1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc_implementation/g1/heapRegion.hpp"
  29 #include "gc_interface/collectedHeap.hpp"
  30 #include "memory/barrierSet.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/graphKit.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/locknode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 
  43 //----------------------------GraphKit-----------------------------------------
  44 // Main utility constructor.
  45 GraphKit::GraphKit(JVMState* jvms)
  46   : Phase(Phase::Parser),
  47     _env(C->env()),
  48     _gvn(*C->initial_gvn())
  49 {
  50   _exceptions = jvms->map()->next_exception();
  51   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  52   set_jvms(jvms);
  53 }
  54 
  55 // Private constructor for parser.
  56 GraphKit::GraphKit()
  57   : Phase(Phase::Parser),
  58     _env(C->env()),
  59     _gvn(*C->initial_gvn())
  60 {
  61   _exceptions = NULL;
  62   set_map(NULL);
  63   debug_only(_sp = -99);
  64   debug_only(set_bci(-99));
  65 }
  66 
  67 
  68 
  69 //---------------------------clean_stack---------------------------------------
  70 // Clear away rubbish from the stack area of the JVM state.
  71 // This destroys any arguments that may be waiting on the stack.
  72 void GraphKit::clean_stack(int from_sp) {
  73   SafePointNode* map      = this->map();
  74   JVMState*      jvms     = this->jvms();
  75   int            stk_size = jvms->stk_size();
  76   int            stkoff   = jvms->stkoff();
  77   Node*          top      = this->top();
  78   for (int i = from_sp; i < stk_size; i++) {
  79     if (map->in(stkoff + i) != top) {
  80       map->set_req(stkoff + i, top);
  81     }
  82   }
  83 }
  84 
  85 
  86 //--------------------------------sync_jvms-----------------------------------
  87 // Make sure our current jvms agrees with our parse state.
  88 JVMState* GraphKit::sync_jvms() const {
  89   JVMState* jvms = this->jvms();
  90   jvms->set_bci(bci());       // Record the new bci in the JVMState
  91   jvms->set_sp(sp());         // Record the new sp in the JVMState
  92   assert(jvms_in_sync(), "jvms is now in sync");
  93   return jvms;
  94 }
  95 
  96 //--------------------------------sync_jvms_for_reexecute---------------------
  97 // Make sure our current jvms agrees with our parse state.  This version
  98 // uses the reexecute_sp for reexecuting bytecodes.
  99 JVMState* GraphKit::sync_jvms_for_reexecute() {
 100   JVMState* jvms = this->jvms();
 101   jvms->set_bci(bci());          // Record the new bci in the JVMState
 102   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 103   return jvms;
 104 }
 105 
 106 #ifdef ASSERT
 107 bool GraphKit::jvms_in_sync() const {
 108   Parse* parse = is_Parse();
 109   if (parse == NULL) {
 110     if (bci() !=      jvms()->bci())          return false;
 111     if (sp()  != (int)jvms()->sp())           return false;
 112     return true;
 113   }
 114   if (jvms()->method() != parse->method())    return false;
 115   if (jvms()->bci()    != parse->bci())       return false;
 116   int jvms_sp = jvms()->sp();
 117   if (jvms_sp          != parse->sp())        return false;
 118   int jvms_depth = jvms()->depth();
 119   if (jvms_depth       != parse->depth())     return false;
 120   return true;
 121 }
 122 
 123 // Local helper checks for special internal merge points
 124 // used to accumulate and merge exception states.
 125 // They are marked by the region's in(0) edge being the map itself.
 126 // Such merge points must never "escape" into the parser at large,
 127 // until they have been handed to gvn.transform.
 128 static bool is_hidden_merge(Node* reg) {
 129   if (reg == NULL)  return false;
 130   if (reg->is_Phi()) {
 131     reg = reg->in(0);
 132     if (reg == NULL)  return false;
 133   }
 134   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 135 }
 136 
 137 void GraphKit::verify_map() const {
 138   if (map() == NULL)  return;  // null map is OK
 139   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 140   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 141   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 142 }
 143 
 144 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 145   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 146   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 147 }
 148 #endif
 149 
 150 //---------------------------stop_and_kill_map---------------------------------
 151 // Set _map to NULL, signalling a stop to further bytecode execution.
 152 // First smash the current map's control to a constant, to mark it dead.
 153 void GraphKit::stop_and_kill_map() {
 154   SafePointNode* dead_map = stop();
 155   if (dead_map != NULL) {
 156     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 157     assert(dead_map->is_killed(), "must be so marked");
 158   }
 159 }
 160 
 161 
 162 //--------------------------------stopped--------------------------------------
 163 // Tell if _map is NULL, or control is top.
 164 bool GraphKit::stopped() {
 165   if (map() == NULL)           return true;
 166   else if (control() == top()) return true;
 167   else                         return false;
 168 }
 169 
 170 
 171 //-----------------------------has_ex_handler----------------------------------
 172 // Tell if this method or any caller method has exception handlers.
 173 bool GraphKit::has_ex_handler() {
 174   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 175     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 176       return true;
 177     }
 178   }
 179   return false;
 180 }
 181 
 182 //------------------------------save_ex_oop------------------------------------
 183 // Save an exception without blowing stack contents or other JVM state.
 184 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 185   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 186   ex_map->add_req(ex_oop);
 187   debug_only(verify_exception_state(ex_map));
 188 }
 189 
 190 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 191   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 192   Node* ex_oop = ex_map->in(ex_map->req()-1);
 193   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 194   return ex_oop;
 195 }
 196 
 197 //-----------------------------saved_ex_oop------------------------------------
 198 // Recover a saved exception from its map.
 199 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 200   return common_saved_ex_oop(ex_map, false);
 201 }
 202 
 203 //--------------------------clear_saved_ex_oop---------------------------------
 204 // Erase a previously saved exception from its map.
 205 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 206   return common_saved_ex_oop(ex_map, true);
 207 }
 208 
 209 #ifdef ASSERT
 210 //---------------------------has_saved_ex_oop----------------------------------
 211 // Erase a previously saved exception from its map.
 212 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 213   return ex_map->req() == ex_map->jvms()->endoff()+1;
 214 }
 215 #endif
 216 
 217 //-------------------------make_exception_state--------------------------------
 218 // Turn the current JVM state into an exception state, appending the ex_oop.
 219 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 220   sync_jvms();
 221   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 222   set_saved_ex_oop(ex_map, ex_oop);
 223   return ex_map;
 224 }
 225 
 226 
 227 //--------------------------add_exception_state--------------------------------
 228 // Add an exception to my list of exceptions.
 229 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 230   if (ex_map == NULL || ex_map->control() == top()) {
 231     return;
 232   }
 233 #ifdef ASSERT
 234   verify_exception_state(ex_map);
 235   if (has_exceptions()) {
 236     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 237   }
 238 #endif
 239 
 240   // If there is already an exception of exactly this type, merge with it.
 241   // In particular, null-checks and other low-level exceptions common up here.
 242   Node*       ex_oop  = saved_ex_oop(ex_map);
 243   const Type* ex_type = _gvn.type(ex_oop);
 244   if (ex_oop == top()) {
 245     // No action needed.
 246     return;
 247   }
 248   assert(ex_type->isa_instptr(), "exception must be an instance");
 249   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 250     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 251     // We check sp also because call bytecodes can generate exceptions
 252     // both before and after arguments are popped!
 253     if (ex_type2 == ex_type
 254         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 255       combine_exception_states(ex_map, e2);
 256       return;
 257     }
 258   }
 259 
 260   // No pre-existing exception of the same type.  Chain it on the list.
 261   push_exception_state(ex_map);
 262 }
 263 
 264 //-----------------------add_exception_states_from-----------------------------
 265 void GraphKit::add_exception_states_from(JVMState* jvms) {
 266   SafePointNode* ex_map = jvms->map()->next_exception();
 267   if (ex_map != NULL) {
 268     jvms->map()->set_next_exception(NULL);
 269     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 270       next_map = ex_map->next_exception();
 271       ex_map->set_next_exception(NULL);
 272       add_exception_state(ex_map);
 273     }
 274   }
 275 }
 276 
 277 //-----------------------transfer_exceptions_into_jvms-------------------------
 278 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 279   if (map() == NULL) {
 280     // We need a JVMS to carry the exceptions, but the map has gone away.
 281     // Create a scratch JVMS, cloned from any of the exception states...
 282     if (has_exceptions()) {
 283       _map = _exceptions;
 284       _map = clone_map();
 285       _map->set_next_exception(NULL);
 286       clear_saved_ex_oop(_map);
 287       debug_only(verify_map());
 288     } else {
 289       // ...or created from scratch
 290       JVMState* jvms = new (C) JVMState(_method, NULL);
 291       jvms->set_bci(_bci);
 292       jvms->set_sp(_sp);
 293       jvms->set_map(new (C) SafePointNode(TypeFunc::Parms, jvms));
 294       set_jvms(jvms);
 295       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 296       set_all_memory(top());
 297       while (map()->req() < jvms->endoff())  map()->add_req(top());
 298     }
 299     // (This is a kludge, in case you didn't notice.)
 300     set_control(top());
 301   }
 302   JVMState* jvms = sync_jvms();
 303   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 304   jvms->map()->set_next_exception(_exceptions);
 305   _exceptions = NULL;   // done with this set of exceptions
 306   return jvms;
 307 }
 308 
 309 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 310   assert(is_hidden_merge(dstphi), "must be a special merge node");
 311   assert(is_hidden_merge(srcphi), "must be a special merge node");
 312   uint limit = srcphi->req();
 313   for (uint i = PhiNode::Input; i < limit; i++) {
 314     dstphi->add_req(srcphi->in(i));
 315   }
 316 }
 317 static inline void add_one_req(Node* dstphi, Node* src) {
 318   assert(is_hidden_merge(dstphi), "must be a special merge node");
 319   assert(!is_hidden_merge(src), "must not be a special merge node");
 320   dstphi->add_req(src);
 321 }
 322 
 323 //-----------------------combine_exception_states------------------------------
 324 // This helper function combines exception states by building phis on a
 325 // specially marked state-merging region.  These regions and phis are
 326 // untransformed, and can build up gradually.  The region is marked by
 327 // having a control input of its exception map, rather than NULL.  Such
 328 // regions do not appear except in this function, and in use_exception_state.
 329 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 330   if (failing())  return;  // dying anyway...
 331   JVMState* ex_jvms = ex_map->_jvms;
 332   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 333   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 334   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 335   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 336   assert(ex_map->req() == phi_map->req(), "matching maps");
 337   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 338   Node*         hidden_merge_mark = root();
 339   Node*         region  = phi_map->control();
 340   MergeMemNode* phi_mem = phi_map->merged_memory();
 341   MergeMemNode* ex_mem  = ex_map->merged_memory();
 342   if (region->in(0) != hidden_merge_mark) {
 343     // The control input is not (yet) a specially-marked region in phi_map.
 344     // Make it so, and build some phis.
 345     region = new (C) RegionNode(2);
 346     _gvn.set_type(region, Type::CONTROL);
 347     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 348     region->init_req(1, phi_map->control());
 349     phi_map->set_control(region);
 350     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 351     record_for_igvn(io_phi);
 352     _gvn.set_type(io_phi, Type::ABIO);
 353     phi_map->set_i_o(io_phi);
 354     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 355       Node* m = mms.memory();
 356       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 357       record_for_igvn(m_phi);
 358       _gvn.set_type(m_phi, Type::MEMORY);
 359       mms.set_memory(m_phi);
 360     }
 361   }
 362 
 363   // Either or both of phi_map and ex_map might already be converted into phis.
 364   Node* ex_control = ex_map->control();
 365   // if there is special marking on ex_map also, we add multiple edges from src
 366   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 367   // how wide was the destination phi_map, originally?
 368   uint orig_width = region->req();
 369 
 370   if (add_multiple) {
 371     add_n_reqs(region, ex_control);
 372     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 373   } else {
 374     // ex_map has no merges, so we just add single edges everywhere
 375     add_one_req(region, ex_control);
 376     add_one_req(phi_map->i_o(), ex_map->i_o());
 377   }
 378   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 379     if (mms.is_empty()) {
 380       // get a copy of the base memory, and patch some inputs into it
 381       const TypePtr* adr_type = mms.adr_type(C);
 382       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 383       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 384       mms.set_memory(phi);
 385       // Prepare to append interesting stuff onto the newly sliced phi:
 386       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 387     }
 388     // Append stuff from ex_map:
 389     if (add_multiple) {
 390       add_n_reqs(mms.memory(), mms.memory2());
 391     } else {
 392       add_one_req(mms.memory(), mms.memory2());
 393     }
 394   }
 395   uint limit = ex_map->req();
 396   for (uint i = TypeFunc::Parms; i < limit; i++) {
 397     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 398     if (i == tos)  i = ex_jvms->monoff();
 399     Node* src = ex_map->in(i);
 400     Node* dst = phi_map->in(i);
 401     if (src != dst) {
 402       PhiNode* phi;
 403       if (dst->in(0) != region) {
 404         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 405         record_for_igvn(phi);
 406         _gvn.set_type(phi, phi->type());
 407         phi_map->set_req(i, dst);
 408         // Prepare to append interesting stuff onto the new phi:
 409         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 410       } else {
 411         assert(dst->is_Phi(), "nobody else uses a hidden region");
 412         phi = (PhiNode*)dst;
 413       }
 414       if (add_multiple && src->in(0) == ex_control) {
 415         // Both are phis.
 416         add_n_reqs(dst, src);
 417       } else {
 418         while (dst->req() < region->req())  add_one_req(dst, src);
 419       }
 420       const Type* srctype = _gvn.type(src);
 421       if (phi->type() != srctype) {
 422         const Type* dsttype = phi->type()->meet(srctype);
 423         if (phi->type() != dsttype) {
 424           phi->set_type(dsttype);
 425           _gvn.set_type(phi, dsttype);
 426         }
 427       }
 428     }
 429   }
 430 }
 431 
 432 //--------------------------use_exception_state--------------------------------
 433 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 434   if (failing()) { stop(); return top(); }
 435   Node* region = phi_map->control();
 436   Node* hidden_merge_mark = root();
 437   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 438   Node* ex_oop = clear_saved_ex_oop(phi_map);
 439   if (region->in(0) == hidden_merge_mark) {
 440     // Special marking for internal ex-states.  Process the phis now.
 441     region->set_req(0, region);  // now it's an ordinary region
 442     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 443     // Note: Setting the jvms also sets the bci and sp.
 444     set_control(_gvn.transform(region));
 445     uint tos = jvms()->stkoff() + sp();
 446     for (uint i = 1; i < tos; i++) {
 447       Node* x = phi_map->in(i);
 448       if (x->in(0) == region) {
 449         assert(x->is_Phi(), "expected a special phi");
 450         phi_map->set_req(i, _gvn.transform(x));
 451       }
 452     }
 453     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 454       Node* x = mms.memory();
 455       if (x->in(0) == region) {
 456         assert(x->is_Phi(), "nobody else uses a hidden region");
 457         mms.set_memory(_gvn.transform(x));
 458       }
 459     }
 460     if (ex_oop->in(0) == region) {
 461       assert(ex_oop->is_Phi(), "expected a special phi");
 462       ex_oop = _gvn.transform(ex_oop);
 463     }
 464   } else {
 465     set_jvms(phi_map->jvms());
 466   }
 467 
 468   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 469   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 470   return ex_oop;
 471 }
 472 
 473 //---------------------------------java_bc-------------------------------------
 474 Bytecodes::Code GraphKit::java_bc() const {
 475   ciMethod* method = this->method();
 476   int       bci    = this->bci();
 477   if (method != NULL && bci != InvocationEntryBci)
 478     return method->java_code_at_bci(bci);
 479   else
 480     return Bytecodes::_illegal;
 481 }
 482 
 483 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 484                                                           bool must_throw) {
 485     // if the exception capability is set, then we will generate code
 486     // to check the JavaThread.should_post_on_exceptions flag to see
 487     // if we actually need to report exception events (for this
 488     // thread).  If we don't need to report exception events, we will
 489     // take the normal fast path provided by add_exception_events.  If
 490     // exception event reporting is enabled for this thread, we will
 491     // take the uncommon_trap in the BuildCutout below.
 492 
 493     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 494     Node* jthread = _gvn.transform(new (C) ThreadLocalNode());
 495     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 496     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, false);
 497 
 498     // Test the should_post_on_exceptions_flag vs. 0
 499     Node* chk = _gvn.transform( new (C) CmpINode(should_post_flag, intcon(0)) );
 500     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 501 
 502     // Branch to slow_path if should_post_on_exceptions_flag was true
 503     { BuildCutout unless(this, tst, PROB_MAX);
 504       // Do not try anything fancy if we're notifying the VM on every throw.
 505       // Cf. case Bytecodes::_athrow in parse2.cpp.
 506       uncommon_trap(reason, Deoptimization::Action_none,
 507                     (ciKlass*)NULL, (char*)NULL, must_throw);
 508     }
 509 
 510 }
 511 
 512 //------------------------------builtin_throw----------------------------------
 513 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 514   bool must_throw = true;
 515 
 516   if (env()->jvmti_can_post_on_exceptions()) {
 517     // check if we must post exception events, take uncommon trap if so
 518     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 519     // here if should_post_on_exceptions is false
 520     // continue on with the normal codegen
 521   }
 522 
 523   // If this particular condition has not yet happened at this
 524   // bytecode, then use the uncommon trap mechanism, and allow for
 525   // a future recompilation if several traps occur here.
 526   // If the throw is hot, try to use a more complicated inline mechanism
 527   // which keeps execution inside the compiled code.
 528   bool treat_throw_as_hot = false;
 529   ciMethodData* md = method()->method_data();
 530 
 531   if (ProfileTraps) {
 532     if (too_many_traps(reason)) {
 533       treat_throw_as_hot = true;
 534     }
 535     // (If there is no MDO at all, assume it is early in
 536     // execution, and that any deopts are part of the
 537     // startup transient, and don't need to be remembered.)
 538 
 539     // Also, if there is a local exception handler, treat all throws
 540     // as hot if there has been at least one in this method.
 541     if (C->trap_count(reason) != 0
 542         && method()->method_data()->trap_count(reason) != 0
 543         && has_ex_handler()) {
 544         treat_throw_as_hot = true;
 545     }
 546   }
 547 
 548   // If this throw happens frequently, an uncommon trap might cause
 549   // a performance pothole.  If there is a local exception handler,
 550   // and if this particular bytecode appears to be deoptimizing often,
 551   // let us handle the throw inline, with a preconstructed instance.
 552   // Note:   If the deopt count has blown up, the uncommon trap
 553   // runtime is going to flush this nmethod, not matter what.
 554   if (treat_throw_as_hot
 555       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 556     // If the throw is local, we use a pre-existing instance and
 557     // punt on the backtrace.  This would lead to a missing backtrace
 558     // (a repeat of 4292742) if the backtrace object is ever asked
 559     // for its backtrace.
 560     // Fixing this remaining case of 4292742 requires some flavor of
 561     // escape analysis.  Leave that for the future.
 562     ciInstance* ex_obj = NULL;
 563     switch (reason) {
 564     case Deoptimization::Reason_null_check:
 565       ex_obj = env()->NullPointerException_instance();
 566       break;
 567     case Deoptimization::Reason_div0_check:
 568       ex_obj = env()->ArithmeticException_instance();
 569       break;
 570     case Deoptimization::Reason_range_check:
 571       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 572       break;
 573     case Deoptimization::Reason_class_check:
 574       if (java_bc() == Bytecodes::_aastore) {
 575         ex_obj = env()->ArrayStoreException_instance();
 576       } else {
 577         ex_obj = env()->ClassCastException_instance();
 578       }
 579       break;
 580     }
 581     if (failing()) { stop(); return; }  // exception allocation might fail
 582     if (ex_obj != NULL) {
 583       // Cheat with a preallocated exception object.
 584       if (C->log() != NULL)
 585         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 586                        Deoptimization::trap_reason_name(reason));
 587       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 588       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
 589 
 590       // Clear the detail message of the preallocated exception object.
 591       // Weblogic sometimes mutates the detail message of exceptions
 592       // using reflection.
 593       int offset = java_lang_Throwable::get_detailMessage_offset();
 594       const TypePtr* adr_typ = ex_con->add_offset(offset);
 595 
 596       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 597       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 598       // Conservatively release stores of object references.
 599       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, StoreNode::release);
 600 
 601       add_exception_state(make_exception_state(ex_node));
 602       return;
 603     }
 604   }
 605 
 606   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 607   // It won't be much cheaper than bailing to the interp., since we'll
 608   // have to pass up all the debug-info, and the runtime will have to
 609   // create the stack trace.
 610 
 611   // Usual case:  Bail to interpreter.
 612   // Reserve the right to recompile if we haven't seen anything yet.
 613 
 614   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 615   if (treat_throw_as_hot
 616       && (method()->method_data()->trap_recompiled_at(bci())
 617           || C->too_many_traps(reason))) {
 618     // We cannot afford to take more traps here.  Suffer in the interpreter.
 619     if (C->log() != NULL)
 620       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 621                      Deoptimization::trap_reason_name(reason),
 622                      C->trap_count(reason));
 623     action = Deoptimization::Action_none;
 624   }
 625 
 626   // "must_throw" prunes the JVM state to include only the stack, if there
 627   // are no local exception handlers.  This should cut down on register
 628   // allocation time and code size, by drastically reducing the number
 629   // of in-edges on the call to the uncommon trap.
 630 
 631   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 632 }
 633 
 634 
 635 //----------------------------PreserveJVMState---------------------------------
 636 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 637   debug_only(kit->verify_map());
 638   _kit    = kit;
 639   _map    = kit->map();   // preserve the map
 640   _sp     = kit->sp();
 641   kit->set_map(clone_map ? kit->clone_map() : NULL);
 642 #ifdef ASSERT
 643   _bci    = kit->bci();
 644   Parse* parser = kit->is_Parse();
 645   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 646   _block  = block;
 647 #endif
 648 }
 649 PreserveJVMState::~PreserveJVMState() {
 650   GraphKit* kit = _kit;
 651 #ifdef ASSERT
 652   assert(kit->bci() == _bci, "bci must not shift");
 653   Parse* parser = kit->is_Parse();
 654   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 655   assert(block == _block,    "block must not shift");
 656 #endif
 657   kit->set_map(_map);
 658   kit->set_sp(_sp);
 659 }
 660 
 661 
 662 //-----------------------------BuildCutout-------------------------------------
 663 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 664   : PreserveJVMState(kit)
 665 {
 666   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 667   SafePointNode* outer_map = _map;   // preserved map is caller's
 668   SafePointNode* inner_map = kit->map();
 669   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 670   outer_map->set_control(kit->gvn().transform( new (kit->C) IfTrueNode(iff) ));
 671   inner_map->set_control(kit->gvn().transform( new (kit->C) IfFalseNode(iff) ));
 672 }
 673 BuildCutout::~BuildCutout() {
 674   GraphKit* kit = _kit;
 675   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 676 }
 677 
 678 //---------------------------PreserveReexecuteState----------------------------
 679 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 680   assert(!kit->stopped(), "must call stopped() before");
 681   _kit    =    kit;
 682   _sp     =    kit->sp();
 683   _reexecute = kit->jvms()->_reexecute;
 684 }
 685 PreserveReexecuteState::~PreserveReexecuteState() {
 686   if (_kit->stopped()) return;
 687   _kit->jvms()->_reexecute = _reexecute;
 688   _kit->set_sp(_sp);
 689 }
 690 
 691 //------------------------------clone_map--------------------------------------
 692 // Implementation of PreserveJVMState
 693 //
 694 // Only clone_map(...) here. If this function is only used in the
 695 // PreserveJVMState class we may want to get rid of this extra
 696 // function eventually and do it all there.
 697 
 698 SafePointNode* GraphKit::clone_map() {
 699   if (map() == NULL)  return NULL;
 700 
 701   // Clone the memory edge first
 702   Node* mem = MergeMemNode::make(C, map()->memory());
 703   gvn().set_type_bottom(mem);
 704 
 705   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 706   JVMState* jvms = this->jvms();
 707   JVMState* clonejvms = jvms->clone_shallow(C);
 708   clonemap->set_memory(mem);
 709   clonemap->set_jvms(clonejvms);
 710   clonejvms->set_map(clonemap);
 711   record_for_igvn(clonemap);
 712   gvn().set_type_bottom(clonemap);
 713   return clonemap;
 714 }
 715 
 716 
 717 //-----------------------------set_map_clone-----------------------------------
 718 void GraphKit::set_map_clone(SafePointNode* m) {
 719   _map = m;
 720   _map = clone_map();
 721   _map->set_next_exception(NULL);
 722   debug_only(verify_map());
 723 }
 724 
 725 
 726 //----------------------------kill_dead_locals---------------------------------
 727 // Detect any locals which are known to be dead, and force them to top.
 728 void GraphKit::kill_dead_locals() {
 729   // Consult the liveness information for the locals.  If any
 730   // of them are unused, then they can be replaced by top().  This
 731   // should help register allocation time and cut down on the size
 732   // of the deoptimization information.
 733 
 734   // This call is made from many of the bytecode handling
 735   // subroutines called from the Big Switch in do_one_bytecode.
 736   // Every bytecode which might include a slow path is responsible
 737   // for killing its dead locals.  The more consistent we
 738   // are about killing deads, the fewer useless phis will be
 739   // constructed for them at various merge points.
 740 
 741   // bci can be -1 (InvocationEntryBci).  We return the entry
 742   // liveness for the method.
 743 
 744   if (method() == NULL || method()->code_size() == 0) {
 745     // We are building a graph for a call to a native method.
 746     // All locals are live.
 747     return;
 748   }
 749 
 750   ResourceMark rm;
 751 
 752   // Consult the liveness information for the locals.  If any
 753   // of them are unused, then they can be replaced by top().  This
 754   // should help register allocation time and cut down on the size
 755   // of the deoptimization information.
 756   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 757 
 758   int len = (int)live_locals.size();
 759   assert(len <= jvms()->loc_size(), "too many live locals");
 760   for (int local = 0; local < len; local++) {
 761     if (!live_locals.at(local)) {
 762       set_local(local, top());
 763     }
 764   }
 765 }
 766 
 767 #ifdef ASSERT
 768 //-------------------------dead_locals_are_killed------------------------------
 769 // Return true if all dead locals are set to top in the map.
 770 // Used to assert "clean" debug info at various points.
 771 bool GraphKit::dead_locals_are_killed() {
 772   if (method() == NULL || method()->code_size() == 0) {
 773     // No locals need to be dead, so all is as it should be.
 774     return true;
 775   }
 776 
 777   // Make sure somebody called kill_dead_locals upstream.
 778   ResourceMark rm;
 779   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 780     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 781     SafePointNode* map = jvms->map();
 782     ciMethod* method = jvms->method();
 783     int       bci    = jvms->bci();
 784     if (jvms == this->jvms()) {
 785       bci = this->bci();  // it might not yet be synched
 786     }
 787     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 788     int len = (int)live_locals.size();
 789     if (!live_locals.is_valid() || len == 0)
 790       // This method is trivial, or is poisoned by a breakpoint.
 791       return true;
 792     assert(len == jvms->loc_size(), "live map consistent with locals map");
 793     for (int local = 0; local < len; local++) {
 794       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 795         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 796           tty->print_cr("Zombie local %d: ", local);
 797           jvms->dump();
 798         }
 799         return false;
 800       }
 801     }
 802   }
 803   return true;
 804 }
 805 
 806 #endif //ASSERT
 807 
 808 // Helper function for enforcing certain bytecodes to reexecute if
 809 // deoptimization happens
 810 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 811   ciMethod* cur_method = jvms->method();
 812   int       cur_bci   = jvms->bci();
 813   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 814     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 815     return Interpreter::bytecode_should_reexecute(code) ||
 816            is_anewarray && code == Bytecodes::_multianewarray;
 817     // Reexecute _multianewarray bytecode which was replaced with
 818     // sequence of [a]newarray. See Parse::do_multianewarray().
 819     //
 820     // Note: interpreter should not have it set since this optimization
 821     // is limited by dimensions and guarded by flag so in some cases
 822     // multianewarray() runtime calls will be generated and
 823     // the bytecode should not be reexecutes (stack will not be reset).
 824   } else
 825     return false;
 826 }
 827 
 828 // Helper function for adding JVMState and debug information to node
 829 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 830   // Add the safepoint edges to the call (or other safepoint).
 831 
 832   // Make sure dead locals are set to top.  This
 833   // should help register allocation time and cut down on the size
 834   // of the deoptimization information.
 835   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 836 
 837   // Walk the inline list to fill in the correct set of JVMState's
 838   // Also fill in the associated edges for each JVMState.
 839 
 840   // If the bytecode needs to be reexecuted we need to put
 841   // the arguments back on the stack.
 842   const bool should_reexecute = jvms()->should_reexecute();
 843   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 844 
 845   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 846   // undefined if the bci is different.  This is normal for Parse but it
 847   // should not happen for LibraryCallKit because only one bci is processed.
 848   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 849          "in LibraryCallKit the reexecute bit should not change");
 850 
 851   // If we are guaranteed to throw, we can prune everything but the
 852   // input to the current bytecode.
 853   bool can_prune_locals = false;
 854   uint stack_slots_not_pruned = 0;
 855   int inputs = 0, depth = 0;
 856   if (must_throw) {
 857     assert(method() == youngest_jvms->method(), "sanity");
 858     if (compute_stack_effects(inputs, depth)) {
 859       can_prune_locals = true;
 860       stack_slots_not_pruned = inputs;
 861     }
 862   }
 863 
 864   if (env()->jvmti_can_access_local_variables()) {
 865     // At any safepoint, this method can get breakpointed, which would
 866     // then require an immediate deoptimization.
 867     can_prune_locals = false;  // do not prune locals
 868     stack_slots_not_pruned = 0;
 869   }
 870 
 871   // do not scribble on the input jvms
 872   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 873   call->set_jvms(out_jvms); // Start jvms list for call node
 874 
 875   // For a known set of bytecodes, the interpreter should reexecute them if
 876   // deoptimization happens. We set the reexecute state for them here
 877   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 878       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 879     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 880   }
 881 
 882   // Presize the call:
 883   DEBUG_ONLY(uint non_debug_edges = call->req());
 884   call->add_req_batch(top(), youngest_jvms->debug_depth());
 885   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 886 
 887   // Set up edges so that the call looks like this:
 888   //  Call [state:] ctl io mem fptr retadr
 889   //       [parms:] parm0 ... parmN
 890   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 891   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 892   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 893   // Note that caller debug info precedes callee debug info.
 894 
 895   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 896   uint debug_ptr = call->req();
 897 
 898   // Loop over the map input edges associated with jvms, add them
 899   // to the call node, & reset all offsets to match call node array.
 900   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 901     uint debug_end   = debug_ptr;
 902     uint debug_start = debug_ptr - in_jvms->debug_size();
 903     debug_ptr = debug_start;  // back up the ptr
 904 
 905     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 906     uint j, k, l;
 907     SafePointNode* in_map = in_jvms->map();
 908     out_jvms->set_map(call);
 909 
 910     if (can_prune_locals) {
 911       assert(in_jvms->method() == out_jvms->method(), "sanity");
 912       // If the current throw can reach an exception handler in this JVMS,
 913       // then we must keep everything live that can reach that handler.
 914       // As a quick and dirty approximation, we look for any handlers at all.
 915       if (in_jvms->method()->has_exception_handlers()) {
 916         can_prune_locals = false;
 917       }
 918     }
 919 
 920     // Add the Locals
 921     k = in_jvms->locoff();
 922     l = in_jvms->loc_size();
 923     out_jvms->set_locoff(p);
 924     if (!can_prune_locals) {
 925       for (j = 0; j < l; j++)
 926         call->set_req(p++, in_map->in(k+j));
 927     } else {
 928       p += l;  // already set to top above by add_req_batch
 929     }
 930 
 931     // Add the Expression Stack
 932     k = in_jvms->stkoff();
 933     l = in_jvms->sp();
 934     out_jvms->set_stkoff(p);
 935     if (!can_prune_locals) {
 936       for (j = 0; j < l; j++)
 937         call->set_req(p++, in_map->in(k+j));
 938     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 939       // Divide stack into {S0,...,S1}, where S0 is set to top.
 940       uint s1 = stack_slots_not_pruned;
 941       stack_slots_not_pruned = 0;  // for next iteration
 942       if (s1 > l)  s1 = l;
 943       uint s0 = l - s1;
 944       p += s0;  // skip the tops preinstalled by add_req_batch
 945       for (j = s0; j < l; j++)
 946         call->set_req(p++, in_map->in(k+j));
 947     } else {
 948       p += l;  // already set to top above by add_req_batch
 949     }
 950 
 951     // Add the Monitors
 952     k = in_jvms->monoff();
 953     l = in_jvms->mon_size();
 954     out_jvms->set_monoff(p);
 955     for (j = 0; j < l; j++)
 956       call->set_req(p++, in_map->in(k+j));
 957 
 958     // Copy any scalar object fields.
 959     k = in_jvms->scloff();
 960     l = in_jvms->scl_size();
 961     out_jvms->set_scloff(p);
 962     for (j = 0; j < l; j++)
 963       call->set_req(p++, in_map->in(k+j));
 964 
 965     // Finish the new jvms.
 966     out_jvms->set_endoff(p);
 967 
 968     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 969     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 970     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 971     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 972     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 973     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 974 
 975     // Update the two tail pointers in parallel.
 976     out_jvms = out_jvms->caller();
 977     in_jvms  = in_jvms->caller();
 978   }
 979 
 980   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 981 
 982   // Test the correctness of JVMState::debug_xxx accessors:
 983   assert(call->jvms()->debug_start() == non_debug_edges, "");
 984   assert(call->jvms()->debug_end()   == call->req(), "");
 985   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 986 }
 987 
 988 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
 989   Bytecodes::Code code = java_bc();
 990   if (code == Bytecodes::_wide) {
 991     code = method()->java_code_at_bci(bci() + 1);
 992   }
 993 
 994   BasicType rtype = T_ILLEGAL;
 995   int       rsize = 0;
 996 
 997   if (code != Bytecodes::_illegal) {
 998     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
 999     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1000     if (rtype < T_CONFLICT)
1001       rsize = type2size[rtype];
1002   }
1003 
1004   switch (code) {
1005   case Bytecodes::_illegal:
1006     return false;
1007 
1008   case Bytecodes::_ldc:
1009   case Bytecodes::_ldc_w:
1010   case Bytecodes::_ldc2_w:
1011     inputs = 0;
1012     break;
1013 
1014   case Bytecodes::_dup:         inputs = 1;  break;
1015   case Bytecodes::_dup_x1:      inputs = 2;  break;
1016   case Bytecodes::_dup_x2:      inputs = 3;  break;
1017   case Bytecodes::_dup2:        inputs = 2;  break;
1018   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1019   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1020   case Bytecodes::_swap:        inputs = 2;  break;
1021   case Bytecodes::_arraylength: inputs = 1;  break;
1022 
1023   case Bytecodes::_getstatic:
1024   case Bytecodes::_putstatic:
1025   case Bytecodes::_getfield:
1026   case Bytecodes::_putfield:
1027     {
1028       bool ignored_will_link;
1029       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1030       int      size  = field->type()->size();
1031       bool is_get = (depth >= 0), is_static = (depth & 1);
1032       inputs = (is_static ? 0 : 1);
1033       if (is_get) {
1034         depth = size - inputs;
1035       } else {
1036         inputs += size;        // putxxx pops the value from the stack
1037         depth = - inputs;
1038       }
1039     }
1040     break;
1041 
1042   case Bytecodes::_invokevirtual:
1043   case Bytecodes::_invokespecial:
1044   case Bytecodes::_invokestatic:
1045   case Bytecodes::_invokedynamic:
1046   case Bytecodes::_invokeinterface:
1047     {
1048       bool ignored_will_link;
1049       ciSignature* declared_signature = NULL;
1050       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1051       assert(declared_signature != NULL, "cannot be null");
1052       inputs   = declared_signature->arg_size_for_bc(code);
1053       int size = declared_signature->return_type()->size();
1054       depth = size - inputs;
1055     }
1056     break;
1057 
1058   case Bytecodes::_multianewarray:
1059     {
1060       ciBytecodeStream iter(method());
1061       iter.reset_to_bci(bci());
1062       iter.next();
1063       inputs = iter.get_dimensions();
1064       assert(rsize == 1, "");
1065       depth = rsize - inputs;
1066     }
1067     break;
1068 
1069   case Bytecodes::_ireturn:
1070   case Bytecodes::_lreturn:
1071   case Bytecodes::_freturn:
1072   case Bytecodes::_dreturn:
1073   case Bytecodes::_areturn:
1074     assert(rsize = -depth, "");
1075     inputs = rsize;
1076     break;
1077 
1078   case Bytecodes::_jsr:
1079   case Bytecodes::_jsr_w:
1080     inputs = 0;
1081     depth  = 1;                  // S.B. depth=1, not zero
1082     break;
1083 
1084   default:
1085     // bytecode produces a typed result
1086     inputs = rsize - depth;
1087     assert(inputs >= 0, "");
1088     break;
1089   }
1090 
1091 #ifdef ASSERT
1092   // spot check
1093   int outputs = depth + inputs;
1094   assert(outputs >= 0, "sanity");
1095   switch (code) {
1096   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1097   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1098   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1099   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1100   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1101   }
1102 #endif //ASSERT
1103 
1104   return true;
1105 }
1106 
1107 
1108 
1109 //------------------------------basic_plus_adr---------------------------------
1110 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1111   // short-circuit a common case
1112   if (offset == intcon(0))  return ptr;
1113   return _gvn.transform( new (C) AddPNode(base, ptr, offset) );
1114 }
1115 
1116 Node* GraphKit::ConvI2L(Node* offset) {
1117   // short-circuit a common case
1118   jint offset_con = find_int_con(offset, Type::OffsetBot);
1119   if (offset_con != Type::OffsetBot) {
1120     return longcon((jlong) offset_con);
1121   }
1122   return _gvn.transform( new (C) ConvI2LNode(offset));
1123 }
1124 
1125 Node* GraphKit::ConvI2UL(Node* offset) {
1126   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1127   if (offset_con != (juint) Type::OffsetBot) {
1128     return longcon((julong) offset_con);
1129   }
1130   Node* conv = _gvn.transform( new (C) ConvI2LNode(offset));
1131   Node* mask = _gvn.transform( ConLNode::make(C, (julong) max_juint) );
1132   return _gvn.transform( new (C) AndLNode(conv, mask) );
1133 }
1134 
1135 Node* GraphKit::ConvL2I(Node* offset) {
1136   // short-circuit a common case
1137   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1138   if (offset_con != (jlong)Type::OffsetBot) {
1139     return intcon((int) offset_con);
1140   }
1141   return _gvn.transform( new (C) ConvL2INode(offset));
1142 }
1143 
1144 //-------------------------load_object_klass-----------------------------------
1145 Node* GraphKit::load_object_klass(Node* obj) {
1146   // Special-case a fresh allocation to avoid building nodes:
1147   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1148   if (akls != NULL)  return akls;
1149   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1150   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
1151 }
1152 
1153 //-------------------------load_array_length-----------------------------------
1154 Node* GraphKit::load_array_length(Node* array) {
1155   // Special-case a fresh allocation to avoid building nodes:
1156   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1157   Node *alen;
1158   if (alloc == NULL) {
1159     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1160     alen = _gvn.transform( new (C) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1161   } else {
1162     alen = alloc->Ideal_length();
1163     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1164     if (ccast != alen) {
1165       alen = _gvn.transform(ccast);
1166     }
1167   }
1168   return alen;
1169 }
1170 
1171 //------------------------------do_null_check----------------------------------
1172 // Helper function to do a NULL pointer check.  Returned value is
1173 // the incoming address with NULL casted away.  You are allowed to use the
1174 // not-null value only if you are control dependent on the test.
1175 extern int explicit_null_checks_inserted,
1176            explicit_null_checks_elided;
1177 Node* GraphKit::null_check_common(Node* value, BasicType type,
1178                                   // optional arguments for variations:
1179                                   bool assert_null,
1180                                   Node* *null_control) {
1181   assert(!assert_null || null_control == NULL, "not both at once");
1182   if (stopped())  return top();
1183   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1184     // For some performance testing, we may wish to suppress null checking.
1185     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1186     return value;
1187   }
1188   explicit_null_checks_inserted++;
1189 
1190   // Construct NULL check
1191   Node *chk = NULL;
1192   switch(type) {
1193     case T_LONG   : chk = new (C) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1194     case T_INT    : chk = new (C) CmpINode(value, _gvn.intcon(0)); break;
1195     case T_ARRAY  : // fall through
1196       type = T_OBJECT;  // simplify further tests
1197     case T_OBJECT : {
1198       const Type *t = _gvn.type( value );
1199 
1200       const TypeOopPtr* tp = t->isa_oopptr();
1201       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1202           // Only for do_null_check, not any of its siblings:
1203           && !assert_null && null_control == NULL) {
1204         // Usually, any field access or invocation on an unloaded oop type
1205         // will simply fail to link, since the statically linked class is
1206         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1207         // the static class is loaded but the sharper oop type is not.
1208         // Rather than checking for this obscure case in lots of places,
1209         // we simply observe that a null check on an unloaded class
1210         // will always be followed by a nonsense operation, so we
1211         // can just issue the uncommon trap here.
1212         // Our access to the unloaded class will only be correct
1213         // after it has been loaded and initialized, which requires
1214         // a trip through the interpreter.
1215 #ifndef PRODUCT
1216         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1217 #endif
1218         uncommon_trap(Deoptimization::Reason_unloaded,
1219                       Deoptimization::Action_reinterpret,
1220                       tp->klass(), "!loaded");
1221         return top();
1222       }
1223 
1224       if (assert_null) {
1225         // See if the type is contained in NULL_PTR.
1226         // If so, then the value is already null.
1227         if (t->higher_equal(TypePtr::NULL_PTR)) {
1228           explicit_null_checks_elided++;
1229           return value;           // Elided null assert quickly!
1230         }
1231       } else {
1232         // See if mixing in the NULL pointer changes type.
1233         // If so, then the NULL pointer was not allowed in the original
1234         // type.  In other words, "value" was not-null.
1235         if (t->meet(TypePtr::NULL_PTR) != t) {
1236           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1237           explicit_null_checks_elided++;
1238           return value;           // Elided null check quickly!
1239         }
1240       }
1241       chk = new (C) CmpPNode( value, null() );
1242       break;
1243     }
1244 
1245     default:
1246       fatal(err_msg_res("unexpected type: %s", type2name(type)));
1247   }
1248   assert(chk != NULL, "sanity check");
1249   chk = _gvn.transform(chk);
1250 
1251   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1252   BoolNode *btst = new (C) BoolNode( chk, btest);
1253   Node   *tst = _gvn.transform( btst );
1254 
1255   //-----------
1256   // if peephole optimizations occurred, a prior test existed.
1257   // If a prior test existed, maybe it dominates as we can avoid this test.
1258   if (tst != btst && type == T_OBJECT) {
1259     // At this point we want to scan up the CFG to see if we can
1260     // find an identical test (and so avoid this test altogether).
1261     Node *cfg = control();
1262     int depth = 0;
1263     while( depth < 16 ) {       // Limit search depth for speed
1264       if( cfg->Opcode() == Op_IfTrue &&
1265           cfg->in(0)->in(1) == tst ) {
1266         // Found prior test.  Use "cast_not_null" to construct an identical
1267         // CastPP (and hence hash to) as already exists for the prior test.
1268         // Return that casted value.
1269         if (assert_null) {
1270           replace_in_map(value, null());
1271           return null();  // do not issue the redundant test
1272         }
1273         Node *oldcontrol = control();
1274         set_control(cfg);
1275         Node *res = cast_not_null(value);
1276         set_control(oldcontrol);
1277         explicit_null_checks_elided++;
1278         return res;
1279       }
1280       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1281       if (cfg == NULL)  break;  // Quit at region nodes
1282       depth++;
1283     }
1284   }
1285 
1286   //-----------
1287   // Branch to failure if null
1288   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1289   Deoptimization::DeoptReason reason;
1290   if (assert_null)
1291     reason = Deoptimization::Reason_null_assert;
1292   else if (type == T_OBJECT)
1293     reason = Deoptimization::Reason_null_check;
1294   else
1295     reason = Deoptimization::Reason_div0_check;
1296 
1297   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1298   // ciMethodData::has_trap_at will return a conservative -1 if any
1299   // must-be-null assertion has failed.  This could cause performance
1300   // problems for a method after its first do_null_assert failure.
1301   // Consider using 'Reason_class_check' instead?
1302 
1303   // To cause an implicit null check, we set the not-null probability
1304   // to the maximum (PROB_MAX).  For an explicit check the probability
1305   // is set to a smaller value.
1306   if (null_control != NULL || too_many_traps(reason)) {
1307     // probability is less likely
1308     ok_prob =  PROB_LIKELY_MAG(3);
1309   } else if (!assert_null &&
1310              (ImplicitNullCheckThreshold > 0) &&
1311              method() != NULL &&
1312              (method()->method_data()->trap_count(reason)
1313               >= (uint)ImplicitNullCheckThreshold)) {
1314     ok_prob =  PROB_LIKELY_MAG(3);
1315   }
1316 
1317   if (null_control != NULL) {
1318     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1319     Node* null_true = _gvn.transform( new (C) IfFalseNode(iff));
1320     set_control(      _gvn.transform( new (C) IfTrueNode(iff)));
1321     if (null_true == top())
1322       explicit_null_checks_elided++;
1323     (*null_control) = null_true;
1324   } else {
1325     BuildCutout unless(this, tst, ok_prob);
1326     // Check for optimizer eliding test at parse time
1327     if (stopped()) {
1328       // Failure not possible; do not bother making uncommon trap.
1329       explicit_null_checks_elided++;
1330     } else if (assert_null) {
1331       uncommon_trap(reason,
1332                     Deoptimization::Action_make_not_entrant,
1333                     NULL, "assert_null");
1334     } else {
1335       replace_in_map(value, zerocon(type));
1336       builtin_throw(reason);
1337     }
1338   }
1339 
1340   // Must throw exception, fall-thru not possible?
1341   if (stopped()) {
1342     return top();               // No result
1343   }
1344 
1345   if (assert_null) {
1346     // Cast obj to null on this path.
1347     replace_in_map(value, zerocon(type));
1348     return zerocon(type);
1349   }
1350 
1351   // Cast obj to not-null on this path, if there is no null_control.
1352   // (If there is a null_control, a non-null value may come back to haunt us.)
1353   if (type == T_OBJECT) {
1354     Node* cast = cast_not_null(value, false);
1355     if (null_control == NULL || (*null_control) == top())
1356       replace_in_map(value, cast);
1357     value = cast;
1358   }
1359 
1360   return value;
1361 }
1362 
1363 
1364 //------------------------------cast_not_null----------------------------------
1365 // Cast obj to not-null on this path
1366 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1367   const Type *t = _gvn.type(obj);
1368   const Type *t_not_null = t->join(TypePtr::NOTNULL);
1369   // Object is already not-null?
1370   if( t == t_not_null ) return obj;
1371 
1372   Node *cast = new (C) CastPPNode(obj,t_not_null);
1373   cast->init_req(0, control());
1374   cast = _gvn.transform( cast );
1375 
1376   // Scan for instances of 'obj' in the current JVM mapping.
1377   // These instances are known to be not-null after the test.
1378   if (do_replace_in_map)
1379     replace_in_map(obj, cast);
1380 
1381   return cast;                  // Return casted value
1382 }
1383 
1384 
1385 //--------------------------replace_in_map-------------------------------------
1386 void GraphKit::replace_in_map(Node* old, Node* neww) {
1387   this->map()->replace_edge(old, neww);
1388 
1389   // Note: This operation potentially replaces any edge
1390   // on the map.  This includes locals, stack, and monitors
1391   // of the current (innermost) JVM state.
1392 
1393   // We can consider replacing in caller maps.
1394   // The idea would be that an inlined function's null checks
1395   // can be shared with the entire inlining tree.
1396   // The expense of doing this is that the PreserveJVMState class
1397   // would have to preserve caller states too, with a deep copy.
1398 }
1399 
1400 
1401 //=============================================================================
1402 //--------------------------------memory---------------------------------------
1403 Node* GraphKit::memory(uint alias_idx) {
1404   MergeMemNode* mem = merged_memory();
1405   Node* p = mem->memory_at(alias_idx);
1406   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1407   return p;
1408 }
1409 
1410 //-----------------------------reset_memory------------------------------------
1411 Node* GraphKit::reset_memory() {
1412   Node* mem = map()->memory();
1413   // do not use this node for any more parsing!
1414   debug_only( map()->set_memory((Node*)NULL) );
1415   return _gvn.transform( mem );
1416 }
1417 
1418 //------------------------------set_all_memory---------------------------------
1419 void GraphKit::set_all_memory(Node* newmem) {
1420   Node* mergemem = MergeMemNode::make(C, newmem);
1421   gvn().set_type_bottom(mergemem);
1422   map()->set_memory(mergemem);
1423 }
1424 
1425 //------------------------------set_all_memory_call----------------------------
1426 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1427   Node* newmem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1428   set_all_memory(newmem);
1429 }
1430 
1431 //=============================================================================
1432 //
1433 // parser factory methods for MemNodes
1434 //
1435 // These are layered on top of the factory methods in LoadNode and StoreNode,
1436 // and integrate with the parser's memory state and _gvn engine.
1437 //
1438 
1439 // factory methods in "int adr_idx"
1440 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1441                           int adr_idx,
1442                           bool require_atomic_access, LoadNode::Sem sem) {
1443   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1444   const TypePtr* adr_type = NULL; // debug-mode-only argument
1445   debug_only(adr_type = C->get_adr_type(adr_idx));
1446   Node* mem = memory(adr_idx);
1447   Node* ld;
1448   if (require_atomic_access && bt == T_LONG) {
1449     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t, sem);
1450   } else {
1451     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, sem);
1452   }
1453   return _gvn.transform(ld);
1454 }
1455 
1456 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1457                                 int adr_idx,
1458                                 bool require_atomic_access,
1459                                 StoreNode::Sem sem) {
1460   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1461   const TypePtr* adr_type = NULL;
1462   debug_only(adr_type = C->get_adr_type(adr_idx));
1463   Node *mem = memory(adr_idx);
1464   Node* st;
1465   if (require_atomic_access && bt == T_LONG) {
1466     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val, sem);
1467   } else {
1468     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, sem);
1469   }
1470   st = _gvn.transform(st);
1471   set_memory(st, adr_idx);
1472   // Back-to-back stores can only remove intermediate store with DU info
1473   // so push on worklist for optimizer.
1474   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1475     record_for_igvn(st);
1476 
1477   return st;
1478 }
1479 
1480 
1481 void GraphKit::pre_barrier(bool do_load,
1482                            Node* ctl,
1483                            Node* obj,
1484                            Node* adr,
1485                            uint  adr_idx,
1486                            Node* val,
1487                            const TypeOopPtr* val_type,
1488                            Node* pre_val,
1489                            BasicType bt) {
1490 
1491   BarrierSet* bs = Universe::heap()->barrier_set();
1492   set_control(ctl);
1493   switch (bs->kind()) {
1494     case BarrierSet::G1SATBCT:
1495     case BarrierSet::G1SATBCTLogging:
1496       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1497       break;
1498 
1499     case BarrierSet::CardTableModRef:
1500     case BarrierSet::CardTableExtension:
1501     case BarrierSet::ModRef:
1502       break;
1503 
1504     case BarrierSet::Other:
1505     default      :
1506       ShouldNotReachHere();
1507 
1508   }
1509 }
1510 
1511 void GraphKit::post_barrier(Node* ctl,
1512                             Node* store,
1513                             Node* obj,
1514                             Node* adr,
1515                             uint  adr_idx,
1516                             Node* val,
1517                             BasicType bt,
1518                             bool use_precise) {
1519   BarrierSet* bs = Universe::heap()->barrier_set();
1520   set_control(ctl);
1521   switch (bs->kind()) {
1522     case BarrierSet::G1SATBCT:
1523     case BarrierSet::G1SATBCTLogging:
1524       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1525       break;
1526 
1527     case BarrierSet::CardTableModRef:
1528     case BarrierSet::CardTableExtension:
1529       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1530       break;
1531 
1532     case BarrierSet::ModRef:
1533       break;
1534 
1535     case BarrierSet::Other:
1536     default      :
1537       ShouldNotReachHere();
1538 
1539   }
1540 }
1541 
1542 Node* GraphKit::store_oop(Node* ctl,
1543                           Node* obj,
1544                           Node* adr,
1545                           const TypePtr* adr_type,
1546                           Node* val,
1547                           const TypeOopPtr* val_type,
1548                           BasicType bt,
1549                           bool use_precise,
1550                           StoreNode::Sem sem) {
1551   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1552   // could be delayed during Parse (for example, in adjust_map_after_if()).
1553   // Execute transformation here to avoid barrier generation in such case.
1554   if (_gvn.type(val) == TypePtr::NULL_PTR)
1555     val = _gvn.makecon(TypePtr::NULL_PTR);
1556 
1557   set_control(ctl);
1558   if (stopped()) return top(); // Dead path ?
1559 
1560   assert(bt == T_OBJECT, "sanity");
1561   assert(val != NULL, "not dead path");
1562   uint adr_idx = C->get_alias_index(adr_type);
1563   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1564 
1565   pre_barrier(true /* do_load */,
1566               control(), obj, adr, adr_idx, val, val_type,
1567               NULL /* pre_val */,
1568               bt);
1569 
1570   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, false, sem);
1571   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1572   return store;
1573 }
1574 
1575 // Could be an array or object we don't know at compile time (unsafe ref.)
1576 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1577                              Node* obj,   // containing obj
1578                              Node* adr,  // actual adress to store val at
1579                              const TypePtr* adr_type,
1580                              Node* val,
1581                              BasicType bt,
1582                              StoreNode::Sem sem) {
1583   Compile::AliasType* at = C->alias_type(adr_type);
1584   const TypeOopPtr* val_type = NULL;
1585   if (adr_type->isa_instptr()) {
1586     if (at->field() != NULL) {
1587       // known field.  This code is a copy of the do_put_xxx logic.
1588       ciField* field = at->field();
1589       if (!field->type()->is_loaded()) {
1590         val_type = TypeInstPtr::BOTTOM;
1591       } else {
1592         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1593       }
1594     }
1595   } else if (adr_type->isa_aryptr()) {
1596     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1597   }
1598   if (val_type == NULL) {
1599     val_type = TypeInstPtr::BOTTOM;
1600   }
1601   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, sem);
1602 }
1603 
1604 
1605 //-------------------------array_element_address-------------------------
1606 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1607                                       const TypeInt* sizetype) {
1608   uint shift  = exact_log2(type2aelembytes(elembt));
1609   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1610 
1611   // short-circuit a common case (saves lots of confusing waste motion)
1612   jint idx_con = find_int_con(idx, -1);
1613   if (idx_con >= 0) {
1614     intptr_t offset = header + ((intptr_t)idx_con << shift);
1615     return basic_plus_adr(ary, offset);
1616   }
1617 
1618   // must be correct type for alignment purposes
1619   Node* base  = basic_plus_adr(ary, header);
1620 #ifdef _LP64
1621   // The scaled index operand to AddP must be a clean 64-bit value.
1622   // Java allows a 32-bit int to be incremented to a negative
1623   // value, which appears in a 64-bit register as a large
1624   // positive number.  Using that large positive number as an
1625   // operand in pointer arithmetic has bad consequences.
1626   // On the other hand, 32-bit overflow is rare, and the possibility
1627   // can often be excluded, if we annotate the ConvI2L node with
1628   // a type assertion that its value is known to be a small positive
1629   // number.  (The prior range check has ensured this.)
1630   // This assertion is used by ConvI2LNode::Ideal.
1631   int index_max = max_jint - 1;  // array size is max_jint, index is one less
1632   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
1633   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
1634   idx = _gvn.transform( new (C) ConvI2LNode(idx, lidxtype) );
1635 #endif
1636   Node* scale = _gvn.transform( new (C) LShiftXNode(idx, intcon(shift)) );
1637   return basic_plus_adr(ary, base, scale);
1638 }
1639 
1640 //-------------------------load_array_element-------------------------
1641 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1642   const Type* elemtype = arytype->elem();
1643   BasicType elembt = elemtype->array_element_basic_type();
1644   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1645   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype);
1646   return ld;
1647 }
1648 
1649 //-------------------------set_arguments_for_java_call-------------------------
1650 // Arguments (pre-popped from the stack) are taken from the JVMS.
1651 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1652   // Add the call arguments:
1653   uint nargs = call->method()->arg_size();
1654   for (uint i = 0; i < nargs; i++) {
1655     Node* arg = argument(i);
1656     call->init_req(i + TypeFunc::Parms, arg);
1657   }
1658 }
1659 
1660 //---------------------------set_edges_for_java_call---------------------------
1661 // Connect a newly created call into the current JVMS.
1662 // A return value node (if any) is returned from set_edges_for_java_call.
1663 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1664 
1665   // Add the predefined inputs:
1666   call->init_req( TypeFunc::Control, control() );
1667   call->init_req( TypeFunc::I_O    , i_o() );
1668   call->init_req( TypeFunc::Memory , reset_memory() );
1669   call->init_req( TypeFunc::FramePtr, frameptr() );
1670   call->init_req( TypeFunc::ReturnAdr, top() );
1671 
1672   add_safepoint_edges(call, must_throw);
1673 
1674   Node* xcall = _gvn.transform(call);
1675 
1676   if (xcall == top()) {
1677     set_control(top());
1678     return;
1679   }
1680   assert(xcall == call, "call identity is stable");
1681 
1682   // Re-use the current map to produce the result.
1683 
1684   set_control(_gvn.transform(new (C) ProjNode(call, TypeFunc::Control)));
1685   set_i_o(    _gvn.transform(new (C) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1686   set_all_memory_call(xcall, separate_io_proj);
1687 
1688   //return xcall;   // no need, caller already has it
1689 }
1690 
1691 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1692   if (stopped())  return top();  // maybe the call folded up?
1693 
1694   // Capture the return value, if any.
1695   Node* ret;
1696   if (call->method() == NULL ||
1697       call->method()->return_type()->basic_type() == T_VOID)
1698         ret = top();
1699   else  ret = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1700 
1701   // Note:  Since any out-of-line call can produce an exception,
1702   // we always insert an I_O projection from the call into the result.
1703 
1704   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1705 
1706   if (separate_io_proj) {
1707     // The caller requested separate projections be used by the fall
1708     // through and exceptional paths, so replace the projections for
1709     // the fall through path.
1710     set_i_o(_gvn.transform( new (C) ProjNode(call, TypeFunc::I_O) ));
1711     set_all_memory(_gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ));
1712   }
1713   return ret;
1714 }
1715 
1716 //--------------------set_predefined_input_for_runtime_call--------------------
1717 // Reading and setting the memory state is way conservative here.
1718 // The real problem is that I am not doing real Type analysis on memory,
1719 // so I cannot distinguish card mark stores from other stores.  Across a GC
1720 // point the Store Barrier and the card mark memory has to agree.  I cannot
1721 // have a card mark store and its barrier split across the GC point from
1722 // either above or below.  Here I get that to happen by reading ALL of memory.
1723 // A better answer would be to separate out card marks from other memory.
1724 // For now, return the input memory state, so that it can be reused
1725 // after the call, if this call has restricted memory effects.
1726 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1727   // Set fixed predefined input arguments
1728   Node* memory = reset_memory();
1729   call->init_req( TypeFunc::Control,   control()  );
1730   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1731   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1732   call->init_req( TypeFunc::FramePtr,  frameptr() );
1733   call->init_req( TypeFunc::ReturnAdr, top()      );
1734   return memory;
1735 }
1736 
1737 //-------------------set_predefined_output_for_runtime_call--------------------
1738 // Set control and memory (not i_o) from the call.
1739 // If keep_mem is not NULL, use it for the output state,
1740 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1741 // If hook_mem is NULL, this call produces no memory effects at all.
1742 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1743 // then only that memory slice is taken from the call.
1744 // In the last case, we must put an appropriate memory barrier before
1745 // the call, so as to create the correct anti-dependencies on loads
1746 // preceding the call.
1747 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1748                                                       Node* keep_mem,
1749                                                       const TypePtr* hook_mem) {
1750   // no i/o
1751   set_control(_gvn.transform( new (C) ProjNode(call,TypeFunc::Control) ));
1752   if (keep_mem) {
1753     // First clone the existing memory state
1754     set_all_memory(keep_mem);
1755     if (hook_mem != NULL) {
1756       // Make memory for the call
1757       Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) );
1758       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1759       // We also use hook_mem to extract specific effects from arraycopy stubs.
1760       set_memory(mem, hook_mem);
1761     }
1762     // ...else the call has NO memory effects.
1763 
1764     // Make sure the call advertises its memory effects precisely.
1765     // This lets us build accurate anti-dependences in gcm.cpp.
1766     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1767            "call node must be constructed correctly");
1768   } else {
1769     assert(hook_mem == NULL, "");
1770     // This is not a "slow path" call; all memory comes from the call.
1771     set_all_memory_call(call);
1772   }
1773 }
1774 
1775 
1776 // Replace the call with the current state of the kit.
1777 void GraphKit::replace_call(CallNode* call, Node* result) {
1778   JVMState* ejvms = NULL;
1779   if (has_exceptions()) {
1780     ejvms = transfer_exceptions_into_jvms();
1781   }
1782 
1783   SafePointNode* final_state = stop();
1784 
1785   // Find all the needed outputs of this call
1786   CallProjections callprojs;
1787   call->extract_projections(&callprojs, true);
1788 
1789   Node* init_mem = call->in(TypeFunc::Memory);
1790   Node* final_mem = final_state->in(TypeFunc::Memory);
1791   Node* final_ctl = final_state->in(TypeFunc::Control);
1792   Node* final_io = final_state->in(TypeFunc::I_O);
1793 
1794   // Replace all the old call edges with the edges from the inlining result
1795   if (callprojs.fallthrough_catchproj != NULL) {
1796     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1797   }
1798   if (callprojs.fallthrough_memproj != NULL) {
1799     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1800   }
1801   if (callprojs.fallthrough_ioproj != NULL) {
1802     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1803   }
1804 
1805   // Replace the result with the new result if it exists and is used
1806   if (callprojs.resproj != NULL && result != NULL) {
1807     C->gvn_replace_by(callprojs.resproj, result);
1808   }
1809 
1810   if (ejvms == NULL) {
1811     // No exception edges to simply kill off those paths
1812     if (callprojs.catchall_catchproj != NULL) {
1813       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1814     }
1815     if (callprojs.catchall_memproj != NULL) {
1816       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1817     }
1818     if (callprojs.catchall_ioproj != NULL) {
1819       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1820     }
1821     // Replace the old exception object with top
1822     if (callprojs.exobj != NULL) {
1823       C->gvn_replace_by(callprojs.exobj, C->top());
1824     }
1825   } else {
1826     GraphKit ekit(ejvms);
1827 
1828     // Load my combined exception state into the kit, with all phis transformed:
1829     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1830 
1831     Node* ex_oop = ekit.use_exception_state(ex_map);
1832     if (callprojs.catchall_catchproj != NULL) {
1833       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1834     }
1835     if (callprojs.catchall_memproj != NULL) {
1836       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1837     }
1838     if (callprojs.catchall_ioproj != NULL) {
1839       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1840     }
1841 
1842     // Replace the old exception object with the newly created one
1843     if (callprojs.exobj != NULL) {
1844       C->gvn_replace_by(callprojs.exobj, ex_oop);
1845     }
1846   }
1847 
1848   // Disconnect the call from the graph
1849   call->disconnect_inputs(NULL, C);
1850   C->gvn_replace_by(call, C->top());
1851 
1852   // Clean up any MergeMems that feed other MergeMems since the
1853   // optimizer doesn't like that.
1854   if (final_mem->is_MergeMem()) {
1855     Node_List wl;
1856     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1857       Node* m = i.get();
1858       if (m->is_MergeMem() && !wl.contains(m)) {
1859         wl.push(m);
1860       }
1861     }
1862     while (wl.size()  > 0) {
1863       _gvn.transform(wl.pop());
1864     }
1865   }
1866 }
1867 
1868 
1869 //------------------------------increment_counter------------------------------
1870 // for statistics: increment a VM counter by 1
1871 
1872 void GraphKit::increment_counter(address counter_addr) {
1873   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1874   increment_counter(adr1);
1875 }
1876 
1877 void GraphKit::increment_counter(Node* counter_addr) {
1878   int adr_type = Compile::AliasIdxRaw;
1879   Node* ctrl = control();
1880   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type);
1881   Node* incr = _gvn.transform(new (C) AddINode(cnt, _gvn.intcon(1)));
1882   store_to_memory( ctrl, counter_addr, incr, T_INT, adr_type );
1883 }
1884 
1885 
1886 //------------------------------uncommon_trap----------------------------------
1887 // Bail out to the interpreter in mid-method.  Implemented by calling the
1888 // uncommon_trap blob.  This helper function inserts a runtime call with the
1889 // right debug info.
1890 void GraphKit::uncommon_trap(int trap_request,
1891                              ciKlass* klass, const char* comment,
1892                              bool must_throw,
1893                              bool keep_exact_action) {
1894   if (failing())  stop();
1895   if (stopped())  return; // trap reachable?
1896 
1897   // Note:  If ProfileTraps is true, and if a deopt. actually
1898   // occurs here, the runtime will make sure an MDO exists.  There is
1899   // no need to call method()->ensure_method_data() at this point.
1900 
1901   // Set the stack pointer to the right value for reexecution:
1902   set_sp(reexecute_sp());
1903 
1904 #ifdef ASSERT
1905   if (!must_throw) {
1906     // Make sure the stack has at least enough depth to execute
1907     // the current bytecode.
1908     int inputs, ignored_depth;
1909     if (compute_stack_effects(inputs, ignored_depth)) {
1910       assert(sp() >= inputs, err_msg_res("must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1911              Bytecodes::name(java_bc()), sp(), inputs));
1912     }
1913   }
1914 #endif
1915 
1916   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1917   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1918 
1919   switch (action) {
1920   case Deoptimization::Action_maybe_recompile:
1921   case Deoptimization::Action_reinterpret:
1922     // Temporary fix for 6529811 to allow virtual calls to be sure they
1923     // get the chance to go from mono->bi->mega
1924     if (!keep_exact_action &&
1925         Deoptimization::trap_request_index(trap_request) < 0 &&
1926         too_many_recompiles(reason)) {
1927       // This BCI is causing too many recompilations.
1928       action = Deoptimization::Action_none;
1929       trap_request = Deoptimization::make_trap_request(reason, action);
1930     } else {
1931       C->set_trap_can_recompile(true);
1932     }
1933     break;
1934   case Deoptimization::Action_make_not_entrant:
1935     C->set_trap_can_recompile(true);
1936     break;
1937 #ifdef ASSERT
1938   case Deoptimization::Action_none:
1939   case Deoptimization::Action_make_not_compilable:
1940     break;
1941   default:
1942     fatal(err_msg_res("unknown action %d: %s", action, Deoptimization::trap_action_name(action)));
1943     break;
1944 #endif
1945   }
1946 
1947   if (TraceOptoParse) {
1948     char buf[100];
1949     tty->print_cr("Uncommon trap %s at bci:%d",
1950                   Deoptimization::format_trap_request(buf, sizeof(buf),
1951                                                       trap_request), bci());
1952   }
1953 
1954   CompileLog* log = C->log();
1955   if (log != NULL) {
1956     int kid = (klass == NULL)? -1: log->identify(klass);
1957     log->begin_elem("uncommon_trap bci='%d'", bci());
1958     char buf[100];
1959     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
1960                                                           trap_request));
1961     if (kid >= 0)         log->print(" klass='%d'", kid);
1962     if (comment != NULL)  log->print(" comment='%s'", comment);
1963     log->end_elem();
1964   }
1965 
1966   // Make sure any guarding test views this path as very unlikely
1967   Node *i0 = control()->in(0);
1968   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
1969     IfNode *iff = i0->as_If();
1970     float f = iff->_prob;   // Get prob
1971     if (control()->Opcode() == Op_IfTrue) {
1972       if (f > PROB_UNLIKELY_MAG(4))
1973         iff->_prob = PROB_MIN;
1974     } else {
1975       if (f < PROB_LIKELY_MAG(4))
1976         iff->_prob = PROB_MAX;
1977     }
1978   }
1979 
1980   // Clear out dead values from the debug info.
1981   kill_dead_locals();
1982 
1983   // Now insert the uncommon trap subroutine call
1984   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
1985   const TypePtr* no_memory_effects = NULL;
1986   // Pass the index of the class to be loaded
1987   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
1988                                  (must_throw ? RC_MUST_THROW : 0),
1989                                  OptoRuntime::uncommon_trap_Type(),
1990                                  call_addr, "uncommon_trap", no_memory_effects,
1991                                  intcon(trap_request));
1992   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
1993          "must extract request correctly from the graph");
1994   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
1995 
1996   call->set_req(TypeFunc::ReturnAdr, returnadr());
1997   // The debug info is the only real input to this call.
1998 
1999   // Halt-and-catch fire here.  The above call should never return!
2000   HaltNode* halt = new(C) HaltNode(control(), frameptr());
2001   _gvn.set_type_bottom(halt);
2002   root()->add_req(halt);
2003 
2004   stop_and_kill_map();
2005 }
2006 
2007 
2008 //--------------------------just_allocated_object------------------------------
2009 // Report the object that was just allocated.
2010 // It must be the case that there are no intervening safepoints.
2011 // We use this to determine if an object is so "fresh" that
2012 // it does not require card marks.
2013 Node* GraphKit::just_allocated_object(Node* current_control) {
2014   if (C->recent_alloc_ctl() == current_control)
2015     return C->recent_alloc_obj();
2016   return NULL;
2017 }
2018 
2019 
2020 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2021   // (Note:  TypeFunc::make has a cache that makes this fast.)
2022   const TypeFunc* tf    = TypeFunc::make(dest_method);
2023   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2024   for (int j = 0; j < nargs; j++) {
2025     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2026     if( targ->basic_type() == T_DOUBLE ) {
2027       // If any parameters are doubles, they must be rounded before
2028       // the call, dstore_rounding does gvn.transform
2029       Node *arg = argument(j);
2030       arg = dstore_rounding(arg);
2031       set_argument(j, arg);
2032     }
2033   }
2034 }
2035 
2036 void GraphKit::round_double_result(ciMethod* dest_method) {
2037   // A non-strict method may return a double value which has an extended
2038   // exponent, but this must not be visible in a caller which is 'strict'
2039   // If a strict caller invokes a non-strict callee, round a double result
2040 
2041   BasicType result_type = dest_method->return_type()->basic_type();
2042   assert( method() != NULL, "must have caller context");
2043   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2044     // Destination method's return value is on top of stack
2045     // dstore_rounding() does gvn.transform
2046     Node *result = pop_pair();
2047     result = dstore_rounding(result);
2048     push_pair(result);
2049   }
2050 }
2051 
2052 // rounding for strict float precision conformance
2053 Node* GraphKit::precision_rounding(Node* n) {
2054   return UseStrictFP && _method->flags().is_strict()
2055     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2056     ? _gvn.transform( new (C) RoundFloatNode(0, n) )
2057     : n;
2058 }
2059 
2060 // rounding for strict double precision conformance
2061 Node* GraphKit::dprecision_rounding(Node *n) {
2062   return UseStrictFP && _method->flags().is_strict()
2063     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2064     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2065     : n;
2066 }
2067 
2068 // rounding for non-strict double stores
2069 Node* GraphKit::dstore_rounding(Node* n) {
2070   return Matcher::strict_fp_requires_explicit_rounding
2071     && UseSSE <= 1
2072     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2073     : n;
2074 }
2075 
2076 //=============================================================================
2077 // Generate a fast path/slow path idiom.  Graph looks like:
2078 // [foo] indicates that 'foo' is a parameter
2079 //
2080 //              [in]     NULL
2081 //                 \    /
2082 //                  CmpP
2083 //                  Bool ne
2084 //                   If
2085 //                  /  \
2086 //              True    False-<2>
2087 //              / |
2088 //             /  cast_not_null
2089 //           Load  |    |   ^
2090 //        [fast_test]   |   |
2091 // gvn to   opt_test    |   |
2092 //          /    \      |  <1>
2093 //      True     False  |
2094 //        |         \\  |
2095 //   [slow_call]     \[fast_result]
2096 //    Ctl   Val       \      \
2097 //     |               \      \
2098 //    Catch       <1>   \      \
2099 //   /    \        ^     \      \
2100 //  Ex    No_Ex    |      \      \
2101 //  |       \   \  |       \ <2>  \
2102 //  ...      \  [slow_res] |  |    \   [null_result]
2103 //            \         \--+--+---  |  |
2104 //             \           | /    \ | /
2105 //              --------Region     Phi
2106 //
2107 //=============================================================================
2108 // Code is structured as a series of driver functions all called 'do_XXX' that
2109 // call a set of helper functions.  Helper functions first, then drivers.
2110 
2111 //------------------------------null_check_oop---------------------------------
2112 // Null check oop.  Set null-path control into Region in slot 3.
2113 // Make a cast-not-nullness use the other not-null control.  Return cast.
2114 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2115                                bool never_see_null) {
2116   // Initial NULL check taken path
2117   (*null_control) = top();
2118   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
2119 
2120   // Generate uncommon_trap:
2121   if (never_see_null && (*null_control) != top()) {
2122     // If we see an unexpected null at a check-cast we record it and force a
2123     // recompile; the offending check-cast will be compiled to handle NULLs.
2124     // If we see more than one offending BCI, then all checkcasts in the
2125     // method will be compiled to handle NULLs.
2126     PreserveJVMState pjvms(this);
2127     set_control(*null_control);
2128     replace_in_map(value, null());
2129     uncommon_trap(Deoptimization::Reason_null_check,
2130                   Deoptimization::Action_make_not_entrant);
2131     (*null_control) = top();    // NULL path is dead
2132   }
2133 
2134   // Cast away null-ness on the result
2135   return cast;
2136 }
2137 
2138 //------------------------------opt_iff----------------------------------------
2139 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2140 // Return slow-path control.
2141 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2142   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2143 
2144   // Fast path taken; set region slot 2
2145   Node *fast_taken = _gvn.transform( new (C) IfFalseNode(opt_iff) );
2146   region->init_req(2,fast_taken); // Capture fast-control
2147 
2148   // Fast path not-taken, i.e. slow path
2149   Node *slow_taken = _gvn.transform( new (C) IfTrueNode(opt_iff) );
2150   return slow_taken;
2151 }
2152 
2153 //-----------------------------make_runtime_call-------------------------------
2154 Node* GraphKit::make_runtime_call(int flags,
2155                                   const TypeFunc* call_type, address call_addr,
2156                                   const char* call_name,
2157                                   const TypePtr* adr_type,
2158                                   // The following parms are all optional.
2159                                   // The first NULL ends the list.
2160                                   Node* parm0, Node* parm1,
2161                                   Node* parm2, Node* parm3,
2162                                   Node* parm4, Node* parm5,
2163                                   Node* parm6, Node* parm7) {
2164   // Slow-path call
2165   bool is_leaf = !(flags & RC_NO_LEAF);
2166   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2167   if (call_name == NULL) {
2168     assert(!is_leaf, "must supply name for leaf");
2169     call_name = OptoRuntime::stub_name(call_addr);
2170   }
2171   CallNode* call;
2172   if (!is_leaf) {
2173     call = new(C) CallStaticJavaNode(call_type, call_addr, call_name,
2174                                            bci(), adr_type);
2175   } else if (flags & RC_NO_FP) {
2176     call = new(C) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2177   } else {
2178     call = new(C) CallLeafNode(call_type, call_addr, call_name, adr_type);
2179   }
2180 
2181   // The following is similar to set_edges_for_java_call,
2182   // except that the memory effects of the call are restricted to AliasIdxRaw.
2183 
2184   // Slow path call has no side-effects, uses few values
2185   bool wide_in  = !(flags & RC_NARROW_MEM);
2186   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2187 
2188   Node* prev_mem = NULL;
2189   if (wide_in) {
2190     prev_mem = set_predefined_input_for_runtime_call(call);
2191   } else {
2192     assert(!wide_out, "narrow in => narrow out");
2193     Node* narrow_mem = memory(adr_type);
2194     prev_mem = reset_memory();
2195     map()->set_memory(narrow_mem);
2196     set_predefined_input_for_runtime_call(call);
2197   }
2198 
2199   // Hook each parm in order.  Stop looking at the first NULL.
2200   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2201   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2202   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2203   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2204   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2205   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2206   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2207   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2208     /* close each nested if ===> */  } } } } } } } }
2209   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2210 
2211   if (!is_leaf) {
2212     // Non-leaves can block and take safepoints:
2213     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2214   }
2215   // Non-leaves can throw exceptions:
2216   if (has_io) {
2217     call->set_req(TypeFunc::I_O, i_o());
2218   }
2219 
2220   if (flags & RC_UNCOMMON) {
2221     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2222     // (An "if" probability corresponds roughly to an unconditional count.
2223     // Sort of.)
2224     call->set_cnt(PROB_UNLIKELY_MAG(4));
2225   }
2226 
2227   Node* c = _gvn.transform(call);
2228   assert(c == call, "cannot disappear");
2229 
2230   if (wide_out) {
2231     // Slow path call has full side-effects.
2232     set_predefined_output_for_runtime_call(call);
2233   } else {
2234     // Slow path call has few side-effects, and/or sets few values.
2235     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2236   }
2237 
2238   if (has_io) {
2239     set_i_o(_gvn.transform(new (C) ProjNode(call, TypeFunc::I_O)));
2240   }
2241   return call;
2242 
2243 }
2244 
2245 //------------------------------merge_memory-----------------------------------
2246 // Merge memory from one path into the current memory state.
2247 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2248   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2249     Node* old_slice = mms.force_memory();
2250     Node* new_slice = mms.memory2();
2251     if (old_slice != new_slice) {
2252       PhiNode* phi;
2253       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
2254         phi = new_slice->as_Phi();
2255         #ifdef ASSERT
2256         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
2257           old_slice = old_slice->in(new_path);
2258         // Caller is responsible for ensuring that any pre-existing
2259         // phis are already aware of old memory.
2260         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
2261         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
2262         #endif
2263         mms.set_memory(phi);
2264       } else {
2265         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2266         _gvn.set_type(phi, Type::MEMORY);
2267         phi->set_req(new_path, new_slice);
2268         mms.set_memory(_gvn.transform(phi));  // assume it is complete
2269       }
2270     }
2271   }
2272 }
2273 
2274 //------------------------------make_slow_call_ex------------------------------
2275 // Make the exception handler hookups for the slow call
2276 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
2277   if (stopped())  return;
2278 
2279   // Make a catch node with just two handlers:  fall-through and catch-all
2280   Node* i_o  = _gvn.transform( new (C) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2281   Node* catc = _gvn.transform( new (C) CatchNode(control(), i_o, 2) );
2282   Node* norm = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2283   Node* excp = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2284 
2285   { PreserveJVMState pjvms(this);
2286     set_control(excp);
2287     set_i_o(i_o);
2288 
2289     if (excp != top()) {
2290       // Create an exception state also.
2291       // Use an exact type if the caller has specified a specific exception.
2292       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2293       Node*       ex_oop  = new (C) CreateExNode(ex_type, control(), i_o);
2294       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2295     }
2296   }
2297 
2298   // Get the no-exception control from the CatchNode.
2299   set_control(norm);
2300 }
2301 
2302 
2303 //-------------------------------gen_subtype_check-----------------------------
2304 // Generate a subtyping check.  Takes as input the subtype and supertype.
2305 // Returns 2 values: sets the default control() to the true path and returns
2306 // the false path.  Only reads invariant memory; sets no (visible) memory.
2307 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2308 // but that's not exposed to the optimizer.  This call also doesn't take in an
2309 // Object; if you wish to check an Object you need to load the Object's class
2310 // prior to coming here.
2311 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
2312   // Fast check for identical types, perhaps identical constants.
2313   // The types can even be identical non-constants, in cases
2314   // involving Array.newInstance, Object.clone, etc.
2315   if (subklass == superklass)
2316     return top();             // false path is dead; no test needed.
2317 
2318   if (_gvn.type(superklass)->singleton()) {
2319     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2320     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
2321 
2322     // In the common case of an exact superklass, try to fold up the
2323     // test before generating code.  You may ask, why not just generate
2324     // the code and then let it fold up?  The answer is that the generated
2325     // code will necessarily include null checks, which do not always
2326     // completely fold away.  If they are also needless, then they turn
2327     // into a performance loss.  Example:
2328     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2329     // Here, the type of 'fa' is often exact, so the store check
2330     // of fa[1]=x will fold up, without testing the nullness of x.
2331     switch (static_subtype_check(superk, subk)) {
2332     case SSC_always_false:
2333       {
2334         Node* always_fail = control();
2335         set_control(top());
2336         return always_fail;
2337       }
2338     case SSC_always_true:
2339       return top();
2340     case SSC_easy_test:
2341       {
2342         // Just do a direct pointer compare and be done.
2343         Node* cmp = _gvn.transform( new(C) CmpPNode(subklass, superklass) );
2344         Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2345         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2346         set_control( _gvn.transform( new(C) IfTrueNode (iff) ) );
2347         return       _gvn.transform( new(C) IfFalseNode(iff) );
2348       }
2349     case SSC_full_test:
2350       break;
2351     default:
2352       ShouldNotReachHere();
2353     }
2354   }
2355 
2356   // %%% Possible further optimization:  Even if the superklass is not exact,
2357   // if the subklass is the unique subtype of the superklass, the check
2358   // will always succeed.  We could leave a dependency behind to ensure this.
2359 
2360   // First load the super-klass's check-offset
2361   Node *p1 = basic_plus_adr( superklass, superklass, in_bytes(Klass::super_check_offset_offset()) );
2362   Node *chk_off = _gvn.transform( new (C) LoadINode( NULL, memory(p1), p1, _gvn.type(p1)->is_ptr() ) );
2363   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2364   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2365 
2366   // Load from the sub-klass's super-class display list, or a 1-word cache of
2367   // the secondary superclass list, or a failing value with a sentinel offset
2368   // if the super-klass is an interface or exceptionally deep in the Java
2369   // hierarchy and we have to scan the secondary superclass list the hard way.
2370   // Worst-case type is a little odd: NULL is allowed as a result (usually
2371   // klass loads can never produce a NULL).
2372   Node *chk_off_X = ConvI2X(chk_off);
2373   Node *p2 = _gvn.transform( new (C) AddPNode(subklass,subklass,chk_off_X) );
2374   // For some types like interfaces the following loadKlass is from a 1-word
2375   // cache which is mutable so can't use immutable memory.  Other
2376   // types load from the super-class display table which is immutable.
2377   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
2378   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
2379 
2380   // Compile speed common case: ARE a subtype and we canNOT fail
2381   if( superklass == nkls )
2382     return top();             // false path is dead; no test needed.
2383 
2384   // See if we get an immediate positive hit.  Happens roughly 83% of the
2385   // time.  Test to see if the value loaded just previously from the subklass
2386   // is exactly the superklass.
2387   Node *cmp1 = _gvn.transform( new (C) CmpPNode( superklass, nkls ) );
2388   Node *bol1 = _gvn.transform( new (C) BoolNode( cmp1, BoolTest::eq ) );
2389   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
2390   Node *iftrue1 = _gvn.transform( new (C) IfTrueNode ( iff1 ) );
2391   set_control(    _gvn.transform( new (C) IfFalseNode( iff1 ) ) );
2392 
2393   // Compile speed common case: Check for being deterministic right now.  If
2394   // chk_off is a constant and not equal to cacheoff then we are NOT a
2395   // subklass.  In this case we need exactly the 1 test above and we can
2396   // return those results immediately.
2397   if (!might_be_cache) {
2398     Node* not_subtype_ctrl = control();
2399     set_control(iftrue1); // We need exactly the 1 test above
2400     return not_subtype_ctrl;
2401   }
2402 
2403   // Gather the various success & failures here
2404   RegionNode *r_ok_subtype = new (C) RegionNode(4);
2405   record_for_igvn(r_ok_subtype);
2406   RegionNode *r_not_subtype = new (C) RegionNode(3);
2407   record_for_igvn(r_not_subtype);
2408 
2409   r_ok_subtype->init_req(1, iftrue1);
2410 
2411   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2412   // is roughly 63% of the remaining cases).  Test to see if the loaded
2413   // check-offset points into the subklass display list or the 1-element
2414   // cache.  If it points to the display (and NOT the cache) and the display
2415   // missed then it's not a subtype.
2416   Node *cacheoff = _gvn.intcon(cacheoff_con);
2417   Node *cmp2 = _gvn.transform( new (C) CmpINode( chk_off, cacheoff ) );
2418   Node *bol2 = _gvn.transform( new (C) BoolNode( cmp2, BoolTest::ne ) );
2419   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
2420   r_not_subtype->init_req(1, _gvn.transform( new (C) IfTrueNode (iff2) ) );
2421   set_control(                _gvn.transform( new (C) IfFalseNode(iff2) ) );
2422 
2423   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2424   // No performance impact (too rare) but allows sharing of secondary arrays
2425   // which has some footprint reduction.
2426   Node *cmp3 = _gvn.transform( new (C) CmpPNode( subklass, superklass ) );
2427   Node *bol3 = _gvn.transform( new (C) BoolNode( cmp3, BoolTest::eq ) );
2428   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
2429   r_ok_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode ( iff3 ) ) );
2430   set_control(               _gvn.transform( new (C) IfFalseNode( iff3 ) ) );
2431 
2432   // -- Roads not taken here: --
2433   // We could also have chosen to perform the self-check at the beginning
2434   // of this code sequence, as the assembler does.  This would not pay off
2435   // the same way, since the optimizer, unlike the assembler, can perform
2436   // static type analysis to fold away many successful self-checks.
2437   // Non-foldable self checks work better here in second position, because
2438   // the initial primary superclass check subsumes a self-check for most
2439   // types.  An exception would be a secondary type like array-of-interface,
2440   // which does not appear in its own primary supertype display.
2441   // Finally, we could have chosen to move the self-check into the
2442   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2443   // dependent manner.  But it is worthwhile to have the check here,
2444   // where it can be perhaps be optimized.  The cost in code space is
2445   // small (register compare, branch).
2446 
2447   // Now do a linear scan of the secondary super-klass array.  Again, no real
2448   // performance impact (too rare) but it's gotta be done.
2449   // Since the code is rarely used, there is no penalty for moving it
2450   // out of line, and it can only improve I-cache density.
2451   // The decision to inline or out-of-line this final check is platform
2452   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2453   Node* psc = _gvn.transform(
2454     new (C) PartialSubtypeCheckNode(control(), subklass, superklass) );
2455 
2456   Node *cmp4 = _gvn.transform( new (C) CmpPNode( psc, null() ) );
2457   Node *bol4 = _gvn.transform( new (C) BoolNode( cmp4, BoolTest::ne ) );
2458   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
2459   r_not_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode (iff4) ) );
2460   r_ok_subtype ->init_req(3, _gvn.transform( new (C) IfFalseNode(iff4) ) );
2461 
2462   // Return false path; set default control to true path.
2463   set_control( _gvn.transform(r_ok_subtype) );
2464   return _gvn.transform(r_not_subtype);
2465 }
2466 
2467 //----------------------------static_subtype_check-----------------------------
2468 // Shortcut important common cases when superklass is exact:
2469 // (0) superklass is java.lang.Object (can occur in reflective code)
2470 // (1) subklass is already limited to a subtype of superklass => always ok
2471 // (2) subklass does not overlap with superklass => always fail
2472 // (3) superklass has NO subtypes and we can check with a simple compare.
2473 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
2474   if (StressReflectiveCode) {
2475     return SSC_full_test;       // Let caller generate the general case.
2476   }
2477 
2478   if (superk == env()->Object_klass()) {
2479     return SSC_always_true;     // (0) this test cannot fail
2480   }
2481 
2482   ciType* superelem = superk;
2483   if (superelem->is_array_klass())
2484     superelem = superelem->as_array_klass()->base_element_type();
2485 
2486   if (!subk->is_interface()) {  // cannot trust static interface types yet
2487     if (subk->is_subtype_of(superk)) {
2488       return SSC_always_true;   // (1) false path dead; no dynamic test needed
2489     }
2490     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
2491         !superk->is_subtype_of(subk)) {
2492       return SSC_always_false;
2493     }
2494   }
2495 
2496   // If casting to an instance klass, it must have no subtypes
2497   if (superk->is_interface()) {
2498     // Cannot trust interfaces yet.
2499     // %%% S.B. superk->nof_implementors() == 1
2500   } else if (superelem->is_instance_klass()) {
2501     ciInstanceKlass* ik = superelem->as_instance_klass();
2502     if (!ik->has_subklass() && !ik->is_interface()) {
2503       if (!ik->is_final()) {
2504         // Add a dependency if there is a chance of a later subclass.
2505         C->dependencies()->assert_leaf_type(ik);
2506       }
2507       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
2508     }
2509   } else {
2510     // A primitive array type has no subtypes.
2511     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
2512   }
2513 
2514   return SSC_full_test;
2515 }
2516 
2517 // Profile-driven exact type check:
2518 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2519                                     float prob,
2520                                     Node* *casted_receiver) {
2521   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2522   Node* recv_klass = load_object_klass(receiver);
2523   Node* want_klass = makecon(tklass);
2524   Node* cmp = _gvn.transform( new(C) CmpPNode(recv_klass, want_klass) );
2525   Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2526   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2527   set_control( _gvn.transform( new(C) IfTrueNode (iff) ));
2528   Node* fail = _gvn.transform( new(C) IfFalseNode(iff) );
2529 
2530   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2531   assert(recv_xtype->klass_is_exact(), "");
2532 
2533   // Subsume downstream occurrences of receiver with a cast to
2534   // recv_xtype, since now we know what the type will be.
2535   Node* cast = new(C) CheckCastPPNode(control(), receiver, recv_xtype);
2536   (*casted_receiver) = _gvn.transform(cast);
2537   // (User must make the replace_in_map call.)
2538 
2539   return fail;
2540 }
2541 
2542 
2543 //------------------------------seems_never_null-------------------------------
2544 // Use null_seen information if it is available from the profile.
2545 // If we see an unexpected null at a type check we record it and force a
2546 // recompile; the offending check will be recompiled to handle NULLs.
2547 // If we see several offending BCIs, then all checks in the
2548 // method will be recompiled.
2549 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
2550   if (UncommonNullCast               // Cutout for this technique
2551       && obj != null()               // And not the -Xcomp stupid case?
2552       && !too_many_traps(Deoptimization::Reason_null_check)
2553       ) {
2554     if (data == NULL)
2555       // Edge case:  no mature data.  Be optimistic here.
2556       return true;
2557     // If the profile has not seen a null, assume it won't happen.
2558     assert(java_bc() == Bytecodes::_checkcast ||
2559            java_bc() == Bytecodes::_instanceof ||
2560            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2561     return !data->as_BitData()->null_seen();
2562   }
2563   return false;
2564 }
2565 
2566 //------------------------maybe_cast_profiled_receiver-------------------------
2567 // If the profile has seen exactly one type, narrow to exactly that type.
2568 // Subsequent type checks will always fold up.
2569 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2570                                              ciProfileData* data,
2571                                              ciKlass* require_klass) {
2572   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2573   if (data == NULL)  return NULL;
2574 
2575   // Make sure we haven't already deoptimized from this tactic.
2576   if (too_many_traps(Deoptimization::Reason_class_check))
2577     return NULL;
2578 
2579   // (No, this isn't a call, but it's enough like a virtual call
2580   // to use the same ciMethod accessor to get the profile info...)
2581   ciCallProfile profile = method()->call_profile_at_bci(bci());
2582   if (profile.count() >= 0 &&         // no cast failures here
2583       profile.has_receiver(0) &&
2584       profile.morphism() == 1) {
2585     ciKlass* exact_kls = profile.receiver(0);
2586     if (require_klass == NULL ||
2587         static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
2588       // If we narrow the type to match what the type profile sees,
2589       // we can then remove the rest of the cast.
2590       // This is a win, even if the exact_kls is very specific,
2591       // because downstream operations, such as method calls,
2592       // will often benefit from the sharper type.
2593       Node* exact_obj = not_null_obj; // will get updated in place...
2594       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2595                                             &exact_obj);
2596       { PreserveJVMState pjvms(this);
2597         set_control(slow_ctl);
2598         uncommon_trap(Deoptimization::Reason_class_check,
2599                       Deoptimization::Action_maybe_recompile);
2600       }
2601       replace_in_map(not_null_obj, exact_obj);
2602       return exact_obj;
2603     }
2604     // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
2605   }
2606 
2607   return NULL;
2608 }
2609 
2610 
2611 //-------------------------------gen_instanceof--------------------------------
2612 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2613 // and the reflective instance-of call.
2614 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass) {
2615   kill_dead_locals();           // Benefit all the uncommon traps
2616   assert( !stopped(), "dead parse path should be checked in callers" );
2617   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2618          "must check for not-null not-dead klass in callers");
2619 
2620   // Make the merge point
2621   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2622   RegionNode* region = new(C) RegionNode(PATH_LIMIT);
2623   Node*       phi    = new(C) PhiNode(region, TypeInt::BOOL);
2624   C->set_has_split_ifs(true); // Has chance for split-if optimization
2625 
2626   ciProfileData* data = NULL;
2627   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2628     data = method()->method_data()->bci_to_data(bci());
2629   }
2630   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2631                          && seems_never_null(obj, data));
2632 
2633   // Null check; get casted pointer; set region slot 3
2634   Node* null_ctl = top();
2635   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
2636 
2637   // If not_null_obj is dead, only null-path is taken
2638   if (stopped()) {              // Doing instance-of on a NULL?
2639     set_control(null_ctl);
2640     return intcon(0);
2641   }
2642   region->init_req(_null_path, null_ctl);
2643   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2644   if (null_ctl == top()) {
2645     // Do this eagerly, so that pattern matches like is_diamond_phi
2646     // will work even during parsing.
2647     assert(_null_path == PATH_LIMIT-1, "delete last");
2648     region->del_req(_null_path);
2649     phi   ->del_req(_null_path);
2650   }
2651 
2652   if (ProfileDynamicTypes && data != NULL) {
2653     Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, data, NULL);
2654     if (stopped()) {            // Profile disagrees with this path.
2655       set_control(null_ctl);    // Null is the only remaining possibility.
2656       return intcon(0);
2657     }
2658     if (cast_obj != NULL)
2659       not_null_obj = cast_obj;
2660   }
2661 
2662   // Load the object's klass
2663   Node* obj_klass = load_object_klass(not_null_obj);
2664 
2665   // Generate the subtype check
2666   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2667 
2668   // Plug in the success path to the general merge in slot 1.
2669   region->init_req(_obj_path, control());
2670   phi   ->init_req(_obj_path, intcon(1));
2671 
2672   // Plug in the failing path to the general merge in slot 2.
2673   region->init_req(_fail_path, not_subtype_ctrl);
2674   phi   ->init_req(_fail_path, intcon(0));
2675 
2676   // Return final merged results
2677   set_control( _gvn.transform(region) );
2678   record_for_igvn(region);
2679   return _gvn.transform(phi);
2680 }
2681 
2682 //-------------------------------gen_checkcast---------------------------------
2683 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2684 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2685 // uncommon-trap paths work.  Adjust stack after this call.
2686 // If failure_control is supplied and not null, it is filled in with
2687 // the control edge for the cast failure.  Otherwise, an appropriate
2688 // uncommon trap or exception is thrown.
2689 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2690                               Node* *failure_control) {
2691   kill_dead_locals();           // Benefit all the uncommon traps
2692   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2693   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2694 
2695   // Fast cutout:  Check the case that the cast is vacuously true.
2696   // This detects the common cases where the test will short-circuit
2697   // away completely.  We do this before we perform the null check,
2698   // because if the test is going to turn into zero code, we don't
2699   // want a residual null check left around.  (Causes a slowdown,
2700   // for example, in some objArray manipulations, such as a[i]=a[j].)
2701   if (tk->singleton()) {
2702     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2703     if (objtp != NULL && objtp->klass() != NULL) {
2704       switch (static_subtype_check(tk->klass(), objtp->klass())) {
2705       case SSC_always_true:
2706         return obj;
2707       case SSC_always_false:
2708         // It needs a null check because a null will *pass* the cast check.
2709         // A non-null value will always produce an exception.
2710         return null_assert(obj);
2711       }
2712     }
2713   }
2714 
2715   ciProfileData* data = NULL;
2716   if (failure_control == NULL) {        // use MDO in regular case only
2717     assert(java_bc() == Bytecodes::_aastore ||
2718            java_bc() == Bytecodes::_checkcast,
2719            "interpreter profiles type checks only for these BCs");
2720     data = method()->method_data()->bci_to_data(bci());
2721   }
2722 
2723   // Make the merge point
2724   enum { _obj_path = 1, _null_path, PATH_LIMIT };
2725   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
2726   Node*       phi    = new (C) PhiNode(region, toop);
2727   C->set_has_split_ifs(true); // Has chance for split-if optimization
2728 
2729   // Use null-cast information if it is available
2730   bool never_see_null = ((failure_control == NULL)  // regular case only
2731                          && seems_never_null(obj, data));
2732 
2733   // Null check; get casted pointer; set region slot 3
2734   Node* null_ctl = top();
2735   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
2736 
2737   // If not_null_obj is dead, only null-path is taken
2738   if (stopped()) {              // Doing instance-of on a NULL?
2739     set_control(null_ctl);
2740     return null();
2741   }
2742   region->init_req(_null_path, null_ctl);
2743   phi   ->init_req(_null_path, null());  // Set null path value
2744   if (null_ctl == top()) {
2745     // Do this eagerly, so that pattern matches like is_diamond_phi
2746     // will work even during parsing.
2747     assert(_null_path == PATH_LIMIT-1, "delete last");
2748     region->del_req(_null_path);
2749     phi   ->del_req(_null_path);
2750   }
2751 
2752   Node* cast_obj = NULL;
2753   if (tk->klass_is_exact()) {
2754     // The following optimization tries to statically cast the speculative type of the object
2755     // (for example obtained during profiling) to the type of the superklass and then do a
2756     // dynamic check that the type of the object is what we expect. To work correctly
2757     // for checkcast and aastore the type of superklass should be exact.
2758     if (data != NULL &&
2759         // Counter has never been decremented (due to cast failure).
2760         // ...This is a reasonable thing to expect.  It is true of
2761         // all casts inserted by javac to implement generic types.
2762         data->as_CounterData()->count() >= 0) {
2763       cast_obj = maybe_cast_profiled_receiver(not_null_obj, data, tk->klass());
2764       if (cast_obj != NULL) {
2765         if (failure_control != NULL) // failure is now impossible
2766           (*failure_control) = top();
2767         // adjust the type of the phi to the exact klass:
2768         phi->raise_bottom_type(_gvn.type(cast_obj)->meet(TypePtr::NULL_PTR));
2769       }
2770     }
2771   }
2772 
2773   if (cast_obj == NULL) {
2774     // Load the object's klass
2775     Node* obj_klass = load_object_klass(not_null_obj);
2776 
2777     // Generate the subtype check
2778     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
2779 
2780     // Plug in success path into the merge
2781     cast_obj = _gvn.transform(new (C) CheckCastPPNode(control(),
2782                                                          not_null_obj, toop));
2783     // Failure path ends in uncommon trap (or may be dead - failure impossible)
2784     if (failure_control == NULL) {
2785       if (not_subtype_ctrl != top()) { // If failure is possible
2786         PreserveJVMState pjvms(this);
2787         set_control(not_subtype_ctrl);
2788         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
2789       }
2790     } else {
2791       (*failure_control) = not_subtype_ctrl;
2792     }
2793   }
2794 
2795   region->init_req(_obj_path, control());
2796   phi   ->init_req(_obj_path, cast_obj);
2797 
2798   // A merge of NULL or Casted-NotNull obj
2799   Node* res = _gvn.transform(phi);
2800 
2801   // Note I do NOT always 'replace_in_map(obj,result)' here.
2802   //  if( tk->klass()->can_be_primary_super()  )
2803     // This means that if I successfully store an Object into an array-of-String
2804     // I 'forget' that the Object is really now known to be a String.  I have to
2805     // do this because we don't have true union types for interfaces - if I store
2806     // a Baz into an array-of-Interface and then tell the optimizer it's an
2807     // Interface, I forget that it's also a Baz and cannot do Baz-like field
2808     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
2809   //  replace_in_map( obj, res );
2810 
2811   // Return final merged results
2812   set_control( _gvn.transform(region) );
2813   record_for_igvn(region);
2814   return res;
2815 }
2816 
2817 //------------------------------next_monitor-----------------------------------
2818 // What number should be given to the next monitor?
2819 int GraphKit::next_monitor() {
2820   int current = jvms()->monitor_depth()* C->sync_stack_slots();
2821   int next = current + C->sync_stack_slots();
2822   // Keep the toplevel high water mark current:
2823   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
2824   return current;
2825 }
2826 
2827 //------------------------------insert_mem_bar---------------------------------
2828 // Memory barrier to avoid floating things around
2829 // The membar serves as a pinch point between both control and all memory slices.
2830 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
2831   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
2832   mb->init_req(TypeFunc::Control, control());
2833   mb->init_req(TypeFunc::Memory,  reset_memory());
2834   Node* membar = _gvn.transform(mb);
2835   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
2836   set_all_memory_call(membar);
2837   return membar;
2838 }
2839 
2840 //-------------------------insert_mem_bar_volatile----------------------------
2841 // Memory barrier to avoid floating things around
2842 // The membar serves as a pinch point between both control and memory(alias_idx).
2843 // If you want to make a pinch point on all memory slices, do not use this
2844 // function (even with AliasIdxBot); use insert_mem_bar() instead.
2845 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
2846   // When Parse::do_put_xxx updates a volatile field, it appends a series
2847   // of MemBarVolatile nodes, one for *each* volatile field alias category.
2848   // The first membar is on the same memory slice as the field store opcode.
2849   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
2850   // All the other membars (for other volatile slices, including AliasIdxBot,
2851   // which stands for all unknown volatile slices) are control-dependent
2852   // on the first membar.  This prevents later volatile loads or stores
2853   // from sliding up past the just-emitted store.
2854 
2855   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
2856   mb->set_req(TypeFunc::Control,control());
2857   if (alias_idx == Compile::AliasIdxBot) {
2858     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
2859   } else {
2860     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
2861     mb->set_req(TypeFunc::Memory, memory(alias_idx));
2862   }
2863   Node* membar = _gvn.transform(mb);
2864   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
2865   if (alias_idx == Compile::AliasIdxBot) {
2866     merged_memory()->set_base_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)));
2867   } else {
2868     set_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)),alias_idx);
2869   }
2870   return membar;
2871 }
2872 
2873 //------------------------------shared_lock------------------------------------
2874 // Emit locking code.
2875 FastLockNode* GraphKit::shared_lock(Node* obj) {
2876   // bci is either a monitorenter bc or InvocationEntryBci
2877   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
2878   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
2879 
2880   if( !GenerateSynchronizationCode )
2881     return NULL;                // Not locking things?
2882   if (stopped())                // Dead monitor?
2883     return NULL;
2884 
2885   assert(dead_locals_are_killed(), "should kill locals before sync. point");
2886 
2887   // Box the stack location
2888   Node* box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
2889   Node* mem = reset_memory();
2890 
2891   FastLockNode * flock = _gvn.transform(new (C) FastLockNode(0, obj, box) )->as_FastLock();
2892   if (PrintPreciseBiasedLockingStatistics) {
2893     // Create the counters for this fast lock.
2894     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
2895   }
2896   // Add monitor to debug info for the slow path.  If we block inside the
2897   // slow path and de-opt, we need the monitor hanging around
2898   map()->push_monitor( flock );
2899 
2900   const TypeFunc *tf = LockNode::lock_type();
2901   LockNode *lock = new (C) LockNode(C, tf);
2902 
2903   lock->init_req( TypeFunc::Control, control() );
2904   lock->init_req( TypeFunc::Memory , mem );
2905   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
2906   lock->init_req( TypeFunc::FramePtr, frameptr() );
2907   lock->init_req( TypeFunc::ReturnAdr, top() );
2908 
2909   lock->init_req(TypeFunc::Parms + 0, obj);
2910   lock->init_req(TypeFunc::Parms + 1, box);
2911   lock->init_req(TypeFunc::Parms + 2, flock);
2912   add_safepoint_edges(lock);
2913 
2914   lock = _gvn.transform( lock )->as_Lock();
2915 
2916   // lock has no side-effects, sets few values
2917   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
2918 
2919   insert_mem_bar(Op_MemBarAcquireLock);
2920 
2921   // Add this to the worklist so that the lock can be eliminated
2922   record_for_igvn(lock);
2923 
2924 #ifndef PRODUCT
2925   if (PrintLockStatistics) {
2926     // Update the counter for this lock.  Don't bother using an atomic
2927     // operation since we don't require absolute accuracy.
2928     lock->create_lock_counter(map()->jvms());
2929     increment_counter(lock->counter()->addr());
2930   }
2931 #endif
2932 
2933   return flock;
2934 }
2935 
2936 
2937 //------------------------------shared_unlock----------------------------------
2938 // Emit unlocking code.
2939 void GraphKit::shared_unlock(Node* box, Node* obj) {
2940   // bci is either a monitorenter bc or InvocationEntryBci
2941   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
2942   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
2943 
2944   if( !GenerateSynchronizationCode )
2945     return;
2946   if (stopped()) {               // Dead monitor?
2947     map()->pop_monitor();        // Kill monitor from debug info
2948     return;
2949   }
2950 
2951   // Memory barrier to avoid floating things down past the locked region
2952   insert_mem_bar(Op_MemBarReleaseLock);
2953 
2954   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
2955   UnlockNode *unlock = new (C) UnlockNode(C, tf);
2956   uint raw_idx = Compile::AliasIdxRaw;
2957   unlock->init_req( TypeFunc::Control, control() );
2958   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
2959   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
2960   unlock->init_req( TypeFunc::FramePtr, frameptr() );
2961   unlock->init_req( TypeFunc::ReturnAdr, top() );
2962 
2963   unlock->init_req(TypeFunc::Parms + 0, obj);
2964   unlock->init_req(TypeFunc::Parms + 1, box);
2965   unlock = _gvn.transform(unlock)->as_Unlock();
2966 
2967   Node* mem = reset_memory();
2968 
2969   // unlock has no side-effects, sets few values
2970   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
2971 
2972   // Kill monitor from debug info
2973   map()->pop_monitor( );
2974 }
2975 
2976 //-------------------------------get_layout_helper-----------------------------
2977 // If the given klass is a constant or known to be an array,
2978 // fetch the constant layout helper value into constant_value
2979 // and return (Node*)NULL.  Otherwise, load the non-constant
2980 // layout helper value, and return the node which represents it.
2981 // This two-faced routine is useful because allocation sites
2982 // almost always feature constant types.
2983 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
2984   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
2985   if (!StressReflectiveCode && inst_klass != NULL) {
2986     ciKlass* klass = inst_klass->klass();
2987     bool    xklass = inst_klass->klass_is_exact();
2988     if (xklass || klass->is_array_klass()) {
2989       jint lhelper = klass->layout_helper();
2990       if (lhelper != Klass::_lh_neutral_value) {
2991         constant_value = lhelper;
2992         return (Node*) NULL;
2993       }
2994     }
2995   }
2996   constant_value = Klass::_lh_neutral_value;  // put in a known value
2997   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
2998   return make_load(NULL, lhp, TypeInt::INT, T_INT);
2999 }
3000 
3001 // We just put in an allocate/initialize with a big raw-memory effect.
3002 // Hook selected additional alias categories on the initialization.
3003 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3004                                 MergeMemNode* init_in_merge,
3005                                 Node* init_out_raw) {
3006   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3007   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3008 
3009   Node* prevmem = kit.memory(alias_idx);
3010   init_in_merge->set_memory_at(alias_idx, prevmem);
3011   kit.set_memory(init_out_raw, alias_idx);
3012 }
3013 
3014 //---------------------------set_output_for_allocation-------------------------
3015 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3016                                           const TypeOopPtr* oop_type) {
3017   int rawidx = Compile::AliasIdxRaw;
3018   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3019   add_safepoint_edges(alloc);
3020   Node* allocx = _gvn.transform(alloc);
3021   set_control( _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Control) ) );
3022   // create memory projection for i_o
3023   set_memory ( _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3024   make_slow_call_ex(allocx, env()->Throwable_klass(), true);
3025 
3026   // create a memory projection as for the normal control path
3027   Node* malloc = _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Memory));
3028   set_memory(malloc, rawidx);
3029 
3030   // a normal slow-call doesn't change i_o, but an allocation does
3031   // we create a separate i_o projection for the normal control path
3032   set_i_o(_gvn.transform( new (C) ProjNode(allocx, TypeFunc::I_O, false) ) );
3033   Node* rawoop = _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Parms) );
3034 
3035   // put in an initialization barrier
3036   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3037                                                  rawoop)->as_Initialize();
3038   assert(alloc->initialization() == init,  "2-way macro link must work");
3039   assert(init ->allocation()     == alloc, "2-way macro link must work");
3040   {
3041     // Extract memory strands which may participate in the new object's
3042     // initialization, and source them from the new InitializeNode.
3043     // This will allow us to observe initializations when they occur,
3044     // and link them properly (as a group) to the InitializeNode.
3045     assert(init->in(InitializeNode::Memory) == malloc, "");
3046     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
3047     init->set_req(InitializeNode::Memory, minit_in);
3048     record_for_igvn(minit_in); // fold it up later, if possible
3049     Node* minit_out = memory(rawidx);
3050     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3051     if (oop_type->isa_aryptr()) {
3052       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3053       int            elemidx  = C->get_alias_index(telemref);
3054       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3055     } else if (oop_type->isa_instptr()) {
3056       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3057       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3058         ciField* field = ik->nonstatic_field_at(i);
3059         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3060           continue;  // do not bother to track really large numbers of fields
3061         // Find (or create) the alias category for this field:
3062         int fieldidx = C->alias_type(field)->index();
3063         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3064       }
3065     }
3066   }
3067 
3068   // Cast raw oop to the real thing...
3069   Node* javaoop = new (C) CheckCastPPNode(control(), rawoop, oop_type);
3070   javaoop = _gvn.transform(javaoop);
3071   C->set_recent_alloc(control(), javaoop);
3072   assert(just_allocated_object(control()) == javaoop, "just allocated");
3073 
3074 #ifdef ASSERT
3075   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3076     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3077            "Ideal_allocation works");
3078     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3079            "Ideal_allocation works");
3080     if (alloc->is_AllocateArray()) {
3081       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3082              "Ideal_allocation works");
3083       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3084              "Ideal_allocation works");
3085     } else {
3086       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3087     }
3088   }
3089 #endif //ASSERT
3090 
3091   return javaoop;
3092 }
3093 
3094 //---------------------------new_instance--------------------------------------
3095 // This routine takes a klass_node which may be constant (for a static type)
3096 // or may be non-constant (for reflective code).  It will work equally well
3097 // for either, and the graph will fold nicely if the optimizer later reduces
3098 // the type to a constant.
3099 // The optional arguments are for specialized use by intrinsics:
3100 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3101 //  - If 'return_size_val', report the the total object size to the caller.
3102 Node* GraphKit::new_instance(Node* klass_node,
3103                              Node* extra_slow_test,
3104                              Node* *return_size_val) {
3105   // Compute size in doublewords
3106   // The size is always an integral number of doublewords, represented
3107   // as a positive bytewise size stored in the klass's layout_helper.
3108   // The layout_helper also encodes (in a low bit) the need for a slow path.
3109   jint  layout_con = Klass::_lh_neutral_value;
3110   Node* layout_val = get_layout_helper(klass_node, layout_con);
3111   int   layout_is_con = (layout_val == NULL);
3112 
3113   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3114   // Generate the initial go-slow test.  It's either ALWAYS (return a
3115   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3116   // case) a computed value derived from the layout_helper.
3117   Node* initial_slow_test = NULL;
3118   if (layout_is_con) {
3119     assert(!StressReflectiveCode, "stress mode does not use these paths");
3120     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3121     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
3122 
3123   } else {   // reflective case
3124     // This reflective path is used by Unsafe.allocateInstance.
3125     // (It may be stress-tested by specifying StressReflectiveCode.)
3126     // Basically, we want to get into the VM is there's an illegal argument.
3127     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3128     initial_slow_test = _gvn.transform( new (C) AndINode(layout_val, bit) );
3129     if (extra_slow_test != intcon(0)) {
3130       initial_slow_test = _gvn.transform( new (C) OrINode(initial_slow_test, extra_slow_test) );
3131     }
3132     // (Macro-expander will further convert this to a Bool, if necessary.)
3133   }
3134 
3135   // Find the size in bytes.  This is easy; it's the layout_helper.
3136   // The size value must be valid even if the slow path is taken.
3137   Node* size = NULL;
3138   if (layout_is_con) {
3139     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3140   } else {   // reflective case
3141     // This reflective path is used by clone and Unsafe.allocateInstance.
3142     size = ConvI2X(layout_val);
3143 
3144     // Clear the low bits to extract layout_helper_size_in_bytes:
3145     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3146     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3147     size = _gvn.transform( new (C) AndXNode(size, mask) );
3148   }
3149   if (return_size_val != NULL) {
3150     (*return_size_val) = size;
3151   }
3152 
3153   // This is a precise notnull oop of the klass.
3154   // (Actually, it need not be precise if this is a reflective allocation.)
3155   // It's what we cast the result to.
3156   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3157   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3158   const TypeOopPtr* oop_type = tklass->as_instance_type();
3159 
3160   // Now generate allocation code
3161 
3162   // The entire memory state is needed for slow path of the allocation
3163   // since GC and deoptimization can happened.
3164   Node *mem = reset_memory();
3165   set_all_memory(mem); // Create new memory state
3166 
3167   AllocateNode* alloc
3168     = new (C) AllocateNode(C, AllocateNode::alloc_type(),
3169                            control(), mem, i_o(),
3170                            size, klass_node,
3171                            initial_slow_test);
3172 
3173   return set_output_for_allocation(alloc, oop_type);
3174 }
3175 
3176 //-------------------------------new_array-------------------------------------
3177 // helper for both newarray and anewarray
3178 // The 'length' parameter is (obviously) the length of the array.
3179 // See comments on new_instance for the meaning of the other arguments.
3180 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3181                           Node* length,         // number of array elements
3182                           int   nargs,          // number of arguments to push back for uncommon trap
3183                           Node* *return_size_val) {
3184   jint  layout_con = Klass::_lh_neutral_value;
3185   Node* layout_val = get_layout_helper(klass_node, layout_con);
3186   int   layout_is_con = (layout_val == NULL);
3187 
3188   if (!layout_is_con && !StressReflectiveCode &&
3189       !too_many_traps(Deoptimization::Reason_class_check)) {
3190     // This is a reflective array creation site.
3191     // Optimistically assume that it is a subtype of Object[],
3192     // so that we can fold up all the address arithmetic.
3193     layout_con = Klass::array_layout_helper(T_OBJECT);
3194     Node* cmp_lh = _gvn.transform( new(C) CmpINode(layout_val, intcon(layout_con)) );
3195     Node* bol_lh = _gvn.transform( new(C) BoolNode(cmp_lh, BoolTest::eq) );
3196     { BuildCutout unless(this, bol_lh, PROB_MAX);
3197       inc_sp(nargs);
3198       uncommon_trap(Deoptimization::Reason_class_check,
3199                     Deoptimization::Action_maybe_recompile);
3200     }
3201     layout_val = NULL;
3202     layout_is_con = true;
3203   }
3204 
3205   // Generate the initial go-slow test.  Make sure we do not overflow
3206   // if length is huge (near 2Gig) or negative!  We do not need
3207   // exact double-words here, just a close approximation of needed
3208   // double-words.  We can't add any offset or rounding bits, lest we
3209   // take a size -1 of bytes and make it positive.  Use an unsigned
3210   // compare, so negative sizes look hugely positive.
3211   int fast_size_limit = FastAllocateSizeLimit;
3212   if (layout_is_con) {
3213     assert(!StressReflectiveCode, "stress mode does not use these paths");
3214     // Increase the size limit if we have exact knowledge of array type.
3215     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3216     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3217   }
3218 
3219   Node* initial_slow_cmp  = _gvn.transform( new (C) CmpUNode( length, intcon( fast_size_limit ) ) );
3220   Node* initial_slow_test = _gvn.transform( new (C) BoolNode( initial_slow_cmp, BoolTest::gt ) );
3221   if (initial_slow_test->is_Bool()) {
3222     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3223     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3224   }
3225 
3226   // --- Size Computation ---
3227   // array_size = round_to_heap(array_header + (length << elem_shift));
3228   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3229   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3230   // The rounding mask is strength-reduced, if possible.
3231   int round_mask = MinObjAlignmentInBytes - 1;
3232   Node* header_size = NULL;
3233   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3234   // (T_BYTE has the weakest alignment and size restrictions...)
3235   if (layout_is_con) {
3236     int       hsize  = Klass::layout_helper_header_size(layout_con);
3237     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3238     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3239     if ((round_mask & ~right_n_bits(eshift)) == 0)
3240       round_mask = 0;  // strength-reduce it if it goes away completely
3241     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3242     assert(header_size_min <= hsize, "generic minimum is smallest");
3243     header_size_min = hsize;
3244     header_size = intcon(hsize + round_mask);
3245   } else {
3246     Node* hss   = intcon(Klass::_lh_header_size_shift);
3247     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3248     Node* hsize = _gvn.transform( new(C) URShiftINode(layout_val, hss) );
3249     hsize       = _gvn.transform( new(C) AndINode(hsize, hsm) );
3250     Node* mask  = intcon(round_mask);
3251     header_size = _gvn.transform( new(C) AddINode(hsize, mask) );
3252   }
3253 
3254   Node* elem_shift = NULL;
3255   if (layout_is_con) {
3256     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3257     if (eshift != 0)
3258       elem_shift = intcon(eshift);
3259   } else {
3260     // There is no need to mask or shift this value.
3261     // The semantics of LShiftINode include an implicit mask to 0x1F.
3262     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3263     elem_shift = layout_val;
3264   }
3265 
3266   // Transition to native address size for all offset calculations:
3267   Node* lengthx = ConvI2X(length);
3268   Node* headerx = ConvI2X(header_size);
3269 #ifdef _LP64
3270   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
3271     if (tllen != NULL && tllen->_lo < 0) {
3272       // Add a manual constraint to a positive range.  Cf. array_element_address.
3273       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
3274       if (size_max > tllen->_hi)  size_max = tllen->_hi;
3275       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
3276       lengthx = _gvn.transform( new (C) ConvI2LNode(length, tlcon));
3277     }
3278   }
3279 #endif
3280 
3281   // Combine header size (plus rounding) and body size.  Then round down.
3282   // This computation cannot overflow, because it is used only in two
3283   // places, one where the length is sharply limited, and the other
3284   // after a successful allocation.
3285   Node* abody = lengthx;
3286   if (elem_shift != NULL)
3287     abody     = _gvn.transform( new(C) LShiftXNode(lengthx, elem_shift) );
3288   Node* size  = _gvn.transform( new(C) AddXNode(headerx, abody) );
3289   if (round_mask != 0) {
3290     Node* mask = MakeConX(~round_mask);
3291     size       = _gvn.transform( new(C) AndXNode(size, mask) );
3292   }
3293   // else if round_mask == 0, the size computation is self-rounding
3294 
3295   if (return_size_val != NULL) {
3296     // This is the size
3297     (*return_size_val) = size;
3298   }
3299 
3300   // Now generate allocation code
3301 
3302   // The entire memory state is needed for slow path of the allocation
3303   // since GC and deoptimization can happened.
3304   Node *mem = reset_memory();
3305   set_all_memory(mem); // Create new memory state
3306 
3307   // Create the AllocateArrayNode and its result projections
3308   AllocateArrayNode* alloc
3309     = new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(),
3310                                 control(), mem, i_o(),
3311                                 size, klass_node,
3312                                 initial_slow_test,
3313                                 length);
3314 
3315   // Cast to correct type.  Note that the klass_node may be constant or not,
3316   // and in the latter case the actual array type will be inexact also.
3317   // (This happens via a non-constant argument to inline_native_newArray.)
3318   // In any case, the value of klass_node provides the desired array type.
3319   const TypeInt* length_type = _gvn.find_int_type(length);
3320   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3321   if (ary_type->isa_aryptr() && length_type != NULL) {
3322     // Try to get a better type than POS for the size
3323     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3324   }
3325 
3326   Node* javaoop = set_output_for_allocation(alloc, ary_type);
3327 
3328   // Cast length on remaining path to be as narrow as possible
3329   if (map()->find_edge(length) >= 0) {
3330     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3331     if (ccast != length) {
3332       _gvn.set_type_bottom(ccast);
3333       record_for_igvn(ccast);
3334       replace_in_map(length, ccast);
3335     }
3336   }
3337 
3338   return javaoop;
3339 }
3340 
3341 // The following "Ideal_foo" functions are placed here because they recognize
3342 // the graph shapes created by the functions immediately above.
3343 
3344 //---------------------------Ideal_allocation----------------------------------
3345 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3346 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3347   if (ptr == NULL) {     // reduce dumb test in callers
3348     return NULL;
3349   }
3350   if (ptr->is_CheckCastPP()) {  // strip a raw-to-oop cast
3351     ptr = ptr->in(1);
3352     if (ptr == NULL)  return NULL;
3353   }
3354   if (ptr->is_Proj()) {
3355     Node* allo = ptr->in(0);
3356     if (allo != NULL && allo->is_Allocate()) {
3357       return allo->as_Allocate();
3358     }
3359   }
3360   // Report failure to match.
3361   return NULL;
3362 }
3363 
3364 // Fancy version which also strips off an offset (and reports it to caller).
3365 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3366                                              intptr_t& offset) {
3367   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3368   if (base == NULL)  return NULL;
3369   return Ideal_allocation(base, phase);
3370 }
3371 
3372 // Trace Initialize <- Proj[Parm] <- Allocate
3373 AllocateNode* InitializeNode::allocation() {
3374   Node* rawoop = in(InitializeNode::RawAddress);
3375   if (rawoop->is_Proj()) {
3376     Node* alloc = rawoop->in(0);
3377     if (alloc->is_Allocate()) {
3378       return alloc->as_Allocate();
3379     }
3380   }
3381   return NULL;
3382 }
3383 
3384 // Trace Allocate -> Proj[Parm] -> Initialize
3385 InitializeNode* AllocateNode::initialization() {
3386   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3387   if (rawoop == NULL)  return NULL;
3388   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3389     Node* init = rawoop->fast_out(i);
3390     if (init->is_Initialize()) {
3391       assert(init->as_Initialize()->allocation() == this, "2-way link");
3392       return init->as_Initialize();
3393     }
3394   }
3395   return NULL;
3396 }
3397 
3398 // Trace Allocate -> Proj[Parm] -> MemBarStoreStore
3399 MemBarStoreStoreNode* AllocateNode::storestore() {
3400   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3401   if (rawoop == NULL)  return NULL;
3402   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3403     Node* storestore = rawoop->fast_out(i);
3404     if (storestore->is_MemBarStoreStore()) {
3405       return storestore->as_MemBarStoreStore();
3406     }
3407   }
3408   return NULL;
3409 }
3410 
3411 //----------------------------- loop predicates ---------------------------
3412 
3413 //------------------------------add_predicate_impl----------------------------
3414 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3415   // Too many traps seen?
3416   if (too_many_traps(reason)) {
3417 #ifdef ASSERT
3418     if (TraceLoopPredicate) {
3419       int tc = C->trap_count(reason);
3420       tty->print("too many traps=%s tcount=%d in ",
3421                     Deoptimization::trap_reason_name(reason), tc);
3422       method()->print(); // which method has too many predicate traps
3423       tty->cr();
3424     }
3425 #endif
3426     // We cannot afford to take more traps here,
3427     // do not generate predicate.
3428     return;
3429   }
3430 
3431   Node *cont    = _gvn.intcon(1);
3432   Node* opq     = _gvn.transform(new (C) Opaque1Node(C, cont));
3433   Node *bol     = _gvn.transform(new (C) Conv2BNode(opq));
3434   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3435   Node* iffalse = _gvn.transform(new (C) IfFalseNode(iff));
3436   C->add_predicate_opaq(opq);
3437   {
3438     PreserveJVMState pjvms(this);
3439     set_control(iffalse);
3440     inc_sp(nargs);
3441     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3442   }
3443   Node* iftrue = _gvn.transform(new (C) IfTrueNode(iff));
3444   set_control(iftrue);
3445 }
3446 
3447 //------------------------------add_predicate---------------------------------
3448 void GraphKit::add_predicate(int nargs) {
3449   if (UseLoopPredicate) {
3450     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3451   }
3452   // loop's limit check predicate should be near the loop.
3453   if (LoopLimitCheck) {
3454     add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3455   }
3456 }
3457 
3458 //----------------------------- store barriers ----------------------------
3459 #define __ ideal.
3460 
3461 void GraphKit::sync_kit(IdealKit& ideal) {
3462   set_all_memory(__ merged_memory());
3463   set_i_o(__ i_o());
3464   set_control(__ ctrl());
3465 }
3466 
3467 void GraphKit::final_sync(IdealKit& ideal) {
3468   // Final sync IdealKit and graphKit.
3469   sync_kit(ideal);
3470 }
3471 
3472 // vanilla/CMS post barrier
3473 // Insert a write-barrier store.  This is to let generational GC work; we have
3474 // to flag all oop-stores before the next GC point.
3475 void GraphKit::write_barrier_post(Node* oop_store,
3476                                   Node* obj,
3477                                   Node* adr,
3478                                   uint  adr_idx,
3479                                   Node* val,
3480                                   bool use_precise) {
3481   // No store check needed if we're storing a NULL or an old object
3482   // (latter case is probably a string constant). The concurrent
3483   // mark sweep garbage collector, however, needs to have all nonNull
3484   // oop updates flagged via card-marks.
3485   if (val != NULL && val->is_Con()) {
3486     // must be either an oop or NULL
3487     const Type* t = val->bottom_type();
3488     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3489       // stores of null never (?) need barriers
3490       return;
3491     ciObject* con = t->is_oopptr()->const_oop();
3492     if (con != NULL
3493         && con->is_perm()
3494         && Universe::heap()->can_elide_permanent_oop_store_barriers())
3495       // no store barrier needed, because no old-to-new ref created
3496       return;
3497   }
3498 
3499   if (use_ReduceInitialCardMarks()
3500       && obj == just_allocated_object(control())) {
3501     // We can skip marks on a freshly-allocated object in Eden.
3502     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3503     // That routine informs GC to take appropriate compensating steps,
3504     // upon a slow-path allocation, so as to make this card-mark
3505     // elision safe.
3506     return;
3507   }
3508 
3509   if (!use_precise) {
3510     // All card marks for a (non-array) instance are in one place:
3511     adr = obj;
3512   }
3513   // (Else it's an array (or unknown), and we want more precise card marks.)
3514   assert(adr != NULL, "");
3515 
3516   IdealKit ideal(this, true);
3517 
3518   // Convert the pointer to an int prior to doing math on it
3519   Node* cast = __ CastPX(__ ctrl(), adr);
3520 
3521   // Divide by card size
3522   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
3523          "Only one we handle so far.");
3524   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3525 
3526   // Combine card table base and card offset
3527   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3528 
3529   // Get the alias_index for raw card-mark memory
3530   int adr_type = Compile::AliasIdxRaw;
3531   Node*   zero = __ ConI(0); // Dirty card value
3532   BasicType bt = T_BYTE;
3533 
3534   if (UseCondCardMark) {
3535     // The classic GC reference write barrier is typically implemented
3536     // as a store into the global card mark table.  Unfortunately
3537     // unconditional stores can result in false sharing and excessive
3538     // coherence traffic as well as false transactional aborts.
3539     // UseCondCardMark enables MP "polite" conditional card mark
3540     // stores.  In theory we could relax the load from ctrl() to
3541     // no_ctrl, but that doesn't buy much latitude.
3542     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3543     __ if_then(card_val, BoolTest::ne, zero);
3544   }
3545 
3546   // Smash zero into card
3547   if( !UseConcMarkSweepGC ) {
3548     __ store(__ ctrl(), card_adr, zero, bt, adr_type);
3549   } else {
3550     // Specialized path for CM store barrier
3551     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3552   }
3553 
3554   if (UseCondCardMark) {
3555     __ end_if();
3556   }
3557 
3558   // Final sync IdealKit and GraphKit.
3559   final_sync(ideal);
3560 }
3561 
3562 // G1 pre/post barriers
3563 void GraphKit::g1_write_barrier_pre(bool do_load,
3564                                     Node* obj,
3565                                     Node* adr,
3566                                     uint alias_idx,
3567                                     Node* val,
3568                                     const TypeOopPtr* val_type,
3569                                     Node* pre_val,
3570                                     BasicType bt) {
3571 
3572   // Some sanity checks
3573   // Note: val is unused in this routine.
3574 
3575   if (do_load) {
3576     // We need to generate the load of the previous value
3577     assert(obj != NULL, "must have a base");
3578     assert(adr != NULL, "where are loading from?");
3579     assert(pre_val == NULL, "loaded already?");
3580     assert(val_type != NULL, "need a type");
3581   } else {
3582     // In this case both val_type and alias_idx are unused.
3583     assert(pre_val != NULL, "must be loaded already");
3584     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
3585   }
3586   assert(bt == T_OBJECT, "or we shouldn't be here");
3587 
3588   IdealKit ideal(this, true);
3589 
3590   Node* tls = __ thread(); // ThreadLocalStorage
3591 
3592   Node* no_ctrl = NULL;
3593   Node* no_base = __ top();
3594   Node* zero  = __ ConI(0);
3595   Node* zeroX = __ ConX(0);
3596 
3597   float likely  = PROB_LIKELY(0.999);
3598   float unlikely  = PROB_UNLIKELY(0.999);
3599 
3600   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
3601   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
3602 
3603   // Offsets into the thread
3604   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
3605                                           PtrQueue::byte_offset_of_active());
3606   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
3607                                           PtrQueue::byte_offset_of_index());
3608   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
3609                                           PtrQueue::byte_offset_of_buf());
3610 
3611   // Now the actual pointers into the thread
3612   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
3613   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
3614   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
3615 
3616   // Now some of the values
3617   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
3618 
3619   // if (!marking)
3620   __ if_then(marking, BoolTest::ne, zero, unlikely); {
3621     BasicType index_bt = TypeX_X->basic_type();
3622     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 PtrQueue::_index with wrong size.");
3623     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
3624 
3625     if (do_load) {
3626       // load original value
3627       // alias_idx correct??
3628       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
3629     }
3630 
3631     // if (pre_val != NULL)
3632     __ if_then(pre_val, BoolTest::ne, null()); {
3633       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3634 
3635       // is the queue for this thread full?
3636       __ if_then(index, BoolTest::ne, zeroX, likely); {
3637 
3638         // decrement the index
3639         Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3640 
3641         // Now get the buffer location we will log the previous value into and store it
3642         Node *log_addr = __ AddP(no_base, buffer, next_index);
3643         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, StoreNode::release);
3644         // update the index
3645         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw);
3646 
3647       } __ else_(); {
3648 
3649         // logging buffer is full, call the runtime
3650         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
3651         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
3652       } __ end_if();  // (!index)
3653     } __ end_if();  // (pre_val != NULL)
3654   } __ end_if();  // (!marking)
3655 
3656   // Final sync IdealKit and GraphKit.
3657   final_sync(ideal);
3658 }
3659 
3660 //
3661 // Update the card table and add card address to the queue
3662 //
3663 void GraphKit::g1_mark_card(IdealKit& ideal,
3664                             Node* card_adr,
3665                             Node* oop_store,
3666                             uint oop_alias_idx,
3667                             Node* index,
3668                             Node* index_adr,
3669                             Node* buffer,
3670                             const TypeFunc* tf) {
3671 
3672   Node* zero  = __ ConI(0);
3673   Node* zeroX = __ ConX(0);
3674   Node* no_base = __ top();
3675   BasicType card_bt = T_BYTE;
3676   // Smash zero into card. MUST BE ORDERED WRT TO STORE
3677   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
3678 
3679   //  Now do the queue work
3680   __ if_then(index, BoolTest::ne, zeroX); {
3681 
3682     Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3683     Node* log_addr = __ AddP(no_base, buffer, next_index);
3684 
3685     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, StoreNode::release);
3686     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, StoreNode::release);
3687 
3688   } __ else_(); {
3689     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
3690   } __ end_if();
3691 
3692 }
3693 
3694 void GraphKit::g1_write_barrier_post(Node* oop_store,
3695                                      Node* obj,
3696                                      Node* adr,
3697                                      uint alias_idx,
3698                                      Node* val,
3699                                      BasicType bt,
3700                                      bool use_precise) {
3701   // If we are writing a NULL then we need no post barrier
3702 
3703   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
3704     // Must be NULL
3705     const Type* t = val->bottom_type();
3706     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
3707     // No post barrier if writing NULLx
3708     return;
3709   }
3710 
3711   if (!use_precise) {
3712     // All card marks for a (non-array) instance are in one place:
3713     adr = obj;
3714   }
3715   // (Else it's an array (or unknown), and we want more precise card marks.)
3716   assert(adr != NULL, "");
3717 
3718   IdealKit ideal(this, true);
3719 
3720   Node* tls = __ thread(); // ThreadLocalStorage
3721 
3722   Node* no_base = __ top();
3723   float likely  = PROB_LIKELY(0.999);
3724   float unlikely  = PROB_UNLIKELY(0.999);
3725   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
3726   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
3727   Node* zeroX = __ ConX(0);
3728 
3729   // Get the alias_index for raw card-mark memory
3730   const TypePtr* card_type = TypeRawPtr::BOTTOM;
3731 
3732   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
3733 
3734   // Offsets into the thread
3735   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
3736                                      PtrQueue::byte_offset_of_index());
3737   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
3738                                      PtrQueue::byte_offset_of_buf());
3739 
3740   // Pointers into the thread
3741 
3742   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
3743   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
3744 
3745   // Now some values
3746   // Use ctrl to avoid hoisting these values past a safepoint, which could
3747   // potentially reset these fields in the JavaThread.
3748   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
3749   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3750 
3751   // Convert the store obj pointer to an int prior to doing math on it
3752   // Must use ctrl to prevent "integerized oop" existing across safepoint
3753   Node* cast =  __ CastPX(__ ctrl(), adr);
3754 
3755   // Divide pointer by card size
3756   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3757 
3758   // Combine card table base and card offset
3759   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
3760 
3761   // If we know the value being stored does it cross regions?
3762 
3763   if (val != NULL) {
3764     // Does the store cause us to cross regions?
3765 
3766     // Should be able to do an unsigned compare of region_size instead of
3767     // and extra shift. Do we have an unsigned compare??
3768     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
3769     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
3770 
3771     // if (xor_res == 0) same region so skip
3772     __ if_then(xor_res, BoolTest::ne, zeroX); {
3773 
3774       // No barrier if we are storing a NULL
3775       __ if_then(val, BoolTest::ne, null(), unlikely); {
3776 
3777         // Ok must mark the card if not already dirty
3778 
3779         // load the original value of the card
3780         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
3781 
3782         __ if_then(card_val, BoolTest::ne, young_card); {
3783           sync_kit(ideal);
3784           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
3785           insert_mem_bar(Op_MemBarVolatile, oop_store);
3786           __ sync_kit(this);
3787 
3788           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
3789           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
3790             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
3791           } __ end_if();
3792         } __ end_if();
3793       } __ end_if();
3794     } __ end_if();
3795   } else {
3796     // Object.clone() instrinsic uses this path.
3797     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
3798   }
3799 
3800   // Final sync IdealKit and GraphKit.
3801   final_sync(ideal);
3802 }
3803 #undef __
3804 
3805 
3806 
3807 Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
3808   if (java_lang_String::has_offset_field()) {
3809     int offset_offset = java_lang_String::offset_offset_in_bytes();
3810     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3811                                                        false, NULL, 0);
3812     const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
3813     int offset_field_idx = C->get_alias_index(offset_field_type);
3814     return make_load(ctrl,
3815                      basic_plus_adr(str, str, offset_offset),
3816                      TypeInt::INT, T_INT, offset_field_idx);
3817   } else {
3818     return intcon(0);
3819   }
3820 }
3821 
3822 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
3823   if (java_lang_String::has_count_field()) {
3824     int count_offset = java_lang_String::count_offset_in_bytes();
3825     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3826                                                        false, NULL, 0);
3827     const TypePtr* count_field_type = string_type->add_offset(count_offset);
3828     int count_field_idx = C->get_alias_index(count_field_type);
3829     return make_load(ctrl,
3830                      basic_plus_adr(str, str, count_offset),
3831                      TypeInt::INT, T_INT, count_field_idx);
3832   } else {
3833     return load_array_length(load_String_value(ctrl, str));
3834   }
3835 }
3836 
3837 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
3838   int value_offset = java_lang_String::value_offset_in_bytes();
3839   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3840                                                      false, NULL, 0);
3841   const TypePtr* value_field_type = string_type->add_offset(value_offset);
3842   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
3843                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
3844                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
3845   int value_field_idx = C->get_alias_index(value_field_type);
3846   return make_load(ctrl, basic_plus_adr(str, str, value_offset),
3847                    value_type, T_OBJECT, value_field_idx);
3848 }
3849 
3850 void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
3851   int offset_offset = java_lang_String::offset_offset_in_bytes();
3852   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3853                                                      false, NULL, 0);
3854   const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
3855   int offset_field_idx = C->get_alias_index(offset_field_type);
3856   store_to_memory(ctrl, basic_plus_adr(str, offset_offset),
3857                   value, T_INT, offset_field_idx);
3858 }
3859 
3860 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
3861   int value_offset = java_lang_String::value_offset_in_bytes();
3862   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3863                                                      false, NULL, 0);
3864   const TypePtr* value_field_type = string_type->add_offset(value_offset);
3865   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
3866                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
3867                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
3868   int value_field_idx = C->get_alias_index(value_field_type);
3869   store_to_memory(ctrl, basic_plus_adr(str, value_offset),
3870                   value, T_OBJECT, value_field_idx);
3871 }
3872 
3873 void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
3874   int count_offset = java_lang_String::count_offset_in_bytes();
3875   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3876                                                      false, NULL, 0);
3877   const TypePtr* count_field_type = string_type->add_offset(count_offset);
3878   int count_field_idx = C->get_alias_index(count_field_type);
3879   store_to_memory(ctrl, basic_plus_adr(str, count_offset),
3880                   value, T_INT, count_field_idx);
3881 }