1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/bcEscapeAnalyzer.hpp"
  27 #include "compiler/oopMap.hpp"
  28 #include "opto/callGenerator.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/escape.hpp"
  31 #include "opto/locknode.hpp"
  32 #include "opto/machnode.hpp"
  33 #include "opto/matcher.hpp"
  34 #include "opto/parse.hpp"
  35 #include "opto/regalloc.hpp"
  36 #include "opto/regmask.hpp"
  37 #include "opto/rootnode.hpp"
  38 #include "opto/runtime.hpp"
  39 
  40 // Portions of code courtesy of Clifford Click
  41 
  42 // Optimization - Graph Style
  43 
  44 //=============================================================================
  45 uint StartNode::size_of() const { return sizeof(*this); }
  46 uint StartNode::cmp( const Node &n ) const
  47 { return _domain == ((StartNode&)n)._domain; }
  48 const Type *StartNode::bottom_type() const { return _domain; }
  49 const Type *StartNode::Value(PhaseTransform *phase) const { return _domain; }
  50 #ifndef PRODUCT
  51 void StartNode::dump_spec(outputStream *st) const { st->print(" #"); _domain->dump_on(st);}
  52 #endif
  53 
  54 //------------------------------Ideal------------------------------------------
  55 Node *StartNode::Ideal(PhaseGVN *phase, bool can_reshape){
  56   return remove_dead_region(phase, can_reshape) ? this : NULL;
  57 }
  58 
  59 //------------------------------calling_convention-----------------------------
  60 void StartNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
  61   Matcher::calling_convention( sig_bt, parm_regs, argcnt, false );
  62 }
  63 
  64 //------------------------------Registers--------------------------------------
  65 const RegMask &StartNode::in_RegMask(uint) const {
  66   return RegMask::Empty;
  67 }
  68 
  69 //------------------------------match------------------------------------------
  70 // Construct projections for incoming parameters, and their RegMask info
  71 Node *StartNode::match( const ProjNode *proj, const Matcher *match ) {
  72   switch (proj->_con) {
  73   case TypeFunc::Control:
  74   case TypeFunc::I_O:
  75   case TypeFunc::Memory:
  76     return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
  77   case TypeFunc::FramePtr:
  78     return new (match->C) MachProjNode(this,proj->_con,Matcher::c_frame_ptr_mask, Op_RegP);
  79   case TypeFunc::ReturnAdr:
  80     return new (match->C) MachProjNode(this,proj->_con,match->_return_addr_mask,Op_RegP);
  81   case TypeFunc::Parms:
  82   default: {
  83       uint parm_num = proj->_con - TypeFunc::Parms;
  84       const Type *t = _domain->field_at(proj->_con);
  85       if (t->base() == Type::Half)  // 2nd half of Longs and Doubles
  86         return new (match->C) ConNode(Type::TOP);
  87       uint ideal_reg = Matcher::base2reg[t->base()];
  88       RegMask &rm = match->_calling_convention_mask[parm_num];
  89       return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
  90     }
  91   }
  92   return NULL;
  93 }
  94 
  95 //------------------------------StartOSRNode----------------------------------
  96 // The method start node for an on stack replacement adapter
  97 
  98 //------------------------------osr_domain-----------------------------
  99 const TypeTuple *StartOSRNode::osr_domain() {
 100   const Type **fields = TypeTuple::fields(2);
 101   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM;  // address of osr buffer
 102 
 103   return TypeTuple::make(TypeFunc::Parms+1, fields);
 104 }
 105 
 106 //=============================================================================
 107 const char * const ParmNode::names[TypeFunc::Parms+1] = {
 108   "Control", "I_O", "Memory", "FramePtr", "ReturnAdr", "Parms"
 109 };
 110 
 111 #ifndef PRODUCT
 112 void ParmNode::dump_spec(outputStream *st) const {
 113   if( _con < TypeFunc::Parms ) {
 114     st->print(names[_con]);
 115   } else {
 116     st->print("Parm%d: ",_con-TypeFunc::Parms);
 117     // Verbose and WizardMode dump bottom_type for all nodes
 118     if( !Verbose && !WizardMode )   bottom_type()->dump_on(st);
 119   }
 120 }
 121 #endif
 122 
 123 uint ParmNode::ideal_reg() const {
 124   switch( _con ) {
 125   case TypeFunc::Control  : // fall through
 126   case TypeFunc::I_O      : // fall through
 127   case TypeFunc::Memory   : return 0;
 128   case TypeFunc::FramePtr : // fall through
 129   case TypeFunc::ReturnAdr: return Op_RegP;
 130   default                 : assert( _con > TypeFunc::Parms, "" );
 131     // fall through
 132   case TypeFunc::Parms    : {
 133     // Type of argument being passed
 134     const Type *t = in(0)->as_Start()->_domain->field_at(_con);
 135     return Matcher::base2reg[t->base()];
 136   }
 137   }
 138   ShouldNotReachHere();
 139   return 0;
 140 }
 141 
 142 //=============================================================================
 143 ReturnNode::ReturnNode(uint edges, Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr ) : Node(edges) {
 144   init_req(TypeFunc::Control,cntrl);
 145   init_req(TypeFunc::I_O,i_o);
 146   init_req(TypeFunc::Memory,memory);
 147   init_req(TypeFunc::FramePtr,frameptr);
 148   init_req(TypeFunc::ReturnAdr,retadr);
 149 }
 150 
 151 Node *ReturnNode::Ideal(PhaseGVN *phase, bool can_reshape){
 152   return remove_dead_region(phase, can_reshape) ? this : NULL;
 153 }
 154 
 155 const Type *ReturnNode::Value( PhaseTransform *phase ) const {
 156   return ( phase->type(in(TypeFunc::Control)) == Type::TOP)
 157     ? Type::TOP
 158     : Type::BOTTOM;
 159 }
 160 
 161 // Do we Match on this edge index or not?  No edges on return nodes
 162 uint ReturnNode::match_edge(uint idx) const {
 163   return 0;
 164 }
 165 
 166 
 167 #ifndef PRODUCT
 168 void ReturnNode::dump_req(outputStream *st) const {
 169   // Dump the required inputs, enclosed in '(' and ')'
 170   uint i;                       // Exit value of loop
 171   for (i = 0; i < req(); i++) {    // For all required inputs
 172     if (i == TypeFunc::Parms) st->print("returns");
 173     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 174     else st->print("_ ");
 175   }
 176 }
 177 #endif
 178 
 179 //=============================================================================
 180 RethrowNode::RethrowNode(
 181   Node* cntrl,
 182   Node* i_o,
 183   Node* memory,
 184   Node* frameptr,
 185   Node* ret_adr,
 186   Node* exception
 187 ) : Node(TypeFunc::Parms + 1) {
 188   init_req(TypeFunc::Control  , cntrl    );
 189   init_req(TypeFunc::I_O      , i_o      );
 190   init_req(TypeFunc::Memory   , memory   );
 191   init_req(TypeFunc::FramePtr , frameptr );
 192   init_req(TypeFunc::ReturnAdr, ret_adr);
 193   init_req(TypeFunc::Parms    , exception);
 194 }
 195 
 196 Node *RethrowNode::Ideal(PhaseGVN *phase, bool can_reshape){
 197   return remove_dead_region(phase, can_reshape) ? this : NULL;
 198 }
 199 
 200 const Type *RethrowNode::Value( PhaseTransform *phase ) const {
 201   return (phase->type(in(TypeFunc::Control)) == Type::TOP)
 202     ? Type::TOP
 203     : Type::BOTTOM;
 204 }
 205 
 206 uint RethrowNode::match_edge(uint idx) const {
 207   return 0;
 208 }
 209 
 210 #ifndef PRODUCT
 211 void RethrowNode::dump_req(outputStream *st) const {
 212   // Dump the required inputs, enclosed in '(' and ')'
 213   uint i;                       // Exit value of loop
 214   for (i = 0; i < req(); i++) {    // For all required inputs
 215     if (i == TypeFunc::Parms) st->print("exception");
 216     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 217     else st->print("_ ");
 218   }
 219 }
 220 #endif
 221 
 222 //=============================================================================
 223 // Do we Match on this edge index or not?  Match only target address & method
 224 uint TailCallNode::match_edge(uint idx) const {
 225   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 226 }
 227 
 228 //=============================================================================
 229 // Do we Match on this edge index or not?  Match only target address & oop
 230 uint TailJumpNode::match_edge(uint idx) const {
 231   return TypeFunc::Parms <= idx  &&  idx <= TypeFunc::Parms+1;
 232 }
 233 
 234 //=============================================================================
 235 JVMState::JVMState(ciMethod* method, JVMState* caller) :
 236   _method(method) {
 237   assert(method != NULL, "must be valid call site");
 238   _reexecute = Reexecute_Undefined;
 239   debug_only(_bci = -99);  // random garbage value
 240   debug_only(_map = (SafePointNode*)-1);
 241   _caller = caller;
 242   _depth  = 1 + (caller == NULL ? 0 : caller->depth());
 243   _locoff = TypeFunc::Parms;
 244   _stkoff = _locoff + _method->max_locals();
 245   _monoff = _stkoff + _method->max_stack();
 246   _scloff = _monoff;
 247   _endoff = _monoff;
 248   _sp = 0;
 249 }
 250 JVMState::JVMState(int stack_size) :
 251   _method(NULL) {
 252   _bci = InvocationEntryBci;
 253   _reexecute = Reexecute_Undefined;
 254   debug_only(_map = (SafePointNode*)-1);
 255   _caller = NULL;
 256   _depth  = 1;
 257   _locoff = TypeFunc::Parms;
 258   _stkoff = _locoff;
 259   _monoff = _stkoff + stack_size;
 260   _scloff = _monoff;
 261   _endoff = _monoff;
 262   _sp = 0;
 263 }
 264 
 265 //--------------------------------of_depth-------------------------------------
 266 JVMState* JVMState::of_depth(int d) const {
 267   const JVMState* jvmp = this;
 268   assert(0 < d && (uint)d <= depth(), "oob");
 269   for (int skip = depth() - d; skip > 0; skip--) {
 270     jvmp = jvmp->caller();
 271   }
 272   assert(jvmp->depth() == (uint)d, "found the right one");
 273   return (JVMState*)jvmp;
 274 }
 275 
 276 //-----------------------------same_calls_as-----------------------------------
 277 bool JVMState::same_calls_as(const JVMState* that) const {
 278   if (this == that)                    return true;
 279   if (this->depth() != that->depth())  return false;
 280   const JVMState* p = this;
 281   const JVMState* q = that;
 282   for (;;) {
 283     if (p->_method != q->_method)    return false;
 284     if (p->_method == NULL)          return true;   // bci is irrelevant
 285     if (p->_bci    != q->_bci)       return false;
 286     if (p->_reexecute != q->_reexecute)  return false;
 287     p = p->caller();
 288     q = q->caller();
 289     if (p == q)                      return true;
 290     assert(p != NULL && q != NULL, "depth check ensures we don't run off end");
 291   }
 292 }
 293 
 294 //------------------------------debug_start------------------------------------
 295 uint JVMState::debug_start()  const {
 296   debug_only(JVMState* jvmroot = of_depth(1));
 297   assert(jvmroot->locoff() <= this->locoff(), "youngest JVMState must be last");
 298   return of_depth(1)->locoff();
 299 }
 300 
 301 //-------------------------------debug_end-------------------------------------
 302 uint JVMState::debug_end() const {
 303   debug_only(JVMState* jvmroot = of_depth(1));
 304   assert(jvmroot->endoff() <= this->endoff(), "youngest JVMState must be last");
 305   return endoff();
 306 }
 307 
 308 //------------------------------debug_depth------------------------------------
 309 uint JVMState::debug_depth() const {
 310   uint total = 0;
 311   for (const JVMState* jvmp = this; jvmp != NULL; jvmp = jvmp->caller()) {
 312     total += jvmp->debug_size();
 313   }
 314   return total;
 315 }
 316 
 317 #ifndef PRODUCT
 318 
 319 //------------------------------format_helper----------------------------------
 320 // Given an allocation (a Chaitin object) and a Node decide if the Node carries
 321 // any defined value or not.  If it does, print out the register or constant.
 322 static void format_helper( PhaseRegAlloc *regalloc, outputStream* st, Node *n, const char *msg, uint i, GrowableArray<SafePointScalarObjectNode*> *scobjs ) {
 323   if (n == NULL) { st->print(" NULL"); return; }
 324   if (n->is_SafePointScalarObject()) {
 325     // Scalar replacement.
 326     SafePointScalarObjectNode* spobj = n->as_SafePointScalarObject();
 327     scobjs->append_if_missing(spobj);
 328     int sco_n = scobjs->find(spobj);
 329     assert(sco_n >= 0, "");
 330     st->print(" %s%d]=#ScObj" INT32_FORMAT, msg, i, sco_n);
 331     return;
 332   }
 333   if (regalloc->node_regs_max_index() > 0 &&
 334       OptoReg::is_valid(regalloc->get_reg_first(n))) { // Check for undefined
 335     char buf[50];
 336     regalloc->dump_register(n,buf);
 337     st->print(" %s%d]=%s",msg,i,buf);
 338   } else {                      // No register, but might be constant
 339     const Type *t = n->bottom_type();
 340     switch (t->base()) {
 341     case Type::Int:
 342       st->print(" %s%d]=#"INT32_FORMAT,msg,i,t->is_int()->get_con());
 343       break;
 344     case Type::AnyPtr:
 345       assert( t == TypePtr::NULL_PTR || n->in_dump(), "" );
 346       st->print(" %s%d]=#NULL",msg,i);
 347       break;
 348     case Type::AryPtr:
 349     case Type::KlassPtr:
 350     case Type::InstPtr:
 351       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->isa_oopptr()->const_oop());
 352       break;
 353     case Type::NarrowOop:
 354       st->print(" %s%d]=#Ptr" INTPTR_FORMAT,msg,i,t->make_ptr()->isa_oopptr()->const_oop());
 355       break;
 356     case Type::RawPtr:
 357       st->print(" %s%d]=#Raw" INTPTR_FORMAT,msg,i,t->is_rawptr());
 358       break;
 359     case Type::DoubleCon:
 360       st->print(" %s%d]=#%fD",msg,i,t->is_double_constant()->_d);
 361       break;
 362     case Type::FloatCon:
 363       st->print(" %s%d]=#%fF",msg,i,t->is_float_constant()->_f);
 364       break;
 365     case Type::Long:
 366       st->print(" %s%d]=#"INT64_FORMAT,msg,i,t->is_long()->get_con());
 367       break;
 368     case Type::Half:
 369     case Type::Top:
 370       st->print(" %s%d]=_",msg,i);
 371       break;
 372     default: ShouldNotReachHere();
 373     }
 374   }
 375 }
 376 
 377 //------------------------------format-----------------------------------------
 378 void JVMState::format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const {
 379   st->print("        #");
 380   if (_method) {
 381     _method->print_short_name(st);
 382     st->print(" @ bci:%d ",_bci);
 383   } else {
 384     st->print_cr(" runtime stub ");
 385     return;
 386   }
 387   if (n->is_MachSafePoint()) {
 388     GrowableArray<SafePointScalarObjectNode*> scobjs;
 389     MachSafePointNode *mcall = n->as_MachSafePoint();
 390     uint i;
 391     // Print locals
 392     for (i = 0; i < (uint)loc_size(); i++)
 393       format_helper(regalloc, st, mcall->local(this, i), "L[", i, &scobjs);
 394     // Print stack
 395     for (i = 0; i < (uint)stk_size(); i++) {
 396       if ((uint)(_stkoff + i) >= mcall->len())
 397         st->print(" oob ");
 398       else
 399        format_helper(regalloc, st, mcall->stack(this, i), "STK[", i, &scobjs);
 400     }
 401     for (i = 0; (int)i < nof_monitors(); i++) {
 402       Node *box = mcall->monitor_box(this, i);
 403       Node *obj = mcall->monitor_obj(this, i);
 404       if (regalloc->node_regs_max_index() > 0 &&
 405           OptoReg::is_valid(regalloc->get_reg_first(box))) {
 406         box = BoxLockNode::box_node(box);
 407         format_helper(regalloc, st, box, "MON-BOX[", i, &scobjs);
 408       } else {
 409         OptoReg::Name box_reg = BoxLockNode::reg(box);
 410         st->print(" MON-BOX%d=%s+%d",
 411                    i,
 412                    OptoReg::regname(OptoReg::c_frame_pointer),
 413                    regalloc->reg2offset(box_reg));
 414       }
 415       const char* obj_msg = "MON-OBJ[";
 416       if (EliminateLocks) {
 417         if (BoxLockNode::box_node(box)->is_eliminated())
 418           obj_msg = "MON-OBJ(LOCK ELIMINATED)[";
 419       }
 420       format_helper(regalloc, st, obj, obj_msg, i, &scobjs);
 421     }
 422 
 423     for (i = 0; i < (uint)scobjs.length(); i++) {
 424       // Scalar replaced objects.
 425       st->print_cr("");
 426       st->print("        # ScObj" INT32_FORMAT " ", i);
 427       SafePointScalarObjectNode* spobj = scobjs.at(i);
 428       ciKlass* cik = spobj->bottom_type()->is_oopptr()->klass();
 429       assert(cik->is_instance_klass() ||
 430              cik->is_array_klass(), "Not supported allocation.");
 431       ciInstanceKlass *iklass = NULL;
 432       if (cik->is_instance_klass()) {
 433         cik->print_name_on(st);
 434         iklass = cik->as_instance_klass();
 435       } else if (cik->is_type_array_klass()) {
 436         cik->as_array_klass()->base_element_type()->print_name_on(st);
 437         st->print("[%d]", spobj->n_fields());
 438       } else if (cik->is_obj_array_klass()) {
 439         ciKlass* cie = cik->as_obj_array_klass()->base_element_klass();
 440         if (cie->is_instance_klass()) {
 441           cie->print_name_on(st);
 442         } else if (cie->is_type_array_klass()) {
 443           cie->as_array_klass()->base_element_type()->print_name_on(st);
 444         } else {
 445           ShouldNotReachHere();
 446         }
 447         st->print("[%d]", spobj->n_fields());
 448         int ndim = cik->as_array_klass()->dimension() - 1;
 449         while (ndim-- > 0) {
 450           st->print("[]");
 451         }
 452       }
 453       st->print("={");
 454       uint nf = spobj->n_fields();
 455       if (nf > 0) {
 456         uint first_ind = spobj->first_index();
 457         Node* fld_node = mcall->in(first_ind);
 458         ciField* cifield;
 459         if (iklass != NULL) {
 460           st->print(" [");
 461           cifield = iklass->nonstatic_field_at(0);
 462           cifield->print_name_on(st);
 463           format_helper(regalloc, st, fld_node, ":", 0, &scobjs);
 464         } else {
 465           format_helper(regalloc, st, fld_node, "[", 0, &scobjs);
 466         }
 467         for (uint j = 1; j < nf; j++) {
 468           fld_node = mcall->in(first_ind+j);
 469           if (iklass != NULL) {
 470             st->print(", [");
 471             cifield = iklass->nonstatic_field_at(j);
 472             cifield->print_name_on(st);
 473             format_helper(regalloc, st, fld_node, ":", j, &scobjs);
 474           } else {
 475             format_helper(regalloc, st, fld_node, ", [", j, &scobjs);
 476           }
 477         }
 478       }
 479       st->print(" }");
 480     }
 481   }
 482   st->print_cr("");
 483   if (caller() != NULL) caller()->format(regalloc, n, st);
 484 }
 485 
 486 
 487 void JVMState::dump_spec(outputStream *st) const {
 488   if (_method != NULL) {
 489     bool printed = false;
 490     if (!Verbose) {
 491       // The JVMS dumps make really, really long lines.
 492       // Take out the most boring parts, which are the package prefixes.
 493       char buf[500];
 494       stringStream namest(buf, sizeof(buf));
 495       _method->print_short_name(&namest);
 496       if (namest.count() < sizeof(buf)) {
 497         const char* name = namest.base();
 498         if (name[0] == ' ')  ++name;
 499         const char* endcn = strchr(name, ':');  // end of class name
 500         if (endcn == NULL)  endcn = strchr(name, '(');
 501         if (endcn == NULL)  endcn = name + strlen(name);
 502         while (endcn > name && endcn[-1] != '.' && endcn[-1] != '/')
 503           --endcn;
 504         st->print(" %s", endcn);
 505         printed = true;
 506       }
 507     }
 508     if (!printed)
 509       _method->print_short_name(st);
 510     st->print(" @ bci:%d",_bci);
 511     if(_reexecute == Reexecute_True)
 512       st->print(" reexecute");
 513   } else {
 514     st->print(" runtime stub");
 515   }
 516   if (caller() != NULL)  caller()->dump_spec(st);
 517 }
 518 
 519 
 520 void JVMState::dump_on(outputStream* st) const {
 521   if (_map && !((uintptr_t)_map & 1)) {
 522     if (_map->len() > _map->req()) {  // _map->has_exceptions()
 523       Node* ex = _map->in(_map->req());  // _map->next_exception()
 524       // skip the first one; it's already being printed
 525       while (ex != NULL && ex->len() > ex->req()) {
 526         ex = ex->in(ex->req());  // ex->next_exception()
 527         ex->dump(1);
 528       }
 529     }
 530     _map->dump(2);
 531   }
 532   st->print("JVMS depth=%d loc=%d stk=%d arg=%d mon=%d scalar=%d end=%d mondepth=%d sp=%d bci=%d reexecute=%s method=",
 533              depth(), locoff(), stkoff(), argoff(), monoff(), scloff(), endoff(), monitor_depth(), sp(), bci(), should_reexecute()?"true":"false");
 534   if (_method == NULL) {
 535     st->print_cr("(none)");
 536   } else {
 537     _method->print_name(st);
 538     st->cr();
 539     if (bci() >= 0 && bci() < _method->code_size()) {
 540       st->print("    bc: ");
 541       _method->print_codes_on(bci(), bci()+1, st);
 542     }
 543   }
 544   if (caller() != NULL) {
 545     caller()->dump_on(st);
 546   }
 547 }
 548 
 549 // Extra way to dump a jvms from the debugger,
 550 // to avoid a bug with C++ member function calls.
 551 void dump_jvms(JVMState* jvms) {
 552   jvms->dump();
 553 }
 554 #endif
 555 
 556 //--------------------------clone_shallow--------------------------------------
 557 JVMState* JVMState::clone_shallow(Compile* C) const {
 558   JVMState* n = has_method() ? new (C) JVMState(_method, _caller) : new (C) JVMState(0);
 559   n->set_bci(_bci);
 560   n->_reexecute = _reexecute;
 561   n->set_locoff(_locoff);
 562   n->set_stkoff(_stkoff);
 563   n->set_monoff(_monoff);
 564   n->set_scloff(_scloff);
 565   n->set_endoff(_endoff);
 566   n->set_sp(_sp);
 567   n->set_map(_map);
 568   return n;
 569 }
 570 
 571 //---------------------------clone_deep----------------------------------------
 572 JVMState* JVMState::clone_deep(Compile* C) const {
 573   JVMState* n = clone_shallow(C);
 574   for (JVMState* p = n; p->_caller != NULL; p = p->_caller) {
 575     p->_caller = p->_caller->clone_shallow(C);
 576   }
 577   assert(n->depth() == depth(), "sanity");
 578   assert(n->debug_depth() == debug_depth(), "sanity");
 579   return n;
 580 }
 581 
 582 //=============================================================================
 583 uint CallNode::cmp( const Node &n ) const
 584 { return _tf == ((CallNode&)n)._tf && _jvms == ((CallNode&)n)._jvms; }
 585 #ifndef PRODUCT
 586 void CallNode::dump_req(outputStream *st) const {
 587   // Dump the required inputs, enclosed in '(' and ')'
 588   uint i;                       // Exit value of loop
 589   for (i = 0; i < req(); i++) {    // For all required inputs
 590     if (i == TypeFunc::Parms) st->print("(");
 591     if (in(i)) st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
 592     else st->print("_ ");
 593   }
 594   st->print(")");
 595 }
 596 
 597 void CallNode::dump_spec(outputStream *st) const {
 598   st->print(" ");
 599   tf()->dump_on(st);
 600   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 601   if (jvms() != NULL)  jvms()->dump_spec(st);
 602 }
 603 #endif
 604 
 605 const Type *CallNode::bottom_type() const { return tf()->range(); }
 606 const Type *CallNode::Value(PhaseTransform *phase) const {
 607   if (phase->type(in(0)) == Type::TOP)  return Type::TOP;
 608   return tf()->range();
 609 }
 610 
 611 //------------------------------calling_convention-----------------------------
 612 void CallNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 613   // Use the standard compiler calling convention
 614   Matcher::calling_convention( sig_bt, parm_regs, argcnt, true );
 615 }
 616 
 617 
 618 //------------------------------match------------------------------------------
 619 // Construct projections for control, I/O, memory-fields, ..., and
 620 // return result(s) along with their RegMask info
 621 Node *CallNode::match( const ProjNode *proj, const Matcher *match ) {
 622   switch (proj->_con) {
 623   case TypeFunc::Control:
 624   case TypeFunc::I_O:
 625   case TypeFunc::Memory:
 626     return new (match->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
 627 
 628   case TypeFunc::Parms+1:       // For LONG & DOUBLE returns
 629     assert(tf()->_range->field_at(TypeFunc::Parms+1) == Type::HALF, "");
 630     // 2nd half of doubles and longs
 631     return new (match->C) MachProjNode(this,proj->_con, RegMask::Empty, (uint)OptoReg::Bad);
 632 
 633   case TypeFunc::Parms: {       // Normal returns
 634     uint ideal_reg = Matcher::base2reg[tf()->range()->field_at(TypeFunc::Parms)->base()];
 635     OptoRegPair regs = is_CallRuntime()
 636       ? match->c_return_value(ideal_reg,true)  // Calls into C runtime
 637       : match->  return_value(ideal_reg,true); // Calls into compiled Java code
 638     RegMask rm = RegMask(regs.first());
 639     if( OptoReg::is_valid(regs.second()) )
 640       rm.Insert( regs.second() );
 641     return new (match->C) MachProjNode(this,proj->_con,rm,ideal_reg);
 642   }
 643 
 644   case TypeFunc::ReturnAdr:
 645   case TypeFunc::FramePtr:
 646   default:
 647     ShouldNotReachHere();
 648   }
 649   return NULL;
 650 }
 651 
 652 // Do we Match on this edge index or not?  Match no edges
 653 uint CallNode::match_edge(uint idx) const {
 654   return 0;
 655 }
 656 
 657 //
 658 // Determine whether the call could modify the field of the specified
 659 // instance at the specified offset.
 660 //
 661 bool CallNode::may_modify(const TypePtr *addr_t, PhaseTransform *phase) {
 662   const TypeOopPtr *adrInst_t  = addr_t->isa_oopptr();
 663 
 664   // If not an OopPtr or not an instance type, assume the worst.
 665   // Note: currently this method is called only for instance types.
 666   if (adrInst_t == NULL || !adrInst_t->is_known_instance()) {
 667     return true;
 668   }
 669   // The instance_id is set only for scalar-replaceable allocations which
 670   // are not passed as arguments according to Escape Analysis.
 671   return false;
 672 }
 673 
 674 // Does this call have a direct reference to n other than debug information?
 675 bool CallNode::has_non_debug_use(Node *n) {
 676   const TypeTuple * d = tf()->domain();
 677   for (uint i = TypeFunc::Parms; i < d->cnt(); i++) {
 678     Node *arg = in(i);
 679     if (arg == n) {
 680       return true;
 681     }
 682   }
 683   return false;
 684 }
 685 
 686 // Returns the unique CheckCastPP of a call
 687 // or 'this' if there are several CheckCastPP
 688 // or returns NULL if there is no one.
 689 Node *CallNode::result_cast() {
 690   Node *cast = NULL;
 691 
 692   Node *p = proj_out(TypeFunc::Parms);
 693   if (p == NULL)
 694     return NULL;
 695 
 696   for (DUIterator_Fast imax, i = p->fast_outs(imax); i < imax; i++) {
 697     Node *use = p->fast_out(i);
 698     if (use->is_CheckCastPP()) {
 699       if (cast != NULL) {
 700         return this;  // more than 1 CheckCastPP
 701       }
 702       cast = use;
 703     }
 704   }
 705   return cast;
 706 }
 707 
 708 
 709 void CallNode::extract_projections(CallProjections* projs, bool separate_io_proj) {
 710   projs->fallthrough_proj      = NULL;
 711   projs->fallthrough_catchproj = NULL;
 712   projs->fallthrough_ioproj    = NULL;
 713   projs->catchall_ioproj       = NULL;
 714   projs->catchall_catchproj    = NULL;
 715   projs->fallthrough_memproj   = NULL;
 716   projs->catchall_memproj      = NULL;
 717   projs->resproj               = NULL;
 718   projs->exobj                 = NULL;
 719 
 720   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 721     ProjNode *pn = fast_out(i)->as_Proj();
 722     if (pn->outcnt() == 0) continue;
 723     switch (pn->_con) {
 724     case TypeFunc::Control:
 725       {
 726         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 727         projs->fallthrough_proj = pn;
 728         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 729         const Node *cn = pn->fast_out(j);
 730         if (cn->is_Catch()) {
 731           ProjNode *cpn = NULL;
 732           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 733             cpn = cn->fast_out(k)->as_Proj();
 734             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 735             if (cpn->_con == CatchProjNode::fall_through_index)
 736               projs->fallthrough_catchproj = cpn;
 737             else {
 738               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 739               projs->catchall_catchproj = cpn;
 740             }
 741           }
 742         }
 743         break;
 744       }
 745     case TypeFunc::I_O:
 746       if (pn->_is_io_use)
 747         projs->catchall_ioproj = pn;
 748       else
 749         projs->fallthrough_ioproj = pn;
 750       for (DUIterator j = pn->outs(); pn->has_out(j); j++) {
 751         Node* e = pn->out(j);
 752         if (e->Opcode() == Op_CreateEx && e->in(0)->is_CatchProj() && e->outcnt() > 0) {
 753           assert(projs->exobj == NULL, "only one");
 754           projs->exobj = e;
 755         }
 756       }
 757       break;
 758     case TypeFunc::Memory:
 759       if (pn->_is_io_use)
 760         projs->catchall_memproj = pn;
 761       else
 762         projs->fallthrough_memproj = pn;
 763       break;
 764     case TypeFunc::Parms:
 765       projs->resproj = pn;
 766       break;
 767     default:
 768       assert(false, "unexpected projection from allocation node.");
 769     }
 770   }
 771 
 772   // The resproj may not exist because the result couuld be ignored
 773   // and the exception object may not exist if an exception handler
 774   // swallows the exception but all the other must exist and be found.
 775   assert(projs->fallthrough_proj      != NULL, "must be found");
 776   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_catchproj != NULL, "must be found");
 777   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_memproj   != NULL, "must be found");
 778   assert(Compile::current()->inlining_incrementally() || projs->fallthrough_ioproj    != NULL, "must be found");
 779   assert(Compile::current()->inlining_incrementally() || projs->catchall_catchproj    != NULL, "must be found");
 780   if (separate_io_proj) {
 781     assert(Compile::current()->inlining_incrementally() || projs->catchall_memproj    != NULL, "must be found");
 782     assert(Compile::current()->inlining_incrementally() || projs->catchall_ioproj     != NULL, "must be found");
 783   }
 784 }
 785 
 786 Node *CallNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 787   CallGenerator* cg = generator();
 788   if (can_reshape && cg != NULL && cg->is_mh_late_inline() && !cg->already_attempted()) {
 789     // Check whether this MH handle call becomes a candidate for inlining
 790     ciMethod* callee = cg->method();
 791     vmIntrinsics::ID iid = callee->intrinsic_id();
 792     if (iid == vmIntrinsics::_invokeBasic) {
 793       if (in(TypeFunc::Parms)->Opcode() == Op_ConP) {
 794         phase->C->prepend_late_inline(cg);
 795         set_generator(NULL);
 796       }
 797     } else {
 798       assert(callee->has_member_arg(), "wrong type of call?");
 799       if (in(TypeFunc::Parms + callee->arg_size() - 1)->Opcode() == Op_ConP) {
 800         phase->C->prepend_late_inline(cg);
 801         set_generator(NULL);
 802       }
 803     }
 804   }
 805   return SafePointNode::Ideal(phase, can_reshape);
 806 }
 807 
 808 
 809 //=============================================================================
 810 uint CallJavaNode::size_of() const { return sizeof(*this); }
 811 uint CallJavaNode::cmp( const Node &n ) const {
 812   CallJavaNode &call = (CallJavaNode&)n;
 813   return CallNode::cmp(call) && _method == call._method;
 814 }
 815 #ifndef PRODUCT
 816 void CallJavaNode::dump_spec(outputStream *st) const {
 817   if( _method ) _method->print_short_name(st);
 818   CallNode::dump_spec(st);
 819 }
 820 #endif
 821 
 822 //=============================================================================
 823 uint CallStaticJavaNode::size_of() const { return sizeof(*this); }
 824 uint CallStaticJavaNode::cmp( const Node &n ) const {
 825   CallStaticJavaNode &call = (CallStaticJavaNode&)n;
 826   return CallJavaNode::cmp(call);
 827 }
 828 
 829 //----------------------------uncommon_trap_request----------------------------
 830 // If this is an uncommon trap, return the request code, else zero.
 831 int CallStaticJavaNode::uncommon_trap_request() const {
 832   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
 833     return extract_uncommon_trap_request(this);
 834   }
 835   return 0;
 836 }
 837 int CallStaticJavaNode::extract_uncommon_trap_request(const Node* call) {
 838 #ifndef PRODUCT
 839   if (!(call->req() > TypeFunc::Parms &&
 840         call->in(TypeFunc::Parms) != NULL &&
 841         call->in(TypeFunc::Parms)->is_Con())) {
 842     assert(in_dump() != 0, "OK if dumping");
 843     tty->print("[bad uncommon trap]");
 844     return 0;
 845   }
 846 #endif
 847   return call->in(TypeFunc::Parms)->bottom_type()->is_int()->get_con();
 848 }
 849 
 850 #ifndef PRODUCT
 851 void CallStaticJavaNode::dump_spec(outputStream *st) const {
 852   st->print("# Static ");
 853   if (_name != NULL) {
 854     st->print("%s", _name);
 855     int trap_req = uncommon_trap_request();
 856     if (trap_req != 0) {
 857       char buf[100];
 858       st->print("(%s)",
 859                  Deoptimization::format_trap_request(buf, sizeof(buf),
 860                                                      trap_req));
 861     }
 862     st->print(" ");
 863   }
 864   CallJavaNode::dump_spec(st);
 865 }
 866 #endif
 867 
 868 //=============================================================================
 869 uint CallDynamicJavaNode::size_of() const { return sizeof(*this); }
 870 uint CallDynamicJavaNode::cmp( const Node &n ) const {
 871   CallDynamicJavaNode &call = (CallDynamicJavaNode&)n;
 872   return CallJavaNode::cmp(call);
 873 }
 874 #ifndef PRODUCT
 875 void CallDynamicJavaNode::dump_spec(outputStream *st) const {
 876   st->print("# Dynamic ");
 877   CallJavaNode::dump_spec(st);
 878 }
 879 #endif
 880 
 881 //=============================================================================
 882 uint CallRuntimeNode::size_of() const { return sizeof(*this); }
 883 uint CallRuntimeNode::cmp( const Node &n ) const {
 884   CallRuntimeNode &call = (CallRuntimeNode&)n;
 885   return CallNode::cmp(call) && !strcmp(_name,call._name);
 886 }
 887 #ifndef PRODUCT
 888 void CallRuntimeNode::dump_spec(outputStream *st) const {
 889   st->print("# ");
 890   st->print(_name);
 891   CallNode::dump_spec(st);
 892 }
 893 #endif
 894 
 895 //------------------------------calling_convention-----------------------------
 896 void CallRuntimeNode::calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const {
 897   Matcher::c_calling_convention( sig_bt, parm_regs, argcnt );
 898 }
 899 
 900 //=============================================================================
 901 //------------------------------calling_convention-----------------------------
 902 
 903 
 904 //=============================================================================
 905 #ifndef PRODUCT
 906 void CallLeafNode::dump_spec(outputStream *st) const {
 907   st->print("# ");
 908   st->print(_name);
 909   CallNode::dump_spec(st);
 910 }
 911 #endif
 912 
 913 //=============================================================================
 914 
 915 void SafePointNode::set_local(JVMState* jvms, uint idx, Node *c) {
 916   assert(verify_jvms(jvms), "jvms must match");
 917   int loc = jvms->locoff() + idx;
 918   if (in(loc)->is_top() && idx > 0 && !c->is_top() ) {
 919     // If current local idx is top then local idx - 1 could
 920     // be a long/double that needs to be killed since top could
 921     // represent the 2nd half ofthe long/double.
 922     uint ideal = in(loc -1)->ideal_reg();
 923     if (ideal == Op_RegD || ideal == Op_RegL) {
 924       // set other (low index) half to top
 925       set_req(loc - 1, in(loc));
 926     }
 927   }
 928   set_req(loc, c);
 929 }
 930 
 931 uint SafePointNode::size_of() const { return sizeof(*this); }
 932 uint SafePointNode::cmp( const Node &n ) const {
 933   return (&n == this);          // Always fail except on self
 934 }
 935 
 936 //-------------------------set_next_exception----------------------------------
 937 void SafePointNode::set_next_exception(SafePointNode* n) {
 938   assert(n == NULL || n->Opcode() == Op_SafePoint, "correct value for next_exception");
 939   if (len() == req()) {
 940     if (n != NULL)  add_prec(n);
 941   } else {
 942     set_prec(req(), n);
 943   }
 944 }
 945 
 946 
 947 //----------------------------next_exception-----------------------------------
 948 SafePointNode* SafePointNode::next_exception() const {
 949   if (len() == req()) {
 950     return NULL;
 951   } else {
 952     Node* n = in(req());
 953     assert(n == NULL || n->Opcode() == Op_SafePoint, "no other uses of prec edges");
 954     return (SafePointNode*) n;
 955   }
 956 }
 957 
 958 
 959 //------------------------------Ideal------------------------------------------
 960 // Skip over any collapsed Regions
 961 Node *SafePointNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 962   return remove_dead_region(phase, can_reshape) ? this : NULL;
 963 }
 964 
 965 //------------------------------Identity---------------------------------------
 966 // Remove obviously duplicate safepoints
 967 Node *SafePointNode::Identity( PhaseTransform *phase ) {
 968 
 969   // If you have back to back safepoints, remove one
 970   if( in(TypeFunc::Control)->is_SafePoint() )
 971     return in(TypeFunc::Control);
 972 
 973   if( in(0)->is_Proj() ) {
 974     Node *n0 = in(0)->in(0);
 975     // Check if he is a call projection (except Leaf Call)
 976     if( n0->is_Catch() ) {
 977       n0 = n0->in(0)->in(0);
 978       assert( n0->is_Call(), "expect a call here" );
 979     }
 980     if( n0->is_Call() && n0->as_Call()->guaranteed_safepoint() ) {
 981       // Useless Safepoint, so remove it
 982       return in(TypeFunc::Control);
 983     }
 984   }
 985 
 986   return this;
 987 }
 988 
 989 //------------------------------Value------------------------------------------
 990 const Type *SafePointNode::Value( PhaseTransform *phase ) const {
 991   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
 992   if( phase->eqv( in(0), this ) ) return Type::TOP; // Dead infinite loop
 993   return Type::CONTROL;
 994 }
 995 
 996 #ifndef PRODUCT
 997 void SafePointNode::dump_spec(outputStream *st) const {
 998   st->print(" SafePoint ");
 999 }
1000 #endif
1001 
1002 const RegMask &SafePointNode::in_RegMask(uint idx) const {
1003   if( idx < TypeFunc::Parms ) return RegMask::Empty;
1004   // Values outside the domain represent debug info
1005   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1006 }
1007 const RegMask &SafePointNode::out_RegMask() const {
1008   return RegMask::Empty;
1009 }
1010 
1011 
1012 void SafePointNode::grow_stack(JVMState* jvms, uint grow_by) {
1013   assert((int)grow_by > 0, "sanity");
1014   int monoff = jvms->monoff();
1015   int scloff = jvms->scloff();
1016   int endoff = jvms->endoff();
1017   assert(endoff == (int)req(), "no other states or debug info after me");
1018   Node* top = Compile::current()->top();
1019   for (uint i = 0; i < grow_by; i++) {
1020     ins_req(monoff, top);
1021   }
1022   jvms->set_monoff(monoff + grow_by);
1023   jvms->set_scloff(scloff + grow_by);
1024   jvms->set_endoff(endoff + grow_by);
1025 }
1026 
1027 void SafePointNode::push_monitor(const FastLockNode *lock) {
1028   // Add a LockNode, which points to both the original BoxLockNode (the
1029   // stack space for the monitor) and the Object being locked.
1030   const int MonitorEdges = 2;
1031   assert(JVMState::logMonitorEdges == exact_log2(MonitorEdges), "correct MonitorEdges");
1032   assert(req() == jvms()->endoff(), "correct sizing");
1033   int nextmon = jvms()->scloff();
1034   if (GenerateSynchronizationCode) {
1035     add_req(lock->box_node());
1036     add_req(lock->obj_node());
1037   } else {
1038     Node* top = Compile::current()->top();
1039     add_req(top);
1040     add_req(top);
1041   }
1042   jvms()->set_scloff(nextmon+MonitorEdges);
1043   jvms()->set_endoff(req());
1044 }
1045 
1046 void SafePointNode::pop_monitor() {
1047   // Delete last monitor from debug info
1048   debug_only(int num_before_pop = jvms()->nof_monitors());
1049   const int MonitorEdges = (1<<JVMState::logMonitorEdges);
1050   int scloff = jvms()->scloff();
1051   int endoff = jvms()->endoff();
1052   int new_scloff = scloff - MonitorEdges;
1053   int new_endoff = endoff - MonitorEdges;
1054   jvms()->set_scloff(new_scloff);
1055   jvms()->set_endoff(new_endoff);
1056   while (scloff > new_scloff)  del_req(--scloff);
1057   assert(jvms()->nof_monitors() == num_before_pop-1, "");
1058 }
1059 
1060 Node *SafePointNode::peek_monitor_box() const {
1061   int mon = jvms()->nof_monitors() - 1;
1062   assert(mon >= 0, "most have a monitor");
1063   return monitor_box(jvms(), mon);
1064 }
1065 
1066 Node *SafePointNode::peek_monitor_obj() const {
1067   int mon = jvms()->nof_monitors() - 1;
1068   assert(mon >= 0, "most have a monitor");
1069   return monitor_obj(jvms(), mon);
1070 }
1071 
1072 // Do we Match on this edge index or not?  Match no edges
1073 uint SafePointNode::match_edge(uint idx) const {
1074   if( !needs_polling_address_input() )
1075     return 0;
1076 
1077   return (TypeFunc::Parms == idx);
1078 }
1079 
1080 //==============  SafePointScalarObjectNode  ==============
1081 
1082 SafePointScalarObjectNode::SafePointScalarObjectNode(const TypeOopPtr* tp,
1083 #ifdef ASSERT
1084                                                      AllocateNode* alloc,
1085 #endif
1086                                                      uint first_index,
1087                                                      uint n_fields) :
1088   TypeNode(tp, 1), // 1 control input -- seems required.  Get from root.
1089 #ifdef ASSERT
1090   _alloc(alloc),
1091 #endif
1092   _first_index(first_index),
1093   _n_fields(n_fields)
1094 {
1095   init_class_id(Class_SafePointScalarObject);
1096 }
1097 
1098 // Do not allow value-numbering for SafePointScalarObject node.
1099 uint SafePointScalarObjectNode::hash() const { return NO_HASH; }
1100 uint SafePointScalarObjectNode::cmp( const Node &n ) const {
1101   return (&n == this); // Always fail except on self
1102 }
1103 
1104 uint SafePointScalarObjectNode::ideal_reg() const {
1105   return 0; // No matching to machine instruction
1106 }
1107 
1108 const RegMask &SafePointScalarObjectNode::in_RegMask(uint idx) const {
1109   return *(Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()]);
1110 }
1111 
1112 const RegMask &SafePointScalarObjectNode::out_RegMask() const {
1113   return RegMask::Empty;
1114 }
1115 
1116 uint SafePointScalarObjectNode::match_edge(uint idx) const {
1117   return 0;
1118 }
1119 
1120 SafePointScalarObjectNode*
1121 SafePointScalarObjectNode::clone(int jvms_adj, Dict* sosn_map) const {
1122   void* cached = (*sosn_map)[(void*)this];
1123   if (cached != NULL) {
1124     return (SafePointScalarObjectNode*)cached;
1125   }
1126   SafePointScalarObjectNode* res = (SafePointScalarObjectNode*)Node::clone();
1127   res->_first_index += jvms_adj;
1128   sosn_map->Insert((void*)this, (void*)res);
1129   return res;
1130 }
1131 
1132 
1133 #ifndef PRODUCT
1134 void SafePointScalarObjectNode::dump_spec(outputStream *st) const {
1135   st->print(" # fields@[%d..%d]", first_index(),
1136              first_index() + n_fields() - 1);
1137 }
1138 
1139 #endif
1140 
1141 //=============================================================================
1142 uint AllocateNode::size_of() const { return sizeof(*this); }
1143 
1144 AllocateNode::AllocateNode(Compile* C, const TypeFunc *atype,
1145                            Node *ctrl, Node *mem, Node *abio,
1146                            Node *size, Node *klass_node, Node *initial_test)
1147   : CallNode(atype, NULL, TypeRawPtr::BOTTOM)
1148 {
1149   init_class_id(Class_Allocate);
1150   init_flags(Flag_is_macro);
1151   _is_scalar_replaceable = false;
1152   Node *topnode = C->top();
1153 
1154   init_req( TypeFunc::Control  , ctrl );
1155   init_req( TypeFunc::I_O      , abio );
1156   init_req( TypeFunc::Memory   , mem );
1157   init_req( TypeFunc::ReturnAdr, topnode );
1158   init_req( TypeFunc::FramePtr , topnode );
1159   init_req( AllocSize          , size);
1160   init_req( KlassNode          , klass_node);
1161   init_req( InitialTest        , initial_test);
1162   init_req( ALength            , topnode);
1163   C->add_macro_node(this);
1164 }
1165 
1166 //=============================================================================
1167 uint AllocateArrayNode::size_of() const { return sizeof(*this); }
1168 
1169 Node* AllocateArrayNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1170   if (remove_dead_region(phase, can_reshape))  return this;
1171   // Don't bother trying to transform a dead node
1172   if (in(0) && in(0)->is_top())  return NULL;
1173 
1174   const Type* type = phase->type(Ideal_length());
1175   if (type->isa_int() && type->is_int()->_hi < 0) {
1176     if (can_reshape) {
1177       PhaseIterGVN *igvn = phase->is_IterGVN();
1178       // Unreachable fall through path (negative array length),
1179       // the allocation can only throw so disconnect it.
1180       Node* proj = proj_out(TypeFunc::Control);
1181       Node* catchproj = NULL;
1182       if (proj != NULL) {
1183         for (DUIterator_Fast imax, i = proj->fast_outs(imax); i < imax; i++) {
1184           Node *cn = proj->fast_out(i);
1185           if (cn->is_Catch()) {
1186             catchproj = cn->as_Multi()->proj_out(CatchProjNode::fall_through_index);
1187             break;
1188           }
1189         }
1190       }
1191       if (catchproj != NULL && catchproj->outcnt() > 0 &&
1192           (catchproj->outcnt() > 1 ||
1193            catchproj->unique_out()->Opcode() != Op_Halt)) {
1194         assert(catchproj->is_CatchProj(), "must be a CatchProjNode");
1195         Node* nproj = catchproj->clone();
1196         igvn->register_new_node_with_optimizer(nproj);
1197 
1198         Node *frame = new (phase->C) ParmNode( phase->C->start(), TypeFunc::FramePtr );
1199         frame = phase->transform(frame);
1200         // Halt & Catch Fire
1201         Node *halt = new (phase->C) HaltNode( nproj, frame );
1202         phase->C->root()->add_req(halt);
1203         phase->transform(halt);
1204 
1205         igvn->replace_node(catchproj, phase->C->top());
1206         return this;
1207       }
1208     } else {
1209       // Can't correct it during regular GVN so register for IGVN
1210       phase->C->record_for_igvn(this);
1211     }
1212   }
1213   return NULL;
1214 }
1215 
1216 // Retrieve the length from the AllocateArrayNode. Narrow the type with a
1217 // CastII, if appropriate.  If we are not allowed to create new nodes, and
1218 // a CastII is appropriate, return NULL.
1219 Node *AllocateArrayNode::make_ideal_length(const TypeOopPtr* oop_type, PhaseTransform *phase, bool allow_new_nodes) {
1220   Node *length = in(AllocateNode::ALength);
1221   assert(length != NULL, "length is not null");
1222 
1223   const TypeInt* length_type = phase->find_int_type(length);
1224   const TypeAryPtr* ary_type = oop_type->isa_aryptr();
1225 
1226   if (ary_type != NULL && length_type != NULL) {
1227     const TypeInt* narrow_length_type = ary_type->narrow_size_type(length_type);
1228     if (narrow_length_type != length_type) {
1229       // Assert one of:
1230       //   - the narrow_length is 0
1231       //   - the narrow_length is not wider than length
1232       assert(narrow_length_type == TypeInt::ZERO ||
1233              (narrow_length_type->_hi <= length_type->_hi &&
1234               narrow_length_type->_lo >= length_type->_lo),
1235              "narrow type must be narrower than length type");
1236 
1237       // Return NULL if new nodes are not allowed
1238       if (!allow_new_nodes) return NULL;
1239       // Create a cast which is control dependent on the initialization to
1240       // propagate the fact that the array length must be positive.
1241       length = new (phase->C) CastIINode(length, narrow_length_type);
1242       length->set_req(0, initialization()->proj_out(0));
1243     }
1244   }
1245 
1246   return length;
1247 }
1248 
1249 //=============================================================================
1250 uint LockNode::size_of() const { return sizeof(*this); }
1251 
1252 // Redundant lock elimination
1253 //
1254 // There are various patterns of locking where we release and
1255 // immediately reacquire a lock in a piece of code where no operations
1256 // occur in between that would be observable.  In those cases we can
1257 // skip releasing and reacquiring the lock without violating any
1258 // fairness requirements.  Doing this around a loop could cause a lock
1259 // to be held for a very long time so we concentrate on non-looping
1260 // control flow.  We also require that the operations are fully
1261 // redundant meaning that we don't introduce new lock operations on
1262 // some paths so to be able to eliminate it on others ala PRE.  This
1263 // would probably require some more extensive graph manipulation to
1264 // guarantee that the memory edges were all handled correctly.
1265 //
1266 // Assuming p is a simple predicate which can't trap in any way and s
1267 // is a synchronized method consider this code:
1268 //
1269 //   s();
1270 //   if (p)
1271 //     s();
1272 //   else
1273 //     s();
1274 //   s();
1275 //
1276 // 1. The unlocks of the first call to s can be eliminated if the
1277 // locks inside the then and else branches are eliminated.
1278 //
1279 // 2. The unlocks of the then and else branches can be eliminated if
1280 // the lock of the final call to s is eliminated.
1281 //
1282 // Either of these cases subsumes the simple case of sequential control flow
1283 //
1284 // Addtionally we can eliminate versions without the else case:
1285 //
1286 //   s();
1287 //   if (p)
1288 //     s();
1289 //   s();
1290 //
1291 // 3. In this case we eliminate the unlock of the first s, the lock
1292 // and unlock in the then case and the lock in the final s.
1293 //
1294 // Note also that in all these cases the then/else pieces don't have
1295 // to be trivial as long as they begin and end with synchronization
1296 // operations.
1297 //
1298 //   s();
1299 //   if (p)
1300 //     s();
1301 //     f();
1302 //     s();
1303 //   s();
1304 //
1305 // The code will work properly for this case, leaving in the unlock
1306 // before the call to f and the relock after it.
1307 //
1308 // A potentially interesting case which isn't handled here is when the
1309 // locking is partially redundant.
1310 //
1311 //   s();
1312 //   if (p)
1313 //     s();
1314 //
1315 // This could be eliminated putting unlocking on the else case and
1316 // eliminating the first unlock and the lock in the then side.
1317 // Alternatively the unlock could be moved out of the then side so it
1318 // was after the merge and the first unlock and second lock
1319 // eliminated.  This might require less manipulation of the memory
1320 // state to get correct.
1321 //
1322 // Additionally we might allow work between a unlock and lock before
1323 // giving up eliminating the locks.  The current code disallows any
1324 // conditional control flow between these operations.  A formulation
1325 // similar to partial redundancy elimination computing the
1326 // availability of unlocking and the anticipatability of locking at a
1327 // program point would allow detection of fully redundant locking with
1328 // some amount of work in between.  I'm not sure how often I really
1329 // think that would occur though.  Most of the cases I've seen
1330 // indicate it's likely non-trivial work would occur in between.
1331 // There may be other more complicated constructs where we could
1332 // eliminate locking but I haven't seen any others appear as hot or
1333 // interesting.
1334 //
1335 // Locking and unlocking have a canonical form in ideal that looks
1336 // roughly like this:
1337 //
1338 //              <obj>
1339 //                | \\------+
1340 //                |  \       \
1341 //                | BoxLock   \
1342 //                |  |   |     \
1343 //                |  |    \     \
1344 //                |  |   FastLock
1345 //                |  |   /
1346 //                |  |  /
1347 //                |  |  |
1348 //
1349 //               Lock
1350 //                |
1351 //            Proj #0
1352 //                |
1353 //            MembarAcquire
1354 //                |
1355 //            Proj #0
1356 //
1357 //            MembarRelease
1358 //                |
1359 //            Proj #0
1360 //                |
1361 //              Unlock
1362 //                |
1363 //            Proj #0
1364 //
1365 //
1366 // This code proceeds by processing Lock nodes during PhaseIterGVN
1367 // and searching back through its control for the proper code
1368 // patterns.  Once it finds a set of lock and unlock operations to
1369 // eliminate they are marked as eliminatable which causes the
1370 // expansion of the Lock and Unlock macro nodes to make the operation a NOP
1371 //
1372 //=============================================================================
1373 
1374 //
1375 // Utility function to skip over uninteresting control nodes.  Nodes skipped are:
1376 //   - copy regions.  (These may not have been optimized away yet.)
1377 //   - eliminated locking nodes
1378 //
1379 static Node *next_control(Node *ctrl) {
1380   if (ctrl == NULL)
1381     return NULL;
1382   while (1) {
1383     if (ctrl->is_Region()) {
1384       RegionNode *r = ctrl->as_Region();
1385       Node *n = r->is_copy();
1386       if (n == NULL)
1387         break;  // hit a region, return it
1388       else
1389         ctrl = n;
1390     } else if (ctrl->is_Proj()) {
1391       Node *in0 = ctrl->in(0);
1392       if (in0->is_AbstractLock() && in0->as_AbstractLock()->is_eliminated()) {
1393         ctrl = in0->in(0);
1394       } else {
1395         break;
1396       }
1397     } else {
1398       break; // found an interesting control
1399     }
1400   }
1401   return ctrl;
1402 }
1403 //
1404 // Given a control, see if it's the control projection of an Unlock which
1405 // operating on the same object as lock.
1406 //
1407 bool AbstractLockNode::find_matching_unlock(const Node* ctrl, LockNode* lock,
1408                                             GrowableArray<AbstractLockNode*> &lock_ops) {
1409   ProjNode *ctrl_proj = (ctrl->is_Proj()) ? ctrl->as_Proj() : NULL;
1410   if (ctrl_proj != NULL && ctrl_proj->_con == TypeFunc::Control) {
1411     Node *n = ctrl_proj->in(0);
1412     if (n != NULL && n->is_Unlock()) {
1413       UnlockNode *unlock = n->as_Unlock();
1414       if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1415           BoxLockNode::same_slot(lock->box_node(), unlock->box_node()) &&
1416           !unlock->is_eliminated()) {
1417         lock_ops.append(unlock);
1418         return true;
1419       }
1420     }
1421   }
1422   return false;
1423 }
1424 
1425 //
1426 // Find the lock matching an unlock.  Returns null if a safepoint
1427 // or complicated control is encountered first.
1428 LockNode *AbstractLockNode::find_matching_lock(UnlockNode* unlock) {
1429   LockNode *lock_result = NULL;
1430   // find the matching lock, or an intervening safepoint
1431   Node *ctrl = next_control(unlock->in(0));
1432   while (1) {
1433     assert(ctrl != NULL, "invalid control graph");
1434     assert(!ctrl->is_Start(), "missing lock for unlock");
1435     if (ctrl->is_top()) break;  // dead control path
1436     if (ctrl->is_Proj()) ctrl = ctrl->in(0);
1437     if (ctrl->is_SafePoint()) {
1438         break;  // found a safepoint (may be the lock we are searching for)
1439     } else if (ctrl->is_Region()) {
1440       // Check for a simple diamond pattern.  Punt on anything more complicated
1441       if (ctrl->req() == 3 && ctrl->in(1) != NULL && ctrl->in(2) != NULL) {
1442         Node *in1 = next_control(ctrl->in(1));
1443         Node *in2 = next_control(ctrl->in(2));
1444         if (((in1->is_IfTrue() && in2->is_IfFalse()) ||
1445              (in2->is_IfTrue() && in1->is_IfFalse())) && (in1->in(0) == in2->in(0))) {
1446           ctrl = next_control(in1->in(0)->in(0));
1447         } else {
1448           break;
1449         }
1450       } else {
1451         break;
1452       }
1453     } else {
1454       ctrl = next_control(ctrl->in(0));  // keep searching
1455     }
1456   }
1457   if (ctrl->is_Lock()) {
1458     LockNode *lock = ctrl->as_Lock();
1459     if (lock->obj_node()->eqv_uncast(unlock->obj_node()) &&
1460         BoxLockNode::same_slot(lock->box_node(), unlock->box_node())) {
1461       lock_result = lock;
1462     }
1463   }
1464   return lock_result;
1465 }
1466 
1467 // This code corresponds to case 3 above.
1468 
1469 bool AbstractLockNode::find_lock_and_unlock_through_if(Node* node, LockNode* lock,
1470                                                        GrowableArray<AbstractLockNode*> &lock_ops) {
1471   Node* if_node = node->in(0);
1472   bool  if_true = node->is_IfTrue();
1473 
1474   if (if_node->is_If() && if_node->outcnt() == 2 && (if_true || node->is_IfFalse())) {
1475     Node *lock_ctrl = next_control(if_node->in(0));
1476     if (find_matching_unlock(lock_ctrl, lock, lock_ops)) {
1477       Node* lock1_node = NULL;
1478       ProjNode* proj = if_node->as_If()->proj_out(!if_true);
1479       if (if_true) {
1480         if (proj->is_IfFalse() && proj->outcnt() == 1) {
1481           lock1_node = proj->unique_out();
1482         }
1483       } else {
1484         if (proj->is_IfTrue() && proj->outcnt() == 1) {
1485           lock1_node = proj->unique_out();
1486         }
1487       }
1488       if (lock1_node != NULL && lock1_node->is_Lock()) {
1489         LockNode *lock1 = lock1_node->as_Lock();
1490         if (lock->obj_node()->eqv_uncast(lock1->obj_node()) &&
1491             BoxLockNode::same_slot(lock->box_node(), lock1->box_node()) &&
1492             !lock1->is_eliminated()) {
1493           lock_ops.append(lock1);
1494           return true;
1495         }
1496       }
1497     }
1498   }
1499 
1500   lock_ops.trunc_to(0);
1501   return false;
1502 }
1503 
1504 bool AbstractLockNode::find_unlocks_for_region(const RegionNode* region, LockNode* lock,
1505                                GrowableArray<AbstractLockNode*> &lock_ops) {
1506   // check each control merging at this point for a matching unlock.
1507   // in(0) should be self edge so skip it.
1508   for (int i = 1; i < (int)region->req(); i++) {
1509     Node *in_node = next_control(region->in(i));
1510     if (in_node != NULL) {
1511       if (find_matching_unlock(in_node, lock, lock_ops)) {
1512         // found a match so keep on checking.
1513         continue;
1514       } else if (find_lock_and_unlock_through_if(in_node, lock, lock_ops)) {
1515         continue;
1516       }
1517 
1518       // If we fall through to here then it was some kind of node we
1519       // don't understand or there wasn't a matching unlock, so give
1520       // up trying to merge locks.
1521       lock_ops.trunc_to(0);
1522       return false;
1523     }
1524   }
1525   return true;
1526 
1527 }
1528 
1529 #ifndef PRODUCT
1530 //
1531 // Create a counter which counts the number of times this lock is acquired
1532 //
1533 void AbstractLockNode::create_lock_counter(JVMState* state) {
1534   _counter = OptoRuntime::new_named_counter(state, NamedCounter::LockCounter);
1535 }
1536 
1537 void AbstractLockNode::set_eliminated_lock_counter() {
1538   if (_counter) {
1539     // Update the counter to indicate that this lock was eliminated.
1540     // The counter update code will stay around even though the
1541     // optimizer will eliminate the lock operation itself.
1542     _counter->set_tag(NamedCounter::EliminatedLockCounter);
1543   }
1544 }
1545 #endif
1546 
1547 //=============================================================================
1548 Node *LockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1549 
1550   // perform any generic optimizations first (returns 'this' or NULL)
1551   Node *result = SafePointNode::Ideal(phase, can_reshape);
1552   if (result != NULL)  return result;
1553   // Don't bother trying to transform a dead node
1554   if (in(0) && in(0)->is_top())  return NULL;
1555 
1556   // Now see if we can optimize away this lock.  We don't actually
1557   // remove the locking here, we simply set the _eliminate flag which
1558   // prevents macro expansion from expanding the lock.  Since we don't
1559   // modify the graph, the value returned from this function is the
1560   // one computed above.
1561   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1562     //
1563     // If we are locking an unescaped object, the lock/unlock is unnecessary
1564     //
1565     ConnectionGraph *cgr = phase->C->congraph();
1566     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1567       assert(!is_eliminated() || is_coarsened(), "sanity");
1568       // The lock could be marked eliminated by lock coarsening
1569       // code during first IGVN before EA. Replace coarsened flag
1570       // to eliminate all associated locks/unlocks.
1571       this->set_non_esc_obj();
1572       return result;
1573     }
1574 
1575     //
1576     // Try lock coarsening
1577     //
1578     PhaseIterGVN* iter = phase->is_IterGVN();
1579     if (iter != NULL && !is_eliminated()) {
1580 
1581       GrowableArray<AbstractLockNode*>   lock_ops;
1582 
1583       Node *ctrl = next_control(in(0));
1584 
1585       // now search back for a matching Unlock
1586       if (find_matching_unlock(ctrl, this, lock_ops)) {
1587         // found an unlock directly preceding this lock.  This is the
1588         // case of single unlock directly control dependent on a
1589         // single lock which is the trivial version of case 1 or 2.
1590       } else if (ctrl->is_Region() ) {
1591         if (find_unlocks_for_region(ctrl->as_Region(), this, lock_ops)) {
1592         // found lock preceded by multiple unlocks along all paths
1593         // joining at this point which is case 3 in description above.
1594         }
1595       } else {
1596         // see if this lock comes from either half of an if and the
1597         // predecessors merges unlocks and the other half of the if
1598         // performs a lock.
1599         if (find_lock_and_unlock_through_if(ctrl, this, lock_ops)) {
1600           // found unlock splitting to an if with locks on both branches.
1601         }
1602       }
1603 
1604       if (lock_ops.length() > 0) {
1605         // add ourselves to the list of locks to be eliminated.
1606         lock_ops.append(this);
1607 
1608   #ifndef PRODUCT
1609         if (PrintEliminateLocks) {
1610           int locks = 0;
1611           int unlocks = 0;
1612           for (int i = 0; i < lock_ops.length(); i++) {
1613             AbstractLockNode* lock = lock_ops.at(i);
1614             if (lock->Opcode() == Op_Lock)
1615               locks++;
1616             else
1617               unlocks++;
1618             if (Verbose) {
1619               lock->dump(1);
1620             }
1621           }
1622           tty->print_cr("***Eliminated %d unlocks and %d locks", unlocks, locks);
1623         }
1624   #endif
1625 
1626         // for each of the identified locks, mark them
1627         // as eliminatable
1628         for (int i = 0; i < lock_ops.length(); i++) {
1629           AbstractLockNode* lock = lock_ops.at(i);
1630 
1631           // Mark it eliminated by coarsening and update any counters
1632           lock->set_coarsened();
1633         }
1634       } else if (ctrl->is_Region() &&
1635                  iter->_worklist.member(ctrl)) {
1636         // We weren't able to find any opportunities but the region this
1637         // lock is control dependent on hasn't been processed yet so put
1638         // this lock back on the worklist so we can check again once any
1639         // region simplification has occurred.
1640         iter->_worklist.push(this);
1641       }
1642     }
1643   }
1644 
1645   return result;
1646 }
1647 
1648 //=============================================================================
1649 bool LockNode::is_nested_lock_region() {
1650   BoxLockNode* box = box_node()->as_BoxLock();
1651   int stk_slot = box->stack_slot();
1652   if (stk_slot <= 0)
1653     return false; // External lock or it is not Box (Phi node).
1654 
1655   // Ignore complex cases: merged locks or multiple locks.
1656   Node* obj = obj_node();
1657   LockNode* unique_lock = NULL;
1658   if (!box->is_simple_lock_region(&unique_lock, obj) ||
1659       (unique_lock != this)) {
1660     return false;
1661   }
1662 
1663   // Look for external lock for the same object.
1664   SafePointNode* sfn = this->as_SafePoint();
1665   JVMState* youngest_jvms = sfn->jvms();
1666   int max_depth = youngest_jvms->depth();
1667   for (int depth = 1; depth <= max_depth; depth++) {
1668     JVMState* jvms = youngest_jvms->of_depth(depth);
1669     int num_mon  = jvms->nof_monitors();
1670     // Loop over monitors
1671     for (int idx = 0; idx < num_mon; idx++) {
1672       Node* obj_node = sfn->monitor_obj(jvms, idx);
1673       BoxLockNode* box_node = sfn->monitor_box(jvms, idx)->as_BoxLock();
1674       if ((box_node->stack_slot() < stk_slot) && obj_node->eqv_uncast(obj)) {
1675         return true;
1676       }
1677     }
1678   }
1679   return false;
1680 }
1681 
1682 //=============================================================================
1683 uint UnlockNode::size_of() const { return sizeof(*this); }
1684 
1685 //=============================================================================
1686 Node *UnlockNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1687 
1688   // perform any generic optimizations first (returns 'this' or NULL)
1689   Node *result = SafePointNode::Ideal(phase, can_reshape);
1690   if (result != NULL)  return result;
1691   // Don't bother trying to transform a dead node
1692   if (in(0) && in(0)->is_top())  return NULL;
1693 
1694   // Now see if we can optimize away this unlock.  We don't actually
1695   // remove the unlocking here, we simply set the _eliminate flag which
1696   // prevents macro expansion from expanding the unlock.  Since we don't
1697   // modify the graph, the value returned from this function is the
1698   // one computed above.
1699   // Escape state is defined after Parse phase.
1700   if (can_reshape && EliminateLocks && !is_non_esc_obj()) {
1701     //
1702     // If we are unlocking an unescaped object, the lock/unlock is unnecessary.
1703     //
1704     ConnectionGraph *cgr = phase->C->congraph();
1705     if (cgr != NULL && cgr->not_global_escape(obj_node())) {
1706       assert(!is_eliminated() || is_coarsened(), "sanity");
1707       // The lock could be marked eliminated by lock coarsening
1708       // code during first IGVN before EA. Replace coarsened flag
1709       // to eliminate all associated locks/unlocks.
1710       this->set_non_esc_obj();
1711     }
1712   }
1713   return result;
1714 }