1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  28 #include "gc_implementation/g1/heapRegion.hpp"
  29 #include "gc_interface/collectedHeap.hpp"
  30 #include "memory/barrierSet.hpp"
  31 #include "memory/cardTableModRefBS.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/graphKit.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/locknode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "runtime/deoptimization.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 
  43 //----------------------------GraphKit-----------------------------------------
  44 // Main utility constructor.
  45 GraphKit::GraphKit(JVMState* jvms)
  46   : Phase(Phase::Parser),
  47     _env(C->env()),
  48     _gvn(*C->initial_gvn())
  49 {
  50   _exceptions = jvms->map()->next_exception();
  51   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  52   set_jvms(jvms);
  53 }
  54 
  55 // Private constructor for parser.
  56 GraphKit::GraphKit()
  57   : Phase(Phase::Parser),
  58     _env(C->env()),
  59     _gvn(*C->initial_gvn())
  60 {
  61   _exceptions = NULL;
  62   set_map(NULL);
  63   debug_only(_sp = -99);
  64   debug_only(set_bci(-99));
  65 }
  66 
  67 
  68 
  69 //---------------------------clean_stack---------------------------------------
  70 // Clear away rubbish from the stack area of the JVM state.
  71 // This destroys any arguments that may be waiting on the stack.
  72 void GraphKit::clean_stack(int from_sp) {
  73   SafePointNode* map      = this->map();
  74   JVMState*      jvms     = this->jvms();
  75   int            stk_size = jvms->stk_size();
  76   int            stkoff   = jvms->stkoff();
  77   Node*          top      = this->top();
  78   for (int i = from_sp; i < stk_size; i++) {
  79     if (map->in(stkoff + i) != top) {
  80       map->set_req(stkoff + i, top);
  81     }
  82   }
  83 }
  84 
  85 
  86 //--------------------------------sync_jvms-----------------------------------
  87 // Make sure our current jvms agrees with our parse state.
  88 JVMState* GraphKit::sync_jvms() const {
  89   JVMState* jvms = this->jvms();
  90   jvms->set_bci(bci());       // Record the new bci in the JVMState
  91   jvms->set_sp(sp());         // Record the new sp in the JVMState
  92   assert(jvms_in_sync(), "jvms is now in sync");
  93   return jvms;
  94 }
  95 
  96 //--------------------------------sync_jvms_for_reexecute---------------------
  97 // Make sure our current jvms agrees with our parse state.  This version
  98 // uses the reexecute_sp for reexecuting bytecodes.
  99 JVMState* GraphKit::sync_jvms_for_reexecute() {
 100   JVMState* jvms = this->jvms();
 101   jvms->set_bci(bci());          // Record the new bci in the JVMState
 102   jvms->set_sp(reexecute_sp());  // Record the new sp in the JVMState
 103   return jvms;
 104 }
 105 
 106 #ifdef ASSERT
 107 bool GraphKit::jvms_in_sync() const {
 108   Parse* parse = is_Parse();
 109   if (parse == NULL) {
 110     if (bci() !=      jvms()->bci())          return false;
 111     if (sp()  != (int)jvms()->sp())           return false;
 112     return true;
 113   }
 114   if (jvms()->method() != parse->method())    return false;
 115   if (jvms()->bci()    != parse->bci())       return false;
 116   int jvms_sp = jvms()->sp();
 117   if (jvms_sp          != parse->sp())        return false;
 118   int jvms_depth = jvms()->depth();
 119   if (jvms_depth       != parse->depth())     return false;
 120   return true;
 121 }
 122 
 123 // Local helper checks for special internal merge points
 124 // used to accumulate and merge exception states.
 125 // They are marked by the region's in(0) edge being the map itself.
 126 // Such merge points must never "escape" into the parser at large,
 127 // until they have been handed to gvn.transform.
 128 static bool is_hidden_merge(Node* reg) {
 129   if (reg == NULL)  return false;
 130   if (reg->is_Phi()) {
 131     reg = reg->in(0);
 132     if (reg == NULL)  return false;
 133   }
 134   return reg->is_Region() && reg->in(0) != NULL && reg->in(0)->is_Root();
 135 }
 136 
 137 void GraphKit::verify_map() const {
 138   if (map() == NULL)  return;  // null map is OK
 139   assert(map()->req() <= jvms()->endoff(), "no extra garbage on map");
 140   assert(!map()->has_exceptions(),    "call add_exception_states_from 1st");
 141   assert(!is_hidden_merge(control()), "call use_exception_state, not set_map");
 142 }
 143 
 144 void GraphKit::verify_exception_state(SafePointNode* ex_map) {
 145   assert(ex_map->next_exception() == NULL, "not already part of a chain");
 146   assert(has_saved_ex_oop(ex_map), "every exception state has an ex_oop");
 147 }
 148 #endif
 149 
 150 //---------------------------stop_and_kill_map---------------------------------
 151 // Set _map to NULL, signalling a stop to further bytecode execution.
 152 // First smash the current map's control to a constant, to mark it dead.
 153 void GraphKit::stop_and_kill_map() {
 154   SafePointNode* dead_map = stop();
 155   if (dead_map != NULL) {
 156     dead_map->disconnect_inputs(NULL, C); // Mark the map as killed.
 157     assert(dead_map->is_killed(), "must be so marked");
 158   }
 159 }
 160 
 161 
 162 //--------------------------------stopped--------------------------------------
 163 // Tell if _map is NULL, or control is top.
 164 bool GraphKit::stopped() {
 165   if (map() == NULL)           return true;
 166   else if (control() == top()) return true;
 167   else                         return false;
 168 }
 169 
 170 
 171 //-----------------------------has_ex_handler----------------------------------
 172 // Tell if this method or any caller method has exception handlers.
 173 bool GraphKit::has_ex_handler() {
 174   for (JVMState* jvmsp = jvms(); jvmsp != NULL; jvmsp = jvmsp->caller()) {
 175     if (jvmsp->has_method() && jvmsp->method()->has_exception_handlers()) {
 176       return true;
 177     }
 178   }
 179   return false;
 180 }
 181 
 182 //------------------------------save_ex_oop------------------------------------
 183 // Save an exception without blowing stack contents or other JVM state.
 184 void GraphKit::set_saved_ex_oop(SafePointNode* ex_map, Node* ex_oop) {
 185   assert(!has_saved_ex_oop(ex_map), "clear ex-oop before setting again");
 186   ex_map->add_req(ex_oop);
 187   debug_only(verify_exception_state(ex_map));
 188 }
 189 
 190 inline static Node* common_saved_ex_oop(SafePointNode* ex_map, bool clear_it) {
 191   assert(GraphKit::has_saved_ex_oop(ex_map), "ex_oop must be there");
 192   Node* ex_oop = ex_map->in(ex_map->req()-1);
 193   if (clear_it)  ex_map->del_req(ex_map->req()-1);
 194   return ex_oop;
 195 }
 196 
 197 //-----------------------------saved_ex_oop------------------------------------
 198 // Recover a saved exception from its map.
 199 Node* GraphKit::saved_ex_oop(SafePointNode* ex_map) {
 200   return common_saved_ex_oop(ex_map, false);
 201 }
 202 
 203 //--------------------------clear_saved_ex_oop---------------------------------
 204 // Erase a previously saved exception from its map.
 205 Node* GraphKit::clear_saved_ex_oop(SafePointNode* ex_map) {
 206   return common_saved_ex_oop(ex_map, true);
 207 }
 208 
 209 #ifdef ASSERT
 210 //---------------------------has_saved_ex_oop----------------------------------
 211 // Erase a previously saved exception from its map.
 212 bool GraphKit::has_saved_ex_oop(SafePointNode* ex_map) {
 213   return ex_map->req() == ex_map->jvms()->endoff()+1;
 214 }
 215 #endif
 216 
 217 //-------------------------make_exception_state--------------------------------
 218 // Turn the current JVM state into an exception state, appending the ex_oop.
 219 SafePointNode* GraphKit::make_exception_state(Node* ex_oop) {
 220   sync_jvms();
 221   SafePointNode* ex_map = stop();  // do not manipulate this map any more
 222   set_saved_ex_oop(ex_map, ex_oop);
 223   return ex_map;
 224 }
 225 
 226 
 227 //--------------------------add_exception_state--------------------------------
 228 // Add an exception to my list of exceptions.
 229 void GraphKit::add_exception_state(SafePointNode* ex_map) {
 230   if (ex_map == NULL || ex_map->control() == top()) {
 231     return;
 232   }
 233 #ifdef ASSERT
 234   verify_exception_state(ex_map);
 235   if (has_exceptions()) {
 236     assert(ex_map->jvms()->same_calls_as(_exceptions->jvms()), "all collected exceptions must come from the same place");
 237   }
 238 #endif
 239 
 240   // If there is already an exception of exactly this type, merge with it.
 241   // In particular, null-checks and other low-level exceptions common up here.
 242   Node*       ex_oop  = saved_ex_oop(ex_map);
 243   const Type* ex_type = _gvn.type(ex_oop);
 244   if (ex_oop == top()) {
 245     // No action needed.
 246     return;
 247   }
 248   assert(ex_type->isa_instptr(), "exception must be an instance");
 249   for (SafePointNode* e2 = _exceptions; e2 != NULL; e2 = e2->next_exception()) {
 250     const Type* ex_type2 = _gvn.type(saved_ex_oop(e2));
 251     // We check sp also because call bytecodes can generate exceptions
 252     // both before and after arguments are popped!
 253     if (ex_type2 == ex_type
 254         && e2->_jvms->sp() == ex_map->_jvms->sp()) {
 255       combine_exception_states(ex_map, e2);
 256       return;
 257     }
 258   }
 259 
 260   // No pre-existing exception of the same type.  Chain it on the list.
 261   push_exception_state(ex_map);
 262 }
 263 
 264 //-----------------------add_exception_states_from-----------------------------
 265 void GraphKit::add_exception_states_from(JVMState* jvms) {
 266   SafePointNode* ex_map = jvms->map()->next_exception();
 267   if (ex_map != NULL) {
 268     jvms->map()->set_next_exception(NULL);
 269     for (SafePointNode* next_map; ex_map != NULL; ex_map = next_map) {
 270       next_map = ex_map->next_exception();
 271       ex_map->set_next_exception(NULL);
 272       add_exception_state(ex_map);
 273     }
 274   }
 275 }
 276 
 277 //-----------------------transfer_exceptions_into_jvms-------------------------
 278 JVMState* GraphKit::transfer_exceptions_into_jvms() {
 279   if (map() == NULL) {
 280     // We need a JVMS to carry the exceptions, but the map has gone away.
 281     // Create a scratch JVMS, cloned from any of the exception states...
 282     if (has_exceptions()) {
 283       _map = _exceptions;
 284       _map = clone_map();
 285       _map->set_next_exception(NULL);
 286       clear_saved_ex_oop(_map);
 287       debug_only(verify_map());
 288     } else {
 289       // ...or created from scratch
 290       JVMState* jvms = new (C) JVMState(_method, NULL);
 291       jvms->set_bci(_bci);
 292       jvms->set_sp(_sp);
 293       jvms->set_map(new (C) SafePointNode(TypeFunc::Parms, jvms));
 294       set_jvms(jvms);
 295       for (uint i = 0; i < map()->req(); i++)  map()->init_req(i, top());
 296       set_all_memory(top());
 297       while (map()->req() < jvms->endoff())  map()->add_req(top());
 298     }
 299     // (This is a kludge, in case you didn't notice.)
 300     set_control(top());
 301   }
 302   JVMState* jvms = sync_jvms();
 303   assert(!jvms->map()->has_exceptions(), "no exceptions on this map yet");
 304   jvms->map()->set_next_exception(_exceptions);
 305   _exceptions = NULL;   // done with this set of exceptions
 306   return jvms;
 307 }
 308 
 309 static inline void add_n_reqs(Node* dstphi, Node* srcphi) {
 310   assert(is_hidden_merge(dstphi), "must be a special merge node");
 311   assert(is_hidden_merge(srcphi), "must be a special merge node");
 312   uint limit = srcphi->req();
 313   for (uint i = PhiNode::Input; i < limit; i++) {
 314     dstphi->add_req(srcphi->in(i));
 315   }
 316 }
 317 static inline void add_one_req(Node* dstphi, Node* src) {
 318   assert(is_hidden_merge(dstphi), "must be a special merge node");
 319   assert(!is_hidden_merge(src), "must not be a special merge node");
 320   dstphi->add_req(src);
 321 }
 322 
 323 //-----------------------combine_exception_states------------------------------
 324 // This helper function combines exception states by building phis on a
 325 // specially marked state-merging region.  These regions and phis are
 326 // untransformed, and can build up gradually.  The region is marked by
 327 // having a control input of its exception map, rather than NULL.  Such
 328 // regions do not appear except in this function, and in use_exception_state.
 329 void GraphKit::combine_exception_states(SafePointNode* ex_map, SafePointNode* phi_map) {
 330   if (failing())  return;  // dying anyway...
 331   JVMState* ex_jvms = ex_map->_jvms;
 332   assert(ex_jvms->same_calls_as(phi_map->_jvms), "consistent call chains");
 333   assert(ex_jvms->stkoff() == phi_map->_jvms->stkoff(), "matching locals");
 334   assert(ex_jvms->sp() == phi_map->_jvms->sp(), "matching stack sizes");
 335   assert(ex_jvms->monoff() == phi_map->_jvms->monoff(), "matching JVMS");
 336   assert(ex_map->req() == phi_map->req(), "matching maps");
 337   uint tos = ex_jvms->stkoff() + ex_jvms->sp();
 338   Node*         hidden_merge_mark = root();
 339   Node*         region  = phi_map->control();
 340   MergeMemNode* phi_mem = phi_map->merged_memory();
 341   MergeMemNode* ex_mem  = ex_map->merged_memory();
 342   if (region->in(0) != hidden_merge_mark) {
 343     // The control input is not (yet) a specially-marked region in phi_map.
 344     // Make it so, and build some phis.
 345     region = new (C) RegionNode(2);
 346     _gvn.set_type(region, Type::CONTROL);
 347     region->set_req(0, hidden_merge_mark);  // marks an internal ex-state
 348     region->init_req(1, phi_map->control());
 349     phi_map->set_control(region);
 350     Node* io_phi = PhiNode::make(region, phi_map->i_o(), Type::ABIO);
 351     record_for_igvn(io_phi);
 352     _gvn.set_type(io_phi, Type::ABIO);
 353     phi_map->set_i_o(io_phi);
 354     for (MergeMemStream mms(phi_mem); mms.next_non_empty(); ) {
 355       Node* m = mms.memory();
 356       Node* m_phi = PhiNode::make(region, m, Type::MEMORY, mms.adr_type(C));
 357       record_for_igvn(m_phi);
 358       _gvn.set_type(m_phi, Type::MEMORY);
 359       mms.set_memory(m_phi);
 360     }
 361   }
 362 
 363   // Either or both of phi_map and ex_map might already be converted into phis.
 364   Node* ex_control = ex_map->control();
 365   // if there is special marking on ex_map also, we add multiple edges from src
 366   bool add_multiple = (ex_control->in(0) == hidden_merge_mark);
 367   // how wide was the destination phi_map, originally?
 368   uint orig_width = region->req();
 369 
 370   if (add_multiple) {
 371     add_n_reqs(region, ex_control);
 372     add_n_reqs(phi_map->i_o(), ex_map->i_o());
 373   } else {
 374     // ex_map has no merges, so we just add single edges everywhere
 375     add_one_req(region, ex_control);
 376     add_one_req(phi_map->i_o(), ex_map->i_o());
 377   }
 378   for (MergeMemStream mms(phi_mem, ex_mem); mms.next_non_empty2(); ) {
 379     if (mms.is_empty()) {
 380       // get a copy of the base memory, and patch some inputs into it
 381       const TypePtr* adr_type = mms.adr_type(C);
 382       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
 383       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
 384       mms.set_memory(phi);
 385       // Prepare to append interesting stuff onto the newly sliced phi:
 386       while (phi->req() > orig_width)  phi->del_req(phi->req()-1);
 387     }
 388     // Append stuff from ex_map:
 389     if (add_multiple) {
 390       add_n_reqs(mms.memory(), mms.memory2());
 391     } else {
 392       add_one_req(mms.memory(), mms.memory2());
 393     }
 394   }
 395   uint limit = ex_map->req();
 396   for (uint i = TypeFunc::Parms; i < limit; i++) {
 397     // Skip everything in the JVMS after tos.  (The ex_oop follows.)
 398     if (i == tos)  i = ex_jvms->monoff();
 399     Node* src = ex_map->in(i);
 400     Node* dst = phi_map->in(i);
 401     if (src != dst) {
 402       PhiNode* phi;
 403       if (dst->in(0) != region) {
 404         dst = phi = PhiNode::make(region, dst, _gvn.type(dst));
 405         record_for_igvn(phi);
 406         _gvn.set_type(phi, phi->type());
 407         phi_map->set_req(i, dst);
 408         // Prepare to append interesting stuff onto the new phi:
 409         while (dst->req() > orig_width)  dst->del_req(dst->req()-1);
 410       } else {
 411         assert(dst->is_Phi(), "nobody else uses a hidden region");
 412         phi = (PhiNode*)dst;
 413       }
 414       if (add_multiple && src->in(0) == ex_control) {
 415         // Both are phis.
 416         add_n_reqs(dst, src);
 417       } else {
 418         while (dst->req() < region->req())  add_one_req(dst, src);
 419       }
 420       const Type* srctype = _gvn.type(src);
 421       if (phi->type() != srctype) {
 422         const Type* dsttype = phi->type()->meet(srctype);
 423         if (phi->type() != dsttype) {
 424           phi->set_type(dsttype);
 425           _gvn.set_type(phi, dsttype);
 426         }
 427       }
 428     }
 429   }
 430   phi_map->merge_replaced_nodes_with(ex_map);
 431 }
 432 
 433 //--------------------------use_exception_state--------------------------------
 434 Node* GraphKit::use_exception_state(SafePointNode* phi_map) {
 435   if (failing()) { stop(); return top(); }
 436   Node* region = phi_map->control();
 437   Node* hidden_merge_mark = root();
 438   assert(phi_map->jvms()->map() == phi_map, "sanity: 1-1 relation");
 439   Node* ex_oop = clear_saved_ex_oop(phi_map);
 440   if (region->in(0) == hidden_merge_mark) {
 441     // Special marking for internal ex-states.  Process the phis now.
 442     region->set_req(0, region);  // now it's an ordinary region
 443     set_jvms(phi_map->jvms());   // ...so now we can use it as a map
 444     // Note: Setting the jvms also sets the bci and sp.
 445     set_control(_gvn.transform(region));
 446     uint tos = jvms()->stkoff() + sp();
 447     for (uint i = 1; i < tos; i++) {
 448       Node* x = phi_map->in(i);
 449       if (x->in(0) == region) {
 450         assert(x->is_Phi(), "expected a special phi");
 451         phi_map->set_req(i, _gvn.transform(x));
 452       }
 453     }
 454     for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
 455       Node* x = mms.memory();
 456       if (x->in(0) == region) {
 457         assert(x->is_Phi(), "nobody else uses a hidden region");
 458         mms.set_memory(_gvn.transform(x));
 459       }
 460     }
 461     if (ex_oop->in(0) == region) {
 462       assert(ex_oop->is_Phi(), "expected a special phi");
 463       ex_oop = _gvn.transform(ex_oop);
 464     }
 465   } else {
 466     set_jvms(phi_map->jvms());
 467   }
 468 
 469   assert(!is_hidden_merge(phi_map->control()), "hidden ex. states cleared");
 470   assert(!is_hidden_merge(phi_map->i_o()), "hidden ex. states cleared");
 471   return ex_oop;
 472 }
 473 
 474 //---------------------------------java_bc-------------------------------------
 475 Bytecodes::Code GraphKit::java_bc() const {
 476   ciMethod* method = this->method();
 477   int       bci    = this->bci();
 478   if (method != NULL && bci != InvocationEntryBci)
 479     return method->java_code_at_bci(bci);
 480   else
 481     return Bytecodes::_illegal;
 482 }
 483 
 484 void GraphKit::uncommon_trap_if_should_post_on_exceptions(Deoptimization::DeoptReason reason,
 485                                                           bool must_throw) {
 486     // if the exception capability is set, then we will generate code
 487     // to check the JavaThread.should_post_on_exceptions flag to see
 488     // if we actually need to report exception events (for this
 489     // thread).  If we don't need to report exception events, we will
 490     // take the normal fast path provided by add_exception_events.  If
 491     // exception event reporting is enabled for this thread, we will
 492     // take the uncommon_trap in the BuildCutout below.
 493 
 494     // first must access the should_post_on_exceptions_flag in this thread's JavaThread
 495     Node* jthread = _gvn.transform(new (C) ThreadLocalNode());
 496     Node* adr = basic_plus_adr(top(), jthread, in_bytes(JavaThread::should_post_on_exceptions_flag_offset()));
 497     Node* should_post_flag = make_load(control(), adr, TypeInt::INT, T_INT, Compile::AliasIdxRaw, false);
 498 
 499     // Test the should_post_on_exceptions_flag vs. 0
 500     Node* chk = _gvn.transform( new (C) CmpINode(should_post_flag, intcon(0)) );
 501     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 502 
 503     // Branch to slow_path if should_post_on_exceptions_flag was true
 504     { BuildCutout unless(this, tst, PROB_MAX);
 505       // Do not try anything fancy if we're notifying the VM on every throw.
 506       // Cf. case Bytecodes::_athrow in parse2.cpp.
 507       uncommon_trap(reason, Deoptimization::Action_none,
 508                     (ciKlass*)NULL, (char*)NULL, must_throw);
 509     }
 510 
 511 }
 512 
 513 //------------------------------builtin_throw----------------------------------
 514 void GraphKit::builtin_throw(Deoptimization::DeoptReason reason, Node* arg) {
 515   bool must_throw = true;
 516 
 517   if (env()->jvmti_can_post_on_exceptions()) {
 518     // check if we must post exception events, take uncommon trap if so
 519     uncommon_trap_if_should_post_on_exceptions(reason, must_throw);
 520     // here if should_post_on_exceptions is false
 521     // continue on with the normal codegen
 522   }
 523 
 524   // If this particular condition has not yet happened at this
 525   // bytecode, then use the uncommon trap mechanism, and allow for
 526   // a future recompilation if several traps occur here.
 527   // If the throw is hot, try to use a more complicated inline mechanism
 528   // which keeps execution inside the compiled code.
 529   bool treat_throw_as_hot = false;
 530   ciMethodData* md = method()->method_data();
 531 
 532   if (ProfileTraps) {
 533     if (too_many_traps(reason)) {
 534       treat_throw_as_hot = true;
 535     }
 536     // (If there is no MDO at all, assume it is early in
 537     // execution, and that any deopts are part of the
 538     // startup transient, and don't need to be remembered.)
 539 
 540     // Also, if there is a local exception handler, treat all throws
 541     // as hot if there has been at least one in this method.
 542     if (C->trap_count(reason) != 0
 543         && method()->method_data()->trap_count(reason) != 0
 544         && has_ex_handler()) {
 545         treat_throw_as_hot = true;
 546     }
 547   }
 548 
 549   // If this throw happens frequently, an uncommon trap might cause
 550   // a performance pothole.  If there is a local exception handler,
 551   // and if this particular bytecode appears to be deoptimizing often,
 552   // let us handle the throw inline, with a preconstructed instance.
 553   // Note:   If the deopt count has blown up, the uncommon trap
 554   // runtime is going to flush this nmethod, not matter what.
 555   if (treat_throw_as_hot
 556       && (!StackTraceInThrowable || OmitStackTraceInFastThrow)) {
 557     // If the throw is local, we use a pre-existing instance and
 558     // punt on the backtrace.  This would lead to a missing backtrace
 559     // (a repeat of 4292742) if the backtrace object is ever asked
 560     // for its backtrace.
 561     // Fixing this remaining case of 4292742 requires some flavor of
 562     // escape analysis.  Leave that for the future.
 563     ciInstance* ex_obj = NULL;
 564     switch (reason) {
 565     case Deoptimization::Reason_null_check:
 566       ex_obj = env()->NullPointerException_instance();
 567       break;
 568     case Deoptimization::Reason_div0_check:
 569       ex_obj = env()->ArithmeticException_instance();
 570       break;
 571     case Deoptimization::Reason_range_check:
 572       ex_obj = env()->ArrayIndexOutOfBoundsException_instance();
 573       break;
 574     case Deoptimization::Reason_class_check:
 575       if (java_bc() == Bytecodes::_aastore) {
 576         ex_obj = env()->ArrayStoreException_instance();
 577       } else {
 578         ex_obj = env()->ClassCastException_instance();
 579       }
 580       break;
 581     }
 582     if (failing()) { stop(); return; }  // exception allocation might fail
 583     if (ex_obj != NULL) {
 584       // Cheat with a preallocated exception object.
 585       if (C->log() != NULL)
 586         C->log()->elem("hot_throw preallocated='1' reason='%s'",
 587                        Deoptimization::trap_reason_name(reason));
 588       const TypeInstPtr* ex_con  = TypeInstPtr::make(ex_obj);
 589       Node*              ex_node = _gvn.transform( ConNode::make(C, ex_con) );
 590 
 591       // Clear the detail message of the preallocated exception object.
 592       // Weblogic sometimes mutates the detail message of exceptions
 593       // using reflection.
 594       int offset = java_lang_Throwable::get_detailMessage_offset();
 595       const TypePtr* adr_typ = ex_con->add_offset(offset);
 596 
 597       Node *adr = basic_plus_adr(ex_node, ex_node, offset);
 598       const TypeOopPtr* val_type = TypeOopPtr::make_from_klass(env()->String_klass());
 599       // Conservatively release stores of object references.
 600       Node *store = store_oop_to_object(control(), ex_node, adr, adr_typ, null(), val_type, T_OBJECT, StoreNode::release);
 601 
 602       add_exception_state(make_exception_state(ex_node));
 603       return;
 604     }
 605   }
 606 
 607   // %%% Maybe add entry to OptoRuntime which directly throws the exc.?
 608   // It won't be much cheaper than bailing to the interp., since we'll
 609   // have to pass up all the debug-info, and the runtime will have to
 610   // create the stack trace.
 611 
 612   // Usual case:  Bail to interpreter.
 613   // Reserve the right to recompile if we haven't seen anything yet.
 614 
 615   Deoptimization::DeoptAction action = Deoptimization::Action_maybe_recompile;
 616   if (treat_throw_as_hot
 617       && (method()->method_data()->trap_recompiled_at(bci())
 618           || C->too_many_traps(reason))) {
 619     // We cannot afford to take more traps here.  Suffer in the interpreter.
 620     if (C->log() != NULL)
 621       C->log()->elem("hot_throw preallocated='0' reason='%s' mcount='%d'",
 622                      Deoptimization::trap_reason_name(reason),
 623                      C->trap_count(reason));
 624     action = Deoptimization::Action_none;
 625   }
 626 
 627   // "must_throw" prunes the JVM state to include only the stack, if there
 628   // are no local exception handlers.  This should cut down on register
 629   // allocation time and code size, by drastically reducing the number
 630   // of in-edges on the call to the uncommon trap.
 631 
 632   uncommon_trap(reason, action, (ciKlass*)NULL, (char*)NULL, must_throw);
 633 }
 634 
 635 
 636 //----------------------------PreserveJVMState---------------------------------
 637 PreserveJVMState::PreserveJVMState(GraphKit* kit, bool clone_map) {
 638   debug_only(kit->verify_map());
 639   _kit    = kit;
 640   _map    = kit->map();   // preserve the map
 641   _sp     = kit->sp();
 642   kit->set_map(clone_map ? kit->clone_map() : NULL);
 643 #ifdef ASSERT
 644   _bci    = kit->bci();
 645   Parse* parser = kit->is_Parse();
 646   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 647   _block  = block;
 648 #endif
 649 }
 650 PreserveJVMState::~PreserveJVMState() {
 651   GraphKit* kit = _kit;
 652 #ifdef ASSERT
 653   assert(kit->bci() == _bci, "bci must not shift");
 654   Parse* parser = kit->is_Parse();
 655   int block = (parser == NULL || parser->block() == NULL) ? -1 : parser->block()->rpo();
 656   assert(block == _block,    "block must not shift");
 657 #endif
 658   kit->set_map(_map);
 659   kit->set_sp(_sp);
 660 }
 661 
 662 
 663 //-----------------------------BuildCutout-------------------------------------
 664 BuildCutout::BuildCutout(GraphKit* kit, Node* p, float prob, float cnt)
 665   : PreserveJVMState(kit)
 666 {
 667   assert(p->is_Con() || p->is_Bool(), "test must be a bool");
 668   SafePointNode* outer_map = _map;   // preserved map is caller's
 669   SafePointNode* inner_map = kit->map();
 670   IfNode* iff = kit->create_and_map_if(outer_map->control(), p, prob, cnt);
 671   outer_map->set_control(kit->gvn().transform( new (kit->C) IfTrueNode(iff) ));
 672   inner_map->set_control(kit->gvn().transform( new (kit->C) IfFalseNode(iff) ));
 673 }
 674 BuildCutout::~BuildCutout() {
 675   GraphKit* kit = _kit;
 676   assert(kit->stopped(), "cutout code must stop, throw, return, etc.");
 677 }
 678 
 679 //---------------------------PreserveReexecuteState----------------------------
 680 PreserveReexecuteState::PreserveReexecuteState(GraphKit* kit) {
 681   assert(!kit->stopped(), "must call stopped() before");
 682   _kit    =    kit;
 683   _sp     =    kit->sp();
 684   _reexecute = kit->jvms()->_reexecute;
 685 }
 686 PreserveReexecuteState::~PreserveReexecuteState() {
 687   if (_kit->stopped()) return;
 688   _kit->jvms()->_reexecute = _reexecute;
 689   _kit->set_sp(_sp);
 690 }
 691 
 692 //------------------------------clone_map--------------------------------------
 693 // Implementation of PreserveJVMState
 694 //
 695 // Only clone_map(...) here. If this function is only used in the
 696 // PreserveJVMState class we may want to get rid of this extra
 697 // function eventually and do it all there.
 698 
 699 SafePointNode* GraphKit::clone_map() {
 700   if (map() == NULL)  return NULL;
 701 
 702   // Clone the memory edge first
 703   Node* mem = MergeMemNode::make(C, map()->memory());
 704   gvn().set_type_bottom(mem);
 705 
 706   SafePointNode *clonemap = (SafePointNode*)map()->clone();
 707   JVMState* jvms = this->jvms();
 708   JVMState* clonejvms = jvms->clone_shallow(C);
 709   clonemap->set_memory(mem);
 710   clonemap->set_jvms(clonejvms);
 711   clonejvms->set_map(clonemap);
 712   record_for_igvn(clonemap);
 713   gvn().set_type_bottom(clonemap);
 714   return clonemap;
 715 }
 716 
 717 
 718 //-----------------------------set_map_clone-----------------------------------
 719 void GraphKit::set_map_clone(SafePointNode* m) {
 720   _map = m;
 721   _map = clone_map();
 722   _map->set_next_exception(NULL);
 723   debug_only(verify_map());
 724 }
 725 
 726 
 727 //----------------------------kill_dead_locals---------------------------------
 728 // Detect any locals which are known to be dead, and force them to top.
 729 void GraphKit::kill_dead_locals() {
 730   // Consult the liveness information for the locals.  If any
 731   // of them are unused, then they can be replaced by top().  This
 732   // should help register allocation time and cut down on the size
 733   // of the deoptimization information.
 734 
 735   // This call is made from many of the bytecode handling
 736   // subroutines called from the Big Switch in do_one_bytecode.
 737   // Every bytecode which might include a slow path is responsible
 738   // for killing its dead locals.  The more consistent we
 739   // are about killing deads, the fewer useless phis will be
 740   // constructed for them at various merge points.
 741 
 742   // bci can be -1 (InvocationEntryBci).  We return the entry
 743   // liveness for the method.
 744 
 745   if (method() == NULL || method()->code_size() == 0) {
 746     // We are building a graph for a call to a native method.
 747     // All locals are live.
 748     return;
 749   }
 750 
 751   ResourceMark rm;
 752 
 753   // Consult the liveness information for the locals.  If any
 754   // of them are unused, then they can be replaced by top().  This
 755   // should help register allocation time and cut down on the size
 756   // of the deoptimization information.
 757   MethodLivenessResult live_locals = method()->liveness_at_bci(bci());
 758 
 759   int len = (int)live_locals.size();
 760   assert(len <= jvms()->loc_size(), "too many live locals");
 761   for (int local = 0; local < len; local++) {
 762     if (!live_locals.at(local)) {
 763       set_local(local, top());
 764     }
 765   }
 766 }
 767 
 768 #ifdef ASSERT
 769 //-------------------------dead_locals_are_killed------------------------------
 770 // Return true if all dead locals are set to top in the map.
 771 // Used to assert "clean" debug info at various points.
 772 bool GraphKit::dead_locals_are_killed() {
 773   if (method() == NULL || method()->code_size() == 0) {
 774     // No locals need to be dead, so all is as it should be.
 775     return true;
 776   }
 777 
 778   // Make sure somebody called kill_dead_locals upstream.
 779   ResourceMark rm;
 780   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 781     if (jvms->loc_size() == 0)  continue;  // no locals to consult
 782     SafePointNode* map = jvms->map();
 783     ciMethod* method = jvms->method();
 784     int       bci    = jvms->bci();
 785     if (jvms == this->jvms()) {
 786       bci = this->bci();  // it might not yet be synched
 787     }
 788     MethodLivenessResult live_locals = method->liveness_at_bci(bci);
 789     int len = (int)live_locals.size();
 790     if (!live_locals.is_valid() || len == 0)
 791       // This method is trivial, or is poisoned by a breakpoint.
 792       return true;
 793     assert(len == jvms->loc_size(), "live map consistent with locals map");
 794     for (int local = 0; local < len; local++) {
 795       if (!live_locals.at(local) && map->local(jvms, local) != top()) {
 796         if (PrintMiscellaneous && (Verbose || WizardMode)) {
 797           tty->print_cr("Zombie local %d: ", local);
 798           jvms->dump();
 799         }
 800         return false;
 801       }
 802     }
 803   }
 804   return true;
 805 }
 806 
 807 #endif //ASSERT
 808 
 809 // Helper function for enforcing certain bytecodes to reexecute if
 810 // deoptimization happens
 811 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 812   ciMethod* cur_method = jvms->method();
 813   int       cur_bci   = jvms->bci();
 814   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 815     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 816     return Interpreter::bytecode_should_reexecute(code) ||
 817            is_anewarray && code == Bytecodes::_multianewarray;
 818     // Reexecute _multianewarray bytecode which was replaced with
 819     // sequence of [a]newarray. See Parse::do_multianewarray().
 820     //
 821     // Note: interpreter should not have it set since this optimization
 822     // is limited by dimensions and guarded by flag so in some cases
 823     // multianewarray() runtime calls will be generated and
 824     // the bytecode should not be reexecutes (stack will not be reset).
 825   } else
 826     return false;
 827 }
 828 
 829 // Helper function for adding JVMState and debug information to node
 830 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 831   // Add the safepoint edges to the call (or other safepoint).
 832 
 833   // Make sure dead locals are set to top.  This
 834   // should help register allocation time and cut down on the size
 835   // of the deoptimization information.
 836   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 837 
 838   // Walk the inline list to fill in the correct set of JVMState's
 839   // Also fill in the associated edges for each JVMState.
 840 
 841   // If the bytecode needs to be reexecuted we need to put
 842   // the arguments back on the stack.
 843   const bool should_reexecute = jvms()->should_reexecute();
 844   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 845 
 846   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to
 847   // undefined if the bci is different.  This is normal for Parse but it
 848   // should not happen for LibraryCallKit because only one bci is processed.
 849   assert(!is_LibraryCallKit() || (jvms()->should_reexecute() == should_reexecute),
 850          "in LibraryCallKit the reexecute bit should not change");
 851 
 852   // If we are guaranteed to throw, we can prune everything but the
 853   // input to the current bytecode.
 854   bool can_prune_locals = false;
 855   uint stack_slots_not_pruned = 0;
 856   int inputs = 0, depth = 0;
 857   if (must_throw) {
 858     assert(method() == youngest_jvms->method(), "sanity");
 859     if (compute_stack_effects(inputs, depth)) {
 860       can_prune_locals = true;
 861       stack_slots_not_pruned = inputs;
 862     }
 863   }
 864 
 865   if (env()->jvmti_can_access_local_variables()) {
 866     // At any safepoint, this method can get breakpointed, which would
 867     // then require an immediate deoptimization.
 868     can_prune_locals = false;  // do not prune locals
 869     stack_slots_not_pruned = 0;
 870   }
 871 
 872   // do not scribble on the input jvms
 873   JVMState* out_jvms = youngest_jvms->clone_deep(C);
 874   call->set_jvms(out_jvms); // Start jvms list for call node
 875 
 876   // For a known set of bytecodes, the interpreter should reexecute them if
 877   // deoptimization happens. We set the reexecute state for them here
 878   if (out_jvms->is_reexecute_undefined() && //don't change if already specified
 879       should_reexecute_implied_by_bytecode(out_jvms, call->is_AllocateArray())) {
 880     out_jvms->set_should_reexecute(true); //NOTE: youngest_jvms not changed
 881   }
 882 
 883   // Presize the call:
 884   DEBUG_ONLY(uint non_debug_edges = call->req());
 885   call->add_req_batch(top(), youngest_jvms->debug_depth());
 886   assert(call->req() == non_debug_edges + youngest_jvms->debug_depth(), "");
 887 
 888   // Set up edges so that the call looks like this:
 889   //  Call [state:] ctl io mem fptr retadr
 890   //       [parms:] parm0 ... parmN
 891   //       [root:]  loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 892   //    [...mid:]   loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN [...]
 893   //       [young:] loc0 ... locN stk0 ... stkSP mon0 obj0 ... monN objN
 894   // Note that caller debug info precedes callee debug info.
 895 
 896   // Fill pointer walks backwards from "young:" to "root:" in the diagram above:
 897   uint debug_ptr = call->req();
 898 
 899   // Loop over the map input edges associated with jvms, add them
 900   // to the call node, & reset all offsets to match call node array.
 901   for (JVMState* in_jvms = youngest_jvms; in_jvms != NULL; ) {
 902     uint debug_end   = debug_ptr;
 903     uint debug_start = debug_ptr - in_jvms->debug_size();
 904     debug_ptr = debug_start;  // back up the ptr
 905 
 906     uint p = debug_start;  // walks forward in [debug_start, debug_end)
 907     uint j, k, l;
 908     SafePointNode* in_map = in_jvms->map();
 909     out_jvms->set_map(call);
 910 
 911     if (can_prune_locals) {
 912       assert(in_jvms->method() == out_jvms->method(), "sanity");
 913       // If the current throw can reach an exception handler in this JVMS,
 914       // then we must keep everything live that can reach that handler.
 915       // As a quick and dirty approximation, we look for any handlers at all.
 916       if (in_jvms->method()->has_exception_handlers()) {
 917         can_prune_locals = false;
 918       }
 919     }
 920 
 921     // Add the Locals
 922     k = in_jvms->locoff();
 923     l = in_jvms->loc_size();
 924     out_jvms->set_locoff(p);
 925     if (!can_prune_locals) {
 926       for (j = 0; j < l; j++)
 927         call->set_req(p++, in_map->in(k+j));
 928     } else {
 929       p += l;  // already set to top above by add_req_batch
 930     }
 931 
 932     // Add the Expression Stack
 933     k = in_jvms->stkoff();
 934     l = in_jvms->sp();
 935     out_jvms->set_stkoff(p);
 936     if (!can_prune_locals) {
 937       for (j = 0; j < l; j++)
 938         call->set_req(p++, in_map->in(k+j));
 939     } else if (can_prune_locals && stack_slots_not_pruned != 0) {
 940       // Divide stack into {S0,...,S1}, where S0 is set to top.
 941       uint s1 = stack_slots_not_pruned;
 942       stack_slots_not_pruned = 0;  // for next iteration
 943       if (s1 > l)  s1 = l;
 944       uint s0 = l - s1;
 945       p += s0;  // skip the tops preinstalled by add_req_batch
 946       for (j = s0; j < l; j++)
 947         call->set_req(p++, in_map->in(k+j));
 948     } else {
 949       p += l;  // already set to top above by add_req_batch
 950     }
 951 
 952     // Add the Monitors
 953     k = in_jvms->monoff();
 954     l = in_jvms->mon_size();
 955     out_jvms->set_monoff(p);
 956     for (j = 0; j < l; j++)
 957       call->set_req(p++, in_map->in(k+j));
 958 
 959     // Copy any scalar object fields.
 960     k = in_jvms->scloff();
 961     l = in_jvms->scl_size();
 962     out_jvms->set_scloff(p);
 963     for (j = 0; j < l; j++)
 964       call->set_req(p++, in_map->in(k+j));
 965 
 966     // Finish the new jvms.
 967     out_jvms->set_endoff(p);
 968 
 969     assert(out_jvms->endoff()     == debug_end,             "fill ptr must match");
 970     assert(out_jvms->depth()      == in_jvms->depth(),      "depth must match");
 971     assert(out_jvms->loc_size()   == in_jvms->loc_size(),   "size must match");
 972     assert(out_jvms->mon_size()   == in_jvms->mon_size(),   "size must match");
 973     assert(out_jvms->scl_size()   == in_jvms->scl_size(),   "size must match");
 974     assert(out_jvms->debug_size() == in_jvms->debug_size(), "size must match");
 975 
 976     // Update the two tail pointers in parallel.
 977     out_jvms = out_jvms->caller();
 978     in_jvms  = in_jvms->caller();
 979   }
 980 
 981   assert(debug_ptr == non_debug_edges, "debug info must fit exactly");
 982 
 983   // Test the correctness of JVMState::debug_xxx accessors:
 984   assert(call->jvms()->debug_start() == non_debug_edges, "");
 985   assert(call->jvms()->debug_end()   == call->req(), "");
 986   assert(call->jvms()->debug_depth() == call->req() - non_debug_edges, "");
 987 }
 988 
 989 bool GraphKit::compute_stack_effects(int& inputs, int& depth) {
 990   Bytecodes::Code code = java_bc();
 991   if (code == Bytecodes::_wide) {
 992     code = method()->java_code_at_bci(bci() + 1);
 993   }
 994 
 995   BasicType rtype = T_ILLEGAL;
 996   int       rsize = 0;
 997 
 998   if (code != Bytecodes::_illegal) {
 999     depth = Bytecodes::depth(code); // checkcast=0, athrow=-1
1000     rtype = Bytecodes::result_type(code); // checkcast=P, athrow=V
1001     if (rtype < T_CONFLICT)
1002       rsize = type2size[rtype];
1003   }
1004 
1005   switch (code) {
1006   case Bytecodes::_illegal:
1007     return false;
1008 
1009   case Bytecodes::_ldc:
1010   case Bytecodes::_ldc_w:
1011   case Bytecodes::_ldc2_w:
1012     inputs = 0;
1013     break;
1014 
1015   case Bytecodes::_dup:         inputs = 1;  break;
1016   case Bytecodes::_dup_x1:      inputs = 2;  break;
1017   case Bytecodes::_dup_x2:      inputs = 3;  break;
1018   case Bytecodes::_dup2:        inputs = 2;  break;
1019   case Bytecodes::_dup2_x1:     inputs = 3;  break;
1020   case Bytecodes::_dup2_x2:     inputs = 4;  break;
1021   case Bytecodes::_swap:        inputs = 2;  break;
1022   case Bytecodes::_arraylength: inputs = 1;  break;
1023 
1024   case Bytecodes::_getstatic:
1025   case Bytecodes::_putstatic:
1026   case Bytecodes::_getfield:
1027   case Bytecodes::_putfield:
1028     {
1029       bool ignored_will_link;
1030       ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1031       int      size  = field->type()->size();
1032       bool is_get = (depth >= 0), is_static = (depth & 1);
1033       inputs = (is_static ? 0 : 1);
1034       if (is_get) {
1035         depth = size - inputs;
1036       } else {
1037         inputs += size;        // putxxx pops the value from the stack
1038         depth = - inputs;
1039       }
1040     }
1041     break;
1042 
1043   case Bytecodes::_invokevirtual:
1044   case Bytecodes::_invokespecial:
1045   case Bytecodes::_invokestatic:
1046   case Bytecodes::_invokedynamic:
1047   case Bytecodes::_invokeinterface:
1048     {
1049       bool ignored_will_link;
1050       ciSignature* declared_signature = NULL;
1051       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1052       assert(declared_signature != NULL, "cannot be null");
1053       inputs   = declared_signature->arg_size_for_bc(code);
1054       int size = declared_signature->return_type()->size();
1055       depth = size - inputs;
1056     }
1057     break;
1058 
1059   case Bytecodes::_multianewarray:
1060     {
1061       ciBytecodeStream iter(method());
1062       iter.reset_to_bci(bci());
1063       iter.next();
1064       inputs = iter.get_dimensions();
1065       assert(rsize == 1, "");
1066       depth = rsize - inputs;
1067     }
1068     break;
1069 
1070   case Bytecodes::_ireturn:
1071   case Bytecodes::_lreturn:
1072   case Bytecodes::_freturn:
1073   case Bytecodes::_dreturn:
1074   case Bytecodes::_areturn:
1075     assert(rsize = -depth, "");
1076     inputs = rsize;
1077     break;
1078 
1079   case Bytecodes::_jsr:
1080   case Bytecodes::_jsr_w:
1081     inputs = 0;
1082     depth  = 1;                  // S.B. depth=1, not zero
1083     break;
1084 
1085   default:
1086     // bytecode produces a typed result
1087     inputs = rsize - depth;
1088     assert(inputs >= 0, "");
1089     break;
1090   }
1091 
1092 #ifdef ASSERT
1093   // spot check
1094   int outputs = depth + inputs;
1095   assert(outputs >= 0, "sanity");
1096   switch (code) {
1097   case Bytecodes::_checkcast: assert(inputs == 1 && outputs == 1, ""); break;
1098   case Bytecodes::_athrow:    assert(inputs == 1 && outputs == 0, ""); break;
1099   case Bytecodes::_aload_0:   assert(inputs == 0 && outputs == 1, ""); break;
1100   case Bytecodes::_return:    assert(inputs == 0 && outputs == 0, ""); break;
1101   case Bytecodes::_drem:      assert(inputs == 4 && outputs == 2, ""); break;
1102   }
1103 #endif //ASSERT
1104 
1105   return true;
1106 }
1107 
1108 
1109 
1110 //------------------------------basic_plus_adr---------------------------------
1111 Node* GraphKit::basic_plus_adr(Node* base, Node* ptr, Node* offset) {
1112   // short-circuit a common case
1113   if (offset == intcon(0))  return ptr;
1114   return _gvn.transform( new (C) AddPNode(base, ptr, offset) );
1115 }
1116 
1117 Node* GraphKit::ConvI2L(Node* offset) {
1118   // short-circuit a common case
1119   jint offset_con = find_int_con(offset, Type::OffsetBot);
1120   if (offset_con != Type::OffsetBot) {
1121     return longcon((jlong) offset_con);
1122   }
1123   return _gvn.transform( new (C) ConvI2LNode(offset));
1124 }
1125 
1126 Node* GraphKit::ConvI2UL(Node* offset) {
1127   juint offset_con = (juint) find_int_con(offset, Type::OffsetBot);
1128   if (offset_con != (juint) Type::OffsetBot) {
1129     return longcon((julong) offset_con);
1130   }
1131   Node* conv = _gvn.transform( new (C) ConvI2LNode(offset));
1132   Node* mask = _gvn.transform( ConLNode::make(C, (julong) max_juint) );
1133   return _gvn.transform( new (C) AndLNode(conv, mask) );
1134 }
1135 
1136 Node* GraphKit::ConvL2I(Node* offset) {
1137   // short-circuit a common case
1138   jlong offset_con = find_long_con(offset, (jlong)Type::OffsetBot);
1139   if (offset_con != (jlong)Type::OffsetBot) {
1140     return intcon((int) offset_con);
1141   }
1142   return _gvn.transform( new (C) ConvL2INode(offset));
1143 }
1144 
1145 //-------------------------load_object_klass-----------------------------------
1146 Node* GraphKit::load_object_klass(Node* obj) {
1147   // Special-case a fresh allocation to avoid building nodes:
1148   Node* akls = AllocateNode::Ideal_klass(obj, &_gvn);
1149   if (akls != NULL)  return akls;
1150   Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
1151   return _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), k_adr, TypeInstPtr::KLASS) );
1152 }
1153 
1154 //-------------------------load_array_length-----------------------------------
1155 Node* GraphKit::load_array_length(Node* array) {
1156   // Special-case a fresh allocation to avoid building nodes:
1157   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(array, &_gvn);
1158   Node *alen;
1159   if (alloc == NULL) {
1160     Node *r_adr = basic_plus_adr(array, arrayOopDesc::length_offset_in_bytes());
1161     alen = _gvn.transform( new (C) LoadRangeNode(0, immutable_memory(), r_adr, TypeInt::POS));
1162   } else {
1163     alen = alloc->Ideal_length();
1164     Node* ccast = alloc->make_ideal_length(_gvn.type(array)->is_oopptr(), &_gvn);
1165     if (ccast != alen) {
1166       alen = _gvn.transform(ccast);
1167     }
1168   }
1169   return alen;
1170 }
1171 
1172 //------------------------------do_null_check----------------------------------
1173 // Helper function to do a NULL pointer check.  Returned value is
1174 // the incoming address with NULL casted away.  You are allowed to use the
1175 // not-null value only if you are control dependent on the test.
1176 extern int explicit_null_checks_inserted,
1177            explicit_null_checks_elided;
1178 Node* GraphKit::null_check_common(Node* value, BasicType type,
1179                                   // optional arguments for variations:
1180                                   bool assert_null,
1181                                   Node* *null_control) {
1182   assert(!assert_null || null_control == NULL, "not both at once");
1183   if (stopped())  return top();
1184   if (!GenerateCompilerNullChecks && !assert_null && null_control == NULL) {
1185     // For some performance testing, we may wish to suppress null checking.
1186     value = cast_not_null(value);   // Make it appear to be non-null (4962416).
1187     return value;
1188   }
1189   explicit_null_checks_inserted++;
1190 
1191   // Construct NULL check
1192   Node *chk = NULL;
1193   switch(type) {
1194     case T_LONG   : chk = new (C) CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1195     case T_INT    : chk = new (C) CmpINode(value, _gvn.intcon(0)); break;
1196     case T_ARRAY  : // fall through
1197       type = T_OBJECT;  // simplify further tests
1198     case T_OBJECT : {
1199       const Type *t = _gvn.type( value );
1200 
1201       const TypeOopPtr* tp = t->isa_oopptr();
1202       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1203           // Only for do_null_check, not any of its siblings:
1204           && !assert_null && null_control == NULL) {
1205         // Usually, any field access or invocation on an unloaded oop type
1206         // will simply fail to link, since the statically linked class is
1207         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1208         // the static class is loaded but the sharper oop type is not.
1209         // Rather than checking for this obscure case in lots of places,
1210         // we simply observe that a null check on an unloaded class
1211         // will always be followed by a nonsense operation, so we
1212         // can just issue the uncommon trap here.
1213         // Our access to the unloaded class will only be correct
1214         // after it has been loaded and initialized, which requires
1215         // a trip through the interpreter.
1216 #ifndef PRODUCT
1217         if (WizardMode) { tty->print("Null check of unloaded "); tp->klass()->print(); tty->cr(); }
1218 #endif
1219         uncommon_trap(Deoptimization::Reason_unloaded,
1220                       Deoptimization::Action_reinterpret,
1221                       tp->klass(), "!loaded");
1222         return top();
1223       }
1224 
1225       if (assert_null) {
1226         // See if the type is contained in NULL_PTR.
1227         // If so, then the value is already null.
1228         if (t->higher_equal(TypePtr::NULL_PTR)) {
1229           explicit_null_checks_elided++;
1230           return value;           // Elided null assert quickly!
1231         }
1232       } else {
1233         // See if mixing in the NULL pointer changes type.
1234         // If so, then the NULL pointer was not allowed in the original
1235         // type.  In other words, "value" was not-null.
1236         if (t->meet(TypePtr::NULL_PTR) != t) {
1237           // same as: if (!TypePtr::NULL_PTR->higher_equal(t)) ...
1238           explicit_null_checks_elided++;
1239           return value;           // Elided null check quickly!
1240         }
1241       }
1242       chk = new (C) CmpPNode( value, null() );
1243       break;
1244     }
1245 
1246     default:
1247       fatal(err_msg_res("unexpected type: %s", type2name(type)));
1248   }
1249   assert(chk != NULL, "sanity check");
1250   chk = _gvn.transform(chk);
1251 
1252   BoolTest::mask btest = assert_null ? BoolTest::eq : BoolTest::ne;
1253   BoolNode *btst = new (C) BoolNode( chk, btest);
1254   Node   *tst = _gvn.transform( btst );
1255 
1256   //-----------
1257   // if peephole optimizations occurred, a prior test existed.
1258   // If a prior test existed, maybe it dominates as we can avoid this test.
1259   if (tst != btst && type == T_OBJECT) {
1260     // At this point we want to scan up the CFG to see if we can
1261     // find an identical test (and so avoid this test altogether).
1262     Node *cfg = control();
1263     int depth = 0;
1264     while( depth < 16 ) {       // Limit search depth for speed
1265       if( cfg->Opcode() == Op_IfTrue &&
1266           cfg->in(0)->in(1) == tst ) {
1267         // Found prior test.  Use "cast_not_null" to construct an identical
1268         // CastPP (and hence hash to) as already exists for the prior test.
1269         // Return that casted value.
1270         if (assert_null) {
1271           replace_in_map(value, null());
1272           return null();  // do not issue the redundant test
1273         }
1274         Node *oldcontrol = control();
1275         set_control(cfg);
1276         Node *res = cast_not_null(value);
1277         set_control(oldcontrol);
1278         explicit_null_checks_elided++;
1279         return res;
1280       }
1281       cfg = IfNode::up_one_dom(cfg, /*linear_only=*/ true);
1282       if (cfg == NULL)  break;  // Quit at region nodes
1283       depth++;
1284     }
1285   }
1286 
1287   //-----------
1288   // Branch to failure if null
1289   float ok_prob = PROB_MAX;  // a priori estimate:  nulls never happen
1290   Deoptimization::DeoptReason reason;
1291   if (assert_null)
1292     reason = Deoptimization::Reason_null_assert;
1293   else if (type == T_OBJECT)
1294     reason = Deoptimization::Reason_null_check;
1295   else
1296     reason = Deoptimization::Reason_div0_check;
1297 
1298   // %%% Since Reason_unhandled is not recorded on a per-bytecode basis,
1299   // ciMethodData::has_trap_at will return a conservative -1 if any
1300   // must-be-null assertion has failed.  This could cause performance
1301   // problems for a method after its first do_null_assert failure.
1302   // Consider using 'Reason_class_check' instead?
1303 
1304   // To cause an implicit null check, we set the not-null probability
1305   // to the maximum (PROB_MAX).  For an explicit check the probability
1306   // is set to a smaller value.
1307   if (null_control != NULL || too_many_traps(reason)) {
1308     // probability is less likely
1309     ok_prob =  PROB_LIKELY_MAG(3);
1310   } else if (!assert_null &&
1311              (ImplicitNullCheckThreshold > 0) &&
1312              method() != NULL &&
1313              (method()->method_data()->trap_count(reason)
1314               >= (uint)ImplicitNullCheckThreshold)) {
1315     ok_prob =  PROB_LIKELY_MAG(3);
1316   }
1317 
1318   if (null_control != NULL) {
1319     IfNode* iff = create_and_map_if(control(), tst, ok_prob, COUNT_UNKNOWN);
1320     Node* null_true = _gvn.transform( new (C) IfFalseNode(iff));
1321     set_control(      _gvn.transform( new (C) IfTrueNode(iff)));
1322     if (null_true == top())
1323       explicit_null_checks_elided++;
1324     (*null_control) = null_true;
1325   } else {
1326     BuildCutout unless(this, tst, ok_prob);
1327     // Check for optimizer eliding test at parse time
1328     if (stopped()) {
1329       // Failure not possible; do not bother making uncommon trap.
1330       explicit_null_checks_elided++;
1331     } else if (assert_null) {
1332       uncommon_trap(reason,
1333                     Deoptimization::Action_make_not_entrant,
1334                     NULL, "assert_null");
1335     } else {
1336       replace_in_map(value, zerocon(type));
1337       builtin_throw(reason);
1338     }
1339   }
1340 
1341   // Must throw exception, fall-thru not possible?
1342   if (stopped()) {
1343     return top();               // No result
1344   }
1345 
1346   if (assert_null) {
1347     // Cast obj to null on this path.
1348     replace_in_map(value, zerocon(type));
1349     return zerocon(type);
1350   }
1351 
1352   // Cast obj to not-null on this path, if there is no null_control.
1353   // (If there is a null_control, a non-null value may come back to haunt us.)
1354   if (type == T_OBJECT) {
1355     Node* cast = cast_not_null(value, false);
1356     if (null_control == NULL || (*null_control) == top())
1357       replace_in_map(value, cast);
1358     value = cast;
1359   }
1360 
1361   return value;
1362 }
1363 
1364 
1365 //------------------------------cast_not_null----------------------------------
1366 // Cast obj to not-null on this path
1367 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1368   const Type *t = _gvn.type(obj);
1369   const Type *t_not_null = t->join(TypePtr::NOTNULL);
1370   // Object is already not-null?
1371   if( t == t_not_null ) return obj;
1372 
1373   Node *cast = new (C) CastPPNode(obj,t_not_null);
1374   cast->init_req(0, control());
1375   cast = _gvn.transform( cast );
1376 
1377   // Scan for instances of 'obj' in the current JVM mapping.
1378   // These instances are known to be not-null after the test.
1379   if (do_replace_in_map)
1380     replace_in_map(obj, cast);
1381 
1382   return cast;                  // Return casted value
1383 }
1384 
1385 
1386 //--------------------------replace_in_map-------------------------------------
1387 void GraphKit::replace_in_map(Node* old, Node* neww) {
1388   if (old == neww) {
1389     return;
1390   }
1391 
1392   map()->replace_edge(old, neww);
1393 
1394   // Note: This operation potentially replaces any edge
1395   // on the map.  This includes locals, stack, and monitors
1396   // of the current (innermost) JVM state.
1397 
1398   // don't let inconsistent types from profiling escape this
1399   // method
1400 
1401   const Type* told = _gvn.type(old);
1402   const Type* tnew = _gvn.type(neww);
1403 
1404   if (!tnew->higher_equal(told)) {
1405     return;
1406   }
1407 
1408   map()->record_replaced_node(old, neww);
1409 }
1410 
1411 
1412 //=============================================================================
1413 //--------------------------------memory---------------------------------------
1414 Node* GraphKit::memory(uint alias_idx) {
1415   MergeMemNode* mem = merged_memory();
1416   Node* p = mem->memory_at(alias_idx);
1417   _gvn.set_type(p, Type::MEMORY);  // must be mapped
1418   return p;
1419 }
1420 
1421 //-----------------------------reset_memory------------------------------------
1422 Node* GraphKit::reset_memory() {
1423   Node* mem = map()->memory();
1424   // do not use this node for any more parsing!
1425   debug_only( map()->set_memory((Node*)NULL) );
1426   return _gvn.transform( mem );
1427 }
1428 
1429 //------------------------------set_all_memory---------------------------------
1430 void GraphKit::set_all_memory(Node* newmem) {
1431   Node* mergemem = MergeMemNode::make(C, newmem);
1432   gvn().set_type_bottom(mergemem);
1433   map()->set_memory(mergemem);
1434 }
1435 
1436 //------------------------------set_all_memory_call----------------------------
1437 void GraphKit::set_all_memory_call(Node* call, bool separate_io_proj) {
1438   Node* newmem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory, separate_io_proj) );
1439   set_all_memory(newmem);
1440 }
1441 
1442 //=============================================================================
1443 //
1444 // parser factory methods for MemNodes
1445 //
1446 // These are layered on top of the factory methods in LoadNode and StoreNode,
1447 // and integrate with the parser's memory state and _gvn engine.
1448 //
1449 
1450 // factory methods in "int adr_idx"
1451 Node* GraphKit::make_load(Node* ctl, Node* adr, const Type* t, BasicType bt,
1452                           int adr_idx,
1453                           bool require_atomic_access, LoadNode::Sem sem) {
1454   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1455   const TypePtr* adr_type = NULL; // debug-mode-only argument
1456   debug_only(adr_type = C->get_adr_type(adr_idx));
1457   Node* mem = memory(adr_idx);
1458   Node* ld;
1459   if (require_atomic_access && bt == T_LONG) {
1460     ld = LoadLNode::make_atomic(C, ctl, mem, adr, adr_type, t, sem);
1461   } else {
1462     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, sem);
1463   }
1464   return _gvn.transform(ld);
1465 }
1466 
1467 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1468                                 int adr_idx,
1469                                 bool require_atomic_access,
1470                                 StoreNode::Sem sem) {
1471   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1472   const TypePtr* adr_type = NULL;
1473   debug_only(adr_type = C->get_adr_type(adr_idx));
1474   Node *mem = memory(adr_idx);
1475   Node* st;
1476   if (require_atomic_access && bt == T_LONG) {
1477     st = StoreLNode::make_atomic(C, ctl, mem, adr, adr_type, val, sem);
1478   } else {
1479     st = StoreNode::make(_gvn, ctl, mem, adr, adr_type, val, bt, sem);
1480   }
1481   st = _gvn.transform(st);
1482   set_memory(st, adr_idx);
1483   // Back-to-back stores can only remove intermediate store with DU info
1484   // so push on worklist for optimizer.
1485   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1486     record_for_igvn(st);
1487 
1488   return st;
1489 }
1490 
1491 
1492 void GraphKit::pre_barrier(bool do_load,
1493                            Node* ctl,
1494                            Node* obj,
1495                            Node* adr,
1496                            uint  adr_idx,
1497                            Node* val,
1498                            const TypeOopPtr* val_type,
1499                            Node* pre_val,
1500                            BasicType bt) {
1501 
1502   BarrierSet* bs = Universe::heap()->barrier_set();
1503   set_control(ctl);
1504   switch (bs->kind()) {
1505     case BarrierSet::G1SATBCT:
1506     case BarrierSet::G1SATBCTLogging:
1507       g1_write_barrier_pre(do_load, obj, adr, adr_idx, val, val_type, pre_val, bt);
1508       break;
1509 
1510     case BarrierSet::CardTableModRef:
1511     case BarrierSet::CardTableExtension:
1512     case BarrierSet::ModRef:
1513       break;
1514 
1515     case BarrierSet::Other:
1516     default      :
1517       ShouldNotReachHere();
1518 
1519   }
1520 }
1521 
1522 void GraphKit::post_barrier(Node* ctl,
1523                             Node* store,
1524                             Node* obj,
1525                             Node* adr,
1526                             uint  adr_idx,
1527                             Node* val,
1528                             BasicType bt,
1529                             bool use_precise) {
1530   BarrierSet* bs = Universe::heap()->barrier_set();
1531   set_control(ctl);
1532   switch (bs->kind()) {
1533     case BarrierSet::G1SATBCT:
1534     case BarrierSet::G1SATBCTLogging:
1535       g1_write_barrier_post(store, obj, adr, adr_idx, val, bt, use_precise);
1536       break;
1537 
1538     case BarrierSet::CardTableModRef:
1539     case BarrierSet::CardTableExtension:
1540       write_barrier_post(store, obj, adr, adr_idx, val, use_precise);
1541       break;
1542 
1543     case BarrierSet::ModRef:
1544       break;
1545 
1546     case BarrierSet::Other:
1547     default      :
1548       ShouldNotReachHere();
1549 
1550   }
1551 }
1552 
1553 Node* GraphKit::store_oop(Node* ctl,
1554                           Node* obj,
1555                           Node* adr,
1556                           const TypePtr* adr_type,
1557                           Node* val,
1558                           const TypeOopPtr* val_type,
1559                           BasicType bt,
1560                           bool use_precise,
1561                           StoreNode::Sem sem) {
1562   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1563   // could be delayed during Parse (for example, in adjust_map_after_if()).
1564   // Execute transformation here to avoid barrier generation in such case.
1565   if (_gvn.type(val) == TypePtr::NULL_PTR)
1566     val = _gvn.makecon(TypePtr::NULL_PTR);
1567 
1568   set_control(ctl);
1569   if (stopped()) return top(); // Dead path ?
1570 
1571   assert(bt == T_OBJECT, "sanity");
1572   assert(val != NULL, "not dead path");
1573   uint adr_idx = C->get_alias_index(adr_type);
1574   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1575 
1576   pre_barrier(true /* do_load */,
1577               control(), obj, adr, adr_idx, val, val_type,
1578               NULL /* pre_val */,
1579               bt);
1580 
1581   Node* store = store_to_memory(control(), adr, val, bt, adr_idx, false, sem);
1582   post_barrier(control(), store, obj, adr, adr_idx, val, bt, use_precise);
1583   return store;
1584 }
1585 
1586 // Could be an array or object we don't know at compile time (unsafe ref.)
1587 Node* GraphKit::store_oop_to_unknown(Node* ctl,
1588                              Node* obj,   // containing obj
1589                              Node* adr,  // actual adress to store val at
1590                              const TypePtr* adr_type,
1591                              Node* val,
1592                              BasicType bt,
1593                              StoreNode::Sem sem) {
1594   Compile::AliasType* at = C->alias_type(adr_type);
1595   const TypeOopPtr* val_type = NULL;
1596   if (adr_type->isa_instptr()) {
1597     if (at->field() != NULL) {
1598       // known field.  This code is a copy of the do_put_xxx logic.
1599       ciField* field = at->field();
1600       if (!field->type()->is_loaded()) {
1601         val_type = TypeInstPtr::BOTTOM;
1602       } else {
1603         val_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
1604       }
1605     }
1606   } else if (adr_type->isa_aryptr()) {
1607     val_type = adr_type->is_aryptr()->elem()->make_oopptr();
1608   }
1609   if (val_type == NULL) {
1610     val_type = TypeInstPtr::BOTTOM;
1611   }
1612   return store_oop(ctl, obj, adr, adr_type, val, val_type, bt, true, sem);
1613 }
1614 
1615 
1616 //-------------------------array_element_address-------------------------
1617 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1618                                       const TypeInt* sizetype) {
1619   uint shift  = exact_log2(type2aelembytes(elembt));
1620   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1621 
1622   // short-circuit a common case (saves lots of confusing waste motion)
1623   jint idx_con = find_int_con(idx, -1);
1624   if (idx_con >= 0) {
1625     intptr_t offset = header + ((intptr_t)idx_con << shift);
1626     return basic_plus_adr(ary, offset);
1627   }
1628 
1629   // must be correct type for alignment purposes
1630   Node* base  = basic_plus_adr(ary, header);
1631 #ifdef _LP64
1632   // The scaled index operand to AddP must be a clean 64-bit value.
1633   // Java allows a 32-bit int to be incremented to a negative
1634   // value, which appears in a 64-bit register as a large
1635   // positive number.  Using that large positive number as an
1636   // operand in pointer arithmetic has bad consequences.
1637   // On the other hand, 32-bit overflow is rare, and the possibility
1638   // can often be excluded, if we annotate the ConvI2L node with
1639   // a type assertion that its value is known to be a small positive
1640   // number.  (The prior range check has ensured this.)
1641   // This assertion is used by ConvI2LNode::Ideal.
1642   int index_max = max_jint - 1;  // array size is max_jint, index is one less
1643   if (sizetype != NULL)  index_max = sizetype->_hi - 1;
1644   const TypeLong* lidxtype = TypeLong::make(CONST64(0), index_max, Type::WidenMax);
1645   idx = _gvn.transform( new (C) ConvI2LNode(idx, lidxtype) );
1646 #endif
1647   Node* scale = _gvn.transform( new (C) LShiftXNode(idx, intcon(shift)) );
1648   return basic_plus_adr(ary, base, scale);
1649 }
1650 
1651 //-------------------------load_array_element-------------------------
1652 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1653   const Type* elemtype = arytype->elem();
1654   BasicType elembt = elemtype->array_element_basic_type();
1655   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1656   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype);
1657   return ld;
1658 }
1659 
1660 //-------------------------set_arguments_for_java_call-------------------------
1661 // Arguments (pre-popped from the stack) are taken from the JVMS.
1662 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1663   // Add the call arguments:
1664   uint nargs = call->method()->arg_size();
1665   for (uint i = 0; i < nargs; i++) {
1666     Node* arg = argument(i);
1667     call->init_req(i + TypeFunc::Parms, arg);
1668   }
1669 }
1670 
1671 //---------------------------set_edges_for_java_call---------------------------
1672 // Connect a newly created call into the current JVMS.
1673 // A return value node (if any) is returned from set_edges_for_java_call.
1674 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1675 
1676   // Add the predefined inputs:
1677   call->init_req( TypeFunc::Control, control() );
1678   call->init_req( TypeFunc::I_O    , i_o() );
1679   call->init_req( TypeFunc::Memory , reset_memory() );
1680   call->init_req( TypeFunc::FramePtr, frameptr() );
1681   call->init_req( TypeFunc::ReturnAdr, top() );
1682 
1683   add_safepoint_edges(call, must_throw);
1684 
1685   Node* xcall = _gvn.transform(call);
1686 
1687   if (xcall == top()) {
1688     set_control(top());
1689     return;
1690   }
1691   assert(xcall == call, "call identity is stable");
1692 
1693   // Re-use the current map to produce the result.
1694 
1695   set_control(_gvn.transform(new (C) ProjNode(call, TypeFunc::Control)));
1696   set_i_o(    _gvn.transform(new (C) ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1697   set_all_memory_call(xcall, separate_io_proj);
1698 
1699   //return xcall;   // no need, caller already has it
1700 }
1701 
1702 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj) {
1703   if (stopped())  return top();  // maybe the call folded up?
1704 
1705   // Capture the return value, if any.
1706   Node* ret;
1707   if (call->method() == NULL ||
1708       call->method()->return_type()->basic_type() == T_VOID)
1709         ret = top();
1710   else  ret = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1711 
1712   // Note:  Since any out-of-line call can produce an exception,
1713   // we always insert an I_O projection from the call into the result.
1714 
1715   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj);
1716 
1717   if (separate_io_proj) {
1718     // The caller requested separate projections be used by the fall
1719     // through and exceptional paths, so replace the projections for
1720     // the fall through path.
1721     set_i_o(_gvn.transform( new (C) ProjNode(call, TypeFunc::I_O) ));
1722     set_all_memory(_gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) ));
1723   }
1724   return ret;
1725 }
1726 
1727 //--------------------set_predefined_input_for_runtime_call--------------------
1728 // Reading and setting the memory state is way conservative here.
1729 // The real problem is that I am not doing real Type analysis on memory,
1730 // so I cannot distinguish card mark stores from other stores.  Across a GC
1731 // point the Store Barrier and the card mark memory has to agree.  I cannot
1732 // have a card mark store and its barrier split across the GC point from
1733 // either above or below.  Here I get that to happen by reading ALL of memory.
1734 // A better answer would be to separate out card marks from other memory.
1735 // For now, return the input memory state, so that it can be reused
1736 // after the call, if this call has restricted memory effects.
1737 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call) {
1738   // Set fixed predefined input arguments
1739   Node* memory = reset_memory();
1740   call->init_req( TypeFunc::Control,   control()  );
1741   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1742   call->init_req( TypeFunc::Memory,    memory     ); // may gc ptrs
1743   call->init_req( TypeFunc::FramePtr,  frameptr() );
1744   call->init_req( TypeFunc::ReturnAdr, top()      );
1745   return memory;
1746 }
1747 
1748 //-------------------set_predefined_output_for_runtime_call--------------------
1749 // Set control and memory (not i_o) from the call.
1750 // If keep_mem is not NULL, use it for the output state,
1751 // except for the RawPtr output of the call, if hook_mem is TypeRawPtr::BOTTOM.
1752 // If hook_mem is NULL, this call produces no memory effects at all.
1753 // If hook_mem is a Java-visible memory slice (such as arraycopy operands),
1754 // then only that memory slice is taken from the call.
1755 // In the last case, we must put an appropriate memory barrier before
1756 // the call, so as to create the correct anti-dependencies on loads
1757 // preceding the call.
1758 void GraphKit::set_predefined_output_for_runtime_call(Node* call,
1759                                                       Node* keep_mem,
1760                                                       const TypePtr* hook_mem) {
1761   // no i/o
1762   set_control(_gvn.transform( new (C) ProjNode(call,TypeFunc::Control) ));
1763   if (keep_mem) {
1764     // First clone the existing memory state
1765     set_all_memory(keep_mem);
1766     if (hook_mem != NULL) {
1767       // Make memory for the call
1768       Node* mem = _gvn.transform( new (C) ProjNode(call, TypeFunc::Memory) );
1769       // Set the RawPtr memory state only.  This covers all the heap top/GC stuff
1770       // We also use hook_mem to extract specific effects from arraycopy stubs.
1771       set_memory(mem, hook_mem);
1772     }
1773     // ...else the call has NO memory effects.
1774 
1775     // Make sure the call advertises its memory effects precisely.
1776     // This lets us build accurate anti-dependences in gcm.cpp.
1777     assert(C->alias_type(call->adr_type()) == C->alias_type(hook_mem),
1778            "call node must be constructed correctly");
1779   } else {
1780     assert(hook_mem == NULL, "");
1781     // This is not a "slow path" call; all memory comes from the call.
1782     set_all_memory_call(call);
1783   }
1784 }
1785 
1786 
1787 // Replace the call with the current state of the kit.
1788 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1789   JVMState* ejvms = NULL;
1790   if (has_exceptions()) {
1791     ejvms = transfer_exceptions_into_jvms();
1792   }
1793 
1794   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1795   ReplacedNodes replaced_nodes_exception;
1796   Node* ex_ctl = top();
1797 
1798   SafePointNode* final_state = stop();
1799 
1800   // Find all the needed outputs of this call
1801   CallProjections callprojs;
1802   call->extract_projections(&callprojs, true);
1803 
1804   Node* init_mem = call->in(TypeFunc::Memory);
1805   Node* final_mem = final_state->in(TypeFunc::Memory);
1806   Node* final_ctl = final_state->in(TypeFunc::Control);
1807   Node* final_io = final_state->in(TypeFunc::I_O);
1808 
1809   // Replace all the old call edges with the edges from the inlining result
1810   if (callprojs.fallthrough_catchproj != NULL) {
1811     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1812   }
1813   if (callprojs.fallthrough_memproj != NULL) {
1814     if (final_mem->is_MergeMem()) {
1815       // Parser's exits MergeMem was not transformed but may be optimized
1816       final_mem = _gvn.transform(final_mem);
1817     }
1818     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1819   }
1820   if (callprojs.fallthrough_ioproj != NULL) {
1821     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1822   }
1823 
1824   // Replace the result with the new result if it exists and is used
1825   if (callprojs.resproj != NULL && result != NULL) {
1826     C->gvn_replace_by(callprojs.resproj, result);
1827   }
1828 
1829   if (ejvms == NULL) {
1830     // No exception edges to simply kill off those paths
1831     if (callprojs.catchall_catchproj != NULL) {
1832       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1833     }
1834     if (callprojs.catchall_memproj != NULL) {
1835       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1836     }
1837     if (callprojs.catchall_ioproj != NULL) {
1838       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1839     }
1840     // Replace the old exception object with top
1841     if (callprojs.exobj != NULL) {
1842       C->gvn_replace_by(callprojs.exobj, C->top());
1843     }
1844   } else {
1845     GraphKit ekit(ejvms);
1846 
1847     // Load my combined exception state into the kit, with all phis transformed:
1848     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1849     replaced_nodes_exception = ex_map->replaced_nodes();
1850 
1851     Node* ex_oop = ekit.use_exception_state(ex_map);
1852 
1853     if (callprojs.catchall_catchproj != NULL) {
1854       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1855       ex_ctl = ekit.control();
1856     }
1857     if (callprojs.catchall_memproj != NULL) {
1858       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1859     }
1860     if (callprojs.catchall_ioproj != NULL) {
1861       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1862     }
1863 
1864     // Replace the old exception object with the newly created one
1865     if (callprojs.exobj != NULL) {
1866       C->gvn_replace_by(callprojs.exobj, ex_oop);
1867     }
1868   }
1869 
1870   // Disconnect the call from the graph
1871   call->disconnect_inputs(NULL, C);
1872   C->gvn_replace_by(call, C->top());
1873 
1874   // Clean up any MergeMems that feed other MergeMems since the
1875   // optimizer doesn't like that.
1876   if (final_mem->is_MergeMem()) {
1877     Node_List wl;
1878     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1879       Node* m = i.get();
1880       if (m->is_MergeMem() && !wl.contains(m)) {
1881         wl.push(m);
1882       }
1883     }
1884     while (wl.size()  > 0) {
1885       _gvn.transform(wl.pop());
1886     }
1887   }
1888 
1889   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1890     replaced_nodes.apply(C, final_ctl);
1891   }
1892   if (!ex_ctl->is_top() && do_replaced_nodes) {
1893     replaced_nodes_exception.apply(C, ex_ctl);
1894   }
1895 }
1896 
1897 
1898 //------------------------------increment_counter------------------------------
1899 // for statistics: increment a VM counter by 1
1900 
1901 void GraphKit::increment_counter(address counter_addr) {
1902   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1903   increment_counter(adr1);
1904 }
1905 
1906 void GraphKit::increment_counter(Node* counter_addr) {
1907   int adr_type = Compile::AliasIdxRaw;
1908   Node* ctrl = control();
1909   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type);
1910   Node* incr = _gvn.transform(new (C) AddINode(cnt, _gvn.intcon(1)));
1911   store_to_memory( ctrl, counter_addr, incr, T_INT, adr_type );
1912 }
1913 
1914 
1915 //------------------------------uncommon_trap----------------------------------
1916 // Bail out to the interpreter in mid-method.  Implemented by calling the
1917 // uncommon_trap blob.  This helper function inserts a runtime call with the
1918 // right debug info.
1919 void GraphKit::uncommon_trap(int trap_request,
1920                              ciKlass* klass, const char* comment,
1921                              bool must_throw,
1922                              bool keep_exact_action) {
1923   if (failing())  stop();
1924   if (stopped())  return; // trap reachable?
1925 
1926   // Note:  If ProfileTraps is true, and if a deopt. actually
1927   // occurs here, the runtime will make sure an MDO exists.  There is
1928   // no need to call method()->ensure_method_data() at this point.
1929 
1930   // Set the stack pointer to the right value for reexecution:
1931   set_sp(reexecute_sp());
1932 
1933 #ifdef ASSERT
1934   if (!must_throw) {
1935     // Make sure the stack has at least enough depth to execute
1936     // the current bytecode.
1937     int inputs, ignored_depth;
1938     if (compute_stack_effects(inputs, ignored_depth)) {
1939       assert(sp() >= inputs, err_msg_res("must have enough JVMS stack to execute %s: sp=%d, inputs=%d",
1940              Bytecodes::name(java_bc()), sp(), inputs));
1941     }
1942   }
1943 #endif
1944 
1945   Deoptimization::DeoptReason reason = Deoptimization::trap_request_reason(trap_request);
1946   Deoptimization::DeoptAction action = Deoptimization::trap_request_action(trap_request);
1947 
1948   switch (action) {
1949   case Deoptimization::Action_maybe_recompile:
1950   case Deoptimization::Action_reinterpret:
1951     // Temporary fix for 6529811 to allow virtual calls to be sure they
1952     // get the chance to go from mono->bi->mega
1953     if (!keep_exact_action &&
1954         Deoptimization::trap_request_index(trap_request) < 0 &&
1955         too_many_recompiles(reason)) {
1956       // This BCI is causing too many recompilations.
1957       action = Deoptimization::Action_none;
1958       trap_request = Deoptimization::make_trap_request(reason, action);
1959     } else {
1960       C->set_trap_can_recompile(true);
1961     }
1962     break;
1963   case Deoptimization::Action_make_not_entrant:
1964     C->set_trap_can_recompile(true);
1965     break;
1966 #ifdef ASSERT
1967   case Deoptimization::Action_none:
1968   case Deoptimization::Action_make_not_compilable:
1969     break;
1970   default:
1971     fatal(err_msg_res("unknown action %d: %s", action, Deoptimization::trap_action_name(action)));
1972     break;
1973 #endif
1974   }
1975 
1976   if (TraceOptoParse) {
1977     char buf[100];
1978     tty->print_cr("Uncommon trap %s at bci:%d",
1979                   Deoptimization::format_trap_request(buf, sizeof(buf),
1980                                                       trap_request), bci());
1981   }
1982 
1983   CompileLog* log = C->log();
1984   if (log != NULL) {
1985     int kid = (klass == NULL)? -1: log->identify(klass);
1986     log->begin_elem("uncommon_trap bci='%d'", bci());
1987     char buf[100];
1988     log->print(" %s", Deoptimization::format_trap_request(buf, sizeof(buf),
1989                                                           trap_request));
1990     if (kid >= 0)         log->print(" klass='%d'", kid);
1991     if (comment != NULL)  log->print(" comment='%s'", comment);
1992     log->end_elem();
1993   }
1994 
1995   // Make sure any guarding test views this path as very unlikely
1996   Node *i0 = control()->in(0);
1997   if (i0 != NULL && i0->is_If()) {        // Found a guarding if test?
1998     IfNode *iff = i0->as_If();
1999     float f = iff->_prob;   // Get prob
2000     if (control()->Opcode() == Op_IfTrue) {
2001       if (f > PROB_UNLIKELY_MAG(4))
2002         iff->_prob = PROB_MIN;
2003     } else {
2004       if (f < PROB_LIKELY_MAG(4))
2005         iff->_prob = PROB_MAX;
2006     }
2007   }
2008 
2009   // Clear out dead values from the debug info.
2010   kill_dead_locals();
2011 
2012   // Now insert the uncommon trap subroutine call
2013   address call_addr = SharedRuntime::uncommon_trap_blob()->entry_point();
2014   const TypePtr* no_memory_effects = NULL;
2015   // Pass the index of the class to be loaded
2016   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON |
2017                                  (must_throw ? RC_MUST_THROW : 0),
2018                                  OptoRuntime::uncommon_trap_Type(),
2019                                  call_addr, "uncommon_trap", no_memory_effects,
2020                                  intcon(trap_request));
2021   assert(call->as_CallStaticJava()->uncommon_trap_request() == trap_request,
2022          "must extract request correctly from the graph");
2023   assert(trap_request != 0, "zero value reserved by uncommon_trap_request");
2024 
2025   call->set_req(TypeFunc::ReturnAdr, returnadr());
2026   // The debug info is the only real input to this call.
2027 
2028   // Halt-and-catch fire here.  The above call should never return!
2029   HaltNode* halt = new(C) HaltNode(control(), frameptr());
2030   _gvn.set_type_bottom(halt);
2031   root()->add_req(halt);
2032 
2033   stop_and_kill_map();
2034 }
2035 
2036 
2037 //--------------------------just_allocated_object------------------------------
2038 // Report the object that was just allocated.
2039 // It must be the case that there are no intervening safepoints.
2040 // We use this to determine if an object is so "fresh" that
2041 // it does not require card marks.
2042 Node* GraphKit::just_allocated_object(Node* current_control) {
2043   if (C->recent_alloc_ctl() == current_control)
2044     return C->recent_alloc_obj();
2045   return NULL;
2046 }
2047 
2048 
2049 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2050   // (Note:  TypeFunc::make has a cache that makes this fast.)
2051   const TypeFunc* tf    = TypeFunc::make(dest_method);
2052   int             nargs = tf->_domain->_cnt - TypeFunc::Parms;
2053   for (int j = 0; j < nargs; j++) {
2054     const Type *targ = tf->_domain->field_at(j + TypeFunc::Parms);
2055     if( targ->basic_type() == T_DOUBLE ) {
2056       // If any parameters are doubles, they must be rounded before
2057       // the call, dstore_rounding does gvn.transform
2058       Node *arg = argument(j);
2059       arg = dstore_rounding(arg);
2060       set_argument(j, arg);
2061     }
2062   }
2063 }
2064 
2065 void GraphKit::round_double_result(ciMethod* dest_method) {
2066   // A non-strict method may return a double value which has an extended
2067   // exponent, but this must not be visible in a caller which is 'strict'
2068   // If a strict caller invokes a non-strict callee, round a double result
2069 
2070   BasicType result_type = dest_method->return_type()->basic_type();
2071   assert( method() != NULL, "must have caller context");
2072   if( result_type == T_DOUBLE && method()->is_strict() && !dest_method->is_strict() ) {
2073     // Destination method's return value is on top of stack
2074     // dstore_rounding() does gvn.transform
2075     Node *result = pop_pair();
2076     result = dstore_rounding(result);
2077     push_pair(result);
2078   }
2079 }
2080 
2081 // rounding for strict float precision conformance
2082 Node* GraphKit::precision_rounding(Node* n) {
2083   return UseStrictFP && _method->flags().is_strict()
2084     && UseSSE == 0 && Matcher::strict_fp_requires_explicit_rounding
2085     ? _gvn.transform( new (C) RoundFloatNode(0, n) )
2086     : n;
2087 }
2088 
2089 // rounding for strict double precision conformance
2090 Node* GraphKit::dprecision_rounding(Node *n) {
2091   return UseStrictFP && _method->flags().is_strict()
2092     && UseSSE <= 1 && Matcher::strict_fp_requires_explicit_rounding
2093     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2094     : n;
2095 }
2096 
2097 // rounding for non-strict double stores
2098 Node* GraphKit::dstore_rounding(Node* n) {
2099   return Matcher::strict_fp_requires_explicit_rounding
2100     && UseSSE <= 1
2101     ? _gvn.transform( new (C) RoundDoubleNode(0, n) )
2102     : n;
2103 }
2104 
2105 //=============================================================================
2106 // Generate a fast path/slow path idiom.  Graph looks like:
2107 // [foo] indicates that 'foo' is a parameter
2108 //
2109 //              [in]     NULL
2110 //                 \    /
2111 //                  CmpP
2112 //                  Bool ne
2113 //                   If
2114 //                  /  \
2115 //              True    False-<2>
2116 //              / |
2117 //             /  cast_not_null
2118 //           Load  |    |   ^
2119 //        [fast_test]   |   |
2120 // gvn to   opt_test    |   |
2121 //          /    \      |  <1>
2122 //      True     False  |
2123 //        |         \\  |
2124 //   [slow_call]     \[fast_result]
2125 //    Ctl   Val       \      \
2126 //     |               \      \
2127 //    Catch       <1>   \      \
2128 //   /    \        ^     \      \
2129 //  Ex    No_Ex    |      \      \
2130 //  |       \   \  |       \ <2>  \
2131 //  ...      \  [slow_res] |  |    \   [null_result]
2132 //            \         \--+--+---  |  |
2133 //             \           | /    \ | /
2134 //              --------Region     Phi
2135 //
2136 //=============================================================================
2137 // Code is structured as a series of driver functions all called 'do_XXX' that
2138 // call a set of helper functions.  Helper functions first, then drivers.
2139 
2140 //------------------------------null_check_oop---------------------------------
2141 // Null check oop.  Set null-path control into Region in slot 3.
2142 // Make a cast-not-nullness use the other not-null control.  Return cast.
2143 Node* GraphKit::null_check_oop(Node* value, Node* *null_control,
2144                                bool never_see_null) {
2145   // Initial NULL check taken path
2146   (*null_control) = top();
2147   Node* cast = null_check_common(value, T_OBJECT, false, null_control);
2148 
2149   // Generate uncommon_trap:
2150   if (never_see_null && (*null_control) != top()) {
2151     // If we see an unexpected null at a check-cast we record it and force a
2152     // recompile; the offending check-cast will be compiled to handle NULLs.
2153     // If we see more than one offending BCI, then all checkcasts in the
2154     // method will be compiled to handle NULLs.
2155     PreserveJVMState pjvms(this);
2156     set_control(*null_control);
2157     replace_in_map(value, null());
2158     uncommon_trap(Deoptimization::Reason_null_check,
2159                   Deoptimization::Action_make_not_entrant);
2160     (*null_control) = top();    // NULL path is dead
2161   }
2162 
2163   // Cast away null-ness on the result
2164   return cast;
2165 }
2166 
2167 //------------------------------opt_iff----------------------------------------
2168 // Optimize the fast-check IfNode.  Set the fast-path region slot 2.
2169 // Return slow-path control.
2170 Node* GraphKit::opt_iff(Node* region, Node* iff) {
2171   IfNode *opt_iff = _gvn.transform(iff)->as_If();
2172 
2173   // Fast path taken; set region slot 2
2174   Node *fast_taken = _gvn.transform( new (C) IfFalseNode(opt_iff) );
2175   region->init_req(2,fast_taken); // Capture fast-control
2176 
2177   // Fast path not-taken, i.e. slow path
2178   Node *slow_taken = _gvn.transform( new (C) IfTrueNode(opt_iff) );
2179   return slow_taken;
2180 }
2181 
2182 //-----------------------------make_runtime_call-------------------------------
2183 Node* GraphKit::make_runtime_call(int flags,
2184                                   const TypeFunc* call_type, address call_addr,
2185                                   const char* call_name,
2186                                   const TypePtr* adr_type,
2187                                   // The following parms are all optional.
2188                                   // The first NULL ends the list.
2189                                   Node* parm0, Node* parm1,
2190                                   Node* parm2, Node* parm3,
2191                                   Node* parm4, Node* parm5,
2192                                   Node* parm6, Node* parm7) {
2193   // Slow-path call
2194   bool is_leaf = !(flags & RC_NO_LEAF);
2195   bool has_io  = (!is_leaf && !(flags & RC_NO_IO));
2196   if (call_name == NULL) {
2197     assert(!is_leaf, "must supply name for leaf");
2198     call_name = OptoRuntime::stub_name(call_addr);
2199   }
2200   CallNode* call;
2201   if (!is_leaf) {
2202     call = new(C) CallStaticJavaNode(call_type, call_addr, call_name,
2203                                            bci(), adr_type);
2204   } else if (flags & RC_NO_FP) {
2205     call = new(C) CallLeafNoFPNode(call_type, call_addr, call_name, adr_type);
2206   } else {
2207     call = new(C) CallLeafNode(call_type, call_addr, call_name, adr_type);
2208   }
2209 
2210   // The following is similar to set_edges_for_java_call,
2211   // except that the memory effects of the call are restricted to AliasIdxRaw.
2212 
2213   // Slow path call has no side-effects, uses few values
2214   bool wide_in  = !(flags & RC_NARROW_MEM);
2215   bool wide_out = (C->get_alias_index(adr_type) == Compile::AliasIdxBot);
2216 
2217   Node* prev_mem = NULL;
2218   if (wide_in) {
2219     prev_mem = set_predefined_input_for_runtime_call(call);
2220   } else {
2221     assert(!wide_out, "narrow in => narrow out");
2222     Node* narrow_mem = memory(adr_type);
2223     prev_mem = reset_memory();
2224     map()->set_memory(narrow_mem);
2225     set_predefined_input_for_runtime_call(call);
2226   }
2227 
2228   // Hook each parm in order.  Stop looking at the first NULL.
2229   if (parm0 != NULL) { call->init_req(TypeFunc::Parms+0, parm0);
2230   if (parm1 != NULL) { call->init_req(TypeFunc::Parms+1, parm1);
2231   if (parm2 != NULL) { call->init_req(TypeFunc::Parms+2, parm2);
2232   if (parm3 != NULL) { call->init_req(TypeFunc::Parms+3, parm3);
2233   if (parm4 != NULL) { call->init_req(TypeFunc::Parms+4, parm4);
2234   if (parm5 != NULL) { call->init_req(TypeFunc::Parms+5, parm5);
2235   if (parm6 != NULL) { call->init_req(TypeFunc::Parms+6, parm6);
2236   if (parm7 != NULL) { call->init_req(TypeFunc::Parms+7, parm7);
2237     /* close each nested if ===> */  } } } } } } } }
2238   assert(call->in(call->req()-1) != NULL, "must initialize all parms");
2239 
2240   if (!is_leaf) {
2241     // Non-leaves can block and take safepoints:
2242     add_safepoint_edges(call, ((flags & RC_MUST_THROW) != 0));
2243   }
2244   // Non-leaves can throw exceptions:
2245   if (has_io) {
2246     call->set_req(TypeFunc::I_O, i_o());
2247   }
2248 
2249   if (flags & RC_UNCOMMON) {
2250     // Set the count to a tiny probability.  Cf. Estimate_Block_Frequency.
2251     // (An "if" probability corresponds roughly to an unconditional count.
2252     // Sort of.)
2253     call->set_cnt(PROB_UNLIKELY_MAG(4));
2254   }
2255 
2256   Node* c = _gvn.transform(call);
2257   assert(c == call, "cannot disappear");
2258 
2259   if (wide_out) {
2260     // Slow path call has full side-effects.
2261     set_predefined_output_for_runtime_call(call);
2262   } else {
2263     // Slow path call has few side-effects, and/or sets few values.
2264     set_predefined_output_for_runtime_call(call, prev_mem, adr_type);
2265   }
2266 
2267   if (has_io) {
2268     set_i_o(_gvn.transform(new (C) ProjNode(call, TypeFunc::I_O)));
2269   }
2270   return call;
2271 
2272 }
2273 
2274 //------------------------------merge_memory-----------------------------------
2275 // Merge memory from one path into the current memory state.
2276 void GraphKit::merge_memory(Node* new_mem, Node* region, int new_path) {
2277   for (MergeMemStream mms(merged_memory(), new_mem->as_MergeMem()); mms.next_non_empty2(); ) {
2278     Node* old_slice = mms.force_memory();
2279     Node* new_slice = mms.memory2();
2280     if (old_slice != new_slice) {
2281       PhiNode* phi;
2282       if (new_slice->is_Phi() && new_slice->as_Phi()->region() == region) {
2283         phi = new_slice->as_Phi();
2284         #ifdef ASSERT
2285         if (old_slice->is_Phi() && old_slice->as_Phi()->region() == region)
2286           old_slice = old_slice->in(new_path);
2287         // Caller is responsible for ensuring that any pre-existing
2288         // phis are already aware of old memory.
2289         int old_path = (new_path > 1) ? 1 : 2;  // choose old_path != new_path
2290         assert(phi->in(old_path) == old_slice, "pre-existing phis OK");
2291         #endif
2292         mms.set_memory(phi);
2293       } else {
2294         phi = PhiNode::make(region, old_slice, Type::MEMORY, mms.adr_type(C));
2295         _gvn.set_type(phi, Type::MEMORY);
2296         phi->set_req(new_path, new_slice);
2297         mms.set_memory(_gvn.transform(phi));  // assume it is complete
2298       }
2299     }
2300   }
2301 }
2302 
2303 //------------------------------make_slow_call_ex------------------------------
2304 // Make the exception handler hookups for the slow call
2305 void GraphKit::make_slow_call_ex(Node* call, ciInstanceKlass* ex_klass, bool separate_io_proj) {
2306   if (stopped())  return;
2307 
2308   // Make a catch node with just two handlers:  fall-through and catch-all
2309   Node* i_o  = _gvn.transform( new (C) ProjNode(call, TypeFunc::I_O, separate_io_proj) );
2310   Node* catc = _gvn.transform( new (C) CatchNode(control(), i_o, 2) );
2311   Node* norm = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci) );
2312   Node* excp = _gvn.transform( new (C) CatchProjNode(catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci) );
2313 
2314   { PreserveJVMState pjvms(this);
2315     set_control(excp);
2316     set_i_o(i_o);
2317 
2318     if (excp != top()) {
2319       // Create an exception state also.
2320       // Use an exact type if the caller has specified a specific exception.
2321       const Type* ex_type = TypeOopPtr::make_from_klass_unique(ex_klass)->cast_to_ptr_type(TypePtr::NotNull);
2322       Node*       ex_oop  = new (C) CreateExNode(ex_type, control(), i_o);
2323       add_exception_state(make_exception_state(_gvn.transform(ex_oop)));
2324     }
2325   }
2326 
2327   // Get the no-exception control from the CatchNode.
2328   set_control(norm);
2329 }
2330 
2331 
2332 //-------------------------------gen_subtype_check-----------------------------
2333 // Generate a subtyping check.  Takes as input the subtype and supertype.
2334 // Returns 2 values: sets the default control() to the true path and returns
2335 // the false path.  Only reads invariant memory; sets no (visible) memory.
2336 // The PartialSubtypeCheckNode sets the hidden 1-word cache in the encoding
2337 // but that's not exposed to the optimizer.  This call also doesn't take in an
2338 // Object; if you wish to check an Object you need to load the Object's class
2339 // prior to coming here.
2340 Node* GraphKit::gen_subtype_check(Node* subklass, Node* superklass) {
2341   // Fast check for identical types, perhaps identical constants.
2342   // The types can even be identical non-constants, in cases
2343   // involving Array.newInstance, Object.clone, etc.
2344   if (subklass == superklass)
2345     return top();             // false path is dead; no test needed.
2346 
2347   if (_gvn.type(superklass)->singleton()) {
2348     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2349     ciKlass* subk   = _gvn.type(subklass)->is_klassptr()->klass();
2350 
2351     // In the common case of an exact superklass, try to fold up the
2352     // test before generating code.  You may ask, why not just generate
2353     // the code and then let it fold up?  The answer is that the generated
2354     // code will necessarily include null checks, which do not always
2355     // completely fold away.  If they are also needless, then they turn
2356     // into a performance loss.  Example:
2357     //    Foo[] fa = blah(); Foo x = fa[0]; fa[1] = x;
2358     // Here, the type of 'fa' is often exact, so the store check
2359     // of fa[1]=x will fold up, without testing the nullness of x.
2360     switch (static_subtype_check(superk, subk)) {
2361     case SSC_always_false:
2362       {
2363         Node* always_fail = control();
2364         set_control(top());
2365         return always_fail;
2366       }
2367     case SSC_always_true:
2368       return top();
2369     case SSC_easy_test:
2370       {
2371         // Just do a direct pointer compare and be done.
2372         Node* cmp = _gvn.transform( new(C) CmpPNode(subklass, superklass) );
2373         Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2374         IfNode* iff = create_and_xform_if(control(), bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
2375         set_control( _gvn.transform( new(C) IfTrueNode (iff) ) );
2376         return       _gvn.transform( new(C) IfFalseNode(iff) );
2377       }
2378     case SSC_full_test:
2379       break;
2380     default:
2381       ShouldNotReachHere();
2382     }
2383   }
2384 
2385   // %%% Possible further optimization:  Even if the superklass is not exact,
2386   // if the subklass is the unique subtype of the superklass, the check
2387   // will always succeed.  We could leave a dependency behind to ensure this.
2388 
2389   // First load the super-klass's check-offset
2390   Node *p1 = basic_plus_adr( superklass, superklass, in_bytes(Klass::super_check_offset_offset()) );
2391   Node *chk_off = _gvn.transform( new (C) LoadINode( NULL, memory(p1), p1, _gvn.type(p1)->is_ptr() ) );
2392   int cacheoff_con = in_bytes(Klass::secondary_super_cache_offset());
2393   bool might_be_cache = (find_int_con(chk_off, cacheoff_con) == cacheoff_con);
2394 
2395   // Load from the sub-klass's super-class display list, or a 1-word cache of
2396   // the secondary superclass list, or a failing value with a sentinel offset
2397   // if the super-klass is an interface or exceptionally deep in the Java
2398   // hierarchy and we have to scan the secondary superclass list the hard way.
2399   // Worst-case type is a little odd: NULL is allowed as a result (usually
2400   // klass loads can never produce a NULL).
2401   Node *chk_off_X = ConvI2X(chk_off);
2402   Node *p2 = _gvn.transform( new (C) AddPNode(subklass,subklass,chk_off_X) );
2403   // For some types like interfaces the following loadKlass is from a 1-word
2404   // cache which is mutable so can't use immutable memory.  Other
2405   // types load from the super-class display table which is immutable.
2406   Node *kmem = might_be_cache ? memory(p2) : immutable_memory();
2407   Node *nkls = _gvn.transform( LoadKlassNode::make( _gvn, kmem, p2, _gvn.type(p2)->is_ptr(), TypeKlassPtr::OBJECT_OR_NULL ) );
2408 
2409   // Compile speed common case: ARE a subtype and we canNOT fail
2410   if( superklass == nkls )
2411     return top();             // false path is dead; no test needed.
2412 
2413   // See if we get an immediate positive hit.  Happens roughly 83% of the
2414   // time.  Test to see if the value loaded just previously from the subklass
2415   // is exactly the superklass.
2416   Node *cmp1 = _gvn.transform( new (C) CmpPNode( superklass, nkls ) );
2417   Node *bol1 = _gvn.transform( new (C) BoolNode( cmp1, BoolTest::eq ) );
2418   IfNode *iff1 = create_and_xform_if( control(), bol1, PROB_LIKELY(0.83f), COUNT_UNKNOWN );
2419   Node *iftrue1 = _gvn.transform( new (C) IfTrueNode ( iff1 ) );
2420   set_control(    _gvn.transform( new (C) IfFalseNode( iff1 ) ) );
2421 
2422   // Compile speed common case: Check for being deterministic right now.  If
2423   // chk_off is a constant and not equal to cacheoff then we are NOT a
2424   // subklass.  In this case we need exactly the 1 test above and we can
2425   // return those results immediately.
2426   if (!might_be_cache) {
2427     Node* not_subtype_ctrl = control();
2428     set_control(iftrue1); // We need exactly the 1 test above
2429     return not_subtype_ctrl;
2430   }
2431 
2432   // Gather the various success & failures here
2433   RegionNode *r_ok_subtype = new (C) RegionNode(4);
2434   record_for_igvn(r_ok_subtype);
2435   RegionNode *r_not_subtype = new (C) RegionNode(3);
2436   record_for_igvn(r_not_subtype);
2437 
2438   r_ok_subtype->init_req(1, iftrue1);
2439 
2440   // Check for immediate negative hit.  Happens roughly 11% of the time (which
2441   // is roughly 63% of the remaining cases).  Test to see if the loaded
2442   // check-offset points into the subklass display list or the 1-element
2443   // cache.  If it points to the display (and NOT the cache) and the display
2444   // missed then it's not a subtype.
2445   Node *cacheoff = _gvn.intcon(cacheoff_con);
2446   Node *cmp2 = _gvn.transform( new (C) CmpINode( chk_off, cacheoff ) );
2447   Node *bol2 = _gvn.transform( new (C) BoolNode( cmp2, BoolTest::ne ) );
2448   IfNode *iff2 = create_and_xform_if( control(), bol2, PROB_LIKELY(0.63f), COUNT_UNKNOWN );
2449   r_not_subtype->init_req(1, _gvn.transform( new (C) IfTrueNode (iff2) ) );
2450   set_control(                _gvn.transform( new (C) IfFalseNode(iff2) ) );
2451 
2452   // Check for self.  Very rare to get here, but it is taken 1/3 the time.
2453   // No performance impact (too rare) but allows sharing of secondary arrays
2454   // which has some footprint reduction.
2455   Node *cmp3 = _gvn.transform( new (C) CmpPNode( subklass, superklass ) );
2456   Node *bol3 = _gvn.transform( new (C) BoolNode( cmp3, BoolTest::eq ) );
2457   IfNode *iff3 = create_and_xform_if( control(), bol3, PROB_LIKELY(0.36f), COUNT_UNKNOWN );
2458   r_ok_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode ( iff3 ) ) );
2459   set_control(               _gvn.transform( new (C) IfFalseNode( iff3 ) ) );
2460 
2461   // -- Roads not taken here: --
2462   // We could also have chosen to perform the self-check at the beginning
2463   // of this code sequence, as the assembler does.  This would not pay off
2464   // the same way, since the optimizer, unlike the assembler, can perform
2465   // static type analysis to fold away many successful self-checks.
2466   // Non-foldable self checks work better here in second position, because
2467   // the initial primary superclass check subsumes a self-check for most
2468   // types.  An exception would be a secondary type like array-of-interface,
2469   // which does not appear in its own primary supertype display.
2470   // Finally, we could have chosen to move the self-check into the
2471   // PartialSubtypeCheckNode, and from there out-of-line in a platform
2472   // dependent manner.  But it is worthwhile to have the check here,
2473   // where it can be perhaps be optimized.  The cost in code space is
2474   // small (register compare, branch).
2475 
2476   // Now do a linear scan of the secondary super-klass array.  Again, no real
2477   // performance impact (too rare) but it's gotta be done.
2478   // Since the code is rarely used, there is no penalty for moving it
2479   // out of line, and it can only improve I-cache density.
2480   // The decision to inline or out-of-line this final check is platform
2481   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2482   Node* psc = _gvn.transform(
2483     new (C) PartialSubtypeCheckNode(control(), subklass, superklass) );
2484 
2485   Node *cmp4 = _gvn.transform( new (C) CmpPNode( psc, null() ) );
2486   Node *bol4 = _gvn.transform( new (C) BoolNode( cmp4, BoolTest::ne ) );
2487   IfNode *iff4 = create_and_xform_if( control(), bol4, PROB_FAIR, COUNT_UNKNOWN );
2488   r_not_subtype->init_req(2, _gvn.transform( new (C) IfTrueNode (iff4) ) );
2489   r_ok_subtype ->init_req(3, _gvn.transform( new (C) IfFalseNode(iff4) ) );
2490 
2491   // Return false path; set default control to true path.
2492   set_control( _gvn.transform(r_ok_subtype) );
2493   return _gvn.transform(r_not_subtype);
2494 }
2495 
2496 //----------------------------static_subtype_check-----------------------------
2497 // Shortcut important common cases when superklass is exact:
2498 // (0) superklass is java.lang.Object (can occur in reflective code)
2499 // (1) subklass is already limited to a subtype of superklass => always ok
2500 // (2) subklass does not overlap with superklass => always fail
2501 // (3) superklass has NO subtypes and we can check with a simple compare.
2502 int GraphKit::static_subtype_check(ciKlass* superk, ciKlass* subk) {
2503   if (StressReflectiveCode) {
2504     return SSC_full_test;       // Let caller generate the general case.
2505   }
2506 
2507   if (superk == env()->Object_klass()) {
2508     return SSC_always_true;     // (0) this test cannot fail
2509   }
2510 
2511   ciType* superelem = superk;
2512   if (superelem->is_array_klass())
2513     superelem = superelem->as_array_klass()->base_element_type();
2514 
2515   if (!subk->is_interface()) {  // cannot trust static interface types yet
2516     if (subk->is_subtype_of(superk)) {
2517       return SSC_always_true;   // (1) false path dead; no dynamic test needed
2518     }
2519     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
2520         !superk->is_subtype_of(subk)) {
2521       return SSC_always_false;
2522     }
2523   }
2524 
2525   // If casting to an instance klass, it must have no subtypes
2526   if (superk->is_interface()) {
2527     // Cannot trust interfaces yet.
2528     // %%% S.B. superk->nof_implementors() == 1
2529   } else if (superelem->is_instance_klass()) {
2530     ciInstanceKlass* ik = superelem->as_instance_klass();
2531     if (!ik->has_subklass() && !ik->is_interface()) {
2532       if (!ik->is_final()) {
2533         // Add a dependency if there is a chance of a later subclass.
2534         C->dependencies()->assert_leaf_type(ik);
2535       }
2536       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
2537     }
2538   } else {
2539     // A primitive array type has no subtypes.
2540     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
2541   }
2542 
2543   return SSC_full_test;
2544 }
2545 
2546 // Profile-driven exact type check:
2547 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2548                                     float prob,
2549                                     Node* *casted_receiver) {
2550   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2551   Node* recv_klass = load_object_klass(receiver);
2552   Node* want_klass = makecon(tklass);
2553   Node* cmp = _gvn.transform( new(C) CmpPNode(recv_klass, want_klass) );
2554   Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
2555   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2556   set_control( _gvn.transform( new(C) IfTrueNode (iff) ));
2557   Node* fail = _gvn.transform( new(C) IfFalseNode(iff) );
2558 
2559   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2560   assert(recv_xtype->klass_is_exact(), "");
2561 
2562   // Subsume downstream occurrences of receiver with a cast to
2563   // recv_xtype, since now we know what the type will be.
2564   Node* cast = new(C) CheckCastPPNode(control(), receiver, recv_xtype);
2565   (*casted_receiver) = _gvn.transform(cast);
2566   // (User must make the replace_in_map call.)
2567 
2568   return fail;
2569 }
2570 
2571 
2572 //------------------------------seems_never_null-------------------------------
2573 // Use null_seen information if it is available from the profile.
2574 // If we see an unexpected null at a type check we record it and force a
2575 // recompile; the offending check will be recompiled to handle NULLs.
2576 // If we see several offending BCIs, then all checks in the
2577 // method will be recompiled.
2578 bool GraphKit::seems_never_null(Node* obj, ciProfileData* data) {
2579   if (UncommonNullCast               // Cutout for this technique
2580       && obj != null()               // And not the -Xcomp stupid case?
2581       && !too_many_traps(Deoptimization::Reason_null_check)
2582       ) {
2583     if (data == NULL)
2584       // Edge case:  no mature data.  Be optimistic here.
2585       return true;
2586     // If the profile has not seen a null, assume it won't happen.
2587     assert(java_bc() == Bytecodes::_checkcast ||
2588            java_bc() == Bytecodes::_instanceof ||
2589            java_bc() == Bytecodes::_aastore, "MDO must collect null_seen bit here");
2590     return !data->as_BitData()->null_seen();
2591   }
2592   return false;
2593 }
2594 
2595 //------------------------maybe_cast_profiled_receiver-------------------------
2596 // If the profile has seen exactly one type, narrow to exactly that type.
2597 // Subsequent type checks will always fold up.
2598 Node* GraphKit::maybe_cast_profiled_receiver(Node* not_null_obj,
2599                                              ciProfileData* data,
2600                                              ciKlass* require_klass) {
2601   if (!UseTypeProfile || !TypeProfileCasts) return NULL;
2602   if (data == NULL)  return NULL;
2603 
2604   // Make sure we haven't already deoptimized from this tactic.
2605   if (too_many_traps(Deoptimization::Reason_class_check))
2606     return NULL;
2607 
2608   // (No, this isn't a call, but it's enough like a virtual call
2609   // to use the same ciMethod accessor to get the profile info...)
2610   ciCallProfile profile = method()->call_profile_at_bci(bci());
2611   if (profile.count() >= 0 &&         // no cast failures here
2612       profile.has_receiver(0) &&
2613       profile.morphism() == 1) {
2614     ciKlass* exact_kls = profile.receiver(0);
2615     if (require_klass == NULL ||
2616         static_subtype_check(require_klass, exact_kls) == SSC_always_true) {
2617       // If we narrow the type to match what the type profile sees,
2618       // we can then remove the rest of the cast.
2619       // This is a win, even if the exact_kls is very specific,
2620       // because downstream operations, such as method calls,
2621       // will often benefit from the sharper type.
2622       Node* exact_obj = not_null_obj; // will get updated in place...
2623       Node* slow_ctl  = type_check_receiver(exact_obj, exact_kls, 1.0,
2624                                             &exact_obj);
2625       { PreserveJVMState pjvms(this);
2626         set_control(slow_ctl);
2627         uncommon_trap(Deoptimization::Reason_class_check,
2628                       Deoptimization::Action_maybe_recompile);
2629       }
2630       replace_in_map(not_null_obj, exact_obj);
2631       return exact_obj;
2632     }
2633     // assert(ssc == SSC_always_true)... except maybe the profile lied to us.
2634   }
2635 
2636   return NULL;
2637 }
2638 
2639 
2640 //-------------------------------gen_instanceof--------------------------------
2641 // Generate an instance-of idiom.  Used by both the instance-of bytecode
2642 // and the reflective instance-of call.
2643 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass) {
2644   kill_dead_locals();           // Benefit all the uncommon traps
2645   assert( !stopped(), "dead parse path should be checked in callers" );
2646   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2647          "must check for not-null not-dead klass in callers");
2648 
2649   // Make the merge point
2650   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2651   RegionNode* region = new(C) RegionNode(PATH_LIMIT);
2652   Node*       phi    = new(C) PhiNode(region, TypeInt::BOOL);
2653   C->set_has_split_ifs(true); // Has chance for split-if optimization
2654 
2655   ciProfileData* data = NULL;
2656   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2657     data = method()->method_data()->bci_to_data(bci());
2658   }
2659   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2660                          && seems_never_null(obj, data));
2661 
2662   // Null check; get casted pointer; set region slot 3
2663   Node* null_ctl = top();
2664   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
2665 
2666   // If not_null_obj is dead, only null-path is taken
2667   if (stopped()) {              // Doing instance-of on a NULL?
2668     set_control(null_ctl);
2669     return intcon(0);
2670   }
2671   region->init_req(_null_path, null_ctl);
2672   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2673   if (null_ctl == top()) {
2674     // Do this eagerly, so that pattern matches like is_diamond_phi
2675     // will work even during parsing.
2676     assert(_null_path == PATH_LIMIT-1, "delete last");
2677     region->del_req(_null_path);
2678     phi   ->del_req(_null_path);
2679   }
2680 
2681   if (ProfileDynamicTypes && data != NULL) {
2682     Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, data, NULL);
2683     if (stopped()) {            // Profile disagrees with this path.
2684       set_control(null_ctl);    // Null is the only remaining possibility.
2685       return intcon(0);
2686     }
2687     if (cast_obj != NULL)
2688       not_null_obj = cast_obj;
2689   }
2690 
2691   // Load the object's klass
2692   Node* obj_klass = load_object_klass(not_null_obj);
2693 
2694   // Generate the subtype check
2695   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
2696 
2697   // Plug in the success path to the general merge in slot 1.
2698   region->init_req(_obj_path, control());
2699   phi   ->init_req(_obj_path, intcon(1));
2700 
2701   // Plug in the failing path to the general merge in slot 2.
2702   region->init_req(_fail_path, not_subtype_ctrl);
2703   phi   ->init_req(_fail_path, intcon(0));
2704 
2705   // Return final merged results
2706   set_control( _gvn.transform(region) );
2707   record_for_igvn(region);
2708   return _gvn.transform(phi);
2709 }
2710 
2711 //-------------------------------gen_checkcast---------------------------------
2712 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
2713 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
2714 // uncommon-trap paths work.  Adjust stack after this call.
2715 // If failure_control is supplied and not null, it is filled in with
2716 // the control edge for the cast failure.  Otherwise, an appropriate
2717 // uncommon trap or exception is thrown.
2718 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
2719                               Node* *failure_control) {
2720   kill_dead_locals();           // Benefit all the uncommon traps
2721   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
2722   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());
2723 
2724   // Fast cutout:  Check the case that the cast is vacuously true.
2725   // This detects the common cases where the test will short-circuit
2726   // away completely.  We do this before we perform the null check,
2727   // because if the test is going to turn into zero code, we don't
2728   // want a residual null check left around.  (Causes a slowdown,
2729   // for example, in some objArray manipulations, such as a[i]=a[j].)
2730   if (tk->singleton()) {
2731     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
2732     if (objtp != NULL && objtp->klass() != NULL) {
2733       switch (static_subtype_check(tk->klass(), objtp->klass())) {
2734       case SSC_always_true:
2735         return obj;
2736       case SSC_always_false:
2737         // It needs a null check because a null will *pass* the cast check.
2738         // A non-null value will always produce an exception.
2739         return null_assert(obj);
2740       }
2741     }
2742   }
2743 
2744   ciProfileData* data = NULL;
2745   if (failure_control == NULL) {        // use MDO in regular case only
2746     assert(java_bc() == Bytecodes::_aastore ||
2747            java_bc() == Bytecodes::_checkcast,
2748            "interpreter profiles type checks only for these BCs");
2749     data = method()->method_data()->bci_to_data(bci());
2750   }
2751 
2752   // Make the merge point
2753   enum { _obj_path = 1, _null_path, PATH_LIMIT };
2754   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
2755   Node*       phi    = new (C) PhiNode(region, toop);
2756   C->set_has_split_ifs(true); // Has chance for split-if optimization
2757 
2758   // Use null-cast information if it is available
2759   bool never_see_null = ((failure_control == NULL)  // regular case only
2760                          && seems_never_null(obj, data));
2761 
2762   // Null check; get casted pointer; set region slot 3
2763   Node* null_ctl = top();
2764   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null);
2765 
2766   // If not_null_obj is dead, only null-path is taken
2767   if (stopped()) {              // Doing instance-of on a NULL?
2768     set_control(null_ctl);
2769     return null();
2770   }
2771   region->init_req(_null_path, null_ctl);
2772   phi   ->init_req(_null_path, null());  // Set null path value
2773   if (null_ctl == top()) {
2774     // Do this eagerly, so that pattern matches like is_diamond_phi
2775     // will work even during parsing.
2776     assert(_null_path == PATH_LIMIT-1, "delete last");
2777     region->del_req(_null_path);
2778     phi   ->del_req(_null_path);
2779   }
2780 
2781   Node* cast_obj = NULL;
2782   if (tk->klass_is_exact()) {
2783     // The following optimization tries to statically cast the speculative type of the object
2784     // (for example obtained during profiling) to the type of the superklass and then do a
2785     // dynamic check that the type of the object is what we expect. To work correctly
2786     // for checkcast and aastore the type of superklass should be exact.
2787     if (data != NULL &&
2788         // Counter has never been decremented (due to cast failure).
2789         // ...This is a reasonable thing to expect.  It is true of
2790         // all casts inserted by javac to implement generic types.
2791         data->as_CounterData()->count() >= 0) {
2792       cast_obj = maybe_cast_profiled_receiver(not_null_obj, data, tk->klass());
2793       if (cast_obj != NULL) {
2794         if (failure_control != NULL) // failure is now impossible
2795           (*failure_control) = top();
2796         // adjust the type of the phi to the exact klass:
2797         phi->raise_bottom_type(_gvn.type(cast_obj)->meet(TypePtr::NULL_PTR));
2798       }
2799     }
2800   }
2801 
2802   if (cast_obj == NULL) {
2803     // Load the object's klass
2804     Node* obj_klass = load_object_klass(not_null_obj);
2805 
2806     // Generate the subtype check
2807     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
2808 
2809     // Plug in success path into the merge
2810     cast_obj = _gvn.transform(new (C) CheckCastPPNode(control(),
2811                                                          not_null_obj, toop));
2812     // Failure path ends in uncommon trap (or may be dead - failure impossible)
2813     if (failure_control == NULL) {
2814       if (not_subtype_ctrl != top()) { // If failure is possible
2815         PreserveJVMState pjvms(this);
2816         set_control(not_subtype_ctrl);
2817         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
2818       }
2819     } else {
2820       (*failure_control) = not_subtype_ctrl;
2821     }
2822   }
2823 
2824   region->init_req(_obj_path, control());
2825   phi   ->init_req(_obj_path, cast_obj);
2826 
2827   // A merge of NULL or Casted-NotNull obj
2828   Node* res = _gvn.transform(phi);
2829 
2830   // Note I do NOT always 'replace_in_map(obj,result)' here.
2831   //  if( tk->klass()->can_be_primary_super()  )
2832     // This means that if I successfully store an Object into an array-of-String
2833     // I 'forget' that the Object is really now known to be a String.  I have to
2834     // do this because we don't have true union types for interfaces - if I store
2835     // a Baz into an array-of-Interface and then tell the optimizer it's an
2836     // Interface, I forget that it's also a Baz and cannot do Baz-like field
2837     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
2838   //  replace_in_map( obj, res );
2839 
2840   // Return final merged results
2841   set_control( _gvn.transform(region) );
2842   record_for_igvn(region);
2843   return res;
2844 }
2845 
2846 //------------------------------next_monitor-----------------------------------
2847 // What number should be given to the next monitor?
2848 int GraphKit::next_monitor() {
2849   int current = jvms()->monitor_depth()* C->sync_stack_slots();
2850   int next = current + C->sync_stack_slots();
2851   // Keep the toplevel high water mark current:
2852   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
2853   return current;
2854 }
2855 
2856 //------------------------------insert_mem_bar---------------------------------
2857 // Memory barrier to avoid floating things around
2858 // The membar serves as a pinch point between both control and all memory slices.
2859 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
2860   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
2861   mb->init_req(TypeFunc::Control, control());
2862   mb->init_req(TypeFunc::Memory,  reset_memory());
2863   Node* membar = _gvn.transform(mb);
2864   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
2865   set_all_memory_call(membar);
2866   return membar;
2867 }
2868 
2869 //-------------------------insert_mem_bar_volatile----------------------------
2870 // Memory barrier to avoid floating things around
2871 // The membar serves as a pinch point between both control and memory(alias_idx).
2872 // If you want to make a pinch point on all memory slices, do not use this
2873 // function (even with AliasIdxBot); use insert_mem_bar() instead.
2874 Node* GraphKit::insert_mem_bar_volatile(int opcode, int alias_idx, Node* precedent) {
2875   // When Parse::do_put_xxx updates a volatile field, it appends a series
2876   // of MemBarVolatile nodes, one for *each* volatile field alias category.
2877   // The first membar is on the same memory slice as the field store opcode.
2878   // This forces the membar to follow the store.  (Bug 6500685 broke this.)
2879   // All the other membars (for other volatile slices, including AliasIdxBot,
2880   // which stands for all unknown volatile slices) are control-dependent
2881   // on the first membar.  This prevents later volatile loads or stores
2882   // from sliding up past the just-emitted store.
2883 
2884   MemBarNode* mb = MemBarNode::make(C, opcode, alias_idx, precedent);
2885   mb->set_req(TypeFunc::Control,control());
2886   if (alias_idx == Compile::AliasIdxBot) {
2887     mb->set_req(TypeFunc::Memory, merged_memory()->base_memory());
2888   } else {
2889     assert(!(opcode == Op_Initialize && alias_idx != Compile::AliasIdxRaw), "fix caller");
2890     mb->set_req(TypeFunc::Memory, memory(alias_idx));
2891   }
2892   Node* membar = _gvn.transform(mb);
2893   set_control(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Control)));
2894   if (alias_idx == Compile::AliasIdxBot) {
2895     merged_memory()->set_base_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)));
2896   } else {
2897     set_memory(_gvn.transform(new (C) ProjNode(membar, TypeFunc::Memory)),alias_idx);
2898   }
2899   return membar;
2900 }
2901 
2902 //------------------------------shared_lock------------------------------------
2903 // Emit locking code.
2904 FastLockNode* GraphKit::shared_lock(Node* obj) {
2905   // bci is either a monitorenter bc or InvocationEntryBci
2906   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
2907   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
2908 
2909   if( !GenerateSynchronizationCode )
2910     return NULL;                // Not locking things?
2911   if (stopped())                // Dead monitor?
2912     return NULL;
2913 
2914   assert(dead_locals_are_killed(), "should kill locals before sync. point");
2915 
2916   // Box the stack location
2917   Node* box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
2918   Node* mem = reset_memory();
2919 
2920   FastLockNode * flock = _gvn.transform(new (C) FastLockNode(0, obj, box) )->as_FastLock();
2921   if (PrintPreciseBiasedLockingStatistics) {
2922     // Create the counters for this fast lock.
2923     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
2924   }
2925   // Add monitor to debug info for the slow path.  If we block inside the
2926   // slow path and de-opt, we need the monitor hanging around
2927   map()->push_monitor( flock );
2928 
2929   const TypeFunc *tf = LockNode::lock_type();
2930   LockNode *lock = new (C) LockNode(C, tf);
2931 
2932   lock->init_req( TypeFunc::Control, control() );
2933   lock->init_req( TypeFunc::Memory , mem );
2934   lock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
2935   lock->init_req( TypeFunc::FramePtr, frameptr() );
2936   lock->init_req( TypeFunc::ReturnAdr, top() );
2937 
2938   lock->init_req(TypeFunc::Parms + 0, obj);
2939   lock->init_req(TypeFunc::Parms + 1, box);
2940   lock->init_req(TypeFunc::Parms + 2, flock);
2941   add_safepoint_edges(lock);
2942 
2943   lock = _gvn.transform( lock )->as_Lock();
2944 
2945   // lock has no side-effects, sets few values
2946   set_predefined_output_for_runtime_call(lock, mem, TypeRawPtr::BOTTOM);
2947 
2948   insert_mem_bar(Op_MemBarAcquireLock);
2949 
2950   // Add this to the worklist so that the lock can be eliminated
2951   record_for_igvn(lock);
2952 
2953 #ifndef PRODUCT
2954   if (PrintLockStatistics) {
2955     // Update the counter for this lock.  Don't bother using an atomic
2956     // operation since we don't require absolute accuracy.
2957     lock->create_lock_counter(map()->jvms());
2958     increment_counter(lock->counter()->addr());
2959   }
2960 #endif
2961 
2962   return flock;
2963 }
2964 
2965 
2966 //------------------------------shared_unlock----------------------------------
2967 // Emit unlocking code.
2968 void GraphKit::shared_unlock(Node* box, Node* obj) {
2969   // bci is either a monitorenter bc or InvocationEntryBci
2970   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
2971   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
2972 
2973   if( !GenerateSynchronizationCode )
2974     return;
2975   if (stopped()) {               // Dead monitor?
2976     map()->pop_monitor();        // Kill monitor from debug info
2977     return;
2978   }
2979 
2980   // Memory barrier to avoid floating things down past the locked region
2981   insert_mem_bar(Op_MemBarReleaseLock);
2982 
2983   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
2984   UnlockNode *unlock = new (C) UnlockNode(C, tf);
2985   uint raw_idx = Compile::AliasIdxRaw;
2986   unlock->init_req( TypeFunc::Control, control() );
2987   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
2988   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
2989   unlock->init_req( TypeFunc::FramePtr, frameptr() );
2990   unlock->init_req( TypeFunc::ReturnAdr, top() );
2991 
2992   unlock->init_req(TypeFunc::Parms + 0, obj);
2993   unlock->init_req(TypeFunc::Parms + 1, box);
2994   unlock = _gvn.transform(unlock)->as_Unlock();
2995 
2996   Node* mem = reset_memory();
2997 
2998   // unlock has no side-effects, sets few values
2999   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3000 
3001   // Kill monitor from debug info
3002   map()->pop_monitor( );
3003 }
3004 
3005 //-------------------------------get_layout_helper-----------------------------
3006 // If the given klass is a constant or known to be an array,
3007 // fetch the constant layout helper value into constant_value
3008 // and return (Node*)NULL.  Otherwise, load the non-constant
3009 // layout helper value, and return the node which represents it.
3010 // This two-faced routine is useful because allocation sites
3011 // almost always feature constant types.
3012 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3013   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3014   if (!StressReflectiveCode && inst_klass != NULL) {
3015     ciKlass* klass = inst_klass->klass();
3016     bool    xklass = inst_klass->klass_is_exact();
3017     if (xklass || klass->is_array_klass()) {
3018       jint lhelper = klass->layout_helper();
3019       if (lhelper != Klass::_lh_neutral_value) {
3020         constant_value = lhelper;
3021         return (Node*) NULL;
3022       }
3023     }
3024   }
3025   constant_value = Klass::_lh_neutral_value;  // put in a known value
3026   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3027   return make_load(NULL, lhp, TypeInt::INT, T_INT);
3028 }
3029 
3030 // We just put in an allocate/initialize with a big raw-memory effect.
3031 // Hook selected additional alias categories on the initialization.
3032 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3033                                 MergeMemNode* init_in_merge,
3034                                 Node* init_out_raw) {
3035   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3036   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3037 
3038   Node* prevmem = kit.memory(alias_idx);
3039   init_in_merge->set_memory_at(alias_idx, prevmem);
3040   kit.set_memory(init_out_raw, alias_idx);
3041 }
3042 
3043 //---------------------------set_output_for_allocation-------------------------
3044 Node* GraphKit::set_output_for_allocation(AllocateNode* alloc,
3045                                           const TypeOopPtr* oop_type) {
3046   int rawidx = Compile::AliasIdxRaw;
3047   alloc->set_req( TypeFunc::FramePtr, frameptr() );
3048   add_safepoint_edges(alloc);
3049   Node* allocx = _gvn.transform(alloc);
3050   set_control( _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Control) ) );
3051   // create memory projection for i_o
3052   set_memory ( _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Memory, true) ), rawidx );
3053   make_slow_call_ex(allocx, env()->Throwable_klass(), true);
3054 
3055   // create a memory projection as for the normal control path
3056   Node* malloc = _gvn.transform(new (C) ProjNode(allocx, TypeFunc::Memory));
3057   set_memory(malloc, rawidx);
3058 
3059   // a normal slow-call doesn't change i_o, but an allocation does
3060   // we create a separate i_o projection for the normal control path
3061   set_i_o(_gvn.transform( new (C) ProjNode(allocx, TypeFunc::I_O, false) ) );
3062   Node* rawoop = _gvn.transform( new (C) ProjNode(allocx, TypeFunc::Parms) );
3063 
3064   // put in an initialization barrier
3065   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3066                                                  rawoop)->as_Initialize();
3067   assert(alloc->initialization() == init,  "2-way macro link must work");
3068   assert(init ->allocation()     == alloc, "2-way macro link must work");
3069   {
3070     // Extract memory strands which may participate in the new object's
3071     // initialization, and source them from the new InitializeNode.
3072     // This will allow us to observe initializations when they occur,
3073     // and link them properly (as a group) to the InitializeNode.
3074     assert(init->in(InitializeNode::Memory) == malloc, "");
3075     MergeMemNode* minit_in = MergeMemNode::make(C, malloc);
3076     init->set_req(InitializeNode::Memory, minit_in);
3077     record_for_igvn(minit_in); // fold it up later, if possible
3078     Node* minit_out = memory(rawidx);
3079     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3080     if (oop_type->isa_aryptr()) {
3081       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3082       int            elemidx  = C->get_alias_index(telemref);
3083       hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3084     } else if (oop_type->isa_instptr()) {
3085       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3086       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3087         ciField* field = ik->nonstatic_field_at(i);
3088         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3089           continue;  // do not bother to track really large numbers of fields
3090         // Find (or create) the alias category for this field:
3091         int fieldidx = C->alias_type(field)->index();
3092         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3093       }
3094     }
3095   }
3096 
3097   // Cast raw oop to the real thing...
3098   Node* javaoop = new (C) CheckCastPPNode(control(), rawoop, oop_type);
3099   javaoop = _gvn.transform(javaoop);
3100   C->set_recent_alloc(control(), javaoop);
3101   assert(just_allocated_object(control()) == javaoop, "just allocated");
3102 
3103 #ifdef ASSERT
3104   { // Verify that the AllocateNode::Ideal_allocation recognizers work:
3105     assert(AllocateNode::Ideal_allocation(rawoop, &_gvn) == alloc,
3106            "Ideal_allocation works");
3107     assert(AllocateNode::Ideal_allocation(javaoop, &_gvn) == alloc,
3108            "Ideal_allocation works");
3109     if (alloc->is_AllocateArray()) {
3110       assert(AllocateArrayNode::Ideal_array_allocation(rawoop, &_gvn) == alloc->as_AllocateArray(),
3111              "Ideal_allocation works");
3112       assert(AllocateArrayNode::Ideal_array_allocation(javaoop, &_gvn) == alloc->as_AllocateArray(),
3113              "Ideal_allocation works");
3114     } else {
3115       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3116     }
3117   }
3118 #endif //ASSERT
3119 
3120   return javaoop;
3121 }
3122 
3123 //---------------------------new_instance--------------------------------------
3124 // This routine takes a klass_node which may be constant (for a static type)
3125 // or may be non-constant (for reflective code).  It will work equally well
3126 // for either, and the graph will fold nicely if the optimizer later reduces
3127 // the type to a constant.
3128 // The optional arguments are for specialized use by intrinsics:
3129 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3130 //  - If 'return_size_val', report the the total object size to the caller.
3131 Node* GraphKit::new_instance(Node* klass_node,
3132                              Node* extra_slow_test,
3133                              Node* *return_size_val) {
3134   // Compute size in doublewords
3135   // The size is always an integral number of doublewords, represented
3136   // as a positive bytewise size stored in the klass's layout_helper.
3137   // The layout_helper also encodes (in a low bit) the need for a slow path.
3138   jint  layout_con = Klass::_lh_neutral_value;
3139   Node* layout_val = get_layout_helper(klass_node, layout_con);
3140   int   layout_is_con = (layout_val == NULL);
3141 
3142   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3143   // Generate the initial go-slow test.  It's either ALWAYS (return a
3144   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3145   // case) a computed value derived from the layout_helper.
3146   Node* initial_slow_test = NULL;
3147   if (layout_is_con) {
3148     assert(!StressReflectiveCode, "stress mode does not use these paths");
3149     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3150     initial_slow_test = must_go_slow? intcon(1): extra_slow_test;
3151 
3152   } else {   // reflective case
3153     // This reflective path is used by Unsafe.allocateInstance.
3154     // (It may be stress-tested by specifying StressReflectiveCode.)
3155     // Basically, we want to get into the VM is there's an illegal argument.
3156     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3157     initial_slow_test = _gvn.transform( new (C) AndINode(layout_val, bit) );
3158     if (extra_slow_test != intcon(0)) {
3159       initial_slow_test = _gvn.transform( new (C) OrINode(initial_slow_test, extra_slow_test) );
3160     }
3161     // (Macro-expander will further convert this to a Bool, if necessary.)
3162   }
3163 
3164   // Find the size in bytes.  This is easy; it's the layout_helper.
3165   // The size value must be valid even if the slow path is taken.
3166   Node* size = NULL;
3167   if (layout_is_con) {
3168     size = MakeConX(Klass::layout_helper_size_in_bytes(layout_con));
3169   } else {   // reflective case
3170     // This reflective path is used by clone and Unsafe.allocateInstance.
3171     size = ConvI2X(layout_val);
3172 
3173     // Clear the low bits to extract layout_helper_size_in_bytes:
3174     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3175     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3176     size = _gvn.transform( new (C) AndXNode(size, mask) );
3177   }
3178   if (return_size_val != NULL) {
3179     (*return_size_val) = size;
3180   }
3181 
3182   // This is a precise notnull oop of the klass.
3183   // (Actually, it need not be precise if this is a reflective allocation.)
3184   // It's what we cast the result to.
3185   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3186   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3187   const TypeOopPtr* oop_type = tklass->as_instance_type();
3188 
3189   // Now generate allocation code
3190 
3191   // The entire memory state is needed for slow path of the allocation
3192   // since GC and deoptimization can happened.
3193   Node *mem = reset_memory();
3194   set_all_memory(mem); // Create new memory state
3195 
3196   AllocateNode* alloc
3197     = new (C) AllocateNode(C, AllocateNode::alloc_type(),
3198                            control(), mem, i_o(),
3199                            size, klass_node,
3200                            initial_slow_test);
3201 
3202   return set_output_for_allocation(alloc, oop_type);
3203 }
3204 
3205 //-------------------------------new_array-------------------------------------
3206 // helper for both newarray and anewarray
3207 // The 'length' parameter is (obviously) the length of the array.
3208 // See comments on new_instance for the meaning of the other arguments.
3209 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3210                           Node* length,         // number of array elements
3211                           int   nargs,          // number of arguments to push back for uncommon trap
3212                           Node* *return_size_val) {
3213   jint  layout_con = Klass::_lh_neutral_value;
3214   Node* layout_val = get_layout_helper(klass_node, layout_con);
3215   int   layout_is_con = (layout_val == NULL);
3216 
3217   if (!layout_is_con && !StressReflectiveCode &&
3218       !too_many_traps(Deoptimization::Reason_class_check)) {
3219     // This is a reflective array creation site.
3220     // Optimistically assume that it is a subtype of Object[],
3221     // so that we can fold up all the address arithmetic.
3222     layout_con = Klass::array_layout_helper(T_OBJECT);
3223     Node* cmp_lh = _gvn.transform( new(C) CmpINode(layout_val, intcon(layout_con)) );
3224     Node* bol_lh = _gvn.transform( new(C) BoolNode(cmp_lh, BoolTest::eq) );
3225     { BuildCutout unless(this, bol_lh, PROB_MAX);
3226       inc_sp(nargs);
3227       uncommon_trap(Deoptimization::Reason_class_check,
3228                     Deoptimization::Action_maybe_recompile);
3229     }
3230     layout_val = NULL;
3231     layout_is_con = true;
3232   }
3233 
3234   // Generate the initial go-slow test.  Make sure we do not overflow
3235   // if length is huge (near 2Gig) or negative!  We do not need
3236   // exact double-words here, just a close approximation of needed
3237   // double-words.  We can't add any offset or rounding bits, lest we
3238   // take a size -1 of bytes and make it positive.  Use an unsigned
3239   // compare, so negative sizes look hugely positive.
3240   int fast_size_limit = FastAllocateSizeLimit;
3241   if (layout_is_con) {
3242     assert(!StressReflectiveCode, "stress mode does not use these paths");
3243     // Increase the size limit if we have exact knowledge of array type.
3244     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3245     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3246   }
3247 
3248   Node* initial_slow_cmp  = _gvn.transform( new (C) CmpUNode( length, intcon( fast_size_limit ) ) );
3249   Node* initial_slow_test = _gvn.transform( new (C) BoolNode( initial_slow_cmp, BoolTest::gt ) );
3250   if (initial_slow_test->is_Bool()) {
3251     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3252     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3253   }
3254 
3255   // --- Size Computation ---
3256   // array_size = round_to_heap(array_header + (length << elem_shift));
3257   // where round_to_heap(x) == round_to(x, MinObjAlignmentInBytes)
3258   // and round_to(x, y) == ((x + y-1) & ~(y-1))
3259   // The rounding mask is strength-reduced, if possible.
3260   int round_mask = MinObjAlignmentInBytes - 1;
3261   Node* header_size = NULL;
3262   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3263   // (T_BYTE has the weakest alignment and size restrictions...)
3264   if (layout_is_con) {
3265     int       hsize  = Klass::layout_helper_header_size(layout_con);
3266     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3267     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3268     if ((round_mask & ~right_n_bits(eshift)) == 0)
3269       round_mask = 0;  // strength-reduce it if it goes away completely
3270     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3271     assert(header_size_min <= hsize, "generic minimum is smallest");
3272     header_size_min = hsize;
3273     header_size = intcon(hsize + round_mask);
3274   } else {
3275     Node* hss   = intcon(Klass::_lh_header_size_shift);
3276     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3277     Node* hsize = _gvn.transform( new(C) URShiftINode(layout_val, hss) );
3278     hsize       = _gvn.transform( new(C) AndINode(hsize, hsm) );
3279     Node* mask  = intcon(round_mask);
3280     header_size = _gvn.transform( new(C) AddINode(hsize, mask) );
3281   }
3282 
3283   Node* elem_shift = NULL;
3284   if (layout_is_con) {
3285     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3286     if (eshift != 0)
3287       elem_shift = intcon(eshift);
3288   } else {
3289     // There is no need to mask or shift this value.
3290     // The semantics of LShiftINode include an implicit mask to 0x1F.
3291     assert(Klass::_lh_log2_element_size_shift == 0, "use shift in place");
3292     elem_shift = layout_val;
3293   }
3294 
3295   // Transition to native address size for all offset calculations:
3296   Node* lengthx = ConvI2X(length);
3297   Node* headerx = ConvI2X(header_size);
3298 #ifdef _LP64
3299   { const TypeLong* tllen = _gvn.find_long_type(lengthx);
3300     if (tllen != NULL && tllen->_lo < 0) {
3301       // Add a manual constraint to a positive range.  Cf. array_element_address.
3302       jlong size_max = arrayOopDesc::max_array_length(T_BYTE);
3303       if (size_max > tllen->_hi)  size_max = tllen->_hi;
3304       const TypeLong* tlcon = TypeLong::make(CONST64(0), size_max, Type::WidenMin);
3305       lengthx = _gvn.transform( new (C) ConvI2LNode(length, tlcon));
3306     }
3307   }
3308 #endif
3309 
3310   // Combine header size (plus rounding) and body size.  Then round down.
3311   // This computation cannot overflow, because it is used only in two
3312   // places, one where the length is sharply limited, and the other
3313   // after a successful allocation.
3314   Node* abody = lengthx;
3315   if (elem_shift != NULL)
3316     abody     = _gvn.transform( new(C) LShiftXNode(lengthx, elem_shift) );
3317   Node* size  = _gvn.transform( new(C) AddXNode(headerx, abody) );
3318   if (round_mask != 0) {
3319     Node* mask = MakeConX(~round_mask);
3320     size       = _gvn.transform( new(C) AndXNode(size, mask) );
3321   }
3322   // else if round_mask == 0, the size computation is self-rounding
3323 
3324   if (return_size_val != NULL) {
3325     // This is the size
3326     (*return_size_val) = size;
3327   }
3328 
3329   // Now generate allocation code
3330 
3331   // The entire memory state is needed for slow path of the allocation
3332   // since GC and deoptimization can happened.
3333   Node *mem = reset_memory();
3334   set_all_memory(mem); // Create new memory state
3335 
3336   // Create the AllocateArrayNode and its result projections
3337   AllocateArrayNode* alloc
3338     = new (C) AllocateArrayNode(C, AllocateArrayNode::alloc_type(),
3339                                 control(), mem, i_o(),
3340                                 size, klass_node,
3341                                 initial_slow_test,
3342                                 length);
3343 
3344   // Cast to correct type.  Note that the klass_node may be constant or not,
3345   // and in the latter case the actual array type will be inexact also.
3346   // (This happens via a non-constant argument to inline_native_newArray.)
3347   // In any case, the value of klass_node provides the desired array type.
3348   const TypeInt* length_type = _gvn.find_int_type(length);
3349   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3350   if (ary_type->isa_aryptr() && length_type != NULL) {
3351     // Try to get a better type than POS for the size
3352     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3353   }
3354 
3355   Node* javaoop = set_output_for_allocation(alloc, ary_type);
3356 
3357   // Cast length on remaining path to be as narrow as possible
3358   if (map()->find_edge(length) >= 0) {
3359     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3360     if (ccast != length) {
3361       _gvn.set_type_bottom(ccast);
3362       record_for_igvn(ccast);
3363       replace_in_map(length, ccast);
3364     }
3365   }
3366 
3367   return javaoop;
3368 }
3369 
3370 // The following "Ideal_foo" functions are placed here because they recognize
3371 // the graph shapes created by the functions immediately above.
3372 
3373 //---------------------------Ideal_allocation----------------------------------
3374 // Given an oop pointer or raw pointer, see if it feeds from an AllocateNode.
3375 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase) {
3376   if (ptr == NULL) {     // reduce dumb test in callers
3377     return NULL;
3378   }
3379   if (ptr->is_CheckCastPP()) {  // strip a raw-to-oop cast
3380     ptr = ptr->in(1);
3381     if (ptr == NULL)  return NULL;
3382   }
3383   if (ptr->is_Proj()) {
3384     Node* allo = ptr->in(0);
3385     if (allo != NULL && allo->is_Allocate()) {
3386       return allo->as_Allocate();
3387     }
3388   }
3389   // Report failure to match.
3390   return NULL;
3391 }
3392 
3393 // Fancy version which also strips off an offset (and reports it to caller).
3394 AllocateNode* AllocateNode::Ideal_allocation(Node* ptr, PhaseTransform* phase,
3395                                              intptr_t& offset) {
3396   Node* base = AddPNode::Ideal_base_and_offset(ptr, phase, offset);
3397   if (base == NULL)  return NULL;
3398   return Ideal_allocation(base, phase);
3399 }
3400 
3401 // Trace Initialize <- Proj[Parm] <- Allocate
3402 AllocateNode* InitializeNode::allocation() {
3403   Node* rawoop = in(InitializeNode::RawAddress);
3404   if (rawoop->is_Proj()) {
3405     Node* alloc = rawoop->in(0);
3406     if (alloc->is_Allocate()) {
3407       return alloc->as_Allocate();
3408     }
3409   }
3410   return NULL;
3411 }
3412 
3413 // Trace Allocate -> Proj[Parm] -> Initialize
3414 InitializeNode* AllocateNode::initialization() {
3415   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3416   if (rawoop == NULL)  return NULL;
3417   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3418     Node* init = rawoop->fast_out(i);
3419     if (init->is_Initialize()) {
3420       assert(init->as_Initialize()->allocation() == this, "2-way link");
3421       return init->as_Initialize();
3422     }
3423   }
3424   return NULL;
3425 }
3426 
3427 // Trace Allocate -> Proj[Parm] -> MemBarStoreStore
3428 MemBarStoreStoreNode* AllocateNode::storestore() {
3429   ProjNode* rawoop = proj_out(AllocateNode::RawAddress);
3430   if (rawoop == NULL)  return NULL;
3431   for (DUIterator_Fast imax, i = rawoop->fast_outs(imax); i < imax; i++) {
3432     Node* storestore = rawoop->fast_out(i);
3433     if (storestore->is_MemBarStoreStore()) {
3434       return storestore->as_MemBarStoreStore();
3435     }
3436   }
3437   return NULL;
3438 }
3439 
3440 //----------------------------- loop predicates ---------------------------
3441 
3442 //------------------------------add_predicate_impl----------------------------
3443 void GraphKit::add_predicate_impl(Deoptimization::DeoptReason reason, int nargs) {
3444   // Too many traps seen?
3445   if (too_many_traps(reason)) {
3446 #ifdef ASSERT
3447     if (TraceLoopPredicate) {
3448       int tc = C->trap_count(reason);
3449       tty->print("too many traps=%s tcount=%d in ",
3450                     Deoptimization::trap_reason_name(reason), tc);
3451       method()->print(); // which method has too many predicate traps
3452       tty->cr();
3453     }
3454 #endif
3455     // We cannot afford to take more traps here,
3456     // do not generate predicate.
3457     return;
3458   }
3459 
3460   Node *cont    = _gvn.intcon(1);
3461   Node* opq     = _gvn.transform(new (C) Opaque1Node(C, cont));
3462   Node *bol     = _gvn.transform(new (C) Conv2BNode(opq));
3463   IfNode* iff   = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
3464   Node* iffalse = _gvn.transform(new (C) IfFalseNode(iff));
3465   C->add_predicate_opaq(opq);
3466   {
3467     PreserveJVMState pjvms(this);
3468     set_control(iffalse);
3469     inc_sp(nargs);
3470     uncommon_trap(reason, Deoptimization::Action_maybe_recompile);
3471   }
3472   Node* iftrue = _gvn.transform(new (C) IfTrueNode(iff));
3473   set_control(iftrue);
3474 }
3475 
3476 //------------------------------add_predicate---------------------------------
3477 void GraphKit::add_predicate(int nargs) {
3478   if (UseLoopPredicate) {
3479     add_predicate_impl(Deoptimization::Reason_predicate, nargs);
3480   }
3481   // loop's limit check predicate should be near the loop.
3482   if (LoopLimitCheck) {
3483     add_predicate_impl(Deoptimization::Reason_loop_limit_check, nargs);
3484   }
3485 }
3486 
3487 //----------------------------- store barriers ----------------------------
3488 #define __ ideal.
3489 
3490 void GraphKit::sync_kit(IdealKit& ideal) {
3491   set_all_memory(__ merged_memory());
3492   set_i_o(__ i_o());
3493   set_control(__ ctrl());
3494 }
3495 
3496 void GraphKit::final_sync(IdealKit& ideal) {
3497   // Final sync IdealKit and graphKit.
3498   sync_kit(ideal);
3499 }
3500 
3501 // vanilla/CMS post barrier
3502 // Insert a write-barrier store.  This is to let generational GC work; we have
3503 // to flag all oop-stores before the next GC point.
3504 void GraphKit::write_barrier_post(Node* oop_store,
3505                                   Node* obj,
3506                                   Node* adr,
3507                                   uint  adr_idx,
3508                                   Node* val,
3509                                   bool use_precise) {
3510   // No store check needed if we're storing a NULL or an old object
3511   // (latter case is probably a string constant). The concurrent
3512   // mark sweep garbage collector, however, needs to have all nonNull
3513   // oop updates flagged via card-marks.
3514   if (val != NULL && val->is_Con()) {
3515     // must be either an oop or NULL
3516     const Type* t = val->bottom_type();
3517     if (t == TypePtr::NULL_PTR || t == Type::TOP)
3518       // stores of null never (?) need barriers
3519       return;
3520     ciObject* con = t->is_oopptr()->const_oop();
3521     if (con != NULL
3522         && con->is_perm()
3523         && Universe::heap()->can_elide_permanent_oop_store_barriers())
3524       // no store barrier needed, because no old-to-new ref created
3525       return;
3526   }
3527 
3528   if (use_ReduceInitialCardMarks()
3529       && obj == just_allocated_object(control())) {
3530     // We can skip marks on a freshly-allocated object in Eden.
3531     // Keep this code in sync with new_store_pre_barrier() in runtime.cpp.
3532     // That routine informs GC to take appropriate compensating steps,
3533     // upon a slow-path allocation, so as to make this card-mark
3534     // elision safe.
3535     return;
3536   }
3537 
3538   if (!use_precise) {
3539     // All card marks for a (non-array) instance are in one place:
3540     adr = obj;
3541   }
3542   // (Else it's an array (or unknown), and we want more precise card marks.)
3543   assert(adr != NULL, "");
3544 
3545   IdealKit ideal(this, true);
3546 
3547   // Convert the pointer to an int prior to doing math on it
3548   Node* cast = __ CastPX(__ ctrl(), adr);
3549 
3550   // Divide by card size
3551   assert(Universe::heap()->barrier_set()->kind() == BarrierSet::CardTableModRef,
3552          "Only one we handle so far.");
3553   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3554 
3555   // Combine card table base and card offset
3556   Node* card_adr = __ AddP(__ top(), byte_map_base_node(), card_offset );
3557 
3558   // Get the alias_index for raw card-mark memory
3559   int adr_type = Compile::AliasIdxRaw;
3560   Node*   zero = __ ConI(0); // Dirty card value
3561   BasicType bt = T_BYTE;
3562 
3563   if (UseCondCardMark) {
3564     // The classic GC reference write barrier is typically implemented
3565     // as a store into the global card mark table.  Unfortunately
3566     // unconditional stores can result in false sharing and excessive
3567     // coherence traffic as well as false transactional aborts.
3568     // UseCondCardMark enables MP "polite" conditional card mark
3569     // stores.  In theory we could relax the load from ctrl() to
3570     // no_ctrl, but that doesn't buy much latitude.
3571     Node* card_val = __ load( __ ctrl(), card_adr, TypeInt::BYTE, bt, adr_type);
3572     __ if_then(card_val, BoolTest::ne, zero);
3573   }
3574 
3575   // Smash zero into card
3576   if( !UseConcMarkSweepGC ) {
3577     __ store(__ ctrl(), card_adr, zero, bt, adr_type);
3578   } else {
3579     // Specialized path for CM store barrier
3580     __ storeCM(__ ctrl(), card_adr, zero, oop_store, adr_idx, bt, adr_type);
3581   }
3582 
3583   if (UseCondCardMark) {
3584     __ end_if();
3585   }
3586 
3587   // Final sync IdealKit and GraphKit.
3588   final_sync(ideal);
3589 }
3590 
3591 // G1 pre/post barriers
3592 void GraphKit::g1_write_barrier_pre(bool do_load,
3593                                     Node* obj,
3594                                     Node* adr,
3595                                     uint alias_idx,
3596                                     Node* val,
3597                                     const TypeOopPtr* val_type,
3598                                     Node* pre_val,
3599                                     BasicType bt) {
3600 
3601   // Some sanity checks
3602   // Note: val is unused in this routine.
3603 
3604   if (do_load) {
3605     // We need to generate the load of the previous value
3606     assert(obj != NULL, "must have a base");
3607     assert(adr != NULL, "where are loading from?");
3608     assert(pre_val == NULL, "loaded already?");
3609     assert(val_type != NULL, "need a type");
3610   } else {
3611     // In this case both val_type and alias_idx are unused.
3612     assert(pre_val != NULL, "must be loaded already");
3613     assert(pre_val->bottom_type()->basic_type() == T_OBJECT, "or we shouldn't be here");
3614   }
3615   assert(bt == T_OBJECT, "or we shouldn't be here");
3616 
3617   IdealKit ideal(this, true);
3618 
3619   Node* tls = __ thread(); // ThreadLocalStorage
3620 
3621   Node* no_ctrl = NULL;
3622   Node* no_base = __ top();
3623   Node* zero  = __ ConI(0);
3624   Node* zeroX = __ ConX(0);
3625 
3626   float likely  = PROB_LIKELY(0.999);
3627   float unlikely  = PROB_UNLIKELY(0.999);
3628 
3629   BasicType active_type = in_bytes(PtrQueue::byte_width_of_active()) == 4 ? T_INT : T_BYTE;
3630   assert(in_bytes(PtrQueue::byte_width_of_active()) == 4 || in_bytes(PtrQueue::byte_width_of_active()) == 1, "flag width");
3631 
3632   // Offsets into the thread
3633   const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +  // 648
3634                                           PtrQueue::byte_offset_of_active());
3635   const int index_offset   = in_bytes(JavaThread::satb_mark_queue_offset() +  // 656
3636                                           PtrQueue::byte_offset_of_index());
3637   const int buffer_offset  = in_bytes(JavaThread::satb_mark_queue_offset() +  // 652
3638                                           PtrQueue::byte_offset_of_buf());
3639 
3640   // Now the actual pointers into the thread
3641   Node* marking_adr = __ AddP(no_base, tls, __ ConX(marking_offset));
3642   Node* buffer_adr  = __ AddP(no_base, tls, __ ConX(buffer_offset));
3643   Node* index_adr   = __ AddP(no_base, tls, __ ConX(index_offset));
3644 
3645   // Now some of the values
3646   Node* marking = __ load(__ ctrl(), marking_adr, TypeInt::INT, active_type, Compile::AliasIdxRaw);
3647 
3648   // if (!marking)
3649   __ if_then(marking, BoolTest::ne, zero, unlikely); {
3650     BasicType index_bt = TypeX_X->basic_type();
3651     assert(sizeof(size_t) == type2aelembytes(index_bt), "Loading G1 PtrQueue::_index with wrong size.");
3652     Node* index   = __ load(__ ctrl(), index_adr, TypeX_X, index_bt, Compile::AliasIdxRaw);
3653 
3654     if (do_load) {
3655       // load original value
3656       // alias_idx correct??
3657       pre_val = __ load(__ ctrl(), adr, val_type, bt, alias_idx);
3658     }
3659 
3660     // if (pre_val != NULL)
3661     __ if_then(pre_val, BoolTest::ne, null()); {
3662       Node* buffer  = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3663 
3664       // is the queue for this thread full?
3665       __ if_then(index, BoolTest::ne, zeroX, likely); {
3666 
3667         // decrement the index
3668         Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3669 
3670         // Now get the buffer location we will log the previous value into and store it
3671         Node *log_addr = __ AddP(no_base, buffer, next_index);
3672         __ store(__ ctrl(), log_addr, pre_val, T_OBJECT, Compile::AliasIdxRaw, StoreNode::release);
3673         // update the index
3674         __ store(__ ctrl(), index_adr, next_index, index_bt, Compile::AliasIdxRaw);
3675 
3676       } __ else_(); {
3677 
3678         // logging buffer is full, call the runtime
3679         const TypeFunc *tf = OptoRuntime::g1_wb_pre_Type();
3680         __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), "g1_wb_pre", pre_val, tls);
3681       } __ end_if();  // (!index)
3682     } __ end_if();  // (pre_val != NULL)
3683   } __ end_if();  // (!marking)
3684 
3685   // Final sync IdealKit and GraphKit.
3686   final_sync(ideal);
3687 }
3688 
3689 //
3690 // Update the card table and add card address to the queue
3691 //
3692 void GraphKit::g1_mark_card(IdealKit& ideal,
3693                             Node* card_adr,
3694                             Node* oop_store,
3695                             uint oop_alias_idx,
3696                             Node* index,
3697                             Node* index_adr,
3698                             Node* buffer,
3699                             const TypeFunc* tf) {
3700 
3701   Node* zero  = __ ConI(0);
3702   Node* zeroX = __ ConX(0);
3703   Node* no_base = __ top();
3704   BasicType card_bt = T_BYTE;
3705   // Smash zero into card. MUST BE ORDERED WRT TO STORE
3706   __ storeCM(__ ctrl(), card_adr, zero, oop_store, oop_alias_idx, card_bt, Compile::AliasIdxRaw);
3707 
3708   //  Now do the queue work
3709   __ if_then(index, BoolTest::ne, zeroX); {
3710 
3711     Node* next_index = _gvn.transform(new (C) SubXNode(index, __ ConX(sizeof(intptr_t))));
3712     Node* log_addr = __ AddP(no_base, buffer, next_index);
3713 
3714     __ store(__ ctrl(), log_addr, card_adr, T_ADDRESS, Compile::AliasIdxRaw, StoreNode::release);
3715     __ store(__ ctrl(), index_adr, next_index, TypeX_X->basic_type(), Compile::AliasIdxRaw, StoreNode::release);
3716 
3717   } __ else_(); {
3718     __ make_leaf_call(tf, CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), "g1_wb_post", card_adr, __ thread());
3719   } __ end_if();
3720 
3721 }
3722 
3723 void GraphKit::g1_write_barrier_post(Node* oop_store,
3724                                      Node* obj,
3725                                      Node* adr,
3726                                      uint alias_idx,
3727                                      Node* val,
3728                                      BasicType bt,
3729                                      bool use_precise) {
3730   // If we are writing a NULL then we need no post barrier
3731 
3732   if (val != NULL && val->is_Con() && val->bottom_type() == TypePtr::NULL_PTR) {
3733     // Must be NULL
3734     const Type* t = val->bottom_type();
3735     assert(t == Type::TOP || t == TypePtr::NULL_PTR, "must be NULL");
3736     // No post barrier if writing NULLx
3737     return;
3738   }
3739 
3740   if (!use_precise) {
3741     // All card marks for a (non-array) instance are in one place:
3742     adr = obj;
3743   }
3744   // (Else it's an array (or unknown), and we want more precise card marks.)
3745   assert(adr != NULL, "");
3746 
3747   IdealKit ideal(this, true);
3748 
3749   Node* tls = __ thread(); // ThreadLocalStorage
3750 
3751   Node* no_base = __ top();
3752   float likely  = PROB_LIKELY(0.999);
3753   float unlikely  = PROB_UNLIKELY(0.999);
3754   Node* young_card = __ ConI((jint)G1SATBCardTableModRefBS::g1_young_card_val());
3755   Node* dirty_card = __ ConI((jint)CardTableModRefBS::dirty_card_val());
3756   Node* zeroX = __ ConX(0);
3757 
3758   // Get the alias_index for raw card-mark memory
3759   const TypePtr* card_type = TypeRawPtr::BOTTOM;
3760 
3761   const TypeFunc *tf = OptoRuntime::g1_wb_post_Type();
3762 
3763   // Offsets into the thread
3764   const int index_offset  = in_bytes(JavaThread::dirty_card_queue_offset() +
3765                                      PtrQueue::byte_offset_of_index());
3766   const int buffer_offset = in_bytes(JavaThread::dirty_card_queue_offset() +
3767                                      PtrQueue::byte_offset_of_buf());
3768 
3769   // Pointers into the thread
3770 
3771   Node* buffer_adr = __ AddP(no_base, tls, __ ConX(buffer_offset));
3772   Node* index_adr =  __ AddP(no_base, tls, __ ConX(index_offset));
3773 
3774   // Now some values
3775   // Use ctrl to avoid hoisting these values past a safepoint, which could
3776   // potentially reset these fields in the JavaThread.
3777   Node* index  = __ load(__ ctrl(), index_adr, TypeX_X, TypeX_X->basic_type(), Compile::AliasIdxRaw);
3778   Node* buffer = __ load(__ ctrl(), buffer_adr, TypeRawPtr::NOTNULL, T_ADDRESS, Compile::AliasIdxRaw);
3779 
3780   // Convert the store obj pointer to an int prior to doing math on it
3781   // Must use ctrl to prevent "integerized oop" existing across safepoint
3782   Node* cast =  __ CastPX(__ ctrl(), adr);
3783 
3784   // Divide pointer by card size
3785   Node* card_offset = __ URShiftX( cast, __ ConI(CardTableModRefBS::card_shift) );
3786 
3787   // Combine card table base and card offset
3788   Node* card_adr = __ AddP(no_base, byte_map_base_node(), card_offset );
3789 
3790   // If we know the value being stored does it cross regions?
3791 
3792   if (val != NULL) {
3793     // Does the store cause us to cross regions?
3794 
3795     // Should be able to do an unsigned compare of region_size instead of
3796     // and extra shift. Do we have an unsigned compare??
3797     // Node* region_size = __ ConI(1 << HeapRegion::LogOfHRGrainBytes);
3798     Node* xor_res =  __ URShiftX ( __ XorX( cast,  __ CastPX(__ ctrl(), val)), __ ConI(HeapRegion::LogOfHRGrainBytes));
3799 
3800     // if (xor_res == 0) same region so skip
3801     __ if_then(xor_res, BoolTest::ne, zeroX); {
3802 
3803       // No barrier if we are storing a NULL
3804       __ if_then(val, BoolTest::ne, null(), unlikely); {
3805 
3806         // Ok must mark the card if not already dirty
3807 
3808         // load the original value of the card
3809         Node* card_val = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
3810 
3811         __ if_then(card_val, BoolTest::ne, young_card); {
3812           sync_kit(ideal);
3813           // Use Op_MemBarVolatile to achieve the effect of a StoreLoad barrier.
3814           insert_mem_bar(Op_MemBarVolatile, oop_store);
3815           __ sync_kit(this);
3816 
3817           Node* card_val_reload = __ load(__ ctrl(), card_adr, TypeInt::INT, T_BYTE, Compile::AliasIdxRaw);
3818           __ if_then(card_val_reload, BoolTest::ne, dirty_card); {
3819             g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
3820           } __ end_if();
3821         } __ end_if();
3822       } __ end_if();
3823     } __ end_if();
3824   } else {
3825     // Object.clone() instrinsic uses this path.
3826     g1_mark_card(ideal, card_adr, oop_store, alias_idx, index, index_adr, buffer, tf);
3827   }
3828 
3829   // Final sync IdealKit and GraphKit.
3830   final_sync(ideal);
3831 }
3832 #undef __
3833 
3834 
3835 
3836 Node* GraphKit::load_String_offset(Node* ctrl, Node* str) {
3837   if (java_lang_String::has_offset_field()) {
3838     int offset_offset = java_lang_String::offset_offset_in_bytes();
3839     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3840                                                        false, NULL, 0);
3841     const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
3842     int offset_field_idx = C->get_alias_index(offset_field_type);
3843     return make_load(ctrl,
3844                      basic_plus_adr(str, str, offset_offset),
3845                      TypeInt::INT, T_INT, offset_field_idx);
3846   } else {
3847     return intcon(0);
3848   }
3849 }
3850 
3851 Node* GraphKit::load_String_length(Node* ctrl, Node* str) {
3852   if (java_lang_String::has_count_field()) {
3853     int count_offset = java_lang_String::count_offset_in_bytes();
3854     const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3855                                                        false, NULL, 0);
3856     const TypePtr* count_field_type = string_type->add_offset(count_offset);
3857     int count_field_idx = C->get_alias_index(count_field_type);
3858     return make_load(ctrl,
3859                      basic_plus_adr(str, str, count_offset),
3860                      TypeInt::INT, T_INT, count_field_idx);
3861   } else {
3862     return load_array_length(load_String_value(ctrl, str));
3863   }
3864 }
3865 
3866 Node* GraphKit::load_String_value(Node* ctrl, Node* str) {
3867   int value_offset = java_lang_String::value_offset_in_bytes();
3868   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3869                                                      false, NULL, 0);
3870   const TypePtr* value_field_type = string_type->add_offset(value_offset);
3871   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
3872                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
3873                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
3874   int value_field_idx = C->get_alias_index(value_field_type);
3875   return make_load(ctrl, basic_plus_adr(str, str, value_offset),
3876                    value_type, T_OBJECT, value_field_idx);
3877 }
3878 
3879 void GraphKit::store_String_offset(Node* ctrl, Node* str, Node* value) {
3880   int offset_offset = java_lang_String::offset_offset_in_bytes();
3881   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3882                                                      false, NULL, 0);
3883   const TypePtr* offset_field_type = string_type->add_offset(offset_offset);
3884   int offset_field_idx = C->get_alias_index(offset_field_type);
3885   store_to_memory(ctrl, basic_plus_adr(str, offset_offset),
3886                   value, T_INT, offset_field_idx);
3887 }
3888 
3889 void GraphKit::store_String_value(Node* ctrl, Node* str, Node* value) {
3890   int value_offset = java_lang_String::value_offset_in_bytes();
3891   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3892                                                      false, NULL, 0);
3893   const TypePtr* value_field_type = string_type->add_offset(value_offset);
3894   const TypeAryPtr*  value_type = TypeAryPtr::make(TypePtr::NotNull,
3895                                                    TypeAry::make(TypeInt::CHAR,TypeInt::POS),
3896                                                    ciTypeArrayKlass::make(T_CHAR), true, 0);
3897   int value_field_idx = C->get_alias_index(value_field_type);
3898   store_to_memory(ctrl, basic_plus_adr(str, value_offset),
3899                   value, T_OBJECT, value_field_idx);
3900 }
3901 
3902 void GraphKit::store_String_length(Node* ctrl, Node* str, Node* value) {
3903   int count_offset = java_lang_String::count_offset_in_bytes();
3904   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3905                                                      false, NULL, 0);
3906   const TypePtr* count_field_type = string_type->add_offset(count_offset);
3907   int count_field_idx = C->get_alias_index(count_field_type);
3908   store_to_memory(ctrl, basic_plus_adr(str, count_offset),
3909                   value, T_INT, count_field_idx);
3910 }