1 //
   2 // Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3 // DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4 //
   5 // This code is free software; you can redistribute it and/or modify it
   6 // under the terms of the GNU General Public License version 2 only, as
   7 // published by the Free Software Foundation.
   8 //
   9 // This code is distributed in the hope that it will be useful, but WITHOUT
  10 // ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 // FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12 // version 2 for more details (a copy is included in the LICENSE file that
  13 // accompanied this code).
  14 //
  15 // You should have received a copy of the GNU General Public License version
  16 // 2 along with this work; if not, write to the Free Software Foundation,
  17 // Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18 //
  19 // Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20 // or visit www.oracle.com if you need additional information or have any
  21 // questions.
  22 //
  23 //
  24 
  25 // SPARC Architecture Description File
  26 
  27 //----------REGISTER DEFINITION BLOCK------------------------------------------
  28 // This information is used by the matcher and the register allocator to
  29 // describe individual registers and classes of registers within the target
  30 // archtecture.
  31 register %{
  32 //----------Architecture Description Register Definitions----------------------
  33 // General Registers
  34 // "reg_def"  name ( register save type, C convention save type,
  35 //                   ideal register type, encoding, vm name );
  36 // Register Save Types:
  37 //
  38 // NS  = No-Save:       The register allocator assumes that these registers
  39 //                      can be used without saving upon entry to the method, &
  40 //                      that they do not need to be saved at call sites.
  41 //
  42 // SOC = Save-On-Call:  The register allocator assumes that these registers
  43 //                      can be used without saving upon entry to the method,
  44 //                      but that they must be saved at call sites.
  45 //
  46 // SOE = Save-On-Entry: The register allocator assumes that these registers
  47 //                      must be saved before using them upon entry to the
  48 //                      method, but they do not need to be saved at call
  49 //                      sites.
  50 //
  51 // AS  = Always-Save:   The register allocator assumes that these registers
  52 //                      must be saved before using them upon entry to the
  53 //                      method, & that they must be saved at call sites.
  54 //
  55 // Ideal Register Type is used to determine how to save & restore a
  56 // register.  Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
  57 // spilled with LoadP/StoreP.  If the register supports both, use Op_RegI.
  58 //
  59 // The encoding number is the actual bit-pattern placed into the opcodes.
  60 
  61 
  62 // ----------------------------
  63 // Integer/Long Registers
  64 // ----------------------------
  65 
  66 // Need to expose the hi/lo aspect of 64-bit registers
  67 // This register set is used for both the 64-bit build and
  68 // the 32-bit build with 1-register longs.
  69 
  70 // Global Registers 0-7
  71 reg_def R_G0H( NS,  NS, Op_RegI,128, G0->as_VMReg()->next());
  72 reg_def R_G0 ( NS,  NS, Op_RegI,  0, G0->as_VMReg());
  73 reg_def R_G1H(SOC, SOC, Op_RegI,129, G1->as_VMReg()->next());
  74 reg_def R_G1 (SOC, SOC, Op_RegI,  1, G1->as_VMReg());
  75 reg_def R_G2H( NS,  NS, Op_RegI,130, G2->as_VMReg()->next());
  76 reg_def R_G2 ( NS,  NS, Op_RegI,  2, G2->as_VMReg());
  77 reg_def R_G3H(SOC, SOC, Op_RegI,131, G3->as_VMReg()->next());
  78 reg_def R_G3 (SOC, SOC, Op_RegI,  3, G3->as_VMReg());
  79 reg_def R_G4H(SOC, SOC, Op_RegI,132, G4->as_VMReg()->next());
  80 reg_def R_G4 (SOC, SOC, Op_RegI,  4, G4->as_VMReg());
  81 reg_def R_G5H(SOC, SOC, Op_RegI,133, G5->as_VMReg()->next());
  82 reg_def R_G5 (SOC, SOC, Op_RegI,  5, G5->as_VMReg());
  83 reg_def R_G6H( NS,  NS, Op_RegI,134, G6->as_VMReg()->next());
  84 reg_def R_G6 ( NS,  NS, Op_RegI,  6, G6->as_VMReg());
  85 reg_def R_G7H( NS,  NS, Op_RegI,135, G7->as_VMReg()->next());
  86 reg_def R_G7 ( NS,  NS, Op_RegI,  7, G7->as_VMReg());
  87 
  88 // Output Registers 0-7
  89 reg_def R_O0H(SOC, SOC, Op_RegI,136, O0->as_VMReg()->next());
  90 reg_def R_O0 (SOC, SOC, Op_RegI,  8, O0->as_VMReg());
  91 reg_def R_O1H(SOC, SOC, Op_RegI,137, O1->as_VMReg()->next());
  92 reg_def R_O1 (SOC, SOC, Op_RegI,  9, O1->as_VMReg());
  93 reg_def R_O2H(SOC, SOC, Op_RegI,138, O2->as_VMReg()->next());
  94 reg_def R_O2 (SOC, SOC, Op_RegI, 10, O2->as_VMReg());
  95 reg_def R_O3H(SOC, SOC, Op_RegI,139, O3->as_VMReg()->next());
  96 reg_def R_O3 (SOC, SOC, Op_RegI, 11, O3->as_VMReg());
  97 reg_def R_O4H(SOC, SOC, Op_RegI,140, O4->as_VMReg()->next());
  98 reg_def R_O4 (SOC, SOC, Op_RegI, 12, O4->as_VMReg());
  99 reg_def R_O5H(SOC, SOC, Op_RegI,141, O5->as_VMReg()->next());
 100 reg_def R_O5 (SOC, SOC, Op_RegI, 13, O5->as_VMReg());
 101 reg_def R_SPH( NS,  NS, Op_RegI,142, SP->as_VMReg()->next());
 102 reg_def R_SP ( NS,  NS, Op_RegI, 14, SP->as_VMReg());
 103 reg_def R_O7H(SOC, SOC, Op_RegI,143, O7->as_VMReg()->next());
 104 reg_def R_O7 (SOC, SOC, Op_RegI, 15, O7->as_VMReg());
 105 
 106 // Local Registers 0-7
 107 reg_def R_L0H( NS,  NS, Op_RegI,144, L0->as_VMReg()->next());
 108 reg_def R_L0 ( NS,  NS, Op_RegI, 16, L0->as_VMReg());
 109 reg_def R_L1H( NS,  NS, Op_RegI,145, L1->as_VMReg()->next());
 110 reg_def R_L1 ( NS,  NS, Op_RegI, 17, L1->as_VMReg());
 111 reg_def R_L2H( NS,  NS, Op_RegI,146, L2->as_VMReg()->next());
 112 reg_def R_L2 ( NS,  NS, Op_RegI, 18, L2->as_VMReg());
 113 reg_def R_L3H( NS,  NS, Op_RegI,147, L3->as_VMReg()->next());
 114 reg_def R_L3 ( NS,  NS, Op_RegI, 19, L3->as_VMReg());
 115 reg_def R_L4H( NS,  NS, Op_RegI,148, L4->as_VMReg()->next());
 116 reg_def R_L4 ( NS,  NS, Op_RegI, 20, L4->as_VMReg());
 117 reg_def R_L5H( NS,  NS, Op_RegI,149, L5->as_VMReg()->next());
 118 reg_def R_L5 ( NS,  NS, Op_RegI, 21, L5->as_VMReg());
 119 reg_def R_L6H( NS,  NS, Op_RegI,150, L6->as_VMReg()->next());
 120 reg_def R_L6 ( NS,  NS, Op_RegI, 22, L6->as_VMReg());
 121 reg_def R_L7H( NS,  NS, Op_RegI,151, L7->as_VMReg()->next());
 122 reg_def R_L7 ( NS,  NS, Op_RegI, 23, L7->as_VMReg());
 123 
 124 // Input Registers 0-7
 125 reg_def R_I0H( NS,  NS, Op_RegI,152, I0->as_VMReg()->next());
 126 reg_def R_I0 ( NS,  NS, Op_RegI, 24, I0->as_VMReg());
 127 reg_def R_I1H( NS,  NS, Op_RegI,153, I1->as_VMReg()->next());
 128 reg_def R_I1 ( NS,  NS, Op_RegI, 25, I1->as_VMReg());
 129 reg_def R_I2H( NS,  NS, Op_RegI,154, I2->as_VMReg()->next());
 130 reg_def R_I2 ( NS,  NS, Op_RegI, 26, I2->as_VMReg());
 131 reg_def R_I3H( NS,  NS, Op_RegI,155, I3->as_VMReg()->next());
 132 reg_def R_I3 ( NS,  NS, Op_RegI, 27, I3->as_VMReg());
 133 reg_def R_I4H( NS,  NS, Op_RegI,156, I4->as_VMReg()->next());
 134 reg_def R_I4 ( NS,  NS, Op_RegI, 28, I4->as_VMReg());
 135 reg_def R_I5H( NS,  NS, Op_RegI,157, I5->as_VMReg()->next());
 136 reg_def R_I5 ( NS,  NS, Op_RegI, 29, I5->as_VMReg());
 137 reg_def R_FPH( NS,  NS, Op_RegI,158, FP->as_VMReg()->next());
 138 reg_def R_FP ( NS,  NS, Op_RegI, 30, FP->as_VMReg());
 139 reg_def R_I7H( NS,  NS, Op_RegI,159, I7->as_VMReg()->next());
 140 reg_def R_I7 ( NS,  NS, Op_RegI, 31, I7->as_VMReg());
 141 
 142 // ----------------------------
 143 // Float/Double Registers
 144 // ----------------------------
 145 
 146 // Float Registers
 147 reg_def R_F0 ( SOC, SOC, Op_RegF,  0, F0->as_VMReg());
 148 reg_def R_F1 ( SOC, SOC, Op_RegF,  1, F1->as_VMReg());
 149 reg_def R_F2 ( SOC, SOC, Op_RegF,  2, F2->as_VMReg());
 150 reg_def R_F3 ( SOC, SOC, Op_RegF,  3, F3->as_VMReg());
 151 reg_def R_F4 ( SOC, SOC, Op_RegF,  4, F4->as_VMReg());
 152 reg_def R_F5 ( SOC, SOC, Op_RegF,  5, F5->as_VMReg());
 153 reg_def R_F6 ( SOC, SOC, Op_RegF,  6, F6->as_VMReg());
 154 reg_def R_F7 ( SOC, SOC, Op_RegF,  7, F7->as_VMReg());
 155 reg_def R_F8 ( SOC, SOC, Op_RegF,  8, F8->as_VMReg());
 156 reg_def R_F9 ( SOC, SOC, Op_RegF,  9, F9->as_VMReg());
 157 reg_def R_F10( SOC, SOC, Op_RegF, 10, F10->as_VMReg());
 158 reg_def R_F11( SOC, SOC, Op_RegF, 11, F11->as_VMReg());
 159 reg_def R_F12( SOC, SOC, Op_RegF, 12, F12->as_VMReg());
 160 reg_def R_F13( SOC, SOC, Op_RegF, 13, F13->as_VMReg());
 161 reg_def R_F14( SOC, SOC, Op_RegF, 14, F14->as_VMReg());
 162 reg_def R_F15( SOC, SOC, Op_RegF, 15, F15->as_VMReg());
 163 reg_def R_F16( SOC, SOC, Op_RegF, 16, F16->as_VMReg());
 164 reg_def R_F17( SOC, SOC, Op_RegF, 17, F17->as_VMReg());
 165 reg_def R_F18( SOC, SOC, Op_RegF, 18, F18->as_VMReg());
 166 reg_def R_F19( SOC, SOC, Op_RegF, 19, F19->as_VMReg());
 167 reg_def R_F20( SOC, SOC, Op_RegF, 20, F20->as_VMReg());
 168 reg_def R_F21( SOC, SOC, Op_RegF, 21, F21->as_VMReg());
 169 reg_def R_F22( SOC, SOC, Op_RegF, 22, F22->as_VMReg());
 170 reg_def R_F23( SOC, SOC, Op_RegF, 23, F23->as_VMReg());
 171 reg_def R_F24( SOC, SOC, Op_RegF, 24, F24->as_VMReg());
 172 reg_def R_F25( SOC, SOC, Op_RegF, 25, F25->as_VMReg());
 173 reg_def R_F26( SOC, SOC, Op_RegF, 26, F26->as_VMReg());
 174 reg_def R_F27( SOC, SOC, Op_RegF, 27, F27->as_VMReg());
 175 reg_def R_F28( SOC, SOC, Op_RegF, 28, F28->as_VMReg());
 176 reg_def R_F29( SOC, SOC, Op_RegF, 29, F29->as_VMReg());
 177 reg_def R_F30( SOC, SOC, Op_RegF, 30, F30->as_VMReg());
 178 reg_def R_F31( SOC, SOC, Op_RegF, 31, F31->as_VMReg());
 179 
 180 // Double Registers
 181 // The rules of ADL require that double registers be defined in pairs.
 182 // Each pair must be two 32-bit values, but not necessarily a pair of
 183 // single float registers.  In each pair, ADLC-assigned register numbers
 184 // must be adjacent, with the lower number even.  Finally, when the
 185 // CPU stores such a register pair to memory, the word associated with
 186 // the lower ADLC-assigned number must be stored to the lower address.
 187 
 188 // These definitions specify the actual bit encodings of the sparc
 189 // double fp register numbers.  FloatRegisterImpl in register_sparc.hpp
 190 // wants 0-63, so we have to convert every time we want to use fp regs
 191 // with the macroassembler, using reg_to_DoubleFloatRegister_object().
 192 // 255 is a flag meaning "don't go here".
 193 // I believe we can't handle callee-save doubles D32 and up until
 194 // the place in the sparc stack crawler that asserts on the 255 is
 195 // fixed up.
 196 reg_def R_D32 (SOC, SOC, Op_RegD,  1, F32->as_VMReg());
 197 reg_def R_D32x(SOC, SOC, Op_RegD,255, F32->as_VMReg()->next());
 198 reg_def R_D34 (SOC, SOC, Op_RegD,  3, F34->as_VMReg());
 199 reg_def R_D34x(SOC, SOC, Op_RegD,255, F34->as_VMReg()->next());
 200 reg_def R_D36 (SOC, SOC, Op_RegD,  5, F36->as_VMReg());
 201 reg_def R_D36x(SOC, SOC, Op_RegD,255, F36->as_VMReg()->next());
 202 reg_def R_D38 (SOC, SOC, Op_RegD,  7, F38->as_VMReg());
 203 reg_def R_D38x(SOC, SOC, Op_RegD,255, F38->as_VMReg()->next());
 204 reg_def R_D40 (SOC, SOC, Op_RegD,  9, F40->as_VMReg());
 205 reg_def R_D40x(SOC, SOC, Op_RegD,255, F40->as_VMReg()->next());
 206 reg_def R_D42 (SOC, SOC, Op_RegD, 11, F42->as_VMReg());
 207 reg_def R_D42x(SOC, SOC, Op_RegD,255, F42->as_VMReg()->next());
 208 reg_def R_D44 (SOC, SOC, Op_RegD, 13, F44->as_VMReg());
 209 reg_def R_D44x(SOC, SOC, Op_RegD,255, F44->as_VMReg()->next());
 210 reg_def R_D46 (SOC, SOC, Op_RegD, 15, F46->as_VMReg());
 211 reg_def R_D46x(SOC, SOC, Op_RegD,255, F46->as_VMReg()->next());
 212 reg_def R_D48 (SOC, SOC, Op_RegD, 17, F48->as_VMReg());
 213 reg_def R_D48x(SOC, SOC, Op_RegD,255, F48->as_VMReg()->next());
 214 reg_def R_D50 (SOC, SOC, Op_RegD, 19, F50->as_VMReg());
 215 reg_def R_D50x(SOC, SOC, Op_RegD,255, F50->as_VMReg()->next());
 216 reg_def R_D52 (SOC, SOC, Op_RegD, 21, F52->as_VMReg());
 217 reg_def R_D52x(SOC, SOC, Op_RegD,255, F52->as_VMReg()->next());
 218 reg_def R_D54 (SOC, SOC, Op_RegD, 23, F54->as_VMReg());
 219 reg_def R_D54x(SOC, SOC, Op_RegD,255, F54->as_VMReg()->next());
 220 reg_def R_D56 (SOC, SOC, Op_RegD, 25, F56->as_VMReg());
 221 reg_def R_D56x(SOC, SOC, Op_RegD,255, F56->as_VMReg()->next());
 222 reg_def R_D58 (SOC, SOC, Op_RegD, 27, F58->as_VMReg());
 223 reg_def R_D58x(SOC, SOC, Op_RegD,255, F58->as_VMReg()->next());
 224 reg_def R_D60 (SOC, SOC, Op_RegD, 29, F60->as_VMReg());
 225 reg_def R_D60x(SOC, SOC, Op_RegD,255, F60->as_VMReg()->next());
 226 reg_def R_D62 (SOC, SOC, Op_RegD, 31, F62->as_VMReg());
 227 reg_def R_D62x(SOC, SOC, Op_RegD,255, F62->as_VMReg()->next());
 228 
 229 
 230 // ----------------------------
 231 // Special Registers
 232 // Condition Codes Flag Registers
 233 // I tried to break out ICC and XCC but it's not very pretty.
 234 // Every Sparc instruction which defs/kills one also kills the other.
 235 // Hence every compare instruction which defs one kind of flags ends
 236 // up needing a kill of the other.
 237 reg_def CCR (SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 238 
 239 reg_def FCC0(SOC, SOC,  Op_RegFlags, 0, VMRegImpl::Bad());
 240 reg_def FCC1(SOC, SOC,  Op_RegFlags, 1, VMRegImpl::Bad());
 241 reg_def FCC2(SOC, SOC,  Op_RegFlags, 2, VMRegImpl::Bad());
 242 reg_def FCC3(SOC, SOC,  Op_RegFlags, 3, VMRegImpl::Bad());
 243 
 244 // ----------------------------
 245 // Specify the enum values for the registers.  These enums are only used by the
 246 // OptoReg "class". We can convert these enum values at will to VMReg when needed
 247 // for visibility to the rest of the vm. The order of this enum influences the
 248 // register allocator so having the freedom to set this order and not be stuck
 249 // with the order that is natural for the rest of the vm is worth it.
 250 alloc_class chunk0(
 251   R_L0,R_L0H, R_L1,R_L1H, R_L2,R_L2H, R_L3,R_L3H, R_L4,R_L4H, R_L5,R_L5H, R_L6,R_L6H, R_L7,R_L7H,
 252   R_G0,R_G0H, R_G1,R_G1H, R_G2,R_G2H, R_G3,R_G3H, R_G4,R_G4H, R_G5,R_G5H, R_G6,R_G6H, R_G7,R_G7H,
 253   R_O7,R_O7H, R_SP,R_SPH, R_O0,R_O0H, R_O1,R_O1H, R_O2,R_O2H, R_O3,R_O3H, R_O4,R_O4H, R_O5,R_O5H,
 254   R_I0,R_I0H, R_I1,R_I1H, R_I2,R_I2H, R_I3,R_I3H, R_I4,R_I4H, R_I5,R_I5H, R_FP,R_FPH, R_I7,R_I7H);
 255 
 256 // Note that a register is not allocatable unless it is also mentioned
 257 // in a widely-used reg_class below.  Thus, R_G7 and R_G0 are outside i_reg.
 258 
 259 alloc_class chunk1(
 260   // The first registers listed here are those most likely to be used
 261   // as temporaries.  We move F0..F7 away from the front of the list,
 262   // to reduce the likelihood of interferences with parameters and
 263   // return values.  Likewise, we avoid using F0/F1 for parameters,
 264   // since they are used for return values.
 265   // This FPU fine-tuning is worth about 1% on the SPEC geomean.
 266   R_F8 ,R_F9 ,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 267   R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,
 268   R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,R_F30,R_F31,
 269   R_F0 ,R_F1 ,R_F2 ,R_F3 ,R_F4 ,R_F5 ,R_F6 ,R_F7 , // used for arguments and return values
 270   R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,
 271   R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 272   R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,
 273   R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x);
 274 
 275 alloc_class chunk2(CCR, FCC0, FCC1, FCC2, FCC3);
 276 
 277 //----------Architecture Description Register Classes--------------------------
 278 // Several register classes are automatically defined based upon information in
 279 // this architecture description.
 280 // 1) reg_class inline_cache_reg           ( as defined in frame section )
 281 // 2) reg_class interpreter_method_oop_reg ( as defined in frame section )
 282 // 3) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
 283 //
 284 
 285 // G0 is not included in integer class since it has special meaning.
 286 reg_class g0_reg(R_G0);
 287 
 288 // ----------------------------
 289 // Integer Register Classes
 290 // ----------------------------
 291 // Exclusions from i_reg:
 292 // R_G0: hardwired zero
 293 // R_G2: reserved by HotSpot to the TLS register (invariant within Java)
 294 // R_G6: reserved by Solaris ABI to tools
 295 // R_G7: reserved by Solaris ABI to libthread
 296 // R_O7: Used as a temp in many encodings
 297 reg_class int_reg(R_G1,R_G3,R_G4,R_G5,R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 298 
 299 // Class for all integer registers, except the G registers.  This is used for
 300 // encodings which use G registers as temps.  The regular inputs to such
 301 // instructions use a "notemp_" prefix, as a hack to ensure that the allocator
 302 // will not put an input into a temp register.
 303 reg_class notemp_int_reg(R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 304 
 305 reg_class g1_regI(R_G1);
 306 reg_class g3_regI(R_G3);
 307 reg_class g4_regI(R_G4);
 308 reg_class o0_regI(R_O0);
 309 reg_class o7_regI(R_O7);
 310 
 311 // ----------------------------
 312 // Pointer Register Classes
 313 // ----------------------------
 314 #ifdef _LP64
 315 // 64-bit build means 64-bit pointers means hi/lo pairs
 316 reg_class ptr_reg(            R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 317                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 318                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 319                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 320 // Lock encodings use G3 and G4 internally
 321 reg_class lock_ptr_reg(       R_G1H,R_G1,                                     R_G5H,R_G5,
 322                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5,
 323                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 324                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5 );
 325 // Special class for storeP instructions, which can store SP or RPC to TLS.
 326 // It is also used for memory addressing, allowing direct TLS addressing.
 327 reg_class sp_ptr_reg(         R_G1H,R_G1, R_G2H,R_G2, R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5,
 328                   R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5, R_SPH,R_SP,
 329                   R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7,
 330                   R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5, R_FPH,R_FP );
 331 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 332 // We use it to save R_G2 across calls out of Java.
 333 reg_class l7_regP(R_L7H,R_L7);
 334 
 335 // Other special pointer regs
 336 reg_class g1_regP(R_G1H,R_G1);
 337 reg_class g2_regP(R_G2H,R_G2);
 338 reg_class g3_regP(R_G3H,R_G3);
 339 reg_class g4_regP(R_G4H,R_G4);
 340 reg_class g5_regP(R_G5H,R_G5);
 341 reg_class i0_regP(R_I0H,R_I0);
 342 reg_class o0_regP(R_O0H,R_O0);
 343 reg_class o1_regP(R_O1H,R_O1);
 344 reg_class o2_regP(R_O2H,R_O2);
 345 reg_class o7_regP(R_O7H,R_O7);
 346 
 347 #else // _LP64
 348 // 32-bit build means 32-bit pointers means 1 register.
 349 reg_class ptr_reg(     R_G1,     R_G3,R_G4,R_G5,
 350                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 351                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 352                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 353 // Lock encodings use G3 and G4 internally
 354 reg_class lock_ptr_reg(R_G1,               R_G5,
 355                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,
 356                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 357                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5);
 358 // Special class for storeP instructions, which can store SP or RPC to TLS.
 359 // It is also used for memory addressing, allowing direct TLS addressing.
 360 reg_class sp_ptr_reg(  R_G1,R_G2,R_G3,R_G4,R_G5,
 361                   R_O0,R_O1,R_O2,R_O3,R_O4,R_O5,R_SP,
 362                   R_L0,R_L1,R_L2,R_L3,R_L4,R_L5,R_L6,R_L7,
 363                   R_I0,R_I1,R_I2,R_I3,R_I4,R_I5,R_FP);
 364 // R_L7 is the lowest-priority callee-save (i.e., NS) register
 365 // We use it to save R_G2 across calls out of Java.
 366 reg_class l7_regP(R_L7);
 367 
 368 // Other special pointer regs
 369 reg_class g1_regP(R_G1);
 370 reg_class g2_regP(R_G2);
 371 reg_class g3_regP(R_G3);
 372 reg_class g4_regP(R_G4);
 373 reg_class g5_regP(R_G5);
 374 reg_class i0_regP(R_I0);
 375 reg_class o0_regP(R_O0);
 376 reg_class o1_regP(R_O1);
 377 reg_class o2_regP(R_O2);
 378 reg_class o7_regP(R_O7);
 379 #endif // _LP64
 380 
 381 
 382 // ----------------------------
 383 // Long Register Classes
 384 // ----------------------------
 385 // Longs in 1 register.  Aligned adjacent hi/lo pairs.
 386 // Note:  O7 is never in this class; it is sometimes used as an encoding temp.
 387 reg_class long_reg(             R_G1H,R_G1,             R_G3H,R_G3, R_G4H,R_G4, R_G5H,R_G5
 388                    ,R_O0H,R_O0, R_O1H,R_O1, R_O2H,R_O2, R_O3H,R_O3, R_O4H,R_O4, R_O5H,R_O5
 389 #ifdef _LP64
 390 // 64-bit, longs in 1 register: use all 64-bit integer registers
 391 // 32-bit, longs in 1 register: cannot use I's and L's.  Restrict to O's and G's.
 392                    ,R_L0H,R_L0, R_L1H,R_L1, R_L2H,R_L2, R_L3H,R_L3, R_L4H,R_L4, R_L5H,R_L5, R_L6H,R_L6, R_L7H,R_L7
 393                    ,R_I0H,R_I0, R_I1H,R_I1, R_I2H,R_I2, R_I3H,R_I3, R_I4H,R_I4, R_I5H,R_I5
 394 #endif // _LP64
 395                   );
 396 
 397 reg_class g1_regL(R_G1H,R_G1);
 398 reg_class g3_regL(R_G3H,R_G3);
 399 reg_class o2_regL(R_O2H,R_O2);
 400 reg_class o7_regL(R_O7H,R_O7);
 401 
 402 // ----------------------------
 403 // Special Class for Condition Code Flags Register
 404 reg_class int_flags(CCR);
 405 reg_class float_flags(FCC0,FCC1,FCC2,FCC3);
 406 reg_class float_flag0(FCC0);
 407 
 408 
 409 // ----------------------------
 410 // Float Point Register Classes
 411 // ----------------------------
 412 // Skip F30/F31, they are reserved for mem-mem copies
 413 reg_class sflt_reg(R_F0,R_F1,R_F2,R_F3,R_F4,R_F5,R_F6,R_F7,R_F8,R_F9,R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 414 
 415 // Paired floating point registers--they show up in the same order as the floats,
 416 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 417 reg_class dflt_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 418                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29,
 419                    /* Use extra V9 double registers; this AD file does not support V8 */
 420                    R_D32,R_D32x,R_D34,R_D34x,R_D36,R_D36x,R_D38,R_D38x,R_D40,R_D40x,R_D42,R_D42x,R_D44,R_D44x,R_D46,R_D46x,
 421                    R_D48,R_D48x,R_D50,R_D50x,R_D52,R_D52x,R_D54,R_D54x,R_D56,R_D56x,R_D58,R_D58x,R_D60,R_D60x,R_D62,R_D62x
 422                    );
 423 
 424 // Paired floating point registers--they show up in the same order as the floats,
 425 // but they are used with the "Op_RegD" type, and always occur in even/odd pairs.
 426 // This class is usable for mis-aligned loads as happen in I2C adapters.
 427 reg_class dflt_low_reg(R_F0, R_F1, R_F2, R_F3, R_F4, R_F5, R_F6, R_F7, R_F8, R_F9, R_F10,R_F11,R_F12,R_F13,R_F14,R_F15,
 428                    R_F16,R_F17,R_F18,R_F19,R_F20,R_F21,R_F22,R_F23,R_F24,R_F25,R_F26,R_F27,R_F28,R_F29);
 429 %}
 430 
 431 //----------DEFINITION BLOCK---------------------------------------------------
 432 // Define name --> value mappings to inform the ADLC of an integer valued name
 433 // Current support includes integer values in the range [0, 0x7FFFFFFF]
 434 // Format:
 435 //        int_def  <name>         ( <int_value>, <expression>);
 436 // Generated Code in ad_<arch>.hpp
 437 //        #define  <name>   (<expression>)
 438 //        // value == <int_value>
 439 // Generated code in ad_<arch>.cpp adlc_verification()
 440 //        assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
 441 //
 442 definitions %{
 443 // The default cost (of an ALU instruction).
 444   int_def DEFAULT_COST      (    100,     100);
 445   int_def HUGE_COST         (1000000, 1000000);
 446 
 447 // Memory refs are twice as expensive as run-of-the-mill.
 448   int_def MEMORY_REF_COST   (    200, DEFAULT_COST * 2);
 449 
 450 // Branches are even more expensive.
 451   int_def BRANCH_COST       (    300, DEFAULT_COST * 3);
 452   int_def CALL_COST         (    300, DEFAULT_COST * 3);
 453 %}
 454 
 455 
 456 //----------SOURCE BLOCK-------------------------------------------------------
 457 // This is a block of C++ code which provides values, functions, and
 458 // definitions necessary in the rest of the architecture description
 459 source_hpp %{
 460 // Must be visible to the DFA in dfa_sparc.cpp
 461 extern bool can_branch_register( Node *bol, Node *cmp );
 462 
 463 extern bool use_block_zeroing(Node* count);
 464 
 465 // Macros to extract hi & lo halves from a long pair.
 466 // G0 is not part of any long pair, so assert on that.
 467 // Prevents accidentally using G1 instead of G0.
 468 #define LONG_HI_REG(x) (x)
 469 #define LONG_LO_REG(x) (x)
 470 
 471 %}
 472 
 473 source %{
 474 #define __ _masm.
 475 
 476 // tertiary op of a LoadP or StoreP encoding
 477 #define REGP_OP true
 478 
 479 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding);
 480 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding);
 481 static Register reg_to_register_object(int register_encoding);
 482 
 483 // Used by the DFA in dfa_sparc.cpp.
 484 // Check for being able to use a V9 branch-on-register.  Requires a
 485 // compare-vs-zero, equal/not-equal, of a value which was zero- or sign-
 486 // extended.  Doesn't work following an integer ADD, for example, because of
 487 // overflow (-1 incremented yields 0 plus a carry in the high-order word).  On
 488 // 32-bit V9 systems, interrupts currently blow away the high-order 32 bits and
 489 // replace them with zero, which could become sign-extension in a different OS
 490 // release.  There's no obvious reason why an interrupt will ever fill these
 491 // bits with non-zero junk (the registers are reloaded with standard LD
 492 // instructions which either zero-fill or sign-fill).
 493 bool can_branch_register( Node *bol, Node *cmp ) {
 494   if( !BranchOnRegister ) return false;
 495 #ifdef _LP64
 496   if( cmp->Opcode() == Op_CmpP )
 497     return true;  // No problems with pointer compares
 498 #endif
 499   if( cmp->Opcode() == Op_CmpL )
 500     return true;  // No problems with long compares
 501 
 502   if( !SparcV9RegsHiBitsZero ) return false;
 503   if( bol->as_Bool()->_test._test != BoolTest::ne &&
 504       bol->as_Bool()->_test._test != BoolTest::eq )
 505      return false;
 506 
 507   // Check for comparing against a 'safe' value.  Any operation which
 508   // clears out the high word is safe.  Thus, loads and certain shifts
 509   // are safe, as are non-negative constants.  Any operation which
 510   // preserves zero bits in the high word is safe as long as each of its
 511   // inputs are safe.  Thus, phis and bitwise booleans are safe if their
 512   // inputs are safe.  At present, the only important case to recognize
 513   // seems to be loads.  Constants should fold away, and shifts &
 514   // logicals can use the 'cc' forms.
 515   Node *x = cmp->in(1);
 516   if( x->is_Load() ) return true;
 517   if( x->is_Phi() ) {
 518     for( uint i = 1; i < x->req(); i++ )
 519       if( !x->in(i)->is_Load() )
 520         return false;
 521     return true;
 522   }
 523   return false;
 524 }
 525 
 526 bool use_block_zeroing(Node* count) {
 527   // Use BIS for zeroing if count is not constant
 528   // or it is >= BlockZeroingLowLimit.
 529   return UseBlockZeroing && (count->find_intptr_t_con(BlockZeroingLowLimit) >= BlockZeroingLowLimit);
 530 }
 531 
 532 // ****************************************************************************
 533 
 534 // REQUIRED FUNCTIONALITY
 535 
 536 // !!!!! Special hack to get all type of calls to specify the byte offset
 537 //       from the start of the call to the point where the return address
 538 //       will point.
 539 //       The "return address" is the address of the call instruction, plus 8.
 540 
 541 int MachCallStaticJavaNode::ret_addr_offset() {
 542   int offset = NativeCall::instruction_size;  // call; delay slot
 543   if (_method_handle_invoke)
 544     offset += 4;  // restore SP
 545   return offset;
 546 }
 547 
 548 int MachCallDynamicJavaNode::ret_addr_offset() {
 549   int vtable_index = this->_vtable_index;
 550   if (vtable_index < 0) {
 551     // must be invalid_vtable_index, not nonvirtual_vtable_index
 552     assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
 553     return (NativeMovConstReg::instruction_size +
 554            NativeCall::instruction_size);  // sethi; setlo; call; delay slot
 555   } else {
 556     assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
 557     int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
 558     int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
 559     int klass_load_size;
 560     if (UseCompressedOops) {
 561       assert(Universe::heap() != NULL, "java heap should be initialized");
 562       if (Universe::narrow_oop_base() == NULL)
 563         klass_load_size = 2*BytesPerInstWord; // see MacroAssembler::load_klass()
 564       else
 565         klass_load_size = 3*BytesPerInstWord;
 566     } else {
 567       klass_load_size = 1*BytesPerInstWord;
 568     }
 569     if (Assembler::is_simm13(v_off)) {
 570       return klass_load_size +
 571              (2*BytesPerInstWord +           // ld_ptr, ld_ptr
 572              NativeCall::instruction_size);  // call; delay slot
 573     } else {
 574       return klass_load_size +
 575              (4*BytesPerInstWord +           // set_hi, set, ld_ptr, ld_ptr
 576              NativeCall::instruction_size);  // call; delay slot
 577     }
 578   }
 579 }
 580 
 581 int MachCallRuntimeNode::ret_addr_offset() {
 582 #ifdef _LP64
 583   if (MacroAssembler::is_far_target(entry_point())) {
 584     return NativeFarCall::instruction_size;
 585   } else {
 586     return NativeCall::instruction_size;
 587   }
 588 #else
 589   return NativeCall::instruction_size;  // call; delay slot
 590 #endif
 591 }
 592 
 593 // Indicate if the safepoint node needs the polling page as an input.
 594 // Since Sparc does not have absolute addressing, it does.
 595 bool SafePointNode::needs_polling_address_input() {
 596   return true;
 597 }
 598 
 599 // emit an interrupt that is caught by the debugger (for debugging compiler)
 600 void emit_break(CodeBuffer &cbuf) {
 601   MacroAssembler _masm(&cbuf);
 602   __ breakpoint_trap();
 603 }
 604 
 605 #ifndef PRODUCT
 606 void MachBreakpointNode::format( PhaseRegAlloc *, outputStream *st ) const {
 607   st->print("TA");
 608 }
 609 #endif
 610 
 611 void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 612   emit_break(cbuf);
 613 }
 614 
 615 uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
 616   return MachNode::size(ra_);
 617 }
 618 
 619 // Traceable jump
 620 void  emit_jmpl(CodeBuffer &cbuf, int jump_target) {
 621   MacroAssembler _masm(&cbuf);
 622   Register rdest = reg_to_register_object(jump_target);
 623   __ JMP(rdest, 0);
 624   __ delayed()->nop();
 625 }
 626 
 627 // Traceable jump and set exception pc
 628 void  emit_jmpl_set_exception_pc(CodeBuffer &cbuf, int jump_target) {
 629   MacroAssembler _masm(&cbuf);
 630   Register rdest = reg_to_register_object(jump_target);
 631   __ JMP(rdest, 0);
 632   __ delayed()->add(O7, frame::pc_return_offset, Oissuing_pc );
 633 }
 634 
 635 void emit_nop(CodeBuffer &cbuf) {
 636   MacroAssembler _masm(&cbuf);
 637   __ nop();
 638 }
 639 
 640 void emit_illtrap(CodeBuffer &cbuf) {
 641   MacroAssembler _masm(&cbuf);
 642   __ illtrap(0);
 643 }
 644 
 645 
 646 intptr_t get_offset_from_base(const MachNode* n, const TypePtr* atype, int disp32) {
 647   assert(n->rule() != loadUB_rule, "");
 648 
 649   intptr_t offset = 0;
 650   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // Check for base==RegI, disp==immP
 651   const Node* addr = n->get_base_and_disp(offset, adr_type);
 652   assert(adr_type == (const TypePtr*)-1, "VerifyOops: no support for sparc operands with base==RegI, disp==immP");
 653   assert(addr != NULL && addr != (Node*)-1, "invalid addr");
 654   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 655   atype = atype->add_offset(offset);
 656   assert(disp32 == offset, "wrong disp32");
 657   return atype->_offset;
 658 }
 659 
 660 
 661 intptr_t get_offset_from_base_2(const MachNode* n, const TypePtr* atype, int disp32) {
 662   assert(n->rule() != loadUB_rule, "");
 663 
 664   intptr_t offset = 0;
 665   Node* addr = n->in(2);
 666   assert(addr->bottom_type()->isa_oopptr() == atype, "");
 667   if (addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP) {
 668     Node* a = addr->in(2/*AddPNode::Address*/);
 669     Node* o = addr->in(3/*AddPNode::Offset*/);
 670     offset = o->is_Con() ? o->bottom_type()->is_intptr_t()->get_con() : Type::OffsetBot;
 671     atype = a->bottom_type()->is_ptr()->add_offset(offset);
 672     assert(atype->isa_oop_ptr(), "still an oop");
 673   }
 674   offset = atype->is_ptr()->_offset;
 675   if (offset != Type::OffsetBot)  offset += disp32;
 676   return offset;
 677 }
 678 
 679 static inline jdouble replicate_immI(int con, int count, int width) {
 680   // Load a constant replicated "count" times with width "width"
 681   assert(count*width == 8 && width <= 4, "sanity");
 682   int bit_width = width * 8;
 683   jlong val = con;
 684   val &= (((jlong) 1) << bit_width) - 1;  // mask off sign bits
 685   for (int i = 0; i < count - 1; i++) {
 686     val |= (val << bit_width);
 687   }
 688   jdouble dval = *((jdouble*) &val);  // coerce to double type
 689   return dval;
 690 }
 691 
 692 static inline jdouble replicate_immF(float con) {
 693   // Replicate float con 2 times and pack into vector.
 694   int val = *((int*)&con);
 695   jlong lval = val;
 696   lval = (lval << 32) | (lval & 0xFFFFFFFFl);
 697   jdouble dval = *((jdouble*) &lval);  // coerce to double type
 698   return dval;
 699 }
 700 
 701 // Standard Sparc opcode form2 field breakdown
 702 static inline void emit2_19(CodeBuffer &cbuf, int f30, int f29, int f25, int f22, int f20, int f19, int f0 ) {
 703   f0 &= (1<<19)-1;     // Mask displacement to 19 bits
 704   int op = (f30 << 30) |
 705            (f29 << 29) |
 706            (f25 << 25) |
 707            (f22 << 22) |
 708            (f20 << 20) |
 709            (f19 << 19) |
 710            (f0  <<  0);
 711   cbuf.insts()->emit_int32(op);
 712 }
 713 
 714 // Standard Sparc opcode form2 field breakdown
 715 static inline void emit2_22(CodeBuffer &cbuf, int f30, int f25, int f22, int f0 ) {
 716   f0 >>= 10;           // Drop 10 bits
 717   f0 &= (1<<22)-1;     // Mask displacement to 22 bits
 718   int op = (f30 << 30) |
 719            (f25 << 25) |
 720            (f22 << 22) |
 721            (f0  <<  0);
 722   cbuf.insts()->emit_int32(op);
 723 }
 724 
 725 // Standard Sparc opcode form3 field breakdown
 726 static inline void emit3(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int f5, int f0 ) {
 727   int op = (f30 << 30) |
 728            (f25 << 25) |
 729            (f19 << 19) |
 730            (f14 << 14) |
 731            (f5  <<  5) |
 732            (f0  <<  0);
 733   cbuf.insts()->emit_int32(op);
 734 }
 735 
 736 // Standard Sparc opcode form3 field breakdown
 737 static inline void emit3_simm13(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm13 ) {
 738   simm13 &= (1<<13)-1; // Mask to 13 bits
 739   int op = (f30 << 30) |
 740            (f25 << 25) |
 741            (f19 << 19) |
 742            (f14 << 14) |
 743            (1   << 13) | // bit to indicate immediate-mode
 744            (simm13<<0);
 745   cbuf.insts()->emit_int32(op);
 746 }
 747 
 748 static inline void emit3_simm10(CodeBuffer &cbuf, int f30, int f25, int f19, int f14, int simm10 ) {
 749   simm10 &= (1<<10)-1; // Mask to 10 bits
 750   emit3_simm13(cbuf,f30,f25,f19,f14,simm10);
 751 }
 752 
 753 #ifdef ASSERT
 754 // Helper function for VerifyOops in emit_form3_mem_reg
 755 void verify_oops_warning(const MachNode *n, int ideal_op, int mem_op) {
 756   warning("VerifyOops encountered unexpected instruction:");
 757   n->dump(2);
 758   warning("Instruction has ideal_Opcode==Op_%s and op_ld==Op_%s \n", NodeClassNames[ideal_op], NodeClassNames[mem_op]);
 759 }
 760 #endif
 761 
 762 
 763 void emit_form3_mem_reg(CodeBuffer &cbuf, const MachNode* n, int primary, int tertiary,
 764                         int src1_enc, int disp32, int src2_enc, int dst_enc) {
 765 
 766 #ifdef ASSERT
 767   // The following code implements the +VerifyOops feature.
 768   // It verifies oop values which are loaded into or stored out of
 769   // the current method activation.  +VerifyOops complements techniques
 770   // like ScavengeALot, because it eagerly inspects oops in transit,
 771   // as they enter or leave the stack, as opposed to ScavengeALot,
 772   // which inspects oops "at rest", in the stack or heap, at safepoints.
 773   // For this reason, +VerifyOops can sometimes detect bugs very close
 774   // to their point of creation.  It can also serve as a cross-check
 775   // on the validity of oop maps, when used toegether with ScavengeALot.
 776 
 777   // It would be good to verify oops at other points, especially
 778   // when an oop is used as a base pointer for a load or store.
 779   // This is presently difficult, because it is hard to know when
 780   // a base address is biased or not.  (If we had such information,
 781   // it would be easy and useful to make a two-argument version of
 782   // verify_oop which unbiases the base, and performs verification.)
 783 
 784   assert((uint)tertiary == 0xFFFFFFFF || tertiary == REGP_OP, "valid tertiary");
 785   bool is_verified_oop_base  = false;
 786   bool is_verified_oop_load  = false;
 787   bool is_verified_oop_store = false;
 788   int tmp_enc = -1;
 789   if (VerifyOops && src1_enc != R_SP_enc) {
 790     // classify the op, mainly for an assert check
 791     int st_op = 0, ld_op = 0;
 792     switch (primary) {
 793     case Assembler::stb_op3:  st_op = Op_StoreB; break;
 794     case Assembler::sth_op3:  st_op = Op_StoreC; break;
 795     case Assembler::stx_op3:  // may become StoreP or stay StoreI or StoreD0
 796     case Assembler::stw_op3:  st_op = Op_StoreI; break;
 797     case Assembler::std_op3:  st_op = Op_StoreL; break;
 798     case Assembler::stf_op3:  st_op = Op_StoreF; break;
 799     case Assembler::stdf_op3: st_op = Op_StoreD; break;
 800 
 801     case Assembler::ldsb_op3: ld_op = Op_LoadB; break;
 802     case Assembler::ldub_op3: ld_op = Op_LoadUB; break;
 803     case Assembler::lduh_op3: ld_op = Op_LoadUS; break;
 804     case Assembler::ldsh_op3: ld_op = Op_LoadS; break;
 805     case Assembler::ldx_op3:  // may become LoadP or stay LoadI
 806     case Assembler::ldsw_op3: // may become LoadP or stay LoadI
 807     case Assembler::lduw_op3: ld_op = Op_LoadI; break;
 808     case Assembler::ldd_op3:  ld_op = Op_LoadL; break;
 809     case Assembler::ldf_op3:  ld_op = Op_LoadF; break;
 810     case Assembler::lddf_op3: ld_op = Op_LoadD; break;
 811     case Assembler::prefetch_op3: ld_op = Op_LoadI; break;
 812 
 813     default: ShouldNotReachHere();
 814     }
 815     if (tertiary == REGP_OP) {
 816       if      (st_op == Op_StoreI)  st_op = Op_StoreP;
 817       else if (ld_op == Op_LoadI)   ld_op = Op_LoadP;
 818       else                          ShouldNotReachHere();
 819       if (st_op) {
 820         // a store
 821         // inputs are (0:control, 1:memory, 2:address, 3:value)
 822         Node* n2 = n->in(3);
 823         if (n2 != NULL) {
 824           const Type* t = n2->bottom_type();
 825           is_verified_oop_store = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 826         }
 827       } else {
 828         // a load
 829         const Type* t = n->bottom_type();
 830         is_verified_oop_load = t->isa_oop_ptr() ? (t->is_ptr()->_offset==0) : false;
 831       }
 832     }
 833 
 834     if (ld_op) {
 835       // a Load
 836       // inputs are (0:control, 1:memory, 2:address)
 837       if (!(n->ideal_Opcode()==ld_op)       && // Following are special cases
 838           !(n->ideal_Opcode()==Op_LoadPLocked && ld_op==Op_LoadP) &&
 839           !(n->ideal_Opcode()==Op_LoadI     && ld_op==Op_LoadF) &&
 840           !(n->ideal_Opcode()==Op_LoadF     && ld_op==Op_LoadI) &&
 841           !(n->ideal_Opcode()==Op_LoadRange && ld_op==Op_LoadI) &&
 842           !(n->ideal_Opcode()==Op_LoadKlass && ld_op==Op_LoadP) &&
 843           !(n->ideal_Opcode()==Op_LoadL     && ld_op==Op_LoadI) &&
 844           !(n->ideal_Opcode()==Op_LoadL_unaligned && ld_op==Op_LoadI) &&
 845           !(n->ideal_Opcode()==Op_LoadD_unaligned && ld_op==Op_LoadF) &&
 846           !(n->ideal_Opcode()==Op_ConvI2F   && ld_op==Op_LoadF) &&
 847           !(n->ideal_Opcode()==Op_ConvI2D   && ld_op==Op_LoadF) &&
 848           !(n->ideal_Opcode()==Op_PrefetchRead  && ld_op==Op_LoadI) &&
 849           !(n->ideal_Opcode()==Op_PrefetchWrite && ld_op==Op_LoadI) &&
 850           !(n->ideal_Opcode()==Op_PrefetchAllocation && ld_op==Op_LoadI) &&
 851           !(n->ideal_Opcode()==Op_LoadVector && ld_op==Op_LoadD) &&
 852           !(n->rule() == loadUB_rule)) {
 853         verify_oops_warning(n, n->ideal_Opcode(), ld_op);
 854       }
 855     } else if (st_op) {
 856       // a Store
 857       // inputs are (0:control, 1:memory, 2:address, 3:value)
 858       if (!(n->ideal_Opcode()==st_op)    && // Following are special cases
 859           !(n->ideal_Opcode()==Op_StoreCM && st_op==Op_StoreB) &&
 860           !(n->ideal_Opcode()==Op_StoreI && st_op==Op_StoreF) &&
 861           !(n->ideal_Opcode()==Op_StoreF && st_op==Op_StoreI) &&
 862           !(n->ideal_Opcode()==Op_StoreL && st_op==Op_StoreI) &&
 863           !(n->ideal_Opcode()==Op_StoreVector && st_op==Op_StoreD) &&
 864           !(n->ideal_Opcode()==Op_StoreD && st_op==Op_StoreI && n->rule() == storeD0_rule)) {
 865         verify_oops_warning(n, n->ideal_Opcode(), st_op);
 866       }
 867     }
 868 
 869     if (src2_enc == R_G0_enc && n->rule() != loadUB_rule && n->ideal_Opcode() != Op_StoreCM ) {
 870       Node* addr = n->in(2);
 871       if (!(addr->is_Mach() && addr->as_Mach()->ideal_Opcode() == Op_AddP)) {
 872         const TypeOopPtr* atype = addr->bottom_type()->isa_instptr();  // %%% oopptr?
 873         if (atype != NULL) {
 874           intptr_t offset = get_offset_from_base(n, atype, disp32);
 875           intptr_t offset_2 = get_offset_from_base_2(n, atype, disp32);
 876           if (offset != offset_2) {
 877             get_offset_from_base(n, atype, disp32);
 878             get_offset_from_base_2(n, atype, disp32);
 879           }
 880           assert(offset == offset_2, "different offsets");
 881           if (offset == disp32) {
 882             // we now know that src1 is a true oop pointer
 883             is_verified_oop_base = true;
 884             if (ld_op && src1_enc == dst_enc && ld_op != Op_LoadF && ld_op != Op_LoadD) {
 885               if( primary == Assembler::ldd_op3 ) {
 886                 is_verified_oop_base = false; // Cannot 'ldd' into O7
 887               } else {
 888                 tmp_enc = dst_enc;
 889                 dst_enc = R_O7_enc; // Load into O7; preserve source oop
 890                 assert(src1_enc != dst_enc, "");
 891               }
 892             }
 893           }
 894           if (st_op && (( offset == oopDesc::klass_offset_in_bytes())
 895                        || offset == oopDesc::mark_offset_in_bytes())) {
 896                       // loading the mark should not be allowed either, but
 897                       // we don't check this since it conflicts with InlineObjectHash
 898                       // usage of LoadINode to get the mark. We could keep the
 899                       // check if we create a new LoadMarkNode
 900             // but do not verify the object before its header is initialized
 901             ShouldNotReachHere();
 902           }
 903         }
 904       }
 905     }
 906   }
 907 #endif
 908 
 909   uint instr;
 910   instr = (Assembler::ldst_op << 30)
 911         | (dst_enc        << 25)
 912         | (primary        << 19)
 913         | (src1_enc       << 14);
 914 
 915   uint index = src2_enc;
 916   int disp = disp32;
 917 
 918   if (src1_enc == R_SP_enc || src1_enc == R_FP_enc)
 919     disp += STACK_BIAS;
 920 
 921   // We should have a compiler bailout here rather than a guarantee.
 922   // Better yet would be some mechanism to handle variable-size matches correctly.
 923   guarantee(Assembler::is_simm13(disp), "Do not match large constant offsets" );
 924 
 925   if( disp == 0 ) {
 926     // use reg-reg form
 927     // bit 13 is already zero
 928     instr |= index;
 929   } else {
 930     // use reg-imm form
 931     instr |= 0x00002000;          // set bit 13 to one
 932     instr |= disp & 0x1FFF;
 933   }
 934 
 935   cbuf.insts()->emit_int32(instr);
 936 
 937 #ifdef ASSERT
 938   {
 939     MacroAssembler _masm(&cbuf);
 940     if (is_verified_oop_base) {
 941       __ verify_oop(reg_to_register_object(src1_enc));
 942     }
 943     if (is_verified_oop_store) {
 944       __ verify_oop(reg_to_register_object(dst_enc));
 945     }
 946     if (tmp_enc != -1) {
 947       __ mov(O7, reg_to_register_object(tmp_enc));
 948     }
 949     if (is_verified_oop_load) {
 950       __ verify_oop(reg_to_register_object(dst_enc));
 951     }
 952   }
 953 #endif
 954 }
 955 
 956 void emit_call_reloc(CodeBuffer &cbuf, intptr_t entry_point, relocInfo::relocType rtype, bool preserve_g2 = false) {
 957   // The method which records debug information at every safepoint
 958   // expects the call to be the first instruction in the snippet as
 959   // it creates a PcDesc structure which tracks the offset of a call
 960   // from the start of the codeBlob. This offset is computed as
 961   // code_end() - code_begin() of the code which has been emitted
 962   // so far.
 963   // In this particular case we have skirted around the problem by
 964   // putting the "mov" instruction in the delay slot but the problem
 965   // may bite us again at some other point and a cleaner/generic
 966   // solution using relocations would be needed.
 967   MacroAssembler _masm(&cbuf);
 968   __ set_inst_mark();
 969 
 970   // We flush the current window just so that there is a valid stack copy
 971   // the fact that the current window becomes active again instantly is
 972   // not a problem there is nothing live in it.
 973 
 974 #ifdef ASSERT
 975   int startpos = __ offset();
 976 #endif /* ASSERT */
 977 
 978   __ call((address)entry_point, rtype);
 979 
 980   if (preserve_g2)   __ delayed()->mov(G2, L7);
 981   else __ delayed()->nop();
 982 
 983   if (preserve_g2)   __ mov(L7, G2);
 984 
 985 #ifdef ASSERT
 986   if (preserve_g2 && (VerifyCompiledCode || VerifyOops)) {
 987 #ifdef _LP64
 988     // Trash argument dump slots.
 989     __ set(0xb0b8ac0db0b8ac0d, G1);
 990     __ mov(G1, G5);
 991     __ stx(G1, SP, STACK_BIAS + 0x80);
 992     __ stx(G1, SP, STACK_BIAS + 0x88);
 993     __ stx(G1, SP, STACK_BIAS + 0x90);
 994     __ stx(G1, SP, STACK_BIAS + 0x98);
 995     __ stx(G1, SP, STACK_BIAS + 0xA0);
 996     __ stx(G1, SP, STACK_BIAS + 0xA8);
 997 #else // _LP64
 998     // this is also a native call, so smash the first 7 stack locations,
 999     // and the various registers
1000 
1001     // Note:  [SP+0x40] is sp[callee_aggregate_return_pointer_sp_offset],
1002     // while [SP+0x44..0x58] are the argument dump slots.
1003     __ set((intptr_t)0xbaadf00d, G1);
1004     __ mov(G1, G5);
1005     __ sllx(G1, 32, G1);
1006     __ or3(G1, G5, G1);
1007     __ mov(G1, G5);
1008     __ stx(G1, SP, 0x40);
1009     __ stx(G1, SP, 0x48);
1010     __ stx(G1, SP, 0x50);
1011     __ stw(G1, SP, 0x58); // Do not trash [SP+0x5C] which is a usable spill slot
1012 #endif // _LP64
1013   }
1014 #endif /*ASSERT*/
1015 }
1016 
1017 //=============================================================================
1018 // REQUIRED FUNCTIONALITY for encoding
1019 void emit_lo(CodeBuffer &cbuf, int val) {  }
1020 void emit_hi(CodeBuffer &cbuf, int val) {  }
1021 
1022 
1023 //=============================================================================
1024 const RegMask& MachConstantBaseNode::_out_RegMask = PTR_REG_mask();
1025 
1026 int Compile::ConstantTable::calculate_table_base_offset() const {
1027   if (UseRDPCForConstantTableBase) {
1028     // The table base offset might be less but then it fits into
1029     // simm13 anyway and we are good (cf. MachConstantBaseNode::emit).
1030     return Assembler::min_simm13();
1031   } else {
1032     int offset = -(size() / 2);
1033     if (!Assembler::is_simm13(offset)) {
1034       offset = Assembler::min_simm13();
1035     }
1036     return offset;
1037   }
1038 }
1039 
1040 bool MachConstantBaseNode::requires_late_expand() const { return false; }
1041 void MachConstantBaseNode::lateExpand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
1042   ShouldNotReachHere();
1043 }
1044 
1045 void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
1046   Compile* C = ra_->C;
1047   Compile::ConstantTable& constant_table = C->constant_table();
1048   MacroAssembler _masm(&cbuf);
1049 
1050   Register r = as_Register(ra_->get_encode(this));
1051   CodeSection* consts_section = __ code()->consts();
1052   int consts_size = consts_section->align_at_start(consts_section->size());
1053   assert(constant_table.size() == consts_size, err_msg("must be: %d == %d", constant_table.size(), consts_size));
1054 
1055   if (UseRDPCForConstantTableBase) {
1056     // For the following RDPC logic to work correctly the consts
1057     // section must be allocated right before the insts section.  This
1058     // assert checks for that.  The layout and the SECT_* constants
1059     // are defined in src/share/vm/asm/codeBuffer.hpp.
1060     assert(CodeBuffer::SECT_CONSTS + 1 == CodeBuffer::SECT_INSTS, "must be");
1061     int insts_offset = __ offset();
1062 
1063     // Layout:
1064     //
1065     // |----------- consts section ------------|----------- insts section -----------...
1066     // |------ constant table -----|- padding -|------------------x----
1067     //                                                            \ current PC (RDPC instruction)
1068     // |<------------- consts_size ----------->|<- insts_offset ->|
1069     //                                                            \ table base
1070     // The table base offset is later added to the load displacement
1071     // so it has to be negative.
1072     int table_base_offset = -(consts_size + insts_offset);
1073     int disp;
1074 
1075     // If the displacement from the current PC to the constant table
1076     // base fits into simm13 we set the constant table base to the
1077     // current PC.
1078     if (Assembler::is_simm13(table_base_offset)) {
1079       constant_table.set_table_base_offset(table_base_offset);
1080       disp = 0;
1081     } else {
1082       // Otherwise we set the constant table base offset to the
1083       // maximum negative displacement of load instructions to keep
1084       // the disp as small as possible:
1085       //
1086       // |<------------- consts_size ----------->|<- insts_offset ->|
1087       // |<--------- min_simm13 --------->|<-------- disp --------->|
1088       //                                  \ table base
1089       table_base_offset = Assembler::min_simm13();
1090       constant_table.set_table_base_offset(table_base_offset);
1091       disp = (consts_size + insts_offset) + table_base_offset;
1092     }
1093 
1094     __ rdpc(r);
1095 
1096     if (disp != 0) {
1097       assert(r != O7, "need temporary");
1098       __ sub(r, __ ensure_simm13_or_reg(disp, O7), r);
1099     }
1100   }
1101   else {
1102     // Materialize the constant table base.
1103     address baseaddr = consts_section->start() + -(constant_table.table_base_offset());
1104     RelocationHolder rspec = internal_word_Relocation::spec(baseaddr);
1105     AddressLiteral base(baseaddr, rspec);
1106     __ set(base, r);
1107   }
1108 }
1109 
1110 uint MachConstantBaseNode::size(PhaseRegAlloc*) const {
1111   if (UseRDPCForConstantTableBase) {
1112     // This is really the worst case but generally it's only 1 instruction.
1113     return (1 /*rdpc*/ + 1 /*sub*/ + MacroAssembler::worst_case_insts_for_set()) * BytesPerInstWord;
1114   } else {
1115     return MacroAssembler::worst_case_insts_for_set() * BytesPerInstWord;
1116   }
1117 }
1118 
1119 #ifndef PRODUCT
1120 void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
1121   char reg[128];
1122   ra_->dump_register(this, reg);
1123   if (UseRDPCForConstantTableBase) {
1124     st->print("RDPC   %s\t! constant table base", reg);
1125   } else {
1126     st->print("SET    &constanttable,%s\t! constant table base", reg);
1127   }
1128 }
1129 #endif
1130 
1131 
1132 //=============================================================================
1133 
1134 #ifndef PRODUCT
1135 void MachPrologNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1136   Compile* C = ra_->C;
1137 
1138   for (int i = 0; i < OptoPrologueNops; i++) {
1139     st->print_cr("NOP"); st->print("\t");
1140   }
1141 
1142   if( VerifyThread ) {
1143     st->print_cr("Verify_Thread"); st->print("\t");
1144   }
1145 
1146   size_t framesize = C->frame_slots() << LogBytesPerInt;
1147 
1148   // Calls to C2R adapters often do not accept exceptional returns.
1149   // We require that their callers must bang for them.  But be careful, because
1150   // some VM calls (such as call site linkage) can use several kilobytes of
1151   // stack.  But the stack safety zone should account for that.
1152   // See bugs 4446381, 4468289, 4497237.
1153   if (C->need_stack_bang(framesize)) {
1154     st->print_cr("! stack bang"); st->print("\t");
1155   }
1156 
1157   if (Assembler::is_simm13(-framesize)) {
1158     st->print   ("SAVE   R_SP,-%d,R_SP",framesize);
1159   } else {
1160     st->print_cr("SETHI  R_SP,hi%%(-%d),R_G3",framesize); st->print("\t");
1161     st->print_cr("ADD    R_G3,lo%%(-%d),R_G3",framesize); st->print("\t");
1162     st->print   ("SAVE   R_SP,R_G3,R_SP");
1163   }
1164 
1165 }
1166 #endif
1167 
1168 void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1169   Compile* C = ra_->C;
1170   MacroAssembler _masm(&cbuf);
1171 
1172   for (int i = 0; i < OptoPrologueNops; i++) {
1173     __ nop();
1174   }
1175 
1176   __ verify_thread();
1177 
1178   size_t framesize = C->frame_slots() << LogBytesPerInt;
1179   assert(framesize >= 16*wordSize, "must have room for reg. save area");
1180   assert(framesize%(2*wordSize) == 0, "must preserve 2*wordSize alignment");
1181 
1182   // Calls to C2R adapters often do not accept exceptional returns.
1183   // We require that their callers must bang for them.  But be careful, because
1184   // some VM calls (such as call site linkage) can use several kilobytes of
1185   // stack.  But the stack safety zone should account for that.
1186   // See bugs 4446381, 4468289, 4497237.
1187   if (C->need_stack_bang(framesize)) {
1188     __ generate_stack_overflow_check(framesize);
1189   }
1190 
1191   if (Assembler::is_simm13(-framesize)) {
1192     __ save(SP, -framesize, SP);
1193   } else {
1194     __ sethi(-framesize & ~0x3ff, G3);
1195     __ add(G3, -framesize & 0x3ff, G3);
1196     __ save(SP, G3, SP);
1197   }
1198   C->set_frame_complete( __ offset() );
1199 
1200   if (!UseRDPCForConstantTableBase && C->has_mach_constant_base_node()) {
1201     // NOTE: We set the table base offset here because users might be
1202     // emitted before MachConstantBaseNode.
1203     Compile::ConstantTable& constant_table = C->constant_table();
1204     constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
1205   }
1206 }
1207 
1208 uint MachPrologNode::size(PhaseRegAlloc *ra_) const {
1209   return MachNode::size(ra_);
1210 }
1211 
1212 int MachPrologNode::reloc() const {
1213   return 10; // a large enough number
1214 }
1215 
1216 //=============================================================================
1217 #ifndef PRODUCT
1218 void MachEpilogNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1219   Compile* C = ra_->C;
1220 
1221   if( do_polling() && ra_->C->is_method_compilation() ) {
1222     st->print("SETHI  #PollAddr,L0\t! Load Polling address\n\t");
1223 #ifdef _LP64
1224     st->print("LDX    [L0],G0\t!Poll for Safepointing\n\t");
1225 #else
1226     st->print("LDUW   [L0],G0\t!Poll for Safepointing\n\t");
1227 #endif
1228   }
1229 
1230   if( do_polling() )
1231     st->print("RET\n\t");
1232 
1233   st->print("RESTORE");
1234 }
1235 #endif
1236 
1237 void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1238   MacroAssembler _masm(&cbuf);
1239   Compile* C = ra_->C;
1240 
1241   __ verify_thread();
1242 
1243   // If this does safepoint polling, then do it here
1244   if( do_polling() && ra_->C->is_method_compilation() ) {
1245     AddressLiteral polling_page(os::get_polling_page());
1246     __ sethi(polling_page, L0);
1247     __ relocate(relocInfo::poll_return_type);
1248     __ ld_ptr( L0, 0, G0 );
1249   }
1250 
1251   // If this is a return, then stuff the restore in the delay slot
1252   if( do_polling() ) {
1253     __ ret();
1254     __ delayed()->restore();
1255   } else {
1256     __ restore();
1257   }
1258 }
1259 
1260 uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
1261   return MachNode::size(ra_);
1262 }
1263 
1264 int MachEpilogNode::reloc() const {
1265   return 16; // a large enough number
1266 }
1267 
1268 const Pipeline * MachEpilogNode::pipeline() const {
1269   return MachNode::pipeline_class();
1270 }
1271 
1272 int MachEpilogNode::safepoint_offset() const {
1273   assert( do_polling(), "no return for this epilog node");
1274   return MacroAssembler::insts_for_sethi(os::get_polling_page()) * BytesPerInstWord;
1275 }
1276 
1277 //=============================================================================
1278 
1279 // Figure out which register class each belongs in: rc_int, rc_float, rc_stack
1280 enum RC { rc_bad, rc_int, rc_float, rc_stack };
1281 static enum RC rc_class( OptoReg::Name reg ) {
1282   if( !OptoReg::is_valid(reg)  ) return rc_bad;
1283   if (OptoReg::is_stack(reg)) return rc_stack;
1284   VMReg r = OptoReg::as_VMReg(reg);
1285   if (r->is_Register()) return rc_int;
1286   assert(r->is_FloatRegister(), "must be");
1287   return rc_float;
1288 }
1289 
1290 static int impl_helper( const MachNode *mach, CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, bool is_load, int offset, int reg, int opcode, const char *op_str, int size, outputStream* st ) {
1291   if( cbuf ) {
1292     // Better yet would be some mechanism to handle variable-size matches correctly
1293     if (!Assembler::is_simm13(offset + STACK_BIAS)) {
1294       ra_->C->record_method_not_compilable("unable to handle large constant offsets");
1295     } else {
1296       emit_form3_mem_reg(*cbuf, mach, opcode, -1, R_SP_enc, offset, 0, Matcher::_regEncode[reg]);
1297     }
1298   }
1299 #ifndef PRODUCT
1300   else if( !do_size ) {
1301     if( size != 0 ) st->print("\n\t");
1302     if( is_load ) st->print("%s   [R_SP + #%d],R_%s\t! spill",op_str,offset,OptoReg::regname(reg));
1303     else          st->print("%s   R_%s,[R_SP + #%d]\t! spill",op_str,OptoReg::regname(reg),offset);
1304   }
1305 #endif
1306   return size+4;
1307 }
1308 
1309 static int impl_mov_helper( CodeBuffer *cbuf, bool do_size, int src, int dst, int op1, int op2, const char *op_str, int size, outputStream* st ) {
1310   if( cbuf ) emit3( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst], op1, 0, op2, Matcher::_regEncode[src] );
1311 #ifndef PRODUCT
1312   else if( !do_size ) {
1313     if( size != 0 ) st->print("\n\t");
1314     st->print("%s  R_%s,R_%s\t! spill",op_str,OptoReg::regname(src),OptoReg::regname(dst));
1315   }
1316 #endif
1317   return size+4;
1318 }
1319 
1320 uint MachSpillCopyNode::implementation( CodeBuffer *cbuf,
1321                                         PhaseRegAlloc *ra_,
1322                                         bool do_size,
1323                                         outputStream* st ) const {
1324   // Get registers to move
1325   OptoReg::Name src_second = ra_->get_reg_second(in(1));
1326   OptoReg::Name src_first = ra_->get_reg_first(in(1));
1327   OptoReg::Name dst_second = ra_->get_reg_second(this );
1328   OptoReg::Name dst_first = ra_->get_reg_first(this );
1329 
1330   enum RC src_second_rc = rc_class(src_second);
1331   enum RC src_first_rc = rc_class(src_first);
1332   enum RC dst_second_rc = rc_class(dst_second);
1333   enum RC dst_first_rc = rc_class(dst_first);
1334 
1335   assert( OptoReg::is_valid(src_first) && OptoReg::is_valid(dst_first), "must move at least 1 register" );
1336 
1337   // Generate spill code!
1338   int size = 0;
1339 
1340   if( src_first == dst_first && src_second == dst_second )
1341     return size;            // Self copy, no move
1342 
1343   // --------------------------------------
1344   // Check for mem-mem move.  Load into unused float registers and fall into
1345   // the float-store case.
1346   if( src_first_rc == rc_stack && dst_first_rc == rc_stack ) {
1347     int offset = ra_->reg2offset(src_first);
1348     // Further check for aligned-adjacent pair, so we can use a double load
1349     if( (src_first&1)==0 && src_first+1 == src_second ) {
1350       src_second    = OptoReg::Name(R_F31_num);
1351       src_second_rc = rc_float;
1352       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::lddf_op3,"LDDF",size, st);
1353     } else {
1354       size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F30_num,Assembler::ldf_op3 ,"LDF ",size, st);
1355     }
1356     src_first    = OptoReg::Name(R_F30_num);
1357     src_first_rc = rc_float;
1358   }
1359 
1360   if( src_second_rc == rc_stack && dst_second_rc == rc_stack ) {
1361     int offset = ra_->reg2offset(src_second);
1362     size = impl_helper(this,cbuf,ra_,do_size,true,offset,R_F31_num,Assembler::ldf_op3,"LDF ",size, st);
1363     src_second    = OptoReg::Name(R_F31_num);
1364     src_second_rc = rc_float;
1365   }
1366 
1367   // --------------------------------------
1368   // Check for float->int copy; requires a trip through memory
1369   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS < 3) {
1370     int offset = frame::register_save_words*wordSize;
1371     if (cbuf) {
1372       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::sub_op3, R_SP_enc, 16 );
1373       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1374       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1375       emit3_simm13( *cbuf, Assembler::arith_op, R_SP_enc, Assembler::add_op3, R_SP_enc, 16 );
1376     }
1377 #ifndef PRODUCT
1378     else if (!do_size) {
1379       if (size != 0) st->print("\n\t");
1380       st->print(  "SUB    R_SP,16,R_SP\n");
1381       impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1382       impl_helper(this,cbuf,ra_,do_size,true ,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1383       st->print("\tADD    R_SP,16,R_SP\n");
1384     }
1385 #endif
1386     size += 16;
1387   }
1388 
1389   // Check for float->int copy on T4
1390   if (src_first_rc == rc_float && dst_first_rc == rc_int && UseVIS >= 3) {
1391     // Further check for aligned-adjacent pair, so we can use a double move
1392     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1393       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mdtox_opf,"MOVDTOX",size, st);
1394     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mstouw_opf,"MOVSTOUW",size, st);
1395   }
1396   // Check for int->float copy on T4
1397   if (src_first_rc == rc_int && dst_first_rc == rc_float && UseVIS >= 3) {
1398     // Further check for aligned-adjacent pair, so we can use a double move
1399     if ((src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second)
1400       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mxtod_opf,"MOVXTOD",size, st);
1401     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::mftoi_op3,Assembler::mwtos_opf,"MOVWTOS",size, st);
1402   }
1403 
1404   // --------------------------------------
1405   // In the 32-bit 1-reg-longs build ONLY, I see mis-aligned long destinations.
1406   // In such cases, I have to do the big-endian swap.  For aligned targets, the
1407   // hardware does the flop for me.  Doubles are always aligned, so no problem
1408   // there.  Misaligned sources only come from native-long-returns (handled
1409   // special below).
1410 #ifndef _LP64
1411   if( src_first_rc == rc_int &&     // source is already big-endian
1412       src_second_rc != rc_bad &&    // 64-bit move
1413       ((dst_first&1)!=0 || dst_second != dst_first+1) ) { // misaligned dst
1414     assert( (src_first&1)==0 && src_second == src_first+1, "source must be aligned" );
1415     // Do the big-endian flop.
1416     OptoReg::Name tmp    = dst_first   ; dst_first    = dst_second   ; dst_second    = tmp   ;
1417     enum RC       tmp_rc = dst_first_rc; dst_first_rc = dst_second_rc; dst_second_rc = tmp_rc;
1418   }
1419 #endif
1420 
1421   // --------------------------------------
1422   // Check for integer reg-reg copy
1423   if( src_first_rc == rc_int && dst_first_rc == rc_int ) {
1424 #ifndef _LP64
1425     if( src_first == R_O0_num && src_second == R_O1_num ) {  // Check for the evil O0/O1 native long-return case
1426       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1427       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1428       //       operand contains the least significant word of the 64-bit value and vice versa.
1429       OptoReg::Name tmp = OptoReg::Name(R_O7_num);
1430       assert( (dst_first&1)==0 && dst_second == dst_first+1, "return a native O0/O1 long to an aligned-adjacent 64-bit reg" );
1431       // Shift O0 left in-place, zero-extend O1, then OR them into the dst
1432       if( cbuf ) {
1433         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tmp], Assembler::sllx_op3, Matcher::_regEncode[src_first], 0x1020 );
1434         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[src_second], Assembler::srl_op3, Matcher::_regEncode[src_second], 0x0000 );
1435         emit3       ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler:: or_op3, Matcher::_regEncode[tmp], 0, Matcher::_regEncode[src_second] );
1436 #ifndef PRODUCT
1437       } else if( !do_size ) {
1438         if( size != 0 ) st->print("\n\t");
1439         st->print("SLLX   R_%s,32,R_%s\t! Move O0-first to O7-high\n\t", OptoReg::regname(src_first), OptoReg::regname(tmp));
1440         st->print("SRL    R_%s, 0,R_%s\t! Zero-extend O1\n\t", OptoReg::regname(src_second), OptoReg::regname(src_second));
1441         st->print("OR     R_%s,R_%s,R_%s\t! spill",OptoReg::regname(tmp), OptoReg::regname(src_second), OptoReg::regname(dst_first));
1442 #endif
1443       }
1444       return size+12;
1445     }
1446     else if( dst_first == R_I0_num && dst_second == R_I1_num ) {
1447       // returning a long value in I0/I1
1448       // a SpillCopy must be able to target a return instruction's reg_class
1449       // Note: The _first and _second suffixes refer to the addresses of the the 2 halves of the 64-bit value
1450       //       as stored in memory.  On a big-endian machine like SPARC, this means that the _second
1451       //       operand contains the least significant word of the 64-bit value and vice versa.
1452       OptoReg::Name tdest = dst_first;
1453 
1454       if (src_first == dst_first) {
1455         tdest = OptoReg::Name(R_O7_num);
1456         size += 4;
1457       }
1458 
1459       if( cbuf ) {
1460         assert( (src_first&1) == 0 && (src_first+1) == src_second, "return value was in an aligned-adjacent 64-bit reg");
1461         // Shift value in upper 32-bits of src to lower 32-bits of I0; move lower 32-bits to I1
1462         // ShrL_reg_imm6
1463         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[tdest], Assembler::srlx_op3, Matcher::_regEncode[src_second], 32 | 0x1000 );
1464         // ShrR_reg_imm6  src, 0, dst
1465         emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srl_op3, Matcher::_regEncode[src_first], 0x0000 );
1466         if (tdest != dst_first) {
1467           emit3     ( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_first], Assembler::or_op3, 0/*G0*/, 0/*op2*/, Matcher::_regEncode[tdest] );
1468         }
1469       }
1470 #ifndef PRODUCT
1471       else if( !do_size ) {
1472         if( size != 0 ) st->print("\n\t");  // %%%%% !!!!!
1473         st->print("SRLX   R_%s,32,R_%s\t! Extract MSW\n\t",OptoReg::regname(src_second),OptoReg::regname(tdest));
1474         st->print("SRL    R_%s, 0,R_%s\t! Extract LSW\n\t",OptoReg::regname(src_first),OptoReg::regname(dst_second));
1475         if (tdest != dst_first) {
1476           st->print("MOV    R_%s,R_%s\t! spill\n\t", OptoReg::regname(tdest), OptoReg::regname(dst_first));
1477         }
1478       }
1479 #endif // PRODUCT
1480       return size+8;
1481     }
1482 #endif // !_LP64
1483     // Else normal reg-reg copy
1484     assert( src_second != dst_first, "smashed second before evacuating it" );
1485     size = impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::or_op3,0,"MOV  ",size, st);
1486     assert( (src_first&1) == 0 && (dst_first&1) == 0, "never move second-halves of int registers" );
1487     // This moves an aligned adjacent pair.
1488     // See if we are done.
1489     if( src_first+1 == src_second && dst_first+1 == dst_second )
1490       return size;
1491   }
1492 
1493   // Check for integer store
1494   if( src_first_rc == rc_int && dst_first_rc == rc_stack ) {
1495     int offset = ra_->reg2offset(dst_first);
1496     // Further check for aligned-adjacent pair, so we can use a double store
1497     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1498       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stx_op3,"STX ",size, st);
1499     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stw_op3,"STW ",size, st);
1500   }
1501 
1502   // Check for integer load
1503   if( dst_first_rc == rc_int && src_first_rc == rc_stack ) {
1504     int offset = ra_->reg2offset(src_first);
1505     // Further check for aligned-adjacent pair, so we can use a double load
1506     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1507       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldx_op3 ,"LDX ",size, st);
1508     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lduw_op3,"LDUW",size, st);
1509   }
1510 
1511   // Check for float reg-reg copy
1512   if( src_first_rc == rc_float && dst_first_rc == rc_float ) {
1513     // Further check for aligned-adjacent pair, so we can use a double move
1514     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1515       return impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovd_opf,"FMOVD",size, st);
1516     size  =  impl_mov_helper(cbuf,do_size,src_first,dst_first,Assembler::fpop1_op3,Assembler::fmovs_opf,"FMOVS",size, st);
1517   }
1518 
1519   // Check for float store
1520   if( src_first_rc == rc_float && dst_first_rc == rc_stack ) {
1521     int offset = ra_->reg2offset(dst_first);
1522     // Further check for aligned-adjacent pair, so we can use a double store
1523     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1524       return impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stdf_op3,"STDF",size, st);
1525     size  =  impl_helper(this,cbuf,ra_,do_size,false,offset,src_first,Assembler::stf_op3 ,"STF ",size, st);
1526   }
1527 
1528   // Check for float load
1529   if( dst_first_rc == rc_float && src_first_rc == rc_stack ) {
1530     int offset = ra_->reg2offset(src_first);
1531     // Further check for aligned-adjacent pair, so we can use a double load
1532     if( (src_first&1)==0 && src_first+1 == src_second && (dst_first&1)==0 && dst_first+1 == dst_second )
1533       return impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::lddf_op3,"LDDF",size, st);
1534     size  =  impl_helper(this,cbuf,ra_,do_size,true,offset,dst_first,Assembler::ldf_op3 ,"LDF ",size, st);
1535   }
1536 
1537   // --------------------------------------------------------------------
1538   // Check for hi bits still needing moving.  Only happens for misaligned
1539   // arguments to native calls.
1540   if( src_second == dst_second )
1541     return size;               // Self copy; no move
1542   assert( src_second_rc != rc_bad && dst_second_rc != rc_bad, "src_second & dst_second cannot be Bad" );
1543 
1544 #ifndef _LP64
1545   // In the LP64 build, all registers can be moved as aligned/adjacent
1546   // pairs, so there's never any need to move the high bits separately.
1547   // The 32-bit builds have to deal with the 32-bit ABI which can force
1548   // all sorts of silly alignment problems.
1549 
1550   // Check for integer reg-reg copy.  Hi bits are stuck up in the top
1551   // 32-bits of a 64-bit register, but are needed in low bits of another
1552   // register (else it's a hi-bits-to-hi-bits copy which should have
1553   // happened already as part of a 64-bit move)
1554   if( src_second_rc == rc_int && dst_second_rc == rc_int ) {
1555     assert( (src_second&1)==1, "its the evil O0/O1 native return case" );
1556     assert( (dst_second&1)==0, "should have moved with 1 64-bit move" );
1557     // Shift src_second down to dst_second's low bits.
1558     if( cbuf ) {
1559       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[dst_second], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1560 #ifndef PRODUCT
1561     } else if( !do_size ) {
1562       if( size != 0 ) st->print("\n\t");
1563       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(dst_second));
1564 #endif
1565     }
1566     return size+4;
1567   }
1568 
1569   // Check for high word integer store.  Must down-shift the hi bits
1570   // into a temp register, then fall into the case of storing int bits.
1571   if( src_second_rc == rc_int && dst_second_rc == rc_stack && (src_second&1)==1 ) {
1572     // Shift src_second down to dst_second's low bits.
1573     if( cbuf ) {
1574       emit3_simm13( *cbuf, Assembler::arith_op, Matcher::_regEncode[R_O7_num], Assembler::srlx_op3, Matcher::_regEncode[src_second-1], 0x1020 );
1575 #ifndef PRODUCT
1576     } else if( !do_size ) {
1577       if( size != 0 ) st->print("\n\t");
1578       st->print("SRLX   R_%s,32,R_%s\t! spill: Move high bits down low",OptoReg::regname(src_second-1),OptoReg::regname(R_O7_num));
1579 #endif
1580     }
1581     size+=4;
1582     src_second = OptoReg::Name(R_O7_num); // Not R_O7H_num!
1583   }
1584 
1585   // Check for high word integer load
1586   if( dst_second_rc == rc_int && src_second_rc == rc_stack )
1587     return impl_helper(this,cbuf,ra_,do_size,true ,ra_->reg2offset(src_second),dst_second,Assembler::lduw_op3,"LDUW",size, st);
1588 
1589   // Check for high word integer store
1590   if( src_second_rc == rc_int && dst_second_rc == rc_stack )
1591     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stw_op3 ,"STW ",size, st);
1592 
1593   // Check for high word float store
1594   if( src_second_rc == rc_float && dst_second_rc == rc_stack )
1595     return impl_helper(this,cbuf,ra_,do_size,false,ra_->reg2offset(dst_second),src_second,Assembler::stf_op3 ,"STF ",size, st);
1596 
1597 #endif // !_LP64
1598 
1599   Unimplemented();
1600 }
1601 
1602 #ifndef PRODUCT
1603 void MachSpillCopyNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1604   implementation( NULL, ra_, false, st );
1605 }
1606 #endif
1607 
1608 void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1609   implementation( &cbuf, ra_, false, NULL );
1610 }
1611 
1612 uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
1613   return implementation( NULL, ra_, true, NULL );
1614 }
1615 
1616 //=============================================================================
1617 #ifndef PRODUCT
1618 void MachNopNode::format( PhaseRegAlloc *, outputStream *st ) const {
1619   st->print("NOP \t# %d bytes pad for loops and calls", 4 * _count);
1620 }
1621 #endif
1622 
1623 void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc * ) const {
1624   MacroAssembler _masm(&cbuf);
1625   for(int i = 0; i < _count; i += 1) {
1626     __ nop();
1627   }
1628 }
1629 
1630 uint MachNopNode::size(PhaseRegAlloc *ra_) const {
1631   return 4 * _count;
1632 }
1633 
1634 
1635 //=============================================================================
1636 #ifndef PRODUCT
1637 void BoxLockNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1638   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
1639   int reg = ra_->get_reg_first(this);
1640   st->print("LEA    [R_SP+#%d+BIAS],%s",offset,Matcher::regName[reg]);
1641 }
1642 #endif
1643 
1644 void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1645   MacroAssembler _masm(&cbuf);
1646   int offset = ra_->reg2offset(in_RegMask(0).find_first_elem()) + STACK_BIAS;
1647   int reg = ra_->get_encode(this);
1648 
1649   if (Assembler::is_simm13(offset)) {
1650      __ add(SP, offset, reg_to_register_object(reg));
1651   } else {
1652      __ set(offset, O7);
1653      __ add(SP, O7, reg_to_register_object(reg));
1654   }
1655 }
1656 
1657 uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
1658   // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_)
1659   assert(ra_ == ra_->C->regalloc(), "sanity");
1660   return ra_->C->scratch_emit_size(this);
1661 }
1662 
1663 //=============================================================================
1664 
1665 // Offset from start of compiled java to interpreter stub to the load
1666 // constant that loads the inline cache (IC) (0 on sparc).
1667 const int CompiledStaticCall::comp_to_int_load_offset = 0;
1668 
1669 // emit call stub, compiled java to interpretor
1670 void emit_java_to_interp(CodeBuffer &cbuf ) {
1671 
1672   // Stub is fixed up when the corresponding call is converted from calling
1673   // compiled code to calling interpreted code.
1674   // set (empty), G5
1675   // jmp -1
1676 
1677   address mark = cbuf.insts_mark();  // get mark within main instrs section
1678 
1679   MacroAssembler _masm(&cbuf);
1680 
1681   address base =
1682   __ start_a_stub(Compile::MAX_stubs_size);
1683   if (base == NULL)  return;  // CodeBuffer::expand failed
1684 
1685   // static stub relocation stores the instruction address of the call
1686   __ relocate(static_stub_Relocation::spec(mark));
1687 
1688   __ set_oop(NULL, reg_to_register_object(Matcher::inline_cache_reg_encode()));
1689 
1690   __ set_inst_mark();
1691   AddressLiteral addrlit(-1);
1692   __ JUMP(addrlit, G3, 0);
1693 
1694   __ delayed()->nop();
1695 
1696   // Update current stubs pointer and restore code_end.
1697   __ end_a_stub();
1698 }
1699 
1700 // size of call stub, compiled java to interpretor
1701 uint size_java_to_interp() {
1702   // This doesn't need to be accurate but it must be larger or equal to
1703   // the real size of the stub.
1704   return (NativeMovConstReg::instruction_size +  // sethi/setlo;
1705           NativeJump::instruction_size + // sethi; jmp; nop
1706           (TraceJumps ? 20 * BytesPerInstWord : 0) );
1707 }
1708 // relocation entries for call stub, compiled java to interpretor
1709 uint reloc_java_to_interp() {
1710   return 10;  // 4 in emit_java_to_interp + 1 in Java_Static_Call
1711 }
1712 
1713 
1714 //=============================================================================
1715 #ifndef PRODUCT
1716 void MachUEPNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
1717   st->print_cr("\nUEP:");
1718 #ifdef    _LP64
1719   if (UseCompressedOops) {
1720     assert(Universe::heap() != NULL, "java heap should be initialized");
1721     st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check - compressed klass");
1722     st->print_cr("\tSLL    R_G5,3,R_G5");
1723     if (Universe::narrow_oop_base() != NULL)
1724       st->print_cr("\tADD    R_G5,R_G6_heap_base,R_G5");
1725   } else {
1726     st->print_cr("\tLDX    [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1727   }
1728   st->print_cr("\tCMP    R_G5,R_G3" );
1729   st->print   ("\tTne    xcc,R_G0+ST_RESERVED_FOR_USER_0+2");
1730 #else  // _LP64
1731   st->print_cr("\tLDUW   [R_O0 + oopDesc::klass_offset_in_bytes],R_G5\t! Inline cache check");
1732   st->print_cr("\tCMP    R_G5,R_G3" );
1733   st->print   ("\tTne    icc,R_G0+ST_RESERVED_FOR_USER_0+2");
1734 #endif // _LP64
1735 }
1736 #endif
1737 
1738 void MachUEPNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
1739   MacroAssembler _masm(&cbuf);
1740   Register G5_ic_reg  = reg_to_register_object(Matcher::inline_cache_reg_encode());
1741   Register temp_reg   = G3;
1742   assert( G5_ic_reg != temp_reg, "conflicting registers" );
1743 
1744   // Load klass from receiver
1745   __ load_klass(O0, temp_reg);
1746   // Compare against expected klass
1747   __ cmp(temp_reg, G5_ic_reg);
1748   // Branch to miss code, checks xcc or icc depending
1749   __ trap(Assembler::notEqual, Assembler::ptr_cc, G0, ST_RESERVED_FOR_USER_0+2);
1750 }
1751 
1752 uint MachUEPNode::size(PhaseRegAlloc *ra_) const {
1753   return MachNode::size(ra_);
1754 }
1755 
1756 
1757 //=============================================================================
1758 
1759 uint size_exception_handler() {
1760   if (TraceJumps) {
1761     return (400); // just a guess
1762   }
1763   return ( NativeJump::instruction_size ); // sethi;jmp;nop
1764 }
1765 
1766 uint size_deopt_handler() {
1767   if (TraceJumps) {
1768     return (400); // just a guess
1769   }
1770   return ( 4+  NativeJump::instruction_size ); // save;sethi;jmp;restore
1771 }
1772 
1773 // Emit exception handler code.
1774 int emit_exception_handler(CodeBuffer& cbuf) {
1775   Register temp_reg = G3;
1776   AddressLiteral exception_blob(OptoRuntime::exception_blob()->entry_point());
1777   MacroAssembler _masm(&cbuf);
1778 
1779   address base =
1780   __ start_a_stub(size_exception_handler());
1781   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1782 
1783   int offset = __ offset();
1784 
1785   __ JUMP(exception_blob, temp_reg, 0); // sethi;jmp
1786   __ delayed()->nop();
1787 
1788   assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
1789 
1790   __ end_a_stub();
1791 
1792   return offset;
1793 }
1794 
1795 int emit_deopt_handler(CodeBuffer& cbuf) {
1796   // Can't use any of the current frame's registers as we may have deopted
1797   // at a poll and everything (including G3) can be live.
1798   Register temp_reg = L0;
1799   AddressLiteral deopt_blob(SharedRuntime::deopt_blob()->unpack());
1800   MacroAssembler _masm(&cbuf);
1801 
1802   address base =
1803   __ start_a_stub(size_deopt_handler());
1804   if (base == NULL)  return 0;  // CodeBuffer::expand failed
1805 
1806   int offset = __ offset();
1807   __ save_frame(0);
1808   __ JUMP(deopt_blob, temp_reg, 0); // sethi;jmp
1809   __ delayed()->restore();
1810 
1811   assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
1812 
1813   __ end_a_stub();
1814   return offset;
1815 
1816 }
1817 
1818 // Given a register encoding, produce a Integer Register object
1819 static Register reg_to_register_object(int register_encoding) {
1820   assert(L5->encoding() == R_L5_enc && G1->encoding() == R_G1_enc, "right coding");
1821   return as_Register(register_encoding);
1822 }
1823 
1824 // Given a register encoding, produce a single-precision Float Register object
1825 static FloatRegister reg_to_SingleFloatRegister_object(int register_encoding) {
1826   assert(F5->encoding(FloatRegisterImpl::S) == R_F5_enc && F12->encoding(FloatRegisterImpl::S) == R_F12_enc, "right coding");
1827   return as_SingleFloatRegister(register_encoding);
1828 }
1829 
1830 // Given a register encoding, produce a double-precision Float Register object
1831 static FloatRegister reg_to_DoubleFloatRegister_object(int register_encoding) {
1832   assert(F4->encoding(FloatRegisterImpl::D) == R_F4_enc, "right coding");
1833   assert(F32->encoding(FloatRegisterImpl::D) == R_D32_enc, "right coding");
1834   return as_DoubleFloatRegister(register_encoding);
1835 }
1836 
1837 const bool Matcher::match_rule_supported(int opcode) {
1838   if (!has_match_rule(opcode))
1839     return false;
1840 
1841   switch (opcode) {
1842   case Op_CountLeadingZerosI:
1843   case Op_CountLeadingZerosL:
1844   case Op_CountTrailingZerosI:
1845   case Op_CountTrailingZerosL:
1846   case Op_PopCountI:
1847   case Op_PopCountL:
1848     if (!UsePopCountInstruction)
1849       return false;
1850   case Op_CompareAndSwapL:
1851 #ifdef _LP64
1852   case Op_CompareAndSwapP:
1853 #endif
1854     if (!VM_Version::supports_cx8())
1855       return false;
1856     break;
1857   }
1858 
1859   return true;  // Per default match rules are supported.
1860 }
1861 
1862 int Matcher::regnum_to_fpu_offset(int regnum) {
1863   return regnum - 32; // The FP registers are in the second chunk
1864 }
1865 
1866 #ifdef ASSERT
1867 address last_rethrow = NULL;  // debugging aid for Rethrow encoding
1868 #endif
1869 
1870 // Map Types to machine register types
1871 const int Matcher::base2reg[Type::lastype] = {
1872   Node::NotAMachineReg,0,0, Op_RegI, Op_RegL, 0, Op_RegN,
1873   Node::NotAMachineReg, Node::NotAMachineReg, /* tuple, array */
1874   0, Op_RegD, 0, 0, /* Vectors */
1875   Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, Op_RegP, /* the pointers */
1876   0, 0/*abio*/,
1877   Op_RegP /* Return address */, 0, /* the memories */
1878   Op_RegF, Op_RegF, Op_RegF, Op_RegD, Op_RegD, Op_RegD,
1879   0  /*bottom*/
1880 };
1881 
1882 // Vector width in bytes
1883 const int Matcher::vector_width_in_bytes(BasicType bt) {
1884   assert(MaxVectorSize == 8, "");
1885   return 8;
1886 }
1887 
1888 // Vector ideal reg
1889 const int Matcher::vector_ideal_reg(int size) {
1890   assert(MaxVectorSize == 8, "");
1891   return Op_RegD;
1892 }
1893 
1894 const int Matcher::vector_shift_count_ideal_reg(int size) {
1895   fatal("vector shift is not supported");
1896   return Node::NotAMachineReg;
1897 }
1898 
1899 // Limits on vector size (number of elements) loaded into vector.
1900 const int Matcher::max_vector_size(const BasicType bt) {
1901   assert(is_java_primitive(bt), "only primitive type vectors");
1902   return vector_width_in_bytes(bt)/type2aelembytes(bt);
1903 }
1904 
1905 const int Matcher::min_vector_size(const BasicType bt) {
1906   return max_vector_size(bt); // Same as max.
1907 }
1908 
1909 // SPARC doesn't support misaligned vectors store/load.
1910 const bool Matcher::misaligned_vectors_ok() {
1911   return false;
1912 }
1913 
1914 // USII supports fxtof through the whole range of number, USIII doesn't
1915 const bool Matcher::convL2FSupported(void) {
1916   return VM_Version::has_fast_fxtof();
1917 }
1918 
1919 // Is this branch offset short enough that a short branch can be used?
1920 //
1921 // NOTE: If the platform does not provide any short branch variants, then
1922 //       this method should return false for offset 0.
1923 bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
1924   // The passed offset is relative to address of the branch.
1925   // Don't need to adjust the offset.
1926   return UseCBCond && Assembler::is_simm12(offset);
1927 }
1928 
1929 const bool Matcher::isSimpleConstant64(jlong value) {
1930   // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
1931   // Depends on optimizations in MacroAssembler::setx.
1932   int hi = (int)(value >> 32);
1933   int lo = (int)(value & ~0);
1934   return (hi == 0) || (hi == -1) || (lo == 0);
1935 }
1936 
1937 // No scaling for the parameter the ClearArray node.
1938 const bool Matcher::init_array_count_is_in_bytes = true;
1939 
1940 // Threshold size for cleararray.
1941 const int Matcher::init_array_short_size = 8 * BytesPerLong;
1942 
1943 // No additional cost for CMOVL.
1944 const int Matcher::long_cmove_cost() { return 0; }
1945 
1946 // CMOVF/CMOVD are expensive on T4 and on SPARC64.
1947 const int Matcher::float_cmove_cost() {
1948   return (VM_Version::is_T4() || VM_Version::is_sparc64()) ? ConditionalMoveLimit : 0;
1949 }
1950 
1951 // Does the CPU require late expand (see block.cpp for description of late expand)?
1952 const bool Matcher::require_late_expand = false;
1953 
1954 // Should the Matcher clone shifts on addressing modes, expecting them to
1955 // be subsumed into complex addressing expressions or compute them into
1956 // registers?  True for Intel but false for most RISCs
1957 const bool Matcher::clone_shift_expressions = false;
1958 
1959 // Do we need to mask the count passed to shift instructions or does
1960 // the cpu only look at the lower 5/6 bits anyway?
1961 const bool Matcher::need_masked_shift_count = false;
1962 
1963 bool Matcher::narrow_oop_use_complex_address() {
1964   NOT_LP64(ShouldNotCallThis());
1965   assert(UseCompressedOops, "only for compressed oops code");
1966   return false;
1967 }
1968 
1969 // Is it better to copy float constants, or load them directly from memory?
1970 // Intel can load a float constant from a direct address, requiring no
1971 // extra registers.  Most RISCs will have to materialize an address into a
1972 // register first, so they would do better to copy the constant from stack.
1973 const bool Matcher::rematerialize_float_constants = false;
1974 
1975 // If CPU can load and store mis-aligned doubles directly then no fixup is
1976 // needed.  Else we split the double into 2 integer pieces and move it
1977 // piece-by-piece.  Only happens when passing doubles into C code as the
1978 // Java calling convention forces doubles to be aligned.
1979 #ifdef _LP64
1980 const bool Matcher::misaligned_doubles_ok = true;
1981 #else
1982 const bool Matcher::misaligned_doubles_ok = false;
1983 #endif
1984 
1985 // No-op on SPARC.
1986 void Matcher::pd_implicit_null_fixup(MachNode *node, uint idx) {
1987 }
1988 
1989 // Advertise here if the CPU requires explicit rounding operations
1990 // to implement the UseStrictFP mode.
1991 const bool Matcher::strict_fp_requires_explicit_rounding = false;
1992 
1993 // Are floats converted to double when stored to stack during deoptimization?
1994 // Sparc does not handle callee-save floats.
1995 bool Matcher::float_in_double() { return false; }
1996 
1997 // Do ints take an entire long register or just half?
1998 // Note that we if-def off of _LP64.
1999 // The relevant question is how the int is callee-saved.  In _LP64
2000 // the whole long is written but de-opt'ing will have to extract
2001 // the relevant 32 bits, in not-_LP64 only the low 32 bits is written.
2002 #ifdef _LP64
2003 const bool Matcher::int_in_long = true;
2004 #else
2005 const bool Matcher::int_in_long = false;
2006 #endif
2007 
2008 // Return whether or not this register is ever used as an argument.  This
2009 // function is used on startup to build the trampoline stubs in generateOptoStub.
2010 // Registers not mentioned will be killed by the VM call in the trampoline, and
2011 // arguments in those registers not be available to the callee.
2012 bool Matcher::can_be_java_arg( int reg ) {
2013   // Standard sparc 6 args in registers
2014   if( reg == R_I0_num ||
2015       reg == R_I1_num ||
2016       reg == R_I2_num ||
2017       reg == R_I3_num ||
2018       reg == R_I4_num ||
2019       reg == R_I5_num ) return true;
2020 #ifdef _LP64
2021   // 64-bit builds can pass 64-bit pointers and longs in
2022   // the high I registers
2023   if( reg == R_I0H_num ||
2024       reg == R_I1H_num ||
2025       reg == R_I2H_num ||
2026       reg == R_I3H_num ||
2027       reg == R_I4H_num ||
2028       reg == R_I5H_num ) return true;
2029 
2030   if ((UseCompressedOops) && (reg == R_G6_num || reg == R_G6H_num)) {
2031     return true;
2032   }
2033 
2034 #else
2035   // 32-bit builds with longs-in-one-entry pass longs in G1 & G4.
2036   // Longs cannot be passed in O regs, because O regs become I regs
2037   // after a 'save' and I regs get their high bits chopped off on
2038   // interrupt.
2039   if( reg == R_G1H_num || reg == R_G1_num ) return true;
2040   if( reg == R_G4H_num || reg == R_G4_num ) return true;
2041 #endif
2042   // A few float args in registers
2043   if( reg >= R_F0_num && reg <= R_F7_num ) return true;
2044 
2045   return false;
2046 }
2047 
2048 bool Matcher::is_spillable_arg( int reg ) {
2049   return can_be_java_arg(reg);
2050 }
2051 
2052 bool Matcher::use_asm_for_ldiv_by_con( jlong divisor ) {
2053   // Use hardware SDIVX instruction when it is
2054   // faster than a code which use multiply.
2055   return VM_Version::has_fast_idiv();
2056 }
2057 
2058 // Register for DIVI projection of divmodI
2059 RegMask Matcher::divI_proj_mask() {
2060   ShouldNotReachHere();
2061   return RegMask();
2062 }
2063 
2064 // Register for MODI projection of divmodI
2065 RegMask Matcher::modI_proj_mask() {
2066   ShouldNotReachHere();
2067   return RegMask();
2068 }
2069 
2070 // Register for DIVL projection of divmodL
2071 RegMask Matcher::divL_proj_mask() {
2072   ShouldNotReachHere();
2073   return RegMask();
2074 }
2075 
2076 // Register for MODL projection of divmodL
2077 RegMask Matcher::modL_proj_mask() {
2078   ShouldNotReachHere();
2079   return RegMask();
2080 }
2081 
2082 const RegMask Matcher::method_handle_invoke_SP_save_mask() {
2083   return L7_REGP_mask();
2084 }
2085 
2086 %}
2087 
2088 
2089 // The intptr_t operand types, defined by textual substitution.
2090 // (Cf. opto/type.hpp.  This lets us avoid many, many other ifdefs.)
2091 #ifdef _LP64
2092 #define immX      immL
2093 #define immX13    immL13
2094 #define immX13m7  immL13m7
2095 #define iRegX     iRegL
2096 #define g1RegX    g1RegL
2097 #else
2098 #define immX      immI
2099 #define immX13    immI13
2100 #define immX13m7  immI13m7
2101 #define iRegX     iRegI
2102 #define g1RegX    g1RegI
2103 #endif
2104 
2105 //----------ENCODING BLOCK-----------------------------------------------------
2106 // This block specifies the encoding classes used by the compiler to output
2107 // byte streams.  Encoding classes are parameterized macros used by
2108 // Machine Instruction Nodes in order to generate the bit encoding of the
2109 // instruction.  Operands specify their base encoding interface with the
2110 // interface keyword.  There are currently supported four interfaces,
2111 // REG_INTER, CONST_INTER, MEMORY_INTER, & COND_INTER.  REG_INTER causes an
2112 // operand to generate a function which returns its register number when
2113 // queried.   CONST_INTER causes an operand to generate a function which
2114 // returns the value of the constant when queried.  MEMORY_INTER causes an
2115 // operand to generate four functions which return the Base Register, the
2116 // Index Register, the Scale Value, and the Offset Value of the operand when
2117 // queried.  COND_INTER causes an operand to generate six functions which
2118 // return the encoding code (ie - encoding bits for the instruction)
2119 // associated with each basic boolean condition for a conditional instruction.
2120 //
2121 // Instructions specify two basic values for encoding.  Again, a function
2122 // is available to check if the constant displacement is an oop. They use the
2123 // ins_encode keyword to specify their encoding classes (which must be
2124 // a sequence of enc_class names, and their parameters, specified in
2125 // the encoding block), and they use the
2126 // opcode keyword to specify, in order, their primary, secondary, and
2127 // tertiary opcode.  Only the opcode sections which a particular instruction
2128 // needs for encoding need to be specified.
2129 encode %{
2130   enc_class enc_untested %{
2131 #ifdef ASSERT
2132     MacroAssembler _masm(&cbuf);
2133     __ untested("encoding");
2134 #endif
2135   %}
2136 
2137   enc_class form3_mem_reg( memory mem, iRegI dst ) %{
2138     emit_form3_mem_reg(cbuf, this, $primary, $tertiary,
2139                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2140   %}
2141 
2142   enc_class simple_form3_mem_reg( memory mem, iRegI dst ) %{
2143     emit_form3_mem_reg(cbuf, this, $primary, -1,
2144                        $mem$$base, $mem$$disp, $mem$$index, $dst$$reg);
2145   %}
2146 
2147   enc_class form3_mem_prefetch_read( memory mem ) %{
2148     emit_form3_mem_reg(cbuf, this, $primary, -1,
2149                        $mem$$base, $mem$$disp, $mem$$index, 0/*prefetch function many-reads*/);
2150   %}
2151 
2152   enc_class form3_mem_prefetch_write( memory mem ) %{
2153     emit_form3_mem_reg(cbuf, this, $primary, -1,
2154                        $mem$$base, $mem$$disp, $mem$$index, 2/*prefetch function many-writes*/);
2155   %}
2156 
2157   enc_class form3_mem_reg_long_unaligned_marshal( memory mem, iRegL reg ) %{
2158     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2159     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2160     guarantee($mem$$index == R_G0_enc, "double index?");
2161     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, R_O7_enc );
2162     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg );
2163     emit3_simm13( cbuf, Assembler::arith_op, $reg$$reg, Assembler::sllx_op3, $reg$$reg, 0x1020 );
2164     emit3( cbuf, Assembler::arith_op, $reg$$reg, Assembler::or_op3, $reg$$reg, 0, R_O7_enc );
2165   %}
2166 
2167   enc_class form3_mem_reg_double_unaligned( memory mem, RegD_low reg ) %{
2168     assert(Assembler::is_simm13($mem$$disp  ), "need disp and disp+4");
2169     assert(Assembler::is_simm13($mem$$disp+4), "need disp and disp+4");
2170     guarantee($mem$$index == R_G0_enc, "double index?");
2171     // Load long with 2 instructions
2172     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp,   R_G0_enc, $reg$$reg+0 );
2173     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp+4, R_G0_enc, $reg$$reg+1 );
2174   %}
2175 
2176   //%%% form3_mem_plus_4_reg is a hack--get rid of it
2177   enc_class form3_mem_plus_4_reg( memory mem, iRegI dst ) %{
2178     guarantee($mem$$disp, "cannot offset a reg-reg operand by 4");
2179     emit_form3_mem_reg(cbuf, this, $primary, -1, $mem$$base, $mem$$disp + 4, $mem$$index, $dst$$reg);
2180   %}
2181 
2182   enc_class form3_g0_rs2_rd_move( iRegI rs2, iRegI rd ) %{
2183     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2184     if( $rs2$$reg != $rd$$reg )
2185       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, $rs2$$reg );
2186   %}
2187 
2188   // Target lo half of long
2189   enc_class form3_g0_rs2_rd_move_lo( iRegI rs2, iRegL rd ) %{
2190     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2191     if( $rs2$$reg != LONG_LO_REG($rd$$reg) )
2192       emit3( cbuf, Assembler::arith_op, LONG_LO_REG($rd$$reg), Assembler::or_op3, 0, 0, $rs2$$reg );
2193   %}
2194 
2195   // Source lo half of long
2196   enc_class form3_g0_rs2_rd_move_lo2( iRegL rs2, iRegI rd ) %{
2197     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2198     if( LONG_LO_REG($rs2$$reg) != $rd$$reg )
2199       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_LO_REG($rs2$$reg) );
2200   %}
2201 
2202   // Target hi half of long
2203   enc_class form3_rs1_rd_copysign_hi( iRegI rs1, iRegL rd ) %{
2204     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 31 );
2205   %}
2206 
2207   // Source lo half of long, and leave it sign extended.
2208   enc_class form3_rs1_rd_signextend_lo1( iRegL rs1, iRegI rd ) %{
2209     // Sign extend low half
2210     emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::sra_op3, $rs1$$reg, 0, 0 );
2211   %}
2212 
2213   // Source hi half of long, and leave it sign extended.
2214   enc_class form3_rs1_rd_copy_hi1( iRegL rs1, iRegI rd ) %{
2215     // Shift high half to low half
2216     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::srlx_op3, $rs1$$reg, 32 );
2217   %}
2218 
2219   // Source hi half of long
2220   enc_class form3_g0_rs2_rd_move_hi2( iRegL rs2, iRegI rd ) %{
2221     // Encode a reg-reg copy.  If it is useless, then empty encoding.
2222     if( LONG_HI_REG($rs2$$reg) != $rd$$reg )
2223       emit3( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, 0, LONG_HI_REG($rs2$$reg) );
2224   %}
2225 
2226   enc_class form3_rs1_rs2_rd( iRegI rs1, iRegI rs2, iRegI rd ) %{
2227     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0, $rs2$$reg );
2228   %}
2229 
2230   enc_class enc_to_bool( iRegI src, iRegI dst ) %{
2231     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, 0, 0, $src$$reg );
2232     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::addc_op3 , 0, 0 );
2233   %}
2234 
2235   enc_class enc_ltmask( iRegI p, iRegI q, iRegI dst ) %{
2236     emit3       ( cbuf, Assembler::arith_op,         0, Assembler::subcc_op3, $p$$reg, 0, $q$$reg );
2237     // clear if nothing else is happening
2238     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  0 );
2239     // blt,a,pn done
2240     emit2_19    ( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less, Assembler::bp_op2, Assembler::icc, 0/*predict not taken*/, 2 );
2241     // mov dst,-1 in delay slot
2242     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2243   %}
2244 
2245   enc_class form3_rs1_imm5_rd( iRegI rs1, immU5 imm5, iRegI rd ) %{
2246     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $imm5$$constant & 0x1F );
2247   %}
2248 
2249   enc_class form3_sd_rs1_imm6_rd( iRegL rs1, immU6 imm6, iRegL rd ) %{
2250     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, ($imm6$$constant & 0x3F) | 0x1000 );
2251   %}
2252 
2253   enc_class form3_sd_rs1_rs2_rd( iRegL rs1, iRegI rs2, iRegL rd ) %{
2254     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, 0x80, $rs2$$reg );
2255   %}
2256 
2257   enc_class form3_rs1_simm13_rd( iRegI rs1, immI13 simm13, iRegI rd ) %{
2258     emit3_simm13( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $simm13$$constant );
2259   %}
2260 
2261   enc_class move_return_pc_to_o1() %{
2262     emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::add_op3, R_O7_enc, frame::pc_return_offset );
2263   %}
2264 
2265 #ifdef _LP64
2266   /* %%% merge with enc_to_bool */
2267   enc_class enc_convP2B( iRegI dst, iRegP src ) %{
2268     MacroAssembler _masm(&cbuf);
2269 
2270     Register   src_reg = reg_to_register_object($src$$reg);
2271     Register   dst_reg = reg_to_register_object($dst$$reg);
2272     __ movr(Assembler::rc_nz, src_reg, 1, dst_reg);
2273   %}
2274 #endif
2275 
2276   enc_class enc_cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp ) %{
2277     // (Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)))
2278     MacroAssembler _masm(&cbuf);
2279 
2280     Register   p_reg = reg_to_register_object($p$$reg);
2281     Register   q_reg = reg_to_register_object($q$$reg);
2282     Register   y_reg = reg_to_register_object($y$$reg);
2283     Register tmp_reg = reg_to_register_object($tmp$$reg);
2284 
2285     __ subcc( p_reg, q_reg,   p_reg );
2286     __ add  ( p_reg, y_reg, tmp_reg );
2287     __ movcc( Assembler::less, false, Assembler::icc, tmp_reg, p_reg );
2288   %}
2289 
2290   enc_class form_d2i_helper(regD src, regF dst) %{
2291     // fcmp %fcc0,$src,$src
2292     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2293     // branch %fcc0 not-nan, predict taken
2294     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2295     // fdtoi $src,$dst
2296     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtoi_opf, $src$$reg );
2297     // fitos $dst,$dst (if nan)
2298     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2299     // clear $dst (if nan)
2300     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2301     // carry on here...
2302   %}
2303 
2304   enc_class form_d2l_helper(regD src, regD dst) %{
2305     // fcmp %fcc0,$src,$src  check for NAN
2306     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmpd_opf, $src$$reg );
2307     // branch %fcc0 not-nan, predict taken
2308     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2309     // fdtox $src,$dst   convert in delay slot
2310     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fdtox_opf, $src$$reg );
2311     // fxtod $dst,$dst  (if nan)
2312     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2313     // clear $dst (if nan)
2314     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2315     // carry on here...
2316   %}
2317 
2318   enc_class form_f2i_helper(regF src, regF dst) %{
2319     // fcmps %fcc0,$src,$src
2320     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2321     // branch %fcc0 not-nan, predict taken
2322     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2323     // fstoi $src,$dst
2324     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstoi_opf, $src$$reg );
2325     // fitos $dst,$dst (if nan)
2326     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fitos_opf, $dst$$reg );
2327     // clear $dst (if nan)
2328     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubs_opf, $dst$$reg );
2329     // carry on here...
2330   %}
2331 
2332   enc_class form_f2l_helper(regF src, regD dst) %{
2333     // fcmps %fcc0,$src,$src
2334     emit3( cbuf, Assembler::arith_op , Assembler::fcc0, Assembler::fpop2_op3, $src$$reg, Assembler::fcmps_opf, $src$$reg );
2335     // branch %fcc0 not-nan, predict taken
2336     emit2_19( cbuf, Assembler::branch_op, 0/*annul*/, Assembler::f_ordered, Assembler::fbp_op2, Assembler::fcc0, 1/*predict taken*/, 4 );
2337     // fstox $src,$dst
2338     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fstox_opf, $src$$reg );
2339     // fxtod $dst,$dst (if nan)
2340     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3,         0, Assembler::fxtod_opf, $dst$$reg );
2341     // clear $dst (if nan)
2342     emit3( cbuf, Assembler::arith_op , $dst$$reg, Assembler::fpop1_op3, $dst$$reg, Assembler::fsubd_opf, $dst$$reg );
2343     // carry on here...
2344   %}
2345 
2346   enc_class form3_opf_rs2F_rdF(regF rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2347   enc_class form3_opf_rs2F_rdD(regF rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2348   enc_class form3_opf_rs2D_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2349   enc_class form3_opf_rs2D_rdD(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2350 
2351   enc_class form3_opf_rs2D_lo_rdF(regD rs2, regF rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg+1); %}
2352 
2353   enc_class form3_opf_rs2D_hi_rdD_hi(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg,$primary,0,$tertiary,$rs2$$reg); %}
2354   enc_class form3_opf_rs2D_lo_rdD_lo(regD rs2, regD rd) %{ emit3(cbuf,$secondary,$rd$$reg+1,$primary,0,$tertiary,$rs2$$reg+1); %}
2355 
2356   enc_class form3_opf_rs1F_rs2F_rdF( regF rs1, regF rs2, regF rd ) %{
2357     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2358   %}
2359 
2360   enc_class form3_opf_rs1D_rs2D_rdD( regD rs1, regD rs2, regD rd ) %{
2361     emit3( cbuf, $secondary, $rd$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2362   %}
2363 
2364   enc_class form3_opf_rs1F_rs2F_fcc( regF rs1, regF rs2, flagsRegF fcc ) %{
2365     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2366   %}
2367 
2368   enc_class form3_opf_rs1D_rs2D_fcc( regD rs1, regD rs2, flagsRegF fcc ) %{
2369     emit3( cbuf, $secondary, $fcc$$reg, $primary, $rs1$$reg, $tertiary, $rs2$$reg );
2370   %}
2371 
2372   enc_class form3_convI2F(regF rs2, regF rd) %{
2373     emit3(cbuf,Assembler::arith_op,$rd$$reg,Assembler::fpop1_op3,0,$secondary,$rs2$$reg);
2374   %}
2375 
2376   // Encloding class for traceable jumps
2377   enc_class form_jmpl(g3RegP dest) %{
2378     emit_jmpl(cbuf, $dest$$reg);
2379   %}
2380 
2381   enc_class form_jmpl_set_exception_pc(g1RegP dest) %{
2382     emit_jmpl_set_exception_pc(cbuf, $dest$$reg);
2383   %}
2384 
2385   enc_class form2_nop() %{
2386     emit_nop(cbuf);
2387   %}
2388 
2389   enc_class form2_illtrap() %{
2390     emit_illtrap(cbuf);
2391   %}
2392 
2393 
2394   // Compare longs and convert into -1, 0, 1.
2395   enc_class cmpl_flag( iRegL src1, iRegL src2, iRegI dst ) %{
2396     // CMP $src1,$src2
2397     emit3( cbuf, Assembler::arith_op, 0, Assembler::subcc_op3, $src1$$reg, 0, $src2$$reg );
2398     // blt,a,pn done
2399     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::less   , Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 5 );
2400     // mov dst,-1 in delay slot
2401     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0, -1 );
2402     // bgt,a,pn done
2403     emit2_19( cbuf, Assembler::branch_op, 1/*annul*/, Assembler::greater, Assembler::bp_op2, Assembler::xcc, 0/*predict not taken*/, 3 );
2404     // mov dst,1 in delay slot
2405     emit3_simm13( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3, 0,  1 );
2406     // CLR    $dst
2407     emit3( cbuf, Assembler::arith_op, $dst$$reg, Assembler::or_op3 , 0, 0, 0 );
2408   %}
2409 
2410   enc_class enc_PartialSubtypeCheck() %{
2411     MacroAssembler _masm(&cbuf);
2412     __ call(StubRoutines::Sparc::partial_subtype_check(), relocInfo::runtime_call_type);
2413     __ delayed()->nop();
2414   %}
2415 
2416   enc_class enc_bp( label labl, cmpOp cmp, flagsReg cc ) %{
2417     MacroAssembler _masm(&cbuf);
2418     Label* L = $labl$$label;
2419     Assembler::Predict predict_taken =
2420       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2421 
2422     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
2423     __ delayed()->nop();
2424   %}
2425 
2426   enc_class enc_bpr( label labl, cmpOp_reg cmp, iRegI op1 ) %{
2427     MacroAssembler _masm(&cbuf);
2428     Label* L = $labl$$label;
2429     Assembler::Predict predict_taken =
2430       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
2431 
2432     __ bpr( (Assembler::RCondition)($cmp$$cmpcode), false, predict_taken, as_Register($op1$$reg), *L);
2433     __ delayed()->nop();
2434   %}
2435 
2436   enc_class enc_cmov_reg( cmpOp cmp, iRegI dst, iRegI src, immI pcc) %{
2437     int op = (Assembler::arith_op << 30) |
2438              ($dst$$reg << 25) |
2439              (Assembler::movcc_op3 << 19) |
2440              (1 << 18) |                    // cc2 bit for 'icc'
2441              ($cmp$$cmpcode << 14) |
2442              (0 << 13) |                    // select register move
2443              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc' or 'xcc'
2444              ($src$$reg << 0);
2445     cbuf.insts()->emit_int32(op);
2446   %}
2447 
2448   enc_class enc_cmov_imm( cmpOp cmp, iRegI dst, immI11 src, immI pcc ) %{
2449     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2450     int op = (Assembler::arith_op << 30) |
2451              ($dst$$reg << 25) |
2452              (Assembler::movcc_op3 << 19) |
2453              (1 << 18) |                    // cc2 bit for 'icc'
2454              ($cmp$$cmpcode << 14) |
2455              (1 << 13) |                    // select immediate move
2456              ($pcc$$constant << 11) |       // cc1, cc0 bits for 'icc'
2457              (simm11 << 0);
2458     cbuf.insts()->emit_int32(op);
2459   %}
2460 
2461   enc_class enc_cmov_reg_f( cmpOpF cmp, iRegI dst, iRegI src, flagsRegF fcc ) %{
2462     int op = (Assembler::arith_op << 30) |
2463              ($dst$$reg << 25) |
2464              (Assembler::movcc_op3 << 19) |
2465              (0 << 18) |                    // cc2 bit for 'fccX'
2466              ($cmp$$cmpcode << 14) |
2467              (0 << 13) |                    // select register move
2468              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2469              ($src$$reg << 0);
2470     cbuf.insts()->emit_int32(op);
2471   %}
2472 
2473   enc_class enc_cmov_imm_f( cmpOp cmp, iRegI dst, immI11 src, flagsRegF fcc ) %{
2474     int simm11 = $src$$constant & ((1<<11)-1); // Mask to 11 bits
2475     int op = (Assembler::arith_op << 30) |
2476              ($dst$$reg << 25) |
2477              (Assembler::movcc_op3 << 19) |
2478              (0 << 18) |                    // cc2 bit for 'fccX'
2479              ($cmp$$cmpcode << 14) |
2480              (1 << 13) |                    // select immediate move
2481              ($fcc$$reg << 11) |            // cc1, cc0 bits for fcc0-fcc3
2482              (simm11 << 0);
2483     cbuf.insts()->emit_int32(op);
2484   %}
2485 
2486   enc_class enc_cmovf_reg( cmpOp cmp, regD dst, regD src, immI pcc ) %{
2487     int op = (Assembler::arith_op << 30) |
2488              ($dst$$reg << 25) |
2489              (Assembler::fpop2_op3 << 19) |
2490              (0 << 18) |
2491              ($cmp$$cmpcode << 14) |
2492              (1 << 13) |                    // select register move
2493              ($pcc$$constant << 11) |       // cc1-cc0 bits for 'icc' or 'xcc'
2494              ($primary << 5) |              // select single, double or quad
2495              ($src$$reg << 0);
2496     cbuf.insts()->emit_int32(op);
2497   %}
2498 
2499   enc_class enc_cmovff_reg( cmpOpF cmp, flagsRegF fcc, regD dst, regD src ) %{
2500     int op = (Assembler::arith_op << 30) |
2501              ($dst$$reg << 25) |
2502              (Assembler::fpop2_op3 << 19) |
2503              (0 << 18) |
2504              ($cmp$$cmpcode << 14) |
2505              ($fcc$$reg << 11) |            // cc2-cc0 bits for 'fccX'
2506              ($primary << 5) |              // select single, double or quad
2507              ($src$$reg << 0);
2508     cbuf.insts()->emit_int32(op);
2509   %}
2510 
2511   // Used by the MIN/MAX encodings.  Same as a CMOV, but
2512   // the condition comes from opcode-field instead of an argument.
2513   enc_class enc_cmov_reg_minmax( iRegI dst, iRegI src ) %{
2514     int op = (Assembler::arith_op << 30) |
2515              ($dst$$reg << 25) |
2516              (Assembler::movcc_op3 << 19) |
2517              (1 << 18) |                    // cc2 bit for 'icc'
2518              ($primary << 14) |
2519              (0 << 13) |                    // select register move
2520              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2521              ($src$$reg << 0);
2522     cbuf.insts()->emit_int32(op);
2523   %}
2524 
2525   enc_class enc_cmov_reg_minmax_long( iRegL dst, iRegL src ) %{
2526     int op = (Assembler::arith_op << 30) |
2527              ($dst$$reg << 25) |
2528              (Assembler::movcc_op3 << 19) |
2529              (6 << 16) |                    // cc2 bit for 'xcc'
2530              ($primary << 14) |
2531              (0 << 13) |                    // select register move
2532              (0 << 11) |                    // cc1, cc0 bits for 'icc'
2533              ($src$$reg << 0);
2534     cbuf.insts()->emit_int32(op);
2535   %}
2536 
2537   enc_class Set13( immI13 src, iRegI rd ) %{
2538     emit3_simm13( cbuf, Assembler::arith_op, $rd$$reg, Assembler::or_op3, 0, $src$$constant );
2539   %}
2540 
2541   enc_class SetHi22( immI src, iRegI rd ) %{
2542     emit2_22( cbuf, Assembler::branch_op, $rd$$reg, Assembler::sethi_op2, $src$$constant );
2543   %}
2544 
2545   enc_class Set32( immI src, iRegI rd ) %{
2546     MacroAssembler _masm(&cbuf);
2547     __ set($src$$constant, reg_to_register_object($rd$$reg));
2548   %}
2549 
2550   enc_class call_epilog %{
2551     if( VerifyStackAtCalls ) {
2552       MacroAssembler _masm(&cbuf);
2553       int framesize = ra_->C->frame_slots() << LogBytesPerInt;
2554       Register temp_reg = G3;
2555       __ add(SP, framesize, temp_reg);
2556       __ cmp(temp_reg, FP);
2557       __ breakpoint_trap(Assembler::notEqual, Assembler::ptr_cc);
2558     }
2559   %}
2560 
2561   // Long values come back from native calls in O0:O1 in the 32-bit VM, copy the value
2562   // to G1 so the register allocator will not have to deal with the misaligned register
2563   // pair.
2564   enc_class adjust_long_from_native_call %{
2565 #ifndef _LP64
2566     if (returns_long()) {
2567       //    sllx  O0,32,O0
2568       emit3_simm13( cbuf, Assembler::arith_op, R_O0_enc, Assembler::sllx_op3, R_O0_enc, 0x1020 );
2569       //    srl   O1,0,O1
2570       emit3_simm13( cbuf, Assembler::arith_op, R_O1_enc, Assembler::srl_op3, R_O1_enc, 0x0000 );
2571       //    or    O0,O1,G1
2572       emit3       ( cbuf, Assembler::arith_op, R_G1_enc, Assembler:: or_op3, R_O0_enc, 0, R_O1_enc );
2573     }
2574 #endif
2575   %}
2576 
2577   enc_class Java_To_Runtime (method meth) %{    // CALL Java_To_Runtime
2578     // CALL directly to the runtime
2579     // The user of this is responsible for ensuring that R_L7 is empty (killed).
2580     emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type,
2581                     /*preserve_g2=*/true);
2582   %}
2583 
2584   enc_class preserve_SP %{
2585     MacroAssembler _masm(&cbuf);
2586     __ mov(SP, L7_mh_SP_save);
2587   %}
2588 
2589   enc_class restore_SP %{
2590     MacroAssembler _masm(&cbuf);
2591     __ mov(L7_mh_SP_save, SP);
2592   %}
2593 
2594   enc_class Java_Static_Call (method meth) %{    // JAVA STATIC CALL
2595     // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2596     // who we intended to call.
2597     if ( !_method ) {
2598       emit_call_reloc(cbuf, $meth$$method, relocInfo::runtime_call_type);
2599     } else if (_optimized_virtual) {
2600       emit_call_reloc(cbuf, $meth$$method, relocInfo::opt_virtual_call_type);
2601     } else {
2602       emit_call_reloc(cbuf, $meth$$method, relocInfo::static_call_type);
2603     }
2604     if( _method ) {  // Emit stub for static call
2605       emit_java_to_interp(cbuf);
2606     }
2607   %}
2608 
2609   enc_class Java_Dynamic_Call (method meth) %{    // JAVA DYNAMIC CALL
2610     MacroAssembler _masm(&cbuf);
2611     __ set_inst_mark();
2612     int vtable_index = this->_vtable_index;
2613     // MachCallDynamicJavaNode::ret_addr_offset uses this same test
2614     if (vtable_index < 0) {
2615       // must be invalid_vtable_index, not nonvirtual_vtable_index
2616       assert(vtable_index == methodOopDesc::invalid_vtable_index, "correct sentinel value");
2617       Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2618       assert(G5_ic_reg == G5_inline_cache_reg, "G5_inline_cache_reg used in assemble_ic_buffer_code()");
2619       assert(G5_ic_reg == G5_megamorphic_method, "G5_megamorphic_method used in megamorphic call stub");
2620       // !!!!!
2621       // Generate  "set 0x01, R_G5", placeholder instruction to load oop-info
2622       // emit_call_dynamic_prologue( cbuf );
2623       __ set_oop((jobject)Universe::non_oop_word(), G5_ic_reg);
2624 
2625       address  virtual_call_oop_addr = __ inst_mark();
2626       // CALL to fixup routine.  Fixup routine uses ScopeDesc info to determine
2627       // who we intended to call.
2628       __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
2629       emit_call_reloc(cbuf, $meth$$method, relocInfo::none);
2630     } else {
2631       assert(!UseInlineCaches, "expect vtable calls only if not using ICs");
2632       // Just go thru the vtable
2633       // get receiver klass (receiver already checked for non-null)
2634       // If we end up going thru a c2i adapter interpreter expects method in G5
2635       int off = __ offset();
2636       __ load_klass(O0, G3_scratch);
2637       int klass_load_size;
2638       if (UseCompressedOops) {
2639         assert(Universe::heap() != NULL, "java heap should be initialized");
2640         if (Universe::narrow_oop_base() == NULL)
2641           klass_load_size = 2*BytesPerInstWord;
2642         else
2643           klass_load_size = 3*BytesPerInstWord;
2644       } else {
2645         klass_load_size = 1*BytesPerInstWord;
2646       }
2647       int entry_offset = instanceKlass::vtable_start_offset() + vtable_index*vtableEntry::size();
2648       int v_off = entry_offset*wordSize + vtableEntry::method_offset_in_bytes();
2649       if (Assembler::is_simm13(v_off)) {
2650         __ ld_ptr(G3, v_off, G5_method);
2651       } else {
2652         // Generate 2 instructions
2653         __ Assembler::sethi(v_off & ~0x3ff, G5_method);
2654         __ or3(G5_method, v_off & 0x3ff, G5_method);
2655         // ld_ptr, set_hi, set
2656         assert(__ offset() - off == klass_load_size + 2*BytesPerInstWord,
2657                "Unexpected instruction size(s)");
2658         __ ld_ptr(G3, G5_method, G5_method);
2659       }
2660       // NOTE: for vtable dispatches, the vtable entry will never be null.
2661       // However it may very well end up in handle_wrong_method if the
2662       // method is abstract for the particular class.
2663       __ ld_ptr(G5_method, in_bytes(methodOopDesc::from_compiled_offset()), G3_scratch);
2664       // jump to target (either compiled code or c2iadapter)
2665       __ jmpl(G3_scratch, G0, O7);
2666       __ delayed()->nop();
2667     }
2668   %}
2669 
2670   enc_class Java_Compiled_Call (method meth) %{    // JAVA COMPILED CALL
2671     MacroAssembler _masm(&cbuf);
2672 
2673     Register G5_ic_reg = reg_to_register_object(Matcher::inline_cache_reg_encode());
2674     Register temp_reg = G3;   // caller must kill G3!  We cannot reuse G5_ic_reg here because
2675                               // we might be calling a C2I adapter which needs it.
2676 
2677     assert(temp_reg != G5_ic_reg, "conflicting registers");
2678     // Load nmethod
2679     __ ld_ptr(G5_ic_reg, in_bytes(methodOopDesc::from_compiled_offset()), temp_reg);
2680 
2681     // CALL to compiled java, indirect the contents of G3
2682     __ set_inst_mark();
2683     __ callr(temp_reg, G0);
2684     __ delayed()->nop();
2685   %}
2686 
2687 enc_class idiv_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst) %{
2688     MacroAssembler _masm(&cbuf);
2689     Register Rdividend = reg_to_register_object($src1$$reg);
2690     Register Rdivisor = reg_to_register_object($src2$$reg);
2691     Register Rresult = reg_to_register_object($dst$$reg);
2692 
2693     __ sra(Rdivisor, 0, Rdivisor);
2694     __ sra(Rdividend, 0, Rdividend);
2695     __ sdivx(Rdividend, Rdivisor, Rresult);
2696 %}
2697 
2698 enc_class idiv_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst) %{
2699     MacroAssembler _masm(&cbuf);
2700 
2701     Register Rdividend = reg_to_register_object($src1$$reg);
2702     int divisor = $imm$$constant;
2703     Register Rresult = reg_to_register_object($dst$$reg);
2704 
2705     __ sra(Rdividend, 0, Rdividend);
2706     __ sdivx(Rdividend, divisor, Rresult);
2707 %}
2708 
2709 enc_class enc_mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2) %{
2710     MacroAssembler _masm(&cbuf);
2711     Register Rsrc1 = reg_to_register_object($src1$$reg);
2712     Register Rsrc2 = reg_to_register_object($src2$$reg);
2713     Register Rdst  = reg_to_register_object($dst$$reg);
2714 
2715     __ sra( Rsrc1, 0, Rsrc1 );
2716     __ sra( Rsrc2, 0, Rsrc2 );
2717     __ mulx( Rsrc1, Rsrc2, Rdst );
2718     __ srlx( Rdst, 32, Rdst );
2719 %}
2720 
2721 enc_class irem_reg(iRegIsafe src1, iRegIsafe src2, iRegIsafe dst, o7RegL scratch) %{
2722     MacroAssembler _masm(&cbuf);
2723     Register Rdividend = reg_to_register_object($src1$$reg);
2724     Register Rdivisor = reg_to_register_object($src2$$reg);
2725     Register Rresult = reg_to_register_object($dst$$reg);
2726     Register Rscratch = reg_to_register_object($scratch$$reg);
2727 
2728     assert(Rdividend != Rscratch, "");
2729     assert(Rdivisor  != Rscratch, "");
2730 
2731     __ sra(Rdividend, 0, Rdividend);
2732     __ sra(Rdivisor, 0, Rdivisor);
2733     __ sdivx(Rdividend, Rdivisor, Rscratch);
2734     __ mulx(Rscratch, Rdivisor, Rscratch);
2735     __ sub(Rdividend, Rscratch, Rresult);
2736 %}
2737 
2738 enc_class irem_imm(iRegIsafe src1, immI13 imm, iRegIsafe dst, o7RegL scratch) %{
2739     MacroAssembler _masm(&cbuf);
2740 
2741     Register Rdividend = reg_to_register_object($src1$$reg);
2742     int divisor = $imm$$constant;
2743     Register Rresult = reg_to_register_object($dst$$reg);
2744     Register Rscratch = reg_to_register_object($scratch$$reg);
2745 
2746     assert(Rdividend != Rscratch, "");
2747 
2748     __ sra(Rdividend, 0, Rdividend);
2749     __ sdivx(Rdividend, divisor, Rscratch);
2750     __ mulx(Rscratch, divisor, Rscratch);
2751     __ sub(Rdividend, Rscratch, Rresult);
2752 %}
2753 
2754 enc_class fabss (sflt_reg dst, sflt_reg src) %{
2755     MacroAssembler _masm(&cbuf);
2756 
2757     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2758     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2759 
2760     __ fabs(FloatRegisterImpl::S, Fsrc, Fdst);
2761 %}
2762 
2763 enc_class fabsd (dflt_reg dst, dflt_reg src) %{
2764     MacroAssembler _masm(&cbuf);
2765 
2766     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2767     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2768 
2769     __ fabs(FloatRegisterImpl::D, Fsrc, Fdst);
2770 %}
2771 
2772 enc_class fnegd (dflt_reg dst, dflt_reg src) %{
2773     MacroAssembler _masm(&cbuf);
2774 
2775     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2776     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2777 
2778     __ fneg(FloatRegisterImpl::D, Fsrc, Fdst);
2779 %}
2780 
2781 enc_class fsqrts (sflt_reg dst, sflt_reg src) %{
2782     MacroAssembler _masm(&cbuf);
2783 
2784     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2785     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2786 
2787     __ fsqrt(FloatRegisterImpl::S, Fsrc, Fdst);
2788 %}
2789 
2790 enc_class fsqrtd (dflt_reg dst, dflt_reg src) %{
2791     MacroAssembler _masm(&cbuf);
2792 
2793     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2794     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2795 
2796     __ fsqrt(FloatRegisterImpl::D, Fsrc, Fdst);
2797 %}
2798 
2799 enc_class fmovs (dflt_reg dst, dflt_reg src) %{
2800     MacroAssembler _masm(&cbuf);
2801 
2802     FloatRegister Fdst = reg_to_SingleFloatRegister_object($dst$$reg);
2803     FloatRegister Fsrc = reg_to_SingleFloatRegister_object($src$$reg);
2804 
2805     __ fmov(FloatRegisterImpl::S, Fsrc, Fdst);
2806 %}
2807 
2808 enc_class fmovd (dflt_reg dst, dflt_reg src) %{
2809     MacroAssembler _masm(&cbuf);
2810 
2811     FloatRegister Fdst = reg_to_DoubleFloatRegister_object($dst$$reg);
2812     FloatRegister Fsrc = reg_to_DoubleFloatRegister_object($src$$reg);
2813 
2814     __ fmov(FloatRegisterImpl::D, Fsrc, Fdst);
2815 %}
2816 
2817 enc_class Fast_Lock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2818     MacroAssembler _masm(&cbuf);
2819 
2820     Register Roop  = reg_to_register_object($oop$$reg);
2821     Register Rbox  = reg_to_register_object($box$$reg);
2822     Register Rscratch = reg_to_register_object($scratch$$reg);
2823     Register Rmark =    reg_to_register_object($scratch2$$reg);
2824 
2825     assert(Roop  != Rscratch, "");
2826     assert(Roop  != Rmark, "");
2827     assert(Rbox  != Rscratch, "");
2828     assert(Rbox  != Rmark, "");
2829 
2830     __ compiler_lock_object(Roop, Rmark, Rbox, Rscratch, _counters, UseBiasedLocking && !UseOptoBiasInlining);
2831 %}
2832 
2833 enc_class Fast_Unlock(iRegP oop, iRegP box, o7RegP scratch, iRegP scratch2) %{
2834     MacroAssembler _masm(&cbuf);
2835 
2836     Register Roop  = reg_to_register_object($oop$$reg);
2837     Register Rbox  = reg_to_register_object($box$$reg);
2838     Register Rscratch = reg_to_register_object($scratch$$reg);
2839     Register Rmark =    reg_to_register_object($scratch2$$reg);
2840 
2841     assert(Roop  != Rscratch, "");
2842     assert(Roop  != Rmark, "");
2843     assert(Rbox  != Rscratch, "");
2844     assert(Rbox  != Rmark, "");
2845 
2846     __ compiler_unlock_object(Roop, Rmark, Rbox, Rscratch, UseBiasedLocking && !UseOptoBiasInlining);
2847   %}
2848 
2849   enc_class enc_cas( iRegP mem, iRegP old, iRegP new ) %{
2850     MacroAssembler _masm(&cbuf);
2851     Register Rmem = reg_to_register_object($mem$$reg);
2852     Register Rold = reg_to_register_object($old$$reg);
2853     Register Rnew = reg_to_register_object($new$$reg);
2854 
2855     // casx_under_lock picks 1 of 3 encodings:
2856     // For 32-bit pointers you get a 32-bit CAS
2857     // For 64-bit pointers you get a 64-bit CASX
2858     __ casn(Rmem, Rold, Rnew); // Swap(*Rmem,Rnew) if *Rmem == Rold
2859     __ cmp( Rold, Rnew );
2860   %}
2861 
2862   enc_class enc_casx( iRegP mem, iRegL old, iRegL new) %{
2863     Register Rmem = reg_to_register_object($mem$$reg);
2864     Register Rold = reg_to_register_object($old$$reg);
2865     Register Rnew = reg_to_register_object($new$$reg);
2866 
2867     MacroAssembler _masm(&cbuf);
2868     __ mov(Rnew, O7);
2869     __ casx(Rmem, Rold, O7);
2870     __ cmp( Rold, O7 );
2871   %}
2872 
2873   // raw int cas, used for compareAndSwap
2874   enc_class enc_casi( iRegP mem, iRegL old, iRegL new) %{
2875     Register Rmem = reg_to_register_object($mem$$reg);
2876     Register Rold = reg_to_register_object($old$$reg);
2877     Register Rnew = reg_to_register_object($new$$reg);
2878 
2879     MacroAssembler _masm(&cbuf);
2880     __ mov(Rnew, O7);
2881     __ cas(Rmem, Rold, O7);
2882     __ cmp( Rold, O7 );
2883   %}
2884 
2885   enc_class enc_lflags_ne_to_boolean( iRegI res ) %{
2886     Register Rres = reg_to_register_object($res$$reg);
2887 
2888     MacroAssembler _masm(&cbuf);
2889     __ mov(1, Rres);
2890     __ movcc( Assembler::notEqual, false, Assembler::xcc, G0, Rres );
2891   %}
2892 
2893   enc_class enc_iflags_ne_to_boolean( iRegI res ) %{
2894     Register Rres = reg_to_register_object($res$$reg);
2895 
2896     MacroAssembler _masm(&cbuf);
2897     __ mov(1, Rres);
2898     __ movcc( Assembler::notEqual, false, Assembler::icc, G0, Rres );
2899   %}
2900 
2901   enc_class floating_cmp ( iRegP dst, regF src1, regF src2 ) %{
2902     MacroAssembler _masm(&cbuf);
2903     Register Rdst = reg_to_register_object($dst$$reg);
2904     FloatRegister Fsrc1 = $primary ? reg_to_SingleFloatRegister_object($src1$$reg)
2905                                      : reg_to_DoubleFloatRegister_object($src1$$reg);
2906     FloatRegister Fsrc2 = $primary ? reg_to_SingleFloatRegister_object($src2$$reg)
2907                                      : reg_to_DoubleFloatRegister_object($src2$$reg);
2908 
2909     // Convert condition code fcc0 into -1,0,1; unordered reports less-than (-1)
2910     __ float_cmp( $primary, -1, Fsrc1, Fsrc2, Rdst);
2911   %}
2912 
2913 
2914   enc_class enc_String_Compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result) %{
2915     Label Ldone, Lloop;
2916     MacroAssembler _masm(&cbuf);
2917 
2918     Register   str1_reg = reg_to_register_object($str1$$reg);
2919     Register   str2_reg = reg_to_register_object($str2$$reg);
2920     Register   cnt1_reg = reg_to_register_object($cnt1$$reg);
2921     Register   cnt2_reg = reg_to_register_object($cnt2$$reg);
2922     Register result_reg = reg_to_register_object($result$$reg);
2923 
2924     assert(result_reg != str1_reg &&
2925            result_reg != str2_reg &&
2926            result_reg != cnt1_reg &&
2927            result_reg != cnt2_reg ,
2928            "need different registers");
2929 
2930     // Compute the minimum of the string lengths(str1_reg) and the
2931     // difference of the string lengths (stack)
2932 
2933     // See if the lengths are different, and calculate min in str1_reg.
2934     // Stash diff in O7 in case we need it for a tie-breaker.
2935     Label Lskip;
2936     __ subcc(cnt1_reg, cnt2_reg, O7);
2937     __ sll(cnt1_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2938     __ br(Assembler::greater, true, Assembler::pt, Lskip);
2939     // cnt2 is shorter, so use its count:
2940     __ delayed()->sll(cnt2_reg, exact_log2(sizeof(jchar)), cnt1_reg); // scale the limit
2941     __ bind(Lskip);
2942 
2943     // reallocate cnt1_reg, cnt2_reg, result_reg
2944     // Note:  limit_reg holds the string length pre-scaled by 2
2945     Register limit_reg =   cnt1_reg;
2946     Register  chr2_reg =   cnt2_reg;
2947     Register  chr1_reg = result_reg;
2948     // str{12} are the base pointers
2949 
2950     // Is the minimum length zero?
2951     __ cmp(limit_reg, (int)(0 * sizeof(jchar))); // use cast to resolve overloading ambiguity
2952     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2953     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2954 
2955     // Load first characters
2956     __ lduh(str1_reg, 0, chr1_reg);
2957     __ lduh(str2_reg, 0, chr2_reg);
2958 
2959     // Compare first characters
2960     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2961     __ br(Assembler::notZero, false, Assembler::pt,  Ldone);
2962     assert(chr1_reg == result_reg, "result must be pre-placed");
2963     __ delayed()->nop();
2964 
2965     {
2966       // Check after comparing first character to see if strings are equivalent
2967       Label LSkip2;
2968       // Check if the strings start at same location
2969       __ cmp(str1_reg, str2_reg);
2970       __ brx(Assembler::notEqual, true, Assembler::pt, LSkip2);
2971       __ delayed()->nop();
2972 
2973       // Check if the length difference is zero (in O7)
2974       __ cmp(G0, O7);
2975       __ br(Assembler::equal, true, Assembler::pn, Ldone);
2976       __ delayed()->mov(G0, result_reg);  // result is zero
2977 
2978       // Strings might not be equal
2979       __ bind(LSkip2);
2980     }
2981 
2982     __ subcc(limit_reg, 1 * sizeof(jchar), chr1_reg);
2983     __ br(Assembler::equal, true, Assembler::pn, Ldone);
2984     __ delayed()->mov(O7, result_reg);  // result is difference in lengths
2985 
2986     // Shift str1_reg and str2_reg to the end of the arrays, negate limit
2987     __ add(str1_reg, limit_reg, str1_reg);
2988     __ add(str2_reg, limit_reg, str2_reg);
2989     __ neg(chr1_reg, limit_reg);  // limit = -(limit-2)
2990 
2991     // Compare the rest of the characters
2992     __ lduh(str1_reg, limit_reg, chr1_reg);
2993     __ bind(Lloop);
2994     // __ lduh(str1_reg, limit_reg, chr1_reg); // hoisted
2995     __ lduh(str2_reg, limit_reg, chr2_reg);
2996     __ subcc(chr1_reg, chr2_reg, chr1_reg);
2997     __ br(Assembler::notZero, false, Assembler::pt, Ldone);
2998     assert(chr1_reg == result_reg, "result must be pre-placed");
2999     __ delayed()->inccc(limit_reg, sizeof(jchar));
3000     // annul LDUH if branch is not taken to prevent access past end of string
3001     __ br(Assembler::notZero, true, Assembler::pt, Lloop);
3002     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3003 
3004     // If strings are equal up to min length, return the length difference.
3005     __ mov(O7, result_reg);
3006 
3007     // Otherwise, return the difference between the first mismatched chars.
3008     __ bind(Ldone);
3009   %}
3010 
3011 enc_class enc_String_Equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result) %{
3012     Label Lword_loop, Lpost_word, Lchar, Lchar_loop, Ldone;
3013     MacroAssembler _masm(&cbuf);
3014 
3015     Register   str1_reg = reg_to_register_object($str1$$reg);
3016     Register   str2_reg = reg_to_register_object($str2$$reg);
3017     Register    cnt_reg = reg_to_register_object($cnt$$reg);
3018     Register   tmp1_reg = O7;
3019     Register result_reg = reg_to_register_object($result$$reg);
3020 
3021     assert(result_reg != str1_reg &&
3022            result_reg != str2_reg &&
3023            result_reg !=  cnt_reg &&
3024            result_reg != tmp1_reg ,
3025            "need different registers");
3026 
3027     __ cmp(str1_reg, str2_reg); //same char[] ?
3028     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3029     __ delayed()->add(G0, 1, result_reg);
3030 
3031     __ cmp_zero_and_br(Assembler::zero, cnt_reg, Ldone, true, Assembler::pn);
3032     __ delayed()->add(G0, 1, result_reg); // count == 0
3033 
3034     //rename registers
3035     Register limit_reg =    cnt_reg;
3036     Register  chr1_reg = result_reg;
3037     Register  chr2_reg =   tmp1_reg;
3038 
3039     //check for alignment and position the pointers to the ends
3040     __ or3(str1_reg, str2_reg, chr1_reg);
3041     __ andcc(chr1_reg, 0x3, chr1_reg);
3042     // notZero means at least one not 4-byte aligned.
3043     // We could optimize the case when both arrays are not aligned
3044     // but it is not frequent case and it requires additional checks.
3045     __ br(Assembler::notZero, false, Assembler::pn, Lchar); // char by char compare
3046     __ delayed()->sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg); // set byte count
3047 
3048     // Compare char[] arrays aligned to 4 bytes.
3049     __ char_arrays_equals(str1_reg, str2_reg, limit_reg, result_reg,
3050                           chr1_reg, chr2_reg, Ldone);
3051     __ ba(Ldone);
3052     __ delayed()->add(G0, 1, result_reg);
3053 
3054     // char by char compare
3055     __ bind(Lchar);
3056     __ add(str1_reg, limit_reg, str1_reg);
3057     __ add(str2_reg, limit_reg, str2_reg);
3058     __ neg(limit_reg); //negate count
3059 
3060     __ lduh(str1_reg, limit_reg, chr1_reg);
3061     // Lchar_loop
3062     __ bind(Lchar_loop);
3063     __ lduh(str2_reg, limit_reg, chr2_reg);
3064     __ cmp(chr1_reg, chr2_reg);
3065     __ br(Assembler::notEqual, true, Assembler::pt, Ldone);
3066     __ delayed()->mov(G0, result_reg); //not equal
3067     __ inccc(limit_reg, sizeof(jchar));
3068     // annul LDUH if branch is not taken to prevent access past end of string
3069     __ br(Assembler::notZero, true, Assembler::pt, Lchar_loop);
3070     __ delayed()->lduh(str1_reg, limit_reg, chr1_reg); // hoisted
3071 
3072     __ add(G0, 1, result_reg);  //equal
3073 
3074     __ bind(Ldone);
3075   %}
3076 
3077 enc_class enc_Array_Equals(o0RegP ary1, o1RegP ary2, g3RegP tmp1, notemp_iRegI result) %{
3078     Label Lvector, Ldone, Lloop;
3079     MacroAssembler _masm(&cbuf);
3080 
3081     Register   ary1_reg = reg_to_register_object($ary1$$reg);
3082     Register   ary2_reg = reg_to_register_object($ary2$$reg);
3083     Register   tmp1_reg = reg_to_register_object($tmp1$$reg);
3084     Register   tmp2_reg = O7;
3085     Register result_reg = reg_to_register_object($result$$reg);
3086 
3087     int length_offset  = arrayOopDesc::length_offset_in_bytes();
3088     int base_offset    = arrayOopDesc::base_offset_in_bytes(T_CHAR);
3089 
3090     // return true if the same array
3091     __ cmp(ary1_reg, ary2_reg);
3092     __ brx(Assembler::equal, true, Assembler::pn, Ldone);
3093     __ delayed()->add(G0, 1, result_reg); // equal
3094 
3095     __ br_null(ary1_reg, true, Assembler::pn, Ldone);
3096     __ delayed()->mov(G0, result_reg);    // not equal
3097 
3098     __ br_null(ary2_reg, true, Assembler::pn, Ldone);
3099     __ delayed()->mov(G0, result_reg);    // not equal
3100 
3101     //load the lengths of arrays
3102     __ ld(Address(ary1_reg, length_offset), tmp1_reg);
3103     __ ld(Address(ary2_reg, length_offset), tmp2_reg);
3104 
3105     // return false if the two arrays are not equal length
3106     __ cmp(tmp1_reg, tmp2_reg);
3107     __ br(Assembler::notEqual, true, Assembler::pn, Ldone);
3108     __ delayed()->mov(G0, result_reg);     // not equal
3109 
3110     __ cmp_zero_and_br(Assembler::zero, tmp1_reg, Ldone, true, Assembler::pn);
3111     __ delayed()->add(G0, 1, result_reg); // zero-length arrays are equal
3112 
3113     // load array addresses
3114     __ add(ary1_reg, base_offset, ary1_reg);
3115     __ add(ary2_reg, base_offset, ary2_reg);
3116 
3117     // renaming registers
3118     Register chr1_reg  =  result_reg; // for characters in ary1
3119     Register chr2_reg  =  tmp2_reg;   // for characters in ary2
3120     Register limit_reg =  tmp1_reg;   // length
3121 
3122     // set byte count
3123     __ sll(limit_reg, exact_log2(sizeof(jchar)), limit_reg);
3124 
3125     // Compare char[] arrays aligned to 4 bytes.
3126     __ char_arrays_equals(ary1_reg, ary2_reg, limit_reg, result_reg,
3127                           chr1_reg, chr2_reg, Ldone);
3128     __ add(G0, 1, result_reg); // equals
3129 
3130     __ bind(Ldone);
3131   %}
3132 
3133   enc_class enc_rethrow() %{
3134     cbuf.set_insts_mark();
3135     Register temp_reg = G3;
3136     AddressLiteral rethrow_stub(OptoRuntime::rethrow_stub());
3137     assert(temp_reg != reg_to_register_object(R_I0_num), "temp must not break oop_reg");
3138     MacroAssembler _masm(&cbuf);
3139 #ifdef ASSERT
3140     __ save_frame(0);
3141     AddressLiteral last_rethrow_addrlit(&last_rethrow);
3142     __ sethi(last_rethrow_addrlit, L1);
3143     Address addr(L1, last_rethrow_addrlit.low10());
3144     __ get_pc(L2);
3145     __ inc(L2, 3 * BytesPerInstWord);  // skip this & 2 more insns to point at jump_to
3146     __ st_ptr(L2, addr);
3147     __ restore();
3148 #endif
3149     __ JUMP(rethrow_stub, temp_reg, 0); // sethi;jmp
3150     __ delayed()->nop();
3151   %}
3152 
3153   enc_class emit_mem_nop() %{
3154     // Generates the instruction LDUXA [o6,g0],#0x82,g0
3155     cbuf.insts()->emit_int32((unsigned int) 0xc0839040);
3156   %}
3157 
3158   enc_class emit_fadd_nop() %{
3159     // Generates the instruction FMOVS f31,f31
3160     cbuf.insts()->emit_int32((unsigned int) 0xbfa0003f);
3161   %}
3162 
3163   enc_class emit_br_nop() %{
3164     // Generates the instruction BPN,PN .
3165     cbuf.insts()->emit_int32((unsigned int) 0x00400000);
3166   %}
3167 
3168   enc_class enc_membar_acquire %{
3169     MacroAssembler _masm(&cbuf);
3170     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::LoadLoad) );
3171   %}
3172 
3173   enc_class enc_membar_release %{
3174     MacroAssembler _masm(&cbuf);
3175     __ membar( Assembler::Membar_mask_bits(Assembler::LoadStore | Assembler::StoreStore) );
3176   %}
3177 
3178   enc_class enc_membar_volatile %{
3179     MacroAssembler _masm(&cbuf);
3180     __ membar( Assembler::Membar_mask_bits(Assembler::StoreLoad) );
3181   %}
3182 
3183 %}
3184 
3185 //----------FRAME--------------------------------------------------------------
3186 // Definition of frame structure and management information.
3187 //
3188 //  S T A C K   L A Y O U T    Allocators stack-slot number
3189 //                             |   (to get allocators register number
3190 //  G  Owned by    |        |  v    add VMRegImpl::stack0)
3191 //  r   CALLER     |        |
3192 //  o     |        +--------+      pad to even-align allocators stack-slot
3193 //  w     V        |  pad0  |        numbers; owned by CALLER
3194 //  t   -----------+--------+----> Matcher::_in_arg_limit, unaligned
3195 //  h     ^        |   in   |  5
3196 //        |        |  args  |  4   Holes in incoming args owned by SELF
3197 //  |     |        |        |  3
3198 //  |     |        +--------+
3199 //  V     |        | old out|      Empty on Intel, window on Sparc
3200 //        |    old |preserve|      Must be even aligned.
3201 //        |     SP-+--------+----> Matcher::_old_SP, 8 (or 16 in LP64)-byte aligned
3202 //        |        |   in   |  3   area for Intel ret address
3203 //     Owned by    |preserve|      Empty on Sparc.
3204 //       SELF      +--------+
3205 //        |        |  pad2  |  2   pad to align old SP
3206 //        |        +--------+  1
3207 //        |        | locks  |  0
3208 //        |        +--------+----> VMRegImpl::stack0, 8 (or 16 in LP64)-byte aligned
3209 //        |        |  pad1  | 11   pad to align new SP
3210 //        |        +--------+
3211 //        |        |        | 10
3212 //        |        | spills |  9   spills
3213 //        V        |        |  8   (pad0 slot for callee)
3214 //      -----------+--------+----> Matcher::_out_arg_limit, unaligned
3215 //        ^        |  out   |  7
3216 //        |        |  args  |  6   Holes in outgoing args owned by CALLEE
3217 //     Owned by    +--------+
3218 //      CALLEE     | new out|  6   Empty on Intel, window on Sparc
3219 //        |    new |preserve|      Must be even-aligned.
3220 //        |     SP-+--------+----> Matcher::_new_SP, even aligned
3221 //        |        |        |
3222 //
3223 // Note 1: Only region 8-11 is determined by the allocator.  Region 0-5 is
3224 //         known from SELF's arguments and the Java calling convention.
3225 //         Region 6-7 is determined per call site.
3226 // Note 2: If the calling convention leaves holes in the incoming argument
3227 //         area, those holes are owned by SELF.  Holes in the outgoing area
3228 //         are owned by the CALLEE.  Holes should not be nessecary in the
3229 //         incoming area, as the Java calling convention is completely under
3230 //         the control of the AD file.  Doubles can be sorted and packed to
3231 //         avoid holes.  Holes in the outgoing arguments may be necessary for
3232 //         varargs C calling conventions.
3233 // Note 3: Region 0-3 is even aligned, with pad2 as needed.  Region 3-5 is
3234 //         even aligned with pad0 as needed.
3235 //         Region 6 is even aligned.  Region 6-7 is NOT even aligned;
3236 //         region 6-11 is even aligned; it may be padded out more so that
3237 //         the region from SP to FP meets the minimum stack alignment.
3238 
3239 frame %{
3240   // What direction does stack grow in (assumed to be same for native & Java)
3241   stack_direction(TOWARDS_LOW);
3242 
3243   // These two registers define part of the calling convention
3244   // between compiled code and the interpreter.
3245   inline_cache_reg(R_G5);                // Inline Cache Register or methodOop for I2C
3246   interpreter_method_oop_reg(R_G5);      // Method Oop Register when calling interpreter
3247 
3248   // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
3249   cisc_spilling_operand_name(indOffset);
3250 
3251   // Number of stack slots consumed by a Monitor enter
3252 #ifdef _LP64
3253   sync_stack_slots(2);
3254 #else
3255   sync_stack_slots(1);
3256 #endif
3257 
3258   // Compiled code's Frame Pointer
3259   frame_pointer(R_SP);
3260 
3261   // Stack alignment requirement
3262   stack_alignment(StackAlignmentInBytes);
3263   //  LP64: Alignment size in bytes (128-bit -> 16 bytes)
3264   // !LP64: Alignment size in bytes (64-bit  ->  8 bytes)
3265 
3266   // Number of stack slots between incoming argument block and the start of
3267   // a new frame.  The PROLOG must add this many slots to the stack.  The
3268   // EPILOG must remove this many slots.
3269   in_preserve_stack_slots(0);
3270 
3271   // Number of outgoing stack slots killed above the out_preserve_stack_slots
3272   // for calls to C.  Supports the var-args backing area for register parms.
3273   // ADLC doesn't support parsing expressions, so I folded the math by hand.
3274 #ifdef _LP64
3275   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (0)) * 2-stack-slots-per-word
3276   varargs_C_out_slots_killed(12);
3277 #else
3278   // (callee_register_argument_save_area_words (6) + callee_aggregate_return_pointer_words (1)) * 1-stack-slots-per-word
3279   varargs_C_out_slots_killed( 7);
3280 #endif
3281 
3282   // The after-PROLOG location of the return address.  Location of
3283   // return address specifies a type (REG or STACK) and a number
3284   // representing the register number (i.e. - use a register name) or
3285   // stack slot.
3286   return_addr(REG R_I7);          // Ret Addr is in register I7
3287 
3288   // Body of function which returns an OptoRegs array locating
3289   // arguments either in registers or in stack slots for calling
3290   // java
3291   calling_convention %{
3292     (void) SharedRuntime::java_calling_convention(sig_bt, regs, length, is_outgoing);
3293 
3294   %}
3295 
3296   // Body of function which returns an OptoRegs array locating
3297   // arguments either in registers or in stack slots for calling
3298   // C.
3299   c_calling_convention %{
3300     // This is obviously always outgoing
3301     (void) SharedRuntime::c_calling_convention(sig_bt, regs, /*regs2=*/NULL, length);
3302   %}
3303 
3304   // Location of native (C/C++) and interpreter return values.  This is specified to
3305   // be the  same as Java.  In the 32-bit VM, long values are actually returned from
3306   // native calls in O0:O1 and returned to the interpreter in I0:I1.  The copying
3307   // to and from the register pairs is done by the appropriate call and epilog
3308   // opcodes.  This simplifies the register allocator.
3309   c_return_value %{
3310     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3311 #ifdef     _LP64
3312     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3313     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3314     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3315     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3316 #else  // !_LP64
3317     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3318     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3319     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3320     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num };
3321 #endif
3322     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3323                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3324   %}
3325 
3326   // Location of compiled Java return values.  Same as C
3327   return_value %{
3328     assert( ideal_reg >= Op_RegI && ideal_reg <= Op_RegL, "only return normal values" );
3329 #ifdef     _LP64
3330     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_O0_num };
3331     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_O0H_num,    OptoReg::Bad, R_F1_num, R_O0H_num};
3332     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_I0_num };
3333     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_I0H_num,    OptoReg::Bad, R_F1_num, R_I0H_num};
3334 #else  // !_LP64
3335     static int lo_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_O0_num,     R_O0_num,     R_O0_num,     R_F0_num,     R_F0_num, R_G1_num };
3336     static int hi_out[Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3337     static int lo_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, R_I0_num,     R_I0_num,     R_I0_num,     R_F0_num,     R_F0_num, R_G1_num };
3338     static int hi_in [Op_RegL+1] = { OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, OptoReg::Bad, R_F1_num, R_G1H_num};
3339 #endif
3340     return OptoRegPair( (is_outgoing?hi_out:hi_in)[ideal_reg],
3341                         (is_outgoing?lo_out:lo_in)[ideal_reg] );
3342   %}
3343 
3344 %}
3345 
3346 
3347 //----------ATTRIBUTES---------------------------------------------------------
3348 //----------Operand Attributes-------------------------------------------------
3349 op_attrib op_cost(1);          // Required cost attribute
3350 
3351 //----------Instruction Attributes---------------------------------------------
3352 ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
3353 ins_attrib ins_size(32);           // Required size attribute (in bits)
3354 ins_attrib ins_avoid_back_to_back(0); // instruction should not be generated back to back
3355 ins_attrib ins_short_branch(0);    // Required flag: is this instruction a
3356                                    // non-matching short branch variant of some
3357                                                             // long branch?
3358 
3359 //----------OPERANDS-----------------------------------------------------------
3360 // Operand definitions must precede instruction definitions for correct parsing
3361 // in the ADLC because operands constitute user defined types which are used in
3362 // instruction definitions.
3363 
3364 //----------Simple Operands----------------------------------------------------
3365 // Immediate Operands
3366 // Integer Immediate: 32-bit
3367 operand immI() %{
3368   match(ConI);
3369 
3370   op_cost(0);
3371   // formats are generated automatically for constants and base registers
3372   format %{ %}
3373   interface(CONST_INTER);
3374 %}
3375 
3376 // Integer Immediate: 8-bit
3377 operand immI8() %{
3378   predicate(Assembler::is_simm8(n->get_int()));
3379   match(ConI);
3380   op_cost(0);
3381   format %{ %}
3382   interface(CONST_INTER);
3383 %}
3384 
3385 // Integer Immediate: 13-bit
3386 operand immI13() %{
3387   predicate(Assembler::is_simm13(n->get_int()));
3388   match(ConI);
3389   op_cost(0);
3390 
3391   format %{ %}
3392   interface(CONST_INTER);
3393 %}
3394 
3395 // Integer Immediate: 13-bit minus 7
3396 operand immI13m7() %{
3397   predicate((-4096 < n->get_int()) && ((n->get_int() + 7) <= 4095));
3398   match(ConI);
3399   op_cost(0);
3400 
3401   format %{ %}
3402   interface(CONST_INTER);
3403 %}
3404 
3405 // Integer Immediate: 16-bit
3406 operand immI16() %{
3407   predicate(Assembler::is_simm16(n->get_int()));
3408   match(ConI);
3409   op_cost(0);
3410   format %{ %}
3411   interface(CONST_INTER);
3412 %}
3413 
3414 // Unsigned Integer Immediate: 12-bit (non-negative that fits in simm13)
3415 operand immU12() %{
3416   predicate((0 <= n->get_int()) && Assembler::is_simm13(n->get_int()));
3417   match(ConI);
3418   op_cost(0);
3419 
3420   format %{ %}
3421   interface(CONST_INTER);
3422 %}
3423 
3424 // Integer Immediate: 6-bit
3425 operand immU6() %{
3426   predicate(n->get_int() >= 0 && n->get_int() <= 63);
3427   match(ConI);
3428   op_cost(0);
3429   format %{ %}
3430   interface(CONST_INTER);
3431 %}
3432 
3433 // Integer Immediate: 11-bit
3434 operand immI11() %{
3435   predicate(Assembler::is_simm11(n->get_int()));
3436   match(ConI);
3437   op_cost(0);
3438   format %{ %}
3439   interface(CONST_INTER);
3440 %}
3441 
3442 // Integer Immediate: 5-bit
3443 operand immI5() %{
3444   predicate(Assembler::is_simm5(n->get_int()));
3445   match(ConI);
3446   op_cost(0);
3447   format %{ %}
3448   interface(CONST_INTER);
3449 %}
3450 
3451 // Unsigned Long Immediate: 12-bit (non-negative that fits in simm13)
3452 operand immUL12() %{
3453   predicate((0 <= n->get_long()) && (n->get_long() == (int)n->get_long()) && Assembler::is_simm13((int)n->get_long()));
3454   match(ConL);
3455   op_cost(0);
3456 
3457   format %{ %}
3458   interface(CONST_INTER);
3459 %}
3460 
3461 // Int Immediate non-negative
3462 operand immU31()
3463 %{
3464   predicate(n->get_int() >= 0);
3465   match(ConI);
3466 
3467   op_cost(0);
3468   format %{ %}
3469   interface(CONST_INTER);
3470 %}
3471 
3472 // Integer Immediate: 0-bit
3473 operand immI0() %{
3474   predicate(n->get_int() == 0);
3475   match(ConI);
3476   op_cost(0);
3477 
3478   format %{ %}
3479   interface(CONST_INTER);
3480 %}
3481 
3482 // Integer Immediate: the value 10
3483 operand immI10() %{
3484   predicate(n->get_int() == 10);
3485   match(ConI);
3486   op_cost(0);
3487 
3488   format %{ %}
3489   interface(CONST_INTER);
3490 %}
3491 
3492 // Integer Immediate: the values 0-31
3493 operand immU5() %{
3494   predicate(n->get_int() >= 0 && n->get_int() <= 31);
3495   match(ConI);
3496   op_cost(0);
3497 
3498   format %{ %}
3499   interface(CONST_INTER);
3500 %}
3501 
3502 // Integer Immediate: the values 1-31
3503 operand immI_1_31() %{
3504   predicate(n->get_int() >= 1 && n->get_int() <= 31);
3505   match(ConI);
3506   op_cost(0);
3507 
3508   format %{ %}
3509   interface(CONST_INTER);
3510 %}
3511 
3512 // Integer Immediate: the values 32-63
3513 operand immI_32_63() %{
3514   predicate(n->get_int() >= 32 && n->get_int() <= 63);
3515   match(ConI);
3516   op_cost(0);
3517 
3518   format %{ %}
3519   interface(CONST_INTER);
3520 %}
3521 
3522 // Immediates for special shifts (sign extend)
3523 
3524 // Integer Immediate: the value 16
3525 operand immI_16() %{
3526   predicate(n->get_int() == 16);
3527   match(ConI);
3528   op_cost(0);
3529 
3530   format %{ %}
3531   interface(CONST_INTER);
3532 %}
3533 
3534 // Integer Immediate: the value 24
3535 operand immI_24() %{
3536   predicate(n->get_int() == 24);
3537   match(ConI);
3538   op_cost(0);
3539 
3540   format %{ %}
3541   interface(CONST_INTER);
3542 %}
3543 
3544 // Integer Immediate: the value 255
3545 operand immI_255() %{
3546   predicate( n->get_int() == 255 );
3547   match(ConI);
3548   op_cost(0);
3549 
3550   format %{ %}
3551   interface(CONST_INTER);
3552 %}
3553 
3554 // Integer Immediate: the value 65535
3555 operand immI_65535() %{
3556   predicate(n->get_int() == 65535);
3557   match(ConI);
3558   op_cost(0);
3559 
3560   format %{ %}
3561   interface(CONST_INTER);
3562 %}
3563 
3564 // Long Immediate: the value FF
3565 operand immL_FF() %{
3566   predicate( n->get_long() == 0xFFL );
3567   match(ConL);
3568   op_cost(0);
3569 
3570   format %{ %}
3571   interface(CONST_INTER);
3572 %}
3573 
3574 // Long Immediate: the value FFFF
3575 operand immL_FFFF() %{
3576   predicate( n->get_long() == 0xFFFFL );
3577   match(ConL);
3578   op_cost(0);
3579 
3580   format %{ %}
3581   interface(CONST_INTER);
3582 %}
3583 
3584 // Pointer Immediate: 32 or 64-bit
3585 operand immP() %{
3586   match(ConP);
3587 
3588   op_cost(5);
3589   // formats are generated automatically for constants and base registers
3590   format %{ %}
3591   interface(CONST_INTER);
3592 %}
3593 
3594 #ifdef _LP64
3595 // Pointer Immediate: 64-bit
3596 operand immP_set() %{
3597   predicate(!VM_Version::is_niagara_plus());
3598   match(ConP);
3599 
3600   op_cost(5);
3601   // formats are generated automatically for constants and base registers
3602   format %{ %}
3603   interface(CONST_INTER);
3604 %}
3605 
3606 // Pointer Immediate: 64-bit
3607 // From Niagara2 processors on a load should be better than materializing.
3608 operand immP_load() %{
3609   predicate(VM_Version::is_niagara_plus() && (n->bottom_type()->isa_oop_ptr() || (MacroAssembler::insts_for_set(n->get_ptr()) > 3)));
3610   match(ConP);
3611 
3612   op_cost(5);
3613   // formats are generated automatically for constants and base registers
3614   format %{ %}
3615   interface(CONST_INTER);
3616 %}
3617 
3618 // Pointer Immediate: 64-bit
3619 operand immP_no_oop_cheap() %{
3620   predicate(VM_Version::is_niagara_plus() && !n->bottom_type()->isa_oop_ptr() && (MacroAssembler::insts_for_set(n->get_ptr()) <= 3));
3621   match(ConP);
3622 
3623   op_cost(5);
3624   // formats are generated automatically for constants and base registers
3625   format %{ %}
3626   interface(CONST_INTER);
3627 %}
3628 #endif
3629 
3630 operand immP13() %{
3631   predicate((-4096 < n->get_ptr()) && (n->get_ptr() <= 4095));
3632   match(ConP);
3633   op_cost(0);
3634 
3635   format %{ %}
3636   interface(CONST_INTER);
3637 %}
3638 
3639 operand immP0() %{
3640   predicate(n->get_ptr() == 0);
3641   match(ConP);
3642   op_cost(0);
3643 
3644   format %{ %}
3645   interface(CONST_INTER);
3646 %}
3647 
3648 operand immP_poll() %{
3649   predicate(n->get_ptr() != 0 && n->get_ptr() == (intptr_t)os::get_polling_page());
3650   match(ConP);
3651 
3652   // formats are generated automatically for constants and base registers
3653   format %{ %}
3654   interface(CONST_INTER);
3655 %}
3656 
3657 // Pointer Immediate
3658 operand immN()
3659 %{
3660   match(ConN);
3661 
3662   op_cost(10);
3663   format %{ %}
3664   interface(CONST_INTER);
3665 %}
3666 
3667 // NULL Pointer Immediate
3668 operand immN0()
3669 %{
3670   predicate(n->get_narrowcon() == 0);
3671   match(ConN);
3672 
3673   op_cost(0);
3674   format %{ %}
3675   interface(CONST_INTER);
3676 %}
3677 
3678 operand immL() %{
3679   match(ConL);
3680   op_cost(40);
3681   // formats are generated automatically for constants and base registers
3682   format %{ %}
3683   interface(CONST_INTER);
3684 %}
3685 
3686 operand immL0() %{
3687   predicate(n->get_long() == 0L);
3688   match(ConL);
3689   op_cost(0);
3690   // formats are generated automatically for constants and base registers
3691   format %{ %}
3692   interface(CONST_INTER);
3693 %}
3694 
3695 // Integer Immediate: 5-bit
3696 operand immL5() %{
3697   predicate(n->get_long() == (int)n->get_long() && Assembler::is_simm5((int)n->get_long()));
3698   match(ConL);
3699   op_cost(0);
3700   format %{ %}
3701   interface(CONST_INTER);
3702 %}
3703 
3704 // Long Immediate: 13-bit
3705 operand immL13() %{
3706   predicate((-4096L < n->get_long()) && (n->get_long() <= 4095L));
3707   match(ConL);
3708   op_cost(0);
3709 
3710   format %{ %}
3711   interface(CONST_INTER);
3712 %}
3713 
3714 // Long Immediate: 13-bit minus 7
3715 operand immL13m7() %{
3716   predicate((-4096L < n->get_long()) && ((n->get_long() + 7L) <= 4095L));
3717   match(ConL);
3718   op_cost(0);
3719 
3720   format %{ %}
3721   interface(CONST_INTER);
3722 %}
3723 
3724 // Long Immediate: low 32-bit mask
3725 operand immL_32bits() %{
3726   predicate(n->get_long() == 0xFFFFFFFFL);
3727   match(ConL);
3728   op_cost(0);
3729 
3730   format %{ %}
3731   interface(CONST_INTER);
3732 %}
3733 
3734 // Long Immediate: cheap (materialize in <= 3 instructions)
3735 operand immL_cheap() %{
3736   predicate(!VM_Version::is_niagara_plus() || MacroAssembler::insts_for_set64(n->get_long()) <= 3);
3737   match(ConL);
3738   op_cost(0);
3739 
3740   format %{ %}
3741   interface(CONST_INTER);
3742 %}
3743 
3744 // Long Immediate: expensive (materialize in > 3 instructions)
3745 operand immL_expensive() %{
3746   predicate(VM_Version::is_niagara_plus() && MacroAssembler::insts_for_set64(n->get_long()) > 3);
3747   match(ConL);
3748   op_cost(0);
3749 
3750   format %{ %}
3751   interface(CONST_INTER);
3752 %}
3753 
3754 // Double Immediate
3755 operand immD() %{
3756   match(ConD);
3757 
3758   op_cost(40);
3759   format %{ %}
3760   interface(CONST_INTER);
3761 %}
3762 
3763 operand immD0() %{
3764 #ifdef _LP64
3765   // on 64-bit architectures this comparision is faster
3766   predicate(jlong_cast(n->getd()) == 0);
3767 #else
3768   predicate((n->getd() == 0) && (fpclass(n->getd()) == FP_PZERO));
3769 #endif
3770   match(ConD);
3771 
3772   op_cost(0);
3773   format %{ %}
3774   interface(CONST_INTER);
3775 %}
3776 
3777 // Float Immediate
3778 operand immF() %{
3779   match(ConF);
3780 
3781   op_cost(20);
3782   format %{ %}
3783   interface(CONST_INTER);
3784 %}
3785 
3786 // Float Immediate: 0
3787 operand immF0() %{
3788   predicate((n->getf() == 0) && (fpclass(n->getf()) == FP_PZERO));
3789   match(ConF);
3790 
3791   op_cost(0);
3792   format %{ %}
3793   interface(CONST_INTER);
3794 %}
3795 
3796 // Integer Register Operands
3797 // Integer Register
3798 operand iRegI() %{
3799   constraint(ALLOC_IN_RC(int_reg));
3800   match(RegI);
3801 
3802   match(notemp_iRegI);
3803   match(g1RegI);
3804   match(o0RegI);
3805   match(iRegIsafe);
3806 
3807   format %{ %}
3808   interface(REG_INTER);
3809 %}
3810 
3811 operand notemp_iRegI() %{
3812   constraint(ALLOC_IN_RC(notemp_int_reg));
3813   match(RegI);
3814 
3815   match(o0RegI);
3816 
3817   format %{ %}
3818   interface(REG_INTER);
3819 %}
3820 
3821 operand o0RegI() %{
3822   constraint(ALLOC_IN_RC(o0_regI));
3823   match(iRegI);
3824 
3825   format %{ %}
3826   interface(REG_INTER);
3827 %}
3828 
3829 // Pointer Register
3830 operand iRegP() %{
3831   constraint(ALLOC_IN_RC(ptr_reg));
3832   match(RegP);
3833 
3834   match(lock_ptr_RegP);
3835   match(g1RegP);
3836   match(g2RegP);
3837   match(g3RegP);
3838   match(g4RegP);
3839   match(i0RegP);
3840   match(o0RegP);
3841   match(o1RegP);
3842   match(l7RegP);
3843 
3844   format %{ %}
3845   interface(REG_INTER);
3846 %}
3847 
3848 operand sp_ptr_RegP() %{
3849   constraint(ALLOC_IN_RC(sp_ptr_reg));
3850   match(RegP);
3851   match(iRegP);
3852 
3853   format %{ %}
3854   interface(REG_INTER);
3855 %}
3856 
3857 operand lock_ptr_RegP() %{
3858   constraint(ALLOC_IN_RC(lock_ptr_reg));
3859   match(RegP);
3860   match(i0RegP);
3861   match(o0RegP);
3862   match(o1RegP);
3863   match(l7RegP);
3864 
3865   format %{ %}
3866   interface(REG_INTER);
3867 %}
3868 
3869 operand g1RegP() %{
3870   constraint(ALLOC_IN_RC(g1_regP));
3871   match(iRegP);
3872 
3873   format %{ %}
3874   interface(REG_INTER);
3875 %}
3876 
3877 operand g2RegP() %{
3878   constraint(ALLOC_IN_RC(g2_regP));
3879   match(iRegP);
3880 
3881   format %{ %}
3882   interface(REG_INTER);
3883 %}
3884 
3885 operand g3RegP() %{
3886   constraint(ALLOC_IN_RC(g3_regP));
3887   match(iRegP);
3888 
3889   format %{ %}
3890   interface(REG_INTER);
3891 %}
3892 
3893 operand g1RegI() %{
3894   constraint(ALLOC_IN_RC(g1_regI));
3895   match(iRegI);
3896 
3897   format %{ %}
3898   interface(REG_INTER);
3899 %}
3900 
3901 operand g3RegI() %{
3902   constraint(ALLOC_IN_RC(g3_regI));
3903   match(iRegI);
3904 
3905   format %{ %}
3906   interface(REG_INTER);
3907 %}
3908 
3909 operand g4RegI() %{
3910   constraint(ALLOC_IN_RC(g4_regI));
3911   match(iRegI);
3912 
3913   format %{ %}
3914   interface(REG_INTER);
3915 %}
3916 
3917 operand g4RegP() %{
3918   constraint(ALLOC_IN_RC(g4_regP));
3919   match(iRegP);
3920 
3921   format %{ %}
3922   interface(REG_INTER);
3923 %}
3924 
3925 operand i0RegP() %{
3926   constraint(ALLOC_IN_RC(i0_regP));
3927   match(iRegP);
3928 
3929   format %{ %}
3930   interface(REG_INTER);
3931 %}
3932 
3933 operand o0RegP() %{
3934   constraint(ALLOC_IN_RC(o0_regP));
3935   match(iRegP);
3936 
3937   format %{ %}
3938   interface(REG_INTER);
3939 %}
3940 
3941 operand o1RegP() %{
3942   constraint(ALLOC_IN_RC(o1_regP));
3943   match(iRegP);
3944 
3945   format %{ %}
3946   interface(REG_INTER);
3947 %}
3948 
3949 operand o2RegP() %{
3950   constraint(ALLOC_IN_RC(o2_regP));
3951   match(iRegP);
3952 
3953   format %{ %}
3954   interface(REG_INTER);
3955 %}
3956 
3957 operand o7RegP() %{
3958   constraint(ALLOC_IN_RC(o7_regP));
3959   match(iRegP);
3960 
3961   format %{ %}
3962   interface(REG_INTER);
3963 %}
3964 
3965 operand l7RegP() %{
3966   constraint(ALLOC_IN_RC(l7_regP));
3967   match(iRegP);
3968 
3969   format %{ %}
3970   interface(REG_INTER);
3971 %}
3972 
3973 operand o7RegI() %{
3974   constraint(ALLOC_IN_RC(o7_regI));
3975   match(iRegI);
3976 
3977   format %{ %}
3978   interface(REG_INTER);
3979 %}
3980 
3981 operand iRegN() %{
3982   constraint(ALLOC_IN_RC(int_reg));
3983   match(RegN);
3984 
3985   format %{ %}
3986   interface(REG_INTER);
3987 %}
3988 
3989 // Long Register
3990 operand iRegL() %{
3991   constraint(ALLOC_IN_RC(long_reg));
3992   match(RegL);
3993 
3994   format %{ %}
3995   interface(REG_INTER);
3996 %}
3997 
3998 operand o2RegL() %{
3999   constraint(ALLOC_IN_RC(o2_regL));
4000   match(iRegL);
4001 
4002   format %{ %}
4003   interface(REG_INTER);
4004 %}
4005 
4006 operand o7RegL() %{
4007   constraint(ALLOC_IN_RC(o7_regL));
4008   match(iRegL);
4009 
4010   format %{ %}
4011   interface(REG_INTER);
4012 %}
4013 
4014 operand g1RegL() %{
4015   constraint(ALLOC_IN_RC(g1_regL));
4016   match(iRegL);
4017 
4018   format %{ %}
4019   interface(REG_INTER);
4020 %}
4021 
4022 operand g3RegL() %{
4023   constraint(ALLOC_IN_RC(g3_regL));
4024   match(iRegL);
4025 
4026   format %{ %}
4027   interface(REG_INTER);
4028 %}
4029 
4030 // Int Register safe
4031 // This is 64bit safe
4032 operand iRegIsafe() %{
4033   constraint(ALLOC_IN_RC(long_reg));
4034 
4035   match(iRegI);
4036 
4037   format %{ %}
4038   interface(REG_INTER);
4039 %}
4040 
4041 // Condition Code Flag Register
4042 operand flagsReg() %{
4043   constraint(ALLOC_IN_RC(int_flags));
4044   match(RegFlags);
4045 
4046   format %{ "ccr" %} // both ICC and XCC
4047   interface(REG_INTER);
4048 %}
4049 
4050 // Condition Code Register, unsigned comparisons.
4051 operand flagsRegU() %{
4052   constraint(ALLOC_IN_RC(int_flags));
4053   match(RegFlags);
4054 
4055   format %{ "icc_U" %}
4056   interface(REG_INTER);
4057 %}
4058 
4059 // Condition Code Register, pointer comparisons.
4060 operand flagsRegP() %{
4061   constraint(ALLOC_IN_RC(int_flags));
4062   match(RegFlags);
4063 
4064 #ifdef _LP64
4065   format %{ "xcc_P" %}
4066 #else
4067   format %{ "icc_P" %}
4068 #endif
4069   interface(REG_INTER);
4070 %}
4071 
4072 // Condition Code Register, long comparisons.
4073 operand flagsRegL() %{
4074   constraint(ALLOC_IN_RC(int_flags));
4075   match(RegFlags);
4076 
4077   format %{ "xcc_L" %}
4078   interface(REG_INTER);
4079 %}
4080 
4081 // Condition Code Register, unsigned long comparisons.
4082 operand flagsRegUL() %{
4083   constraint(ALLOC_IN_RC(int_flags));
4084   match(RegFlags);
4085 
4086   format %{ "xcc_UL" %}
4087   interface(REG_INTER);
4088 %}
4089 
4090 // Condition Code Register, floating comparisons, unordered same as "less".
4091 operand flagsRegF() %{
4092   constraint(ALLOC_IN_RC(float_flags));
4093   match(RegFlags);
4094   match(flagsRegF0);
4095 
4096   format %{ %}
4097   interface(REG_INTER);
4098 %}
4099 
4100 operand flagsRegF0() %{
4101   constraint(ALLOC_IN_RC(float_flag0));
4102   match(RegFlags);
4103 
4104   format %{ %}
4105   interface(REG_INTER);
4106 %}
4107 
4108 
4109 // Condition Code Flag Register used by long compare
4110 operand flagsReg_long_LTGE() %{
4111   constraint(ALLOC_IN_RC(int_flags));
4112   match(RegFlags);
4113   format %{ "icc_LTGE" %}
4114   interface(REG_INTER);
4115 %}
4116 operand flagsReg_long_EQNE() %{
4117   constraint(ALLOC_IN_RC(int_flags));
4118   match(RegFlags);
4119   format %{ "icc_EQNE" %}
4120   interface(REG_INTER);
4121 %}
4122 operand flagsReg_long_LEGT() %{
4123   constraint(ALLOC_IN_RC(int_flags));
4124   match(RegFlags);
4125   format %{ "icc_LEGT" %}
4126   interface(REG_INTER);
4127 %}
4128 
4129 
4130 operand regD() %{
4131   constraint(ALLOC_IN_RC(dflt_reg));
4132   match(RegD);
4133 
4134   match(regD_low);
4135 
4136   format %{ %}
4137   interface(REG_INTER);
4138 %}
4139 
4140 operand regF() %{
4141   constraint(ALLOC_IN_RC(sflt_reg));
4142   match(RegF);
4143 
4144   format %{ %}
4145   interface(REG_INTER);
4146 %}
4147 
4148 operand regD_low() %{
4149   constraint(ALLOC_IN_RC(dflt_low_reg));
4150   match(regD);
4151 
4152   format %{ %}
4153   interface(REG_INTER);
4154 %}
4155 
4156 // Special Registers
4157 
4158 // Method Register
4159 operand inline_cache_regP(iRegP reg) %{
4160   constraint(ALLOC_IN_RC(g5_regP)); // G5=inline_cache_reg but uses 2 bits instead of 1
4161   match(reg);
4162   format %{ %}
4163   interface(REG_INTER);
4164 %}
4165 
4166 operand interpreter_method_oop_regP(iRegP reg) %{
4167   constraint(ALLOC_IN_RC(g5_regP)); // G5=interpreter_method_oop_reg but uses 2 bits instead of 1
4168   match(reg);
4169   format %{ %}
4170   interface(REG_INTER);
4171 %}
4172 
4173 
4174 //----------Complex Operands---------------------------------------------------
4175 // Indirect Memory Reference
4176 operand indirect(sp_ptr_RegP reg) %{
4177   constraint(ALLOC_IN_RC(sp_ptr_reg));
4178   match(reg);
4179 
4180   op_cost(100);
4181   format %{ "[$reg]" %}
4182   interface(MEMORY_INTER) %{
4183     base($reg);
4184     index(0x0);
4185     scale(0x0);
4186     disp(0x0);
4187   %}
4188 %}
4189 
4190 // Indirect with simm13 Offset
4191 operand indOffset13(sp_ptr_RegP reg, immX13 offset) %{
4192   constraint(ALLOC_IN_RC(sp_ptr_reg));
4193   match(AddP reg offset);
4194 
4195   op_cost(100);
4196   format %{ "[$reg + $offset]" %}
4197   interface(MEMORY_INTER) %{
4198     base($reg);
4199     index(0x0);
4200     scale(0x0);
4201     disp($offset);
4202   %}
4203 %}
4204 
4205 // Indirect with simm13 Offset minus 7
4206 operand indOffset13m7(sp_ptr_RegP reg, immX13m7 offset) %{
4207   constraint(ALLOC_IN_RC(sp_ptr_reg));
4208   match(AddP reg offset);
4209 
4210   op_cost(100);
4211   format %{ "[$reg + $offset]" %}
4212   interface(MEMORY_INTER) %{
4213     base($reg);
4214     index(0x0);
4215     scale(0x0);
4216     disp($offset);
4217   %}
4218 %}
4219 
4220 // Note:  Intel has a swapped version also, like this:
4221 //operand indOffsetX(iRegI reg, immP offset) %{
4222 //  constraint(ALLOC_IN_RC(int_reg));
4223 //  match(AddP offset reg);
4224 //
4225 //  op_cost(100);
4226 //  format %{ "[$reg + $offset]" %}
4227 //  interface(MEMORY_INTER) %{
4228 //    base($reg);
4229 //    index(0x0);
4230 //    scale(0x0);
4231 //    disp($offset);
4232 //  %}
4233 //%}
4234 //// However, it doesn't make sense for SPARC, since
4235 // we have no particularly good way to embed oops in
4236 // single instructions.
4237 
4238 // Indirect with Register Index
4239 operand indIndex(iRegP addr, iRegX index) %{
4240   constraint(ALLOC_IN_RC(ptr_reg));
4241   match(AddP addr index);
4242 
4243   op_cost(100);
4244   format %{ "[$addr + $index]" %}
4245   interface(MEMORY_INTER) %{
4246     base($addr);
4247     index($index);
4248     scale(0x0);
4249     disp(0x0);
4250   %}
4251 %}
4252 
4253 //----------Special Memory Operands--------------------------------------------
4254 // Stack Slot Operand - This operand is used for loading and storing temporary
4255 //                      values on the stack where a match requires a value to
4256 //                      flow through memory.
4257 operand stackSlotI(sRegI reg) %{
4258   constraint(ALLOC_IN_RC(stack_slots));
4259   op_cost(100);
4260   //match(RegI);
4261   format %{ "[$reg]" %}
4262   interface(MEMORY_INTER) %{
4263     base(0xE);   // R_SP
4264     index(0x0);
4265     scale(0x0);
4266     disp($reg);  // Stack Offset
4267   %}
4268 %}
4269 
4270 operand stackSlotP(sRegP reg) %{
4271   constraint(ALLOC_IN_RC(stack_slots));
4272   op_cost(100);
4273   //match(RegP);
4274   format %{ "[$reg]" %}
4275   interface(MEMORY_INTER) %{
4276     base(0xE);   // R_SP
4277     index(0x0);
4278     scale(0x0);
4279     disp($reg);  // Stack Offset
4280   %}
4281 %}
4282 
4283 operand stackSlotF(sRegF reg) %{
4284   constraint(ALLOC_IN_RC(stack_slots));
4285   op_cost(100);
4286   //match(RegF);
4287   format %{ "[$reg]" %}
4288   interface(MEMORY_INTER) %{
4289     base(0xE);   // R_SP
4290     index(0x0);
4291     scale(0x0);
4292     disp($reg);  // Stack Offset
4293   %}
4294 %}
4295 operand stackSlotD(sRegD reg) %{
4296   constraint(ALLOC_IN_RC(stack_slots));
4297   op_cost(100);
4298   //match(RegD);
4299   format %{ "[$reg]" %}
4300   interface(MEMORY_INTER) %{
4301     base(0xE);   // R_SP
4302     index(0x0);
4303     scale(0x0);
4304     disp($reg);  // Stack Offset
4305   %}
4306 %}
4307 operand stackSlotL(sRegL reg) %{
4308   constraint(ALLOC_IN_RC(stack_slots));
4309   op_cost(100);
4310   //match(RegL);
4311   format %{ "[$reg]" %}
4312   interface(MEMORY_INTER) %{
4313     base(0xE);   // R_SP
4314     index(0x0);
4315     scale(0x0);
4316     disp($reg);  // Stack Offset
4317   %}
4318 %}
4319 
4320 // Operands for expressing Control Flow
4321 // NOTE:  Label is a predefined operand which should not be redefined in
4322 //        the AD file.  It is generically handled within the ADLC.
4323 
4324 //----------Conditional Branch Operands----------------------------------------
4325 // Comparison Op  - This is the operation of the comparison, and is limited to
4326 //                  the following set of codes:
4327 //                  L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
4328 //
4329 // Other attributes of the comparison, such as unsignedness, are specified
4330 // by the comparison instruction that sets a condition code flags register.
4331 // That result is represented by a flags operand whose subtype is appropriate
4332 // to the unsignedness (etc.) of the comparison.
4333 //
4334 // Later, the instruction which matches both the Comparison Op (a Bool) and
4335 // the flags (produced by the Cmp) specifies the coding of the comparison op
4336 // by matching a specific subtype of Bool operand below, such as cmpOpU.
4337 
4338 operand cmpOp() %{
4339   match(Bool);
4340 
4341   format %{ "" %}
4342   interface(COND_INTER) %{
4343     equal(0x1);
4344     not_equal(0x9);
4345     less(0x3);
4346     greater_equal(0xB);
4347     less_equal(0x2);
4348     greater(0xA);
4349   %}
4350 %}
4351 
4352 // Comparison Op, unsigned
4353 operand cmpOpU() %{
4354   match(Bool);
4355 
4356   format %{ "u" %}
4357   interface(COND_INTER) %{
4358     equal(0x1);
4359     not_equal(0x9);
4360     less(0x5);
4361     greater_equal(0xD);
4362     less_equal(0x4);
4363     greater(0xC);
4364   %}
4365 %}
4366 
4367 // Comparison Op, pointer (same as unsigned)
4368 operand cmpOpP() %{
4369   match(Bool);
4370 
4371   format %{ "p" %}
4372   interface(COND_INTER) %{
4373     equal(0x1);
4374     not_equal(0x9);
4375     less(0x5);
4376     greater_equal(0xD);
4377     less_equal(0x4);
4378     greater(0xC);
4379   %}
4380 %}
4381 
4382 // Comparison Op, branch-register encoding
4383 operand cmpOp_reg() %{
4384   match(Bool);
4385 
4386   format %{ "" %}
4387   interface(COND_INTER) %{
4388     equal        (0x1);
4389     not_equal    (0x5);
4390     less         (0x3);
4391     greater_equal(0x7);
4392     less_equal   (0x2);
4393     greater      (0x6);
4394   %}
4395 %}
4396 
4397 // Comparison Code, floating, unordered same as less
4398 operand cmpOpF() %{
4399   match(Bool);
4400 
4401   format %{ "fl" %}
4402   interface(COND_INTER) %{
4403     equal(0x9);
4404     not_equal(0x1);
4405     less(0x3);
4406     greater_equal(0xB);
4407     less_equal(0xE);
4408     greater(0x6);
4409   %}
4410 %}
4411 
4412 // Used by long compare
4413 operand cmpOp_commute() %{
4414   match(Bool);
4415 
4416   format %{ "" %}
4417   interface(COND_INTER) %{
4418     equal(0x1);
4419     not_equal(0x9);
4420     less(0xA);
4421     greater_equal(0x2);
4422     less_equal(0xB);
4423     greater(0x3);
4424   %}
4425 %}
4426 
4427 //----------OPERAND CLASSES----------------------------------------------------
4428 // Operand Classes are groups of operands that are used to simplify
4429 // instruction definitions by not requiring the AD writer to specify separate
4430 // instructions for every form of operand when the instruction accepts
4431 // multiple operand types with the same basic encoding and format.  The classic
4432 // case of this is memory operands.
4433 opclass memory( indirect, indOffset13, indIndex );
4434 opclass indIndexMemory( indIndex );
4435 
4436 //----------PIPELINE-----------------------------------------------------------
4437 pipeline %{
4438 
4439 //----------ATTRIBUTES---------------------------------------------------------
4440 attributes %{
4441   fixed_size_instructions;           // Fixed size instructions
4442   branch_has_delay_slot;             // Branch has delay slot following
4443   max_instructions_per_bundle = 4;   // Up to 4 instructions per bundle
4444   instruction_unit_size = 4;         // An instruction is 4 bytes long
4445   instruction_fetch_unit_size = 16;  // The processor fetches one line
4446   instruction_fetch_units = 1;       // of 16 bytes
4447 
4448   // List of nop instructions
4449   nops( Nop_A0, Nop_A1, Nop_MS, Nop_FA, Nop_BR );
4450 %}
4451 
4452 //----------RESOURCES----------------------------------------------------------
4453 // Resources are the functional units available to the machine
4454 resources(A0, A1, MS, BR, FA, FM, IDIV, FDIV, IALU = A0 | A1);
4455 
4456 //----------PIPELINE DESCRIPTION-----------------------------------------------
4457 // Pipeline Description specifies the stages in the machine's pipeline
4458 
4459 pipe_desc(A, P, F, B, I, J, S, R, E, C, M, W, X, T, D);
4460 
4461 //----------PIPELINE CLASSES---------------------------------------------------
4462 // Pipeline Classes describe the stages in which input and output are
4463 // referenced by the hardware pipeline.
4464 
4465 // Integer ALU reg-reg operation
4466 pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4467     single_instruction;
4468     dst   : E(write);
4469     src1  : R(read);
4470     src2  : R(read);
4471     IALU  : R;
4472 %}
4473 
4474 // Integer ALU reg-reg long operation
4475 pipe_class ialu_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
4476     instruction_count(2);
4477     dst   : E(write);
4478     src1  : R(read);
4479     src2  : R(read);
4480     IALU  : R;
4481     IALU  : R;
4482 %}
4483 
4484 // Integer ALU reg-reg long dependent operation
4485 pipe_class ialu_reg_reg_2_dep(iRegL dst, iRegL src1, iRegL src2, flagsReg cr) %{
4486     instruction_count(1); multiple_bundles;
4487     dst   : E(write);
4488     src1  : R(read);
4489     src2  : R(read);
4490     cr    : E(write);
4491     IALU  : R(2);
4492 %}
4493 
4494 // Integer ALU reg-imm operaion
4495 pipe_class ialu_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4496     single_instruction;
4497     dst   : E(write);
4498     src1  : R(read);
4499     IALU  : R;
4500 %}
4501 
4502 // Integer ALU reg-reg operation with condition code
4503 pipe_class ialu_cc_reg_reg(iRegI dst, iRegI src1, iRegI src2, flagsReg cr) %{
4504     single_instruction;
4505     dst   : E(write);
4506     cr    : E(write);
4507     src1  : R(read);
4508     src2  : R(read);
4509     IALU  : R;
4510 %}
4511 
4512 // Integer ALU reg-imm operation with condition code
4513 pipe_class ialu_cc_reg_imm(iRegI dst, iRegI src1, immI13 src2, flagsReg cr) %{
4514     single_instruction;
4515     dst   : E(write);
4516     cr    : E(write);
4517     src1  : R(read);
4518     IALU  : R;
4519 %}
4520 
4521 // Integer ALU zero-reg operation
4522 pipe_class ialu_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
4523     single_instruction;
4524     dst   : E(write);
4525     src2  : R(read);
4526     IALU  : R;
4527 %}
4528 
4529 // Integer ALU zero-reg operation with condition code only
4530 pipe_class ialu_cconly_zero_reg(flagsReg cr, iRegI src) %{
4531     single_instruction;
4532     cr    : E(write);
4533     src   : R(read);
4534     IALU  : R;
4535 %}
4536 
4537 // Integer ALU reg-reg operation with condition code only
4538 pipe_class ialu_cconly_reg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4539     single_instruction;
4540     cr    : E(write);
4541     src1  : R(read);
4542     src2  : R(read);
4543     IALU  : R;
4544 %}
4545 
4546 // Integer ALU reg-imm operation with condition code only
4547 pipe_class ialu_cconly_reg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4548     single_instruction;
4549     cr    : E(write);
4550     src1  : R(read);
4551     IALU  : R;
4552 %}
4553 
4554 // Integer ALU reg-reg-zero operation with condition code only
4555 pipe_class ialu_cconly_reg_reg_zero(flagsReg cr, iRegI src1, iRegI src2, immI0 zero) %{
4556     single_instruction;
4557     cr    : E(write);
4558     src1  : R(read);
4559     src2  : R(read);
4560     IALU  : R;
4561 %}
4562 
4563 // Integer ALU reg-imm-zero operation with condition code only
4564 pipe_class ialu_cconly_reg_imm_zero(flagsReg cr, iRegI src1, immI13 src2, immI0 zero) %{
4565     single_instruction;
4566     cr    : E(write);
4567     src1  : R(read);
4568     IALU  : R;
4569 %}
4570 
4571 // Integer ALU reg-reg operation with condition code, src1 modified
4572 pipe_class ialu_cc_rwreg_reg(flagsReg cr, iRegI src1, iRegI src2) %{
4573     single_instruction;
4574     cr    : E(write);
4575     src1  : E(write);
4576     src1  : R(read);
4577     src2  : R(read);
4578     IALU  : R;
4579 %}
4580 
4581 // Integer ALU reg-imm operation with condition code, src1 modified
4582 pipe_class ialu_cc_rwreg_imm(flagsReg cr, iRegI src1, immI13 src2) %{
4583     single_instruction;
4584     cr    : E(write);
4585     src1  : E(write);
4586     src1  : R(read);
4587     IALU  : R;
4588 %}
4589 
4590 pipe_class cmpL_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg cr ) %{
4591     multiple_bundles;
4592     dst   : E(write)+4;
4593     cr    : E(write);
4594     src1  : R(read);
4595     src2  : R(read);
4596     IALU  : R(3);
4597     BR    : R(2);
4598 %}
4599 
4600 // Integer ALU operation
4601 pipe_class ialu_none(iRegI dst) %{
4602     single_instruction;
4603     dst   : E(write);
4604     IALU  : R;
4605 %}
4606 
4607 // Integer ALU reg operation
4608 pipe_class ialu_reg(iRegI dst, iRegI src) %{
4609     single_instruction; may_have_no_code;
4610     dst   : E(write);
4611     src   : R(read);
4612     IALU  : R;
4613 %}
4614 
4615 // Integer ALU reg conditional operation
4616 // This instruction has a 1 cycle stall, and cannot execute
4617 // in the same cycle as the instruction setting the condition
4618 // code. We kludge this by pretending to read the condition code
4619 // 1 cycle earlier, and by marking the functional units as busy
4620 // for 2 cycles with the result available 1 cycle later than
4621 // is really the case.
4622 pipe_class ialu_reg_flags( iRegI op2_out, iRegI op2_in, iRegI op1, flagsReg cr ) %{
4623     single_instruction;
4624     op2_out : C(write);
4625     op1     : R(read);
4626     cr      : R(read);       // This is really E, with a 1 cycle stall
4627     BR      : R(2);
4628     MS      : R(2);
4629 %}
4630 
4631 #ifdef _LP64
4632 pipe_class ialu_clr_and_mover( iRegI dst, iRegP src ) %{
4633     instruction_count(1); multiple_bundles;
4634     dst     : C(write)+1;
4635     src     : R(read)+1;
4636     IALU    : R(1);
4637     BR      : E(2);
4638     MS      : E(2);
4639 %}
4640 #endif
4641 
4642 // Integer ALU reg operation
4643 pipe_class ialu_move_reg_L_to_I(iRegI dst, iRegL src) %{
4644     single_instruction; may_have_no_code;
4645     dst   : E(write);
4646     src   : R(read);
4647     IALU  : R;
4648 %}
4649 pipe_class ialu_move_reg_I_to_L(iRegL dst, iRegI src) %{
4650     single_instruction; may_have_no_code;
4651     dst   : E(write);
4652     src   : R(read);
4653     IALU  : R;
4654 %}
4655 
4656 // Two integer ALU reg operations
4657 pipe_class ialu_reg_2(iRegL dst, iRegL src) %{
4658     instruction_count(2);
4659     dst   : E(write);
4660     src   : R(read);
4661     A0    : R;
4662     A1    : R;
4663 %}
4664 
4665 // Two integer ALU reg operations
4666 pipe_class ialu_move_reg_L_to_L(iRegL dst, iRegL src) %{
4667     instruction_count(2); may_have_no_code;
4668     dst   : E(write);
4669     src   : R(read);
4670     A0    : R;
4671     A1    : R;
4672 %}
4673 
4674 // Integer ALU imm operation
4675 pipe_class ialu_imm(iRegI dst, immI13 src) %{
4676     single_instruction;
4677     dst   : E(write);
4678     IALU  : R;
4679 %}
4680 
4681 // Integer ALU reg-reg with carry operation
4682 pipe_class ialu_reg_reg_cy(iRegI dst, iRegI src1, iRegI src2, iRegI cy) %{
4683     single_instruction;
4684     dst   : E(write);
4685     src1  : R(read);
4686     src2  : R(read);
4687     IALU  : R;
4688 %}
4689 
4690 // Integer ALU cc operation
4691 pipe_class ialu_cc(iRegI dst, flagsReg cc) %{
4692     single_instruction;
4693     dst   : E(write);
4694     cc    : R(read);
4695     IALU  : R;
4696 %}
4697 
4698 // Integer ALU cc / second IALU operation
4699 pipe_class ialu_reg_ialu( iRegI dst, iRegI src ) %{
4700     instruction_count(1); multiple_bundles;
4701     dst   : E(write)+1;
4702     src   : R(read);
4703     IALU  : R;
4704 %}
4705 
4706 // Integer ALU cc / second IALU operation
4707 pipe_class ialu_reg_reg_ialu( iRegI dst, iRegI p, iRegI q ) %{
4708     instruction_count(1); multiple_bundles;
4709     dst   : E(write)+1;
4710     p     : R(read);
4711     q     : R(read);
4712     IALU  : R;
4713 %}
4714 
4715 // Integer ALU hi-lo-reg operation
4716 pipe_class ialu_hi_lo_reg(iRegI dst, immI src) %{
4717     instruction_count(1); multiple_bundles;
4718     dst   : E(write)+1;
4719     IALU  : R(2);
4720 %}
4721 
4722 // Float ALU hi-lo-reg operation (with temp)
4723 pipe_class ialu_hi_lo_reg_temp(regF dst, immF src, g3RegP tmp) %{
4724     instruction_count(1); multiple_bundles;
4725     dst   : E(write)+1;
4726     IALU  : R(2);
4727 %}
4728 
4729 // Long Constant
4730 pipe_class loadConL( iRegL dst, immL src ) %{
4731     instruction_count(2); multiple_bundles;
4732     dst   : E(write)+1;
4733     IALU  : R(2);
4734     IALU  : R(2);
4735 %}
4736 
4737 // Pointer Constant
4738 pipe_class loadConP( iRegP dst, immP src ) %{
4739     instruction_count(0); multiple_bundles;
4740     fixed_latency(6);
4741 %}
4742 
4743 // Polling Address
4744 pipe_class loadConP_poll( iRegP dst, immP_poll src ) %{
4745 #ifdef _LP64
4746     instruction_count(0); multiple_bundles;
4747     fixed_latency(6);
4748 #else
4749     dst   : E(write);
4750     IALU  : R;
4751 #endif
4752 %}
4753 
4754 // Long Constant small
4755 pipe_class loadConLlo( iRegL dst, immL src ) %{
4756     instruction_count(2);
4757     dst   : E(write);
4758     IALU  : R;
4759     IALU  : R;
4760 %}
4761 
4762 // [PHH] This is wrong for 64-bit.  See LdImmF/D.
4763 pipe_class loadConFD(regF dst, immF src, g3RegP tmp) %{
4764     instruction_count(1); multiple_bundles;
4765     src   : R(read);
4766     dst   : M(write)+1;
4767     IALU  : R;
4768     MS    : E;
4769 %}
4770 
4771 // Integer ALU nop operation
4772 pipe_class ialu_nop() %{
4773     single_instruction;
4774     IALU  : R;
4775 %}
4776 
4777 // Integer ALU nop operation
4778 pipe_class ialu_nop_A0() %{
4779     single_instruction;
4780     A0    : R;
4781 %}
4782 
4783 // Integer ALU nop operation
4784 pipe_class ialu_nop_A1() %{
4785     single_instruction;
4786     A1    : R;
4787 %}
4788 
4789 // Integer Multiply reg-reg operation
4790 pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
4791     single_instruction;
4792     dst   : E(write);
4793     src1  : R(read);
4794     src2  : R(read);
4795     MS    : R(5);
4796 %}
4797 
4798 // Integer Multiply reg-imm operation
4799 pipe_class imul_reg_imm(iRegI dst, iRegI src1, immI13 src2) %{
4800     single_instruction;
4801     dst   : E(write);
4802     src1  : R(read);
4803     MS    : R(5);
4804 %}
4805 
4806 pipe_class mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4807     single_instruction;
4808     dst   : E(write)+4;
4809     src1  : R(read);
4810     src2  : R(read);
4811     MS    : R(6);
4812 %}
4813 
4814 pipe_class mulL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4815     single_instruction;
4816     dst   : E(write)+4;
4817     src1  : R(read);
4818     MS    : R(6);
4819 %}
4820 
4821 // Integer Divide reg-reg
4822 pipe_class sdiv_reg_reg(iRegI dst, iRegI src1, iRegI src2, iRegI temp, flagsReg cr) %{
4823     instruction_count(1); multiple_bundles;
4824     dst   : E(write);
4825     temp  : E(write);
4826     src1  : R(read);
4827     src2  : R(read);
4828     temp  : R(read);
4829     MS    : R(38);
4830 %}
4831 
4832 // Integer Divide reg-imm
4833 pipe_class sdiv_reg_imm(iRegI dst, iRegI src1, immI13 src2, iRegI temp, flagsReg cr) %{
4834     instruction_count(1); multiple_bundles;
4835     dst   : E(write);
4836     temp  : E(write);
4837     src1  : R(read);
4838     temp  : R(read);
4839     MS    : R(38);
4840 %}
4841 
4842 // Long Divide
4843 pipe_class divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
4844     dst  : E(write)+71;
4845     src1 : R(read);
4846     src2 : R(read)+1;
4847     MS   : R(70);
4848 %}
4849 
4850 pipe_class divL_reg_imm(iRegL dst, iRegL src1, immL13 src2) %{
4851     dst  : E(write)+71;
4852     src1 : R(read);
4853     MS   : R(70);
4854 %}
4855 
4856 // Floating Point Add Float
4857 pipe_class faddF_reg_reg(regF dst, regF src1, regF src2) %{
4858     single_instruction;
4859     dst   : X(write);
4860     src1  : E(read);
4861     src2  : E(read);
4862     FA    : R;
4863 %}
4864 
4865 // Floating Point Add Double
4866 pipe_class faddD_reg_reg(regD dst, regD src1, regD src2) %{
4867     single_instruction;
4868     dst   : X(write);
4869     src1  : E(read);
4870     src2  : E(read);
4871     FA    : R;
4872 %}
4873 
4874 // Floating Point Conditional Move based on integer flags
4875 pipe_class int_conditional_float_move (cmpOp cmp, flagsReg cr, regF dst, regF src) %{
4876     single_instruction;
4877     dst   : X(write);
4878     src   : E(read);
4879     cr    : R(read);
4880     FA    : R(2);
4881     BR    : R(2);
4882 %}
4883 
4884 // Floating Point Conditional Move based on integer flags
4885 pipe_class int_conditional_double_move (cmpOp cmp, flagsReg cr, regD dst, regD src) %{
4886     single_instruction;
4887     dst   : X(write);
4888     src   : E(read);
4889     cr    : R(read);
4890     FA    : R(2);
4891     BR    : R(2);
4892 %}
4893 
4894 // Floating Point Multiply Float
4895 pipe_class fmulF_reg_reg(regF dst, regF src1, regF src2) %{
4896     single_instruction;
4897     dst   : X(write);
4898     src1  : E(read);
4899     src2  : E(read);
4900     FM    : R;
4901 %}
4902 
4903 // Floating Point Multiply Double
4904 pipe_class fmulD_reg_reg(regD dst, regD src1, regD src2) %{
4905     single_instruction;
4906     dst   : X(write);
4907     src1  : E(read);
4908     src2  : E(read);
4909     FM    : R;
4910 %}
4911 
4912 // Floating Point Divide Float
4913 pipe_class fdivF_reg_reg(regF dst, regF src1, regF src2) %{
4914     single_instruction;
4915     dst   : X(write);
4916     src1  : E(read);
4917     src2  : E(read);
4918     FM    : R;
4919     FDIV  : C(14);
4920 %}
4921 
4922 // Floating Point Divide Double
4923 pipe_class fdivD_reg_reg(regD dst, regD src1, regD src2) %{
4924     single_instruction;
4925     dst   : X(write);
4926     src1  : E(read);
4927     src2  : E(read);
4928     FM    : R;
4929     FDIV  : C(17);
4930 %}
4931 
4932 // Floating Point Move/Negate/Abs Float
4933 pipe_class faddF_reg(regF dst, regF src) %{
4934     single_instruction;
4935     dst   : W(write);
4936     src   : E(read);
4937     FA    : R(1);
4938 %}
4939 
4940 // Floating Point Move/Negate/Abs Double
4941 pipe_class faddD_reg(regD dst, regD src) %{
4942     single_instruction;
4943     dst   : W(write);
4944     src   : E(read);
4945     FA    : R;
4946 %}
4947 
4948 // Floating Point Convert F->D
4949 pipe_class fcvtF2D(regD dst, regF src) %{
4950     single_instruction;
4951     dst   : X(write);
4952     src   : E(read);
4953     FA    : R;
4954 %}
4955 
4956 // Floating Point Convert I->D
4957 pipe_class fcvtI2D(regD dst, regF src) %{
4958     single_instruction;
4959     dst   : X(write);
4960     src   : E(read);
4961     FA    : R;
4962 %}
4963 
4964 // Floating Point Convert LHi->D
4965 pipe_class fcvtLHi2D(regD dst, regD src) %{
4966     single_instruction;
4967     dst   : X(write);
4968     src   : E(read);
4969     FA    : R;
4970 %}
4971 
4972 // Floating Point Convert L->D
4973 pipe_class fcvtL2D(regD dst, regF src) %{
4974     single_instruction;
4975     dst   : X(write);
4976     src   : E(read);
4977     FA    : R;
4978 %}
4979 
4980 // Floating Point Convert L->F
4981 pipe_class fcvtL2F(regD dst, regF src) %{
4982     single_instruction;
4983     dst   : X(write);
4984     src   : E(read);
4985     FA    : R;
4986 %}
4987 
4988 // Floating Point Convert D->F
4989 pipe_class fcvtD2F(regD dst, regF src) %{
4990     single_instruction;
4991     dst   : X(write);
4992     src   : E(read);
4993     FA    : R;
4994 %}
4995 
4996 // Floating Point Convert I->L
4997 pipe_class fcvtI2L(regD dst, regF src) %{
4998     single_instruction;
4999     dst   : X(write);
5000     src   : E(read);
5001     FA    : R;
5002 %}
5003 
5004 // Floating Point Convert D->F
5005 pipe_class fcvtD2I(regF dst, regD src, flagsReg cr) %{
5006     instruction_count(1); multiple_bundles;
5007     dst   : X(write)+6;
5008     src   : E(read);
5009     FA    : R;
5010 %}
5011 
5012 // Floating Point Convert D->L
5013 pipe_class fcvtD2L(regD dst, regD src, flagsReg cr) %{
5014     instruction_count(1); multiple_bundles;
5015     dst   : X(write)+6;
5016     src   : E(read);
5017     FA    : R;
5018 %}
5019 
5020 // Floating Point Convert F->I
5021 pipe_class fcvtF2I(regF dst, regF src, flagsReg cr) %{
5022     instruction_count(1); multiple_bundles;
5023     dst   : X(write)+6;
5024     src   : E(read);
5025     FA    : R;
5026 %}
5027 
5028 // Floating Point Convert F->L
5029 pipe_class fcvtF2L(regD dst, regF src, flagsReg cr) %{
5030     instruction_count(1); multiple_bundles;
5031     dst   : X(write)+6;
5032     src   : E(read);
5033     FA    : R;
5034 %}
5035 
5036 // Floating Point Convert I->F
5037 pipe_class fcvtI2F(regF dst, regF src) %{
5038     single_instruction;
5039     dst   : X(write);
5040     src   : E(read);
5041     FA    : R;
5042 %}
5043 
5044 // Floating Point Compare
5045 pipe_class faddF_fcc_reg_reg_zero(flagsRegF cr, regF src1, regF src2, immI0 zero) %{
5046     single_instruction;
5047     cr    : X(write);
5048     src1  : E(read);
5049     src2  : E(read);
5050     FA    : R;
5051 %}
5052 
5053 // Floating Point Compare
5054 pipe_class faddD_fcc_reg_reg_zero(flagsRegF cr, regD src1, regD src2, immI0 zero) %{
5055     single_instruction;
5056     cr    : X(write);
5057     src1  : E(read);
5058     src2  : E(read);
5059     FA    : R;
5060 %}
5061 
5062 // Floating Add Nop
5063 pipe_class fadd_nop() %{
5064     single_instruction;
5065     FA  : R;
5066 %}
5067 
5068 // Integer Store to Memory
5069 pipe_class istore_mem_reg(memory mem, iRegI src) %{
5070     single_instruction;
5071     mem   : R(read);
5072     src   : C(read);
5073     MS    : R;
5074 %}
5075 
5076 // Integer Store to Memory
5077 pipe_class istore_mem_spORreg(memory mem, sp_ptr_RegP src) %{
5078     single_instruction;
5079     mem   : R(read);
5080     src   : C(read);
5081     MS    : R;
5082 %}
5083 
5084 // Integer Store Zero to Memory
5085 pipe_class istore_mem_zero(memory mem, immI0 src) %{
5086     single_instruction;
5087     mem   : R(read);
5088     MS    : R;
5089 %}
5090 
5091 // Special Stack Slot Store
5092 pipe_class istore_stk_reg(stackSlotI stkSlot, iRegI src) %{
5093     single_instruction;
5094     stkSlot : R(read);
5095     src     : C(read);
5096     MS      : R;
5097 %}
5098 
5099 // Special Stack Slot Store
5100 pipe_class lstoreI_stk_reg(stackSlotL stkSlot, iRegI src) %{
5101     instruction_count(2); multiple_bundles;
5102     stkSlot : R(read);
5103     src     : C(read);
5104     MS      : R(2);
5105 %}
5106 
5107 // Float Store
5108 pipe_class fstoreF_mem_reg(memory mem, RegF src) %{
5109     single_instruction;
5110     mem : R(read);
5111     src : C(read);
5112     MS  : R;
5113 %}
5114 
5115 // Float Store
5116 pipe_class fstoreF_mem_zero(memory mem, immF0 src) %{
5117     single_instruction;
5118     mem : R(read);
5119     MS  : R;
5120 %}
5121 
5122 // Double Store
5123 pipe_class fstoreD_mem_reg(memory mem, RegD src) %{
5124     instruction_count(1);
5125     mem : R(read);
5126     src : C(read);
5127     MS  : R;
5128 %}
5129 
5130 // Double Store
5131 pipe_class fstoreD_mem_zero(memory mem, immD0 src) %{
5132     single_instruction;
5133     mem : R(read);
5134     MS  : R;
5135 %}
5136 
5137 // Special Stack Slot Float Store
5138 pipe_class fstoreF_stk_reg(stackSlotI stkSlot, RegF src) %{
5139     single_instruction;
5140     stkSlot : R(read);
5141     src     : C(read);
5142     MS      : R;
5143 %}
5144 
5145 // Special Stack Slot Double Store
5146 pipe_class fstoreD_stk_reg(stackSlotI stkSlot, RegD src) %{
5147     single_instruction;
5148     stkSlot : R(read);
5149     src     : C(read);
5150     MS      : R;
5151 %}
5152 
5153 // Integer Load (when sign bit propagation not needed)
5154 pipe_class iload_mem(iRegI dst, memory mem) %{
5155     single_instruction;
5156     mem : R(read);
5157     dst : C(write);
5158     MS  : R;
5159 %}
5160 
5161 // Integer Load from stack operand
5162 pipe_class iload_stkD(iRegI dst, stackSlotD mem ) %{
5163     single_instruction;
5164     mem : R(read);
5165     dst : C(write);
5166     MS  : R;
5167 %}
5168 
5169 // Integer Load (when sign bit propagation or masking is needed)
5170 pipe_class iload_mask_mem(iRegI dst, memory mem) %{
5171     single_instruction;
5172     mem : R(read);
5173     dst : M(write);
5174     MS  : R;
5175 %}
5176 
5177 // Float Load
5178 pipe_class floadF_mem(regF dst, memory mem) %{
5179     single_instruction;
5180     mem : R(read);
5181     dst : M(write);
5182     MS  : R;
5183 %}
5184 
5185 // Float Load
5186 pipe_class floadD_mem(regD dst, memory mem) %{
5187     instruction_count(1); multiple_bundles; // Again, unaligned argument is only multiple case
5188     mem : R(read);
5189     dst : M(write);
5190     MS  : R;
5191 %}
5192 
5193 // Float Load
5194 pipe_class floadF_stk(regF dst, stackSlotI stkSlot) %{
5195     single_instruction;
5196     stkSlot : R(read);
5197     dst : M(write);
5198     MS  : R;
5199 %}
5200 
5201 // Float Load
5202 pipe_class floadD_stk(regD dst, stackSlotI stkSlot) %{
5203     single_instruction;
5204     stkSlot : R(read);
5205     dst : M(write);
5206     MS  : R;
5207 %}
5208 
5209 // Memory Nop
5210 pipe_class mem_nop() %{
5211     single_instruction;
5212     MS  : R;
5213 %}
5214 
5215 pipe_class sethi(iRegP dst, immI src) %{
5216     single_instruction;
5217     dst  : E(write);
5218     IALU : R;
5219 %}
5220 
5221 pipe_class loadPollP(iRegP poll) %{
5222     single_instruction;
5223     poll : R(read);
5224     MS   : R;
5225 %}
5226 
5227 pipe_class br(Universe br, label labl) %{
5228     single_instruction_with_delay_slot;
5229     BR  : R;
5230 %}
5231 
5232 pipe_class br_cc(Universe br, cmpOp cmp, flagsReg cr, label labl) %{
5233     single_instruction_with_delay_slot;
5234     cr    : E(read);
5235     BR    : R;
5236 %}
5237 
5238 pipe_class br_reg(Universe br, cmpOp cmp, iRegI op1, label labl) %{
5239     single_instruction_with_delay_slot;
5240     op1 : E(read);
5241     BR  : R;
5242     MS  : R;
5243 %}
5244 
5245 // Compare and branch
5246 pipe_class cmp_br_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl, flagsReg cr) %{
5247     instruction_count(2); has_delay_slot;
5248     cr    : E(write);
5249     src1  : R(read);
5250     src2  : R(read);
5251     IALU  : R;
5252     BR    : R;
5253 %}
5254 
5255 // Compare and branch
5256 pipe_class cmp_br_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI13 src2, label labl, flagsReg cr) %{
5257     instruction_count(2); has_delay_slot;
5258     cr    : E(write);
5259     src1  : R(read);
5260     IALU  : R;
5261     BR    : R;
5262 %}
5263 
5264 // Compare and branch using cbcond
5265 pipe_class cbcond_reg_reg(Universe br, cmpOp cmp, iRegI src1, iRegI src2, label labl) %{
5266     single_instruction;
5267     src1  : E(read);
5268     src2  : E(read);
5269     IALU  : R;
5270     BR    : R;
5271 %}
5272 
5273 // Compare and branch using cbcond
5274 pipe_class cbcond_reg_imm(Universe br, cmpOp cmp, iRegI src1, immI5 src2, label labl) %{
5275     single_instruction;
5276     src1  : E(read);
5277     IALU  : R;
5278     BR    : R;
5279 %}
5280 
5281 pipe_class br_fcc(Universe br, cmpOpF cc, flagsReg cr, label labl) %{
5282     single_instruction_with_delay_slot;
5283     cr    : E(read);
5284     BR    : R;
5285 %}
5286 
5287 pipe_class br_nop() %{
5288     single_instruction;
5289     BR  : R;
5290 %}
5291 
5292 pipe_class simple_call(method meth) %{
5293     instruction_count(2); multiple_bundles; force_serialization;
5294     fixed_latency(100);
5295     BR  : R(1);
5296     MS  : R(1);
5297     A0  : R(1);
5298 %}
5299 
5300 pipe_class compiled_call(method meth) %{
5301     instruction_count(1); multiple_bundles; force_serialization;
5302     fixed_latency(100);
5303     MS  : R(1);
5304 %}
5305 
5306 pipe_class call(method meth) %{
5307     instruction_count(0); multiple_bundles; force_serialization;
5308     fixed_latency(100);
5309 %}
5310 
5311 pipe_class tail_call(Universe ignore, label labl) %{
5312     single_instruction; has_delay_slot;
5313     fixed_latency(100);
5314     BR  : R(1);
5315     MS  : R(1);
5316 %}
5317 
5318 pipe_class ret(Universe ignore) %{
5319     single_instruction; has_delay_slot;
5320     BR  : R(1);
5321     MS  : R(1);
5322 %}
5323 
5324 pipe_class ret_poll(g3RegP poll) %{
5325     instruction_count(3); has_delay_slot;
5326     poll : E(read);
5327     MS   : R;
5328 %}
5329 
5330 // The real do-nothing guy
5331 pipe_class empty( ) %{
5332     instruction_count(0);
5333 %}
5334 
5335 pipe_class long_memory_op() %{
5336     instruction_count(0); multiple_bundles; force_serialization;
5337     fixed_latency(25);
5338     MS  : R(1);
5339 %}
5340 
5341 // Check-cast
5342 pipe_class partial_subtype_check_pipe(Universe ignore, iRegP array, iRegP match ) %{
5343     array : R(read);
5344     match  : R(read);
5345     IALU   : R(2);
5346     BR     : R(2);
5347     MS     : R;
5348 %}
5349 
5350 // Convert FPU flags into +1,0,-1
5351 pipe_class floating_cmp( iRegI dst, regF src1, regF src2 ) %{
5352     src1  : E(read);
5353     src2  : E(read);
5354     dst   : E(write);
5355     FA    : R;
5356     MS    : R(2);
5357     BR    : R(2);
5358 %}
5359 
5360 // Compare for p < q, and conditionally add y
5361 pipe_class cadd_cmpltmask( iRegI p, iRegI q, iRegI y ) %{
5362     p     : E(read);
5363     q     : E(read);
5364     y     : E(read);
5365     IALU  : R(3)
5366 %}
5367 
5368 // Perform a compare, then move conditionally in a branch delay slot.
5369 pipe_class min_max( iRegI src2, iRegI srcdst ) %{
5370     src2   : E(read);
5371     srcdst : E(read);
5372     IALU   : R;
5373     BR     : R;
5374 %}
5375 
5376 // Define the class for the Nop node
5377 define %{
5378    MachNop = ialu_nop;
5379 %}
5380 
5381 %}
5382 
5383 //----------INSTRUCTIONS-------------------------------------------------------
5384 
5385 //------------Special Stack Slot instructions - no match rules-----------------
5386 instruct stkI_to_regF(regF dst, stackSlotI src) %{
5387   // No match rule to avoid chain rule match.
5388   effect(DEF dst, USE src);
5389   ins_cost(MEMORY_REF_COST);
5390   size(4);
5391   format %{ "LDF    $src,$dst\t! stkI to regF" %}
5392   opcode(Assembler::ldf_op3);
5393   ins_encode(simple_form3_mem_reg(src, dst));
5394   ins_pipe(floadF_stk);
5395 %}
5396 
5397 instruct stkL_to_regD(regD dst, stackSlotL src) %{
5398   // No match rule to avoid chain rule match.
5399   effect(DEF dst, USE src);
5400   ins_cost(MEMORY_REF_COST);
5401   size(4);
5402   format %{ "LDDF   $src,$dst\t! stkL to regD" %}
5403   opcode(Assembler::lddf_op3);
5404   ins_encode(simple_form3_mem_reg(src, dst));
5405   ins_pipe(floadD_stk);
5406 %}
5407 
5408 instruct regF_to_stkI(stackSlotI dst, regF src) %{
5409   // No match rule to avoid chain rule match.
5410   effect(DEF dst, USE src);
5411   ins_cost(MEMORY_REF_COST);
5412   size(4);
5413   format %{ "STF    $src,$dst\t! regF to stkI" %}
5414   opcode(Assembler::stf_op3);
5415   ins_encode(simple_form3_mem_reg(dst, src));
5416   ins_pipe(fstoreF_stk_reg);
5417 %}
5418 
5419 instruct regD_to_stkL(stackSlotL dst, regD src) %{
5420   // No match rule to avoid chain rule match.
5421   effect(DEF dst, USE src);
5422   ins_cost(MEMORY_REF_COST);
5423   size(4);
5424   format %{ "STDF   $src,$dst\t! regD to stkL" %}
5425   opcode(Assembler::stdf_op3);
5426   ins_encode(simple_form3_mem_reg(dst, src));
5427   ins_pipe(fstoreD_stk_reg);
5428 %}
5429 
5430 instruct regI_to_stkLHi(stackSlotL dst, iRegI src) %{
5431   effect(DEF dst, USE src);
5432   ins_cost(MEMORY_REF_COST*2);
5433   size(8);
5434   format %{ "STW    $src,$dst.hi\t! long\n\t"
5435             "STW    R_G0,$dst.lo" %}
5436   opcode(Assembler::stw_op3);
5437   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, R_G0));
5438   ins_pipe(lstoreI_stk_reg);
5439 %}
5440 
5441 instruct regL_to_stkD(stackSlotD dst, iRegL src) %{
5442   // No match rule to avoid chain rule match.
5443   effect(DEF dst, USE src);
5444   ins_cost(MEMORY_REF_COST);
5445   size(4);
5446   format %{ "STX    $src,$dst\t! regL to stkD" %}
5447   opcode(Assembler::stx_op3);
5448   ins_encode(simple_form3_mem_reg( dst, src ) );
5449   ins_pipe(istore_stk_reg);
5450 %}
5451 
5452 //---------- Chain stack slots between similar types --------
5453 
5454 // Load integer from stack slot
5455 instruct stkI_to_regI( iRegI dst, stackSlotI src ) %{
5456   match(Set dst src);
5457   ins_cost(MEMORY_REF_COST);
5458 
5459   size(4);
5460   format %{ "LDUW   $src,$dst\t!stk" %}
5461   opcode(Assembler::lduw_op3);
5462   ins_encode(simple_form3_mem_reg( src, dst ) );
5463   ins_pipe(iload_mem);
5464 %}
5465 
5466 // Store integer to stack slot
5467 instruct regI_to_stkI( stackSlotI dst, iRegI src ) %{
5468   match(Set dst src);
5469   ins_cost(MEMORY_REF_COST);
5470 
5471   size(4);
5472   format %{ "STW    $src,$dst\t!stk" %}
5473   opcode(Assembler::stw_op3);
5474   ins_encode(simple_form3_mem_reg( dst, src ) );
5475   ins_pipe(istore_mem_reg);
5476 %}
5477 
5478 // Load long from stack slot
5479 instruct stkL_to_regL( iRegL dst, stackSlotL src ) %{
5480   match(Set dst src);
5481 
5482   ins_cost(MEMORY_REF_COST);
5483   size(4);
5484   format %{ "LDX    $src,$dst\t! long" %}
5485   opcode(Assembler::ldx_op3);
5486   ins_encode(simple_form3_mem_reg( src, dst ) );
5487   ins_pipe(iload_mem);
5488 %}
5489 
5490 // Store long to stack slot
5491 instruct regL_to_stkL(stackSlotL dst, iRegL src) %{
5492   match(Set dst src);
5493 
5494   ins_cost(MEMORY_REF_COST);
5495   size(4);
5496   format %{ "STX    $src,$dst\t! long" %}
5497   opcode(Assembler::stx_op3);
5498   ins_encode(simple_form3_mem_reg( dst, src ) );
5499   ins_pipe(istore_mem_reg);
5500 %}
5501 
5502 #ifdef _LP64
5503 // Load pointer from stack slot, 64-bit encoding
5504 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5505   match(Set dst src);
5506   ins_cost(MEMORY_REF_COST);
5507   size(4);
5508   format %{ "LDX    $src,$dst\t!ptr" %}
5509   opcode(Assembler::ldx_op3);
5510   ins_encode(simple_form3_mem_reg( src, dst ) );
5511   ins_pipe(iload_mem);
5512 %}
5513 
5514 // Store pointer to stack slot
5515 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5516   match(Set dst src);
5517   ins_cost(MEMORY_REF_COST);
5518   size(4);
5519   format %{ "STX    $src,$dst\t!ptr" %}
5520   opcode(Assembler::stx_op3);
5521   ins_encode(simple_form3_mem_reg( dst, src ) );
5522   ins_pipe(istore_mem_reg);
5523 %}
5524 #else // _LP64
5525 // Load pointer from stack slot, 32-bit encoding
5526 instruct stkP_to_regP( iRegP dst, stackSlotP src ) %{
5527   match(Set dst src);
5528   ins_cost(MEMORY_REF_COST);
5529   format %{ "LDUW   $src,$dst\t!ptr" %}
5530   opcode(Assembler::lduw_op3, Assembler::ldst_op);
5531   ins_encode(simple_form3_mem_reg( src, dst ) );
5532   ins_pipe(iload_mem);
5533 %}
5534 
5535 // Store pointer to stack slot
5536 instruct regP_to_stkP(stackSlotP dst, iRegP src) %{
5537   match(Set dst src);
5538   ins_cost(MEMORY_REF_COST);
5539   format %{ "STW    $src,$dst\t!ptr" %}
5540   opcode(Assembler::stw_op3, Assembler::ldst_op);
5541   ins_encode(simple_form3_mem_reg( dst, src ) );
5542   ins_pipe(istore_mem_reg);
5543 %}
5544 #endif // _LP64
5545 
5546 //------------Special Nop instructions for bundling - no match rules-----------
5547 // Nop using the A0 functional unit
5548 instruct Nop_A0() %{
5549   ins_cost(0);
5550 
5551   format %{ "NOP    ! Alu Pipeline" %}
5552   opcode(Assembler::or_op3, Assembler::arith_op);
5553   ins_encode( form2_nop() );
5554   ins_pipe(ialu_nop_A0);
5555 %}
5556 
5557 // Nop using the A1 functional unit
5558 instruct Nop_A1( ) %{
5559   ins_cost(0);
5560 
5561   format %{ "NOP    ! Alu Pipeline" %}
5562   opcode(Assembler::or_op3, Assembler::arith_op);
5563   ins_encode( form2_nop() );
5564   ins_pipe(ialu_nop_A1);
5565 %}
5566 
5567 // Nop using the memory functional unit
5568 instruct Nop_MS( ) %{
5569   ins_cost(0);
5570 
5571   format %{ "NOP    ! Memory Pipeline" %}
5572   ins_encode( emit_mem_nop );
5573   ins_pipe(mem_nop);
5574 %}
5575 
5576 // Nop using the floating add functional unit
5577 instruct Nop_FA( ) %{
5578   ins_cost(0);
5579 
5580   format %{ "NOP    ! Floating Add Pipeline" %}
5581   ins_encode( emit_fadd_nop );
5582   ins_pipe(fadd_nop);
5583 %}
5584 
5585 // Nop using the branch functional unit
5586 instruct Nop_BR( ) %{
5587   ins_cost(0);
5588 
5589   format %{ "NOP    ! Branch Pipeline" %}
5590   ins_encode( emit_br_nop );
5591   ins_pipe(br_nop);
5592 %}
5593 
5594 //----------Load/Store/Move Instructions---------------------------------------
5595 //----------Load Instructions--------------------------------------------------
5596 // Load Byte (8bit signed)
5597 instruct loadB(iRegI dst, memory mem) %{
5598   match(Set dst (LoadB mem));
5599   ins_cost(MEMORY_REF_COST);
5600 
5601   size(4);
5602   format %{ "LDSB   $mem,$dst\t! byte" %}
5603   ins_encode %{
5604     __ ldsb($mem$$Address, $dst$$Register);
5605   %}
5606   ins_pipe(iload_mask_mem);
5607 %}
5608 
5609 // Load Byte (8bit signed) into a Long Register
5610 instruct loadB2L(iRegL dst, memory mem) %{
5611   match(Set dst (ConvI2L (LoadB mem)));
5612   ins_cost(MEMORY_REF_COST);
5613 
5614   size(4);
5615   format %{ "LDSB   $mem,$dst\t! byte -> long" %}
5616   ins_encode %{
5617     __ ldsb($mem$$Address, $dst$$Register);
5618   %}
5619   ins_pipe(iload_mask_mem);
5620 %}
5621 
5622 // Load Unsigned Byte (8bit UNsigned) into an int reg
5623 instruct loadUB(iRegI dst, memory mem) %{
5624   match(Set dst (LoadUB mem));
5625   ins_cost(MEMORY_REF_COST);
5626 
5627   size(4);
5628   format %{ "LDUB   $mem,$dst\t! ubyte" %}
5629   ins_encode %{
5630     __ ldub($mem$$Address, $dst$$Register);
5631   %}
5632   ins_pipe(iload_mem);
5633 %}
5634 
5635 // Load Unsigned Byte (8bit UNsigned) into a Long Register
5636 instruct loadUB2L(iRegL dst, memory mem) %{
5637   match(Set dst (ConvI2L (LoadUB mem)));
5638   ins_cost(MEMORY_REF_COST);
5639 
5640   size(4);
5641   format %{ "LDUB   $mem,$dst\t! ubyte -> long" %}
5642   ins_encode %{
5643     __ ldub($mem$$Address, $dst$$Register);
5644   %}
5645   ins_pipe(iload_mem);
5646 %}
5647 
5648 // Load Unsigned Byte (8 bit UNsigned) with 8-bit mask into Long Register
5649 instruct loadUB2L_immI8(iRegL dst, memory mem, immI8 mask) %{
5650   match(Set dst (ConvI2L (AndI (LoadUB mem) mask)));
5651   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5652 
5653   size(2*4);
5654   format %{ "LDUB   $mem,$dst\t# ubyte & 8-bit mask -> long\n\t"
5655             "AND    $dst,$mask,$dst" %}
5656   ins_encode %{
5657     __ ldub($mem$$Address, $dst$$Register);
5658     __ and3($dst$$Register, $mask$$constant, $dst$$Register);
5659   %}
5660   ins_pipe(iload_mem);
5661 %}
5662 
5663 // Load Short (16bit signed)
5664 instruct loadS(iRegI dst, memory mem) %{
5665   match(Set dst (LoadS mem));
5666   ins_cost(MEMORY_REF_COST);
5667 
5668   size(4);
5669   format %{ "LDSH   $mem,$dst\t! short" %}
5670   ins_encode %{
5671     __ ldsh($mem$$Address, $dst$$Register);
5672   %}
5673   ins_pipe(iload_mask_mem);
5674 %}
5675 
5676 // Load Short (16 bit signed) to Byte (8 bit signed)
5677 instruct loadS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5678   match(Set dst (RShiftI (LShiftI (LoadS mem) twentyfour) twentyfour));
5679   ins_cost(MEMORY_REF_COST);
5680 
5681   size(4);
5682 
5683   format %{ "LDSB   $mem+1,$dst\t! short -> byte" %}
5684   ins_encode %{
5685     __ ldsb($mem$$Address, $dst$$Register, 1);
5686   %}
5687   ins_pipe(iload_mask_mem);
5688 %}
5689 
5690 // Load Short (16bit signed) into a Long Register
5691 instruct loadS2L(iRegL dst, memory mem) %{
5692   match(Set dst (ConvI2L (LoadS mem)));
5693   ins_cost(MEMORY_REF_COST);
5694 
5695   size(4);
5696   format %{ "LDSH   $mem,$dst\t! short -> long" %}
5697   ins_encode %{
5698     __ ldsh($mem$$Address, $dst$$Register);
5699   %}
5700   ins_pipe(iload_mask_mem);
5701 %}
5702 
5703 // Load Unsigned Short/Char (16bit UNsigned)
5704 instruct loadUS(iRegI dst, memory mem) %{
5705   match(Set dst (LoadUS mem));
5706   ins_cost(MEMORY_REF_COST);
5707 
5708   size(4);
5709   format %{ "LDUH   $mem,$dst\t! ushort/char" %}
5710   ins_encode %{
5711     __ lduh($mem$$Address, $dst$$Register);
5712   %}
5713   ins_pipe(iload_mem);
5714 %}
5715 
5716 // Load Unsigned Short/Char (16 bit UNsigned) to Byte (8 bit signed)
5717 instruct loadUS2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5718   match(Set dst (RShiftI (LShiftI (LoadUS mem) twentyfour) twentyfour));
5719   ins_cost(MEMORY_REF_COST);
5720 
5721   size(4);
5722   format %{ "LDSB   $mem+1,$dst\t! ushort -> byte" %}
5723   ins_encode %{
5724     __ ldsb($mem$$Address, $dst$$Register, 1);
5725   %}
5726   ins_pipe(iload_mask_mem);
5727 %}
5728 
5729 // Load Unsigned Short/Char (16bit UNsigned) into a Long Register
5730 instruct loadUS2L(iRegL dst, memory mem) %{
5731   match(Set dst (ConvI2L (LoadUS mem)));
5732   ins_cost(MEMORY_REF_COST);
5733 
5734   size(4);
5735   format %{ "LDUH   $mem,$dst\t! ushort/char -> long" %}
5736   ins_encode %{
5737     __ lduh($mem$$Address, $dst$$Register);
5738   %}
5739   ins_pipe(iload_mem);
5740 %}
5741 
5742 // Load Unsigned Short/Char (16bit UNsigned) with mask 0xFF into a Long Register
5743 instruct loadUS2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5744   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5745   ins_cost(MEMORY_REF_COST);
5746 
5747   size(4);
5748   format %{ "LDUB   $mem+1,$dst\t! ushort/char & 0xFF -> long" %}
5749   ins_encode %{
5750     __ ldub($mem$$Address, $dst$$Register, 1);  // LSB is index+1 on BE
5751   %}
5752   ins_pipe(iload_mem);
5753 %}
5754 
5755 // Load Unsigned Short/Char (16bit UNsigned) with a 13-bit mask into a Long Register
5756 instruct loadUS2L_immI13(iRegL dst, memory mem, immI13 mask) %{
5757   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5758   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5759 
5760   size(2*4);
5761   format %{ "LDUH   $mem,$dst\t! ushort/char & 13-bit mask -> long\n\t"
5762             "AND    $dst,$mask,$dst" %}
5763   ins_encode %{
5764     Register Rdst = $dst$$Register;
5765     __ lduh($mem$$Address, Rdst);
5766     __ and3(Rdst, $mask$$constant, Rdst);
5767   %}
5768   ins_pipe(iload_mem);
5769 %}
5770 
5771 // Load Unsigned Short/Char (16bit UNsigned) with a 16-bit mask into a Long Register
5772 instruct loadUS2L_immI16(iRegL dst, memory mem, immI16 mask, iRegL tmp) %{
5773   match(Set dst (ConvI2L (AndI (LoadUS mem) mask)));
5774   effect(TEMP dst, TEMP tmp);
5775   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5776 
5777   format %{ "LDUH   $mem,$dst\t! ushort/char & 16-bit mask -> long\n\t"
5778             "SET    $mask,$tmp\n\t"
5779             "AND    $dst,$tmp,$dst" %}
5780   ins_encode %{
5781     Register Rdst = $dst$$Register;
5782     Register Rtmp = $tmp$$Register;
5783     __ lduh($mem$$Address, Rdst);
5784     __ set($mask$$constant, Rtmp);
5785     __ and3(Rdst, Rtmp, Rdst);
5786   %}
5787   ins_pipe(iload_mem);
5788 %}
5789 
5790 // Load Integer
5791 instruct loadI(iRegI dst, memory mem) %{
5792   match(Set dst (LoadI mem));
5793   ins_cost(MEMORY_REF_COST);
5794 
5795   size(4);
5796   format %{ "LDUW   $mem,$dst\t! int" %}
5797   ins_encode %{
5798     __ lduw($mem$$Address, $dst$$Register);
5799   %}
5800   ins_pipe(iload_mem);
5801 %}
5802 
5803 // Load Integer to Byte (8 bit signed)
5804 instruct loadI2B(iRegI dst, indOffset13m7 mem, immI_24 twentyfour) %{
5805   match(Set dst (RShiftI (LShiftI (LoadI mem) twentyfour) twentyfour));
5806   ins_cost(MEMORY_REF_COST);
5807 
5808   size(4);
5809 
5810   format %{ "LDSB   $mem+3,$dst\t! int -> byte" %}
5811   ins_encode %{
5812     __ ldsb($mem$$Address, $dst$$Register, 3);
5813   %}
5814   ins_pipe(iload_mask_mem);
5815 %}
5816 
5817 // Load Integer to Unsigned Byte (8 bit UNsigned)
5818 instruct loadI2UB(iRegI dst, indOffset13m7 mem, immI_255 mask) %{
5819   match(Set dst (AndI (LoadI mem) mask));
5820   ins_cost(MEMORY_REF_COST);
5821 
5822   size(4);
5823 
5824   format %{ "LDUB   $mem+3,$dst\t! int -> ubyte" %}
5825   ins_encode %{
5826     __ ldub($mem$$Address, $dst$$Register, 3);
5827   %}
5828   ins_pipe(iload_mask_mem);
5829 %}
5830 
5831 // Load Integer to Short (16 bit signed)
5832 instruct loadI2S(iRegI dst, indOffset13m7 mem, immI_16 sixteen) %{
5833   match(Set dst (RShiftI (LShiftI (LoadI mem) sixteen) sixteen));
5834   ins_cost(MEMORY_REF_COST);
5835 
5836   size(4);
5837 
5838   format %{ "LDSH   $mem+2,$dst\t! int -> short" %}
5839   ins_encode %{
5840     __ ldsh($mem$$Address, $dst$$Register, 2);
5841   %}
5842   ins_pipe(iload_mask_mem);
5843 %}
5844 
5845 // Load Integer to Unsigned Short (16 bit UNsigned)
5846 instruct loadI2US(iRegI dst, indOffset13m7 mem, immI_65535 mask) %{
5847   match(Set dst (AndI (LoadI mem) mask));
5848   ins_cost(MEMORY_REF_COST);
5849 
5850   size(4);
5851 
5852   format %{ "LDUH   $mem+2,$dst\t! int -> ushort/char" %}
5853   ins_encode %{
5854     __ lduh($mem$$Address, $dst$$Register, 2);
5855   %}
5856   ins_pipe(iload_mask_mem);
5857 %}
5858 
5859 // Load Integer into a Long Register
5860 instruct loadI2L(iRegL dst, memory mem) %{
5861   match(Set dst (ConvI2L (LoadI mem)));
5862   ins_cost(MEMORY_REF_COST);
5863 
5864   size(4);
5865   format %{ "LDSW   $mem,$dst\t! int -> long" %}
5866   ins_encode %{
5867     __ ldsw($mem$$Address, $dst$$Register);
5868   %}
5869   ins_pipe(iload_mask_mem);
5870 %}
5871 
5872 // Load Integer with mask 0xFF into a Long Register
5873 instruct loadI2L_immI_255(iRegL dst, indOffset13m7 mem, immI_255 mask) %{
5874   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5875   ins_cost(MEMORY_REF_COST);
5876 
5877   size(4);
5878   format %{ "LDUB   $mem+3,$dst\t! int & 0xFF -> long" %}
5879   ins_encode %{
5880     __ ldub($mem$$Address, $dst$$Register, 3);  // LSB is index+3 on BE
5881   %}
5882   ins_pipe(iload_mem);
5883 %}
5884 
5885 // Load Integer with mask 0xFFFF into a Long Register
5886 instruct loadI2L_immI_65535(iRegL dst, indOffset13m7 mem, immI_65535 mask) %{
5887   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5888   ins_cost(MEMORY_REF_COST);
5889 
5890   size(4);
5891   format %{ "LDUH   $mem+2,$dst\t! int & 0xFFFF -> long" %}
5892   ins_encode %{
5893     __ lduh($mem$$Address, $dst$$Register, 2);  // LSW is index+2 on BE
5894   %}
5895   ins_pipe(iload_mem);
5896 %}
5897 
5898 // Load Integer with a 12-bit mask into a Long Register
5899 instruct loadI2L_immU12(iRegL dst, memory mem, immU12 mask) %{
5900   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5901   ins_cost(MEMORY_REF_COST + DEFAULT_COST);
5902 
5903   size(2*4);
5904   format %{ "LDUW   $mem,$dst\t! int & 12-bit mask -> long\n\t"
5905             "AND    $dst,$mask,$dst" %}
5906   ins_encode %{
5907     Register Rdst = $dst$$Register;
5908     __ lduw($mem$$Address, Rdst);
5909     __ and3(Rdst, $mask$$constant, Rdst);
5910   %}
5911   ins_pipe(iload_mem);
5912 %}
5913 
5914 // Load Integer with a 31-bit mask into a Long Register
5915 instruct loadI2L_immU31(iRegL dst, memory mem, immU31 mask, iRegL tmp) %{
5916   match(Set dst (ConvI2L (AndI (LoadI mem) mask)));
5917   effect(TEMP dst, TEMP tmp);
5918   ins_cost(MEMORY_REF_COST + 2*DEFAULT_COST);
5919 
5920   format %{ "LDUW   $mem,$dst\t! int & 31-bit mask -> long\n\t"
5921             "SET    $mask,$tmp\n\t"
5922             "AND    $dst,$tmp,$dst" %}
5923   ins_encode %{
5924     Register Rdst = $dst$$Register;
5925     Register Rtmp = $tmp$$Register;
5926     __ lduw($mem$$Address, Rdst);
5927     __ set($mask$$constant, Rtmp);
5928     __ and3(Rdst, Rtmp, Rdst);
5929   %}
5930   ins_pipe(iload_mem);
5931 %}
5932 
5933 // Load Unsigned Integer into a Long Register
5934 instruct loadUI2L(iRegL dst, memory mem, immL_32bits mask) %{
5935   match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
5936   ins_cost(MEMORY_REF_COST);
5937 
5938   size(4);
5939   format %{ "LDUW   $mem,$dst\t! uint -> long" %}
5940   ins_encode %{
5941     __ lduw($mem$$Address, $dst$$Register);
5942   %}
5943   ins_pipe(iload_mem);
5944 %}
5945 
5946 // Load Long - aligned
5947 instruct loadL(iRegL dst, memory mem ) %{
5948   match(Set dst (LoadL mem));
5949   ins_cost(MEMORY_REF_COST);
5950 
5951   size(4);
5952   format %{ "LDX    $mem,$dst\t! long" %}
5953   ins_encode %{
5954     __ ldx($mem$$Address, $dst$$Register);
5955   %}
5956   ins_pipe(iload_mem);
5957 %}
5958 
5959 // Load Long - UNaligned
5960 instruct loadL_unaligned(iRegL dst, memory mem, o7RegI tmp) %{
5961   match(Set dst (LoadL_unaligned mem));
5962   effect(KILL tmp);
5963   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
5964   size(16);
5965   format %{ "LDUW   $mem+4,R_O7\t! misaligned long\n"
5966           "\tLDUW   $mem  ,$dst\n"
5967           "\tSLLX   #32, $dst, $dst\n"
5968           "\tOR     $dst, R_O7, $dst" %}
5969   opcode(Assembler::lduw_op3);
5970   ins_encode(form3_mem_reg_long_unaligned_marshal( mem, dst ));
5971   ins_pipe(iload_mem);
5972 %}
5973 
5974 // Load Range
5975 instruct loadRange(iRegI dst, memory mem) %{
5976   match(Set dst (LoadRange mem));
5977   ins_cost(MEMORY_REF_COST);
5978 
5979   size(4);
5980   format %{ "LDUW   $mem,$dst\t! range" %}
5981   opcode(Assembler::lduw_op3);
5982   ins_encode(simple_form3_mem_reg( mem, dst ) );
5983   ins_pipe(iload_mem);
5984 %}
5985 
5986 // Load Integer into %f register (for fitos/fitod)
5987 instruct loadI_freg(regF dst, memory mem) %{
5988   match(Set dst (LoadI mem));
5989   ins_cost(MEMORY_REF_COST);
5990   size(4);
5991 
5992   format %{ "LDF    $mem,$dst\t! for fitos/fitod" %}
5993   opcode(Assembler::ldf_op3);
5994   ins_encode(simple_form3_mem_reg( mem, dst ) );
5995   ins_pipe(floadF_mem);
5996 %}
5997 
5998 // Load Pointer
5999 instruct loadP(iRegP dst, memory mem) %{
6000   match(Set dst (LoadP mem));
6001   ins_cost(MEMORY_REF_COST);
6002   size(4);
6003 
6004 #ifndef _LP64
6005   format %{ "LDUW   $mem,$dst\t! ptr" %}
6006   ins_encode %{
6007     __ lduw($mem$$Address, $dst$$Register);
6008   %}
6009 #else
6010   format %{ "LDX    $mem,$dst\t! ptr" %}
6011   ins_encode %{
6012     __ ldx($mem$$Address, $dst$$Register);
6013   %}
6014 #endif
6015   ins_pipe(iload_mem);
6016 %}
6017 
6018 // Load Compressed Pointer
6019 instruct loadN(iRegN dst, memory mem) %{
6020   match(Set dst (LoadN mem));
6021   ins_cost(MEMORY_REF_COST);
6022   size(4);
6023 
6024   format %{ "LDUW   $mem,$dst\t! compressed ptr" %}
6025   ins_encode %{
6026     __ lduw($mem$$Address, $dst$$Register);
6027   %}
6028   ins_pipe(iload_mem);
6029 %}
6030 
6031 // Load Klass Pointer
6032 instruct loadKlass(iRegP dst, memory mem) %{
6033   match(Set dst (LoadKlass mem));
6034   ins_cost(MEMORY_REF_COST);
6035   size(4);
6036 
6037 #ifndef _LP64
6038   format %{ "LDUW   $mem,$dst\t! klass ptr" %}
6039   ins_encode %{
6040     __ lduw($mem$$Address, $dst$$Register);
6041   %}
6042 #else
6043   format %{ "LDX    $mem,$dst\t! klass ptr" %}
6044   ins_encode %{
6045     __ ldx($mem$$Address, $dst$$Register);
6046   %}
6047 #endif
6048   ins_pipe(iload_mem);
6049 %}
6050 
6051 // Load narrow Klass Pointer
6052 instruct loadNKlass(iRegN dst, memory mem) %{
6053   match(Set dst (LoadNKlass mem));
6054   ins_cost(MEMORY_REF_COST);
6055   size(4);
6056 
6057   format %{ "LDUW   $mem,$dst\t! compressed klass ptr" %}
6058   ins_encode %{
6059     __ lduw($mem$$Address, $dst$$Register);
6060   %}
6061   ins_pipe(iload_mem);
6062 %}
6063 
6064 // Load Double
6065 instruct loadD(regD dst, memory mem) %{
6066   match(Set dst (LoadD mem));
6067   ins_cost(MEMORY_REF_COST);
6068 
6069   size(4);
6070   format %{ "LDDF   $mem,$dst" %}
6071   opcode(Assembler::lddf_op3);
6072   ins_encode(simple_form3_mem_reg( mem, dst ) );
6073   ins_pipe(floadD_mem);
6074 %}
6075 
6076 // Load Double - UNaligned
6077 instruct loadD_unaligned(regD_low dst, memory mem ) %{
6078   match(Set dst (LoadD_unaligned mem));
6079   ins_cost(MEMORY_REF_COST*2+DEFAULT_COST);
6080   size(8);
6081   format %{ "LDF    $mem  ,$dst.hi\t! misaligned double\n"
6082           "\tLDF    $mem+4,$dst.lo\t!" %}
6083   opcode(Assembler::ldf_op3);
6084   ins_encode( form3_mem_reg_double_unaligned( mem, dst ));
6085   ins_pipe(iload_mem);
6086 %}
6087 
6088 // Load Float
6089 instruct loadF(regF dst, memory mem) %{
6090   match(Set dst (LoadF mem));
6091   ins_cost(MEMORY_REF_COST);
6092 
6093   size(4);
6094   format %{ "LDF    $mem,$dst" %}
6095   opcode(Assembler::ldf_op3);
6096   ins_encode(simple_form3_mem_reg( mem, dst ) );
6097   ins_pipe(floadF_mem);
6098 %}
6099 
6100 // Load Constant
6101 instruct loadConI( iRegI dst, immI src ) %{
6102   match(Set dst src);
6103   ins_cost(DEFAULT_COST * 3/2);
6104   format %{ "SET    $src,$dst" %}
6105   ins_encode( Set32(src, dst) );
6106   ins_pipe(ialu_hi_lo_reg);
6107 %}
6108 
6109 instruct loadConI13( iRegI dst, immI13 src ) %{
6110   match(Set dst src);
6111 
6112   size(4);
6113   format %{ "MOV    $src,$dst" %}
6114   ins_encode( Set13( src, dst ) );
6115   ins_pipe(ialu_imm);
6116 %}
6117 
6118 #ifndef _LP64
6119 instruct loadConP(iRegP dst, immP con) %{
6120   match(Set dst con);
6121   ins_cost(DEFAULT_COST * 3/2);
6122   format %{ "SET    $con,$dst\t!ptr" %}
6123   ins_encode %{
6124     // [RGV] This next line should be generated from ADLC
6125     if (_opnds[1]->constant_is_oop()) {
6126       intptr_t val = $con$$constant;
6127       __ set_oop_constant((jobject) val, $dst$$Register);
6128     } else {          // non-oop pointers, e.g. card mark base, heap top
6129       __ set($con$$constant, $dst$$Register);
6130     }
6131   %}
6132   ins_pipe(loadConP);
6133 %}
6134 #else
6135 instruct loadConP_set(iRegP dst, immP_set con) %{
6136   match(Set dst con);
6137   ins_cost(DEFAULT_COST * 3/2);
6138   format %{ "SET    $con,$dst\t! ptr" %}
6139   ins_encode %{
6140     // [RGV] This next line should be generated from ADLC
6141     if (_opnds[1]->constant_is_oop()) {
6142       intptr_t val = $con$$constant;
6143       __ set_oop_constant((jobject) val, $dst$$Register);
6144     } else {          // non-oop pointers, e.g. card mark base, heap top
6145       __ set($con$$constant, $dst$$Register);
6146     }
6147   %}
6148   ins_pipe(loadConP);
6149 %}
6150 
6151 instruct loadConP_load(iRegP dst, immP_load con) %{
6152   match(Set dst con);
6153   ins_cost(MEMORY_REF_COST);
6154   format %{ "LD     [$constanttablebase + $constantoffset],$dst\t! load from constant table: ptr=$con" %}
6155   ins_encode %{
6156     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6157     __ ld_ptr($constanttablebase, con_offset, $dst$$Register);
6158   %}
6159   ins_pipe(loadConP);
6160 %}
6161 
6162 instruct loadConP_no_oop_cheap(iRegP dst, immP_no_oop_cheap con) %{
6163   match(Set dst con);
6164   ins_cost(DEFAULT_COST * 3/2);
6165   format %{ "SET    $con,$dst\t! non-oop ptr" %}
6166   ins_encode %{
6167     __ set($con$$constant, $dst$$Register);
6168   %}
6169   ins_pipe(loadConP);
6170 %}
6171 #endif // _LP64
6172 
6173 instruct loadConP0(iRegP dst, immP0 src) %{
6174   match(Set dst src);
6175 
6176   size(4);
6177   format %{ "CLR    $dst\t!ptr" %}
6178   ins_encode %{
6179     __ clr($dst$$Register);
6180   %}
6181   ins_pipe(ialu_imm);
6182 %}
6183 
6184 instruct loadConP_poll(iRegP dst, immP_poll src) %{
6185   match(Set dst src);
6186   ins_cost(DEFAULT_COST);
6187   format %{ "SET    $src,$dst\t!ptr" %}
6188   ins_encode %{
6189     AddressLiteral polling_page(os::get_polling_page());
6190     __ sethi(polling_page, reg_to_register_object($dst$$reg));
6191   %}
6192   ins_pipe(loadConP_poll);
6193 %}
6194 
6195 instruct loadConN0(iRegN dst, immN0 src) %{
6196   match(Set dst src);
6197 
6198   size(4);
6199   format %{ "CLR    $dst\t! compressed NULL ptr" %}
6200   ins_encode %{
6201     __ clr($dst$$Register);
6202   %}
6203   ins_pipe(ialu_imm);
6204 %}
6205 
6206 instruct loadConN(iRegN dst, immN src) %{
6207   match(Set dst src);
6208   ins_cost(DEFAULT_COST * 3/2);
6209   format %{ "SET    $src,$dst\t! compressed ptr" %}
6210   ins_encode %{
6211     Register dst = $dst$$Register;
6212     __ set_narrow_oop((jobject)$src$$constant, dst);
6213   %}
6214   ins_pipe(ialu_hi_lo_reg);
6215 %}
6216 
6217 // Materialize long value (predicated by immL_cheap).
6218 instruct loadConL_set64(iRegL dst, immL_cheap con, o7RegL tmp) %{
6219   match(Set dst con);
6220   effect(KILL tmp);
6221   ins_cost(DEFAULT_COST * 3);
6222   format %{ "SET64   $con,$dst KILL $tmp\t! cheap long" %}
6223   ins_encode %{
6224     __ set64($con$$constant, $dst$$Register, $tmp$$Register);
6225   %}
6226   ins_pipe(loadConL);
6227 %}
6228 
6229 // Load long value from constant table (predicated by immL_expensive).
6230 instruct loadConL_ldx(iRegL dst, immL_expensive con) %{
6231   match(Set dst con);
6232   ins_cost(MEMORY_REF_COST);
6233   format %{ "LDX     [$constanttablebase + $constantoffset],$dst\t! load from constant table: long=$con" %}
6234   ins_encode %{
6235       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $dst$$Register);
6236     __ ldx($constanttablebase, con_offset, $dst$$Register);
6237   %}
6238   ins_pipe(loadConL);
6239 %}
6240 
6241 instruct loadConL0( iRegL dst, immL0 src ) %{
6242   match(Set dst src);
6243   ins_cost(DEFAULT_COST);
6244   size(4);
6245   format %{ "CLR    $dst\t! long" %}
6246   ins_encode( Set13( src, dst ) );
6247   ins_pipe(ialu_imm);
6248 %}
6249 
6250 instruct loadConL13( iRegL dst, immL13 src ) %{
6251   match(Set dst src);
6252   ins_cost(DEFAULT_COST * 2);
6253 
6254   size(4);
6255   format %{ "MOV    $src,$dst\t! long" %}
6256   ins_encode( Set13( src, dst ) );
6257   ins_pipe(ialu_imm);
6258 %}
6259 
6260 instruct loadConF(regF dst, immF con, o7RegI tmp) %{
6261   match(Set dst con);
6262   effect(KILL tmp);
6263   format %{ "LDF    [$constanttablebase + $constantoffset],$dst\t! load from constant table: float=$con" %}
6264   ins_encode %{
6265       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6266     __ ldf(FloatRegisterImpl::S, $constanttablebase, con_offset, $dst$$FloatRegister);
6267   %}
6268   ins_pipe(loadConFD);
6269 %}
6270 
6271 instruct loadConD(regD dst, immD con, o7RegI tmp) %{
6272   match(Set dst con);
6273   effect(KILL tmp);
6274   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: double=$con" %}
6275   ins_encode %{
6276     // XXX This is a quick fix for 6833573.
6277     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset($con), $dst$$FloatRegister);
6278     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset($con), $tmp$$Register);
6279     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
6280   %}
6281   ins_pipe(loadConFD);
6282 %}
6283 
6284 // Prefetch instructions.
6285 // Must be safe to execute with invalid address (cannot fault).
6286 
6287 instruct prefetchr( memory mem ) %{
6288   match( PrefetchRead mem );
6289   ins_cost(MEMORY_REF_COST);
6290   size(4);
6291 
6292   format %{ "PREFETCH $mem,0\t! Prefetch read-many" %}
6293   opcode(Assembler::prefetch_op3);
6294   ins_encode( form3_mem_prefetch_read( mem ) );
6295   ins_pipe(iload_mem);
6296 %}
6297 
6298 instruct prefetchw( memory mem ) %{
6299   match( PrefetchWrite mem );
6300   ins_cost(MEMORY_REF_COST);
6301   size(4);
6302 
6303   format %{ "PREFETCH $mem,2\t! Prefetch write-many (and read)" %}
6304   opcode(Assembler::prefetch_op3);
6305   ins_encode( form3_mem_prefetch_write( mem ) );
6306   ins_pipe(iload_mem);
6307 %}
6308 
6309 // Prefetch instructions for allocation.
6310 
6311 instruct prefetchAlloc( memory mem ) %{
6312   predicate(AllocatePrefetchInstr == 0);
6313   match( PrefetchAllocation mem );
6314   ins_cost(MEMORY_REF_COST);
6315   size(4);
6316 
6317   format %{ "PREFETCH $mem,2\t! Prefetch allocation" %}
6318   opcode(Assembler::prefetch_op3);
6319   ins_encode( form3_mem_prefetch_write( mem ) );
6320   ins_pipe(iload_mem);
6321 %}
6322 
6323 // Use BIS instruction to prefetch for allocation.
6324 // Could fault, need space at the end of TLAB.
6325 instruct prefetchAlloc_bis( iRegP dst ) %{
6326   predicate(AllocatePrefetchInstr == 1);
6327   match( PrefetchAllocation dst );
6328   ins_cost(MEMORY_REF_COST);
6329   size(4);
6330 
6331   format %{ "STXA   [$dst]\t! // Prefetch allocation using BIS" %}
6332   ins_encode %{
6333     __ stxa(G0, $dst$$Register, G0, Assembler::ASI_ST_BLKINIT_PRIMARY);
6334   %}
6335   ins_pipe(istore_mem_reg);
6336 %}
6337 
6338 // Next code is used for finding next cache line address to prefetch.
6339 #ifndef _LP64
6340 instruct cacheLineAdr( iRegP dst, iRegP src, immI13 mask ) %{
6341   match(Set dst (CastX2P (AndI (CastP2X src) mask)));
6342   ins_cost(DEFAULT_COST);
6343   size(4);
6344 
6345   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6346   ins_encode %{
6347     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6348   %}
6349   ins_pipe(ialu_reg_imm);
6350 %}
6351 #else
6352 instruct cacheLineAdr( iRegP dst, iRegP src, immL13 mask ) %{
6353   match(Set dst (CastX2P (AndL (CastP2X src) mask)));
6354   ins_cost(DEFAULT_COST);
6355   size(4);
6356 
6357   format %{ "AND    $src,$mask,$dst\t! next cache line address" %}
6358   ins_encode %{
6359     __ and3($src$$Register, $mask$$constant, $dst$$Register);
6360   %}
6361   ins_pipe(ialu_reg_imm);
6362 %}
6363 #endif
6364 
6365 //----------Store Instructions-------------------------------------------------
6366 // Store Byte
6367 instruct storeB(memory mem, iRegI src) %{
6368   match(Set mem (StoreB mem src));
6369   ins_cost(MEMORY_REF_COST);
6370 
6371   size(4);
6372   format %{ "STB    $src,$mem\t! byte" %}
6373   opcode(Assembler::stb_op3);
6374   ins_encode(simple_form3_mem_reg( mem, src ) );
6375   ins_pipe(istore_mem_reg);
6376 %}
6377 
6378 instruct storeB0(memory mem, immI0 src) %{
6379   match(Set mem (StoreB mem src));
6380   ins_cost(MEMORY_REF_COST);
6381 
6382   size(4);
6383   format %{ "STB    $src,$mem\t! byte" %}
6384   opcode(Assembler::stb_op3);
6385   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6386   ins_pipe(istore_mem_zero);
6387 %}
6388 
6389 instruct storeCM0(memory mem, immI0 src) %{
6390   match(Set mem (StoreCM mem src));
6391   ins_cost(MEMORY_REF_COST);
6392 
6393   size(4);
6394   format %{ "STB    $src,$mem\t! CMS card-mark byte 0" %}
6395   opcode(Assembler::stb_op3);
6396   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6397   ins_pipe(istore_mem_zero);
6398 %}
6399 
6400 // Store Char/Short
6401 instruct storeC(memory mem, iRegI src) %{
6402   match(Set mem (StoreC mem src));
6403   ins_cost(MEMORY_REF_COST);
6404 
6405   size(4);
6406   format %{ "STH    $src,$mem\t! short" %}
6407   opcode(Assembler::sth_op3);
6408   ins_encode(simple_form3_mem_reg( mem, src ) );
6409   ins_pipe(istore_mem_reg);
6410 %}
6411 
6412 instruct storeC0(memory mem, immI0 src) %{
6413   match(Set mem (StoreC mem src));
6414   ins_cost(MEMORY_REF_COST);
6415 
6416   size(4);
6417   format %{ "STH    $src,$mem\t! short" %}
6418   opcode(Assembler::sth_op3);
6419   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6420   ins_pipe(istore_mem_zero);
6421 %}
6422 
6423 // Store Integer
6424 instruct storeI(memory mem, iRegI src) %{
6425   match(Set mem (StoreI mem src));
6426   ins_cost(MEMORY_REF_COST);
6427 
6428   size(4);
6429   format %{ "STW    $src,$mem" %}
6430   opcode(Assembler::stw_op3);
6431   ins_encode(simple_form3_mem_reg( mem, src ) );
6432   ins_pipe(istore_mem_reg);
6433 %}
6434 
6435 // Store Long
6436 instruct storeL(memory mem, iRegL src) %{
6437   match(Set mem (StoreL mem src));
6438   ins_cost(MEMORY_REF_COST);
6439   size(4);
6440   format %{ "STX    $src,$mem\t! long" %}
6441   opcode(Assembler::stx_op3);
6442   ins_encode(simple_form3_mem_reg( mem, src ) );
6443   ins_pipe(istore_mem_reg);
6444 %}
6445 
6446 instruct storeI0(memory mem, immI0 src) %{
6447   match(Set mem (StoreI mem src));
6448   ins_cost(MEMORY_REF_COST);
6449 
6450   size(4);
6451   format %{ "STW    $src,$mem" %}
6452   opcode(Assembler::stw_op3);
6453   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6454   ins_pipe(istore_mem_zero);
6455 %}
6456 
6457 instruct storeL0(memory mem, immL0 src) %{
6458   match(Set mem (StoreL mem src));
6459   ins_cost(MEMORY_REF_COST);
6460 
6461   size(4);
6462   format %{ "STX    $src,$mem" %}
6463   opcode(Assembler::stx_op3);
6464   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6465   ins_pipe(istore_mem_zero);
6466 %}
6467 
6468 // Store Integer from float register (used after fstoi)
6469 instruct storeI_Freg(memory mem, regF src) %{
6470   match(Set mem (StoreI mem src));
6471   ins_cost(MEMORY_REF_COST);
6472 
6473   size(4);
6474   format %{ "STF    $src,$mem\t! after fstoi/fdtoi" %}
6475   opcode(Assembler::stf_op3);
6476   ins_encode(simple_form3_mem_reg( mem, src ) );
6477   ins_pipe(fstoreF_mem_reg);
6478 %}
6479 
6480 // Store Pointer
6481 instruct storeP(memory dst, sp_ptr_RegP src) %{
6482   match(Set dst (StoreP dst src));
6483   ins_cost(MEMORY_REF_COST);
6484   size(4);
6485 
6486 #ifndef _LP64
6487   format %{ "STW    $src,$dst\t! ptr" %}
6488   opcode(Assembler::stw_op3, 0, REGP_OP);
6489 #else
6490   format %{ "STX    $src,$dst\t! ptr" %}
6491   opcode(Assembler::stx_op3, 0, REGP_OP);
6492 #endif
6493   ins_encode( form3_mem_reg( dst, src ) );
6494   ins_pipe(istore_mem_spORreg);
6495 %}
6496 
6497 instruct storeP0(memory dst, immP0 src) %{
6498   match(Set dst (StoreP dst src));
6499   ins_cost(MEMORY_REF_COST);
6500   size(4);
6501 
6502 #ifndef _LP64
6503   format %{ "STW    $src,$dst\t! ptr" %}
6504   opcode(Assembler::stw_op3, 0, REGP_OP);
6505 #else
6506   format %{ "STX    $src,$dst\t! ptr" %}
6507   opcode(Assembler::stx_op3, 0, REGP_OP);
6508 #endif
6509   ins_encode( form3_mem_reg( dst, R_G0 ) );
6510   ins_pipe(istore_mem_zero);
6511 %}
6512 
6513 // Store Compressed Pointer
6514 instruct storeN(memory dst, iRegN src) %{
6515    match(Set dst (StoreN dst src));
6516    ins_cost(MEMORY_REF_COST);
6517    size(4);
6518 
6519    format %{ "STW    $src,$dst\t! compressed ptr" %}
6520    ins_encode %{
6521      Register base = as_Register($dst$$base);
6522      Register index = as_Register($dst$$index);
6523      Register src = $src$$Register;
6524      if (index != G0) {
6525        __ stw(src, base, index);
6526      } else {
6527        __ stw(src, base, $dst$$disp);
6528      }
6529    %}
6530    ins_pipe(istore_mem_spORreg);
6531 %}
6532 
6533 instruct storeN0(memory dst, immN0 src) %{
6534    match(Set dst (StoreN dst src));
6535    ins_cost(MEMORY_REF_COST);
6536    size(4);
6537 
6538    format %{ "STW    $src,$dst\t! compressed ptr" %}
6539    ins_encode %{
6540      Register base = as_Register($dst$$base);
6541      Register index = as_Register($dst$$index);
6542      if (index != G0) {
6543        __ stw(0, base, index);
6544      } else {
6545        __ stw(0, base, $dst$$disp);
6546      }
6547    %}
6548    ins_pipe(istore_mem_zero);
6549 %}
6550 
6551 // Store Double
6552 instruct storeD( memory mem, regD src) %{
6553   match(Set mem (StoreD mem src));
6554   ins_cost(MEMORY_REF_COST);
6555 
6556   size(4);
6557   format %{ "STDF   $src,$mem" %}
6558   opcode(Assembler::stdf_op3);
6559   ins_encode(simple_form3_mem_reg( mem, src ) );
6560   ins_pipe(fstoreD_mem_reg);
6561 %}
6562 
6563 instruct storeD0( memory mem, immD0 src) %{
6564   match(Set mem (StoreD mem src));
6565   ins_cost(MEMORY_REF_COST);
6566 
6567   size(4);
6568   format %{ "STX    $src,$mem" %}
6569   opcode(Assembler::stx_op3);
6570   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6571   ins_pipe(fstoreD_mem_zero);
6572 %}
6573 
6574 // Store Float
6575 instruct storeF( memory mem, regF src) %{
6576   match(Set mem (StoreF mem src));
6577   ins_cost(MEMORY_REF_COST);
6578 
6579   size(4);
6580   format %{ "STF    $src,$mem" %}
6581   opcode(Assembler::stf_op3);
6582   ins_encode(simple_form3_mem_reg( mem, src ) );
6583   ins_pipe(fstoreF_mem_reg);
6584 %}
6585 
6586 instruct storeF0( memory mem, immF0 src) %{
6587   match(Set mem (StoreF mem src));
6588   ins_cost(MEMORY_REF_COST);
6589 
6590   size(4);
6591   format %{ "STW    $src,$mem\t! storeF0" %}
6592   opcode(Assembler::stw_op3);
6593   ins_encode(simple_form3_mem_reg( mem, R_G0 ) );
6594   ins_pipe(fstoreF_mem_zero);
6595 %}
6596 
6597 // Convert oop pointer into compressed form
6598 instruct encodeHeapOop(iRegN dst, iRegP src) %{
6599   predicate(n->bottom_type()->make_ptr()->ptr() != TypePtr::NotNull);
6600   match(Set dst (EncodeP src));
6601   format %{ "encode_heap_oop $src, $dst" %}
6602   ins_encode %{
6603     __ encode_heap_oop($src$$Register, $dst$$Register);
6604   %}
6605   ins_pipe(ialu_reg);
6606 %}
6607 
6608 instruct encodeHeapOop_not_null(iRegN dst, iRegP src) %{
6609   predicate(n->bottom_type()->make_ptr()->ptr() == TypePtr::NotNull);
6610   match(Set dst (EncodeP src));
6611   format %{ "encode_heap_oop_not_null $src, $dst" %}
6612   ins_encode %{
6613     __ encode_heap_oop_not_null($src$$Register, $dst$$Register);
6614   %}
6615   ins_pipe(ialu_reg);
6616 %}
6617 
6618 instruct decodeHeapOop(iRegP dst, iRegN src) %{
6619   predicate(n->bottom_type()->is_oopptr()->ptr() != TypePtr::NotNull &&
6620             n->bottom_type()->is_oopptr()->ptr() != TypePtr::Constant);
6621   match(Set dst (DecodeN src));
6622   format %{ "decode_heap_oop $src, $dst" %}
6623   ins_encode %{
6624     __ decode_heap_oop($src$$Register, $dst$$Register);
6625   %}
6626   ins_pipe(ialu_reg);
6627 %}
6628 
6629 instruct decodeHeapOop_not_null(iRegP dst, iRegN src) %{
6630   predicate(n->bottom_type()->is_oopptr()->ptr() == TypePtr::NotNull ||
6631             n->bottom_type()->is_oopptr()->ptr() == TypePtr::Constant);
6632   match(Set dst (DecodeN src));
6633   format %{ "decode_heap_oop_not_null $src, $dst" %}
6634   ins_encode %{
6635     __ decode_heap_oop_not_null($src$$Register, $dst$$Register);
6636   %}
6637   ins_pipe(ialu_reg);
6638 %}
6639 
6640 
6641 //----------MemBar Instructions-----------------------------------------------
6642 // Memory barrier flavors
6643 
6644 instruct membar_acquire() %{
6645   match(MemBarAcquire);
6646   ins_cost(4*MEMORY_REF_COST);
6647 
6648   size(0);
6649   format %{ "MEMBAR-acquire" %}
6650   ins_encode( enc_membar_acquire );
6651   ins_pipe(long_memory_op);
6652 %}
6653 
6654 instruct membar_acquire_lock() %{
6655   match(MemBarAcquireLock);
6656   ins_cost(0);
6657 
6658   size(0);
6659   format %{ "!MEMBAR-acquire (CAS in prior FastLock so empty encoding)" %}
6660   ins_encode( );
6661   ins_pipe(empty);
6662 %}
6663 
6664 instruct membar_release() %{
6665   match(MemBarRelease);
6666   ins_cost(4*MEMORY_REF_COST);
6667 
6668   size(0);
6669   format %{ "MEMBAR-release" %}
6670   ins_encode( enc_membar_release );
6671   ins_pipe(long_memory_op);
6672 %}
6673 
6674 instruct membar_release_lock() %{
6675   match(MemBarReleaseLock);
6676   ins_cost(0);
6677 
6678   size(0);
6679   format %{ "!MEMBAR-release (CAS in succeeding FastUnlock so empty encoding)" %}
6680   ins_encode( );
6681   ins_pipe(empty);
6682 %}
6683 
6684 instruct membar_volatile() %{
6685   match(MemBarVolatile);
6686   ins_cost(4*MEMORY_REF_COST);
6687 
6688   size(4);
6689   format %{ "MEMBAR-volatile" %}
6690   ins_encode( enc_membar_volatile );
6691   ins_pipe(long_memory_op);
6692 %}
6693 
6694 instruct unnecessary_membar_volatile() %{
6695   match(MemBarVolatile);
6696   predicate(Matcher::post_store_load_barrier(n));
6697   ins_cost(0);
6698 
6699   size(0);
6700   format %{ "!MEMBAR-volatile (unnecessary so empty encoding)" %}
6701   ins_encode( );
6702   ins_pipe(empty);
6703 %}
6704 
6705 instruct membar_storestore() %{
6706   match(MemBarStoreStore);
6707   ins_cost(0);
6708 
6709   size(0);
6710   format %{ "!MEMBAR-storestore (empty encoding)" %}
6711   ins_encode( );
6712   ins_pipe(empty);
6713 %}
6714 
6715 //----------Register Move Instructions-----------------------------------------
6716 instruct roundDouble_nop(regD dst) %{
6717   match(Set dst (RoundDouble dst));
6718   ins_cost(0);
6719   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6720   ins_encode( );
6721   ins_pipe(empty);
6722 %}
6723 
6724 
6725 instruct roundFloat_nop(regF dst) %{
6726   match(Set dst (RoundFloat dst));
6727   ins_cost(0);
6728   // SPARC results are already "rounded" (i.e., normal-format IEEE)
6729   ins_encode( );
6730   ins_pipe(empty);
6731 %}
6732 
6733 
6734 // Cast Index to Pointer for unsafe natives
6735 instruct castX2P(iRegX src, iRegP dst) %{
6736   match(Set dst (CastX2P src));
6737 
6738   format %{ "MOV    $src,$dst\t! IntX->Ptr" %}
6739   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6740   ins_pipe(ialu_reg);
6741 %}
6742 
6743 // Cast Pointer to Index for unsafe natives
6744 instruct castP2X(iRegP src, iRegX dst) %{
6745   match(Set dst (CastP2X src));
6746 
6747   format %{ "MOV    $src,$dst\t! Ptr->IntX" %}
6748   ins_encode( form3_g0_rs2_rd_move( src, dst ) );
6749   ins_pipe(ialu_reg);
6750 %}
6751 
6752 instruct stfSSD(stackSlotD stkSlot, regD src) %{
6753   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6754   match(Set stkSlot src);   // chain rule
6755   ins_cost(MEMORY_REF_COST);
6756   format %{ "STDF   $src,$stkSlot\t!stk" %}
6757   opcode(Assembler::stdf_op3);
6758   ins_encode(simple_form3_mem_reg(stkSlot, src));
6759   ins_pipe(fstoreD_stk_reg);
6760 %}
6761 
6762 instruct ldfSSD(regD dst, stackSlotD stkSlot) %{
6763   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6764   match(Set dst stkSlot);   // chain rule
6765   ins_cost(MEMORY_REF_COST);
6766   format %{ "LDDF   $stkSlot,$dst\t!stk" %}
6767   opcode(Assembler::lddf_op3);
6768   ins_encode(simple_form3_mem_reg(stkSlot, dst));
6769   ins_pipe(floadD_stk);
6770 %}
6771 
6772 instruct stfSSF(stackSlotF stkSlot, regF src) %{
6773   // %%%% TO DO: Tell the coalescer that this kind of node is a copy!
6774   match(Set stkSlot src);   // chain rule
6775   ins_cost(MEMORY_REF_COST);
6776   format %{ "STF   $src,$stkSlot\t!stk" %}
6777   opcode(Assembler::stf_op3);
6778   ins_encode(simple_form3_mem_reg(stkSlot, src));
6779   ins_pipe(fstoreF_stk_reg);
6780 %}
6781 
6782 //----------Conditional Move---------------------------------------------------
6783 // Conditional move
6784 instruct cmovIP_reg(cmpOpP cmp, flagsRegP pcc, iRegI dst, iRegI src) %{
6785   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6786   ins_cost(150);
6787   format %{ "MOV$cmp $pcc,$src,$dst" %}
6788   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6789   ins_pipe(ialu_reg);
6790 %}
6791 
6792 instruct cmovIP_imm(cmpOpP cmp, flagsRegP pcc, iRegI dst, immI11 src) %{
6793   match(Set dst (CMoveI (Binary cmp pcc) (Binary dst src)));
6794   ins_cost(140);
6795   format %{ "MOV$cmp $pcc,$src,$dst" %}
6796   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6797   ins_pipe(ialu_imm);
6798 %}
6799 
6800 instruct cmovII_reg(cmpOp cmp, flagsReg icc, iRegI dst, iRegI src) %{
6801   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6802   ins_cost(150);
6803   size(4);
6804   format %{ "MOV$cmp  $icc,$src,$dst" %}
6805   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6806   ins_pipe(ialu_reg);
6807 %}
6808 
6809 instruct cmovII_imm(cmpOp cmp, flagsReg icc, iRegI dst, immI11 src) %{
6810   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6811   ins_cost(140);
6812   size(4);
6813   format %{ "MOV$cmp  $icc,$src,$dst" %}
6814   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6815   ins_pipe(ialu_imm);
6816 %}
6817 
6818 instruct cmovIIu_reg(cmpOpU cmp, flagsRegU icc, iRegI dst, iRegI src) %{
6819   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6820   ins_cost(150);
6821   size(4);
6822   format %{ "MOV$cmp  $icc,$src,$dst" %}
6823   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6824   ins_pipe(ialu_reg);
6825 %}
6826 
6827 instruct cmovIIu_imm(cmpOpU cmp, flagsRegU icc, iRegI dst, immI11 src) %{
6828   match(Set dst (CMoveI (Binary cmp icc) (Binary dst src)));
6829   ins_cost(140);
6830   size(4);
6831   format %{ "MOV$cmp  $icc,$src,$dst" %}
6832   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6833   ins_pipe(ialu_imm);
6834 %}
6835 
6836 instruct cmovIF_reg(cmpOpF cmp, flagsRegF fcc, iRegI dst, iRegI src) %{
6837   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6838   ins_cost(150);
6839   size(4);
6840   format %{ "MOV$cmp $fcc,$src,$dst" %}
6841   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6842   ins_pipe(ialu_reg);
6843 %}
6844 
6845 instruct cmovIF_imm(cmpOpF cmp, flagsRegF fcc, iRegI dst, immI11 src) %{
6846   match(Set dst (CMoveI (Binary cmp fcc) (Binary dst src)));
6847   ins_cost(140);
6848   size(4);
6849   format %{ "MOV$cmp $fcc,$src,$dst" %}
6850   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6851   ins_pipe(ialu_imm);
6852 %}
6853 
6854 // Conditional move for RegN. Only cmov(reg,reg).
6855 instruct cmovNP_reg(cmpOpP cmp, flagsRegP pcc, iRegN dst, iRegN src) %{
6856   match(Set dst (CMoveN (Binary cmp pcc) (Binary dst src)));
6857   ins_cost(150);
6858   format %{ "MOV$cmp $pcc,$src,$dst" %}
6859   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6860   ins_pipe(ialu_reg);
6861 %}
6862 
6863 // This instruction also works with CmpN so we don't need cmovNN_reg.
6864 instruct cmovNI_reg(cmpOp cmp, flagsReg icc, iRegN dst, iRegN src) %{
6865   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6866   ins_cost(150);
6867   size(4);
6868   format %{ "MOV$cmp  $icc,$src,$dst" %}
6869   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6870   ins_pipe(ialu_reg);
6871 %}
6872 
6873 // This instruction also works with CmpN so we don't need cmovNN_reg.
6874 instruct cmovNIu_reg(cmpOpU cmp, flagsRegU icc, iRegN dst, iRegN src) %{
6875   match(Set dst (CMoveN (Binary cmp icc) (Binary dst src)));
6876   ins_cost(150);
6877   size(4);
6878   format %{ "MOV$cmp  $icc,$src,$dst" %}
6879   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6880   ins_pipe(ialu_reg);
6881 %}
6882 
6883 instruct cmovNF_reg(cmpOpF cmp, flagsRegF fcc, iRegN dst, iRegN src) %{
6884   match(Set dst (CMoveN (Binary cmp fcc) (Binary dst src)));
6885   ins_cost(150);
6886   size(4);
6887   format %{ "MOV$cmp $fcc,$src,$dst" %}
6888   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6889   ins_pipe(ialu_reg);
6890 %}
6891 
6892 // Conditional move
6893 instruct cmovPP_reg(cmpOpP cmp, flagsRegP pcc, iRegP dst, iRegP src) %{
6894   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6895   ins_cost(150);
6896   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6897   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6898   ins_pipe(ialu_reg);
6899 %}
6900 
6901 instruct cmovPP_imm(cmpOpP cmp, flagsRegP pcc, iRegP dst, immP0 src) %{
6902   match(Set dst (CMoveP (Binary cmp pcc) (Binary dst src)));
6903   ins_cost(140);
6904   format %{ "MOV$cmp $pcc,$src,$dst\t! ptr" %}
6905   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
6906   ins_pipe(ialu_imm);
6907 %}
6908 
6909 // This instruction also works with CmpN so we don't need cmovPN_reg.
6910 instruct cmovPI_reg(cmpOp cmp, flagsReg icc, iRegP dst, iRegP src) %{
6911   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6912   ins_cost(150);
6913 
6914   size(4);
6915   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6916   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6917   ins_pipe(ialu_reg);
6918 %}
6919 
6920 instruct cmovPIu_reg(cmpOpU cmp, flagsRegU icc, iRegP dst, iRegP src) %{
6921   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6922   ins_cost(150);
6923 
6924   size(4);
6925   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6926   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
6927   ins_pipe(ialu_reg);
6928 %}
6929 
6930 instruct cmovPI_imm(cmpOp cmp, flagsReg icc, iRegP dst, immP0 src) %{
6931   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6932   ins_cost(140);
6933 
6934   size(4);
6935   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6936   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6937   ins_pipe(ialu_imm);
6938 %}
6939 
6940 instruct cmovPIu_imm(cmpOpU cmp, flagsRegU icc, iRegP dst, immP0 src) %{
6941   match(Set dst (CMoveP (Binary cmp icc) (Binary dst src)));
6942   ins_cost(140);
6943 
6944   size(4);
6945   format %{ "MOV$cmp  $icc,$src,$dst\t! ptr" %}
6946   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::icc)) );
6947   ins_pipe(ialu_imm);
6948 %}
6949 
6950 instruct cmovPF_reg(cmpOpF cmp, flagsRegF fcc, iRegP dst, iRegP src) %{
6951   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6952   ins_cost(150);
6953   size(4);
6954   format %{ "MOV$cmp $fcc,$src,$dst" %}
6955   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
6956   ins_pipe(ialu_imm);
6957 %}
6958 
6959 instruct cmovPF_imm(cmpOpF cmp, flagsRegF fcc, iRegP dst, immP0 src) %{
6960   match(Set dst (CMoveP (Binary cmp fcc) (Binary dst src)));
6961   ins_cost(140);
6962   size(4);
6963   format %{ "MOV$cmp $fcc,$src,$dst" %}
6964   ins_encode( enc_cmov_imm_f(cmp,dst,src, fcc) );
6965   ins_pipe(ialu_imm);
6966 %}
6967 
6968 // Conditional move
6969 instruct cmovFP_reg(cmpOpP cmp, flagsRegP pcc, regF dst, regF src) %{
6970   match(Set dst (CMoveF (Binary cmp pcc) (Binary dst src)));
6971   ins_cost(150);
6972   opcode(0x101);
6973   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
6974   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
6975   ins_pipe(int_conditional_float_move);
6976 %}
6977 
6978 instruct cmovFI_reg(cmpOp cmp, flagsReg icc, regF dst, regF src) %{
6979   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6980   ins_cost(150);
6981 
6982   size(4);
6983   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6984   opcode(0x101);
6985   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6986   ins_pipe(int_conditional_float_move);
6987 %}
6988 
6989 instruct cmovFIu_reg(cmpOpU cmp, flagsRegU icc, regF dst, regF src) %{
6990   match(Set dst (CMoveF (Binary cmp icc) (Binary dst src)));
6991   ins_cost(150);
6992 
6993   size(4);
6994   format %{ "FMOVS$cmp $icc,$src,$dst" %}
6995   opcode(0x101);
6996   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
6997   ins_pipe(int_conditional_float_move);
6998 %}
6999 
7000 // Conditional move,
7001 instruct cmovFF_reg(cmpOpF cmp, flagsRegF fcc, regF dst, regF src) %{
7002   match(Set dst (CMoveF (Binary cmp fcc) (Binary dst src)));
7003   ins_cost(150);
7004   size(4);
7005   format %{ "FMOVF$cmp $fcc,$src,$dst" %}
7006   opcode(0x1);
7007   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7008   ins_pipe(int_conditional_double_move);
7009 %}
7010 
7011 // Conditional move
7012 instruct cmovDP_reg(cmpOpP cmp, flagsRegP pcc, regD dst, regD src) %{
7013   match(Set dst (CMoveD (Binary cmp pcc) (Binary dst src)));
7014   ins_cost(150);
7015   size(4);
7016   opcode(0x102);
7017   format %{ "FMOVD$cmp $pcc,$src,$dst" %}
7018   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7019   ins_pipe(int_conditional_double_move);
7020 %}
7021 
7022 instruct cmovDI_reg(cmpOp cmp, flagsReg icc, regD dst, regD src) %{
7023   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7024   ins_cost(150);
7025 
7026   size(4);
7027   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7028   opcode(0x102);
7029   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7030   ins_pipe(int_conditional_double_move);
7031 %}
7032 
7033 instruct cmovDIu_reg(cmpOpU cmp, flagsRegU icc, regD dst, regD src) %{
7034   match(Set dst (CMoveD (Binary cmp icc) (Binary dst src)));
7035   ins_cost(150);
7036 
7037   size(4);
7038   format %{ "FMOVD$cmp $icc,$src,$dst" %}
7039   opcode(0x102);
7040   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::icc)) );
7041   ins_pipe(int_conditional_double_move);
7042 %}
7043 
7044 // Conditional move,
7045 instruct cmovDF_reg(cmpOpF cmp, flagsRegF fcc, regD dst, regD src) %{
7046   match(Set dst (CMoveD (Binary cmp fcc) (Binary dst src)));
7047   ins_cost(150);
7048   size(4);
7049   format %{ "FMOVD$cmp $fcc,$src,$dst" %}
7050   opcode(0x2);
7051   ins_encode( enc_cmovff_reg(cmp,fcc,dst,src) );
7052   ins_pipe(int_conditional_double_move);
7053 %}
7054 
7055 // Conditional move
7056 instruct cmovLP_reg(cmpOpP cmp, flagsRegP pcc, iRegL dst, iRegL src) %{
7057   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7058   ins_cost(150);
7059   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7060   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::ptr_cc)) );
7061   ins_pipe(ialu_reg);
7062 %}
7063 
7064 instruct cmovLP_imm(cmpOpP cmp, flagsRegP pcc, iRegL dst, immI11 src) %{
7065   match(Set dst (CMoveL (Binary cmp pcc) (Binary dst src)));
7066   ins_cost(140);
7067   format %{ "MOV$cmp $pcc,$src,$dst\t! long" %}
7068   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::ptr_cc)) );
7069   ins_pipe(ialu_imm);
7070 %}
7071 
7072 instruct cmovLI_reg(cmpOp cmp, flagsReg icc, iRegL dst, iRegL src) %{
7073   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7074   ins_cost(150);
7075 
7076   size(4);
7077   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7078   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7079   ins_pipe(ialu_reg);
7080 %}
7081 
7082 
7083 instruct cmovLIu_reg(cmpOpU cmp, flagsRegU icc, iRegL dst, iRegL src) %{
7084   match(Set dst (CMoveL (Binary cmp icc) (Binary dst src)));
7085   ins_cost(150);
7086 
7087   size(4);
7088   format %{ "MOV$cmp  $icc,$src,$dst\t! long" %}
7089   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::icc)) );
7090   ins_pipe(ialu_reg);
7091 %}
7092 
7093 
7094 instruct cmovLF_reg(cmpOpF cmp, flagsRegF fcc, iRegL dst, iRegL src) %{
7095   match(Set dst (CMoveL (Binary cmp fcc) (Binary dst src)));
7096   ins_cost(150);
7097 
7098   size(4);
7099   format %{ "MOV$cmp  $fcc,$src,$dst\t! long" %}
7100   ins_encode( enc_cmov_reg_f(cmp,dst,src, fcc) );
7101   ins_pipe(ialu_reg);
7102 %}
7103 
7104 
7105 
7106 //----------OS and Locking Instructions----------------------------------------
7107 
7108 // This name is KNOWN by the ADLC and cannot be changed.
7109 // The ADLC forces a 'TypeRawPtr::BOTTOM' output type
7110 // for this guy.
7111 instruct tlsLoadP(g2RegP dst) %{
7112   match(Set dst (ThreadLocal));
7113 
7114   size(0);
7115   ins_cost(0);
7116   format %{ "# TLS is in G2" %}
7117   ins_encode( /*empty encoding*/ );
7118   ins_pipe(ialu_none);
7119 %}
7120 
7121 instruct checkCastPP( iRegP dst ) %{
7122   match(Set dst (CheckCastPP dst));
7123 
7124   size(0);
7125   format %{ "# checkcastPP of $dst" %}
7126   ins_encode( /*empty encoding*/ );
7127   ins_pipe(empty);
7128 %}
7129 
7130 
7131 instruct castPP( iRegP dst ) %{
7132   match(Set dst (CastPP dst));
7133   format %{ "# castPP of $dst" %}
7134   ins_encode( /*empty encoding*/ );
7135   ins_pipe(empty);
7136 %}
7137 
7138 instruct castII( iRegI dst ) %{
7139   match(Set dst (CastII dst));
7140   format %{ "# castII of $dst" %}
7141   ins_encode( /*empty encoding*/ );
7142   ins_cost(0);
7143   ins_pipe(empty);
7144 %}
7145 
7146 //----------Arithmetic Instructions--------------------------------------------
7147 // Addition Instructions
7148 // Register Addition
7149 instruct addI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7150   match(Set dst (AddI src1 src2));
7151 
7152   size(4);
7153   format %{ "ADD    $src1,$src2,$dst" %}
7154   ins_encode %{
7155     __ add($src1$$Register, $src2$$Register, $dst$$Register);
7156   %}
7157   ins_pipe(ialu_reg_reg);
7158 %}
7159 
7160 // Immediate Addition
7161 instruct addI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7162   match(Set dst (AddI src1 src2));
7163 
7164   size(4);
7165   format %{ "ADD    $src1,$src2,$dst" %}
7166   opcode(Assembler::add_op3, Assembler::arith_op);
7167   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7168   ins_pipe(ialu_reg_imm);
7169 %}
7170 
7171 // Pointer Register Addition
7172 instruct addP_reg_reg(iRegP dst, iRegP src1, iRegX src2) %{
7173   match(Set dst (AddP src1 src2));
7174 
7175   size(4);
7176   format %{ "ADD    $src1,$src2,$dst" %}
7177   opcode(Assembler::add_op3, Assembler::arith_op);
7178   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7179   ins_pipe(ialu_reg_reg);
7180 %}
7181 
7182 // Pointer Immediate Addition
7183 instruct addP_reg_imm13(iRegP dst, iRegP src1, immX13 src2) %{
7184   match(Set dst (AddP src1 src2));
7185 
7186   size(4);
7187   format %{ "ADD    $src1,$src2,$dst" %}
7188   opcode(Assembler::add_op3, Assembler::arith_op);
7189   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7190   ins_pipe(ialu_reg_imm);
7191 %}
7192 
7193 // Long Addition
7194 instruct addL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7195   match(Set dst (AddL src1 src2));
7196 
7197   size(4);
7198   format %{ "ADD    $src1,$src2,$dst\t! long" %}
7199   opcode(Assembler::add_op3, Assembler::arith_op);
7200   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7201   ins_pipe(ialu_reg_reg);
7202 %}
7203 
7204 instruct addL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7205   match(Set dst (AddL src1 con));
7206 
7207   size(4);
7208   format %{ "ADD    $src1,$con,$dst" %}
7209   opcode(Assembler::add_op3, Assembler::arith_op);
7210   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7211   ins_pipe(ialu_reg_imm);
7212 %}
7213 
7214 //----------Conditional_store--------------------------------------------------
7215 // Conditional-store of the updated heap-top.
7216 // Used during allocation of the shared heap.
7217 // Sets flags (EQ) on success.  Implemented with a CASA on Sparc.
7218 
7219 // LoadP-locked.  Same as a regular pointer load when used with a compare-swap
7220 instruct loadPLocked(iRegP dst, memory mem) %{
7221   match(Set dst (LoadPLocked mem));
7222   ins_cost(MEMORY_REF_COST);
7223 
7224 #ifndef _LP64
7225   size(4);
7226   format %{ "LDUW   $mem,$dst\t! ptr" %}
7227   opcode(Assembler::lduw_op3, 0, REGP_OP);
7228 #else
7229   format %{ "LDX    $mem,$dst\t! ptr" %}
7230   opcode(Assembler::ldx_op3, 0, REGP_OP);
7231 #endif
7232   ins_encode( form3_mem_reg( mem, dst ) );
7233   ins_pipe(iload_mem);
7234 %}
7235 
7236 instruct storePConditional( iRegP heap_top_ptr, iRegP oldval, g3RegP newval, flagsRegP pcc ) %{
7237   match(Set pcc (StorePConditional heap_top_ptr (Binary oldval newval)));
7238   effect( KILL newval );
7239   format %{ "CASA   [$heap_top_ptr],$oldval,R_G3\t! If $oldval==[$heap_top_ptr] Then store R_G3 into [$heap_top_ptr], set R_G3=[$heap_top_ptr] in any case\n\t"
7240             "CMP    R_G3,$oldval\t\t! See if we made progress"  %}
7241   ins_encode( enc_cas(heap_top_ptr,oldval,newval) );
7242   ins_pipe( long_memory_op );
7243 %}
7244 
7245 // Conditional-store of an int value.
7246 instruct storeIConditional( iRegP mem_ptr, iRegI oldval, g3RegI newval, flagsReg icc ) %{
7247   match(Set icc (StoreIConditional mem_ptr (Binary oldval newval)));
7248   effect( KILL newval );
7249   format %{ "CASA   [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7250             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7251   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7252   ins_pipe( long_memory_op );
7253 %}
7254 
7255 // Conditional-store of a long value.
7256 instruct storeLConditional( iRegP mem_ptr, iRegL oldval, g3RegL newval, flagsRegL xcc ) %{
7257   match(Set xcc (StoreLConditional mem_ptr (Binary oldval newval)));
7258   effect( KILL newval );
7259   format %{ "CASXA  [$mem_ptr],$oldval,$newval\t! If $oldval==[$mem_ptr] Then store $newval into [$mem_ptr], set $newval=[$mem_ptr] in any case\n\t"
7260             "CMP    $oldval,$newval\t\t! See if we made progress"  %}
7261   ins_encode( enc_cas(mem_ptr,oldval,newval) );
7262   ins_pipe( long_memory_op );
7263 %}
7264 
7265 // No flag versions for CompareAndSwap{P,I,L} because matcher can't match them
7266 
7267 instruct compareAndSwapL_bool(iRegP mem_ptr, iRegL oldval, iRegL newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7268   predicate(VM_Version::supports_cx8());
7269   match(Set res (CompareAndSwapL mem_ptr (Binary oldval newval)));
7270   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7271   format %{
7272             "MOV    $newval,O7\n\t"
7273             "CASXA  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7274             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7275             "MOV    1,$res\n\t"
7276             "MOVne  xcc,R_G0,$res"
7277   %}
7278   ins_encode( enc_casx(mem_ptr, oldval, newval),
7279               enc_lflags_ne_to_boolean(res) );
7280   ins_pipe( long_memory_op );
7281 %}
7282 
7283 
7284 instruct compareAndSwapI_bool(iRegP mem_ptr, iRegI oldval, iRegI newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7285   match(Set res (CompareAndSwapI mem_ptr (Binary oldval newval)));
7286   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7287   format %{
7288             "MOV    $newval,O7\n\t"
7289             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7290             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7291             "MOV    1,$res\n\t"
7292             "MOVne  icc,R_G0,$res"
7293   %}
7294   ins_encode( enc_casi(mem_ptr, oldval, newval),
7295               enc_iflags_ne_to_boolean(res) );
7296   ins_pipe( long_memory_op );
7297 %}
7298 
7299 instruct compareAndSwapP_bool(iRegP mem_ptr, iRegP oldval, iRegP newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7300 #ifdef _LP64
7301   predicate(VM_Version::supports_cx8());
7302 #endif
7303   match(Set res (CompareAndSwapP mem_ptr (Binary oldval newval)));
7304   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7305   format %{
7306             "MOV    $newval,O7\n\t"
7307             "CASA_PTR  [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7308             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7309             "MOV    1,$res\n\t"
7310             "MOVne  xcc,R_G0,$res"
7311   %}
7312 #ifdef _LP64
7313   ins_encode( enc_casx(mem_ptr, oldval, newval),
7314               enc_lflags_ne_to_boolean(res) );
7315 #else
7316   ins_encode( enc_casi(mem_ptr, oldval, newval),
7317               enc_iflags_ne_to_boolean(res) );
7318 #endif
7319   ins_pipe( long_memory_op );
7320 %}
7321 
7322 instruct compareAndSwapN_bool(iRegP mem_ptr, iRegN oldval, iRegN newval, iRegI res, o7RegI tmp1, flagsReg ccr ) %{
7323   match(Set res (CompareAndSwapN mem_ptr (Binary oldval newval)));
7324   effect( USE mem_ptr, KILL ccr, KILL tmp1);
7325   format %{
7326             "MOV    $newval,O7\n\t"
7327             "CASA   [$mem_ptr],$oldval,O7\t! If $oldval==[$mem_ptr] Then store O7 into [$mem_ptr], set O7=[$mem_ptr] in any case\n\t"
7328             "CMP    $oldval,O7\t\t! See if we made progress\n\t"
7329             "MOV    1,$res\n\t"
7330             "MOVne  icc,R_G0,$res"
7331   %}
7332   ins_encode( enc_casi(mem_ptr, oldval, newval),
7333               enc_iflags_ne_to_boolean(res) );
7334   ins_pipe( long_memory_op );
7335 %}
7336 
7337 instruct xchgI( memory mem, iRegI newval) %{
7338   match(Set newval (GetAndSetI mem newval));
7339   format %{ "SWAP  [$mem],$newval" %}
7340   size(4);
7341   ins_encode %{
7342     __ swap($mem$$Address, $newval$$Register);
7343   %}
7344   ins_pipe( long_memory_op );
7345 %}
7346 
7347 #ifndef _LP64
7348 instruct xchgP( memory mem, iRegP newval) %{
7349   match(Set newval (GetAndSetP mem newval));
7350   format %{ "SWAP  [$mem],$newval" %}
7351   size(4);
7352   ins_encode %{
7353     __ swap($mem$$Address, $newval$$Register);
7354   %}
7355   ins_pipe( long_memory_op );
7356 %}
7357 #endif
7358 
7359 instruct xchgN( memory mem, iRegN newval) %{
7360   match(Set newval (GetAndSetN mem newval));
7361   format %{ "SWAP  [$mem],$newval" %}
7362   size(4);
7363   ins_encode %{
7364     __ swap($mem$$Address, $newval$$Register);
7365   %}
7366   ins_pipe( long_memory_op );
7367 %}
7368 
7369 //---------------------
7370 // Subtraction Instructions
7371 // Register Subtraction
7372 instruct subI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7373   match(Set dst (SubI src1 src2));
7374 
7375   size(4);
7376   format %{ "SUB    $src1,$src2,$dst" %}
7377   opcode(Assembler::sub_op3, Assembler::arith_op);
7378   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7379   ins_pipe(ialu_reg_reg);
7380 %}
7381 
7382 // Immediate Subtraction
7383 instruct subI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7384   match(Set dst (SubI src1 src2));
7385 
7386   size(4);
7387   format %{ "SUB    $src1,$src2,$dst" %}
7388   opcode(Assembler::sub_op3, Assembler::arith_op);
7389   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7390   ins_pipe(ialu_reg_imm);
7391 %}
7392 
7393 instruct subI_zero_reg(iRegI dst, immI0 zero, iRegI src2) %{
7394   match(Set dst (SubI zero src2));
7395 
7396   size(4);
7397   format %{ "NEG    $src2,$dst" %}
7398   opcode(Assembler::sub_op3, Assembler::arith_op);
7399   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7400   ins_pipe(ialu_zero_reg);
7401 %}
7402 
7403 // Long subtraction
7404 instruct subL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7405   match(Set dst (SubL src1 src2));
7406 
7407   size(4);
7408   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7409   opcode(Assembler::sub_op3, Assembler::arith_op);
7410   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7411   ins_pipe(ialu_reg_reg);
7412 %}
7413 
7414 // Immediate Subtraction
7415 instruct subL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
7416   match(Set dst (SubL src1 con));
7417 
7418   size(4);
7419   format %{ "SUB    $src1,$con,$dst\t! long" %}
7420   opcode(Assembler::sub_op3, Assembler::arith_op);
7421   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
7422   ins_pipe(ialu_reg_imm);
7423 %}
7424 
7425 // Long negation
7426 instruct negL_reg_reg(iRegL dst, immL0 zero, iRegL src2) %{
7427   match(Set dst (SubL zero src2));
7428 
7429   size(4);
7430   format %{ "NEG    $src2,$dst\t! long" %}
7431   opcode(Assembler::sub_op3, Assembler::arith_op);
7432   ins_encode( form3_rs1_rs2_rd( R_G0, src2, dst ) );
7433   ins_pipe(ialu_zero_reg);
7434 %}
7435 
7436 // Multiplication Instructions
7437 // Integer Multiplication
7438 // Register Multiplication
7439 instruct mulI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7440   match(Set dst (MulI src1 src2));
7441 
7442   size(4);
7443   format %{ "MULX   $src1,$src2,$dst" %}
7444   opcode(Assembler::mulx_op3, Assembler::arith_op);
7445   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7446   ins_pipe(imul_reg_reg);
7447 %}
7448 
7449 // Immediate Multiplication
7450 instruct mulI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
7451   match(Set dst (MulI src1 src2));
7452 
7453   size(4);
7454   format %{ "MULX   $src1,$src2,$dst" %}
7455   opcode(Assembler::mulx_op3, Assembler::arith_op);
7456   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7457   ins_pipe(imul_reg_imm);
7458 %}
7459 
7460 instruct mulL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7461   match(Set dst (MulL src1 src2));
7462   ins_cost(DEFAULT_COST * 5);
7463   size(4);
7464   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7465   opcode(Assembler::mulx_op3, Assembler::arith_op);
7466   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7467   ins_pipe(mulL_reg_reg);
7468 %}
7469 
7470 // Immediate Multiplication
7471 instruct mulL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7472   match(Set dst (MulL src1 src2));
7473   ins_cost(DEFAULT_COST * 5);
7474   size(4);
7475   format %{ "MULX   $src1,$src2,$dst" %}
7476   opcode(Assembler::mulx_op3, Assembler::arith_op);
7477   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7478   ins_pipe(mulL_reg_imm);
7479 %}
7480 
7481 // Integer Division
7482 // Register Division
7483 instruct divI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2) %{
7484   match(Set dst (DivI src1 src2));
7485   ins_cost((2+71)*DEFAULT_COST);
7486 
7487   format %{ "SRA     $src2,0,$src2\n\t"
7488             "SRA     $src1,0,$src1\n\t"
7489             "SDIVX   $src1,$src2,$dst" %}
7490   ins_encode( idiv_reg( src1, src2, dst ) );
7491   ins_pipe(sdiv_reg_reg);
7492 %}
7493 
7494 // Immediate Division
7495 instruct divI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2) %{
7496   match(Set dst (DivI src1 src2));
7497   ins_cost((2+71)*DEFAULT_COST);
7498 
7499   format %{ "SRA     $src1,0,$src1\n\t"
7500             "SDIVX   $src1,$src2,$dst" %}
7501   ins_encode( idiv_imm( src1, src2, dst ) );
7502   ins_pipe(sdiv_reg_imm);
7503 %}
7504 
7505 //----------Div-By-10-Expansion------------------------------------------------
7506 // Extract hi bits of a 32x32->64 bit multiply.
7507 // Expand rule only, not matched
7508 instruct mul_hi(iRegIsafe dst, iRegIsafe src1, iRegIsafe src2 ) %{
7509   effect( DEF dst, USE src1, USE src2 );
7510   format %{ "MULX   $src1,$src2,$dst\t! Used in div-by-10\n\t"
7511             "SRLX   $dst,#32,$dst\t\t! Extract only hi word of result" %}
7512   ins_encode( enc_mul_hi(dst,src1,src2));
7513   ins_pipe(sdiv_reg_reg);
7514 %}
7515 
7516 // Magic constant, reciprocal of 10
7517 instruct loadConI_x66666667(iRegIsafe dst) %{
7518   effect( DEF dst );
7519 
7520   size(8);
7521   format %{ "SET    0x66666667,$dst\t! Used in div-by-10" %}
7522   ins_encode( Set32(0x66666667, dst) );
7523   ins_pipe(ialu_hi_lo_reg);
7524 %}
7525 
7526 // Register Shift Right Arithmetic Long by 32-63
7527 instruct sra_31( iRegI dst, iRegI src ) %{
7528   effect( DEF dst, USE src );
7529   format %{ "SRA    $src,31,$dst\t! Used in div-by-10" %}
7530   ins_encode( form3_rs1_rd_copysign_hi(src,dst) );
7531   ins_pipe(ialu_reg_reg);
7532 %}
7533 
7534 // Arithmetic Shift Right by 8-bit immediate
7535 instruct sra_reg_2( iRegI dst, iRegI src ) %{
7536   effect( DEF dst, USE src );
7537   format %{ "SRA    $src,2,$dst\t! Used in div-by-10" %}
7538   opcode(Assembler::sra_op3, Assembler::arith_op);
7539   ins_encode( form3_rs1_simm13_rd( src, 0x2, dst ) );
7540   ins_pipe(ialu_reg_imm);
7541 %}
7542 
7543 // Integer DIV with 10
7544 instruct divI_10( iRegI dst, iRegIsafe src, immI10 div ) %{
7545   match(Set dst (DivI src div));
7546   ins_cost((6+6)*DEFAULT_COST);
7547   expand %{
7548     iRegIsafe tmp1;               // Killed temps;
7549     iRegIsafe tmp2;               // Killed temps;
7550     iRegI tmp3;                   // Killed temps;
7551     iRegI tmp4;                   // Killed temps;
7552     loadConI_x66666667( tmp1 );   // SET  0x66666667 -> tmp1
7553     mul_hi( tmp2, src, tmp1 );    // MUL  hibits(src * tmp1) -> tmp2
7554     sra_31( tmp3, src );          // SRA  src,31 -> tmp3
7555     sra_reg_2( tmp4, tmp2 );      // SRA  tmp2,2 -> tmp4
7556     subI_reg_reg( dst,tmp4,tmp3); // SUB  tmp4 - tmp3 -> dst
7557   %}
7558 %}
7559 
7560 // Register Long Division
7561 instruct divL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7562   match(Set dst (DivL src1 src2));
7563   ins_cost(DEFAULT_COST*71);
7564   size(4);
7565   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7566   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7567   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7568   ins_pipe(divL_reg_reg);
7569 %}
7570 
7571 // Register Long Division
7572 instruct divL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7573   match(Set dst (DivL src1 src2));
7574   ins_cost(DEFAULT_COST*71);
7575   size(4);
7576   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7577   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7578   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7579   ins_pipe(divL_reg_imm);
7580 %}
7581 
7582 // Integer Remainder
7583 // Register Remainder
7584 instruct modI_reg_reg(iRegI dst, iRegIsafe src1, iRegIsafe src2, o7RegP temp, flagsReg ccr ) %{
7585   match(Set dst (ModI src1 src2));
7586   effect( KILL ccr, KILL temp);
7587 
7588   format %{ "SREM   $src1,$src2,$dst" %}
7589   ins_encode( irem_reg(src1, src2, dst, temp) );
7590   ins_pipe(sdiv_reg_reg);
7591 %}
7592 
7593 // Immediate Remainder
7594 instruct modI_reg_imm13(iRegI dst, iRegIsafe src1, immI13 src2, o7RegP temp, flagsReg ccr ) %{
7595   match(Set dst (ModI src1 src2));
7596   effect( KILL ccr, KILL temp);
7597 
7598   format %{ "SREM   $src1,$src2,$dst" %}
7599   ins_encode( irem_imm(src1, src2, dst, temp) );
7600   ins_pipe(sdiv_reg_imm);
7601 %}
7602 
7603 // Register Long Remainder
7604 instruct divL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7605   effect(DEF dst, USE src1, USE src2);
7606   size(4);
7607   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7608   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7609   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7610   ins_pipe(divL_reg_reg);
7611 %}
7612 
7613 // Register Long Division
7614 instruct divL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7615   effect(DEF dst, USE src1, USE src2);
7616   size(4);
7617   format %{ "SDIVX  $src1,$src2,$dst\t! long" %}
7618   opcode(Assembler::sdivx_op3, Assembler::arith_op);
7619   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7620   ins_pipe(divL_reg_imm);
7621 %}
7622 
7623 instruct mulL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7624   effect(DEF dst, USE src1, USE src2);
7625   size(4);
7626   format %{ "MULX   $src1,$src2,$dst\t! long" %}
7627   opcode(Assembler::mulx_op3, Assembler::arith_op);
7628   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7629   ins_pipe(mulL_reg_reg);
7630 %}
7631 
7632 // Immediate Multiplication
7633 instruct mulL_reg_imm13_1(iRegL dst, iRegL src1, immL13 src2) %{
7634   effect(DEF dst, USE src1, USE src2);
7635   size(4);
7636   format %{ "MULX   $src1,$src2,$dst" %}
7637   opcode(Assembler::mulx_op3, Assembler::arith_op);
7638   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
7639   ins_pipe(mulL_reg_imm);
7640 %}
7641 
7642 instruct subL_reg_reg_1(iRegL dst, iRegL src1, iRegL src2) %{
7643   effect(DEF dst, USE src1, USE src2);
7644   size(4);
7645   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7646   opcode(Assembler::sub_op3, Assembler::arith_op);
7647   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7648   ins_pipe(ialu_reg_reg);
7649 %}
7650 
7651 instruct subL_reg_reg_2(iRegL dst, iRegL src1, iRegL src2) %{
7652   effect(DEF dst, USE src1, USE src2);
7653   size(4);
7654   format %{ "SUB    $src1,$src2,$dst\t! long" %}
7655   opcode(Assembler::sub_op3, Assembler::arith_op);
7656   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7657   ins_pipe(ialu_reg_reg);
7658 %}
7659 
7660 // Register Long Remainder
7661 instruct modL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
7662   match(Set dst (ModL src1 src2));
7663   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7664   expand %{
7665     iRegL tmp1;
7666     iRegL tmp2;
7667     divL_reg_reg_1(tmp1, src1, src2);
7668     mulL_reg_reg_1(tmp2, tmp1, src2);
7669     subL_reg_reg_1(dst,  src1, tmp2);
7670   %}
7671 %}
7672 
7673 // Register Long Remainder
7674 instruct modL_reg_imm13(iRegL dst, iRegL src1, immL13 src2) %{
7675   match(Set dst (ModL src1 src2));
7676   ins_cost(DEFAULT_COST*(71 + 6 + 1));
7677   expand %{
7678     iRegL tmp1;
7679     iRegL tmp2;
7680     divL_reg_imm13_1(tmp1, src1, src2);
7681     mulL_reg_imm13_1(tmp2, tmp1, src2);
7682     subL_reg_reg_2  (dst,  src1, tmp2);
7683   %}
7684 %}
7685 
7686 // Integer Shift Instructions
7687 // Register Shift Left
7688 instruct shlI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7689   match(Set dst (LShiftI src1 src2));
7690 
7691   size(4);
7692   format %{ "SLL    $src1,$src2,$dst" %}
7693   opcode(Assembler::sll_op3, Assembler::arith_op);
7694   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7695   ins_pipe(ialu_reg_reg);
7696 %}
7697 
7698 // Register Shift Left Immediate
7699 instruct shlI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7700   match(Set dst (LShiftI src1 src2));
7701 
7702   size(4);
7703   format %{ "SLL    $src1,$src2,$dst" %}
7704   opcode(Assembler::sll_op3, Assembler::arith_op);
7705   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7706   ins_pipe(ialu_reg_imm);
7707 %}
7708 
7709 // Register Shift Left
7710 instruct shlL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7711   match(Set dst (LShiftL src1 src2));
7712 
7713   size(4);
7714   format %{ "SLLX   $src1,$src2,$dst" %}
7715   opcode(Assembler::sllx_op3, Assembler::arith_op);
7716   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7717   ins_pipe(ialu_reg_reg);
7718 %}
7719 
7720 // Register Shift Left Immediate
7721 instruct shlL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7722   match(Set dst (LShiftL src1 src2));
7723 
7724   size(4);
7725   format %{ "SLLX   $src1,$src2,$dst" %}
7726   opcode(Assembler::sllx_op3, Assembler::arith_op);
7727   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7728   ins_pipe(ialu_reg_imm);
7729 %}
7730 
7731 // Register Arithmetic Shift Right
7732 instruct sarI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7733   match(Set dst (RShiftI src1 src2));
7734   size(4);
7735   format %{ "SRA    $src1,$src2,$dst" %}
7736   opcode(Assembler::sra_op3, Assembler::arith_op);
7737   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7738   ins_pipe(ialu_reg_reg);
7739 %}
7740 
7741 // Register Arithmetic Shift Right Immediate
7742 instruct sarI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7743   match(Set dst (RShiftI src1 src2));
7744 
7745   size(4);
7746   format %{ "SRA    $src1,$src2,$dst" %}
7747   opcode(Assembler::sra_op3, Assembler::arith_op);
7748   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7749   ins_pipe(ialu_reg_imm);
7750 %}
7751 
7752 // Register Shift Right Arithmatic Long
7753 instruct sarL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7754   match(Set dst (RShiftL src1 src2));
7755 
7756   size(4);
7757   format %{ "SRAX   $src1,$src2,$dst" %}
7758   opcode(Assembler::srax_op3, Assembler::arith_op);
7759   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7760   ins_pipe(ialu_reg_reg);
7761 %}
7762 
7763 // Register Shift Left Immediate
7764 instruct sarL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7765   match(Set dst (RShiftL src1 src2));
7766 
7767   size(4);
7768   format %{ "SRAX   $src1,$src2,$dst" %}
7769   opcode(Assembler::srax_op3, Assembler::arith_op);
7770   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7771   ins_pipe(ialu_reg_imm);
7772 %}
7773 
7774 // Register Shift Right
7775 instruct shrI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7776   match(Set dst (URShiftI src1 src2));
7777 
7778   size(4);
7779   format %{ "SRL    $src1,$src2,$dst" %}
7780   opcode(Assembler::srl_op3, Assembler::arith_op);
7781   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7782   ins_pipe(ialu_reg_reg);
7783 %}
7784 
7785 // Register Shift Right Immediate
7786 instruct shrI_reg_imm5(iRegI dst, iRegI src1, immU5 src2) %{
7787   match(Set dst (URShiftI src1 src2));
7788 
7789   size(4);
7790   format %{ "SRL    $src1,$src2,$dst" %}
7791   opcode(Assembler::srl_op3, Assembler::arith_op);
7792   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7793   ins_pipe(ialu_reg_imm);
7794 %}
7795 
7796 // Register Shift Right
7797 instruct shrL_reg_reg(iRegL dst, iRegL src1, iRegI src2) %{
7798   match(Set dst (URShiftL src1 src2));
7799 
7800   size(4);
7801   format %{ "SRLX   $src1,$src2,$dst" %}
7802   opcode(Assembler::srlx_op3, Assembler::arith_op);
7803   ins_encode( form3_sd_rs1_rs2_rd( src1, src2, dst ) );
7804   ins_pipe(ialu_reg_reg);
7805 %}
7806 
7807 // Register Shift Right Immediate
7808 instruct shrL_reg_imm6(iRegL dst, iRegL src1, immU6 src2) %{
7809   match(Set dst (URShiftL src1 src2));
7810 
7811   size(4);
7812   format %{ "SRLX   $src1,$src2,$dst" %}
7813   opcode(Assembler::srlx_op3, Assembler::arith_op);
7814   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7815   ins_pipe(ialu_reg_imm);
7816 %}
7817 
7818 // Register Shift Right Immediate with a CastP2X
7819 #ifdef _LP64
7820 instruct shrP_reg_imm6(iRegL dst, iRegP src1, immU6 src2) %{
7821   match(Set dst (URShiftL (CastP2X src1) src2));
7822   size(4);
7823   format %{ "SRLX   $src1,$src2,$dst\t! Cast ptr $src1 to long and shift" %}
7824   opcode(Assembler::srlx_op3, Assembler::arith_op);
7825   ins_encode( form3_sd_rs1_imm6_rd( src1, src2, dst ) );
7826   ins_pipe(ialu_reg_imm);
7827 %}
7828 #else
7829 instruct shrP_reg_imm5(iRegI dst, iRegP src1, immU5 src2) %{
7830   match(Set dst (URShiftI (CastP2X src1) src2));
7831   size(4);
7832   format %{ "SRL    $src1,$src2,$dst\t! Cast ptr $src1 to int and shift" %}
7833   opcode(Assembler::srl_op3, Assembler::arith_op);
7834   ins_encode( form3_rs1_imm5_rd( src1, src2, dst ) );
7835   ins_pipe(ialu_reg_imm);
7836 %}
7837 #endif
7838 
7839 
7840 //----------Floating Point Arithmetic Instructions-----------------------------
7841 
7842 //  Add float single precision
7843 instruct addF_reg_reg(regF dst, regF src1, regF src2) %{
7844   match(Set dst (AddF src1 src2));
7845 
7846   size(4);
7847   format %{ "FADDS  $src1,$src2,$dst" %}
7848   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fadds_opf);
7849   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7850   ins_pipe(faddF_reg_reg);
7851 %}
7852 
7853 //  Add float double precision
7854 instruct addD_reg_reg(regD dst, regD src1, regD src2) %{
7855   match(Set dst (AddD src1 src2));
7856 
7857   size(4);
7858   format %{ "FADDD  $src1,$src2,$dst" %}
7859   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
7860   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7861   ins_pipe(faddD_reg_reg);
7862 %}
7863 
7864 //  Sub float single precision
7865 instruct subF_reg_reg(regF dst, regF src1, regF src2) %{
7866   match(Set dst (SubF src1 src2));
7867 
7868   size(4);
7869   format %{ "FSUBS  $src1,$src2,$dst" %}
7870   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubs_opf);
7871   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7872   ins_pipe(faddF_reg_reg);
7873 %}
7874 
7875 //  Sub float double precision
7876 instruct subD_reg_reg(regD dst, regD src1, regD src2) %{
7877   match(Set dst (SubD src1 src2));
7878 
7879   size(4);
7880   format %{ "FSUBD  $src1,$src2,$dst" %}
7881   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
7882   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7883   ins_pipe(faddD_reg_reg);
7884 %}
7885 
7886 //  Mul float single precision
7887 instruct mulF_reg_reg(regF dst, regF src1, regF src2) %{
7888   match(Set dst (MulF src1 src2));
7889 
7890   size(4);
7891   format %{ "FMULS  $src1,$src2,$dst" %}
7892   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuls_opf);
7893   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7894   ins_pipe(fmulF_reg_reg);
7895 %}
7896 
7897 //  Mul float double precision
7898 instruct mulD_reg_reg(regD dst, regD src1, regD src2) %{
7899   match(Set dst (MulD src1 src2));
7900 
7901   size(4);
7902   format %{ "FMULD  $src1,$src2,$dst" %}
7903   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
7904   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7905   ins_pipe(fmulD_reg_reg);
7906 %}
7907 
7908 //  Div float single precision
7909 instruct divF_reg_reg(regF dst, regF src1, regF src2) %{
7910   match(Set dst (DivF src1 src2));
7911 
7912   size(4);
7913   format %{ "FDIVS  $src1,$src2,$dst" %}
7914   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivs_opf);
7915   ins_encode(form3_opf_rs1F_rs2F_rdF(src1, src2, dst));
7916   ins_pipe(fdivF_reg_reg);
7917 %}
7918 
7919 //  Div float double precision
7920 instruct divD_reg_reg(regD dst, regD src1, regD src2) %{
7921   match(Set dst (DivD src1 src2));
7922 
7923   size(4);
7924   format %{ "FDIVD  $src1,$src2,$dst" %}
7925   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdivd_opf);
7926   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
7927   ins_pipe(fdivD_reg_reg);
7928 %}
7929 
7930 //  Absolute float double precision
7931 instruct absD_reg(regD dst, regD src) %{
7932   match(Set dst (AbsD src));
7933 
7934   format %{ "FABSd  $src,$dst" %}
7935   ins_encode(fabsd(dst, src));
7936   ins_pipe(faddD_reg);
7937 %}
7938 
7939 //  Absolute float single precision
7940 instruct absF_reg(regF dst, regF src) %{
7941   match(Set dst (AbsF src));
7942 
7943   format %{ "FABSs  $src,$dst" %}
7944   ins_encode(fabss(dst, src));
7945   ins_pipe(faddF_reg);
7946 %}
7947 
7948 instruct negF_reg(regF dst, regF src) %{
7949   match(Set dst (NegF src));
7950 
7951   size(4);
7952   format %{ "FNEGs  $src,$dst" %}
7953   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fnegs_opf);
7954   ins_encode(form3_opf_rs2F_rdF(src, dst));
7955   ins_pipe(faddF_reg);
7956 %}
7957 
7958 instruct negD_reg(regD dst, regD src) %{
7959   match(Set dst (NegD src));
7960 
7961   format %{ "FNEGd  $src,$dst" %}
7962   ins_encode(fnegd(dst, src));
7963   ins_pipe(faddD_reg);
7964 %}
7965 
7966 //  Sqrt float double precision
7967 instruct sqrtF_reg_reg(regF dst, regF src) %{
7968   match(Set dst (ConvD2F (SqrtD (ConvF2D src))));
7969 
7970   size(4);
7971   format %{ "FSQRTS $src,$dst" %}
7972   ins_encode(fsqrts(dst, src));
7973   ins_pipe(fdivF_reg_reg);
7974 %}
7975 
7976 //  Sqrt float double precision
7977 instruct sqrtD_reg_reg(regD dst, regD src) %{
7978   match(Set dst (SqrtD src));
7979 
7980   size(4);
7981   format %{ "FSQRTD $src,$dst" %}
7982   ins_encode(fsqrtd(dst, src));
7983   ins_pipe(fdivD_reg_reg);
7984 %}
7985 
7986 //----------Logical Instructions-----------------------------------------------
7987 // And Instructions
7988 // Register And
7989 instruct andI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
7990   match(Set dst (AndI src1 src2));
7991 
7992   size(4);
7993   format %{ "AND    $src1,$src2,$dst" %}
7994   opcode(Assembler::and_op3, Assembler::arith_op);
7995   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
7996   ins_pipe(ialu_reg_reg);
7997 %}
7998 
7999 // Immediate And
8000 instruct andI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8001   match(Set dst (AndI src1 src2));
8002 
8003   size(4);
8004   format %{ "AND    $src1,$src2,$dst" %}
8005   opcode(Assembler::and_op3, Assembler::arith_op);
8006   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8007   ins_pipe(ialu_reg_imm);
8008 %}
8009 
8010 // Register And Long
8011 instruct andL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8012   match(Set dst (AndL src1 src2));
8013 
8014   ins_cost(DEFAULT_COST);
8015   size(4);
8016   format %{ "AND    $src1,$src2,$dst\t! long" %}
8017   opcode(Assembler::and_op3, Assembler::arith_op);
8018   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8019   ins_pipe(ialu_reg_reg);
8020 %}
8021 
8022 instruct andL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8023   match(Set dst (AndL src1 con));
8024 
8025   ins_cost(DEFAULT_COST);
8026   size(4);
8027   format %{ "AND    $src1,$con,$dst\t! long" %}
8028   opcode(Assembler::and_op3, Assembler::arith_op);
8029   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8030   ins_pipe(ialu_reg_imm);
8031 %}
8032 
8033 // Or Instructions
8034 // Register Or
8035 instruct orI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8036   match(Set dst (OrI src1 src2));
8037 
8038   size(4);
8039   format %{ "OR     $src1,$src2,$dst" %}
8040   opcode(Assembler::or_op3, Assembler::arith_op);
8041   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8042   ins_pipe(ialu_reg_reg);
8043 %}
8044 
8045 // Immediate Or
8046 instruct orI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8047   match(Set dst (OrI src1 src2));
8048 
8049   size(4);
8050   format %{ "OR     $src1,$src2,$dst" %}
8051   opcode(Assembler::or_op3, Assembler::arith_op);
8052   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8053   ins_pipe(ialu_reg_imm);
8054 %}
8055 
8056 // Register Or Long
8057 instruct orL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8058   match(Set dst (OrL src1 src2));
8059 
8060   ins_cost(DEFAULT_COST);
8061   size(4);
8062   format %{ "OR     $src1,$src2,$dst\t! long" %}
8063   opcode(Assembler::or_op3, Assembler::arith_op);
8064   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8065   ins_pipe(ialu_reg_reg);
8066 %}
8067 
8068 instruct orL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8069   match(Set dst (OrL src1 con));
8070   ins_cost(DEFAULT_COST*2);
8071 
8072   ins_cost(DEFAULT_COST);
8073   size(4);
8074   format %{ "OR     $src1,$con,$dst\t! long" %}
8075   opcode(Assembler::or_op3, Assembler::arith_op);
8076   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8077   ins_pipe(ialu_reg_imm);
8078 %}
8079 
8080 #ifndef _LP64
8081 
8082 // Use sp_ptr_RegP to match G2 (TLS register) without spilling.
8083 instruct orI_reg_castP2X(iRegI dst, iRegI src1, sp_ptr_RegP src2) %{
8084   match(Set dst (OrI src1 (CastP2X src2)));
8085 
8086   size(4);
8087   format %{ "OR     $src1,$src2,$dst" %}
8088   opcode(Assembler::or_op3, Assembler::arith_op);
8089   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8090   ins_pipe(ialu_reg_reg);
8091 %}
8092 
8093 #else
8094 
8095 instruct orL_reg_castP2X(iRegL dst, iRegL src1, sp_ptr_RegP src2) %{
8096   match(Set dst (OrL src1 (CastP2X src2)));
8097 
8098   ins_cost(DEFAULT_COST);
8099   size(4);
8100   format %{ "OR     $src1,$src2,$dst\t! long" %}
8101   opcode(Assembler::or_op3, Assembler::arith_op);
8102   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8103   ins_pipe(ialu_reg_reg);
8104 %}
8105 
8106 #endif
8107 
8108 // Xor Instructions
8109 // Register Xor
8110 instruct xorI_reg_reg(iRegI dst, iRegI src1, iRegI src2) %{
8111   match(Set dst (XorI src1 src2));
8112 
8113   size(4);
8114   format %{ "XOR    $src1,$src2,$dst" %}
8115   opcode(Assembler::xor_op3, Assembler::arith_op);
8116   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8117   ins_pipe(ialu_reg_reg);
8118 %}
8119 
8120 // Immediate Xor
8121 instruct xorI_reg_imm13(iRegI dst, iRegI src1, immI13 src2) %{
8122   match(Set dst (XorI src1 src2));
8123 
8124   size(4);
8125   format %{ "XOR    $src1,$src2,$dst" %}
8126   opcode(Assembler::xor_op3, Assembler::arith_op);
8127   ins_encode( form3_rs1_simm13_rd( src1, src2, dst ) );
8128   ins_pipe(ialu_reg_imm);
8129 %}
8130 
8131 // Register Xor Long
8132 instruct xorL_reg_reg(iRegL dst, iRegL src1, iRegL src2) %{
8133   match(Set dst (XorL src1 src2));
8134 
8135   ins_cost(DEFAULT_COST);
8136   size(4);
8137   format %{ "XOR    $src1,$src2,$dst\t! long" %}
8138   opcode(Assembler::xor_op3, Assembler::arith_op);
8139   ins_encode( form3_rs1_rs2_rd( src1, src2, dst ) );
8140   ins_pipe(ialu_reg_reg);
8141 %}
8142 
8143 instruct xorL_reg_imm13(iRegL dst, iRegL src1, immL13 con) %{
8144   match(Set dst (XorL src1 con));
8145 
8146   ins_cost(DEFAULT_COST);
8147   size(4);
8148   format %{ "XOR    $src1,$con,$dst\t! long" %}
8149   opcode(Assembler::xor_op3, Assembler::arith_op);
8150   ins_encode( form3_rs1_simm13_rd( src1, con, dst ) );
8151   ins_pipe(ialu_reg_imm);
8152 %}
8153 
8154 //----------Convert to Boolean-------------------------------------------------
8155 // Nice hack for 32-bit tests but doesn't work for
8156 // 64-bit pointers.
8157 instruct convI2B( iRegI dst, iRegI src, flagsReg ccr ) %{
8158   match(Set dst (Conv2B src));
8159   effect( KILL ccr );
8160   ins_cost(DEFAULT_COST*2);
8161   format %{ "CMP    R_G0,$src\n\t"
8162             "ADDX   R_G0,0,$dst" %}
8163   ins_encode( enc_to_bool( src, dst ) );
8164   ins_pipe(ialu_reg_ialu);
8165 %}
8166 
8167 #ifndef _LP64
8168 instruct convP2B( iRegI dst, iRegP src, flagsReg ccr ) %{
8169   match(Set dst (Conv2B src));
8170   effect( KILL ccr );
8171   ins_cost(DEFAULT_COST*2);
8172   format %{ "CMP    R_G0,$src\n\t"
8173             "ADDX   R_G0,0,$dst" %}
8174   ins_encode( enc_to_bool( src, dst ) );
8175   ins_pipe(ialu_reg_ialu);
8176 %}
8177 #else
8178 instruct convP2B( iRegI dst, iRegP src ) %{
8179   match(Set dst (Conv2B src));
8180   ins_cost(DEFAULT_COST*2);
8181   format %{ "MOV    $src,$dst\n\t"
8182             "MOVRNZ $src,1,$dst" %}
8183   ins_encode( form3_g0_rs2_rd_move( src, dst ), enc_convP2B( dst, src ) );
8184   ins_pipe(ialu_clr_and_mover);
8185 %}
8186 #endif
8187 
8188 instruct cmpLTMask0( iRegI dst, iRegI src, immI0 zero, flagsReg ccr ) %{
8189   match(Set dst (CmpLTMask src zero));
8190   effect(KILL ccr);
8191   size(4);
8192   format %{ "SRA    $src,#31,$dst\t# cmpLTMask0" %}
8193   ins_encode %{
8194     __ sra($src$$Register, 31, $dst$$Register);
8195   %}
8196   ins_pipe(ialu_reg_imm);
8197 %}
8198 
8199 instruct cmpLTMask_reg_reg( iRegI dst, iRegI p, iRegI q, flagsReg ccr ) %{
8200   match(Set dst (CmpLTMask p q));
8201   effect( KILL ccr );
8202   ins_cost(DEFAULT_COST*4);
8203   format %{ "CMP    $p,$q\n\t"
8204             "MOV    #0,$dst\n\t"
8205             "BLT,a  .+8\n\t"
8206             "MOV    #-1,$dst" %}
8207   ins_encode( enc_ltmask(p,q,dst) );
8208   ins_pipe(ialu_reg_reg_ialu);
8209 %}
8210 
8211 instruct cadd_cmpLTMask( iRegI p, iRegI q, iRegI y, iRegI tmp, flagsReg ccr ) %{
8212   match(Set p (AddI (AndI (CmpLTMask p q) y) (SubI p q)));
8213   effect(KILL ccr, TEMP tmp);
8214   ins_cost(DEFAULT_COST*3);
8215 
8216   format %{ "SUBcc  $p,$q,$p\t! p' = p-q\n\t"
8217             "ADD    $p,$y,$tmp\t! g3=p-q+y\n\t"
8218             "MOVlt  $tmp,$p\t! p' < 0 ? p'+y : p'" %}
8219   ins_encode(enc_cadd_cmpLTMask(p, q, y, tmp));
8220   ins_pipe(cadd_cmpltmask);
8221 %}
8222 
8223 instruct and_cmpLTMask(iRegI p, iRegI q, iRegI y, flagsReg ccr) %{
8224   match(Set p (AndI (CmpLTMask p q) y));
8225   effect(KILL ccr);
8226   ins_cost(DEFAULT_COST*3);
8227 
8228   format %{ "CMP  $p,$q\n\t"
8229             "MOV  $y,$p\n\t"
8230             "MOVge G0,$p" %}
8231   ins_encode %{
8232     __ cmp($p$$Register, $q$$Register);
8233     __ mov($y$$Register, $p$$Register);
8234     __ movcc(Assembler::greaterEqual, false, Assembler::icc, G0, $p$$Register);
8235   %}
8236   ins_pipe(ialu_reg_reg_ialu);
8237 %}
8238 
8239 //-----------------------------------------------------------------
8240 // Direct raw moves between float and general registers using VIS3.
8241 
8242 //  ins_pipe(faddF_reg);
8243 instruct MoveF2I_reg_reg(iRegI dst, regF src) %{
8244   predicate(UseVIS >= 3);
8245   match(Set dst (MoveF2I src));
8246 
8247   format %{ "MOVSTOUW $src,$dst\t! MoveF2I" %}
8248   ins_encode %{
8249     __ movstouw($src$$FloatRegister, $dst$$Register);
8250   %}
8251   ins_pipe(ialu_reg_reg);
8252 %}
8253 
8254 instruct MoveI2F_reg_reg(regF dst, iRegI src) %{
8255   predicate(UseVIS >= 3);
8256   match(Set dst (MoveI2F src));
8257 
8258   format %{ "MOVWTOS $src,$dst\t! MoveI2F" %}
8259   ins_encode %{
8260     __ movwtos($src$$Register, $dst$$FloatRegister);
8261   %}
8262   ins_pipe(ialu_reg_reg);
8263 %}
8264 
8265 instruct MoveD2L_reg_reg(iRegL dst, regD src) %{
8266   predicate(UseVIS >= 3);
8267   match(Set dst (MoveD2L src));
8268 
8269   format %{ "MOVDTOX $src,$dst\t! MoveD2L" %}
8270   ins_encode %{
8271     __ movdtox(as_DoubleFloatRegister($src$$reg), $dst$$Register);
8272   %}
8273   ins_pipe(ialu_reg_reg);
8274 %}
8275 
8276 instruct MoveL2D_reg_reg(regD dst, iRegL src) %{
8277   predicate(UseVIS >= 3);
8278   match(Set dst (MoveL2D src));
8279 
8280   format %{ "MOVXTOD $src,$dst\t! MoveL2D" %}
8281   ins_encode %{
8282     __ movxtod($src$$Register, as_DoubleFloatRegister($dst$$reg));
8283   %}
8284   ins_pipe(ialu_reg_reg);
8285 %}
8286 
8287 
8288 // Raw moves between float and general registers using stack.
8289 
8290 instruct MoveF2I_stack_reg(iRegI dst, stackSlotF src) %{
8291   match(Set dst (MoveF2I src));
8292   effect(DEF dst, USE src);
8293   ins_cost(MEMORY_REF_COST);
8294 
8295   size(4);
8296   format %{ "LDUW   $src,$dst\t! MoveF2I" %}
8297   opcode(Assembler::lduw_op3);
8298   ins_encode(simple_form3_mem_reg( src, dst ) );
8299   ins_pipe(iload_mem);
8300 %}
8301 
8302 instruct MoveI2F_stack_reg(regF dst, stackSlotI src) %{
8303   match(Set dst (MoveI2F src));
8304   effect(DEF dst, USE src);
8305   ins_cost(MEMORY_REF_COST);
8306 
8307   size(4);
8308   format %{ "LDF    $src,$dst\t! MoveI2F" %}
8309   opcode(Assembler::ldf_op3);
8310   ins_encode(simple_form3_mem_reg(src, dst));
8311   ins_pipe(floadF_stk);
8312 %}
8313 
8314 instruct MoveD2L_stack_reg(iRegL dst, stackSlotD src) %{
8315   match(Set dst (MoveD2L src));
8316   effect(DEF dst, USE src);
8317   ins_cost(MEMORY_REF_COST);
8318 
8319   size(4);
8320   format %{ "LDX    $src,$dst\t! MoveD2L" %}
8321   opcode(Assembler::ldx_op3);
8322   ins_encode(simple_form3_mem_reg( src, dst ) );
8323   ins_pipe(iload_mem);
8324 %}
8325 
8326 instruct MoveL2D_stack_reg(regD dst, stackSlotL src) %{
8327   match(Set dst (MoveL2D src));
8328   effect(DEF dst, USE src);
8329   ins_cost(MEMORY_REF_COST);
8330 
8331   size(4);
8332   format %{ "LDDF   $src,$dst\t! MoveL2D" %}
8333   opcode(Assembler::lddf_op3);
8334   ins_encode(simple_form3_mem_reg(src, dst));
8335   ins_pipe(floadD_stk);
8336 %}
8337 
8338 instruct MoveF2I_reg_stack(stackSlotI dst, regF src) %{
8339   match(Set dst (MoveF2I src));
8340   effect(DEF dst, USE src);
8341   ins_cost(MEMORY_REF_COST);
8342 
8343   size(4);
8344   format %{ "STF   $src,$dst\t! MoveF2I" %}
8345   opcode(Assembler::stf_op3);
8346   ins_encode(simple_form3_mem_reg(dst, src));
8347   ins_pipe(fstoreF_stk_reg);
8348 %}
8349 
8350 instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
8351   match(Set dst (MoveI2F src));
8352   effect(DEF dst, USE src);
8353   ins_cost(MEMORY_REF_COST);
8354 
8355   size(4);
8356   format %{ "STW    $src,$dst\t! MoveI2F" %}
8357   opcode(Assembler::stw_op3);
8358   ins_encode(simple_form3_mem_reg( dst, src ) );
8359   ins_pipe(istore_mem_reg);
8360 %}
8361 
8362 instruct MoveD2L_reg_stack(stackSlotL dst, regD src) %{
8363   match(Set dst (MoveD2L src));
8364   effect(DEF dst, USE src);
8365   ins_cost(MEMORY_REF_COST);
8366 
8367   size(4);
8368   format %{ "STDF   $src,$dst\t! MoveD2L" %}
8369   opcode(Assembler::stdf_op3);
8370   ins_encode(simple_form3_mem_reg(dst, src));
8371   ins_pipe(fstoreD_stk_reg);
8372 %}
8373 
8374 instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
8375   match(Set dst (MoveL2D src));
8376   effect(DEF dst, USE src);
8377   ins_cost(MEMORY_REF_COST);
8378 
8379   size(4);
8380   format %{ "STX    $src,$dst\t! MoveL2D" %}
8381   opcode(Assembler::stx_op3);
8382   ins_encode(simple_form3_mem_reg( dst, src ) );
8383   ins_pipe(istore_mem_reg);
8384 %}
8385 
8386 
8387 //----------Arithmetic Conversion Instructions---------------------------------
8388 // The conversions operations are all Alpha sorted.  Please keep it that way!
8389 
8390 instruct convD2F_reg(regF dst, regD src) %{
8391   match(Set dst (ConvD2F src));
8392   size(4);
8393   format %{ "FDTOS  $src,$dst" %}
8394   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fdtos_opf);
8395   ins_encode(form3_opf_rs2D_rdF(src, dst));
8396   ins_pipe(fcvtD2F);
8397 %}
8398 
8399 
8400 // Convert a double to an int in a float register.
8401 // If the double is a NAN, stuff a zero in instead.
8402 instruct convD2I_helper(regF dst, regD src, flagsRegF0 fcc0) %{
8403   effect(DEF dst, USE src, KILL fcc0);
8404   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8405             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8406             "FDTOI  $src,$dst\t! convert in delay slot\n\t"
8407             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8408             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8409       "skip:" %}
8410   ins_encode(form_d2i_helper(src,dst));
8411   ins_pipe(fcvtD2I);
8412 %}
8413 
8414 instruct convD2I_stk(stackSlotI dst, regD src) %{
8415   match(Set dst (ConvD2I src));
8416   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8417   expand %{
8418     regF tmp;
8419     convD2I_helper(tmp, src);
8420     regF_to_stkI(dst, tmp);
8421   %}
8422 %}
8423 
8424 instruct convD2I_reg(iRegI dst, regD src) %{
8425   predicate(UseVIS >= 3);
8426   match(Set dst (ConvD2I src));
8427   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8428   expand %{
8429     regF tmp;
8430     convD2I_helper(tmp, src);
8431     MoveF2I_reg_reg(dst, tmp);
8432   %}
8433 %}
8434 
8435 
8436 // Convert a double to a long in a double register.
8437 // If the double is a NAN, stuff a zero in instead.
8438 instruct convD2L_helper(regD dst, regD src, flagsRegF0 fcc0) %{
8439   effect(DEF dst, USE src, KILL fcc0);
8440   format %{ "FCMPd  fcc0,$src,$src\t! check for NAN\n\t"
8441             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8442             "FDTOX  $src,$dst\t! convert in delay slot\n\t"
8443             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8444             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8445       "skip:" %}
8446   ins_encode(form_d2l_helper(src,dst));
8447   ins_pipe(fcvtD2L);
8448 %}
8449 
8450 instruct convD2L_stk(stackSlotL dst, regD src) %{
8451   match(Set dst (ConvD2L src));
8452   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8453   expand %{
8454     regD tmp;
8455     convD2L_helper(tmp, src);
8456     regD_to_stkL(dst, tmp);
8457   %}
8458 %}
8459 
8460 instruct convD2L_reg(iRegL dst, regD src) %{
8461   predicate(UseVIS >= 3);
8462   match(Set dst (ConvD2L src));
8463   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8464   expand %{
8465     regD tmp;
8466     convD2L_helper(tmp, src);
8467     MoveD2L_reg_reg(dst, tmp);
8468   %}
8469 %}
8470 
8471 
8472 instruct convF2D_reg(regD dst, regF src) %{
8473   match(Set dst (ConvF2D src));
8474   format %{ "FSTOD  $src,$dst" %}
8475   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fstod_opf);
8476   ins_encode(form3_opf_rs2F_rdD(src, dst));
8477   ins_pipe(fcvtF2D);
8478 %}
8479 
8480 
8481 // Convert a float to an int in a float register.
8482 // If the float is a NAN, stuff a zero in instead.
8483 instruct convF2I_helper(regF dst, regF src, flagsRegF0 fcc0) %{
8484   effect(DEF dst, USE src, KILL fcc0);
8485   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8486             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8487             "FSTOI  $src,$dst\t! convert in delay slot\n\t"
8488             "FITOS  $dst,$dst\t! change NaN/max-int to valid float\n\t"
8489             "FSUBs  $dst,$dst,$dst\t! cleared only if nan\n"
8490       "skip:" %}
8491   ins_encode(form_f2i_helper(src,dst));
8492   ins_pipe(fcvtF2I);
8493 %}
8494 
8495 instruct convF2I_stk(stackSlotI dst, regF src) %{
8496   match(Set dst (ConvF2I src));
8497   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8498   expand %{
8499     regF tmp;
8500     convF2I_helper(tmp, src);
8501     regF_to_stkI(dst, tmp);
8502   %}
8503 %}
8504 
8505 instruct convF2I_reg(iRegI dst, regF src) %{
8506   predicate(UseVIS >= 3);
8507   match(Set dst (ConvF2I src));
8508   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8509   expand %{
8510     regF tmp;
8511     convF2I_helper(tmp, src);
8512     MoveF2I_reg_reg(dst, tmp);
8513   %}
8514 %}
8515 
8516 
8517 // Convert a float to a long in a float register.
8518 // If the float is a NAN, stuff a zero in instead.
8519 instruct convF2L_helper(regD dst, regF src, flagsRegF0 fcc0) %{
8520   effect(DEF dst, USE src, KILL fcc0);
8521   format %{ "FCMPs  fcc0,$src,$src\t! check for NAN\n\t"
8522             "FBO,pt fcc0,skip\t! branch on ordered, predict taken\n\t"
8523             "FSTOX  $src,$dst\t! convert in delay slot\n\t"
8524             "FXTOD  $dst,$dst\t! change NaN/max-long to valid double\n\t"
8525             "FSUBd  $dst,$dst,$dst\t! cleared only if nan\n"
8526       "skip:" %}
8527   ins_encode(form_f2l_helper(src,dst));
8528   ins_pipe(fcvtF2L);
8529 %}
8530 
8531 instruct convF2L_stk(stackSlotL dst, regF src) %{
8532   match(Set dst (ConvF2L src));
8533   ins_cost(DEFAULT_COST*2 + MEMORY_REF_COST*2 + BRANCH_COST);
8534   expand %{
8535     regD tmp;
8536     convF2L_helper(tmp, src);
8537     regD_to_stkL(dst, tmp);
8538   %}
8539 %}
8540 
8541 instruct convF2L_reg(iRegL dst, regF src) %{
8542   predicate(UseVIS >= 3);
8543   match(Set dst (ConvF2L src));
8544   ins_cost(DEFAULT_COST*2 + BRANCH_COST);
8545   expand %{
8546     regD tmp;
8547     convF2L_helper(tmp, src);
8548     MoveD2L_reg_reg(dst, tmp);
8549   %}
8550 %}
8551 
8552 
8553 instruct convI2D_helper(regD dst, regF tmp) %{
8554   effect(USE tmp, DEF dst);
8555   format %{ "FITOD  $tmp,$dst" %}
8556   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8557   ins_encode(form3_opf_rs2F_rdD(tmp, dst));
8558   ins_pipe(fcvtI2D);
8559 %}
8560 
8561 instruct convI2D_stk(stackSlotI src, regD dst) %{
8562   match(Set dst (ConvI2D src));
8563   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8564   expand %{
8565     regF tmp;
8566     stkI_to_regF(tmp, src);
8567     convI2D_helper(dst, tmp);
8568   %}
8569 %}
8570 
8571 instruct convI2D_reg(regD_low dst, iRegI src) %{
8572   predicate(UseVIS >= 3);
8573   match(Set dst (ConvI2D src));
8574   expand %{
8575     regF tmp;
8576     MoveI2F_reg_reg(tmp, src);
8577     convI2D_helper(dst, tmp);
8578   %}
8579 %}
8580 
8581 instruct convI2D_mem(regD_low dst, memory mem) %{
8582   match(Set dst (ConvI2D (LoadI mem)));
8583   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8584   size(8);
8585   format %{ "LDF    $mem,$dst\n\t"
8586             "FITOD  $dst,$dst" %}
8587   opcode(Assembler::ldf_op3, Assembler::fitod_opf);
8588   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8589   ins_pipe(floadF_mem);
8590 %}
8591 
8592 
8593 instruct convI2F_helper(regF dst, regF tmp) %{
8594   effect(DEF dst, USE tmp);
8595   format %{ "FITOS  $tmp,$dst" %}
8596   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitos_opf);
8597   ins_encode(form3_opf_rs2F_rdF(tmp, dst));
8598   ins_pipe(fcvtI2F);
8599 %}
8600 
8601 instruct convI2F_stk(regF dst, stackSlotI src) %{
8602   match(Set dst (ConvI2F src));
8603   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8604   expand %{
8605     regF tmp;
8606     stkI_to_regF(tmp,src);
8607     convI2F_helper(dst, tmp);
8608   %}
8609 %}
8610 
8611 instruct convI2F_reg(regF dst, iRegI src) %{
8612   predicate(UseVIS >= 3);
8613   match(Set dst (ConvI2F src));
8614   ins_cost(DEFAULT_COST);
8615   expand %{
8616     regF tmp;
8617     MoveI2F_reg_reg(tmp, src);
8618     convI2F_helper(dst, tmp);
8619   %}
8620 %}
8621 
8622 instruct convI2F_mem( regF dst, memory mem ) %{
8623   match(Set dst (ConvI2F (LoadI mem)));
8624   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8625   size(8);
8626   format %{ "LDF    $mem,$dst\n\t"
8627             "FITOS  $dst,$dst" %}
8628   opcode(Assembler::ldf_op3, Assembler::fitos_opf);
8629   ins_encode(simple_form3_mem_reg( mem, dst ), form3_convI2F(dst, dst));
8630   ins_pipe(floadF_mem);
8631 %}
8632 
8633 
8634 instruct convI2L_reg(iRegL dst, iRegI src) %{
8635   match(Set dst (ConvI2L src));
8636   size(4);
8637   format %{ "SRA    $src,0,$dst\t! int->long" %}
8638   opcode(Assembler::sra_op3, Assembler::arith_op);
8639   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8640   ins_pipe(ialu_reg_reg);
8641 %}
8642 
8643 // Zero-extend convert int to long
8644 instruct convI2L_reg_zex(iRegL dst, iRegI src, immL_32bits mask ) %{
8645   match(Set dst (AndL (ConvI2L src) mask) );
8646   size(4);
8647   format %{ "SRL    $src,0,$dst\t! zero-extend int to long" %}
8648   opcode(Assembler::srl_op3, Assembler::arith_op);
8649   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8650   ins_pipe(ialu_reg_reg);
8651 %}
8652 
8653 // Zero-extend long
8654 instruct zerox_long(iRegL dst, iRegL src, immL_32bits mask ) %{
8655   match(Set dst (AndL src mask) );
8656   size(4);
8657   format %{ "SRL    $src,0,$dst\t! zero-extend long" %}
8658   opcode(Assembler::srl_op3, Assembler::arith_op);
8659   ins_encode( form3_rs1_rs2_rd( src, R_G0, dst ) );
8660   ins_pipe(ialu_reg_reg);
8661 %}
8662 
8663 
8664 //-----------
8665 // Long to Double conversion using V8 opcodes.
8666 // Still useful because cheetah traps and becomes
8667 // amazingly slow for some common numbers.
8668 
8669 // Magic constant, 0x43300000
8670 instruct loadConI_x43300000(iRegI dst) %{
8671   effect(DEF dst);
8672   size(4);
8673   format %{ "SETHI  HI(0x43300000),$dst\t! 2^52" %}
8674   ins_encode(SetHi22(0x43300000, dst));
8675   ins_pipe(ialu_none);
8676 %}
8677 
8678 // Magic constant, 0x41f00000
8679 instruct loadConI_x41f00000(iRegI dst) %{
8680   effect(DEF dst);
8681   size(4);
8682   format %{ "SETHI  HI(0x41f00000),$dst\t! 2^32" %}
8683   ins_encode(SetHi22(0x41f00000, dst));
8684   ins_pipe(ialu_none);
8685 %}
8686 
8687 // Construct a double from two float halves
8688 instruct regDHi_regDLo_to_regD(regD_low dst, regD_low src1, regD_low src2) %{
8689   effect(DEF dst, USE src1, USE src2);
8690   size(8);
8691   format %{ "FMOVS  $src1.hi,$dst.hi\n\t"
8692             "FMOVS  $src2.lo,$dst.lo" %}
8693   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmovs_opf);
8694   ins_encode(form3_opf_rs2D_hi_rdD_hi(src1, dst), form3_opf_rs2D_lo_rdD_lo(src2, dst));
8695   ins_pipe(faddD_reg_reg);
8696 %}
8697 
8698 // Convert integer in high half of a double register (in the lower half of
8699 // the double register file) to double
8700 instruct convI2D_regDHi_regD(regD dst, regD_low src) %{
8701   effect(DEF dst, USE src);
8702   size(4);
8703   format %{ "FITOD  $src,$dst" %}
8704   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fitod_opf);
8705   ins_encode(form3_opf_rs2D_rdD(src, dst));
8706   ins_pipe(fcvtLHi2D);
8707 %}
8708 
8709 // Add float double precision
8710 instruct addD_regD_regD(regD dst, regD src1, regD src2) %{
8711   effect(DEF dst, USE src1, USE src2);
8712   size(4);
8713   format %{ "FADDD  $src1,$src2,$dst" %}
8714   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::faddd_opf);
8715   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8716   ins_pipe(faddD_reg_reg);
8717 %}
8718 
8719 // Sub float double precision
8720 instruct subD_regD_regD(regD dst, regD src1, regD src2) %{
8721   effect(DEF dst, USE src1, USE src2);
8722   size(4);
8723   format %{ "FSUBD  $src1,$src2,$dst" %}
8724   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fsubd_opf);
8725   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8726   ins_pipe(faddD_reg_reg);
8727 %}
8728 
8729 // Mul float double precision
8730 instruct mulD_regD_regD(regD dst, regD src1, regD src2) %{
8731   effect(DEF dst, USE src1, USE src2);
8732   size(4);
8733   format %{ "FMULD  $src1,$src2,$dst" %}
8734   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fmuld_opf);
8735   ins_encode(form3_opf_rs1D_rs2D_rdD(src1, src2, dst));
8736   ins_pipe(fmulD_reg_reg);
8737 %}
8738 
8739 instruct convL2D_reg_slow_fxtof(regD dst, stackSlotL src) %{
8740   match(Set dst (ConvL2D src));
8741   ins_cost(DEFAULT_COST*8 + MEMORY_REF_COST*6);
8742 
8743   expand %{
8744     regD_low   tmpsrc;
8745     iRegI      ix43300000;
8746     iRegI      ix41f00000;
8747     stackSlotL lx43300000;
8748     stackSlotL lx41f00000;
8749     regD_low   dx43300000;
8750     regD       dx41f00000;
8751     regD       tmp1;
8752     regD_low   tmp2;
8753     regD       tmp3;
8754     regD       tmp4;
8755 
8756     stkL_to_regD(tmpsrc, src);
8757 
8758     loadConI_x43300000(ix43300000);
8759     loadConI_x41f00000(ix41f00000);
8760     regI_to_stkLHi(lx43300000, ix43300000);
8761     regI_to_stkLHi(lx41f00000, ix41f00000);
8762     stkL_to_regD(dx43300000, lx43300000);
8763     stkL_to_regD(dx41f00000, lx41f00000);
8764 
8765     convI2D_regDHi_regD(tmp1, tmpsrc);
8766     regDHi_regDLo_to_regD(tmp2, dx43300000, tmpsrc);
8767     subD_regD_regD(tmp3, tmp2, dx43300000);
8768     mulD_regD_regD(tmp4, tmp1, dx41f00000);
8769     addD_regD_regD(dst, tmp3, tmp4);
8770   %}
8771 %}
8772 
8773 // Long to Double conversion using fast fxtof
8774 instruct convL2D_helper(regD dst, regD tmp) %{
8775   effect(DEF dst, USE tmp);
8776   size(4);
8777   format %{ "FXTOD  $tmp,$dst" %}
8778   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtod_opf);
8779   ins_encode(form3_opf_rs2D_rdD(tmp, dst));
8780   ins_pipe(fcvtL2D);
8781 %}
8782 
8783 instruct convL2D_stk_fast_fxtof(regD dst, stackSlotL src) %{
8784   predicate(VM_Version::has_fast_fxtof());
8785   match(Set dst (ConvL2D src));
8786   ins_cost(DEFAULT_COST + 3 * MEMORY_REF_COST);
8787   expand %{
8788     regD tmp;
8789     stkL_to_regD(tmp, src);
8790     convL2D_helper(dst, tmp);
8791   %}
8792 %}
8793 
8794 instruct convL2D_reg(regD dst, iRegL src) %{
8795   predicate(UseVIS >= 3);
8796   match(Set dst (ConvL2D src));
8797   expand %{
8798     regD tmp;
8799     MoveL2D_reg_reg(tmp, src);
8800     convL2D_helper(dst, tmp);
8801   %}
8802 %}
8803 
8804 // Long to Float conversion using fast fxtof
8805 instruct convL2F_helper(regF dst, regD tmp) %{
8806   effect(DEF dst, USE tmp);
8807   size(4);
8808   format %{ "FXTOS  $tmp,$dst" %}
8809   opcode(Assembler::fpop1_op3, Assembler::arith_op, Assembler::fxtos_opf);
8810   ins_encode(form3_opf_rs2D_rdF(tmp, dst));
8811   ins_pipe(fcvtL2F);
8812 %}
8813 
8814 instruct convL2F_stk_fast_fxtof(regF dst, stackSlotL src) %{
8815   match(Set dst (ConvL2F src));
8816   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
8817   expand %{
8818     regD tmp;
8819     stkL_to_regD(tmp, src);
8820     convL2F_helper(dst, tmp);
8821   %}
8822 %}
8823 
8824 instruct convL2F_reg(regF dst, iRegL src) %{
8825   predicate(UseVIS >= 3);
8826   match(Set dst (ConvL2F src));
8827   ins_cost(DEFAULT_COST);
8828   expand %{
8829     regD tmp;
8830     MoveL2D_reg_reg(tmp, src);
8831     convL2F_helper(dst, tmp);
8832   %}
8833 %}
8834 
8835 //-----------
8836 
8837 instruct convL2I_reg(iRegI dst, iRegL src) %{
8838   match(Set dst (ConvL2I src));
8839 #ifndef _LP64
8840   format %{ "MOV    $src.lo,$dst\t! long->int" %}
8841   ins_encode( form3_g0_rs2_rd_move_lo2( src, dst ) );
8842   ins_pipe(ialu_move_reg_I_to_L);
8843 #else
8844   size(4);
8845   format %{ "SRA    $src,R_G0,$dst\t! long->int" %}
8846   ins_encode( form3_rs1_rd_signextend_lo1( src, dst ) );
8847   ins_pipe(ialu_reg);
8848 #endif
8849 %}
8850 
8851 // Register Shift Right Immediate
8852 instruct shrL_reg_imm6_L2I(iRegI dst, iRegL src, immI_32_63 cnt) %{
8853   match(Set dst (ConvL2I (RShiftL src cnt)));
8854 
8855   size(4);
8856   format %{ "SRAX   $src,$cnt,$dst" %}
8857   opcode(Assembler::srax_op3, Assembler::arith_op);
8858   ins_encode( form3_sd_rs1_imm6_rd( src, cnt, dst ) );
8859   ins_pipe(ialu_reg_imm);
8860 %}
8861 
8862 //----------Control Flow Instructions------------------------------------------
8863 // Compare Instructions
8864 // Compare Integers
8865 instruct compI_iReg(flagsReg icc, iRegI op1, iRegI op2) %{
8866   match(Set icc (CmpI op1 op2));
8867   effect( DEF icc, USE op1, USE op2 );
8868 
8869   size(4);
8870   format %{ "CMP    $op1,$op2" %}
8871   opcode(Assembler::subcc_op3, Assembler::arith_op);
8872   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8873   ins_pipe(ialu_cconly_reg_reg);
8874 %}
8875 
8876 instruct compU_iReg(flagsRegU icc, iRegI op1, iRegI op2) %{
8877   match(Set icc (CmpU op1 op2));
8878 
8879   size(4);
8880   format %{ "CMP    $op1,$op2\t! unsigned" %}
8881   opcode(Assembler::subcc_op3, Assembler::arith_op);
8882   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8883   ins_pipe(ialu_cconly_reg_reg);
8884 %}
8885 
8886 instruct compUL_iReg(flagsRegUL xcc, iRegL op1, iRegL op2) %{
8887   match(Set xcc (CmpUL op1 op2));
8888   effect(DEF xcc, USE op1, USE op2);
8889 
8890   size(4);
8891   format %{ "CMP    $op1,$op2\t! unsigned long" %}
8892   opcode(Assembler::subcc_op3, Assembler::arith_op);
8893   ins_encode(form3_rs1_rs2_rd(op1, op2, R_G0));
8894   ins_pipe(ialu_cconly_reg_reg);
8895 %}
8896 
8897 instruct compI_iReg_imm13(flagsReg icc, iRegI op1, immI13 op2) %{
8898   match(Set icc (CmpI op1 op2));
8899   effect( DEF icc, USE op1 );
8900 
8901   size(4);
8902   format %{ "CMP    $op1,$op2" %}
8903   opcode(Assembler::subcc_op3, Assembler::arith_op);
8904   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8905   ins_pipe(ialu_cconly_reg_imm);
8906 %}
8907 
8908 instruct testI_reg_reg( flagsReg icc, iRegI op1, iRegI op2, immI0 zero ) %{
8909   match(Set icc (CmpI (AndI op1 op2) zero));
8910 
8911   size(4);
8912   format %{ "BTST   $op2,$op1" %}
8913   opcode(Assembler::andcc_op3, Assembler::arith_op);
8914   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8915   ins_pipe(ialu_cconly_reg_reg_zero);
8916 %}
8917 
8918 instruct testI_reg_imm( flagsReg icc, iRegI op1, immI13 op2, immI0 zero ) %{
8919   match(Set icc (CmpI (AndI op1 op2) zero));
8920 
8921   size(4);
8922   format %{ "BTST   $op2,$op1" %}
8923   opcode(Assembler::andcc_op3, Assembler::arith_op);
8924   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8925   ins_pipe(ialu_cconly_reg_imm_zero);
8926 %}
8927 
8928 instruct compL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2 ) %{
8929   match(Set xcc (CmpL op1 op2));
8930   effect( DEF xcc, USE op1, USE op2 );
8931 
8932   size(4);
8933   format %{ "CMP    $op1,$op2\t\t! long" %}
8934   opcode(Assembler::subcc_op3, Assembler::arith_op);
8935   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8936   ins_pipe(ialu_cconly_reg_reg);
8937 %}
8938 
8939 instruct compL_reg_con(flagsRegL xcc, iRegL op1, immL13 con) %{
8940   match(Set xcc (CmpL op1 con));
8941   effect( DEF xcc, USE op1, USE con );
8942 
8943   size(4);
8944   format %{ "CMP    $op1,$con\t\t! long" %}
8945   opcode(Assembler::subcc_op3, Assembler::arith_op);
8946   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8947   ins_pipe(ialu_cconly_reg_reg);
8948 %}
8949 
8950 instruct testL_reg_reg(flagsRegL xcc, iRegL op1, iRegL op2, immL0 zero) %{
8951   match(Set xcc (CmpL (AndL op1 op2) zero));
8952   effect( DEF xcc, USE op1, USE op2 );
8953 
8954   size(4);
8955   format %{ "BTST   $op1,$op2\t\t! long" %}
8956   opcode(Assembler::andcc_op3, Assembler::arith_op);
8957   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
8958   ins_pipe(ialu_cconly_reg_reg);
8959 %}
8960 
8961 // useful for checking the alignment of a pointer:
8962 instruct testL_reg_con(flagsRegL xcc, iRegL op1, immL13 con, immL0 zero) %{
8963   match(Set xcc (CmpL (AndL op1 con) zero));
8964   effect( DEF xcc, USE op1, USE con );
8965 
8966   size(4);
8967   format %{ "BTST   $op1,$con\t\t! long" %}
8968   opcode(Assembler::andcc_op3, Assembler::arith_op);
8969   ins_encode( form3_rs1_simm13_rd( op1, con, R_G0 ) );
8970   ins_pipe(ialu_cconly_reg_reg);
8971 %}
8972 
8973 instruct compU_iReg_imm13(flagsRegU icc, iRegI op1, immU12 op2 ) %{
8974   match(Set icc (CmpU op1 op2));
8975 
8976   size(4);
8977   format %{ "CMP    $op1,$op2\t! unsigned" %}
8978   opcode(Assembler::subcc_op3, Assembler::arith_op);
8979   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
8980   ins_pipe(ialu_cconly_reg_imm);
8981 %}
8982 
8983 instruct compUL_iReg_imm13(flagsRegUL xcc, iRegL op1, immUL12 op2) %{
8984   match(Set xcc (CmpUL op1 op2));
8985   effect(DEF xcc, USE op1, USE op2);
8986 
8987   size(4);
8988   format %{ "CMP    $op1,$op2\t! unsigned long" %}
8989   opcode(Assembler::subcc_op3, Assembler::arith_op);
8990   ins_encode(form3_rs1_simm13_rd(op1, op2, R_G0));
8991   ins_pipe(ialu_cconly_reg_imm);
8992 %}
8993 
8994 // Compare Pointers
8995 instruct compP_iRegP(flagsRegP pcc, iRegP op1, iRegP op2 ) %{
8996   match(Set pcc (CmpP op1 op2));
8997 
8998   size(4);
8999   format %{ "CMP    $op1,$op2\t! ptr" %}
9000   opcode(Assembler::subcc_op3, Assembler::arith_op);
9001   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9002   ins_pipe(ialu_cconly_reg_reg);
9003 %}
9004 
9005 instruct compP_iRegP_imm13(flagsRegP pcc, iRegP op1, immP13 op2 ) %{
9006   match(Set pcc (CmpP op1 op2));
9007 
9008   size(4);
9009   format %{ "CMP    $op1,$op2\t! ptr" %}
9010   opcode(Assembler::subcc_op3, Assembler::arith_op);
9011   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9012   ins_pipe(ialu_cconly_reg_imm);
9013 %}
9014 
9015 // Compare Narrow oops
9016 instruct compN_iRegN(flagsReg icc, iRegN op1, iRegN op2 ) %{
9017   match(Set icc (CmpN op1 op2));
9018 
9019   size(4);
9020   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9021   opcode(Assembler::subcc_op3, Assembler::arith_op);
9022   ins_encode( form3_rs1_rs2_rd( op1, op2, R_G0 ) );
9023   ins_pipe(ialu_cconly_reg_reg);
9024 %}
9025 
9026 instruct compN_iRegN_immN0(flagsReg icc, iRegN op1, immN0 op2 ) %{
9027   match(Set icc (CmpN op1 op2));
9028 
9029   size(4);
9030   format %{ "CMP    $op1,$op2\t! compressed ptr" %}
9031   opcode(Assembler::subcc_op3, Assembler::arith_op);
9032   ins_encode( form3_rs1_simm13_rd( op1, op2, R_G0 ) );
9033   ins_pipe(ialu_cconly_reg_imm);
9034 %}
9035 
9036 //----------Max and Min--------------------------------------------------------
9037 // Min Instructions
9038 // Conditional move for min
9039 instruct cmovI_reg_lt( iRegI op2, iRegI op1, flagsReg icc ) %{
9040   effect( USE_DEF op2, USE op1, USE icc );
9041 
9042   size(4);
9043   format %{ "MOVlt  icc,$op1,$op2\t! min" %}
9044   opcode(Assembler::less);
9045   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9046   ins_pipe(ialu_reg_flags);
9047 %}
9048 
9049 // Min Register with Register.
9050 instruct minI_eReg(iRegI op1, iRegI op2) %{
9051   match(Set op2 (MinI op1 op2));
9052   ins_cost(DEFAULT_COST*2);
9053   expand %{
9054     flagsReg icc;
9055     compI_iReg(icc,op1,op2);
9056     cmovI_reg_lt(op2,op1,icc);
9057   %}
9058 %}
9059 
9060 // Max Instructions
9061 // Conditional move for max
9062 instruct cmovI_reg_gt( iRegI op2, iRegI op1, flagsReg icc ) %{
9063   effect( USE_DEF op2, USE op1, USE icc );
9064   format %{ "MOVgt  icc,$op1,$op2\t! max" %}
9065   opcode(Assembler::greater);
9066   ins_encode( enc_cmov_reg_minmax(op2,op1) );
9067   ins_pipe(ialu_reg_flags);
9068 %}
9069 
9070 // Max Register with Register
9071 instruct maxI_eReg(iRegI op1, iRegI op2) %{
9072   match(Set op2 (MaxI op1 op2));
9073   ins_cost(DEFAULT_COST*2);
9074   expand %{
9075     flagsReg icc;
9076     compI_iReg(icc,op1,op2);
9077     cmovI_reg_gt(op2,op1,icc);
9078   %}
9079 %}
9080 
9081 
9082 //----------Float Compares----------------------------------------------------
9083 // Compare floating, generate condition code
9084 instruct cmpF_cc(flagsRegF fcc, regF src1, regF src2) %{
9085   match(Set fcc (CmpF src1 src2));
9086 
9087   size(4);
9088   format %{ "FCMPs  $fcc,$src1,$src2" %}
9089   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmps_opf);
9090   ins_encode( form3_opf_rs1F_rs2F_fcc( src1, src2, fcc ) );
9091   ins_pipe(faddF_fcc_reg_reg_zero);
9092 %}
9093 
9094 instruct cmpD_cc(flagsRegF fcc, regD src1, regD src2) %{
9095   match(Set fcc (CmpD src1 src2));
9096 
9097   size(4);
9098   format %{ "FCMPd  $fcc,$src1,$src2" %}
9099   opcode(Assembler::fpop2_op3, Assembler::arith_op, Assembler::fcmpd_opf);
9100   ins_encode( form3_opf_rs1D_rs2D_fcc( src1, src2, fcc ) );
9101   ins_pipe(faddD_fcc_reg_reg_zero);
9102 %}
9103 
9104 
9105 // Compare floating, generate -1,0,1
9106 instruct cmpF_reg(iRegI dst, regF src1, regF src2, flagsRegF0 fcc0) %{
9107   match(Set dst (CmpF3 src1 src2));
9108   effect(KILL fcc0);
9109   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9110   format %{ "fcmpl  $dst,$src1,$src2" %}
9111   // Primary = float
9112   opcode( true );
9113   ins_encode( floating_cmp( dst, src1, src2 ) );
9114   ins_pipe( floating_cmp );
9115 %}
9116 
9117 instruct cmpD_reg(iRegI dst, regD src1, regD src2, flagsRegF0 fcc0) %{
9118   match(Set dst (CmpD3 src1 src2));
9119   effect(KILL fcc0);
9120   ins_cost(DEFAULT_COST*3+BRANCH_COST*3);
9121   format %{ "dcmpl  $dst,$src1,$src2" %}
9122   // Primary = double (not float)
9123   opcode( false );
9124   ins_encode( floating_cmp( dst, src1, src2 ) );
9125   ins_pipe( floating_cmp );
9126 %}
9127 
9128 //----------Branches---------------------------------------------------------
9129 // Jump
9130 // (compare 'operand indIndex' and 'instruct addP_reg_reg' above)
9131 instruct jumpXtnd(iRegX switch_val, o7RegI table) %{
9132   match(Jump switch_val);
9133   effect(TEMP table);
9134 
9135   ins_cost(350);
9136 
9137   format %{  "ADD    $constanttablebase, $constantoffset, O7\n\t"
9138              "LD     [O7 + $switch_val], O7\n\t"
9139              "JUMP   O7" %}
9140   ins_encode %{
9141     // Calculate table address into a register.
9142     Register table_reg;
9143     Register label_reg = O7;
9144     // If we are calculating the size of this instruction don't trust
9145     // zero offsets because they might change when
9146     // MachConstantBaseNode decides to optimize the constant table
9147     // base.
9148     if ((constant_offset() == 0) && !Compile::current()->in_scratch_emit_size()) {
9149       table_reg = $constanttablebase;
9150     } else {
9151       table_reg = O7;
9152       RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset, O7);
9153       __ add($constanttablebase, con_offset, table_reg);
9154     }
9155 
9156     // Jump to base address + switch value
9157     __ ld_ptr(table_reg, $switch_val$$Register, label_reg);
9158     __ jmp(label_reg, G0);
9159     __ delayed()->nop();
9160   %}
9161   ins_pipe(ialu_reg_reg);
9162 %}
9163 
9164 // Direct Branch.  Use V8 version with longer range.
9165 instruct branch(label labl) %{
9166   match(Goto);
9167   effect(USE labl);
9168 
9169   size(8);
9170   ins_cost(BRANCH_COST);
9171   format %{ "BA     $labl" %}
9172   ins_encode %{
9173     Label* L = $labl$$label;
9174     __ ba(*L);
9175     __ delayed()->nop();
9176   %}
9177   ins_pipe(br);
9178 %}
9179 
9180 // Direct Branch, short with no delay slot
9181 instruct branch_short(label labl) %{
9182   match(Goto);
9183   predicate(UseCBCond);
9184   effect(USE labl);
9185 
9186   size(4);
9187   ins_cost(BRANCH_COST);
9188   format %{ "BA     $labl\t! short branch" %}
9189   ins_encode %{
9190     Label* L = $labl$$label;
9191     assert(__ use_cbcond(*L), "back to back cbcond");
9192     __ ba_short(*L);
9193   %}
9194   ins_short_branch(1);
9195   ins_avoid_back_to_back(1);
9196   ins_pipe(cbcond_reg_imm);
9197 %}
9198 
9199 // Conditional Direct Branch
9200 instruct branchCon(cmpOp cmp, flagsReg icc, label labl) %{
9201   match(If cmp icc);
9202   effect(USE labl);
9203 
9204   size(8);
9205   ins_cost(BRANCH_COST);
9206   format %{ "BP$cmp   $icc,$labl" %}
9207   // Prim = bits 24-22, Secnd = bits 31-30
9208   ins_encode( enc_bp( labl, cmp, icc ) );
9209   ins_pipe(br_cc);
9210 %}
9211 
9212 instruct branchConU(cmpOpU cmp, flagsRegU icc, label labl) %{
9213   match(If cmp icc);
9214   effect(USE labl);
9215 
9216   ins_cost(BRANCH_COST);
9217   format %{ "BP$cmp  $icc,$labl" %}
9218   // Prim = bits 24-22, Secnd = bits 31-30
9219   ins_encode( enc_bp( labl, cmp, icc ) );
9220   ins_pipe(br_cc);
9221 %}
9222 
9223 instruct branchConP(cmpOpP cmp, flagsRegP pcc, label labl) %{
9224   match(If cmp pcc);
9225   effect(USE labl);
9226 
9227   size(8);
9228   ins_cost(BRANCH_COST);
9229   format %{ "BP$cmp  $pcc,$labl" %}
9230   ins_encode %{
9231     Label* L = $labl$$label;
9232     Assembler::Predict predict_taken =
9233       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9234 
9235     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9236     __ delayed()->nop();
9237   %}
9238   ins_pipe(br_cc);
9239 %}
9240 
9241 instruct branchConF(cmpOpF cmp, flagsRegF fcc, label labl) %{
9242   match(If cmp fcc);
9243   effect(USE labl);
9244 
9245   size(8);
9246   ins_cost(BRANCH_COST);
9247   format %{ "FBP$cmp $fcc,$labl" %}
9248   ins_encode %{
9249     Label* L = $labl$$label;
9250     Assembler::Predict predict_taken =
9251       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9252 
9253     __ fbp( (Assembler::Condition)($cmp$$cmpcode), false, (Assembler::CC)($fcc$$reg), predict_taken, *L);
9254     __ delayed()->nop();
9255   %}
9256   ins_pipe(br_fcc);
9257 %}
9258 
9259 instruct branchLoopEnd(cmpOp cmp, flagsReg icc, label labl) %{
9260   match(CountedLoopEnd cmp icc);
9261   effect(USE labl);
9262 
9263   size(8);
9264   ins_cost(BRANCH_COST);
9265   format %{ "BP$cmp   $icc,$labl\t! Loop end" %}
9266   // Prim = bits 24-22, Secnd = bits 31-30
9267   ins_encode( enc_bp( labl, cmp, icc ) );
9268   ins_pipe(br_cc);
9269 %}
9270 
9271 instruct branchLoopEndU(cmpOpU cmp, flagsRegU icc, label labl) %{
9272   match(CountedLoopEnd cmp icc);
9273   effect(USE labl);
9274 
9275   size(8);
9276   ins_cost(BRANCH_COST);
9277   format %{ "BP$cmp  $icc,$labl\t! Loop end" %}
9278   // Prim = bits 24-22, Secnd = bits 31-30
9279   ins_encode( enc_bp( labl, cmp, icc ) );
9280   ins_pipe(br_cc);
9281 %}
9282 
9283 // Compare and branch instructions
9284 instruct cmpI_reg_branch(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9285   match(If cmp (CmpI op1 op2));
9286   effect(USE labl, KILL icc);
9287 
9288   size(12);
9289   ins_cost(BRANCH_COST);
9290   format %{ "CMP    $op1,$op2\t! int\n\t"
9291             "BP$cmp   $labl" %}
9292   ins_encode %{
9293     Label* L = $labl$$label;
9294     Assembler::Predict predict_taken =
9295       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9296     __ cmp($op1$$Register, $op2$$Register);
9297     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9298     __ delayed()->nop();
9299   %}
9300   ins_pipe(cmp_br_reg_reg);
9301 %}
9302 
9303 instruct cmpI_imm_branch(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9304   match(If cmp (CmpI op1 op2));
9305   effect(USE labl, KILL icc);
9306 
9307   size(12);
9308   ins_cost(BRANCH_COST);
9309   format %{ "CMP    $op1,$op2\t! int\n\t"
9310             "BP$cmp   $labl" %}
9311   ins_encode %{
9312     Label* L = $labl$$label;
9313     Assembler::Predict predict_taken =
9314       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9315     __ cmp($op1$$Register, $op2$$constant);
9316     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9317     __ delayed()->nop();
9318   %}
9319   ins_pipe(cmp_br_reg_imm);
9320 %}
9321 
9322 instruct cmpU_reg_branch(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9323   match(If cmp (CmpU op1 op2));
9324   effect(USE labl, KILL icc);
9325 
9326   size(12);
9327   ins_cost(BRANCH_COST);
9328   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9329             "BP$cmp  $labl" %}
9330   ins_encode %{
9331     Label* L = $labl$$label;
9332     Assembler::Predict predict_taken =
9333       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9334     __ cmp($op1$$Register, $op2$$Register);
9335     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9336     __ delayed()->nop();
9337   %}
9338   ins_pipe(cmp_br_reg_reg);
9339 %}
9340 
9341 instruct cmpU_imm_branch(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9342   match(If cmp (CmpU op1 op2));
9343   effect(USE labl, KILL icc);
9344 
9345   size(12);
9346   ins_cost(BRANCH_COST);
9347   format %{ "CMP    $op1,$op2\t! unsigned\n\t"
9348             "BP$cmp  $labl" %}
9349   ins_encode %{
9350     Label* L = $labl$$label;
9351     Assembler::Predict predict_taken =
9352       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9353     __ cmp($op1$$Register, $op2$$constant);
9354     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9355     __ delayed()->nop();
9356   %}
9357   ins_pipe(cmp_br_reg_imm);
9358 %}
9359 
9360 instruct cmpUL_reg_branch(cmpOpU cmp, iRegL op1, iRegL op2, label labl, flagsRegUL xcc) %{
9361   match(If cmp (CmpUL op1 op2));
9362   effect(USE labl, KILL xcc);
9363 
9364   size(12);
9365   ins_cost(BRANCH_COST);
9366   format %{ "CMP    $op1,$op2\t! unsigned long\n\t"
9367             "BP$cmp   $labl" %}
9368   ins_encode %{
9369     Label* L = $labl$$label;
9370     Assembler::Predict predict_taken =
9371       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9372     __ cmp($op1$$Register, $op2$$Register);
9373     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9374     __ delayed()->nop();
9375   %}
9376   ins_pipe(cmp_br_reg_reg);
9377 %}
9378 
9379 instruct cmpUL_imm_branch(cmpOpU cmp, iRegL op1, immL5 op2, label labl, flagsRegUL xcc) %{
9380   match(If cmp (CmpUL op1 op2));
9381   effect(USE labl, KILL xcc);
9382 
9383   size(12);
9384   ins_cost(BRANCH_COST);
9385   format %{ "CMP    $op1,$op2\t! unsigned long\n\t"
9386             "BP$cmp   $labl" %}
9387   ins_encode %{
9388     Label* L = $labl$$label;
9389     Assembler::Predict predict_taken =
9390       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9391     __ cmp($op1$$Register, $op2$$constant);
9392     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9393     __ delayed()->nop();
9394   %}
9395   ins_pipe(cmp_br_reg_imm);
9396 %}
9397 
9398 instruct cmpL_reg_branch(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9399   match(If cmp (CmpL op1 op2));
9400   effect(USE labl, KILL xcc);
9401 
9402   size(12);
9403   ins_cost(BRANCH_COST);
9404   format %{ "CMP    $op1,$op2\t! long\n\t"
9405             "BP$cmp   $labl" %}
9406   ins_encode %{
9407     Label* L = $labl$$label;
9408     Assembler::Predict predict_taken =
9409       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9410     __ cmp($op1$$Register, $op2$$Register);
9411     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9412     __ delayed()->nop();
9413   %}
9414   ins_pipe(cmp_br_reg_reg);
9415 %}
9416 
9417 instruct cmpL_imm_branch(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9418   match(If cmp (CmpL op1 op2));
9419   effect(USE labl, KILL xcc);
9420 
9421   size(12);
9422   ins_cost(BRANCH_COST);
9423   format %{ "CMP    $op1,$op2\t! long\n\t"
9424             "BP$cmp   $labl" %}
9425   ins_encode %{
9426     Label* L = $labl$$label;
9427     Assembler::Predict predict_taken =
9428       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9429     __ cmp($op1$$Register, $op2$$constant);
9430     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9431     __ delayed()->nop();
9432   %}
9433   ins_pipe(cmp_br_reg_imm);
9434 %}
9435 
9436 // Compare Pointers and branch
9437 instruct cmpP_reg_branch(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9438   match(If cmp (CmpP op1 op2));
9439   effect(USE labl, KILL pcc);
9440 
9441   size(12);
9442   ins_cost(BRANCH_COST);
9443   format %{ "CMP    $op1,$op2\t! ptr\n\t"
9444             "B$cmp   $labl" %}
9445   ins_encode %{
9446     Label* L = $labl$$label;
9447     Assembler::Predict predict_taken =
9448       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9449     __ cmp($op1$$Register, $op2$$Register);
9450     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9451     __ delayed()->nop();
9452   %}
9453   ins_pipe(cmp_br_reg_reg);
9454 %}
9455 
9456 instruct cmpP_null_branch(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9457   match(If cmp (CmpP op1 null));
9458   effect(USE labl, KILL pcc);
9459 
9460   size(12);
9461   ins_cost(BRANCH_COST);
9462   format %{ "CMP    $op1,0\t! ptr\n\t"
9463             "B$cmp   $labl" %}
9464   ins_encode %{
9465     Label* L = $labl$$label;
9466     Assembler::Predict predict_taken =
9467       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9468     __ cmp($op1$$Register, G0);
9469     // bpr() is not used here since it has shorter distance.
9470     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::ptr_cc, predict_taken, *L);
9471     __ delayed()->nop();
9472   %}
9473   ins_pipe(cmp_br_reg_reg);
9474 %}
9475 
9476 instruct cmpN_reg_branch(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9477   match(If cmp (CmpN op1 op2));
9478   effect(USE labl, KILL icc);
9479 
9480   size(12);
9481   ins_cost(BRANCH_COST);
9482   format %{ "CMP    $op1,$op2\t! compressed ptr\n\t"
9483             "BP$cmp   $labl" %}
9484   ins_encode %{
9485     Label* L = $labl$$label;
9486     Assembler::Predict predict_taken =
9487       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9488     __ cmp($op1$$Register, $op2$$Register);
9489     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9490     __ delayed()->nop();
9491   %}
9492   ins_pipe(cmp_br_reg_reg);
9493 %}
9494 
9495 instruct cmpN_null_branch(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9496   match(If cmp (CmpN op1 null));
9497   effect(USE labl, KILL icc);
9498 
9499   size(12);
9500   ins_cost(BRANCH_COST);
9501   format %{ "CMP    $op1,0\t! compressed ptr\n\t"
9502             "BP$cmp   $labl" %}
9503   ins_encode %{
9504     Label* L = $labl$$label;
9505     Assembler::Predict predict_taken =
9506       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9507     __ cmp($op1$$Register, G0);
9508     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9509     __ delayed()->nop();
9510   %}
9511   ins_pipe(cmp_br_reg_reg);
9512 %}
9513 
9514 // Loop back branch
9515 instruct cmpI_reg_branchLoopEnd(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9516   match(CountedLoopEnd cmp (CmpI op1 op2));
9517   effect(USE labl, KILL icc);
9518 
9519   size(12);
9520   ins_cost(BRANCH_COST);
9521   format %{ "CMP    $op1,$op2\t! int\n\t"
9522             "BP$cmp   $labl\t! Loop end" %}
9523   ins_encode %{
9524     Label* L = $labl$$label;
9525     Assembler::Predict predict_taken =
9526       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9527     __ cmp($op1$$Register, $op2$$Register);
9528     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9529     __ delayed()->nop();
9530   %}
9531   ins_pipe(cmp_br_reg_reg);
9532 %}
9533 
9534 instruct cmpI_imm_branchLoopEnd(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9535   match(CountedLoopEnd cmp (CmpI op1 op2));
9536   effect(USE labl, KILL icc);
9537 
9538   size(12);
9539   ins_cost(BRANCH_COST);
9540   format %{ "CMP    $op1,$op2\t! int\n\t"
9541             "BP$cmp   $labl\t! Loop end" %}
9542   ins_encode %{
9543     Label* L = $labl$$label;
9544     Assembler::Predict predict_taken =
9545       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9546     __ cmp($op1$$Register, $op2$$constant);
9547     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::icc, predict_taken, *L);
9548     __ delayed()->nop();
9549   %}
9550   ins_pipe(cmp_br_reg_imm);
9551 %}
9552 
9553 // Short compare and branch instructions
9554 instruct cmpI_reg_branch_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9555   match(If cmp (CmpI op1 op2));
9556   predicate(UseCBCond);
9557   effect(USE labl, KILL icc);
9558 
9559   size(4);
9560   ins_cost(BRANCH_COST);
9561   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9562   ins_encode %{
9563     Label* L = $labl$$label;
9564     assert(__ use_cbcond(*L), "back to back cbcond");
9565     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9566   %}
9567   ins_short_branch(1);
9568   ins_avoid_back_to_back(1);
9569   ins_pipe(cbcond_reg_reg);
9570 %}
9571 
9572 instruct cmpI_imm_branch_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9573   match(If cmp (CmpI op1 op2));
9574   predicate(UseCBCond);
9575   effect(USE labl, KILL icc);
9576 
9577   size(4);
9578   ins_cost(BRANCH_COST);
9579   format %{ "CWB$cmp  $op1,$op2,$labl\t! int" %}
9580   ins_encode %{
9581     Label* L = $labl$$label;
9582     assert(__ use_cbcond(*L), "back to back cbcond");
9583     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9584   %}
9585   ins_short_branch(1);
9586   ins_avoid_back_to_back(1);
9587   ins_pipe(cbcond_reg_imm);
9588 %}
9589 
9590 instruct cmpU_reg_branch_short(cmpOpU cmp, iRegI op1, iRegI op2, label labl, flagsRegU icc) %{
9591   match(If cmp (CmpU op1 op2));
9592   predicate(UseCBCond);
9593   effect(USE labl, KILL icc);
9594 
9595   size(4);
9596   ins_cost(BRANCH_COST);
9597   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9598   ins_encode %{
9599     Label* L = $labl$$label;
9600     assert(__ use_cbcond(*L), "back to back cbcond");
9601     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9602   %}
9603   ins_short_branch(1);
9604   ins_avoid_back_to_back(1);
9605   ins_pipe(cbcond_reg_reg);
9606 %}
9607 
9608 instruct cmpU_imm_branch_short(cmpOpU cmp, iRegI op1, immI5 op2, label labl, flagsRegU icc) %{
9609   match(If cmp (CmpU op1 op2));
9610   predicate(UseCBCond);
9611   effect(USE labl, KILL icc);
9612 
9613   size(4);
9614   ins_cost(BRANCH_COST);
9615   format %{ "CWB$cmp $op1,$op2,$labl\t! unsigned" %}
9616   ins_encode %{
9617     Label* L = $labl$$label;
9618     assert(__ use_cbcond(*L), "back to back cbcond");
9619     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9620   %}
9621   ins_short_branch(1);
9622   ins_avoid_back_to_back(1);
9623   ins_pipe(cbcond_reg_imm);
9624 %}
9625 
9626 instruct cmpUL_reg_branch_short(cmpOpU cmp, iRegL op1, iRegL op2, label labl, flagsRegUL xcc) %{
9627   match(If cmp (CmpUL op1 op2));
9628   predicate(UseCBCond);
9629   effect(USE labl, KILL xcc);
9630 
9631   size(4);
9632   ins_cost(BRANCH_COST);
9633   format %{ "CXB$cmp  $op1,$op2,$labl\t! unsigned long" %}
9634   ins_encode %{
9635     Label* L = $labl$$label;
9636     assert(__ use_cbcond(*L), "back to back cbcond");
9637     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9638   %}
9639   ins_short_branch(1);
9640   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9641   ins_pipe(cbcond_reg_reg);
9642 %}
9643 
9644 instruct cmpUL_imm_branch_short(cmpOpU cmp, iRegL op1, immL5 op2, label labl, flagsRegUL xcc) %{
9645   match(If cmp (CmpUL op1 op2));
9646   predicate(UseCBCond);
9647   effect(USE labl, KILL xcc);
9648 
9649   size(4);
9650   ins_cost(BRANCH_COST);
9651   format %{ "CXB$cmp  $op1,$op2,$labl\t! unsigned long" %}
9652   ins_encode %{
9653     Label* L = $labl$$label;
9654     assert(__ use_cbcond(*L), "back to back cbcond");
9655     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9656   %}
9657   ins_short_branch(1);
9658   ins_avoid_back_to_back(AVOID_BEFORE_AND_AFTER);
9659   ins_pipe(cbcond_reg_imm);
9660 %}
9661 
9662 instruct cmpL_reg_branch_short(cmpOp cmp, iRegL op1, iRegL op2, label labl, flagsRegL xcc) %{
9663   match(If cmp (CmpL op1 op2));
9664   predicate(UseCBCond);
9665   effect(USE labl, KILL xcc);
9666 
9667   size(4);
9668   ins_cost(BRANCH_COST);
9669   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9670   ins_encode %{
9671     Label* L = $labl$$label;
9672     assert(__ use_cbcond(*L), "back to back cbcond");
9673     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$Register, *L);
9674   %}
9675   ins_short_branch(1);
9676   ins_avoid_back_to_back(1);
9677   ins_pipe(cbcond_reg_reg);
9678 %}
9679 
9680 instruct cmpL_imm_branch_short(cmpOp cmp, iRegL op1, immL5 op2, label labl, flagsRegL xcc) %{
9681   match(If cmp (CmpL op1 op2));
9682   predicate(UseCBCond);
9683   effect(USE labl, KILL xcc);
9684 
9685   size(4);
9686   ins_cost(BRANCH_COST);
9687   format %{ "CXB$cmp  $op1,$op2,$labl\t! long" %}
9688   ins_encode %{
9689     Label* L = $labl$$label;
9690     assert(__ use_cbcond(*L), "back to back cbcond");
9691     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::xcc, $op1$$Register, $op2$$constant, *L);
9692   %}
9693   ins_short_branch(1);
9694   ins_avoid_back_to_back(1);
9695   ins_pipe(cbcond_reg_imm);
9696 %}
9697 
9698 // Compare Pointers and branch
9699 instruct cmpP_reg_branch_short(cmpOpP cmp, iRegP op1, iRegP op2, label labl, flagsRegP pcc) %{
9700   match(If cmp (CmpP op1 op2));
9701   predicate(UseCBCond);
9702   effect(USE labl, KILL pcc);
9703 
9704   size(4);
9705   ins_cost(BRANCH_COST);
9706 #ifdef _LP64
9707   format %{ "CXB$cmp $op1,$op2,$labl\t! ptr" %}
9708 #else
9709   format %{ "CWB$cmp $op1,$op2,$labl\t! ptr" %}
9710 #endif
9711   ins_encode %{
9712     Label* L = $labl$$label;
9713     assert(__ use_cbcond(*L), "back to back cbcond");
9714     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, $op2$$Register, *L);
9715   %}
9716   ins_short_branch(1);
9717   ins_avoid_back_to_back(1);
9718   ins_pipe(cbcond_reg_reg);
9719 %}
9720 
9721 instruct cmpP_null_branch_short(cmpOpP cmp, iRegP op1, immP0 null, label labl, flagsRegP pcc) %{
9722   match(If cmp (CmpP op1 null));
9723   predicate(UseCBCond);
9724   effect(USE labl, KILL pcc);
9725 
9726   size(4);
9727   ins_cost(BRANCH_COST);
9728 #ifdef _LP64
9729   format %{ "CXB$cmp $op1,0,$labl\t! ptr" %}
9730 #else
9731   format %{ "CWB$cmp $op1,0,$labl\t! ptr" %}
9732 #endif
9733   ins_encode %{
9734     Label* L = $labl$$label;
9735     assert(__ use_cbcond(*L), "back to back cbcond");
9736     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::ptr_cc, $op1$$Register, G0, *L);
9737   %}
9738   ins_short_branch(1);
9739   ins_avoid_back_to_back(1);
9740   ins_pipe(cbcond_reg_reg);
9741 %}
9742 
9743 instruct cmpN_reg_branch_short(cmpOp cmp, iRegN op1, iRegN op2, label labl, flagsReg icc) %{
9744   match(If cmp (CmpN op1 op2));
9745   predicate(UseCBCond);
9746   effect(USE labl, KILL icc);
9747 
9748   size(4);
9749   ins_cost(BRANCH_COST);
9750   format %{ "CWB$cmp  $op1,op2,$labl\t! compressed ptr" %}
9751   ins_encode %{
9752     Label* L = $labl$$label;
9753     assert(__ use_cbcond(*L), "back to back cbcond");
9754     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9755   %}
9756   ins_short_branch(1);
9757   ins_avoid_back_to_back(1);
9758   ins_pipe(cbcond_reg_reg);
9759 %}
9760 
9761 instruct cmpN_null_branch_short(cmpOp cmp, iRegN op1, immN0 null, label labl, flagsReg icc) %{
9762   match(If cmp (CmpN op1 null));
9763   predicate(UseCBCond);
9764   effect(USE labl, KILL icc);
9765 
9766   size(4);
9767   ins_cost(BRANCH_COST);
9768   format %{ "CWB$cmp  $op1,0,$labl\t! compressed ptr" %}
9769   ins_encode %{
9770     Label* L = $labl$$label;
9771     assert(__ use_cbcond(*L), "back to back cbcond");
9772     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, G0, *L);
9773   %}
9774   ins_short_branch(1);
9775   ins_avoid_back_to_back(1);
9776   ins_pipe(cbcond_reg_reg);
9777 %}
9778 
9779 // Loop back branch
9780 instruct cmpI_reg_branchLoopEnd_short(cmpOp cmp, iRegI op1, iRegI op2, label labl, flagsReg icc) %{
9781   match(CountedLoopEnd cmp (CmpI op1 op2));
9782   predicate(UseCBCond);
9783   effect(USE labl, KILL icc);
9784 
9785   size(4);
9786   ins_cost(BRANCH_COST);
9787   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9788   ins_encode %{
9789     Label* L = $labl$$label;
9790     assert(__ use_cbcond(*L), "back to back cbcond");
9791     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$Register, *L);
9792   %}
9793   ins_short_branch(1);
9794   ins_avoid_back_to_back(1);
9795   ins_pipe(cbcond_reg_reg);
9796 %}
9797 
9798 instruct cmpI_imm_branchLoopEnd_short(cmpOp cmp, iRegI op1, immI5 op2, label labl, flagsReg icc) %{
9799   match(CountedLoopEnd cmp (CmpI op1 op2));
9800   predicate(UseCBCond);
9801   effect(USE labl, KILL icc);
9802 
9803   size(4);
9804   ins_cost(BRANCH_COST);
9805   format %{ "CWB$cmp  $op1,$op2,$labl\t! Loop end" %}
9806   ins_encode %{
9807     Label* L = $labl$$label;
9808     assert(__ use_cbcond(*L), "back to back cbcond");
9809     __ cbcond((Assembler::Condition)($cmp$$cmpcode), Assembler::icc, $op1$$Register, $op2$$constant, *L);
9810   %}
9811   ins_short_branch(1);
9812   ins_avoid_back_to_back(1);
9813   ins_pipe(cbcond_reg_imm);
9814 %}
9815 
9816 // Branch-on-register tests all 64 bits.  We assume that values
9817 // in 64-bit registers always remains zero or sign extended
9818 // unless our code munges the high bits.  Interrupts can chop
9819 // the high order bits to zero or sign at any time.
9820 instruct branchCon_regI(cmpOp_reg cmp, iRegI op1, immI0 zero, label labl) %{
9821   match(If cmp (CmpI op1 zero));
9822   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9823   effect(USE labl);
9824 
9825   size(8);
9826   ins_cost(BRANCH_COST);
9827   format %{ "BR$cmp   $op1,$labl" %}
9828   ins_encode( enc_bpr( labl, cmp, op1 ) );
9829   ins_pipe(br_reg);
9830 %}
9831 
9832 instruct branchCon_regP(cmpOp_reg cmp, iRegP op1, immP0 null, label labl) %{
9833   match(If cmp (CmpP op1 null));
9834   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9835   effect(USE labl);
9836 
9837   size(8);
9838   ins_cost(BRANCH_COST);
9839   format %{ "BR$cmp   $op1,$labl" %}
9840   ins_encode( enc_bpr( labl, cmp, op1 ) );
9841   ins_pipe(br_reg);
9842 %}
9843 
9844 instruct branchCon_regL(cmpOp_reg cmp, iRegL op1, immL0 zero, label labl) %{
9845   match(If cmp (CmpL op1 zero));
9846   predicate(can_branch_register(_kids[0]->_leaf, _kids[1]->_leaf));
9847   effect(USE labl);
9848 
9849   size(8);
9850   ins_cost(BRANCH_COST);
9851   format %{ "BR$cmp   $op1,$labl" %}
9852   ins_encode( enc_bpr( labl, cmp, op1 ) );
9853   ins_pipe(br_reg);
9854 %}
9855 
9856 
9857 // ============================================================================
9858 // Long Compare
9859 //
9860 // Currently we hold longs in 2 registers.  Comparing such values efficiently
9861 // is tricky.  The flavor of compare used depends on whether we are testing
9862 // for LT, LE, or EQ.  For a simple LT test we can check just the sign bit.
9863 // The GE test is the negated LT test.  The LE test can be had by commuting
9864 // the operands (yielding a GE test) and then negating; negate again for the
9865 // GT test.  The EQ test is done by ORcc'ing the high and low halves, and the
9866 // NE test is negated from that.
9867 
9868 // Due to a shortcoming in the ADLC, it mixes up expressions like:
9869 // (foo (CmpI (CmpL X Y) 0)) and (bar (CmpI (CmpL X 0L) 0)).  Note the
9870 // difference between 'Y' and '0L'.  The tree-matches for the CmpI sections
9871 // are collapsed internally in the ADLC's dfa-gen code.  The match for
9872 // (CmpI (CmpL X Y) 0) is silently replaced with (CmpI (CmpL X 0L) 0) and the
9873 // foo match ends up with the wrong leaf.  One fix is to not match both
9874 // reg-reg and reg-zero forms of long-compare.  This is unfortunate because
9875 // both forms beat the trinary form of long-compare and both are very useful
9876 // on Intel which has so few registers.
9877 
9878 instruct branchCon_long(cmpOp cmp, flagsRegL xcc, label labl) %{
9879   match(If cmp xcc);
9880   effect(USE labl);
9881 
9882   size(8);
9883   ins_cost(BRANCH_COST);
9884   format %{ "BP$cmp   $xcc,$labl" %}
9885   ins_encode %{
9886     Label* L = $labl$$label;
9887     Assembler::Predict predict_taken =
9888       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9889 
9890     __ bp( (Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9891     __ delayed()->nop();
9892   %}
9893   ins_pipe(br_cc);
9894 %}
9895 
9896 instruct branchConU_long(cmpOpU cmp, flagsRegUL xcc, label labl) %{
9897   match(If cmp xcc);
9898   effect(USE labl);
9899 
9900   size(8);
9901   ins_cost(BRANCH_COST);
9902   format %{ "BP$cmp   $xcc,$labl" %}
9903   ins_encode %{
9904     Label* L = $labl$$label;
9905     Assembler::Predict predict_taken =
9906       cbuf.is_backward_branch(*L) ? Assembler::pt : Assembler::pn;
9907 
9908     __ bp((Assembler::Condition)($cmp$$cmpcode), false, Assembler::xcc, predict_taken, *L);
9909     __ delayed()->nop();
9910   %}
9911   ins_avoid_back_to_back(AVOID_BEFORE);
9912   ins_pipe(br_cc);
9913 %}
9914 
9915 // Manifest a CmpL3 result in an integer register.  Very painful.
9916 // This is the test to avoid.
9917 instruct cmpL3_reg_reg(iRegI dst, iRegL src1, iRegL src2, flagsReg ccr ) %{
9918   match(Set dst (CmpL3 src1 src2) );
9919   effect( KILL ccr );
9920   ins_cost(6*DEFAULT_COST);
9921   size(24);
9922   format %{ "CMP    $src1,$src2\t\t! long\n"
9923           "\tBLT,a,pn done\n"
9924           "\tMOV    -1,$dst\t! delay slot\n"
9925           "\tBGT,a,pn done\n"
9926           "\tMOV    1,$dst\t! delay slot\n"
9927           "\tCLR    $dst\n"
9928     "done:"     %}
9929   ins_encode( cmpl_flag(src1,src2,dst) );
9930   ins_pipe(cmpL_reg);
9931 %}
9932 
9933 // Conditional move
9934 instruct cmovLL_reg(cmpOp cmp, flagsRegL xcc, iRegL dst, iRegL src) %{
9935   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9936   ins_cost(150);
9937   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9938   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9939   ins_pipe(ialu_reg);
9940 %}
9941 
9942 instruct cmovLL_imm(cmpOp cmp, flagsRegL xcc, iRegL dst, immL0 src) %{
9943   match(Set dst (CMoveL (Binary cmp xcc) (Binary dst src)));
9944   ins_cost(140);
9945   format %{ "MOV$cmp  $xcc,$src,$dst\t! long" %}
9946   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9947   ins_pipe(ialu_imm);
9948 %}
9949 
9950 instruct cmovIL_reg(cmpOp cmp, flagsRegL xcc, iRegI dst, iRegI src) %{
9951   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9952   ins_cost(150);
9953   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9954   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9955   ins_pipe(ialu_reg);
9956 %}
9957 
9958 instruct cmovIL_imm(cmpOp cmp, flagsRegL xcc, iRegI dst, immI11 src) %{
9959   match(Set dst (CMoveI (Binary cmp xcc) (Binary dst src)));
9960   ins_cost(140);
9961   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9962   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9963   ins_pipe(ialu_imm);
9964 %}
9965 
9966 instruct cmovNL_reg(cmpOp cmp, flagsRegL xcc, iRegN dst, iRegN src) %{
9967   match(Set dst (CMoveN (Binary cmp xcc) (Binary dst src)));
9968   ins_cost(150);
9969   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9970   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9971   ins_pipe(ialu_reg);
9972 %}
9973 
9974 instruct cmovPL_reg(cmpOp cmp, flagsRegL xcc, iRegP dst, iRegP src) %{
9975   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9976   ins_cost(150);
9977   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9978   ins_encode( enc_cmov_reg(cmp,dst,src, (Assembler::xcc)) );
9979   ins_pipe(ialu_reg);
9980 %}
9981 
9982 instruct cmovPL_imm(cmpOp cmp, flagsRegL xcc, iRegP dst, immP0 src) %{
9983   match(Set dst (CMoveP (Binary cmp xcc) (Binary dst src)));
9984   ins_cost(140);
9985   format %{ "MOV$cmp  $xcc,$src,$dst" %}
9986   ins_encode( enc_cmov_imm(cmp,dst,src, (Assembler::xcc)) );
9987   ins_pipe(ialu_imm);
9988 %}
9989 
9990 instruct cmovFL_reg(cmpOp cmp, flagsRegL xcc, regF dst, regF src) %{
9991   match(Set dst (CMoveF (Binary cmp xcc) (Binary dst src)));
9992   ins_cost(150);
9993   opcode(0x101);
9994   format %{ "FMOVS$cmp $xcc,$src,$dst" %}
9995   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
9996   ins_pipe(int_conditional_float_move);
9997 %}
9998 
9999 instruct cmovDL_reg(cmpOp cmp, flagsRegL xcc, regD dst, regD src) %{
10000   match(Set dst (CMoveD (Binary cmp xcc) (Binary dst src)));
10001   ins_cost(150);
10002   opcode(0x102);
10003   format %{ "FMOVD$cmp $xcc,$src,$dst" %}
10004   ins_encode( enc_cmovf_reg(cmp,dst,src, (Assembler::xcc)) );
10005   ins_pipe(int_conditional_float_move);
10006 %}
10007 
10008 // ============================================================================
10009 // Safepoint Instruction
10010 instruct safePoint_poll(iRegP poll) %{
10011   match(SafePoint poll);
10012   effect(USE poll);
10013 
10014   size(4);
10015 #ifdef _LP64
10016   format %{ "LDX    [$poll],R_G0\t! Safepoint: poll for GC" %}
10017 #else
10018   format %{ "LDUW   [$poll],R_G0\t! Safepoint: poll for GC" %}
10019 #endif
10020   ins_encode %{
10021     __ relocate(relocInfo::poll_type);
10022     __ ld_ptr($poll$$Register, 0, G0);
10023   %}
10024   ins_pipe(loadPollP);
10025 %}
10026 
10027 // ============================================================================
10028 // Call Instructions
10029 // Call Java Static Instruction
10030 instruct CallStaticJavaDirect( method meth ) %{
10031   match(CallStaticJava);
10032   predicate(! ((CallStaticJavaNode*)n)->is_method_handle_invoke());
10033   effect(USE meth);
10034 
10035   size(8);
10036   ins_cost(CALL_COST);
10037   format %{ "CALL,static  ; NOP ==> " %}
10038   ins_encode( Java_Static_Call( meth ), call_epilog );
10039   ins_pipe(simple_call);
10040 %}
10041 
10042 // Call Java Static Instruction (method handle version)
10043 instruct CallStaticJavaHandle(method meth, l7RegP l7_mh_SP_save) %{
10044   match(CallStaticJava);
10045   predicate(((CallStaticJavaNode*)n)->is_method_handle_invoke());
10046   effect(USE meth, KILL l7_mh_SP_save);
10047 
10048   size(16);
10049   ins_cost(CALL_COST);
10050   format %{ "CALL,static/MethodHandle" %}
10051   ins_encode(preserve_SP, Java_Static_Call(meth), restore_SP, call_epilog);
10052   ins_pipe(simple_call);
10053 %}
10054 
10055 // Call Java Dynamic Instruction
10056 instruct CallDynamicJavaDirect( method meth ) %{
10057   match(CallDynamicJava);
10058   effect(USE meth);
10059 
10060   ins_cost(CALL_COST);
10061   format %{ "SET    (empty),R_G5\n\t"
10062             "CALL,dynamic  ; NOP ==> " %}
10063   ins_encode( Java_Dynamic_Call( meth ), call_epilog );
10064   ins_pipe(call);
10065 %}
10066 
10067 // Call Runtime Instruction
10068 instruct CallRuntimeDirect(method meth, l7RegP l7) %{
10069   match(CallRuntime);
10070   effect(USE meth, KILL l7);
10071   ins_cost(CALL_COST);
10072   format %{ "CALL,runtime" %}
10073   ins_encode( Java_To_Runtime( meth ),
10074               call_epilog, adjust_long_from_native_call );
10075   ins_pipe(simple_call);
10076 %}
10077 
10078 // Call runtime without safepoint - same as CallRuntime
10079 instruct CallLeafDirect(method meth, l7RegP l7) %{
10080   match(CallLeaf);
10081   effect(USE meth, KILL l7);
10082   ins_cost(CALL_COST);
10083   format %{ "CALL,runtime leaf" %}
10084   ins_encode( Java_To_Runtime( meth ),
10085               call_epilog,
10086               adjust_long_from_native_call );
10087   ins_pipe(simple_call);
10088 %}
10089 
10090 // Call runtime without safepoint - same as CallLeaf
10091 instruct CallLeafNoFPDirect(method meth, l7RegP l7) %{
10092   match(CallLeafNoFP);
10093   effect(USE meth, KILL l7);
10094   ins_cost(CALL_COST);
10095   format %{ "CALL,runtime leaf nofp" %}
10096   ins_encode( Java_To_Runtime( meth ),
10097               call_epilog,
10098               adjust_long_from_native_call );
10099   ins_pipe(simple_call);
10100 %}
10101 
10102 // Tail Call; Jump from runtime stub to Java code.
10103 // Also known as an 'interprocedural jump'.
10104 // Target of jump will eventually return to caller.
10105 // TailJump below removes the return address.
10106 instruct TailCalljmpInd(g3RegP jump_target, inline_cache_regP method_oop) %{
10107   match(TailCall jump_target method_oop );
10108 
10109   ins_cost(CALL_COST);
10110   format %{ "Jmp     $jump_target  ; NOP \t! $method_oop holds method oop" %}
10111   ins_encode(form_jmpl(jump_target));
10112   ins_pipe(tail_call);
10113 %}
10114 
10115 
10116 // Return Instruction
10117 instruct Ret() %{
10118   match(Return);
10119 
10120   // The epilogue node did the ret already.
10121   size(0);
10122   format %{ "! return" %}
10123   ins_encode();
10124   ins_pipe(empty);
10125 %}
10126 
10127 
10128 // Tail Jump; remove the return address; jump to target.
10129 // TailCall above leaves the return address around.
10130 // TailJump is used in only one place, the rethrow_Java stub (fancy_jump=2).
10131 // ex_oop (Exception Oop) is needed in %o0 at the jump. As there would be a
10132 // "restore" before this instruction (in Epilogue), we need to materialize it
10133 // in %i0.
10134 instruct tailjmpInd(g1RegP jump_target, i0RegP ex_oop) %{
10135   match( TailJump jump_target ex_oop );
10136   ins_cost(CALL_COST);
10137   format %{ "! discard R_O7\n\t"
10138             "Jmp     $jump_target  ; ADD O7,8,O1 \t! $ex_oop holds exc. oop" %}
10139   ins_encode(form_jmpl_set_exception_pc(jump_target));
10140   // opcode(Assembler::jmpl_op3, Assembler::arith_op);
10141   // The hack duplicates the exception oop into G3, so that CreateEx can use it there.
10142   // ins_encode( form3_rs1_simm13_rd( jump_target, 0x00, R_G0 ), move_return_pc_to_o1() );
10143   ins_pipe(tail_call);
10144 %}
10145 
10146 // Create exception oop: created by stack-crawling runtime code.
10147 // Created exception is now available to this handler, and is setup
10148 // just prior to jumping to this handler.  No code emitted.
10149 instruct CreateException( o0RegP ex_oop )
10150 %{
10151   match(Set ex_oop (CreateEx));
10152   ins_cost(0);
10153 
10154   size(0);
10155   // use the following format syntax
10156   format %{ "! exception oop is in R_O0; no code emitted" %}
10157   ins_encode();
10158   ins_pipe(empty);
10159 %}
10160 
10161 
10162 // Rethrow exception:
10163 // The exception oop will come in the first argument position.
10164 // Then JUMP (not call) to the rethrow stub code.
10165 instruct RethrowException()
10166 %{
10167   match(Rethrow);
10168   ins_cost(CALL_COST);
10169 
10170   // use the following format syntax
10171   format %{ "Jmp    rethrow_stub" %}
10172   ins_encode(enc_rethrow);
10173   ins_pipe(tail_call);
10174 %}
10175 
10176 
10177 // Die now
10178 instruct ShouldNotReachHere( )
10179 %{
10180   match(Halt);
10181   ins_cost(CALL_COST);
10182 
10183   size(4);
10184   // Use the following format syntax
10185   format %{ "ILLTRAP   ; ShouldNotReachHere" %}
10186   ins_encode( form2_illtrap() );
10187   ins_pipe(tail_call);
10188 %}
10189 
10190 // ============================================================================
10191 // The 2nd slow-half of a subtype check.  Scan the subklass's 2ndary superklass
10192 // array for an instance of the superklass.  Set a hidden internal cache on a
10193 // hit (cache is checked with exposed code in gen_subtype_check()).  Return
10194 // not zero for a miss or zero for a hit.  The encoding ALSO sets flags.
10195 instruct partialSubtypeCheck( o0RegP index, o1RegP sub, o2RegP super, flagsRegP pcc, o7RegP o7 ) %{
10196   match(Set index (PartialSubtypeCheck sub super));
10197   effect( KILL pcc, KILL o7 );
10198   ins_cost(DEFAULT_COST*10);
10199   format %{ "CALL   PartialSubtypeCheck\n\tNOP" %}
10200   ins_encode( enc_PartialSubtypeCheck() );
10201   ins_pipe(partial_subtype_check_pipe);
10202 %}
10203 
10204 instruct partialSubtypeCheck_vs_zero( flagsRegP pcc, o1RegP sub, o2RegP super, immP0 zero, o0RegP idx, o7RegP o7 ) %{
10205   match(Set pcc (CmpP (PartialSubtypeCheck sub super) zero));
10206   effect( KILL idx, KILL o7 );
10207   ins_cost(DEFAULT_COST*10);
10208   format %{ "CALL   PartialSubtypeCheck\n\tNOP\t# (sets condition codes)" %}
10209   ins_encode( enc_PartialSubtypeCheck() );
10210   ins_pipe(partial_subtype_check_pipe);
10211 %}
10212 
10213 
10214 // ============================================================================
10215 // inlined locking and unlocking
10216 
10217 instruct cmpFastLock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10218   match(Set pcc (FastLock object box));
10219 
10220   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10221   ins_cost(100);
10222 
10223   format %{ "FASTLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10224   ins_encode( Fast_Lock(object, box, scratch, scratch2) );
10225   ins_pipe(long_memory_op);
10226 %}
10227 
10228 
10229 instruct cmpFastUnlock(flagsRegP pcc, iRegP object, o1RegP box, iRegP scratch2, o7RegP scratch ) %{
10230   match(Set pcc (FastUnlock object box));
10231   effect(TEMP scratch2, USE_KILL box, KILL scratch);
10232   ins_cost(100);
10233 
10234   format %{ "FASTUNLOCK  $object,$box\t! kills $box,$scratch,$scratch2" %}
10235   ins_encode( Fast_Unlock(object, box, scratch, scratch2) );
10236   ins_pipe(long_memory_op);
10237 %}
10238 
10239 // The encodings are generic.
10240 instruct clear_array(iRegX cnt, iRegP base, iRegX temp, Universe dummy, flagsReg ccr) %{
10241   predicate(!use_block_zeroing(n->in(2)) );
10242   match(Set dummy (ClearArray cnt base));
10243   effect(TEMP temp, KILL ccr);
10244   ins_cost(300);
10245   format %{ "MOV    $cnt,$temp\n"
10246     "loop:   SUBcc  $temp,8,$temp\t! Count down a dword of bytes\n"
10247     "        BRge   loop\t\t! Clearing loop\n"
10248     "        STX    G0,[$base+$temp]\t! delay slot" %}
10249 
10250   ins_encode %{
10251     // Compiler ensures base is doubleword aligned and cnt is count of doublewords
10252     Register nof_bytes_arg    = $cnt$$Register;
10253     Register nof_bytes_tmp    = $temp$$Register;
10254     Register base_pointer_arg = $base$$Register;
10255 
10256     Label loop;
10257     __ mov(nof_bytes_arg, nof_bytes_tmp);
10258 
10259     // Loop and clear, walking backwards through the array.
10260     // nof_bytes_tmp (if >0) is always the number of bytes to zero
10261     __ bind(loop);
10262     __ deccc(nof_bytes_tmp, 8);
10263     __ br(Assembler::greaterEqual, true, Assembler::pt, loop);
10264     __ delayed()-> stx(G0, base_pointer_arg, nof_bytes_tmp);
10265     // %%%% this mini-loop must not cross a cache boundary!
10266   %}
10267   ins_pipe(long_memory_op);
10268 %}
10269 
10270 instruct clear_array_bis(g1RegX cnt, o0RegP base, Universe dummy, flagsReg ccr) %{
10271   predicate(use_block_zeroing(n->in(2)));
10272   match(Set dummy (ClearArray cnt base));
10273   effect(USE_KILL cnt, USE_KILL base, KILL ccr);
10274   ins_cost(300);
10275   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10276 
10277   ins_encode %{
10278 
10279     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10280     Register to    = $base$$Register;
10281     Register count = $cnt$$Register;
10282 
10283     Label Ldone;
10284     __ nop(); // Separate short branches
10285     // Use BIS for zeroing (temp is not used).
10286     __ bis_zeroing(to, count, G0, Ldone);
10287     __ bind(Ldone);
10288 
10289   %}
10290   ins_pipe(long_memory_op);
10291 %}
10292 
10293 instruct clear_array_bis_2(g1RegX cnt, o0RegP base, iRegX tmp, Universe dummy, flagsReg ccr) %{
10294   predicate(use_block_zeroing(n->in(2)) && !Assembler::is_simm13((int)BlockZeroingLowLimit));
10295   match(Set dummy (ClearArray cnt base));
10296   effect(TEMP tmp, USE_KILL cnt, USE_KILL base, KILL ccr);
10297   ins_cost(300);
10298   format %{ "CLEAR  [$base, $cnt]\t! ClearArray" %}
10299 
10300   ins_encode %{
10301 
10302     assert(MinObjAlignmentInBytes >= BytesPerLong, "need alternate implementation");
10303     Register to    = $base$$Register;
10304     Register count = $cnt$$Register;
10305     Register temp  = $tmp$$Register;
10306 
10307     Label Ldone;
10308     __ nop(); // Separate short branches
10309     // Use BIS for zeroing
10310     __ bis_zeroing(to, count, temp, Ldone);
10311     __ bind(Ldone);
10312 
10313   %}
10314   ins_pipe(long_memory_op);
10315 %}
10316 
10317 instruct string_compare(o0RegP str1, o1RegP str2, g3RegI cnt1, g4RegI cnt2, notemp_iRegI result,
10318                         o7RegI tmp, flagsReg ccr) %{
10319   match(Set result (StrComp (Binary str1 cnt1) (Binary str2 cnt2)));
10320   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL ccr, KILL tmp);
10321   ins_cost(300);
10322   format %{ "String Compare $str1,$cnt1,$str2,$cnt2 -> $result   // KILL $tmp" %}
10323   ins_encode( enc_String_Compare(str1, str2, cnt1, cnt2, result) );
10324   ins_pipe(long_memory_op);
10325 %}
10326 
10327 instruct string_equals(o0RegP str1, o1RegP str2, g3RegI cnt, notemp_iRegI result,
10328                        o7RegI tmp, flagsReg ccr) %{
10329   match(Set result (StrEquals (Binary str1 str2) cnt));
10330   effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL tmp, KILL ccr);
10331   ins_cost(300);
10332   format %{ "String Equals $str1,$str2,$cnt -> $result   // KILL $tmp" %}
10333   ins_encode( enc_String_Equals(str1, str2, cnt, result) );
10334   ins_pipe(long_memory_op);
10335 %}
10336 
10337 instruct array_equals(o0RegP ary1, o1RegP ary2, g3RegI tmp1, notemp_iRegI result,
10338                       o7RegI tmp2, flagsReg ccr) %{
10339   match(Set result (AryEq ary1 ary2));
10340   effect(USE_KILL ary1, USE_KILL ary2, KILL tmp1, KILL tmp2, KILL ccr);
10341   ins_cost(300);
10342   format %{ "Array Equals $ary1,$ary2 -> $result   // KILL $tmp1,$tmp2" %}
10343   ins_encode( enc_Array_Equals(ary1, ary2, tmp1, result));
10344   ins_pipe(long_memory_op);
10345 %}
10346 
10347 
10348 //---------- Zeros Count Instructions ------------------------------------------
10349 
10350 instruct countLeadingZerosI(iRegIsafe dst, iRegI src, iRegI tmp, flagsReg cr) %{
10351   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10352   match(Set dst (CountLeadingZerosI src));
10353   effect(TEMP dst, TEMP tmp, KILL cr);
10354 
10355   // x |= (x >> 1);
10356   // x |= (x >> 2);
10357   // x |= (x >> 4);
10358   // x |= (x >> 8);
10359   // x |= (x >> 16);
10360   // return (WORDBITS - popc(x));
10361   format %{ "SRL     $src,1,$tmp\t! count leading zeros (int)\n\t"
10362             "SRL     $src,0,$dst\t! 32-bit zero extend\n\t"
10363             "OR      $dst,$tmp,$dst\n\t"
10364             "SRL     $dst,2,$tmp\n\t"
10365             "OR      $dst,$tmp,$dst\n\t"
10366             "SRL     $dst,4,$tmp\n\t"
10367             "OR      $dst,$tmp,$dst\n\t"
10368             "SRL     $dst,8,$tmp\n\t"
10369             "OR      $dst,$tmp,$dst\n\t"
10370             "SRL     $dst,16,$tmp\n\t"
10371             "OR      $dst,$tmp,$dst\n\t"
10372             "POPC    $dst,$dst\n\t"
10373             "MOV     32,$tmp\n\t"
10374             "SUB     $tmp,$dst,$dst" %}
10375   ins_encode %{
10376     Register Rdst = $dst$$Register;
10377     Register Rsrc = $src$$Register;
10378     Register Rtmp = $tmp$$Register;
10379     __ srl(Rsrc, 1,    Rtmp);
10380     __ srl(Rsrc, 0,    Rdst);
10381     __ or3(Rdst, Rtmp, Rdst);
10382     __ srl(Rdst, 2,    Rtmp);
10383     __ or3(Rdst, Rtmp, Rdst);
10384     __ srl(Rdst, 4,    Rtmp);
10385     __ or3(Rdst, Rtmp, Rdst);
10386     __ srl(Rdst, 8,    Rtmp);
10387     __ or3(Rdst, Rtmp, Rdst);
10388     __ srl(Rdst, 16,   Rtmp);
10389     __ or3(Rdst, Rtmp, Rdst);
10390     __ popc(Rdst, Rdst);
10391     __ mov(BitsPerInt, Rtmp);
10392     __ sub(Rtmp, Rdst, Rdst);
10393   %}
10394   ins_pipe(ialu_reg);
10395 %}
10396 
10397 instruct countLeadingZerosL(iRegIsafe dst, iRegL src, iRegL tmp, flagsReg cr) %{
10398   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10399   match(Set dst (CountLeadingZerosL src));
10400   effect(TEMP dst, TEMP tmp, KILL cr);
10401 
10402   // x |= (x >> 1);
10403   // x |= (x >> 2);
10404   // x |= (x >> 4);
10405   // x |= (x >> 8);
10406   // x |= (x >> 16);
10407   // x |= (x >> 32);
10408   // return (WORDBITS - popc(x));
10409   format %{ "SRLX    $src,1,$tmp\t! count leading zeros (long)\n\t"
10410             "OR      $src,$tmp,$dst\n\t"
10411             "SRLX    $dst,2,$tmp\n\t"
10412             "OR      $dst,$tmp,$dst\n\t"
10413             "SRLX    $dst,4,$tmp\n\t"
10414             "OR      $dst,$tmp,$dst\n\t"
10415             "SRLX    $dst,8,$tmp\n\t"
10416             "OR      $dst,$tmp,$dst\n\t"
10417             "SRLX    $dst,16,$tmp\n\t"
10418             "OR      $dst,$tmp,$dst\n\t"
10419             "SRLX    $dst,32,$tmp\n\t"
10420             "OR      $dst,$tmp,$dst\n\t"
10421             "POPC    $dst,$dst\n\t"
10422             "MOV     64,$tmp\n\t"
10423             "SUB     $tmp,$dst,$dst" %}
10424   ins_encode %{
10425     Register Rdst = $dst$$Register;
10426     Register Rsrc = $src$$Register;
10427     Register Rtmp = $tmp$$Register;
10428     __ srlx(Rsrc, 1,    Rtmp);
10429     __ or3( Rsrc, Rtmp, Rdst);
10430     __ srlx(Rdst, 2,    Rtmp);
10431     __ or3( Rdst, Rtmp, Rdst);
10432     __ srlx(Rdst, 4,    Rtmp);
10433     __ or3( Rdst, Rtmp, Rdst);
10434     __ srlx(Rdst, 8,    Rtmp);
10435     __ or3( Rdst, Rtmp, Rdst);
10436     __ srlx(Rdst, 16,   Rtmp);
10437     __ or3( Rdst, Rtmp, Rdst);
10438     __ srlx(Rdst, 32,   Rtmp);
10439     __ or3( Rdst, Rtmp, Rdst);
10440     __ popc(Rdst, Rdst);
10441     __ mov(BitsPerLong, Rtmp);
10442     __ sub(Rtmp, Rdst, Rdst);
10443   %}
10444   ins_pipe(ialu_reg);
10445 %}
10446 
10447 instruct countTrailingZerosI(iRegIsafe dst, iRegI src, flagsReg cr) %{
10448   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10449   match(Set dst (CountTrailingZerosI src));
10450   effect(TEMP dst, KILL cr);
10451 
10452   // return popc(~x & (x - 1));
10453   format %{ "SUB     $src,1,$dst\t! count trailing zeros (int)\n\t"
10454             "ANDN    $dst,$src,$dst\n\t"
10455             "SRL     $dst,R_G0,$dst\n\t"
10456             "POPC    $dst,$dst" %}
10457   ins_encode %{
10458     Register Rdst = $dst$$Register;
10459     Register Rsrc = $src$$Register;
10460     __ sub(Rsrc, 1, Rdst);
10461     __ andn(Rdst, Rsrc, Rdst);
10462     __ srl(Rdst, G0, Rdst);
10463     __ popc(Rdst, Rdst);
10464   %}
10465   ins_pipe(ialu_reg);
10466 %}
10467 
10468 instruct countTrailingZerosL(iRegIsafe dst, iRegL src, flagsReg cr) %{
10469   predicate(UsePopCountInstruction);  // See Matcher::match_rule_supported
10470   match(Set dst (CountTrailingZerosL src));
10471   effect(TEMP dst, KILL cr);
10472 
10473   // return popc(~x & (x - 1));
10474   format %{ "SUB     $src,1,$dst\t! count trailing zeros (long)\n\t"
10475             "ANDN    $dst,$src,$dst\n\t"
10476             "POPC    $dst,$dst" %}
10477   ins_encode %{
10478     Register Rdst = $dst$$Register;
10479     Register Rsrc = $src$$Register;
10480     __ sub(Rsrc, 1, Rdst);
10481     __ andn(Rdst, Rsrc, Rdst);
10482     __ popc(Rdst, Rdst);
10483   %}
10484   ins_pipe(ialu_reg);
10485 %}
10486 
10487 
10488 //---------- Population Count Instructions -------------------------------------
10489 
10490 instruct popCountI(iRegIsafe dst, iRegI src) %{
10491   predicate(UsePopCountInstruction);
10492   match(Set dst (PopCountI src));
10493 
10494   format %{ "SRL    $src, G0, $dst\t! clear upper word for 64 bit POPC\n\t"
10495             "POPC   $dst, $dst" %}
10496   ins_encode %{
10497     __ srl($src$$Register, G0, $dst$$Register);
10498     __ popc($dst$$Register, $dst$$Register);
10499   %}
10500   ins_pipe(ialu_reg);
10501 %}
10502 
10503 // Note: Long.bitCount(long) returns an int.
10504 instruct popCountL(iRegIsafe dst, iRegL src) %{
10505   predicate(UsePopCountInstruction);
10506   match(Set dst (PopCountL src));
10507 
10508   format %{ "POPC   $src, $dst" %}
10509   ins_encode %{
10510     __ popc($src$$Register, $dst$$Register);
10511   %}
10512   ins_pipe(ialu_reg);
10513 %}
10514 
10515 
10516 // ============================================================================
10517 //------------Bytes reverse--------------------------------------------------
10518 
10519 instruct bytes_reverse_int(iRegI dst, stackSlotI src) %{
10520   match(Set dst (ReverseBytesI src));
10521 
10522   // Op cost is artificially doubled to make sure that load or store
10523   // instructions are preferred over this one which requires a spill
10524   // onto a stack slot.
10525   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10526   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10527 
10528   ins_encode %{
10529     __ set($src$$disp + STACK_BIAS, O7);
10530     __ lduwa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10531   %}
10532   ins_pipe( iload_mem );
10533 %}
10534 
10535 instruct bytes_reverse_long(iRegL dst, stackSlotL src) %{
10536   match(Set dst (ReverseBytesL src));
10537 
10538   // Op cost is artificially doubled to make sure that load or store
10539   // instructions are preferred over this one which requires a spill
10540   // onto a stack slot.
10541   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10542   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10543 
10544   ins_encode %{
10545     __ set($src$$disp + STACK_BIAS, O7);
10546     __ ldxa($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10547   %}
10548   ins_pipe( iload_mem );
10549 %}
10550 
10551 instruct bytes_reverse_unsigned_short(iRegI dst, stackSlotI src) %{
10552   match(Set dst (ReverseBytesUS src));
10553 
10554   // Op cost is artificially doubled to make sure that load or store
10555   // instructions are preferred over this one which requires a spill
10556   // onto a stack slot.
10557   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10558   format %{ "LDUHA  $src, $dst\t!asi=primary_little\n\t" %}
10559 
10560   ins_encode %{
10561     // the value was spilled as an int so bias the load
10562     __ set($src$$disp + STACK_BIAS + 2, O7);
10563     __ lduha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10564   %}
10565   ins_pipe( iload_mem );
10566 %}
10567 
10568 instruct bytes_reverse_short(iRegI dst, stackSlotI src) %{
10569   match(Set dst (ReverseBytesS src));
10570 
10571   // Op cost is artificially doubled to make sure that load or store
10572   // instructions are preferred over this one which requires a spill
10573   // onto a stack slot.
10574   ins_cost(2*DEFAULT_COST + MEMORY_REF_COST);
10575   format %{ "LDSHA  $src, $dst\t!asi=primary_little\n\t" %}
10576 
10577   ins_encode %{
10578     // the value was spilled as an int so bias the load
10579     __ set($src$$disp + STACK_BIAS + 2, O7);
10580     __ ldsha($src$$base$$Register, O7, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10581   %}
10582   ins_pipe( iload_mem );
10583 %}
10584 
10585 // Load Integer reversed byte order
10586 instruct loadI_reversed(iRegI dst, indIndexMemory src) %{
10587   match(Set dst (ReverseBytesI (LoadI src)));
10588 
10589   ins_cost(DEFAULT_COST + MEMORY_REF_COST);
10590   size(4);
10591   format %{ "LDUWA  $src, $dst\t!asi=primary_little" %}
10592 
10593   ins_encode %{
10594     __ lduwa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10595   %}
10596   ins_pipe(iload_mem);
10597 %}
10598 
10599 // Load Long - aligned and reversed
10600 instruct loadL_reversed(iRegL dst, indIndexMemory src) %{
10601   match(Set dst (ReverseBytesL (LoadL src)));
10602 
10603   ins_cost(MEMORY_REF_COST);
10604   size(4);
10605   format %{ "LDXA   $src, $dst\t!asi=primary_little" %}
10606 
10607   ins_encode %{
10608     __ ldxa($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10609   %}
10610   ins_pipe(iload_mem);
10611 %}
10612 
10613 // Load unsigned short / char reversed byte order
10614 instruct loadUS_reversed(iRegI dst, indIndexMemory src) %{
10615   match(Set dst (ReverseBytesUS (LoadUS src)));
10616 
10617   ins_cost(MEMORY_REF_COST);
10618   size(4);
10619   format %{ "LDUHA  $src, $dst\t!asi=primary_little" %}
10620 
10621   ins_encode %{
10622     __ lduha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10623   %}
10624   ins_pipe(iload_mem);
10625 %}
10626 
10627 // Load short reversed byte order
10628 instruct loadS_reversed(iRegI dst, indIndexMemory src) %{
10629   match(Set dst (ReverseBytesS (LoadS src)));
10630 
10631   ins_cost(MEMORY_REF_COST);
10632   size(4);
10633   format %{ "LDSHA  $src, $dst\t!asi=primary_little" %}
10634 
10635   ins_encode %{
10636     __ ldsha($src$$base$$Register, $src$$index$$Register, Assembler::ASI_PRIMARY_LITTLE, $dst$$Register);
10637   %}
10638   ins_pipe(iload_mem);
10639 %}
10640 
10641 // Store Integer reversed byte order
10642 instruct storeI_reversed(indIndexMemory dst, iRegI src) %{
10643   match(Set dst (StoreI dst (ReverseBytesI src)));
10644 
10645   ins_cost(MEMORY_REF_COST);
10646   size(4);
10647   format %{ "STWA   $src, $dst\t!asi=primary_little" %}
10648 
10649   ins_encode %{
10650     __ stwa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10651   %}
10652   ins_pipe(istore_mem_reg);
10653 %}
10654 
10655 // Store Long reversed byte order
10656 instruct storeL_reversed(indIndexMemory dst, iRegL src) %{
10657   match(Set dst (StoreL dst (ReverseBytesL src)));
10658 
10659   ins_cost(MEMORY_REF_COST);
10660   size(4);
10661   format %{ "STXA   $src, $dst\t!asi=primary_little" %}
10662 
10663   ins_encode %{
10664     __ stxa($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10665   %}
10666   ins_pipe(istore_mem_reg);
10667 %}
10668 
10669 // Store unsighed short/char reversed byte order
10670 instruct storeUS_reversed(indIndexMemory dst, iRegI src) %{
10671   match(Set dst (StoreC dst (ReverseBytesUS src)));
10672 
10673   ins_cost(MEMORY_REF_COST);
10674   size(4);
10675   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10676 
10677   ins_encode %{
10678     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10679   %}
10680   ins_pipe(istore_mem_reg);
10681 %}
10682 
10683 // Store short reversed byte order
10684 instruct storeS_reversed(indIndexMemory dst, iRegI src) %{
10685   match(Set dst (StoreC dst (ReverseBytesS src)));
10686 
10687   ins_cost(MEMORY_REF_COST);
10688   size(4);
10689   format %{ "STHA   $src, $dst\t!asi=primary_little" %}
10690 
10691   ins_encode %{
10692     __ stha($src$$Register, $dst$$base$$Register, $dst$$index$$Register, Assembler::ASI_PRIMARY_LITTLE);
10693   %}
10694   ins_pipe(istore_mem_reg);
10695 %}
10696 
10697 // ====================VECTOR INSTRUCTIONS=====================================
10698 
10699 // Load Aligned Packed values into a Double Register
10700 instruct loadV8(regD dst, memory mem) %{
10701   predicate(n->as_LoadVector()->memory_size() == 8);
10702   match(Set dst (LoadVector mem));
10703   ins_cost(MEMORY_REF_COST);
10704   size(4);
10705   format %{ "LDDF   $mem,$dst\t! load vector (8 bytes)" %}
10706   ins_encode %{
10707     __ ldf(FloatRegisterImpl::D, $mem$$Address, as_DoubleFloatRegister($dst$$reg));
10708   %}
10709   ins_pipe(floadD_mem);
10710 %}
10711 
10712 // Store Vector in Double register to memory
10713 instruct storeV8(memory mem, regD src) %{
10714   predicate(n->as_StoreVector()->memory_size() == 8);
10715   match(Set mem (StoreVector mem src));
10716   ins_cost(MEMORY_REF_COST);
10717   size(4);
10718   format %{ "STDF   $src,$mem\t! store vector (8 bytes)" %}
10719   ins_encode %{
10720     __ stf(FloatRegisterImpl::D, as_DoubleFloatRegister($src$$reg), $mem$$Address);
10721   %}
10722   ins_pipe(fstoreD_mem_reg);
10723 %}
10724 
10725 // Store Zero into vector in memory
10726 instruct storeV8B_zero(memory mem, immI0 zero) %{
10727   predicate(n->as_StoreVector()->memory_size() == 8);
10728   match(Set mem (StoreVector mem (ReplicateB zero)));
10729   ins_cost(MEMORY_REF_COST);
10730   size(4);
10731   format %{ "STX    $zero,$mem\t! store zero vector (8 bytes)" %}
10732   ins_encode %{
10733     __ stx(G0, $mem$$Address);
10734   %}
10735   ins_pipe(fstoreD_mem_zero);
10736 %}
10737 
10738 instruct storeV4S_zero(memory mem, immI0 zero) %{
10739   predicate(n->as_StoreVector()->memory_size() == 8);
10740   match(Set mem (StoreVector mem (ReplicateS zero)));
10741   ins_cost(MEMORY_REF_COST);
10742   size(4);
10743   format %{ "STX    $zero,$mem\t! store zero vector (4 shorts)" %}
10744   ins_encode %{
10745     __ stx(G0, $mem$$Address);
10746   %}
10747   ins_pipe(fstoreD_mem_zero);
10748 %}
10749 
10750 instruct storeV2I_zero(memory mem, immI0 zero) %{
10751   predicate(n->as_StoreVector()->memory_size() == 8);
10752   match(Set mem (StoreVector mem (ReplicateI zero)));
10753   ins_cost(MEMORY_REF_COST);
10754   size(4);
10755   format %{ "STX    $zero,$mem\t! store zero vector (2 ints)" %}
10756   ins_encode %{
10757     __ stx(G0, $mem$$Address);
10758   %}
10759   ins_pipe(fstoreD_mem_zero);
10760 %}
10761 
10762 instruct storeV2F_zero(memory mem, immF0 zero) %{
10763   predicate(n->as_StoreVector()->memory_size() == 8);
10764   match(Set mem (StoreVector mem (ReplicateF zero)));
10765   ins_cost(MEMORY_REF_COST);
10766   size(4);
10767   format %{ "STX    $zero,$mem\t! store zero vector (2 floats)" %}
10768   ins_encode %{
10769     __ stx(G0, $mem$$Address);
10770   %}
10771   ins_pipe(fstoreD_mem_zero);
10772 %}
10773 
10774 // Replicate scalar to packed byte values into Double register
10775 instruct Repl8B_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10776   predicate(n->as_Vector()->length() == 8 && UseVIS >= 3);
10777   match(Set dst (ReplicateB src));
10778   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10779   format %{ "SLLX  $src,56,$tmp\n\t"
10780             "SRLX  $tmp, 8,$tmp2\n\t"
10781             "OR    $tmp,$tmp2,$tmp\n\t"
10782             "SRLX  $tmp,16,$tmp2\n\t"
10783             "OR    $tmp,$tmp2,$tmp\n\t"
10784             "SRLX  $tmp,32,$tmp2\n\t"
10785             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10786             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10787   ins_encode %{
10788     Register Rsrc = $src$$Register;
10789     Register Rtmp = $tmp$$Register;
10790     Register Rtmp2 = $tmp2$$Register;
10791     __ sllx(Rsrc,    56, Rtmp);
10792     __ srlx(Rtmp,     8, Rtmp2);
10793     __ or3 (Rtmp, Rtmp2, Rtmp);
10794     __ srlx(Rtmp,    16, Rtmp2);
10795     __ or3 (Rtmp, Rtmp2, Rtmp);
10796     __ srlx(Rtmp,    32, Rtmp2);
10797     __ or3 (Rtmp, Rtmp2, Rtmp);
10798     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10799   %}
10800   ins_pipe(ialu_reg);
10801 %}
10802 
10803 // Replicate scalar to packed byte values into Double stack
10804 instruct Repl8B_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10805   predicate(n->as_Vector()->length() == 8 && UseVIS < 3);
10806   match(Set dst (ReplicateB src));
10807   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10808   format %{ "SLLX  $src,56,$tmp\n\t"
10809             "SRLX  $tmp, 8,$tmp2\n\t"
10810             "OR    $tmp,$tmp2,$tmp\n\t"
10811             "SRLX  $tmp,16,$tmp2\n\t"
10812             "OR    $tmp,$tmp2,$tmp\n\t"
10813             "SRLX  $tmp,32,$tmp2\n\t"
10814             "OR    $tmp,$tmp2,$tmp\t! replicate8B\n\t"
10815             "STX   $tmp,$dst\t! regL to stkD" %}
10816   ins_encode %{
10817     Register Rsrc = $src$$Register;
10818     Register Rtmp = $tmp$$Register;
10819     Register Rtmp2 = $tmp2$$Register;
10820     __ sllx(Rsrc,    56, Rtmp);
10821     __ srlx(Rtmp,     8, Rtmp2);
10822     __ or3 (Rtmp, Rtmp2, Rtmp);
10823     __ srlx(Rtmp,    16, Rtmp2);
10824     __ or3 (Rtmp, Rtmp2, Rtmp);
10825     __ srlx(Rtmp,    32, Rtmp2);
10826     __ or3 (Rtmp, Rtmp2, Rtmp);
10827     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10828     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10829   %}
10830   ins_pipe(ialu_reg);
10831 %}
10832 
10833 // Replicate scalar constant to packed byte values in Double register
10834 instruct Repl8B_immI(regD dst, immI13 con, o7RegI tmp) %{
10835   predicate(n->as_Vector()->length() == 8);
10836   match(Set dst (ReplicateB con));
10837   effect(KILL tmp);
10838   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl8B($con)" %}
10839   ins_encode %{
10840     // XXX This is a quick fix for 6833573.
10841     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 8, 1)), $dst$$FloatRegister);
10842     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 8, 1)), $tmp$$Register);
10843     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10844   %}
10845   ins_pipe(loadConFD);
10846 %}
10847 
10848 // Replicate scalar to packed char/short values into Double register
10849 instruct Repl4S_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10850   predicate(n->as_Vector()->length() == 4 && UseVIS >= 3);
10851   match(Set dst (ReplicateS src));
10852   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10853   format %{ "SLLX  $src,48,$tmp\n\t"
10854             "SRLX  $tmp,16,$tmp2\n\t"
10855             "OR    $tmp,$tmp2,$tmp\n\t"
10856             "SRLX  $tmp,32,$tmp2\n\t"
10857             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10858             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10859   ins_encode %{
10860     Register Rsrc = $src$$Register;
10861     Register Rtmp = $tmp$$Register;
10862     Register Rtmp2 = $tmp2$$Register;
10863     __ sllx(Rsrc,    48, Rtmp);
10864     __ srlx(Rtmp,    16, Rtmp2);
10865     __ or3 (Rtmp, Rtmp2, Rtmp);
10866     __ srlx(Rtmp,    32, Rtmp2);
10867     __ or3 (Rtmp, Rtmp2, Rtmp);
10868     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10869   %}
10870   ins_pipe(ialu_reg);
10871 %}
10872 
10873 // Replicate scalar to packed char/short values into Double stack
10874 instruct Repl4S_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10875   predicate(n->as_Vector()->length() == 4 && UseVIS < 3);
10876   match(Set dst (ReplicateS src));
10877   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10878   format %{ "SLLX  $src,48,$tmp\n\t"
10879             "SRLX  $tmp,16,$tmp2\n\t"
10880             "OR    $tmp,$tmp2,$tmp\n\t"
10881             "SRLX  $tmp,32,$tmp2\n\t"
10882             "OR    $tmp,$tmp2,$tmp\t! replicate4S\n\t"
10883             "STX   $tmp,$dst\t! regL to stkD" %}
10884   ins_encode %{
10885     Register Rsrc = $src$$Register;
10886     Register Rtmp = $tmp$$Register;
10887     Register Rtmp2 = $tmp2$$Register;
10888     __ sllx(Rsrc,    48, Rtmp);
10889     __ srlx(Rtmp,    16, Rtmp2);
10890     __ or3 (Rtmp, Rtmp2, Rtmp);
10891     __ srlx(Rtmp,    32, Rtmp2);
10892     __ or3 (Rtmp, Rtmp2, Rtmp);
10893     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10894     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10895   %}
10896   ins_pipe(ialu_reg);
10897 %}
10898 
10899 // Replicate scalar constant to packed char/short values in Double register
10900 instruct Repl4S_immI(regD dst, immI con, o7RegI tmp) %{
10901   predicate(n->as_Vector()->length() == 4);
10902   match(Set dst (ReplicateS con));
10903   effect(KILL tmp);
10904   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl4S($con)" %}
10905   ins_encode %{
10906     // XXX This is a quick fix for 6833573.
10907     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 4, 2)), $dst$$FloatRegister);
10908     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 4, 2)), $tmp$$Register);
10909     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10910   %}
10911   ins_pipe(loadConFD);
10912 %}
10913 
10914 // Replicate scalar to packed int values into Double register
10915 instruct Repl2I_reg(regD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10916   predicate(n->as_Vector()->length() == 2 && UseVIS >= 3);
10917   match(Set dst (ReplicateI src));
10918   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10919   format %{ "SLLX  $src,32,$tmp\n\t"
10920             "SRLX  $tmp,32,$tmp2\n\t"
10921             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10922             "MOVXTOD $tmp,$dst\t! MoveL2D" %}
10923   ins_encode %{
10924     Register Rsrc = $src$$Register;
10925     Register Rtmp = $tmp$$Register;
10926     Register Rtmp2 = $tmp2$$Register;
10927     __ sllx(Rsrc,    32, Rtmp);
10928     __ srlx(Rtmp,    32, Rtmp2);
10929     __ or3 (Rtmp, Rtmp2, Rtmp);
10930     __ movxtod(Rtmp, as_DoubleFloatRegister($dst$$reg));
10931   %}
10932   ins_pipe(ialu_reg);
10933 %}
10934 
10935 // Replicate scalar to packed int values into Double stack
10936 instruct Repl2I_stk(stackSlotD dst, iRegI src, iRegL tmp, o7RegL tmp2) %{
10937   predicate(n->as_Vector()->length() == 2 && UseVIS < 3);
10938   match(Set dst (ReplicateI src));
10939   effect(DEF dst, USE src, TEMP tmp, KILL tmp2);
10940   format %{ "SLLX  $src,32,$tmp\n\t"
10941             "SRLX  $tmp,32,$tmp2\n\t"
10942             "OR    $tmp,$tmp2,$tmp\t! replicate2I\n\t"
10943             "STX   $tmp,$dst\t! regL to stkD" %}
10944   ins_encode %{
10945     Register Rsrc = $src$$Register;
10946     Register Rtmp = $tmp$$Register;
10947     Register Rtmp2 = $tmp2$$Register;
10948     __ sllx(Rsrc,    32, Rtmp);
10949     __ srlx(Rtmp,    32, Rtmp2);
10950     __ or3 (Rtmp, Rtmp2, Rtmp);
10951     __ set ($dst$$disp + STACK_BIAS, Rtmp2);
10952     __ stx (Rtmp, Rtmp2, $dst$$base$$Register);
10953   %}
10954   ins_pipe(ialu_reg);
10955 %}
10956 
10957 // Replicate scalar zero constant to packed int values in Double register
10958 instruct Repl2I_immI(regD dst, immI con, o7RegI tmp) %{
10959   predicate(n->as_Vector()->length() == 2);
10960   match(Set dst (ReplicateI con));
10961   effect(KILL tmp);
10962   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2I($con)" %}
10963   ins_encode %{
10964     // XXX This is a quick fix for 6833573.
10965     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immI($con$$constant, 2, 4)), $dst$$FloatRegister);
10966     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immI($con$$constant, 2, 4)), $tmp$$Register);
10967     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10968   %}
10969   ins_pipe(loadConFD);
10970 %}
10971 
10972 // Replicate scalar to packed float values into Double stack
10973 instruct Repl2F_stk(stackSlotD dst, regF src) %{
10974   predicate(n->as_Vector()->length() == 2);
10975   match(Set dst (ReplicateF src));
10976   ins_cost(MEMORY_REF_COST*2);
10977   format %{ "STF    $src,$dst.hi\t! packed2F\n\t"
10978             "STF    $src,$dst.lo" %}
10979   opcode(Assembler::stf_op3);
10980   ins_encode(simple_form3_mem_reg(dst, src), form3_mem_plus_4_reg(dst, src));
10981   ins_pipe(fstoreF_stk_reg);
10982 %}
10983 
10984 // Replicate scalar zero constant to packed float values in Double register
10985 instruct Repl2F_immF(regD dst, immF con, o7RegI tmp) %{
10986   predicate(n->as_Vector()->length() == 2);
10987   match(Set dst (ReplicateF con));
10988   effect(KILL tmp);
10989   format %{ "LDDF   [$constanttablebase + $constantoffset],$dst\t! load from constant table: Repl2F($con)" %}
10990   ins_encode %{
10991     // XXX This is a quick fix for 6833573.
10992     //__ ldf(FloatRegisterImpl::D, $constanttablebase, $constantoffset(replicate_immF($con$$constant)), $dst$$FloatRegister);
10993     RegisterOrConstant con_offset = __ ensure_simm13_or_reg($constantoffset(replicate_immF($con$$constant)), $tmp$$Register);
10994     __ ldf(FloatRegisterImpl::D, $constanttablebase, con_offset, as_DoubleFloatRegister($dst$$reg));
10995   %}
10996   ins_pipe(loadConFD);
10997 %}
10998 
10999 //----------PEEPHOLE RULES-----------------------------------------------------
11000 // These must follow all instruction definitions as they use the names
11001 // defined in the instructions definitions.
11002 //
11003 // peepmatch ( root_instr_name [preceding_instruction]* );
11004 //
11005 // peepconstraint %{
11006 // (instruction_number.operand_name relational_op instruction_number.operand_name
11007 //  [, ...] );
11008 // // instruction numbers are zero-based using left to right order in peepmatch
11009 //
11010 // peepreplace ( instr_name  ( [instruction_number.operand_name]* ) );
11011 // // provide an instruction_number.operand_name for each operand that appears
11012 // // in the replacement instruction's match rule
11013 //
11014 // ---------VM FLAGS---------------------------------------------------------
11015 //
11016 // All peephole optimizations can be turned off using -XX:-OptoPeephole
11017 //
11018 // Each peephole rule is given an identifying number starting with zero and
11019 // increasing by one in the order seen by the parser.  An individual peephole
11020 // can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
11021 // on the command-line.
11022 //
11023 // ---------CURRENT LIMITATIONS----------------------------------------------
11024 //
11025 // Only match adjacent instructions in same basic block
11026 // Only equality constraints
11027 // Only constraints between operands, not (0.dest_reg == EAX_enc)
11028 // Only one replacement instruction
11029 //
11030 // ---------EXAMPLE----------------------------------------------------------
11031 //
11032 // // pertinent parts of existing instructions in architecture description
11033 // instruct movI(eRegI dst, eRegI src) %{
11034 //   match(Set dst (CopyI src));
11035 // %}
11036 //
11037 // instruct incI_eReg(eRegI dst, immI1 src, eFlagsReg cr) %{
11038 //   match(Set dst (AddI dst src));
11039 //   effect(KILL cr);
11040 // %}
11041 //
11042 // // Change (inc mov) to lea
11043 // peephole %{
11044 //   // increment preceeded by register-register move
11045 //   peepmatch ( incI_eReg movI );
11046 //   // require that the destination register of the increment
11047 //   // match the destination register of the move
11048 //   peepconstraint ( 0.dst == 1.dst );
11049 //   // construct a replacement instruction that sets
11050 //   // the destination to ( move's source register + one )
11051 //   peepreplace ( incI_eReg_immI1( 0.dst 1.src 0.src ) );
11052 // %}
11053 //
11054 
11055 // // Change load of spilled value to only a spill
11056 // instruct storeI(memory mem, eRegI src) %{
11057 //   match(Set mem (StoreI mem src));
11058 // %}
11059 //
11060 // instruct loadI(eRegI dst, memory mem) %{
11061 //   match(Set dst (LoadI mem));
11062 // %}
11063 //
11064 // peephole %{
11065 //   peepmatch ( loadI storeI );
11066 //   peepconstraint ( 1.src == 0.dst, 1.mem == 0.mem );
11067 //   peepreplace ( storeI( 1.mem 1.mem 1.src ) );
11068 // %}
11069 
11070 //----------SMARTSPILL RULES---------------------------------------------------
11071 // These must follow all instruction definitions as they use the names
11072 // defined in the instructions definitions.
11073 //
11074 // SPARC will probably not have any of these rules due to RISC instruction set.
11075 
11076 //----------PIPELINE-----------------------------------------------------------
11077 // Rules which define the behavior of the target architectures pipeline.