr=0;
 191 int SharedRuntime::_mon_enter_ctr=0;
 192 int SharedRuntime::_mon_exit_ctr=0;
 193 int SharedRuntime::_partial_subtype_ctr=0;
 194 int SharedRuntime::_jbyte_array_copy_ctr=0;
 195 int SharedRuntime::_jshort_array_copy_ctr=0;
 196 int SharedRuntime::_jint_array_copy_ctr=0;
 197 int SharedRuntime::_jlong_array_copy_ctr=0;
 198 int SharedRuntime::_oop_array_copy_ctr=0;
 199 int SharedRuntime::_checkcast_array_copy_ctr=0;
 200 int SharedRuntime::_unsafe_array_copy_ctr=0;
 201 int SharedRuntime::_generic_array_copy_ctr=0;
 202 int SharedRuntime::_slow_array_copy_ctr=0;
 203 int SharedRuntime::_find_handler_ctr=0;
 204 int SharedRuntime::_rethrow_ctr=0;
 205 
 206 int     SharedRuntime::_ICmiss_index                    = 0;
 207 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 208 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 209 
 210 
 211 void SharedRuntime::trace_ic_miss(address at) {
 212   for (int i = 0; i < _ICmiss_index; i++) {
 213     if (_ICmiss_at[i] == at) {
 214       _ICmiss_count[i]++;
 215       return;
 216     }
 217   }
 218   int index = _ICmiss_index++;
 219   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 220   _ICmiss_at[index] = at;
 221   _ICmiss_count[index] = 1;
 222 }
 223 
 224 void SharedRuntime::print_ic_miss_histogram() {
 225   if (ICMissHistogram) {
 226     tty->print_cr ("IC Miss Histogram:");
 227     int tot_misses = 0;
 228     for (int i = 0; i < _ICmiss_index; i++) {
 229       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 230       tot_misses += _ICmiss_count[i];
 231     }
 232     tty->print_cr ("Total IC misses: %7d", tot_misses);
 233   }
 234 }
 235 #endif // PRODUCT
 236 
 237 #ifndef SERIALGC
 238 
 239 // G1 write-barrier pre: executed before a pointer store.
 240 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 241   if (orig == NULL) {
 242     assert(false, "should be optimized out");
 243     return;
 244   }
 245   assert(orig->is_oop(true /* ignore mark word */), "Error");
 246   // store the original value that was in the field reference
 247   thread->satb_mark_queue().enqueue(orig);
 248 JRT_END
 249 
 250 // G1 write-barrier post: executed after a pointer store.
 251 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 252   thread->dirty_card_queue().enqueue(card_addr);
 253 JRT_END
 254 
 255 #endif // !SERIALGC
 256 
 257 
 258 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 259   return x * y;
 260 JRT_END
 261 
 262 
 263 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 264   if (x == min_jlong && y == CONST64(-1)) {
 265     return x;
 266   } else {
 267     return x / y;
 268   }
 269 JRT_END
 270 
 271 
 272 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 273   if (x == min_jlong && y == CONST64(-1)) {
 274     return 0;
 275   } else {
 276     return x % y;
 277   }
 278 JRT_END
 279 
 280 
 281 const juint  float_sign_mask  = 0x7FFFFFFF;
 282 const juint  float_infinity   = 0x7F800000;
 283 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 284 const julong double_infinity  = CONST64(0x7FF0000000000000);
 285 
 286 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 287 #ifdef _WIN64
 288   // 64-bit Windows on amd64 returns the wrong values for
 289   // infinity operands.
 290   union { jfloat f; juint i; } xbits, ybits;
 291   xbits.f = x;
 292   ybits.f = y;
 293   // x Mod Infinity == x unless x is infinity
 294   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 295        ((ybits.i & float_sign_mask) == float_infinity) ) {
 296     return x;
 297   }
 298 #endif
 299   return ((jfloat)fmod((double)x,(double)y));
 300 JRT_END
 301 
 302 
 303 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 304 #ifdef _WIN64
 305   union { jdouble d; julong l; } xbits, ybits;
 306   xbits.d = x;
 307   ybits.d = y;
 308   // x Mod Infinity == x unless x is infinity
 309   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 310        ((ybits.l & double_sign_mask) == double_infinity) ) {
 311     return x;
 312   }
 313 #endif
 314   return ((jdouble)fmod((double)x,(double)y));
 315 JRT_END
 316 
 317 #ifdef __SOFTFP__
 318 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 319   return x + y;
 320 JRT_END
 321 
 322 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 323   return x - y;
 324 JRT_END
 325 
 326 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 327   return x * y;
 328 JRT_END
 329 
 330 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 331   return x / y;
 332 JRT_END
 333 
 334 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 335   return x + y;
 336 JRT_END
 337 
 338 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 339   return x - y;
 340 JRT_END
 341 
 342 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 343   return x * y;
 344 JRT_END
 345 
 346 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 347   return x / y;
 348 JRT_END
 349 
 350 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 351   return (jfloat)x;
 352 JRT_END
 353 
 354 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 355   return (jdouble)x;
 356 JRT_END
 357 
 358 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 359   return (jdouble)x;
 360 JRT_END
 361 
 362 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 363   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 364 JRT_END
 365 
 366 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 367   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 368 JRT_END
 369 
 370 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 371   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 372 JRT_END
 373 
 374 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 375   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 376 JRT_END
 377 
 378 // Functions to return the opposite of the aeabi functions for nan.
 379 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 380   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 381 JRT_END
 382 
 383 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 384   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 385 JRT_END
 386 
 387 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 388   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 389 JRT_END
 390 
 391 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 392   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 393 JRT_END
 394 
 395 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 396   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 397 JRT_END
 398 
 399 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 400   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 401 JRT_END
 402 
 403 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 404   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 405 JRT_END
 406 
 407 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 408   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 409 JRT_END
 410 
 411 // Intrinsics make gcc generate code for these.
 412 float  SharedRuntime::fneg(float f)   {
 413   return -f;
 414 }
 415 
 416 double SharedRuntime::dneg(double f)  {
 417   return -f;
 418 }
 419 
 420 #endif // __SOFTFP__
 421 
 422 #if defined(__SOFTFP__) || defined(E500V2)
 423 // Intrinsics make gcc generate code for these.
 424 double SharedRuntime::dabs(double f)  {
 425   return (f <= (double)0.0) ? (double)0.0 - f : f;
 426 }
 427 
 428 #endif
 429 
 430 #if defined(__SOFTFP__) || defined(PPC)
 431 double SharedRuntime::dsqrt(double f) {
 432   return sqrt(f);
 433 }
 434 #endif
 435 
 436 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 437   if (g_isnan(x))
 438     return 0;
 439   if (x >= (jfloat) max_jint)
 440     return max_jint;
 441   if (x <= (jfloat) min_jint)
 442     return min_jint;
 443   return (jint) x;
 444 JRT_END
 445 
 446 
 447 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 448   if (g_isnan(x))
 449     return 0;
 450   if (x >= (jfloat) max_jlong)
 451     return max_jlong;
 452   if (x <= (jfloat) min_jlong)
 453     return min_jlong;
 454   return (jlong) x;
 455 JRT_END
 456 
 457 
 458 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 459   if (g_isnan(x))
 460     return 0;
 461   if (x >= (jdouble) max_jint)
 462     return max_jint;
 463   if (x <= (jdouble) min_jint)
 464     return min_jint;
 465   return (jint) x;
 466 JRT_END
 467 
 468 
 469 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 470   if (g_isnan(x))
 471     return 0;
 472   if (x >= (jdouble) max_jlong)
 473     return max_jlong;
 474   if (x <= (jdouble) min_jlong)
 475     return min_jlong;
 476   return (jlong) x;
 477 JRT_END
 478 
 479 
 480 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 481   return (jfloat)x;
 482 JRT_END
 483 
 484 
 485 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 486   return (jfloat)x;
 487 JRT_END
 488 
 489 
 490 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 491   return (jdouble)x;
 492 JRT_END
 493 
 494 // Exception handling accross interpreter/compiler boundaries
 495 //
 496 // exception_handler_for_return_address(...) returns the continuation address.
 497 // The continuation address is the entry point of the exception handler of the
 498 // previous frame depending on the return address.
 499 
 500 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 501   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 502 
 503   // Reset method handle flag.
 504   thread->set_is_method_handle_return(false);
 505 
 506   // The fastest case first
 507   CodeBlob* blob = CodeCache::find_blob(return_address);
 508   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 509   if (nm != NULL) {
 510     // Set flag if return address is a method handle call site.
 511     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 512     // native nmethods don't have exception handlers
 513     assert(!nm->is_native_method(), "no exception handler");
 514     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 515     if (nm->is_deopt_pc(return_address)) {
 516       return SharedRuntime::deopt_blob()->unpack_with_exception();
 517     } else {
 518       return nm->exception_begin();
 519     }
 520   }
 521 
 522   // Entry code
 523   if (StubRoutines::returns_to_call_stub(return_address)) {
 524     return StubRoutines::catch_exception_entry();
 525   }
 526   // Interpreted code
 527   if (Interpreter::contains(return_address)) {
 528     return Interpreter::rethrow_exception_entry();
 529   }
 530   // Ricochet frame unwind code
 531   if (SharedRuntime::ricochet_blob() != NULL && SharedRuntime::ricochet_blob()->returns_to_bounce_addr(return_address)) {
 532     return SharedRuntime::ricochet_blob()->exception_addr();
 533   }
 534 
 535   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 536   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 537 
 538 #ifndef PRODUCT
 539   { ResourceMark rm;
 540     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 541     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 542     tty->print_cr("b) other problem");
 543   }
 544 #endif // PRODUCT
 545 
 546   ShouldNotReachHere();
 547   return NULL;
 548 }
 549 
 550 
 551 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 552   return raw_exception_handler_for_return_address(thread, return_address);
 553 JRT_END
 554 
 555 
 556 address SharedRuntime::get_poll_stub(address pc) {
 557   address stub;
 558   // Look up the code blob
 559   CodeBlob *cb = CodeCache::find_blob(pc);
 560 
 561   // Should be an nmethod
 562   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 563 
 564   // Look up the relocation information
 565   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 566     "safepoint polling: type must be poll" );
 567 
 568   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 569     "Only polling locations are used for safepoint");
 570 
 571   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 572   if (at_poll_return) {
 573     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 574            "polling page return stub not created yet");
 575     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 576   } else {
 577     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 578            "polling page safepoint stub not created yet");
 579     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 580   }
 581 #ifndef PRODUCT
 582   if( TraceSafepoint ) {
 583     char buf[256];
 584     jio_snprintf(buf, sizeof(buf),
 585                  "... found polling page %s exception at pc = "
 586                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 587                  at_poll_return ? "return" : "loop",
 588                  (intptr_t)pc, (intptr_t)stub);
 589     tty->print_raw_cr(buf);
 590   }
 591 #endif // PRODUCT
 592   return stub;
 593 }
 594 
 595 
 596 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 597   assert(caller.is_interpreted_frame(), "");
 598   int args_size = ArgumentSizeComputer(sig).size() + 1;
 599   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 600   oop result = (oop) *caller.interpreter_frame_tos_at(args_size - 1);
 601   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 602   return result;
 603 }
 604 
 605 
 606 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 607   if (JvmtiExport::can_post_on_exceptions()) {
 608     vframeStream vfst(thread, true);
 609     methodHandle method = methodHandle(thread, vfst.method());
 610     address bcp = method()->bcp_from(vfst.bci());
 611     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 612   }
 613   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 614 }
 615 
 616 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 617   Handle h_exception = Exceptions::new_exception(thread, name, message);
 618   throw_and_post_jvmti_exception(thread, h_exception);
 619 }
 620 
 621 // The interpreter code to call this tracing function is only
 622 // called/generated when TraceRedefineClasses has the right bits
 623 // set. Since obsolete methods are never compiled, we don't have
 624 // to modify the compilers to generate calls to this function.
 625 //
 626 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 627     JavaThread* thread, methodOopDesc* method))
 628   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 629 
 630   if (method->is_obsolete()) {
 631     // We are calling an obsolete method, but this is not necessarily
 632     // an error. Our method could have been redefined just after we
 633     // fetched the methodOop from the constant pool.
 634 
 635     // RC_TRACE macro has an embedded ResourceMark
 636     RC_TRACE_WITH_THREAD(0x00001000, thread,
 637                          ("calling obsolete method '%s'",
 638                           method->name_and_sig_as_C_string()));
 639     if (RC_TRACE_ENABLED(0x00002000)) {
 640       // this option is provided to debug calls to obsolete methods
 641       guarantee(false, "faulting at call to an obsolete method.");
 642     }
 643   }
 644   return 0;
 645 JRT_END
 646 
 647 // ret_pc points into caller; we are returning caller's exception handler
 648 // for given exception
 649 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 650                                                     bool force_unwind, bool top_frame_only) {
 651   assert(nm != NULL, "must exist");
 652   ResourceMark rm;
 653 
 654   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 655   // determine handler bci, if any
 656   EXCEPTION_MARK;
 657 
 658   int handler_bci = -1;
 659   int scope_depth = 0;
 660   if (!force_unwind) {
 661     int bci = sd->bci();
 662     bool recursive_exception = false;
 663     do {
 664       bool skip_scope_increment = false;
 665       // exception handler lookup
 666       KlassHandle ek (THREAD, exception->klass());
 667       handler_bci = sd->method()->fast_exception_handler_bci_for(ek, bci, THREAD);
 668       if (HAS_PENDING_EXCEPTION) {
 669         recursive_exception = true;
 670         // We threw an exception while trying to find the exception handler.
 671         // Transfer the new exception to the exception handle which will
 672         // be set into thread local storage, and do another lookup for an
 673         // exception handler for this exception, this time starting at the
 674         // BCI of the exception handler which caused the exception to be
 675         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 676         // argument to ensure that the correct exception is thrown (4870175).
 677         exception = Handle(THREAD, PENDING_EXCEPTION);
 678         CLEAR_PENDING_EXCEPTION;
 679         if (handler_bci >= 0) {
 680           bci = handler_bci;
 681           handler_bci = -1;
 682           skip_scope_increment = true;
 683         }
 684       }
 685       else {
 686         recursive_exception = false;
 687       }
 688       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 689         sd = sd->sender();
 690         if (sd != NULL) {
 691           bci = sd->bci();
 692         }
 693         ++scope_depth;
 694       }
 695     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 696   }
 697 
 698   // found handling method => lookup exception handler
 699   int catch_pco = ret_pc - nm->code_begin();
 700 
 701   ExceptionHandlerTable table(nm);
 702   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 703   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 704     // Allow abbreviated catch tables.  The idea is to allow a method
 705     // to materialize its exceptions without committing to the exact
 706     // routing of exceptions.  In particular this is needed for adding
 707     // a synthethic handler to unlock monitors when inlining
 708     // synchonized methods since the unlock path isn't represented in
 709     // the bytecodes.
 710     t = table.entry_for(catch_pco, -1, 0);
 711   }
 712 
 713 #ifdef COMPILER1
 714   if (t == NULL && nm->is_compiled_by_c1()) {
 715     assert(nm->unwind_handler_begin() != NULL, "");
 716     return nm->unwind_handler_begin();
 717   }
 718 #endif
 719 
 720   if (t == NULL) {
 721     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 722     tty->print_cr("   Exception:");
 723     exception->print();
 724     tty->cr();
 725     tty->print_cr(" Compiled exception table :");
 726     table.print();
 727     nm->print_code();
 728     guarantee(false, "missing exception handler");
 729     return NULL;
 730   }
 731 
 732   return nm->code_begin() + t->pco();
 733 }
 734 
 735 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 736   // These errors occur only at call sites
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 741   // These errors occur only at call sites
 742   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 743 JRT_END
 744 
 745 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 746   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 747 JRT_END
 748 
 749 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 754   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 755   // cache sites (when the callee activation is not yet set up) so we are at a call site
 756   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 757 JRT_END
 758 
 759 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 760   // We avoid using the normal exception construction in this case because
 761   // it performs an upcall to Java, and we're already out of stack space.
 762   klassOop k = SystemDictionary::StackOverflowError_klass();
 763   oop exception_oop = instanceKlass::cast(k)->allocate_instance(CHECK);
 764   Handle exception (thread, exception_oop);
 765   if (StackTraceInThrowable) {
 766     java_lang_Throwable::fill_in_stack_trace(exception);
 767   }
 768   throw_and_post_jvmti_exception(thread, exception);
 769 JRT_END
 770 
 771 JRT_ENTRY(void, SharedRuntime::throw_WrongMethodTypeException(JavaThread* thread, oopDesc* required, oopDesc* actual))
 772   assert(thread == JavaThread::current() && required->is_oop() && actual->is_oop(), "bad args");
 773   ResourceMark rm;
 774   char* message = SharedRuntime::generate_wrong_method_type_message(thread, required, actual);
 775   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_invoke_WrongMethodTypeException(), message);
 776 JRT_END
 777 
 778 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 779                                                            address pc,
 780                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 781 {
 782   address target_pc = NULL;
 783 
 784   if (Interpreter::contains(pc)) {
 785 #ifdef CC_INTERP
 786     // C++ interpreter doesn't throw implicit exceptions
 787     ShouldNotReachHere();
 788 #else
 789     switch (exception_kind) {
 790       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 791       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 792       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 793       default:                      ShouldNotReachHere();
 794     }
 795 #endif // !CC_INTERP
 796   } else {
 797     switch (exception_kind) {
 798       case STACK_OVERFLOW: {
 799         // Stack overflow only occurs upon frame setup; the callee is
 800         // going to be unwound. Dispatch to a shared runtime stub
 801         // which will cause the StackOverflowError to be fabricated
 802         // and processed.
 803         // For stack overflow in deoptimization blob, cleanup thread.
 804         if (thread->deopt_mark() != NULL) {
 805           Deoptimization::cleanup_deopt_info(thread, NULL);
 806         }
 807         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 808         return StubRoutines::throw_StackOverflowError_entry();
 809       }
 810 
 811       case IMPLICIT_NULL: {
 812         if (VtableStubs::contains(pc)) {
 813           // We haven't yet entered the callee frame. Fabricate an
 814           // exception and begin dispatching it in the caller. Since
 815           // the caller was at a call site, it's safe to destroy all
 816           // caller-saved registers, as these entry points do.
 817           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 818 
 819           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 820           if (vt_stub == NULL) return NULL;
 821 
 822           if (vt_stub->is_abstract_method_error(pc)) {
 823             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 824             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 825             return StubRoutines::throw_AbstractMethodError_entry();
 826           } else {
 827             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 828             return StubRoutines::throw_NullPointerException_at_call_entry();
 829           }
 830         } else {
 831           CodeBlob* cb = CodeCache::find_blob(pc);
 832 
 833           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 834           if (cb == NULL) return NULL;
 835 
 836           // Exception happened in CodeCache. Must be either:
 837           // 1. Inline-cache check in C2I handler blob,
 838           // 2. Inline-cache check in nmethod, or
 839           // 3. Implict null exception in nmethod
 840 
 841           if (!cb->is_nmethod()) {
 842             guarantee(cb->is_adapter_blob() || cb->is_method_handles_adapter_blob(),
 843                       "exception happened outside interpreter, nmethods and vtable stubs (1)");
 844             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 845             // There is no handler here, so we will simply unwind.
 846             return StubRoutines::throw_NullPointerException_at_call_entry();
 847           }
 848 
 849           // Otherwise, it's an nmethod.  Consult its exception handlers.
 850           nmethod* nm = (nmethod*)cb;
 851           if (nm->inlinecache_check_contains(pc)) {
 852             // exception happened inside inline-cache check code
 853             // => the nmethod is not yet active (i.e., the frame
 854             // is not set up yet) => use return address pushed by
 855             // caller => don't push another return address
 856             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 857             return StubRoutines::throw_NullPointerException_at_call_entry();
 858           }
 859 
 860 #ifndef PRODUCT
 861           _implicit_null_throws++;
 862 #endif
 863           target_pc = nm->continuation_for_implicit_exception(pc);
 864           // If there's an unexpected fault, target_pc might be NULL,
 865           // in which case we want to fall through into the normal
 866           // error handling code.
 867         }
 868 
 869         break; // fall through
 870       }
 871 
 872 
 873       case IMPLICIT_DIVIDE_BY_ZERO: {
 874         nmethod* nm = CodeCache::find_nmethod(pc);
 875         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 876 #ifndef PRODUCT
 877         _implicit_div0_throws++;
 878 #endif
 879         target_pc = nm->continuation_for_implicit_exception(pc);
 880         // If there's an unexpected fault, target_pc might be NULL,
 881         // in which case we want to fall through into the normal
 882         // error handling code.
 883         break; // fall through
 884       }
 885 
 886       default: ShouldNotReachHere();
 887     }
 888 
 889     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 890 
 891     // for AbortVMOnException flag
 892     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 893     if (exception_kind == IMPLICIT_NULL) {
 894       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 895     } else {
 896       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 897     }
 898     return target_pc;
 899   }
 900 
 901   ShouldNotReachHere();
 902   return NULL;
 903 }
 904 
 905 
 906 JNI_ENTRY(void, throw_unsatisfied_link_error(JNIEnv* env, ...))
 907 {
 908   THROW(vmSymbols::java_lang_UnsatisfiedLinkError());
 909 }
 910 JNI_END
 911 
 912 
 913 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 914   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 915 }
 916 
 917 
 918 #ifndef PRODUCT
 919 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 920   const frame f = thread->last_frame();
 921   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 922 #ifndef PRODUCT
 923   methodHandle mh(THREAD, f.interpreter_frame_method());
 924   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 925 #endif // !PRODUCT
 926   return preserve_this_value;
 927 JRT_END
 928 #endif // !PRODUCT
 929 
 930 
 931 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 932   os::yield_all(attempts);
 933 JRT_END
 934 
 935 
 936 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 937   assert(obj->is_oop(), "must be a valid oop");
 938   assert(obj->klass()->klass_part()->has_finalizer(), "shouldn't be here otherwise");
 939   instanceKlass::register_finalizer(instanceOop(obj), CHECK);
 940 JRT_END
 941 
 942 
 943 jlong SharedRuntime::get_java_tid(Thread* thread) {
 944   if (thread != NULL) {
 945     if (thread->is_Java_thread()) {
 946       oop obj = ((JavaThread*)thread)->threadObj();
 947       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 948     }
 949   }
 950   return 0;
 951 }
 952 
 953 /**
 954  * This function ought to be a void function, but cannot be because
 955  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 956  * 6254741.  Once that is fixed we can remove the dummy return value.
 957  */
 958 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 959   return dtrace_object_alloc_base(Thread::current(), o);
 960 }
 961 
 962 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 963   assert(DTraceAllocProbes, "wrong call");
 964   Klass* klass = o->blueprint();
 965   int size = o->size();
 966   Symbol* name = klass->name();
 967 #ifndef USDT2
 968   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 969                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 970 #else /* USDT2 */
 971   HOTSPOT_OBJECT_ALLOC(
 972                    get_java_tid(thread),
 973                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 974 #endif /* USDT2 */
 975   return 0;
 976 }
 977 
 978 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 979     JavaThread* thread, methodOopDesc* method))
 980   assert(DTraceMethodProbes, "wrong call");
 981   Symbol* kname = method->klass_name();
 982   Symbol* name = method->name();
 983   Symbol* sig = method->signature();
 984 #ifndef USDT2
 985   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 986       kname->bytes(), kname->utf8_length(),
 987       name->bytes(), name->utf8_length(),
 988       sig->bytes(), sig->utf8_length());
 989 #else /* USDT2 */
 990   HOTSPOT_METHOD_ENTRY(
 991       get_java_tid(thread),
 992       (char *) kname->bytes(), kname->utf8_length(),
 993       (char *) name->bytes(), name->utf8_length(),
 994       (char *) sig->bytes(), sig->utf8_length());
 995 #endif /* USDT2 */
 996   return 0;
 997 JRT_END
 998 
 999 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1000     JavaThread* thread, methodOopDesc* method))
1001   assert(DTraceMethodProbes, "wrong call");
1002   Symbol* kname = method->klass_name();
1003   Symbol* name = method->name();
1004   Symbol* sig = method->signature();
1005 #ifndef USDT2
1006   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1007       kname->bytes(), kname->utf8_length(),
1008       name->bytes(), name->utf8_length(),
1009       sig->bytes(), sig->utf8_length());
1010 #else /* USDT2 */
1011   HOTSPOT_METHOD_RETURN(
1012       get_java_tid(thread),
1013       (char *) kname->bytes(), kname->utf8_length(),
1014       (char *) name->bytes(), name->utf8_length(),
1015       (char *) sig->bytes(), sig->utf8_length());
1016 #endif /* USDT2 */
1017   return 0;
1018 JRT_END
1019 
1020 
1021 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1022 // for a call current in progress, i.e., arguments has been pushed on stack
1023 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1024 // vtable updates, etc.  Caller frame must be compiled.
1025 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1026   ResourceMark rm(THREAD);
1027 
1028   // last java frame on stack (which includes native call frames)
1029   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1030 
1031   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1032 }
1033 
1034 
1035 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1036 // for a call current in progress, i.e., arguments has been pushed on stack
1037 // but callee has not been invoked yet.  Caller frame must be compiled.
1038 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1039                                               vframeStream& vfst,
1040                                               Bytecodes::Code& bc,
1041                                               CallInfo& callinfo, TRAPS) {
1042   Handle receiver;
1043   Handle nullHandle;  //create a handy null handle for exception returns
1044 
1045   assert(!vfst.at_end(), "Java frame must exist");
1046 
1047   // Find caller and bci from vframe
1048   methodHandle caller (THREAD, vfst.method());
1049   int          bci    = vfst.bci();
1050 
1051   // Find bytecode
1052   Bytecode_invoke bytecode(caller, bci);
1053   bc = bytecode.java_code();
1054   int bytecode_index = bytecode.index();
1055 
1056   // Find receiver for non-static call
1057   if (bc != Bytecodes::_invokestatic) {
1058     // This register map must be update since we need to find the receiver for
1059     // compiled frames. The receiver might be in a register.
1060     RegisterMap reg_map2(thread);
1061     frame stubFrame   = thread->last_frame();
1062     // Caller-frame is a compiled frame
1063     frame callerFrame = stubFrame.sender(&reg_map2);
1064 
1065     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1066     if (callee.is_null()) {
1067       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1068     }
1069     // Retrieve from a compiled argument list
1070     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1071 
1072     if (receiver.is_null()) {
1073       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1074     }
1075   }
1076 
1077   // Resolve method. This is parameterized by bytecode.
1078   constantPoolHandle constants (THREAD, caller->constants());
1079   assert (receiver.is_null() || receiver->is_oop(), "wrong receiver");
1080   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1081 
1082 #ifdef ASSERT
1083   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1084   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic) {
1085     assert(receiver.not_null(), "should have thrown exception");
1086     KlassHandle receiver_klass (THREAD, receiver->klass());
1087     klassOop rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1088                             // klass is already loaded
1089     KlassHandle static_receiver_klass (THREAD, rk);
1090     assert(receiver_klass->is_subtype_of(static_receiver_klass()), "actual receiver must be subclass of static receiver klass");
1091     if (receiver_klass->oop_is_instance()) {
1092       if (instanceKlass::cast(receiver_klass())->is_not_initialized()) {
1093         tty->print_cr("ERROR: Klass not yet initialized!!");
1094         receiver_klass.print();
1095       }
1096       assert (!instanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1097     }
1098   }
1099 #endif
1100 
1101   return receiver;
1102 }
1103 
1104 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1105   ResourceMark rm(THREAD);
1106   // We need first to check if any Java activations (compiled, interpreted)
1107   // exist on the stack since last JavaCall.  If not, we need
1108   // to get the target method from the JavaCall wrapper.
1109   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1110   methodHandle callee_method;
1111   if (vfst.at_end()) {
1112     // No Java frames were found on stack since we did the JavaCall.
1113     // Hence the stack can only contain an entry_frame.  We need to
1114     // find the target method from the stub frame.
1115     RegisterMap reg_map(thread, false);
1116     frame fr = thread->last_frame();
1117     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1118     fr = fr.sender(&reg_map);
1119     assert(fr.is_entry_frame(), "must be");
1120     // fr is now pointing to the entry frame.
1121     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1122     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1123   } else {
1124     Bytecodes::Code bc;
1125     CallInfo callinfo;
1126     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1127     callee_method = callinfo.selected_method();
1128   }
1129   assert(callee_method()->is_method(), "must be");
1130   return callee_method;
1131 }
1132 
1133 // Resolves a call.
1134 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1135                                            bool is_virtual,
1136                                            bool is_optimized, TRAPS) {
1137   methodHandle callee_method;
1138   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1139   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1140     int retry_count = 0;
1141     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1142            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1143       // If has a pending exception then there is no need to re-try to
1144       // resolve this method.
1145       // If the method has been redefined, we need to try again.
1146       // Hack: we have no way to update the vtables of arrays, so don't
1147       // require that java.lang.Object has been updated.
1148 
1149       // It is very unlikely that method is redefined more than 100 times
1150       // in the middle of resolve. If it is looping here more than 100 times
1151       // means then there could be a bug here.
1152       guarantee((retry_count++ < 100),
1153                 "Could not resolve to latest version of redefined method");
1154       // method is redefined in the middle of resolve so re-try.
1155       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1156     }
1157   }
1158   return callee_method;
1159 }
1160 
1161 // Resolves a call.  The compilers generate code for calls that go here
1162 // and are patched with the real destination of the call.
1163 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1164                                            bool is_virtual,
1165                                            bool is_optimized, TRAPS) {
1166 
1167   ResourceMark rm(thread);
1168   RegisterMap cbl_map(thread, false);
1169   frame caller_frame = thread->last_frame().sender(&cbl_map);
1170 
1171   CodeBlob* caller_cb = caller_frame.cb();
1172   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1173   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1174   // make sure caller is not getting deoptimized
1175   // and removed before we are done with it.
1176   // CLEANUP - with lazy deopt shouldn't need this lock
1177   nmethodLocker caller_lock(caller_nm);
1178 
1179 
1180   // determine call info & receiver
1181   // note: a) receiver is NULL for static calls
1182   //       b) an exception is thrown if receiver is NULL for non-static calls
1183   CallInfo call_info;
1184   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1185   Handle receiver = find_callee_info(thread, invoke_code,
1186                                      call_info, CHECK_(methodHandle()));
1187   methodHandle callee_method = call_info.selected_method();
1188 
1189   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic) ||
1190          ( is_virtual && invoke_code != Bytecodes::_invokestatic), "inconsistent bytecode");
1191 
1192 #ifndef PRODUCT
1193   // tracing/debugging/statistics
1194   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1195                 (is_virtual) ? (&_resolve_virtual_ctr) :
1196                                (&_resolve_static_ctr);
1197   Atomic::inc(addr);
1198 
1199   if (TraceCallFixup) {
1200     ResourceMark rm(thread);
1201     tty->print("resolving %s%s (%s) call to",
1202       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1203       Bytecodes::name(invoke_code));
1204     callee_method->print_short_name(tty);
1205     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1206   }
1207 #endif
1208 
1209   // JSR 292
1210   // If the resolved method is a MethodHandle invoke target the call
1211   // site must be a MethodHandle call site.
1212   if (callee_method->is_method_handle_invoke()) {
1213     assert(caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1214   }
1215 
1216   // Compute entry points. This might require generation of C2I converter
1217   // frames, so we cannot be holding any locks here. Furthermore, the
1218   // computation of the entry points is independent of patching the call.  We
1219   // always return the entry-point, but we only patch the stub if the call has
1220   // not been deoptimized.  Return values: For a virtual call this is an
1221   // (cached_oop, destination address) pair. For a static call/optimized
1222   // virtual this is just a destination address.
1223 
1224   StaticCallInfo static_call_info;
1225   CompiledICInfo virtual_call_info;
1226 
1227   // Make sure the callee nmethod does not get deoptimized and removed before
1228   // we are done patching the code.
1229   nmethod* callee_nm = callee_method->code();
1230   nmethodLocker nl_callee(callee_nm);
1231 #ifdef ASSERT
1232   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1233 #endif
1234 
1235   if (is_virtual) {
1236     assert(receiver.not_null(), "sanity check");
1237     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1238     KlassHandle h_klass(THREAD, receiver->klass());
1239     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1240                      is_optimized, static_bound, virtual_call_info,
1241                      CHECK_(methodHandle()));
1242   } else {
1243     // static call
1244     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1245   }
1246 
1247   // grab lock, check for deoptimization and potentially patch caller
1248   {
1249     MutexLocker ml_patch(CompiledIC_lock);
1250 
1251     // Now that we are ready to patch if the methodOop was redefined then
1252     // don't update call site and let the caller retry.
1253 
1254     if (!callee_method->is_old()) {
1255 #ifdef ASSERT
1256       // We must not try to patch to jump to an already unloaded method.
1257       if (dest_entry_point != 0) {
1258         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1259                "should not unload nmethod while locked");
1260       }
1261 #endif
1262       if (is_virtual) {
1263         CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1264         if (inline_cache->is_clean()) {
1265           inline_cache->set_to_monomorphic(virtual_call_info);
1266         }
1267       } else {
1268         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1269         if (ssc->is_clean()) ssc->set(static_call_info);
1270       }
1271     }
1272 
1273   } // unlock CompiledIC_lock
1274 
1275   return callee_method;
1276 }
1277 
1278 
1279 // Inline caches exist only in compiled code
1280 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1281 #ifdef ASSERT
1282   RegisterMap reg_map(thread, false);
1283   frame stub_frame = thread->last_frame();
1284   assert(stub_frame.is_runtime_frame(), "sanity check");
1285   frame caller_frame = stub_frame.sender(&reg_map);
1286   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1287   assert(!caller_frame.is_ricochet_frame(), "unexpected frame");
1288 #endif /* ASSERT */
1289 
1290   methodHandle callee_method;
1291   JRT_BLOCK
1292     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1293     // Return methodOop through TLS
1294     thread->set_vm_result(callee_method());
1295   JRT_BLOCK_END
1296   // return compiled code entry point after potential safepoints
1297   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1298   return callee_method->verified_code_entry();
1299 JRT_END
1300 
1301 
1302 // Handle call site that has been made non-entrant
1303 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1304   // 6243940 We might end up in here if the callee is deoptimized
1305   // as we race to call it.  We don't want to take a safepoint if
1306   // the caller was interpreted because the caller frame will look
1307   // interpreted to the stack walkers and arguments are now
1308   // "compiled" so it is much better to make this transition
1309   // invisible to the stack walking code. The i2c path will
1310   // place the callee method in the callee_target. It is stashed
1311   // there because if we try and find the callee by normal means a
1312   // safepoint is possible and have trouble gc'ing the compiled args.
1313   RegisterMap reg_map(thread, false);
1314   frame stub_frame = thread->last_frame();
1315   assert(stub_frame.is_runtime_frame(), "sanity check");
1316   frame caller_frame = stub_frame.sender(&reg_map);
1317 
1318   // MethodHandle invokes don't have a CompiledIC and should always
1319   // simply redispatch to the callee_target.
1320   address   sender_pc = caller_frame.pc();
1321   CodeBlob* sender_cb = caller_frame.cb();
1322   nmethod*  sender_nm = sender_cb->as_nmethod_or_null();
1323   bool is_mh_invoke_via_adapter = false;  // Direct c2c call or via adapter?
1324   if (sender_nm != NULL && sender_nm->is_method_handle_return(sender_pc)) {
1325     // If the callee_target is set, then we have come here via an i2c
1326     // adapter.
1327     methodOop callee = thread->callee_target();
1328     if (callee != NULL) {
1329       assert(callee->is_method(), "sanity");
1330       is_mh_invoke_via_adapter = true;
1331     }
1332   }
1333 
1334   if (caller_frame.is_interpreted_frame() ||
1335       caller_frame.is_entry_frame()       ||
1336       caller_frame.is_ricochet_frame()    ||
1337       is_mh_invoke_via_adapter) {
1338     methodOop callee = thread->callee_target();
1339     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1340     thread->set_vm_result(callee);
1341     thread->set_callee_target(NULL);
1342     return callee->get_c2i_entry();
1343   }
1344 
1345   // Must be compiled to compiled path which is safe to stackwalk
1346   methodHandle callee_method;
1347   JRT_BLOCK
1348     // Force resolving of caller (if we called from compiled frame)
1349     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1350     thread->set_vm_result(callee_method());
1351   JRT_BLOCK_END
1352   // return compiled code entry point after potential safepoints
1353   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1354   return callee_method->verified_code_entry();
1355 JRT_END
1356 
1357 
1358 // resolve a static call and patch code
1359 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1360   methodHandle callee_method;
1361   JRT_BLOCK
1362     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1363     thread->set_vm_result(callee_method());
1364   JRT_BLOCK_END
1365   // return compiled code entry point after potential safepoints
1366   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1367   return callee_method->verified_code_entry();
1368 JRT_END
1369 
1370 
1371 // resolve virtual call and update inline cache to monomorphic
1372 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1373   methodHandle callee_method;
1374   JRT_BLOCK
1375     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1376     thread->set_vm_result(callee_method());
1377   JRT_BLOCK_END
1378   // return compiled code entry point after potential safepoints
1379   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1380   return callee_method->verified_code_entry();
1381 JRT_END
1382 
1383 
1384 // Resolve a virtual call that can be statically bound (e.g., always
1385 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1386 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1387   methodHandle callee_method;
1388   JRT_BLOCK
1389     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1390     thread->set_vm_result(callee_method());
1391   JRT_BLOCK_END
1392   // return compiled code entry point after potential safepoints
1393   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1394   return callee_method->verified_code_entry();
1395 JRT_END
1396 
1397 
1398 
1399 
1400 
1401 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1402   ResourceMark rm(thread);
1403   CallInfo call_info;
1404   Bytecodes::Code bc;
1405 
1406   // receiver is NULL for static calls. An exception is thrown for NULL
1407   // receivers for non-static calls
1408   Handle receiver = find_callee_info(thread, bc, call_info,
1409                                      CHECK_(methodHandle()));
1410   // Compiler1 can produce virtual call sites that can actually be statically bound
1411   // If we fell thru to below we would think that the site was going megamorphic
1412   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1413   // we'd try and do a vtable dispatch however methods that can be statically bound
1414   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1415   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1416   // plain ic_miss) and the site will be converted to an optimized virtual call site
1417   // never to miss again. I don't believe C2 will produce code like this but if it
1418   // did this would still be the correct thing to do for it too, hence no ifdef.
1419   //
1420   if (call_info.resolved_method()->can_be_statically_bound()) {
1421     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1422     if (TraceCallFixup) {
1423       RegisterMap reg_map(thread, false);
1424       frame caller_frame = thread->last_frame().sender(&reg_map);
1425       ResourceMark rm(thread);
1426       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1427       callee_method->print_short_name(tty);
1428       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1429       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1430     }
1431     return callee_method;
1432   }
1433 
1434   methodHandle callee_method = call_info.selected_method();
1435 
1436   bool should_be_mono = false;
1437 
1438 #ifndef PRODUCT
1439   Atomic::inc(&_ic_miss_ctr);
1440 
1441   // Statistics & Tracing
1442   if (TraceCallFixup) {
1443     ResourceMark rm(thread);
1444     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1445     callee_method->print_short_name(tty);
1446     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1447   }
1448 
1449   if (ICMissHistogram) {
1450     MutexLocker m(VMStatistic_lock);
1451     RegisterMap reg_map(thread, false);
1452     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1453     // produce statistics under the lock
1454     trace_ic_miss(f.pc());
1455   }
1456 #endif
1457 
1458   // install an event collector so that when a vtable stub is created the
1459   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1460   // event can't be posted when the stub is created as locks are held
1461   // - instead the event will be deferred until the event collector goes
1462   // out of scope.
1463   JvmtiDynamicCodeEventCollector event_collector;
1464 
1465   // Update inline cache to megamorphic. Skip update if caller has been
1466   // made non-entrant or we are called from interpreted.
1467   { MutexLocker ml_patch (CompiledIC_lock);
1468     RegisterMap reg_map(thread, false);
1469     frame caller_frame = thread->last_frame().sender(&reg_map);
1470     CodeBlob* cb = caller_frame.cb();
1471     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1472       // Not a non-entrant nmethod, so find inline_cache
1473       CompiledIC* inline_cache = CompiledIC_before(caller_frame.pc());
1474       bool should_be_mono = false;
1475       if (inline_cache->is_optimized()) {
1476         if (TraceCallFixup) {
1477           ResourceMark rm(thread);
1478           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1479           callee_method->print_short_name(tty);
1480           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1481         }
1482         should_be_mono = true;
1483       } else {
1484         compiledICHolderOop ic_oop = (compiledICHolderOop) inline_cache->cached_oop();
1485         if ( ic_oop != NULL && ic_oop->is_compiledICHolder()) {
1486 
1487           if (receiver()->klass() == ic_oop->holder_klass()) {
1488             // This isn't a real miss. We must have seen that compiled code
1489             // is now available and we want the call site converted to a
1490             // monomorphic compiled call site.
1491             // We can't assert for callee_method->code() != NULL because it
1492             // could have been deoptimized in the meantime
1493             if (TraceCallFixup) {
1494               ResourceMark rm(thread);
1495               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1496               callee_method->print_short_name(tty);
1497               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1498             }
1499             should_be_mono = true;
1500           }
1501         }
1502       }
1503 
1504       if (should_be_mono) {
1505 
1506         // We have a path that was monomorphic but was going interpreted
1507         // and now we have (or had) a compiled entry. We correct the IC
1508         // by using a new icBuffer.
1509         CompiledICInfo info;
1510         KlassHandle receiver_klass(THREAD, receiver()->klass());
1511         inline_cache->compute_monomorphic_entry(callee_method,
1512                                                 receiver_klass,
1513                                                 inline_cache->is_optimized(),
1514                                                 false,
1515                                                 info, CHECK_(methodHandle()));
1516         inline_cache->set_to_monomorphic(info);
1517       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1518         // Change to megamorphic
1519         inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1520       } else {
1521         // Either clean or megamorphic
1522       }
1523     }
1524   } // Release CompiledIC_lock
1525 
1526   return callee_method;
1527 }
1528 
1529 //
1530 // Resets a call-site in compiled code so it will get resolved again.
1531 // This routines handles both virtual call sites, optimized virtual call
1532 // sites, and static call sites. Typically used to change a call sites
1533 // destination from compiled to interpreted.
1534 //
1535 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1536   ResourceMark rm(thread);
1537   RegisterMap reg_map(thread, false);
1538   frame stub_frame = thread->last_frame();
1539   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1540   frame caller = stub_frame.sender(&reg_map);
1541 
1542   // Do nothing if the frame isn't a live compiled frame.
1543   // nmethod could be deoptimized by the time we get here
1544   // so no update to the caller is needed.
1545 
1546   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1547 
1548     address pc = caller.pc();
1549 
1550     // Default call_addr is the location of the "basic" call.
1551     // Determine the address of the call we a reresolving. With
1552     // Inline Caches we will always find a recognizable call.
1553     // With Inline Caches disabled we may or may not find a
1554     // recognizable call. We will always find a call for static
1555     // calls and for optimized virtual calls. For vanilla virtual
1556     // calls it depends on the state of the UseInlineCaches switch.
1557     //
1558     // With Inline Caches disabled we can get here for a virtual call
1559     // for two reasons:
1560     //   1 - calling an abstract method. The vtable for abstract methods
1561     //       will run us thru handle_wrong_method and we will eventually
1562     //       end up in the interpreter to throw the ame.
1563     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1564     //       call and between the time we fetch the entry address and
1565     //       we jump to it the target gets deoptimized. Similar to 1
1566     //       we will wind up in the interprter (thru a c2i with c2).
1567     //
1568     address call_addr = NULL;
1569     {
1570       // Get call instruction under lock because another thread may be
1571       // busy patching it.
1572       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1573       // Location of call instruction
1574       if (NativeCall::is_call_before(pc)) {
1575         NativeCall *ncall = nativeCall_before(pc);
1576         call_addr = ncall->instruction_address();
1577       }
1578     }
1579 
1580     // Check for static or virtual call
1581     bool is_static_call = false;
1582     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1583     // Make sure nmethod doesn't get deoptimized and removed until
1584     // this is done with it.
1585     // CLEANUP - with lazy deopt shouldn't need this lock
1586     nmethodLocker nmlock(caller_nm);
1587 
1588     if (call_addr != NULL) {
1589       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1590       int ret = iter.next(); // Get item
1591       if (ret) {
1592         assert(iter.addr() == call_addr, "must find call");
1593         if (iter.type() == relocInfo::static_call_type) {
1594           is_static_call = true;
1595         } else {
1596           assert(iter.type() == relocInfo::virtual_call_type ||
1597                  iter.type() == relocInfo::opt_virtual_call_type
1598                 , "unexpected relocInfo. type");
1599         }
1600       } else {
1601         assert(!UseInlineCaches, "relocation info. must exist for this address");
1602       }
1603 
1604       // Cleaning the inline cache will force a new resolve. This is more robust
1605       // than directly setting it to the new destination, since resolving of calls
1606       // is always done through the same code path. (experience shows that it
1607       // leads to very hard to track down bugs, if an inline cache gets updated
1608       // to a wrong method). It should not be performance critical, since the
1609       // resolve is only done once.
1610 
1611       MutexLocker ml(CompiledIC_lock);
1612       //
1613       // We do not patch the call site if the nmethod has been made non-entrant
1614       // as it is a waste of time
1615       //
1616       if (caller_nm->is_in_use()) {
1617         if (is_static_call) {
1618           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1619           ssc->set_to_clean();
1620         } else {
1621           // compiled, dispatched call (which used to call an interpreted method)
1622           CompiledIC* inline_cache = CompiledIC_at(call_addr);
1623           inline_cache->set_to_clean();
1624         }
1625       }
1626     }
1627 
1628   }
1629 
1630   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1631 
1632 
1633 #ifndef PRODUCT
1634   Atomic::inc(&_wrong_method_ctr);
1635 
1636   if (TraceCallFixup) {
1637     ResourceMark rm(thread);
1638     tty->print("handle_wrong_method reresolving call to");
1639     callee_method->print_short_name(tty);
1640     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1641   }
1642 #endif
1643 
1644   return callee_method;
1645 }
1646 
1647 // ---------------------------------------------------------------------------
1648 // We are calling the interpreter via a c2i. Normally this would mean that
1649 // we were called by a compiled method. However we could have lost a race
1650 // where we went int -> i2c -> c2i and so the caller could in fact be
1651 // interpreted. If the caller is compiled we attempt to patch the caller
1652 // so he no longer calls into the interpreter.
1653 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(methodOopDesc* method, address caller_pc))
1654   methodOop moop(method);
1655 
1656   address entry_point = moop->from_compiled_entry();
1657 
1658   // It's possible that deoptimization can occur at a call site which hasn't
1659   // been resolved yet, in which case this function will be called from
1660   // an nmethod that has been patched for deopt and we can ignore the
1661   // request for a fixup.
1662   // Also it is possible that we lost a race in that from_compiled_entry
1663   // is now back to the i2c in that case we don't need to patch and if
1664   // we did we'd leap into space because the callsite needs to use
1665   // "to interpreter" stub in order to load up the methodOop. Don't
1666   // ask me how I know this...
1667 
1668   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1669   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1670     return;
1671   }
1672 
1673   // The check above makes sure this is a nmethod.
1674   nmethod* nm = cb->as_nmethod_or_null();
1675   assert(nm, "must be");
1676 
1677   // Get the return PC for the passed caller PC.
1678   address return_pc = caller_pc + frame::pc_return_offset;
1679 
1680   // Don't fixup method handle call sites as the executed method
1681   // handle adapters are doing the required MethodHandle chain work.
1682   if (nm->is_method_handle_return(return_pc)) {
1683     return;
1684   }
1685 
1686   // There is a benign race here. We could be attempting to patch to a compiled
1687   // entry point at the same time the callee is being deoptimized. If that is
1688   // the case then entry_point may in fact point to a c2i and we'd patch the
1689   // call site with the same old data. clear_code will set code() to NULL
1690   // at the end of it. If we happen to see that NULL then we can skip trying
1691   // to patch. If we hit the window where the callee has a c2i in the
1692   // from_compiled_entry and the NULL isn't present yet then we lose the race
1693   // and patch the code with the same old data. Asi es la vida.
1694 
1695   if (moop->code() == NULL) return;
1696 
1697   if (nm->is_in_use()) {
1698 
1699     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1700     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1701     if (NativeCall::is_call_before(return_pc)) {
1702       NativeCall *call = nativeCall_before(return_pc);
1703       //
1704       // bug 6281185. We might get here after resolving a call site to a vanilla
1705       // virtual call. Because the resolvee uses the verified entry it may then
1706       // see compiled code and attempt to patch the site by calling us. This would
1707       // then incorrectly convert the call site to optimized and its downhill from
1708       // there. If you're lucky you'll get the assert in the bugid, if not you've
1709       // just made a call site that could be megamorphic into a monomorphic site
1710       // for the rest of its life! Just another racing bug in the life of
1711       // fixup_callers_callsite ...
1712       //
1713       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1714       iter.next();
1715       assert(iter.has_current(), "must have a reloc at java call site");
1716       relocInfo::relocType typ = iter.reloc()->type();
1717       if ( typ != relocInfo::static_call_type &&
1718            typ != relocInfo::opt_virtual_call_type &&
1719            typ != relocInfo::static_stub_type) {
1720         return;
1721       }
1722       address destination = call->destination();
1723       if (destination != entry_point) {
1724         CodeBlob* callee = CodeCache::find_blob(destination);
1725         // callee == cb seems weird. It means calling interpreter thru stub.
1726         if (callee == cb || callee->is_adapter_blob()) {
1727           // static call or optimized virtual
1728           if (TraceCallFixup) {
1729             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1730             moop->print_short_name(tty);
1731             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1732           }
1733           call->set_destination_mt_safe(entry_point);
1734         } else {
1735           if (TraceCallFixup) {
1736             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1737             moop->print_short_name(tty);
1738             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1739           }
1740           // assert is too strong could also be resolve destinations.
1741           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1742         }
1743       } else {
1744           if (TraceCallFixup) {
1745             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1746             moop->print_short_name(tty);
1747             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1748           }
1749       }
1750     }
1751   }
1752 IRT_END
1753 
1754 
1755 // same as JVM_Arraycopy, but called directly from compiled code
1756 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1757                                                 oopDesc* dest, jint dest_pos,
1758                                                 jint length,
1759                                                 JavaThread* thread)) {
1760 #ifndef PRODUCT
1761   _slow_array_copy_ctr++;
1762 #endif
1763   // Check if we have null pointers
1764   if (src == NULL || dest == NULL) {
1765     THROW(vmSymbols::java_lang_NullPointerException());
1766   }
1767   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1768   // even though the copy_array API also performs dynamic checks to ensure
1769   // that src and dest are truly arrays (and are conformable).
1770   // The copy_array mechanism is awkward and could be removed, but
1771   // the compilers don't call this function except as a last resort,
1772   // so it probably doesn't matter.
1773   Klass::cast(src->klass())->copy_array((arrayOopDesc*)src,  src_pos,
1774                                         (arrayOopDesc*)dest, dest_pos,
1775                                         length, thread);
1776 }
1777 JRT_END
1778 
1779 char* SharedRuntime::generate_class_cast_message(
1780     JavaThread* thread, const char* objName) {
1781 
1782   // Get target class name from the checkcast instruction
1783   vframeStream vfst(thread, true);
1784   assert(!vfst.at_end(), "Java frame must exist");
1785   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1786   Klass* targetKlass = Klass::cast(vfst.method()->constants()->klass_at(
1787     cc.index(), thread));
1788   return generate_class_cast_message(objName, targetKlass->external_name());
1789 }
1790 
1791 char* SharedRuntime::generate_wrong_method_type_message(JavaThread* thread,
1792                                                         oopDesc* required,
1793                                                         oopDesc* actual) {
1794   if (TraceMethodHandles) {
1795     tty->print_cr("WrongMethodType thread="PTR_FORMAT" req="PTR_FORMAT" act="PTR_FORMAT"",
1796                   thread, required, actual);
1797   }
1798   assert(EnableInvokeDynamic, "");
1799   oop singleKlass = wrong_method_type_is_for_single_argument(thread, required);
1800   char* message = NULL;
1801   if (singleKlass != NULL) {
1802     const char* objName = "argument or return value";
1803     if (actual != NULL) {
1804       // be flexible about the junk passed in:
1805       klassOop ak = (actual->is_klass()
1806                      ? (klassOop)actual
1807                      : actual->klass());
1808       objName = Klass::cast(ak)->external_name();
1809     }
1810     Klass* targetKlass = Klass::cast(required->is_klass()
1811                                      ? (klassOop)required
1812                                      : java_lang_Class::as_klassOop(required));
1813     message = generate_class_cast_message(objName, targetKlass->external_name());
1814   } else {
1815     // %%% need to get the MethodType string, without messing around too much
1816     const char* desc = NULL;
1817     // Get a signature from the invoke instruction
1818     const char* mhName = "method handle";
1819     const char* targetType = "the required signature";
1820     int targetArity = -1, mhArity = -1;
1821     vframeStream vfst(thread, true);
1822     if (!vfst.at_end()) {
1823       Bytecode_invoke call(vfst.method(), vfst.bci());
1824       methodHandle target;
1825       {
1826         EXCEPTION_MARK;
1827         target = call.static_target(THREAD);
1828         if (HAS_PENDING_EXCEPTION) { CLEAR_PENDING_EXCEPTION; }
1829       }
1830       if (target.not_null()
1831           && target->is_method_handle_invoke()
1832           && required == target->method_handle_type()) {
1833         targetType = target->signature()->as_C_string();
1834         targetArity = ArgumentCount(target->signature()).size();
1835       }
1836     }
1837     KlassHandle kignore; int dmf_flags = 0;
1838     methodHandle actual_method = MethodHandles::decode_method(actual, kignore, dmf_flags);
1839     if ((dmf_flags & ~(MethodHandles::_dmf_has_receiver |
1840                        MethodHandles::_dmf_does_dispatch |
1841                        MethodHandles::_dmf_from_interface)) != 0)
1842       actual_method = methodHandle();  // MH does extra binds, drops, etc.
1843     bool has_receiver = ((dmf_flags & MethodHandles::_dmf_has_receiver) != 0);
1844     if (actual_method.not_null()) {
1845       mhName = actual_method->signature()->as_C_string();
1846       mhArity = ArgumentCount(actual_method->signature()).size();
1847       if (!actual_method->is_static())  mhArity += 1;
1848     } else if (java_lang_invoke_MethodHandle::is_instance(actual)) {
1849       oopDesc* mhType = java_lang_invoke_MethodHandle::type(actual);
1850       mhArity = java_lang_invoke_MethodType::ptype_count(mhType);
1851       stringStream st;
1852       java_lang_invoke_MethodType::print_signature(mhType, &st);
1853       mhName = st.as_string();
1854     }
1855     if (targetArity != -1 && targetArity != mhArity) {
1856       if (has_receiver && targetArity == mhArity-1)
1857         desc = " cannot be called without a receiver argument as ";
1858       else
1859         desc = " cannot be called with a different arity as ";
1860     }
1861     message = generate_class_cast_message(mhName, targetType,
1862                                           desc != NULL ? desc :
1863                                           " cannot be called as ");
1864   }
1865   if (TraceMethodHandles) {
1866     tty->print_cr("WrongMethodType => message=%s", message);
1867   }
1868   return message;
1869 }
1870 
1871 oop SharedRuntime::wrong_method_type_is_for_single_argument(JavaThread* thr,
1872                                                             oopDesc* required) {
1873   if (required == NULL)  return NULL;
1874   if (required->klass() == SystemDictionary::Class_klass())
1875     return required;
1876   if (required->is_klass())
1877     return Klass::cast(klassOop(required))->java_mirror();
1878   return NULL;
1879 }
1880 
1881 
1882 char* SharedRuntime::generate_class_cast_message(
1883     const char* objName, const char* targetKlassName, const char* desc) {
1884   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1885 
1886   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1887   if (NULL == message) {
1888     // Shouldn't happen, but don't cause even more problems if it does
1889     message = const_cast<char*>(objName);
1890   } else {
1891     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1892   }
1893   return message;
1894 }
1895 
1896 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1897   (void) JavaThread::current()->reguard_stack();
1898 JRT_END
1899 
1900 
1901 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1902 #ifndef PRODUCT
1903 int SharedRuntime::_monitor_enter_ctr=0;
1904 #endif
1905 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1906   oop obj(_obj);
1907 #ifndef PRODUCT
1908   _monitor_enter_ctr++;             // monitor enter slow
1909 #endif
1910   if (PrintBiasedLockingStatistics) {
1911     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1912   }
1913   Handle h_obj(THREAD, obj);
1914   if (UseBiasedLocking) {
1915     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1916     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1917   } else {
1918     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1919   }
1920   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1921 JRT_END
1922 
1923 #ifndef PRODUCT
1924 int SharedRuntime::_monitor_exit_ctr=0;
1925 #endif
1926 // Handles the uncommon cases of monitor unlocking in compiled code
1927 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1928    oop obj(_obj);
1929 #ifndef PRODUCT
1930   _monitor_exit_ctr++;              // monitor exit slow
1931 #endif
1932   Thread* THREAD = JavaThread::current();
1933   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1934   // testing was unable to ever fire the assert that guarded it so I have removed it.
1935   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1936 #undef MIGHT_HAVE_PENDING
1937 #ifdef MIGHT_HAVE_PENDING
1938   // Save and restore any pending_exception around the exception mark.
1939   // While the slow_exit must not throw an exception, we could come into
1940   // this routine with one set.
1941   oop pending_excep = NULL;
1942   const char* pending_file;
1943   int pending_line;
1944   if (HAS_PENDING_EXCEPTION) {
1945     pending_excep = PENDING_EXCEPTION;
1946     pending_file  = THREAD->exception_file();
1947     pending_line  = THREAD->exception_line();
1948     CLEAR_PENDING_EXCEPTION;
1949   }
1950 #endif /* MIGHT_HAVE_PENDING */
1951 
1952   {
1953     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1954     EXCEPTION_MARK;
1955     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1956   }
1957 
1958 #ifdef MIGHT_HAVE_PENDING
1959   if (pending_excep != NULL) {
1960     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1961   }
1962 #endif /* MIGHT_HAVE_PENDING */
1963 JRT_END
1964 
1965 #ifndef PRODUCT
1966 
1967 void SharedRuntime::print_statistics() {
1968   ttyLocker ttyl;
1969   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1970 
1971   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1972   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1973   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1974 
1975   SharedRuntime::print_ic_miss_histogram();
1976 
1977   if (CountRemovableExceptions) {
1978     if (_nof_removable_exceptions > 0) {
1979       Unimplemented(); // this counter is not yet incremented
1980       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1981     }
1982   }
1983 
1984   // Dump the JRT_ENTRY counters
1985   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1986   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1987   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1988   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1989   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1990   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1991   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1992 
1993   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1994   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1995   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1996   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1997   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1998 
1999   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
2000   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
2001   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
2002   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
2003   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
2004   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
2005   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
2006   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
2007   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
2008   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
2009   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
2010   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
2011   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
2012   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
2013   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
2014   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
2015 
2016   AdapterHandlerLibrary::print_statistics();
2017 
2018   if (xtty != NULL)  xtty->tail("statistics");
2019 }
2020 
2021 inline double percent(int x, int y) {
2022   return 100.0 * x / MAX2(y, 1);
2023 }
2024 
2025 class MethodArityHistogram {
2026  public:
2027   enum { MAX_ARITY = 256 };
2028  private:
2029   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2030   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2031   static int _max_arity;                      // max. arity seen
2032   static int _max_size;                       // max. arg size seen
2033 
2034   static void add_method_to_histogram(nmethod* nm) {
2035     methodOop m = nm->method();
2036     ArgumentCount args(m->signature());
2037     int arity   = args.size() + (m->is_static() ? 0 : 1);
2038     int argsize = m->size_of_parameters();
2039     arity   = MIN2(arity, MAX_ARITY-1);
2040     argsize = MIN2(argsize, MAX_ARITY-1);
2041     int count = nm->method()->compiled_invocation_count();
2042     _arity_histogram[arity]  += count;
2043     _size_histogram[argsize] += count;
2044     _max_arity = MAX2(_max_arity, arity);
2045     _max_size  = MAX2(_max_size, argsize);
2046   }
2047 
2048   void print_histogram_helper(int n, int* histo, const char* name) {
2049     const int N = MIN2(5, n);
2050     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2051     double sum = 0;
2052     double weighted_sum = 0;
2053     int i;
2054     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2055     double rest = sum;
2056     double percent = sum / 100;
2057     for (i = 0; i <= N; i++) {
2058       rest -= histo[i];
2059       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2060     }
2061     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2062     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2063   }
2064 
2065   void print_histogram() {
2066     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2067     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2068     tty->print_cr("\nSame for parameter size (in words):");
2069     print_histogram_helper(_max_size, _size_histogram, "size");
2070     tty->cr();
2071   }
2072 
2073  public:
2074   MethodArityHistogram() {
2075     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2076     _max_arity = _max_size = 0;
2077     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2078     CodeCache::nmethods_do(add_method_to_histogram);
2079     print_histogram();
2080   }
2081 };
2082 
2083 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2084 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2085 int MethodArityHistogram::_max_arity;
2086 int MethodArityHistogram::_max_size;
2087 
2088 void SharedRuntime::print_call_statistics(int comp_total) {
2089   tty->print_cr("Calls from compiled code:");
2090   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2091   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2092   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2093   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2094   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2095   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2096   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2097   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2098   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2099   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2100   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2101   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2102   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2103   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2104   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2105   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2106   tty->cr();
2107   tty->print_cr("Note 1: counter updates are not MT-safe.");
2108   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2109   tty->print_cr("        %% in nested categories are relative to their category");
2110   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2111   tty->cr();
2112 
2113   MethodArityHistogram h;
2114 }
2115 #endif
2116 
2117 
2118 // A simple wrapper class around the calling convention information
2119 // that allows sharing of adapters for the same calling convention.
2120 class AdapterFingerPrint : public CHeapObj {
2121  private:
2122   union {
2123     int  _compact[3];
2124     int* _fingerprint;
2125   } _value;
2126   int _length; // A negative length indicates the fingerprint is in the compact form,
2127                // Otherwise _value._fingerprint is the array.
2128 
2129   // Remap BasicTypes that are handled equivalently by the adapters.
2130   // These are correct for the current system but someday it might be
2131   // necessary to make this mapping platform dependent.
2132   static BasicType adapter_encoding(BasicType in) {
2133     assert((~0xf & in) == 0, "must fit in 4 bits");
2134     switch(in) {
2135       case T_BOOLEAN:
2136       case T_BYTE:
2137       case T_SHORT:
2138       case T_CHAR:
2139         // There are all promoted to T_INT in the calling convention
2140         return T_INT;
2141 
2142       case T_OBJECT:
2143       case T_ARRAY:
2144 #ifdef _LP64
2145         return T_LONG;
2146 #else
2147         return T_INT;
2148 #endif
2149 
2150       case T_INT:
2151       case T_LONG:
2152       case T_FLOAT:
2153       case T_DOUBLE:
2154       case T_VOID:
2155         return in;
2156 
2157       default:
2158         ShouldNotReachHere();
2159         return T_CONFLICT;
2160     }
2161   }
2162 
2163  public:
2164   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2165     // The fingerprint is based on the BasicType signature encoded
2166     // into an array of ints with eight entries per int.
2167     int* ptr;
2168     int len = (total_args_passed + 7) >> 3;
2169     if (len <= (int)(sizeof(_value._compact) / sizeof(int))) {
2170       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2171       // Storing the signature encoded as signed chars hits about 98%
2172       // of the time.
2173       _length = -len;
2174       ptr = _value._compact;
2175     } else {
2176       _length = len;
2177       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length);
2178       ptr = _value._fingerprint;
2179     }
2180 
2181     // Now pack the BasicTypes with 8 per int
2182     int sig_index = 0;
2183     for (int index = 0; index < len; index++) {
2184       int value = 0;
2185       for (int byte = 0; byte < 8; byte++) {
2186         if (sig_index < total_args_passed) {
2187           value = (value << 4) | adapter_encoding(sig_bt[sig_index++]);
2188         }
2189       }
2190       ptr[index] = value;
2191     }
2192   }
2193 
2194   ~AdapterFingerPrint() {
2195     if (_length > 0) {
2196       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2197     }
2198   }
2199 
2200   int value(int index) {
2201     if (_length < 0) {
2202       return _value._compact[index];
2203     }
2204     return _value._fingerprint[index];
2205   }
2206   int length() {
2207     if (_length < 0) return -_length;
2208     return _length;
2209   }
2210 
2211   bool is_compact() {
2212     return _length <= 0;
2213   }
2214 
2215   unsigned int compute_hash() {
2216     int hash = 0;
2217     for (int i = 0; i < length(); i++) {
2218       int v = value(i);
2219       hash = (hash << 8) ^ v ^ (hash >> 5);
2220     }
2221     return (unsigned int)hash;
2222   }
2223 
2224   const char* as_string() {
2225     stringStream st;
2226     st.print("0x");
2227     for (int i = 0; i < length(); i++) {
2228       st.print("%08x", value(i));
2229     }
2230     return st.as_string();
2231   }
2232 
2233   bool equals(AdapterFingerPrint* other) {
2234     if (other->_length != _length) {
2235       return false;
2236     }
2237     if (_length < 0) {
2238       return _value._compact[0] == other->_value._compact[0] &&
2239              _value._compact[1] == other->_value._compact[1] &&
2240              _value._compact[2] == other->_value._compact[2];
2241     } else {
2242       for (int i = 0; i < _length; i++) {
2243         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2244           return false;
2245         }
2246       }
2247     }
2248     return true;
2249   }
2250 };
2251 
2252 
2253 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2254 class AdapterHandlerTable : public BasicHashtable {
2255   friend class AdapterHandlerTableIterator;
2256 
2257  private:
2258 
2259 #ifndef PRODUCT
2260   static int _lookups; // number of calls to lookup
2261   static int _buckets; // number of buckets checked
2262   static int _equals;  // number of buckets checked with matching hash
2263   static int _hits;    // number of successful lookups
2264   static int _compact; // number of equals calls with compact signature
2265 #endif
2266 
2267   AdapterHandlerEntry* bucket(int i) {
2268     return (AdapterHandlerEntry*)BasicHashtable::bucket(i);
2269   }
2270 
2271  public:
2272   AdapterHandlerTable()
2273     : BasicHashtable(293, sizeof(AdapterHandlerEntry)) { }
2274 
2275   // Create a new entry suitable for insertion in the table
2276   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2277     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable::new_entry(fingerprint->compute_hash());
2278     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2279     return entry;
2280   }
2281 
2282   // Insert an entry into the table
2283   void add(AdapterHandlerEntry* entry) {
2284     int index = hash_to_index(entry->hash());
2285     add_entry(index, entry);
2286   }
2287 
2288   void free_entry(AdapterHandlerEntry* entry) {
2289     entry->deallocate();
2290     BasicHashtable::free_entry(entry);
2291   }
2292 
2293   // Find a entry with the same fingerprint if it exists
2294   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2295     NOT_PRODUCT(_lookups++);
2296     AdapterFingerPrint fp(total_args_passed, sig_bt);
2297     unsigned int hash = fp.compute_hash();
2298     int index = hash_to_index(hash);
2299     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2300       NOT_PRODUCT(_buckets++);
2301       if (e->hash() == hash) {
2302         NOT_PRODUCT(_equals++);
2303         if (fp.equals(e->fingerprint())) {
2304 #ifndef PRODUCT
2305           if (fp.is_compact()) _compact++;
2306           _hits++;
2307 #endif
2308           return e;
2309         }
2310       }
2311     }
2312     return NULL;
2313   }
2314 
2315 #ifndef PRODUCT
2316   void print_statistics() {
2317     ResourceMark rm;
2318     int longest = 0;
2319     int empty = 0;
2320     int total = 0;
2321     int nonempty = 0;
2322     for (int index = 0; index < table_size(); index++) {
2323       int count = 0;
2324       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2325         count++;
2326       }
2327       if (count != 0) nonempty++;
2328       if (count == 0) empty++;
2329       if (count > longest) longest = count;
2330       total += count;
2331     }
2332     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2333                   empty, longest, total, total / (double)nonempty);
2334     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2335                   _lookups, _buckets, _equals, _hits, _compact);
2336   }
2337 #endif
2338 };
2339 
2340 
2341 #ifndef PRODUCT
2342 
2343 int AdapterHandlerTable::_lookups;
2344 int AdapterHandlerTable::_buckets;
2345 int AdapterHandlerTable::_equals;
2346 int AdapterHandlerTable::_hits;
2347 int AdapterHandlerTable::_compact;
2348 
2349 #endif
2350 
2351 class AdapterHandlerTableIterator : public StackObj {
2352  private:
2353   AdapterHandlerTable* _table;
2354   int _index;
2355   AdapterHandlerEntry* _current;
2356 
2357   void scan() {
2358     while (_index < _table->table_size()) {
2359       AdapterHandlerEntry* a = _table->bucket(_index);
2360       _index++;
2361       if (a != NULL) {
2362         _current = a;
2363         return;
2364       }
2365     }
2366   }
2367 
2368  public:
2369   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2370     scan();
2371   }
2372   bool has_next() {
2373     return _current != NULL;
2374   }
2375   AdapterHandlerEntry* next() {
2376     if (_current != NULL) {
2377       AdapterHandlerEntry* result = _current;
2378       _current = _current->next();
2379       if (_current == NULL) scan();
2380       return result;
2381     } else {
2382       return NULL;
2383     }
2384   }
2385 };
2386 
2387 
2388 // ---------------------------------------------------------------------------
2389 // Implementation of AdapterHandlerLibrary
2390 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2391 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2392 const int AdapterHandlerLibrary_size = 16*K;
2393 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2394 
2395 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2396   // Should be called only when AdapterHandlerLibrary_lock is active.
2397   if (_buffer == NULL) // Initialize lazily
2398       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2399   return _buffer;
2400 }
2401 
2402 void AdapterHandlerLibrary::initialize() {
2403   if (_adapters != NULL) return;
2404   _adapters = new AdapterHandlerTable();
2405 
2406   // Create a special handler for abstract methods.  Abstract methods
2407   // are never compiled so an i2c entry is somewhat meaningless, but
2408   // fill it in with something appropriate just in case.  Pass handle
2409   // wrong method for the c2i transitions.
2410   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2411   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2412                                                               StubRoutines::throw_AbstractMethodError_entry(),
2413                                                               wrong_method, wrong_method);
2414 }
2415 
2416 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2417                                                       address i2c_entry,
2418                                                       address c2i_entry,
2419                                                       address c2i_unverified_entry) {
2420   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2421 }
2422 
2423 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2424   // Use customized signature handler.  Need to lock around updates to
2425   // the AdapterHandlerTable (it is not safe for concurrent readers
2426   // and a single writer: this could be fixed if it becomes a
2427   // problem).
2428 
2429   // Get the address of the ic_miss handlers before we grab the
2430   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2431   // was caused by the initialization of the stubs happening
2432   // while we held the lock and then notifying jvmti while
2433   // holding it. This just forces the initialization to be a little
2434   // earlier.
2435   address ic_miss = SharedRuntime::get_ic_miss_stub();
2436   assert(ic_miss != NULL, "must have handler");
2437 
2438   ResourceMark rm;
2439 
2440   NOT_PRODUCT(int insts_size);
2441   AdapterBlob* B = NULL;
2442   AdapterHandlerEntry* entry = NULL;
2443   AdapterFingerPrint* fingerprint = NULL;
2444   {
2445     MutexLocker mu(AdapterHandlerLibrary_lock);
2446     // make sure data structure is initialized
2447     initialize();
2448 
2449     if (method->is_abstract()) {
2450       return _abstract_method_handler;
2451     }
2452 
2453     // Fill in the signature array, for the calling-convention call.
2454     int total_args_passed = method->size_of_parameters(); // All args on stack
2455 
2456     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2457     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2458     int i = 0;
2459     if (!method->is_static())  // Pass in receiver first
2460       sig_bt[i++] = T_OBJECT;
2461     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2462       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2463       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2464         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2465     }
2466     assert(i == total_args_passed, "");
2467 
2468     // Lookup method signature's fingerprint
2469     entry = _adapters->lookup(total_args_passed, sig_bt);
2470 
2471 #ifdef ASSERT
2472     AdapterHandlerEntry* shared_entry = NULL;
2473     if (VerifyAdapterSharing && entry != NULL) {
2474       shared_entry = entry;
2475       entry = NULL;
2476     }
2477 #endif
2478 
2479     if (entry != NULL) {
2480       return entry;
2481     }
2482 
2483     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2484     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2485 
2486     // Make a C heap allocated version of the fingerprint to store in the adapter
2487     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2488 
2489     // Create I2C & C2I handlers
2490 
2491     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2492     if (buf != NULL) {
2493       CodeBuffer buffer(buf);
2494       short buffer_locs[20];
2495       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2496                                              sizeof(buffer_locs)/sizeof(relocInfo));
2497       MacroAssembler _masm(&buffer);
2498 
2499       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2500                                                      total_args_passed,
2501                                                      comp_args_on_stack,
2502                                                      sig_bt,
2503                                                      regs,
2504                                                      fingerprint);
2505 
2506 #ifdef ASSERT
2507       if (VerifyAdapterSharing) {
2508         if (shared_entry != NULL) {
2509           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt),
2510                  "code must match");
2511           // Release the one just created and return the original
2512           _adapters->free_entry(entry);
2513           return shared_entry;
2514         } else  {
2515           entry->save_code(buf->code_begin(), buffer.insts_size(), total_args_passed, sig_bt);
2516         }
2517       }
2518 #endif
2519 
2520       B = AdapterBlob::create(&buffer);
2521       NOT_PRODUCT(insts_size = buffer.insts_size());
2522     }
2523     if (B == NULL) {
2524       // CodeCache is full, disable compilation
2525       // Ought to log this but compile log is only per compile thread
2526       // and we're some non descript Java thread.
2527       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2528       CompileBroker::handle_full_code_cache();
2529       return NULL; // Out of CodeCache space
2530     }
2531     entry->relocate(B->content_begin());
2532 #ifndef PRODUCT
2533     // debugging suppport
2534     if (PrintAdapterHandlers) {
2535       tty->cr();
2536       tty->print_cr("i2c argument handler #%d for: %s %s (fingerprint = %s, %d bytes generated)",
2537                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2538                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size );
2539       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2540       Disassembler::decode(entry->get_i2c_entry(), entry->get_i2c_entry() + insts_size);
2541     }
2542 #endif
2543 
2544     _adapters->add(entry);
2545   }
2546   // Outside of the lock
2547   if (B != NULL) {
2548     char blob_id[256];
2549     jio_snprintf(blob_id,
2550                  sizeof(blob_id),
2551                  "%s(%s)@" PTR_FORMAT,
2552                  B->name(),
2553                  fingerprint->as_string(),
2554                  B->content_begin());
2555     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2556 
2557     if (JvmtiExport::should_post_dynamic_code_generated()) {
2558       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2559     }
2560   }
2561   return entry;
2562 }
2563 
2564 void AdapterHandlerEntry::relocate(address new_base) {
2565     ptrdiff_t delta = new_base - _i2c_entry;
2566     _i2c_entry += delta;
2567     _c2i_entry += delta;
2568     _c2i_unverified_entry += delta;
2569 }
2570 
2571 
2572 void AdapterHandlerEntry::deallocate() {
2573   delete _fingerprint;
2574 #ifdef ASSERT
2575   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2576   if (_saved_sig)  FREE_C_HEAP_ARRAY(Basictype, _saved_sig);
2577 #endif
2578 }
2579 
2580 
2581 #ifdef ASSERT
2582 // Capture the code before relocation so that it can be compared
2583 // against other versions.  If the code is captured after relocation
2584 // then relative instructions won't be equivalent.
2585 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2586   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length);
2587   _code_length = length;
2588   memcpy(_saved_code, buffer, length);
2589   _total_args_passed = total_args_passed;
2590   _saved_sig = NEW_C_HEAP_ARRAY(BasicType, _total_args_passed);
2591   memcpy(_saved_sig, sig_bt, _total_args_passed * sizeof(BasicType));
2592 }
2593 
2594 
2595 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length, int total_args_passed, BasicType* sig_bt) {
2596   if (length != _code_length) {
2597     return false;
2598   }
2599   for (int i = 0; i < length; i++) {
2600     if (buffer[i] != _saved_code[i]) {
2601       return false;
2602     }
2603   }
2604   return true;
2605 }
2606 #endif
2607 
2608 
2609 // Create a native wrapper for this native method.  The wrapper converts the
2610 // java compiled calling convention to the native convention, handlizes
2611 // arguments, and transitions to native.  On return from the native we transition
2612 // back to java blocking if a safepoint is in progress.
2613 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2614   ResourceMark rm;
2615   nmethod* nm = NULL;
2616 
2617   assert(method->has_native_function(), "must have something valid to call!");
2618 
2619   {
2620     // perform the work while holding the lock, but perform any printing outside the lock
2621     MutexLocker mu(AdapterHandlerLibrary_lock);
2622     // See if somebody beat us to it
2623     nm = method->code();
2624     if (nm) {
2625       return nm;
2626     }
2627 
2628     ResourceMark rm;
2629 
2630     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2631     if (buf != NULL) {
2632       CodeBuffer buffer(buf);
2633       double locs_buf[20];
2634       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2635       MacroAssembler _masm(&buffer);
2636 
2637       // Fill in the signature array, for the calling-convention call.
2638       int total_args_passed = method->size_of_parameters();
2639 
2640       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType,total_args_passed);
2641       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair,total_args_passed);
2642       int i=0;
2643       if( !method->is_static() )  // Pass in receiver first
2644         sig_bt[i++] = T_OBJECT;
2645       SignatureStream ss(method->signature());
2646       for( ; !ss.at_return_type(); ss.next()) {
2647         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2648         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2649           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2650       }
2651       assert( i==total_args_passed, "" );
2652       BasicType ret_type = ss.type();
2653 
2654       // Now get the compiled-Java layout as input arguments
2655       int comp_args_on_stack;
2656       comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2657 
2658       // Generate the compiled-to-native wrapper code
2659       nm = SharedRuntime::generate_native_wrapper(&_masm,
2660                                                   method,
2661                                                   compile_id,
2662                                                   total_args_passed,
2663                                                   comp_args_on_stack,
2664                                                   sig_bt,regs,
2665                                                   ret_type);
2666     }
2667   }
2668 
2669   // Must unlock before calling set_code
2670 
2671   // Install the generated code.
2672   if (nm != NULL) {
2673     if (PrintCompilation) {
2674       ttyLocker ttyl;
2675       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2676     }
2677     method->set_code(method, nm);
2678     nm->post_compiled_method_load_event();
2679   } else {
2680     // CodeCache is full, disable compilation
2681     CompileBroker::handle_full_code_cache();
2682   }
2683   return nm;
2684 }
2685 
2686 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2687   assert(thread == JavaThread::current(), "must be");
2688   // The code is about to enter a JNI lazy critical native method and
2689   // _needs_gc is true, so if this thread is already in a critical
2690   // section then just return, otherwise this thread should block
2691   // until needs_gc has been cleared.
2692   if (thread->in_critical()) {
2693     return;
2694   }
2695   // Lock and unlock a critical section to give the system a chance to block
2696   GC_locker::lock_critical(thread);
2697   GC_locker::unlock_critical(thread);
2698 JRT_END
2699 
2700 #ifdef HAVE_DTRACE_H
2701 // Create a dtrace nmethod for this method.  The wrapper converts the
2702 // java compiled calling convention to the native convention, makes a dummy call
2703 // (actually nops for the size of the call instruction, which become a trap if
2704 // probe is enabled). The returns to the caller. Since this all looks like a
2705 // leaf no thread transition is needed.
2706 
2707 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2708   ResourceMark rm;
2709   nmethod* nm = NULL;
2710 
2711   if (PrintCompilation) {
2712     ttyLocker ttyl;
2713     tty->print("---   n%s  ");
2714     method->print_short_name(tty);
2715     if (method->is_static()) {
2716       tty->print(" (static)");
2717     }
2718     tty->cr();
2719   }
2720 
2721   {
2722     // perform the work while holding the lock, but perform any printing
2723     // outside the lock
2724     MutexLocker mu(AdapterHandlerLibrary_lock);
2725     // See if somebody beat us to it
2726     nm = method->code();
2727     if (nm) {
2728       return nm;
2729     }
2730 
2731     ResourceMark rm;
2732 
2733     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2734     if (buf != NULL) {
2735       CodeBuffer buffer(buf);
2736       // Need a few relocation entries
2737       double locs_buf[20];
2738       buffer.insts()->initialize_shared_locs(
2739         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2740       MacroAssembler _masm(&buffer);
2741 
2742       // Generate the compiled-to-native wrapper code
2743       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2744     }
2745   }
2746   return nm;
2747 }
2748 
2749 // the dtrace method needs to convert java lang string to utf8 string.
2750 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2751   typeArrayOop jlsValue  = java_lang_String::value(src);
2752   int          jlsOffset = java_lang_String::offset(src);
2753   int          jlsLen    = java_lang_String::length(src);
2754   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2755                                            jlsValue->char_at_addr(jlsOffset);
2756   assert(typeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2757   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2758 }
2759 #endif // ndef HAVE_DTRACE_H
2760 
2761 // -------------------------------------------------------------------------
2762 // Java-Java calling convention
2763 // (what you use when Java calls Java)
2764 
2765 //------------------------------name_for_receiver----------------------------------
2766 // For a given signature, return the VMReg for parameter 0.
2767 VMReg SharedRuntime::name_for_receiver() {
2768   VMRegPair regs;
2769   BasicType sig_bt = T_OBJECT;
2770   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2771   // Return argument 0 register.  In the LP64 build pointers
2772   // take 2 registers, but the VM wants only the 'main' name.
2773   return regs.first();
2774 }
2775 
2776 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, int* arg_size) {
2777   // This method is returning a data structure allocating as a
2778   // ResourceObject, so do not put any ResourceMarks in here.
2779   char *s = sig->as_C_string();
2780   int len = (int)strlen(s);
2781   *s++; len--;                  // Skip opening paren
2782   char *t = s+len;
2783   while( *(--t) != ')' ) ;      // Find close paren
2784 
2785   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2786   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2787   int cnt = 0;
2788   if (has_receiver) {
2789     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2790   }
2791 
2792   while( s < t ) {
2793     switch( *s++ ) {            // Switch on signature character
2794     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2795     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2796     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2797     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2798     case 'I': sig_bt[cnt++] = T_INT;     break;
2799     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2800     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2801     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2802     case 'V': sig_bt[cnt++] = T_VOID;    break;
2803     case 'L':                   // Oop
2804       while( *s++ != ';'  ) ;   // Skip signature
2805       sig_bt[cnt++] = T_OBJECT;
2806       break;
2807     case '[': {                 // Array
2808       do {                      // Skip optional size
2809         while( *s >= '0' && *s <= '9' ) s++;
2810       } while( *s++ == '[' );   // Nested arrays?
2811       // Skip element type
2812       if( s[-1] == 'L' )
2813         while( *s++ != ';'  ) ; // Skip signature
2814       sig_bt[cnt++] = T_ARRAY;
2815       break;
2816     }
2817     default : ShouldNotReachHere();
2818     }
2819   }
2820   assert( cnt < 256, "grow table size" );
2821 
2822   int comp_args_on_stack;
2823   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2824 
2825   // the calling convention doesn't count out_preserve_stack_slots so
2826   // we must add that in to get "true" stack offsets.
2827 
2828   if (comp_args_on_stack) {
2829     for (int i = 0; i < cnt; i++) {
2830       VMReg reg1 = regs[i].first();
2831       if( reg1->is_stack()) {
2832         // Yuck
2833         reg1 = reg1->bias(out_preserve_stack_slots());
2834       }
2835       VMReg reg2 = regs[i].second();
2836       if( reg2->is_stack()) {
2837         // Yuck
2838         reg2 = reg2->bias(out_preserve_stack_slots());
2839       }
2840       regs[i].set_pair(reg2, reg1);
2841     }
2842   }
2843 
2844   // results
2845   *arg_size = cnt;
2846   return regs;
2847 }
2848 
2849 // OSR Migration Code
2850 //
2851 // This code is used convert interpreter frames into compiled frames.  It is
2852 // called from very start of a compiled OSR nmethod.  A temp array is
2853 // allocated to hold the interesting bits of the interpreter frame.  All
2854 // active locks are inflated to allow them to move.  The displaced headers and
2855 // active interpeter locals are copied into the temp buffer.  Then we return
2856 // back to the compiled code.  The compiled code then pops the current
2857 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2858 // copies the interpreter locals and displaced headers where it wants.
2859 // Finally it calls back to free the temp buffer.
2860 //
2861 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2862 
2863 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2864 
2865 #ifdef IA64
2866   ShouldNotReachHere(); // NYI
2867 #endif /* IA64 */
2868 
2869   //
2870   // This code is dependent on the memory layout of the interpreter local
2871   // array and the monitors. On all of our platforms the layout is identical
2872   // so this code is shared. If some platform lays the their arrays out
2873   // differently then this code could move to platform specific code or
2874   // the code here could be modified to copy items one at a time using
2875   // frame accessor methods and be platform independent.
2876 
2877   frame fr = thread->last_frame();
2878   assert( fr.is_interpreted_frame(), "" );
2879   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2880 
2881   // Figure out how many monitors are active.
2882   int active_monitor_count = 0;
2883   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2884        kptr < fr.interpreter_frame_monitor_begin();
2885        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2886     if( kptr->obj() != NULL ) active_monitor_count++;
2887   }
2888 
2889   // QQQ we could place number of active monitors in the array so that compiled code
2890   // could double check it.
2891 
2892   methodOop moop = fr.interpreter_frame_method();
2893   int max_locals = moop->max_locals();
2894   // Allocate temp buffer, 1 word per local & 2 per active monitor
2895   int buf_size_words = max_locals + active_monitor_count*2;
2896   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words);
2897 
2898   // Copy the locals.  Order is preserved so that loading of longs works.
2899   // Since there's no GC I can copy the oops blindly.
2900   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2901   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2902                        (HeapWord*)&buf[0],
2903                        max_locals);
2904 
2905   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2906   int i = max_locals;
2907   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2908        kptr2 < fr.interpreter_frame_monitor_begin();
2909        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2910     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2911       BasicLock *lock = kptr2->lock();
2912       // Inflate so the displaced header becomes position-independent
2913       if (lock->displaced_header()->is_unlocked())
2914         ObjectSynchronizer::inflate_helper(kptr2->obj());
2915       // Now the displaced header is free to move
2916       buf[i++] = (intptr_t)lock->displaced_header();
2917       buf[i++] = (intptr_t)kptr2->obj();
2918     }
2919   }
2920   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2921 
2922   return buf;
2923 JRT_END
2924 
2925 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2926   FREE_C_HEAP_ARRAY(intptr_t,buf);
2927 JRT_END
2928 
2929 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2930   AdapterHandlerTableIterator iter(_adapters);
2931   while (iter.has_next()) {
2932     AdapterHandlerEntry* a = iter.next();
2933     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2934   }
2935   return false;
2936 }
2937 
2938 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2939   AdapterHandlerTableIterator iter(_adapters);
2940   while (iter.has_next()) {
2941     AdapterHandlerEntry* a = iter.next();
2942     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) {
2943       st->print("Adapter for signature: ");
2944       st->print_cr("%s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2945                    a->fingerprint()->as_string(),
2946                    a->get_i2c_entry(), a->get_c2i_entry(), a->get_c2i_unverified_entry());
2947 
2948       return;
2949     }
2950   }
2951   assert(false, "Should have found handler");
2952 }
2953 
2954 #ifndef PRODUCT
2955 
2956 void AdapterHandlerLibrary::print_statistics() {
2957   _adapters->print_statistics();
2958 }
2959 
2960 #endif /* PRODUCT */