1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_OPTO_CALLNODE_HPP
  26 #define SHARE_VM_OPTO_CALLNODE_HPP
  27 
  28 #include "opto/connode.hpp"
  29 #include "opto/mulnode.hpp"
  30 #include "opto/multnode.hpp"
  31 #include "opto/opcodes.hpp"
  32 #include "opto/phaseX.hpp"
  33 #include "opto/replacednodes.hpp"
  34 #include "opto/type.hpp"
  35 
  36 // Portions of code courtesy of Clifford Click
  37 
  38 // Optimization - Graph Style
  39 
  40 class Chaitin;
  41 class NamedCounter;
  42 class MultiNode;
  43 class  SafePointNode;
  44 class   CallNode;
  45 class     CallJavaNode;
  46 class       CallStaticJavaNode;
  47 class       CallDynamicJavaNode;
  48 class     CallRuntimeNode;
  49 class       CallLeafNode;
  50 class         CallLeafNoFPNode;
  51 class     AllocateNode;
  52 class       AllocateArrayNode;
  53 class     LockNode;
  54 class     UnlockNode;
  55 class JVMState;
  56 class OopMap;
  57 class State;
  58 class StartNode;
  59 class MachCallNode;
  60 class FastLockNode;
  61 
  62 //------------------------------StartNode--------------------------------------
  63 // The method start node
  64 class StartNode : public MultiNode {
  65   virtual uint cmp( const Node &n ) const;
  66   virtual uint size_of() const; // Size is bigger
  67 public:
  68   const TypeTuple *_domain;
  69   StartNode( Node *root, const TypeTuple *domain ) : MultiNode(2), _domain(domain) {
  70     init_class_id(Class_Start);
  71     init_req(0,this);
  72     init_req(1,root);
  73   }
  74   virtual int Opcode() const;
  75   virtual bool pinned() const { return true; };
  76   virtual const Type *bottom_type() const;
  77   virtual const TypePtr *adr_type() const { return TypePtr::BOTTOM; }
  78   virtual const Type *Value( PhaseTransform *phase ) const;
  79   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
  80   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_reg, uint length ) const;
  81   virtual const RegMask &in_RegMask(uint) const;
  82   virtual Node *match( const ProjNode *proj, const Matcher *m );
  83   virtual uint ideal_reg() const { return 0; }
  84 #ifndef PRODUCT
  85   virtual void  dump_spec(outputStream *st) const;
  86 #endif
  87 };
  88 
  89 //------------------------------StartOSRNode-----------------------------------
  90 // The method start node for on stack replacement code
  91 class StartOSRNode : public StartNode {
  92 public:
  93   StartOSRNode( Node *root, const TypeTuple *domain ) : StartNode(root, domain) {}
  94   virtual int   Opcode() const;
  95   static  const TypeTuple *osr_domain();
  96 };
  97 
  98 
  99 //------------------------------ParmNode---------------------------------------
 100 // Incoming parameters
 101 class ParmNode : public ProjNode {
 102   static const char * const names[TypeFunc::Parms+1];
 103 public:
 104   ParmNode( StartNode *src, uint con ) : ProjNode(src,con) {
 105     init_class_id(Class_Parm);
 106   }
 107   virtual int Opcode() const;
 108   virtual bool  is_CFG() const { return (_con == TypeFunc::Control); }
 109   virtual uint ideal_reg() const;
 110 #ifndef PRODUCT
 111   virtual void dump_spec(outputStream *st) const;
 112 #endif
 113 };
 114 
 115 
 116 //------------------------------ReturnNode-------------------------------------
 117 // Return from subroutine node
 118 class ReturnNode : public Node {
 119 public:
 120   ReturnNode( uint edges, Node *cntrl, Node *i_o, Node *memory, Node *retadr, Node *frameptr );
 121   virtual int Opcode() const;
 122   virtual bool  is_CFG() const { return true; }
 123   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 124   virtual bool depends_only_on_test() const { return false; }
 125   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 126   virtual const Type *Value( PhaseTransform *phase ) const;
 127   virtual uint ideal_reg() const { return NotAMachineReg; }
 128   virtual uint match_edge(uint idx) const;
 129 #ifndef PRODUCT
 130   virtual void dump_req(outputStream *st = tty) const;
 131 #endif
 132 };
 133 
 134 
 135 //------------------------------RethrowNode------------------------------------
 136 // Rethrow of exception at call site.  Ends a procedure before rethrowing;
 137 // ends the current basic block like a ReturnNode.  Restores registers and
 138 // unwinds stack.  Rethrow happens in the caller's method.
 139 class RethrowNode : public Node {
 140  public:
 141   RethrowNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *ret_adr, Node *exception );
 142   virtual int Opcode() const;
 143   virtual bool  is_CFG() const { return true; }
 144   virtual uint hash() const { return NO_HASH; }  // CFG nodes do not hash
 145   virtual bool depends_only_on_test() const { return false; }
 146   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 147   virtual const Type *Value( PhaseTransform *phase ) const;
 148   virtual uint match_edge(uint idx) const;
 149   virtual uint ideal_reg() const { return NotAMachineReg; }
 150 #ifndef PRODUCT
 151   virtual void dump_req(outputStream *st = tty) const;
 152 #endif
 153 };
 154 
 155 
 156 //------------------------------TailCallNode-----------------------------------
 157 // Pop stack frame and jump indirect
 158 class TailCallNode : public ReturnNode {
 159 public:
 160   TailCallNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *retadr, Node *target, Node *moop )
 161     : ReturnNode( TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, retadr ) {
 162     init_req(TypeFunc::Parms, target);
 163     init_req(TypeFunc::Parms+1, moop);
 164   }
 165 
 166   virtual int Opcode() const;
 167   virtual uint match_edge(uint idx) const;
 168 };
 169 
 170 //------------------------------TailJumpNode-----------------------------------
 171 // Pop stack frame and jump indirect
 172 class TailJumpNode : public ReturnNode {
 173 public:
 174   TailJumpNode( Node *cntrl, Node *i_o, Node *memory, Node *frameptr, Node *target, Node *ex_oop)
 175     : ReturnNode(TypeFunc::Parms+2, cntrl, i_o, memory, frameptr, Compile::current()->top()) {
 176     init_req(TypeFunc::Parms, target);
 177     init_req(TypeFunc::Parms+1, ex_oop);
 178   }
 179 
 180   virtual int Opcode() const;
 181   virtual uint match_edge(uint idx) const;
 182 };
 183 
 184 //-------------------------------JVMState-------------------------------------
 185 // A linked list of JVMState nodes captures the whole interpreter state,
 186 // plus GC roots, for all active calls at some call site in this compilation
 187 // unit.  (If there is no inlining, then the list has exactly one link.)
 188 // This provides a way to map the optimized program back into the interpreter,
 189 // or to let the GC mark the stack.
 190 class JVMState : public ResourceObj {
 191   friend class VMStructs;
 192 public:
 193   typedef enum {
 194     Reexecute_Undefined = -1, // not defined -- will be translated into false later
 195     Reexecute_False     =  0, // false       -- do not reexecute
 196     Reexecute_True      =  1  // true        -- reexecute the bytecode
 197   } ReexecuteState; //Reexecute State
 198 
 199 private:
 200   JVMState*         _caller;    // List pointer for forming scope chains
 201   uint              _depth;     // One more than caller depth, or one.
 202   uint              _locoff;    // Offset to locals in input edge mapping
 203   uint              _stkoff;    // Offset to stack in input edge mapping
 204   uint              _monoff;    // Offset to monitors in input edge mapping
 205   uint              _scloff;    // Offset to fields of scalar objs in input edge mapping
 206   uint              _endoff;    // Offset to end of input edge mapping
 207   uint              _sp;        // Jave Expression Stack Pointer for this state
 208   int               _bci;       // Byte Code Index of this JVM point
 209   ReexecuteState    _reexecute; // Whether this bytecode need to be re-executed
 210   ciMethod*         _method;    // Method Pointer
 211   SafePointNode*    _map;       // Map node associated with this scope
 212 public:
 213   friend class Compile;
 214   friend class PreserveReexecuteState;
 215 
 216   // Because JVMState objects live over the entire lifetime of the
 217   // Compile object, they are allocated into the comp_arena, which
 218   // does not get resource marked or reset during the compile process
 219   void *operator new( size_t x, Compile* C ) { return C->comp_arena()->Amalloc(x); }
 220   void operator delete( void * ) { } // fast deallocation
 221 
 222   // Create a new JVMState, ready for abstract interpretation.
 223   JVMState(ciMethod* method, JVMState* caller);
 224   JVMState(int stack_size);  // root state; has a null method
 225 
 226   // Access functions for the JVM
 227   // ... --|--- loc ---|--- stk ---|--- arg ---|--- mon ---|--- scl ---|
 228   //       \ locoff    \ stkoff    \ argoff    \ monoff    \ scloff    \ endoff
 229   uint              locoff() const { return _locoff; }
 230   uint              stkoff() const { return _stkoff; }
 231   uint              argoff() const { return _stkoff + _sp; }
 232   uint              monoff() const { return _monoff; }
 233   uint              scloff() const { return _scloff; }
 234   uint              endoff() const { return _endoff; }
 235   uint              oopoff() const { return debug_end(); }
 236 
 237   int            loc_size() const { return stkoff() - locoff(); }
 238   int            stk_size() const { return monoff() - stkoff(); }
 239   int            arg_size() const { return monoff() - argoff(); }
 240   int            mon_size() const { return scloff() - monoff(); }
 241   int            scl_size() const { return endoff() - scloff(); }
 242 
 243   bool        is_loc(uint i) const { return locoff() <= i && i < stkoff(); }
 244   bool        is_stk(uint i) const { return stkoff() <= i && i < monoff(); }
 245   bool        is_mon(uint i) const { return monoff() <= i && i < scloff(); }
 246   bool        is_scl(uint i) const { return scloff() <= i && i < endoff(); }
 247 
 248   uint                      sp() const { return _sp; }
 249   int                      bci() const { return _bci; }
 250   bool        should_reexecute() const { return _reexecute==Reexecute_True; }
 251   bool  is_reexecute_undefined() const { return _reexecute==Reexecute_Undefined; }
 252   bool              has_method() const { return _method != NULL; }
 253   ciMethod*             method() const { assert(has_method(), ""); return _method; }
 254   JVMState*             caller() const { return _caller; }
 255   SafePointNode*           map() const { return _map; }
 256   uint                   depth() const { return _depth; }
 257   uint             debug_start() const; // returns locoff of root caller
 258   uint               debug_end() const; // returns endoff of self
 259   uint              debug_size() const {
 260     return loc_size() + sp() + mon_size() + scl_size();
 261   }
 262   uint        debug_depth()  const; // returns sum of debug_size values at all depths
 263 
 264   // Returns the JVM state at the desired depth (1 == root).
 265   JVMState* of_depth(int d) const;
 266 
 267   // Tells if two JVM states have the same call chain (depth, methods, & bcis).
 268   bool same_calls_as(const JVMState* that) const;
 269 
 270   // Monitors (monitors are stored as (boxNode, objNode) pairs
 271   enum { logMonitorEdges = 1 };
 272   int  nof_monitors()              const { return mon_size() >> logMonitorEdges; }
 273   int  monitor_depth()             const { return nof_monitors() + (caller() ? caller()->monitor_depth() : 0); }
 274   int  monitor_box_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 0; }
 275   int  monitor_obj_offset(int idx) const { return monoff() + (idx << logMonitorEdges) + 1; }
 276   bool is_monitor_box(uint off)    const {
 277     assert(is_mon(off), "should be called only for monitor edge");
 278     return (0 == bitfield(off - monoff(), 0, logMonitorEdges));
 279   }
 280   bool is_monitor_use(uint off)    const { return (is_mon(off)
 281                                                    && is_monitor_box(off))
 282                                              || (caller() && caller()->is_monitor_use(off)); }
 283 
 284   // Initialization functions for the JVM
 285   void              set_locoff(uint off) { _locoff = off; }
 286   void              set_stkoff(uint off) { _stkoff = off; }
 287   void              set_monoff(uint off) { _monoff = off; }
 288   void              set_scloff(uint off) { _scloff = off; }
 289   void              set_endoff(uint off) { _endoff = off; }
 290   void              set_offsets(uint off) {
 291     _locoff = _stkoff = _monoff = _scloff = _endoff = off;
 292   }
 293   void              set_map(SafePointNode *map) { _map = map; }
 294   void              set_sp(uint sp) { _sp = sp; }
 295                     // _reexecute is initialized to "undefined" for a new bci
 296   void              set_bci(int bci) {if(_bci != bci)_reexecute=Reexecute_Undefined; _bci = bci; }
 297   void              set_should_reexecute(bool reexec) {_reexecute = reexec ? Reexecute_True : Reexecute_False;}
 298 
 299   // Miscellaneous utility functions
 300   JVMState* clone_deep(Compile* C) const;    // recursively clones caller chain
 301   JVMState* clone_shallow(Compile* C) const; // retains uncloned caller
 302 
 303 #ifndef PRODUCT
 304   void      format(PhaseRegAlloc *regalloc, const Node *n, outputStream* st) const;
 305   void      dump_spec(outputStream *st) const;
 306   void      dump_on(outputStream* st) const;
 307   void      dump() const {
 308     dump_on(tty);
 309   }
 310 #endif
 311 };
 312 
 313 //------------------------------SafePointNode----------------------------------
 314 // A SafePointNode is a subclass of a MultiNode for convenience (and
 315 // potential code sharing) only - conceptually it is independent of
 316 // the Node semantics.
 317 class SafePointNode : public MultiNode {
 318   virtual uint           cmp( const Node &n ) const;
 319   virtual uint           size_of() const;       // Size is bigger
 320 
 321 public:
 322   SafePointNode(uint edges, JVMState* jvms,
 323                 // A plain safepoint advertises no memory effects (NULL):
 324                 const TypePtr* adr_type = NULL)
 325     : MultiNode( edges ),
 326       _jvms(jvms),
 327       _oop_map(NULL),
 328       _adr_type(adr_type)
 329   {
 330     init_class_id(Class_SafePoint);
 331   }
 332 
 333   OopMap*         _oop_map;   // Array of OopMap info (8-bit char) for GC
 334   JVMState* const _jvms;      // Pointer to list of JVM State objects
 335   const TypePtr*  _adr_type;  // What type of memory does this node produce?
 336   ReplacedNodes   _replaced_nodes; // During parsing: list of pair of nodes from calls to GraphKit::replace_in_map()
 337 
 338   // Many calls take *all* of memory as input,
 339   // but some produce a limited subset of that memory as output.
 340   // The adr_type reports the call's behavior as a store, not a load.
 341 
 342   virtual JVMState* jvms() const { return _jvms; }
 343   void set_jvms(JVMState* s) {
 344     *(JVMState**)&_jvms = s;  // override const attribute in the accessor
 345   }
 346   OopMap *oop_map() const { return _oop_map; }
 347   void set_oop_map(OopMap *om) { _oop_map = om; }
 348 
 349  private:
 350   void verify_input(JVMState* jvms, uint idx) const {
 351     assert(verify_jvms(jvms), "jvms must match");
 352     Node* n = in(idx);
 353     assert((!n->bottom_type()->isa_long() && !n->bottom_type()->isa_double()) ||
 354            in(idx + 1)->is_top(), "2nd half of long/double");
 355   }
 356 
 357  public:
 358   // Functionality from old debug nodes which has changed
 359   Node *local(JVMState* jvms, uint idx) const {
 360     verify_input(jvms, jvms->locoff() + idx);
 361     return in(jvms->locoff() + idx);
 362   }
 363   Node *stack(JVMState* jvms, uint idx) const {
 364     verify_input(jvms, jvms->stkoff() + idx);
 365     return in(jvms->stkoff() + idx);
 366   }
 367   Node *argument(JVMState* jvms, uint idx) const {
 368     verify_input(jvms, jvms->argoff() + idx);
 369     return in(jvms->argoff() + idx);
 370   }
 371   Node *monitor_box(JVMState* jvms, uint idx) const {
 372     assert(verify_jvms(jvms), "jvms must match");
 373     return in(jvms->monitor_box_offset(idx));
 374   }
 375   Node *monitor_obj(JVMState* jvms, uint idx) const {
 376     assert(verify_jvms(jvms), "jvms must match");
 377     return in(jvms->monitor_obj_offset(idx));
 378   }
 379 
 380   void  set_local(JVMState* jvms, uint idx, Node *c);
 381 
 382   void  set_stack(JVMState* jvms, uint idx, Node *c) {
 383     assert(verify_jvms(jvms), "jvms must match");
 384     set_req(jvms->stkoff() + idx, c);
 385   }
 386   void  set_argument(JVMState* jvms, uint idx, Node *c) {
 387     assert(verify_jvms(jvms), "jvms must match");
 388     set_req(jvms->argoff() + idx, c);
 389   }
 390   void ensure_stack(JVMState* jvms, uint stk_size) {
 391     assert(verify_jvms(jvms), "jvms must match");
 392     int grow_by = (int)stk_size - (int)jvms->stk_size();
 393     if (grow_by > 0)  grow_stack(jvms, grow_by);
 394   }
 395   void grow_stack(JVMState* jvms, uint grow_by);
 396   // Handle monitor stack
 397   void push_monitor( const FastLockNode *lock );
 398   void pop_monitor ();
 399   Node *peek_monitor_box() const;
 400   Node *peek_monitor_obj() const;
 401 
 402   // Access functions for the JVM
 403   Node *control  () const { return in(TypeFunc::Control  ); }
 404   Node *i_o      () const { return in(TypeFunc::I_O      ); }
 405   Node *memory   () const { return in(TypeFunc::Memory   ); }
 406   Node *returnadr() const { return in(TypeFunc::ReturnAdr); }
 407   Node *frameptr () const { return in(TypeFunc::FramePtr ); }
 408 
 409   void set_control  ( Node *c ) { set_req(TypeFunc::Control,c); }
 410   void set_i_o      ( Node *c ) { set_req(TypeFunc::I_O    ,c); }
 411   void set_memory   ( Node *c ) { set_req(TypeFunc::Memory ,c); }
 412 
 413   MergeMemNode* merged_memory() const {
 414     return in(TypeFunc::Memory)->as_MergeMem();
 415   }
 416 
 417   // The parser marks useless maps as dead when it's done with them:
 418   bool is_killed() { return in(TypeFunc::Control) == NULL; }
 419 
 420   // Exception states bubbling out of subgraphs such as inlined calls
 421   // are recorded here.  (There might be more than one, hence the "next".)
 422   // This feature is used only for safepoints which serve as "maps"
 423   // for JVM states during parsing, intrinsic expansion, etc.
 424   SafePointNode*         next_exception() const;
 425   void               set_next_exception(SafePointNode* n);
 426   bool                   has_exceptions() const { return next_exception() != NULL; }
 427 
 428   // Helper methods to operate on replaced nodes
 429   ReplacedNodes replaced_nodes() const {
 430     return _replaced_nodes;
 431   }
 432 
 433   void set_replaced_nodes(ReplacedNodes replaced_nodes) {
 434     _replaced_nodes = replaced_nodes;
 435   }
 436 
 437   void clone_replaced_nodes() {
 438     _replaced_nodes.clone();
 439   }
 440   void record_replaced_node(Node* initial, Node* improved) {
 441     _replaced_nodes.record(initial, improved);
 442   }
 443   void transfer_replaced_nodes_from(SafePointNode* sfpt, uint idx = 0) {
 444     _replaced_nodes.transfer_from(sfpt->_replaced_nodes, idx);
 445   }
 446   void delete_replaced_nodes() {
 447     _replaced_nodes.reset();
 448   }
 449   void apply_replaced_nodes(uint idx) {
 450     _replaced_nodes.apply(this, idx);
 451   }
 452   void merge_replaced_nodes_with(SafePointNode* sfpt) {
 453     _replaced_nodes.merge_with(sfpt->_replaced_nodes);
 454   }
 455   bool has_replaced_nodes() const {
 456     return !_replaced_nodes.is_empty();
 457   }
 458 
 459   // Standard Node stuff
 460   virtual int            Opcode() const;
 461   virtual bool           pinned() const { return true; }
 462   virtual const Type    *Value( PhaseTransform *phase ) const;
 463   virtual const Type    *bottom_type() const { return Type::CONTROL; }
 464   virtual const TypePtr *adr_type() const { return _adr_type; }
 465   virtual Node          *Ideal(PhaseGVN *phase, bool can_reshape);
 466   virtual Node          *Identity( PhaseTransform *phase );
 467   virtual uint           ideal_reg() const { return 0; }
 468   virtual const RegMask &in_RegMask(uint) const;
 469   virtual const RegMask &out_RegMask() const;
 470   virtual uint           match_edge(uint idx) const;
 471 
 472   static  bool           needs_polling_address_input();
 473 
 474 #ifndef PRODUCT
 475   virtual void              dump_spec(outputStream *st) const;
 476 #endif
 477 };
 478 
 479 //------------------------------SafePointScalarObjectNode----------------------
 480 // A SafePointScalarObjectNode represents the state of a scalarized object
 481 // at a safepoint.
 482 
 483 class SafePointScalarObjectNode: public TypeNode {
 484   uint _first_index; // First input edge index of a SafePoint node where
 485                      // states of the scalarized object fields are collected.
 486   uint _n_fields;    // Number of non-static fields of the scalarized object.
 487   DEBUG_ONLY(AllocateNode* _alloc;)
 488 
 489   virtual uint hash() const ; // { return NO_HASH; }
 490   virtual uint cmp( const Node &n ) const;
 491 
 492 public:
 493   SafePointScalarObjectNode(const TypeOopPtr* tp,
 494 #ifdef ASSERT
 495                             AllocateNode* alloc,
 496 #endif
 497                             uint first_index, uint n_fields);
 498   virtual int Opcode() const;
 499   virtual uint           ideal_reg() const;
 500   virtual const RegMask &in_RegMask(uint) const;
 501   virtual const RegMask &out_RegMask() const;
 502   virtual uint           match_edge(uint idx) const;
 503 
 504   uint first_index() const { return _first_index; }
 505   uint n_fields()    const { return _n_fields; }
 506 
 507 #ifdef ASSERT
 508   AllocateNode* alloc() const { return _alloc; }
 509 #endif
 510 
 511   virtual uint size_of() const { return sizeof(*this); }
 512 
 513   // Assumes that "this" is an argument to a safepoint node "s", and that
 514   // "new_call" is being created to correspond to "s".  But the difference
 515   // between the start index of the jvmstates of "new_call" and "s" is
 516   // "jvms_adj".  Produce and return a SafePointScalarObjectNode that
 517   // corresponds appropriately to "this" in "new_call".  Assumes that
 518   // "sosn_map" is a map, specific to the translation of "s" to "new_call",
 519   // mapping old SafePointScalarObjectNodes to new, to avoid multiple copies.
 520   SafePointScalarObjectNode* clone(int jvms_adj, Dict* sosn_map) const;
 521 
 522 #ifndef PRODUCT
 523   virtual void              dump_spec(outputStream *st) const;
 524 #endif
 525 };
 526 
 527 
 528 // Simple container for the outgoing projections of a call.  Useful
 529 // for serious surgery on calls.
 530 class CallProjections : public StackObj {
 531 public:
 532   Node* fallthrough_proj;
 533   Node* fallthrough_catchproj;
 534   Node* fallthrough_memproj;
 535   Node* fallthrough_ioproj;
 536   Node* catchall_catchproj;
 537   Node* catchall_memproj;
 538   Node* catchall_ioproj;
 539   Node* resproj;
 540   Node* exobj;
 541 };
 542 
 543 class CallGenerator;
 544 
 545 //------------------------------CallNode---------------------------------------
 546 // Call nodes now subsume the function of debug nodes at callsites, so they
 547 // contain the functionality of a full scope chain of debug nodes.
 548 class CallNode : public SafePointNode {
 549   friend class VMStructs;
 550 public:
 551   const TypeFunc *_tf;        // Function type
 552   address      _entry_point;  // Address of method being called
 553   float        _cnt;          // Estimate of number of times called
 554   CallGenerator* _generator;  // corresponding CallGenerator for some late inline calls
 555 
 556   CallNode(const TypeFunc* tf, address addr, const TypePtr* adr_type)
 557     : SafePointNode(tf->domain()->cnt(), NULL, adr_type),
 558       _tf(tf),
 559       _entry_point(addr),
 560       _cnt(COUNT_UNKNOWN),
 561       _generator(NULL)
 562   {
 563     init_class_id(Class_Call);
 564   }
 565 
 566   const TypeFunc* tf()         const { return _tf; }
 567   const address  entry_point() const { return _entry_point; }
 568   const float    cnt()         const { return _cnt; }
 569   CallGenerator* generator()   const { return _generator; }
 570 
 571   void set_tf(const TypeFunc* tf)       { _tf = tf; }
 572   void set_entry_point(address p)       { _entry_point = p; }
 573   void set_cnt(float c)                 { _cnt = c; }
 574   void set_generator(CallGenerator* cg) { _generator = cg; }
 575 
 576   virtual const Type *bottom_type() const;
 577   virtual const Type *Value( PhaseTransform *phase ) const;
 578   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 579   virtual Node *Identity( PhaseTransform *phase ) { return this; }
 580   virtual uint        cmp( const Node &n ) const;
 581   virtual uint        size_of() const = 0;
 582   virtual void        calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 583   virtual Node       *match( const ProjNode *proj, const Matcher *m );
 584   virtual uint        ideal_reg() const { return NotAMachineReg; }
 585   // Are we guaranteed that this node is a safepoint?  Not true for leaf calls and
 586   // for some macro nodes whose expansion does not have a safepoint on the fast path.
 587   virtual bool        guaranteed_safepoint()  { return true; }
 588   // For macro nodes, the JVMState gets modified during expansion, so when cloning
 589   // the node the JVMState must be cloned.
 590   virtual void        clone_jvms() { }   // default is not to clone
 591 
 592   // Returns true if the call may modify n
 593   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase);
 594   // Does this node have a use of n other than in debug information?
 595   bool                has_non_debug_use(Node *n);
 596   // Returns the unique CheckCastPP of a call
 597   // or result projection is there are several CheckCastPP
 598   // or returns NULL if there is no one.
 599   Node *result_cast();
 600   // Does this node returns pointer?
 601   bool returns_pointer() const {
 602     const TypeTuple *r = tf()->range();
 603     return (r->cnt() > TypeFunc::Parms &&
 604             r->field_at(TypeFunc::Parms)->isa_ptr());
 605   }
 606 
 607   // Collect all the interesting edges from a call for use in
 608   // replacing the call by something else.  Used by macro expansion
 609   // and the late inlining support.
 610   void extract_projections(CallProjections* projs, bool separate_io_proj);
 611 
 612   virtual uint match_edge(uint idx) const;
 613 
 614 #ifndef PRODUCT
 615   virtual void        dump_req(outputStream *st = tty) const;
 616   virtual void        dump_spec(outputStream *st) const;
 617 #endif
 618 };
 619 
 620 
 621 //------------------------------CallJavaNode-----------------------------------
 622 // Make a static or dynamic subroutine call node using Java calling
 623 // convention.  (The "Java" calling convention is the compiler's calling
 624 // convention, as opposed to the interpreter's or that of native C.)
 625 class CallJavaNode : public CallNode {
 626   friend class VMStructs;
 627 protected:
 628   virtual uint cmp( const Node &n ) const;
 629   virtual uint size_of() const; // Size is bigger
 630 
 631   bool    _optimized_virtual;
 632   bool    _method_handle_invoke;
 633   ciMethod* _method;            // Method being direct called
 634 public:
 635   const int       _bci;         // Byte Code Index of call byte code
 636   CallJavaNode(const TypeFunc* tf , address addr, ciMethod* method, int bci)
 637     : CallNode(tf, addr, TypePtr::BOTTOM),
 638       _method(method), _bci(bci),
 639       _optimized_virtual(false),
 640       _method_handle_invoke(false)
 641   {
 642     init_class_id(Class_CallJava);
 643   }
 644 
 645   virtual int   Opcode() const;
 646   ciMethod* method() const                { return _method; }
 647   void  set_method(ciMethod *m)           { _method = m; }
 648   void  set_optimized_virtual(bool f)     { _optimized_virtual = f; }
 649   bool  is_optimized_virtual() const      { return _optimized_virtual; }
 650   void  set_method_handle_invoke(bool f)  { _method_handle_invoke = f; }
 651   bool  is_method_handle_invoke() const   { return _method_handle_invoke; }
 652 
 653 #ifndef PRODUCT
 654   virtual void  dump_spec(outputStream *st) const;
 655 #endif
 656 };
 657 
 658 //------------------------------CallStaticJavaNode-----------------------------
 659 // Make a direct subroutine call using Java calling convention (for static
 660 // calls and optimized virtual calls, plus calls to wrappers for run-time
 661 // routines); generates static stub.
 662 class CallStaticJavaNode : public CallJavaNode {
 663   virtual uint cmp( const Node &n ) const;
 664   virtual uint size_of() const; // Size is bigger
 665 public:
 666   CallStaticJavaNode(const TypeFunc* tf, address addr, ciMethod* method, int bci)
 667     : CallJavaNode(tf, addr, method, bci), _name(NULL) {
 668     init_class_id(Class_CallStaticJava);
 669   }
 670   CallStaticJavaNode(const TypeFunc* tf, address addr, const char* name, int bci,
 671                      const TypePtr* adr_type)
 672     : CallJavaNode(tf, addr, NULL, bci), _name(name) {
 673     init_class_id(Class_CallStaticJava);
 674     // This node calls a runtime stub, which often has narrow memory effects.
 675     _adr_type = adr_type;
 676   }
 677   const char *_name;            // Runtime wrapper name
 678 
 679   // If this is an uncommon trap, return the request code, else zero.
 680   int uncommon_trap_request() const;
 681   static int extract_uncommon_trap_request(const Node* call);
 682 
 683   virtual int         Opcode() const;
 684 #ifndef PRODUCT
 685   virtual void        dump_spec(outputStream *st) const;
 686 #endif
 687 };
 688 
 689 //------------------------------CallDynamicJavaNode----------------------------
 690 // Make a dispatched call using Java calling convention.
 691 class CallDynamicJavaNode : public CallJavaNode {
 692   virtual uint cmp( const Node &n ) const;
 693   virtual uint size_of() const; // Size is bigger
 694 public:
 695   CallDynamicJavaNode( const TypeFunc *tf , address addr, ciMethod* method, int vtable_index, int bci ) : CallJavaNode(tf,addr,method,bci), _vtable_index(vtable_index) {
 696     init_class_id(Class_CallDynamicJava);
 697   }
 698 
 699   int _vtable_index;
 700   virtual int   Opcode() const;
 701 #ifndef PRODUCT
 702   virtual void  dump_spec(outputStream *st) const;
 703 #endif
 704 };
 705 
 706 //------------------------------CallRuntimeNode--------------------------------
 707 // Make a direct subroutine call node into compiled C++ code.
 708 class CallRuntimeNode : public CallNode {
 709   virtual uint cmp( const Node &n ) const;
 710   virtual uint size_of() const; // Size is bigger
 711 public:
 712   CallRuntimeNode(const TypeFunc* tf, address addr, const char* name,
 713                   const TypePtr* adr_type)
 714     : CallNode(tf, addr, adr_type),
 715       _name(name)
 716   {
 717     init_class_id(Class_CallRuntime);
 718   }
 719 
 720   const char *_name;            // Printable name, if _method is NULL
 721   virtual int   Opcode() const;
 722   virtual void  calling_convention( BasicType* sig_bt, VMRegPair *parm_regs, uint argcnt ) const;
 723 
 724 #ifndef PRODUCT
 725   virtual void  dump_spec(outputStream *st) const;
 726 #endif
 727 };
 728 
 729 //------------------------------CallLeafNode-----------------------------------
 730 // Make a direct subroutine call node into compiled C++ code, without
 731 // safepoints
 732 class CallLeafNode : public CallRuntimeNode {
 733 public:
 734   CallLeafNode(const TypeFunc* tf, address addr, const char* name,
 735                const TypePtr* adr_type)
 736     : CallRuntimeNode(tf, addr, name, adr_type)
 737   {
 738     init_class_id(Class_CallLeaf);
 739   }
 740   virtual int   Opcode() const;
 741   virtual bool        guaranteed_safepoint()  { return false; }
 742 #ifndef PRODUCT
 743   virtual void  dump_spec(outputStream *st) const;
 744 #endif
 745 };
 746 
 747 //------------------------------CallLeafNoFPNode-------------------------------
 748 // CallLeafNode, not using floating point or using it in the same manner as
 749 // the generated code
 750 class CallLeafNoFPNode : public CallLeafNode {
 751 public:
 752   CallLeafNoFPNode(const TypeFunc* tf, address addr, const char* name,
 753                    const TypePtr* adr_type)
 754     : CallLeafNode(tf, addr, name, adr_type)
 755   {
 756   }
 757   virtual int   Opcode() const;
 758 };
 759 
 760 
 761 //------------------------------Allocate---------------------------------------
 762 // High-level memory allocation
 763 //
 764 //  AllocateNode and AllocateArrayNode are subclasses of CallNode because they will
 765 //  get expanded into a code sequence containing a call.  Unlike other CallNodes,
 766 //  they have 2 memory projections and 2 i_o projections (which are distinguished by
 767 //  the _is_io_use flag in the projection.)  This is needed when expanding the node in
 768 //  order to differentiate the uses of the projection on the normal control path from
 769 //  those on the exception return path.
 770 //
 771 class AllocateNode : public CallNode {
 772 public:
 773   enum {
 774     // Output:
 775     RawAddress  = TypeFunc::Parms,    // the newly-allocated raw address
 776     // Inputs:
 777     AllocSize   = TypeFunc::Parms,    // size (in bytes) of the new object
 778     KlassNode,                        // type (maybe dynamic) of the obj.
 779     InitialTest,                      // slow-path test (may be constant)
 780     ALength,                          // array length (or TOP if none)
 781     ParmLimit
 782   };
 783 
 784   static const TypeFunc* alloc_type() {
 785     const Type** fields = TypeTuple::fields(ParmLimit - TypeFunc::Parms);
 786     fields[AllocSize]   = TypeInt::POS;
 787     fields[KlassNode]   = TypeInstPtr::NOTNULL;
 788     fields[InitialTest] = TypeInt::BOOL;
 789     fields[ALength]     = TypeInt::INT;  // length (can be a bad length)
 790 
 791     const TypeTuple *domain = TypeTuple::make(ParmLimit, fields);
 792 
 793     // create result type (range)
 794     fields = TypeTuple::fields(1);
 795     fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 796 
 797     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 798 
 799     return TypeFunc::make(domain, range);
 800   }
 801 
 802   bool _is_scalar_replaceable;  // Result of Escape Analysis
 803 
 804   virtual uint size_of() const; // Size is bigger
 805   AllocateNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 806                Node *size, Node *klass_node, Node *initial_test);
 807   // Expansion modifies the JVMState, so we need to clone it
 808   virtual void  clone_jvms() {
 809     set_jvms(jvms()->clone_deep(Compile::current()));
 810   }
 811   virtual int Opcode() const;
 812   virtual uint ideal_reg() const { return Op_RegP; }
 813   virtual bool        guaranteed_safepoint()  { return false; }
 814 
 815   // allocations do not modify their arguments
 816   virtual bool        may_modify(const TypePtr *addr_t, PhaseTransform *phase) { return false;}
 817 
 818   // Pattern-match a possible usage of AllocateNode.
 819   // Return null if no allocation is recognized.
 820   // The operand is the pointer produced by the (possible) allocation.
 821   // It must be a projection of the Allocate or its subsequent CastPP.
 822   // (Note:  This function is defined in file graphKit.cpp, near
 823   // GraphKit::new_instance/new_array, whose output it recognizes.)
 824   // The 'ptr' may not have an offset unless the 'offset' argument is given.
 825   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase);
 826 
 827   // Fancy version which uses AddPNode::Ideal_base_and_offset to strip
 828   // an offset, which is reported back to the caller.
 829   // (Note:  AllocateNode::Ideal_allocation is defined in graphKit.cpp.)
 830   static AllocateNode* Ideal_allocation(Node* ptr, PhaseTransform* phase,
 831                                         intptr_t& offset);
 832 
 833   // Dig the klass operand out of a (possible) allocation site.
 834   static Node* Ideal_klass(Node* ptr, PhaseTransform* phase) {
 835     AllocateNode* allo = Ideal_allocation(ptr, phase);
 836     return (allo == NULL) ? NULL : allo->in(KlassNode);
 837   }
 838 
 839   // Conservatively small estimate of offset of first non-header byte.
 840   int minimum_header_size() {
 841     return is_AllocateArray() ? arrayOopDesc::base_offset_in_bytes(T_BYTE) :
 842                                 instanceOopDesc::base_offset_in_bytes();
 843   }
 844 
 845   // Return the corresponding initialization barrier (or null if none).
 846   // Walks out edges to find it...
 847   // (Note: Both InitializeNode::allocation and AllocateNode::initialization
 848   // are defined in graphKit.cpp, which sets up the bidirectional relation.)
 849   InitializeNode* initialization();
 850 
 851   // Return the corresponding storestore barrier (or null if none).
 852   // Walks out edges to find it...
 853   MemBarStoreStoreNode* storestore();
 854 
 855   // Convenience for initialization->maybe_set_complete(phase)
 856   bool maybe_set_complete(PhaseGVN* phase);
 857 };
 858 
 859 //------------------------------AllocateArray---------------------------------
 860 //
 861 // High-level array allocation
 862 //
 863 class AllocateArrayNode : public AllocateNode {
 864 public:
 865   AllocateArrayNode(Compile* C, const TypeFunc *atype, Node *ctrl, Node *mem, Node *abio,
 866                     Node* size, Node* klass_node, Node* initial_test,
 867                     Node* count_val
 868                     )
 869     : AllocateNode(C, atype, ctrl, mem, abio, size, klass_node,
 870                    initial_test)
 871   {
 872     init_class_id(Class_AllocateArray);
 873     set_req(AllocateNode::ALength,        count_val);
 874   }
 875   virtual int Opcode() const;
 876   virtual uint size_of() const; // Size is bigger
 877   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
 878 
 879   // Dig the length operand out of a array allocation site.
 880   Node* Ideal_length() {
 881     return in(AllocateNode::ALength);
 882   }
 883 
 884   // Dig the length operand out of a array allocation site and narrow the
 885   // type with a CastII, if necesssary
 886   Node* make_ideal_length(const TypeOopPtr* ary_type, PhaseTransform *phase, bool can_create = true);
 887 
 888   // Pattern-match a possible usage of AllocateArrayNode.
 889   // Return null if no allocation is recognized.
 890   static AllocateArrayNode* Ideal_array_allocation(Node* ptr, PhaseTransform* phase) {
 891     AllocateNode* allo = Ideal_allocation(ptr, phase);
 892     return (allo == NULL || !allo->is_AllocateArray())
 893            ? NULL : allo->as_AllocateArray();
 894   }
 895 };
 896 
 897 //------------------------------AbstractLockNode-----------------------------------
 898 class AbstractLockNode: public CallNode {
 899 private:
 900   enum {
 901     Regular = 0,  // Normal lock
 902     NonEscObj,    // Lock is used for non escaping object
 903     Coarsened,    // Lock was coarsened
 904     Nested        // Nested lock
 905   } _kind;
 906 #ifndef PRODUCT
 907   NamedCounter* _counter;
 908 #endif
 909 
 910 protected:
 911   // helper functions for lock elimination
 912   //
 913 
 914   bool find_matching_unlock(const Node* ctrl, LockNode* lock,
 915                             GrowableArray<AbstractLockNode*> &lock_ops);
 916   bool find_lock_and_unlock_through_if(Node* node, LockNode* lock,
 917                                        GrowableArray<AbstractLockNode*> &lock_ops);
 918   bool find_unlocks_for_region(const RegionNode* region, LockNode* lock,
 919                                GrowableArray<AbstractLockNode*> &lock_ops);
 920   LockNode *find_matching_lock(UnlockNode* unlock);
 921 
 922   // Update the counter to indicate that this lock was eliminated.
 923   void set_eliminated_lock_counter() PRODUCT_RETURN;
 924 
 925 public:
 926   AbstractLockNode(const TypeFunc *tf)
 927     : CallNode(tf, NULL, TypeRawPtr::BOTTOM),
 928       _kind(Regular)
 929   {
 930 #ifndef PRODUCT
 931     _counter = NULL;
 932 #endif
 933   }
 934   virtual int Opcode() const = 0;
 935   Node *   obj_node() const       {return in(TypeFunc::Parms + 0); }
 936   Node *   box_node() const       {return in(TypeFunc::Parms + 1); }
 937   Node *   fastlock_node() const  {return in(TypeFunc::Parms + 2); }
 938   void     set_box_node(Node* box) { set_req(TypeFunc::Parms + 1, box); }
 939 
 940   const Type *sub(const Type *t1, const Type *t2) const { return TypeInt::CC;}
 941 
 942   virtual uint size_of() const { return sizeof(*this); }
 943 
 944   bool is_eliminated()  const { return (_kind != Regular); }
 945   bool is_non_esc_obj() const { return (_kind == NonEscObj); }
 946   bool is_coarsened()   const { return (_kind == Coarsened); }
 947   bool is_nested()      const { return (_kind == Nested); }
 948 
 949   void set_non_esc_obj() { _kind = NonEscObj; set_eliminated_lock_counter(); }
 950   void set_coarsened()   { _kind = Coarsened; set_eliminated_lock_counter(); }
 951   void set_nested()      { _kind = Nested; set_eliminated_lock_counter(); }
 952 
 953   // locking does not modify its arguments
 954   virtual bool may_modify(const TypePtr *addr_t, PhaseTransform *phase){ return false;}
 955 
 956 #ifndef PRODUCT
 957   void create_lock_counter(JVMState* s);
 958   NamedCounter* counter() const { return _counter; }
 959 #endif
 960 };
 961 
 962 //------------------------------Lock---------------------------------------
 963 // High-level lock operation
 964 //
 965 // This is a subclass of CallNode because it is a macro node which gets expanded
 966 // into a code sequence containing a call.  This node takes 3 "parameters":
 967 //    0  -  object to lock
 968 //    1 -   a BoxLockNode
 969 //    2 -   a FastLockNode
 970 //
 971 class LockNode : public AbstractLockNode {
 972 public:
 973 
 974   static const TypeFunc *lock_type() {
 975     // create input type (domain)
 976     const Type **fields = TypeTuple::fields(3);
 977     fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 978     fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock
 979     fields[TypeFunc::Parms+2] = TypeInt::BOOL;         // FastLock
 980     const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3,fields);
 981 
 982     // create result type (range)
 983     fields = TypeTuple::fields(0);
 984 
 985     const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 986 
 987     return TypeFunc::make(domain,range);
 988   }
 989 
 990   virtual int Opcode() const;
 991   virtual uint size_of() const; // Size is bigger
 992   LockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
 993     init_class_id(Class_Lock);
 994     init_flags(Flag_is_macro);
 995     C->add_macro_node(this);
 996   }
 997   virtual bool        guaranteed_safepoint()  { return false; }
 998 
 999   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1000   // Expansion modifies the JVMState, so we need to clone it
1001   virtual void  clone_jvms() {
1002     set_jvms(jvms()->clone_deep(Compile::current()));
1003   }
1004 
1005   bool is_nested_lock_region(); // Is this Lock nested?
1006 };
1007 
1008 //------------------------------Unlock---------------------------------------
1009 // High-level unlock operation
1010 class UnlockNode : public AbstractLockNode {
1011 public:
1012   virtual int Opcode() const;
1013   virtual uint size_of() const; // Size is bigger
1014   UnlockNode(Compile* C, const TypeFunc *tf) : AbstractLockNode( tf ) {
1015     init_class_id(Class_Unlock);
1016     init_flags(Flag_is_macro);
1017     C->add_macro_node(this);
1018   }
1019   virtual Node *Ideal(PhaseGVN *phase, bool can_reshape);
1020   // unlock is never a safepoint
1021   virtual bool        guaranteed_safepoint()  { return false; }
1022 };
1023 
1024 #endif // SHARE_VM_OPTO_CALLNODE_HPP