1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/parse.hpp"
  37 #include "opto/runtime.hpp"
  38 #include "opto/subnode.hpp"
  39 #include "prims/nativeLookup.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "trace/traceMacros.hpp"
  42 
  43 class LibraryIntrinsic : public InlineCallGenerator {
  44   // Extend the set of intrinsics known to the runtime:
  45  public:
  46  private:
  47   bool             _is_virtual;
  48   bool             _is_predicted;
  49   vmIntrinsics::ID _intrinsic_id;
  50 
  51  public:
  52   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, vmIntrinsics::ID id)
  53     : InlineCallGenerator(m),
  54       _is_virtual(is_virtual),
  55       _is_predicted(is_predicted),
  56       _intrinsic_id(id)
  57   {
  58   }
  59   virtual bool is_intrinsic() const { return true; }
  60   virtual bool is_virtual()   const { return _is_virtual; }
  61   virtual bool is_predicted()   const { return _is_predicted; }
  62   virtual JVMState* generate(JVMState* jvms);
  63   virtual Node* generate_predicate(JVMState* jvms);
  64   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  65 };
  66 
  67 
  68 // Local helper class for LibraryIntrinsic:
  69 class LibraryCallKit : public GraphKit {
  70  private:
  71   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  72   Node*             _result;        // the result node, if any
  73   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  74 
  75   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  76 
  77  public:
  78   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  79     : GraphKit(jvms),
  80       _intrinsic(intrinsic),
  81       _result(NULL)
  82   {
  83     // Check if this is a root compile.  In that case we don't have a caller.
  84     if (!jvms->has_method()) {
  85       _reexecute_sp = sp();
  86     } else {
  87       // Find out how many arguments the interpreter needs when deoptimizing
  88       // and save the stack pointer value so it can used by uncommon_trap.
  89       // We find the argument count by looking at the declared signature.
  90       bool ignored_will_link;
  91       ciSignature* declared_signature = NULL;
  92       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  93       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  94       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  95     }
  96   }
  97 
  98   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
  99 
 100   ciMethod*         caller()    const    { return jvms()->method(); }
 101   int               bci()       const    { return jvms()->bci(); }
 102   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 103   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 104   ciMethod*         callee()    const    { return _intrinsic->method(); }
 105 
 106   bool try_to_inline();
 107   Node* try_to_predicate();
 108 
 109   void push_result() {
 110     // Push the result onto the stack.
 111     if (!stopped() && result() != NULL) {
 112       BasicType bt = result()->bottom_type()->basic_type();
 113       push_node(bt, result());
 114     }
 115   }
 116 
 117  private:
 118   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 119     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 120   }
 121 
 122   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 123   void  set_result(RegionNode* region, PhiNode* value);
 124   Node*     result() { return _result; }
 125 
 126   virtual int reexecute_sp() { return _reexecute_sp; }
 127 
 128   // Helper functions to inline natives
 129   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 130   Node* generate_slow_guard(Node* test, RegionNode* region);
 131   Node* generate_fair_guard(Node* test, RegionNode* region);
 132   Node* generate_negative_guard(Node* index, RegionNode* region,
 133                                 // resulting CastII of index:
 134                                 Node* *pos_index = NULL);
 135   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 136                                    // resulting CastII of index:
 137                                    Node* *pos_index = NULL);
 138   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 139                              Node* array_length,
 140                              RegionNode* region);
 141   Node* generate_current_thread(Node* &tls_output);
 142   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 143                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 144   Node* load_mirror_from_klass(Node* klass);
 145   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 146                                       RegionNode* region, int null_path,
 147                                       int offset);
 148   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 149                                RegionNode* region, int null_path) {
 150     int offset = java_lang_Class::klass_offset_in_bytes();
 151     return load_klass_from_mirror_common(mirror, never_see_null,
 152                                          region, null_path,
 153                                          offset);
 154   }
 155   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 156                                      RegionNode* region, int null_path) {
 157     int offset = java_lang_Class::array_klass_offset_in_bytes();
 158     return load_klass_from_mirror_common(mirror, never_see_null,
 159                                          region, null_path,
 160                                          offset);
 161   }
 162   Node* generate_access_flags_guard(Node* kls,
 163                                     int modifier_mask, int modifier_bits,
 164                                     RegionNode* region);
 165   Node* generate_interface_guard(Node* kls, RegionNode* region);
 166   Node* generate_array_guard(Node* kls, RegionNode* region) {
 167     return generate_array_guard_common(kls, region, false, false);
 168   }
 169   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 170     return generate_array_guard_common(kls, region, false, true);
 171   }
 172   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 173     return generate_array_guard_common(kls, region, true, false);
 174   }
 175   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 176     return generate_array_guard_common(kls, region, true, true);
 177   }
 178   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 179                                     bool obj_array, bool not_array);
 180   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 181   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 182                                      bool is_virtual = false, bool is_static = false);
 183   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 184     return generate_method_call(method_id, false, true);
 185   }
 186   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 187     return generate_method_call(method_id, true, false);
 188   }
 189   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 190 
 191   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 192   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 193   bool inline_string_compareTo();
 194   bool inline_string_indexOf();
 195   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 196   bool inline_string_equals();
 197   Node* round_double_node(Node* n);
 198   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 199   bool inline_math_native(vmIntrinsics::ID id);
 200   bool inline_trig(vmIntrinsics::ID id);
 201   bool inline_math(vmIntrinsics::ID id);
 202   bool inline_exp();
 203   bool inline_pow();
 204   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 205   bool inline_min_max(vmIntrinsics::ID id);
 206   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 207   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 208   int classify_unsafe_addr(Node* &base, Node* &offset);
 209   Node* make_unsafe_address(Node* base, Node* offset);
 210   // Helper for inline_unsafe_access.
 211   // Generates the guards that check whether the result of
 212   // Unsafe.getObject should be recorded in an SATB log buffer.
 213   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 214   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 215   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 216   bool inline_unsafe_allocate();
 217   bool inline_unsafe_copyMemory();
 218   bool inline_native_currentThread();
 219 #ifdef TRACE_HAVE_INTRINSICS
 220   bool inline_native_classID();
 221   bool inline_native_threadID();
 222 #endif
 223   bool inline_native_time_funcs(address method, const char* funcName);
 224   bool inline_native_isInterrupted();
 225   bool inline_native_Class_query(vmIntrinsics::ID id);
 226   bool inline_native_subtype_check();
 227 
 228   bool inline_native_newArray();
 229   bool inline_native_getLength();
 230   bool inline_array_copyOf(bool is_copyOfRange);
 231   bool inline_array_equals();
 232   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 233   bool inline_native_clone(bool is_virtual);
 234   bool inline_native_Reflection_getCallerClass();
 235   bool is_method_invoke_or_aux_frame(JVMState* jvms);
 236   // Helper function for inlining native object hash method
 237   bool inline_native_hashcode(bool is_virtual, bool is_static);
 238   bool inline_native_getClass();
 239 
 240   // Helper functions for inlining arraycopy
 241   bool inline_arraycopy();
 242   void generate_arraycopy(const TypePtr* adr_type,
 243                           BasicType basic_elem_type,
 244                           Node* src,  Node* src_offset,
 245                           Node* dest, Node* dest_offset,
 246                           Node* copy_length,
 247                           bool disjoint_bases = false,
 248                           bool length_never_negative = false,
 249                           RegionNode* slow_region = NULL);
 250   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 251                                                 RegionNode* slow_region);
 252   void generate_clear_array(const TypePtr* adr_type,
 253                             Node* dest,
 254                             BasicType basic_elem_type,
 255                             Node* slice_off,
 256                             Node* slice_len,
 257                             Node* slice_end);
 258   bool generate_block_arraycopy(const TypePtr* adr_type,
 259                                 BasicType basic_elem_type,
 260                                 AllocateNode* alloc,
 261                                 Node* src,  Node* src_offset,
 262                                 Node* dest, Node* dest_offset,
 263                                 Node* dest_size, bool dest_uninitialized);
 264   void generate_slow_arraycopy(const TypePtr* adr_type,
 265                                Node* src,  Node* src_offset,
 266                                Node* dest, Node* dest_offset,
 267                                Node* copy_length, bool dest_uninitialized);
 268   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 269                                      Node* dest_elem_klass,
 270                                      Node* src,  Node* src_offset,
 271                                      Node* dest, Node* dest_offset,
 272                                      Node* copy_length, bool dest_uninitialized);
 273   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 274                                    Node* src,  Node* src_offset,
 275                                    Node* dest, Node* dest_offset,
 276                                    Node* copy_length, bool dest_uninitialized);
 277   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 278                                     BasicType basic_elem_type,
 279                                     bool disjoint_bases,
 280                                     Node* src,  Node* src_offset,
 281                                     Node* dest, Node* dest_offset,
 282                                     Node* copy_length, bool dest_uninitialized);
 283   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 284   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 285   bool inline_unsafe_ordered_store(BasicType type);
 286   bool inline_fp_conversions(vmIntrinsics::ID id);
 287   bool inline_number_methods(vmIntrinsics::ID id);
 288   bool inline_reference_get();
 289   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 290   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 291   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 292   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 293 };
 294 
 295 
 296 //---------------------------make_vm_intrinsic----------------------------
 297 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 298   vmIntrinsics::ID id = m->intrinsic_id();
 299   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 300 
 301   if (DisableIntrinsic[0] != '\0'
 302       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 303     // disabled by a user request on the command line:
 304     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 305     return NULL;
 306   }
 307 
 308   if (!m->is_loaded()) {
 309     // do not attempt to inline unloaded methods
 310     return NULL;
 311   }
 312 
 313   // Only a few intrinsics implement a virtual dispatch.
 314   // They are expensive calls which are also frequently overridden.
 315   if (is_virtual) {
 316     switch (id) {
 317     case vmIntrinsics::_hashCode:
 318     case vmIntrinsics::_clone:
 319       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 320       break;
 321     default:
 322       return NULL;
 323     }
 324   }
 325 
 326   // -XX:-InlineNatives disables nearly all intrinsics:
 327   if (!InlineNatives) {
 328     switch (id) {
 329     case vmIntrinsics::_indexOf:
 330     case vmIntrinsics::_compareTo:
 331     case vmIntrinsics::_equals:
 332     case vmIntrinsics::_equalsC:
 333     case vmIntrinsics::_getAndAddInt:
 334     case vmIntrinsics::_getAndAddLong:
 335     case vmIntrinsics::_getAndSetInt:
 336     case vmIntrinsics::_getAndSetLong:
 337     case vmIntrinsics::_getAndSetObject:
 338       break;  // InlineNatives does not control String.compareTo
 339     case vmIntrinsics::_Reference_get:
 340       break;  // InlineNatives does not control Reference.get
 341     default:
 342       return NULL;
 343     }
 344   }
 345 
 346   bool is_predicted = false;
 347 
 348   switch (id) {
 349   case vmIntrinsics::_compareTo:
 350     if (!SpecialStringCompareTo)  return NULL;
 351     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 352     break;
 353   case vmIntrinsics::_indexOf:
 354     if (!SpecialStringIndexOf)  return NULL;
 355     break;
 356   case vmIntrinsics::_equals:
 357     if (!SpecialStringEquals)  return NULL;
 358     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 359     break;
 360   case vmIntrinsics::_equalsC:
 361     if (!SpecialArraysEquals)  return NULL;
 362     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 363     break;
 364   case vmIntrinsics::_arraycopy:
 365     if (!InlineArrayCopy)  return NULL;
 366     break;
 367   case vmIntrinsics::_copyMemory:
 368     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 369     if (!InlineArrayCopy)  return NULL;
 370     break;
 371   case vmIntrinsics::_hashCode:
 372     if (!InlineObjectHash)  return NULL;
 373     break;
 374   case vmIntrinsics::_clone:
 375   case vmIntrinsics::_copyOf:
 376   case vmIntrinsics::_copyOfRange:
 377     if (!InlineObjectCopy)  return NULL;
 378     // These also use the arraycopy intrinsic mechanism:
 379     if (!InlineArrayCopy)  return NULL;
 380     break;
 381   case vmIntrinsics::_checkIndex:
 382     // We do not intrinsify this.  The optimizer does fine with it.
 383     return NULL;
 384 
 385   case vmIntrinsics::_getCallerClass:
 386     if (!UseNewReflection)  return NULL;
 387     if (!InlineReflectionGetCallerClass)  return NULL;
 388     if (!JDK_Version::is_gte_jdk14x_version())  return NULL;
 389     break;
 390 
 391   case vmIntrinsics::_bitCount_i:
 392     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 393     break;
 394 
 395   case vmIntrinsics::_bitCount_l:
 396     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 397     break;
 398 
 399   case vmIntrinsics::_numberOfLeadingZeros_i:
 400     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 401     break;
 402 
 403   case vmIntrinsics::_numberOfLeadingZeros_l:
 404     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 405     break;
 406 
 407   case vmIntrinsics::_numberOfTrailingZeros_i:
 408     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 409     break;
 410 
 411   case vmIntrinsics::_numberOfTrailingZeros_l:
 412     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 413     break;
 414 
 415   case vmIntrinsics::_reverseBytes_c:
 416     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 417     break;
 418   case vmIntrinsics::_reverseBytes_s:
 419     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 420     break;
 421   case vmIntrinsics::_reverseBytes_i:
 422     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 423     break;
 424   case vmIntrinsics::_reverseBytes_l:
 425     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 426     break;
 427 
 428   case vmIntrinsics::_Reference_get:
 429     // Use the intrinsic version of Reference.get() so that the value in
 430     // the referent field can be registered by the G1 pre-barrier code.
 431     // Also add memory barrier to prevent commoning reads from this field
 432     // across safepoint since GC can change it value.
 433     break;
 434 
 435   case vmIntrinsics::_compareAndSwapObject:
 436 #ifdef _LP64
 437     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 438 #endif
 439     break;
 440 
 441   case vmIntrinsics::_compareAndSwapLong:
 442     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 443     break;
 444 
 445   case vmIntrinsics::_getAndAddInt:
 446     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 447     break;
 448 
 449   case vmIntrinsics::_getAndAddLong:
 450     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 451     break;
 452 
 453   case vmIntrinsics::_getAndSetInt:
 454     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 455     break;
 456 
 457   case vmIntrinsics::_getAndSetLong:
 458     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 459     break;
 460 
 461   case vmIntrinsics::_getAndSetObject:
 462 #ifdef _LP64
 463     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 464     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 465     break;
 466 #else
 467     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 468     break;
 469 #endif
 470 
 471   case vmIntrinsics::_aescrypt_encryptBlock:
 472   case vmIntrinsics::_aescrypt_decryptBlock:
 473     if (!UseAESIntrinsics) return NULL;
 474     break;
 475 
 476   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 477   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 478     if (!UseAESIntrinsics) return NULL;
 479     // these two require the predicated logic
 480     is_predicted = true;
 481     break;
 482 
 483  default:
 484     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 485     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 486     break;
 487   }
 488 
 489   // -XX:-InlineClassNatives disables natives from the Class class.
 490   // The flag applies to all reflective calls, notably Array.newArray
 491   // (visible to Java programmers as Array.newInstance).
 492   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 493       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 494     if (!InlineClassNatives)  return NULL;
 495   }
 496 
 497   // -XX:-InlineThreadNatives disables natives from the Thread class.
 498   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 499     if (!InlineThreadNatives)  return NULL;
 500   }
 501 
 502   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 503   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 504       m->holder()->name() == ciSymbol::java_lang_Float() ||
 505       m->holder()->name() == ciSymbol::java_lang_Double()) {
 506     if (!InlineMathNatives)  return NULL;
 507   }
 508 
 509   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 510   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 511     if (!InlineUnsafeOps)  return NULL;
 512   }
 513 
 514   return new LibraryIntrinsic(m, is_virtual, is_predicted, (vmIntrinsics::ID) id);
 515 }
 516 
 517 //----------------------register_library_intrinsics-----------------------
 518 // Initialize this file's data structures, for each Compile instance.
 519 void Compile::register_library_intrinsics() {
 520   // Nothing to do here.
 521 }
 522 
 523 JVMState* LibraryIntrinsic::generate(JVMState* jvms) {
 524   LibraryCallKit kit(jvms, this);
 525   Compile* C = kit.C;
 526   int nodes = C->unique();
 527 #ifndef PRODUCT
 528   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 529     char buf[1000];
 530     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 531     tty->print_cr("Intrinsic %s", str);
 532   }
 533 #endif
 534   ciMethod* callee = kit.callee();
 535   const int bci    = kit.bci();
 536 
 537   // Try to inline the intrinsic.
 538   if (kit.try_to_inline()) {
 539     if (C->print_intrinsics() || C->print_inlining()) {
 540       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 541     }
 542     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 543     if (C->log()) {
 544       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 545                      vmIntrinsics::name_at(intrinsic_id()),
 546                      (is_virtual() ? " virtual='1'" : ""),
 547                      C->unique() - nodes);
 548     }
 549     // Push the result from the inlined method onto the stack.
 550     kit.push_result();
 551     return kit.transfer_exceptions_into_jvms();
 552   }
 553 
 554   // The intrinsic bailed out
 555   if (C->print_intrinsics() || C->print_inlining()) {
 556     if (jvms->has_method()) {
 557       // Not a root compile.
 558       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 559       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 560     } else {
 561       // Root compile
 562       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 563                vmIntrinsics::name_at(intrinsic_id()),
 564                (is_virtual() ? " (virtual)" : ""), bci);
 565     }
 566   }
 567   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 568   return NULL;
 569 }
 570 
 571 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 572   LibraryCallKit kit(jvms, this);
 573   Compile* C = kit.C;
 574   int nodes = C->unique();
 575 #ifndef PRODUCT
 576   assert(is_predicted(), "sanity");
 577   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 578     char buf[1000];
 579     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 580     tty->print_cr("Predicate for intrinsic %s", str);
 581   }
 582 #endif
 583   ciMethod* callee = kit.callee();
 584   const int bci    = kit.bci();
 585 
 586   Node* slow_ctl = kit.try_to_predicate();
 587   if (!kit.failing()) {
 588     if (C->print_intrinsics() || C->print_inlining()) {
 589       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 590     }
 591     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 592     if (C->log()) {
 593       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 594                      vmIntrinsics::name_at(intrinsic_id()),
 595                      (is_virtual() ? " virtual='1'" : ""),
 596                      C->unique() - nodes);
 597     }
 598     return slow_ctl; // Could be NULL if the check folds.
 599   }
 600 
 601   // The intrinsic bailed out
 602   if (C->print_intrinsics() || C->print_inlining()) {
 603     if (jvms->has_method()) {
 604       // Not a root compile.
 605       const char* msg = "failed to generate predicate for intrinsic";
 606       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 607     } else {
 608       // Root compile
 609       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 610                                         vmIntrinsics::name_at(intrinsic_id()),
 611                                         (is_virtual() ? " (virtual)" : ""), bci);
 612     }
 613   }
 614   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 615   return NULL;
 616 }
 617 
 618 bool LibraryCallKit::try_to_inline() {
 619   // Handle symbolic names for otherwise undistinguished boolean switches:
 620   const bool is_store       = true;
 621   const bool is_native_ptr  = true;
 622   const bool is_static      = true;
 623   const bool is_volatile    = true;
 624 
 625   if (!jvms()->has_method()) {
 626     // Root JVMState has a null method.
 627     assert(map()->memory()->Opcode() == Op_Parm, "");
 628     // Insert the memory aliasing node
 629     set_all_memory(reset_memory());
 630   }
 631   assert(merged_memory(), "");
 632 
 633 
 634   switch (intrinsic_id()) {
 635   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 636   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 637   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 638 
 639   case vmIntrinsics::_dsin:
 640   case vmIntrinsics::_dcos:
 641   case vmIntrinsics::_dtan:
 642   case vmIntrinsics::_dabs:
 643   case vmIntrinsics::_datan2:
 644   case vmIntrinsics::_dsqrt:
 645   case vmIntrinsics::_dexp:
 646   case vmIntrinsics::_dlog:
 647   case vmIntrinsics::_dlog10:
 648   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 649 
 650   case vmIntrinsics::_min:
 651   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 652 
 653   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 654 
 655   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 656   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 657   case vmIntrinsics::_equals:                   return inline_string_equals();
 658 
 659   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 660   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 661   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 662   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 663   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 664   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 665   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 666   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 667   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 668 
 669   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 670   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 671   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 672   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 673   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 674   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 675   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 676   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 677   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 678 
 679   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 680   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 681   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 682   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 683   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 684   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 685   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 686   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 687 
 688   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 689   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 690   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 691   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 692   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 693   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 694   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 695   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 696 
 697   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 698   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 699   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 700   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 701   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 702   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 703   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 704   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 705   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 706 
 707   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 708   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 709   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 710   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 711   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 712   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 713   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 714   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 715   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 716 
 717   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 718   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 719   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 720   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 721 
 722   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 723   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 724   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 725 
 726   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 727   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 728   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 729 
 730   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 731   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 732   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 733   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 734   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 735 
 736   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 737   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 738 
 739 #ifdef TRACE_HAVE_INTRINSICS
 740   case vmIntrinsics::_classID:                  return inline_native_classID();
 741   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 742   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 743 #endif
 744   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 745   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 746   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 747   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 748   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 749   case vmIntrinsics::_getLength:                return inline_native_getLength();
 750   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 751   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 752   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 753   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 754 
 755   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 756 
 757   case vmIntrinsics::_isInstance:
 758   case vmIntrinsics::_getModifiers:
 759   case vmIntrinsics::_isInterface:
 760   case vmIntrinsics::_isArray:
 761   case vmIntrinsics::_isPrimitive:
 762   case vmIntrinsics::_getSuperclass:
 763   case vmIntrinsics::_getComponentType:
 764   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 765 
 766   case vmIntrinsics::_floatToRawIntBits:
 767   case vmIntrinsics::_floatToIntBits:
 768   case vmIntrinsics::_intBitsToFloat:
 769   case vmIntrinsics::_doubleToRawLongBits:
 770   case vmIntrinsics::_doubleToLongBits:
 771   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 772 
 773   case vmIntrinsics::_numberOfLeadingZeros_i:
 774   case vmIntrinsics::_numberOfLeadingZeros_l:
 775   case vmIntrinsics::_numberOfTrailingZeros_i:
 776   case vmIntrinsics::_numberOfTrailingZeros_l:
 777   case vmIntrinsics::_bitCount_i:
 778   case vmIntrinsics::_bitCount_l:
 779   case vmIntrinsics::_reverseBytes_i:
 780   case vmIntrinsics::_reverseBytes_l:
 781   case vmIntrinsics::_reverseBytes_s:
 782   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 783 
 784   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 785 
 786   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 787 
 788   case vmIntrinsics::_aescrypt_encryptBlock:
 789   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 790 
 791   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 792   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 793     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 794 
 795   default:
 796     // If you get here, it may be that someone has added a new intrinsic
 797     // to the list in vmSymbols.hpp without implementing it here.
 798 #ifndef PRODUCT
 799     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 800       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 801                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 802     }
 803 #endif
 804     return false;
 805   }
 806 }
 807 
 808 Node* LibraryCallKit::try_to_predicate() {
 809   if (!jvms()->has_method()) {
 810     // Root JVMState has a null method.
 811     assert(map()->memory()->Opcode() == Op_Parm, "");
 812     // Insert the memory aliasing node
 813     set_all_memory(reset_memory());
 814   }
 815   assert(merged_memory(), "");
 816 
 817   switch (intrinsic_id()) {
 818   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 819     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 820   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 821     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 822 
 823   default:
 824     // If you get here, it may be that someone has added a new intrinsic
 825     // to the list in vmSymbols.hpp without implementing it here.
 826 #ifndef PRODUCT
 827     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 828       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 829                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 830     }
 831 #endif
 832     Node* slow_ctl = control();
 833     set_control(top()); // No fast path instrinsic
 834     return slow_ctl;
 835   }
 836 }
 837 
 838 //------------------------------set_result-------------------------------
 839 // Helper function for finishing intrinsics.
 840 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 841   record_for_igvn(region);
 842   set_control(_gvn.transform(region));
 843   set_result( _gvn.transform(value));
 844   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 845 }
 846 
 847 //------------------------------generate_guard---------------------------
 848 // Helper function for generating guarded fast-slow graph structures.
 849 // The given 'test', if true, guards a slow path.  If the test fails
 850 // then a fast path can be taken.  (We generally hope it fails.)
 851 // In all cases, GraphKit::control() is updated to the fast path.
 852 // The returned value represents the control for the slow path.
 853 // The return value is never 'top'; it is either a valid control
 854 // or NULL if it is obvious that the slow path can never be taken.
 855 // Also, if region and the slow control are not NULL, the slow edge
 856 // is appended to the region.
 857 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 858   if (stopped()) {
 859     // Already short circuited.
 860     return NULL;
 861   }
 862 
 863   // Build an if node and its projections.
 864   // If test is true we take the slow path, which we assume is uncommon.
 865   if (_gvn.type(test) == TypeInt::ZERO) {
 866     // The slow branch is never taken.  No need to build this guard.
 867     return NULL;
 868   }
 869 
 870   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 871 
 872   Node* if_slow = _gvn.transform( new (C) IfTrueNode(iff) );
 873   if (if_slow == top()) {
 874     // The slow branch is never taken.  No need to build this guard.
 875     return NULL;
 876   }
 877 
 878   if (region != NULL)
 879     region->add_req(if_slow);
 880 
 881   Node* if_fast = _gvn.transform( new (C) IfFalseNode(iff) );
 882   set_control(if_fast);
 883 
 884   return if_slow;
 885 }
 886 
 887 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 888   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 889 }
 890 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 891   return generate_guard(test, region, PROB_FAIR);
 892 }
 893 
 894 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 895                                                      Node* *pos_index) {
 896   if (stopped())
 897     return NULL;                // already stopped
 898   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 899     return NULL;                // index is already adequately typed
 900   Node* cmp_lt = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
 901   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
 902   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 903   if (is_neg != NULL && pos_index != NULL) {
 904     // Emulate effect of Parse::adjust_map_after_if.
 905     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 906     ccast->set_req(0, control());
 907     (*pos_index) = _gvn.transform(ccast);
 908   }
 909   return is_neg;
 910 }
 911 
 912 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
 913                                                         Node* *pos_index) {
 914   if (stopped())
 915     return NULL;                // already stopped
 916   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
 917     return NULL;                // index is already adequately typed
 918   Node* cmp_le = _gvn.transform( new (C) CmpINode(index, intcon(0)) );
 919   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
 920   Node* bol_le = _gvn.transform( new (C) BoolNode(cmp_le, le_or_eq) );
 921   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
 922   if (is_notp != NULL && pos_index != NULL) {
 923     // Emulate effect of Parse::adjust_map_after_if.
 924     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
 925     ccast->set_req(0, control());
 926     (*pos_index) = _gvn.transform(ccast);
 927   }
 928   return is_notp;
 929 }
 930 
 931 // Make sure that 'position' is a valid limit index, in [0..length].
 932 // There are two equivalent plans for checking this:
 933 //   A. (offset + copyLength)  unsigned<=  arrayLength
 934 //   B. offset  <=  (arrayLength - copyLength)
 935 // We require that all of the values above, except for the sum and
 936 // difference, are already known to be non-negative.
 937 // Plan A is robust in the face of overflow, if offset and copyLength
 938 // are both hugely positive.
 939 //
 940 // Plan B is less direct and intuitive, but it does not overflow at
 941 // all, since the difference of two non-negatives is always
 942 // representable.  Whenever Java methods must perform the equivalent
 943 // check they generally use Plan B instead of Plan A.
 944 // For the moment we use Plan A.
 945 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
 946                                                   Node* subseq_length,
 947                                                   Node* array_length,
 948                                                   RegionNode* region) {
 949   if (stopped())
 950     return NULL;                // already stopped
 951   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
 952   if (zero_offset && subseq_length->eqv_uncast(array_length))
 953     return NULL;                // common case of whole-array copy
 954   Node* last = subseq_length;
 955   if (!zero_offset)             // last += offset
 956     last = _gvn.transform( new (C) AddINode(last, offset));
 957   Node* cmp_lt = _gvn.transform( new (C) CmpUNode(array_length, last) );
 958   Node* bol_lt = _gvn.transform( new (C) BoolNode(cmp_lt, BoolTest::lt) );
 959   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
 960   return is_over;
 961 }
 962 
 963 
 964 //--------------------------generate_current_thread--------------------
 965 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
 966   ciKlass*    thread_klass = env()->Thread_klass();
 967   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
 968   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
 969   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
 970   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT);
 971   tls_output = thread;
 972   return threadObj;
 973 }
 974 
 975 
 976 //------------------------------make_string_method_node------------------------
 977 // Helper method for String intrinsic functions. This version is called
 978 // with str1 and str2 pointing to String object nodes.
 979 //
 980 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
 981   Node* no_ctrl = NULL;
 982 
 983   // Get start addr of string
 984   Node* str1_value   = load_String_value(no_ctrl, str1);
 985   Node* str1_offset  = load_String_offset(no_ctrl, str1);
 986   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
 987 
 988   // Get length of string 1
 989   Node* str1_len  = load_String_length(no_ctrl, str1);
 990 
 991   Node* str2_value   = load_String_value(no_ctrl, str2);
 992   Node* str2_offset  = load_String_offset(no_ctrl, str2);
 993   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
 994 
 995   Node* str2_len = NULL;
 996   Node* result = NULL;
 997 
 998   switch (opcode) {
 999   case Op_StrIndexOf:
1000     // Get length of string 2
1001     str2_len = load_String_length(no_ctrl, str2);
1002 
1003     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1004                                  str1_start, str1_len, str2_start, str2_len);
1005     break;
1006   case Op_StrComp:
1007     // Get length of string 2
1008     str2_len = load_String_length(no_ctrl, str2);
1009 
1010     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1011                                  str1_start, str1_len, str2_start, str2_len);
1012     break;
1013   case Op_StrEquals:
1014     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1015                                str1_start, str2_start, str1_len);
1016     break;
1017   default:
1018     ShouldNotReachHere();
1019     return NULL;
1020   }
1021 
1022   // All these intrinsics have checks.
1023   C->set_has_split_ifs(true); // Has chance for split-if optimization
1024 
1025   return _gvn.transform(result);
1026 }
1027 
1028 // Helper method for String intrinsic functions. This version is called
1029 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1030 // to Int nodes containing the lenghts of str1 and str2.
1031 //
1032 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1033   Node* result = NULL;
1034   switch (opcode) {
1035   case Op_StrIndexOf:
1036     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1037                                  str1_start, cnt1, str2_start, cnt2);
1038     break;
1039   case Op_StrComp:
1040     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1041                                  str1_start, cnt1, str2_start, cnt2);
1042     break;
1043   case Op_StrEquals:
1044     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1045                                  str1_start, str2_start, cnt1);
1046     break;
1047   default:
1048     ShouldNotReachHere();
1049     return NULL;
1050   }
1051 
1052   // All these intrinsics have checks.
1053   C->set_has_split_ifs(true); // Has chance for split-if optimization
1054 
1055   return _gvn.transform(result);
1056 }
1057 
1058 //------------------------------inline_string_compareTo------------------------
1059 // public int java.lang.String.compareTo(String anotherString);
1060 bool LibraryCallKit::inline_string_compareTo() {
1061   Node* receiver = null_check(argument(0));
1062   Node* arg      = null_check(argument(1));
1063   if (stopped()) {
1064     return true;
1065   }
1066   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1067   return true;
1068 }
1069 
1070 //------------------------------inline_string_equals------------------------
1071 bool LibraryCallKit::inline_string_equals() {
1072   Node* receiver = null_check_receiver();
1073   // NOTE: Do not null check argument for String.equals() because spec
1074   // allows to specify NULL as argument.
1075   Node* argument = this->argument(1);
1076   if (stopped()) {
1077     return true;
1078   }
1079 
1080   // paths (plus control) merge
1081   RegionNode* region = new (C) RegionNode(5);
1082   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1083 
1084   // does source == target string?
1085   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1086   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1087 
1088   Node* if_eq = generate_slow_guard(bol, NULL);
1089   if (if_eq != NULL) {
1090     // receiver == argument
1091     phi->init_req(2, intcon(1));
1092     region->init_req(2, if_eq);
1093   }
1094 
1095   // get String klass for instanceOf
1096   ciInstanceKlass* klass = env()->String_klass();
1097 
1098   if (!stopped()) {
1099     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1100     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1101     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1102 
1103     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1104     //instanceOf == true, fallthrough
1105 
1106     if (inst_false != NULL) {
1107       phi->init_req(3, intcon(0));
1108       region->init_req(3, inst_false);
1109     }
1110   }
1111 
1112   if (!stopped()) {
1113     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1114 
1115     // Properly cast the argument to String
1116     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1117     // This path is taken only when argument's type is String:NotNull.
1118     argument = cast_not_null(argument, false);
1119 
1120     Node* no_ctrl = NULL;
1121 
1122     // Get start addr of receiver
1123     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1124     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1125     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1126 
1127     // Get length of receiver
1128     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1129 
1130     // Get start addr of argument
1131     Node* argument_val    = load_String_value(no_ctrl, argument);
1132     Node* argument_offset = load_String_offset(no_ctrl, argument);
1133     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1134 
1135     // Get length of argument
1136     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1137 
1138     // Check for receiver count != argument count
1139     Node* cmp = _gvn.transform( new(C) CmpINode(receiver_cnt, argument_cnt) );
1140     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::ne) );
1141     Node* if_ne = generate_slow_guard(bol, NULL);
1142     if (if_ne != NULL) {
1143       phi->init_req(4, intcon(0));
1144       region->init_req(4, if_ne);
1145     }
1146 
1147     // Check for count == 0 is done by assembler code for StrEquals.
1148 
1149     if (!stopped()) {
1150       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1151       phi->init_req(1, equals);
1152       region->init_req(1, control());
1153     }
1154   }
1155 
1156   // post merge
1157   set_control(_gvn.transform(region));
1158   record_for_igvn(region);
1159 
1160   set_result(_gvn.transform(phi));
1161   return true;
1162 }
1163 
1164 //------------------------------inline_array_equals----------------------------
1165 bool LibraryCallKit::inline_array_equals() {
1166   Node* arg1 = argument(0);
1167   Node* arg2 = argument(1);
1168   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1169   return true;
1170 }
1171 
1172 // Java version of String.indexOf(constant string)
1173 // class StringDecl {
1174 //   StringDecl(char[] ca) {
1175 //     offset = 0;
1176 //     count = ca.length;
1177 //     value = ca;
1178 //   }
1179 //   int offset;
1180 //   int count;
1181 //   char[] value;
1182 // }
1183 //
1184 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1185 //                             int targetOffset, int cache_i, int md2) {
1186 //   int cache = cache_i;
1187 //   int sourceOffset = string_object.offset;
1188 //   int sourceCount = string_object.count;
1189 //   int targetCount = target_object.length;
1190 //
1191 //   int targetCountLess1 = targetCount - 1;
1192 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1193 //
1194 //   char[] source = string_object.value;
1195 //   char[] target = target_object;
1196 //   int lastChar = target[targetCountLess1];
1197 //
1198 //  outer_loop:
1199 //   for (int i = sourceOffset; i < sourceEnd; ) {
1200 //     int src = source[i + targetCountLess1];
1201 //     if (src == lastChar) {
1202 //       // With random strings and a 4-character alphabet,
1203 //       // reverse matching at this point sets up 0.8% fewer
1204 //       // frames, but (paradoxically) makes 0.3% more probes.
1205 //       // Since those probes are nearer the lastChar probe,
1206 //       // there is may be a net D$ win with reverse matching.
1207 //       // But, reversing loop inhibits unroll of inner loop
1208 //       // for unknown reason.  So, does running outer loop from
1209 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1210 //       for (int j = 0; j < targetCountLess1; j++) {
1211 //         if (target[targetOffset + j] != source[i+j]) {
1212 //           if ((cache & (1 << source[i+j])) == 0) {
1213 //             if (md2 < j+1) {
1214 //               i += j+1;
1215 //               continue outer_loop;
1216 //             }
1217 //           }
1218 //           i += md2;
1219 //           continue outer_loop;
1220 //         }
1221 //       }
1222 //       return i - sourceOffset;
1223 //     }
1224 //     if ((cache & (1 << src)) == 0) {
1225 //       i += targetCountLess1;
1226 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1227 //     i++;
1228 //   }
1229 //   return -1;
1230 // }
1231 
1232 //------------------------------string_indexOf------------------------
1233 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1234                                      jint cache_i, jint md2_i) {
1235 
1236   Node* no_ctrl  = NULL;
1237   float likely   = PROB_LIKELY(0.9);
1238   float unlikely = PROB_UNLIKELY(0.9);
1239 
1240   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1241 
1242   Node* source        = load_String_value(no_ctrl, string_object);
1243   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1244   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1245 
1246   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)) );
1247   jint target_length = target_array->length();
1248   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1249   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1250 
1251   IdealKit kit(this, false, true);
1252 #define __ kit.
1253   Node* zero             = __ ConI(0);
1254   Node* one              = __ ConI(1);
1255   Node* cache            = __ ConI(cache_i);
1256   Node* md2              = __ ConI(md2_i);
1257   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1258   Node* targetCount      = __ ConI(target_length);
1259   Node* targetCountLess1 = __ ConI(target_length - 1);
1260   Node* targetOffset     = __ ConI(targetOffset_i);
1261   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1262 
1263   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1264   Node* outer_loop = __ make_label(2 /* goto */);
1265   Node* return_    = __ make_label(1);
1266 
1267   __ set(rtn,__ ConI(-1));
1268   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1269        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1270        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1271        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1272        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1273          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1274               Node* tpj = __ AddI(targetOffset, __ value(j));
1275               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1276               Node* ipj  = __ AddI(__ value(i), __ value(j));
1277               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1278               __ if_then(targ, BoolTest::ne, src2); {
1279                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1280                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1281                     __ increment(i, __ AddI(__ value(j), one));
1282                     __ goto_(outer_loop);
1283                   } __ end_if(); __ dead(j);
1284                 }__ end_if(); __ dead(j);
1285                 __ increment(i, md2);
1286                 __ goto_(outer_loop);
1287               }__ end_if();
1288               __ increment(j, one);
1289          }__ end_loop(); __ dead(j);
1290          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1291          __ goto_(return_);
1292        }__ end_if();
1293        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1294          __ increment(i, targetCountLess1);
1295        }__ end_if();
1296        __ increment(i, one);
1297        __ bind(outer_loop);
1298   }__ end_loop(); __ dead(i);
1299   __ bind(return_);
1300 
1301   // Final sync IdealKit and GraphKit.
1302   final_sync(kit);
1303   Node* result = __ value(rtn);
1304 #undef __
1305   C->set_has_loops(true);
1306   return result;
1307 }
1308 
1309 //------------------------------inline_string_indexOf------------------------
1310 bool LibraryCallKit::inline_string_indexOf() {
1311   Node* receiver = argument(0);
1312   Node* arg      = argument(1);
1313 
1314   Node* result;
1315   // Disable the use of pcmpestri until it can be guaranteed that
1316   // the load doesn't cross into the uncommited space.
1317   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1318       UseSSE42Intrinsics) {
1319     // Generate SSE4.2 version of indexOf
1320     // We currently only have match rules that use SSE4.2
1321 
1322     receiver = null_check(receiver);
1323     arg      = null_check(arg);
1324     if (stopped()) {
1325       return true;
1326     }
1327 
1328     ciInstanceKlass* str_klass = env()->String_klass();
1329     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1330 
1331     // Make the merge point
1332     RegionNode* result_rgn = new (C) RegionNode(4);
1333     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1334     Node* no_ctrl  = NULL;
1335 
1336     // Get start addr of source string
1337     Node* source = load_String_value(no_ctrl, receiver);
1338     Node* source_offset = load_String_offset(no_ctrl, receiver);
1339     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1340 
1341     // Get length of source string
1342     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1343 
1344     // Get start addr of substring
1345     Node* substr = load_String_value(no_ctrl, arg);
1346     Node* substr_offset = load_String_offset(no_ctrl, arg);
1347     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1348 
1349     // Get length of source string
1350     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1351 
1352     // Check for substr count > string count
1353     Node* cmp = _gvn.transform( new(C) CmpINode(substr_cnt, source_cnt) );
1354     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::gt) );
1355     Node* if_gt = generate_slow_guard(bol, NULL);
1356     if (if_gt != NULL) {
1357       result_phi->init_req(2, intcon(-1));
1358       result_rgn->init_req(2, if_gt);
1359     }
1360 
1361     if (!stopped()) {
1362       // Check for substr count == 0
1363       cmp = _gvn.transform( new(C) CmpINode(substr_cnt, intcon(0)) );
1364       bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
1365       Node* if_zero = generate_slow_guard(bol, NULL);
1366       if (if_zero != NULL) {
1367         result_phi->init_req(3, intcon(0));
1368         result_rgn->init_req(3, if_zero);
1369       }
1370     }
1371 
1372     if (!stopped()) {
1373       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1374       result_phi->init_req(1, result);
1375       result_rgn->init_req(1, control());
1376     }
1377     set_control(_gvn.transform(result_rgn));
1378     record_for_igvn(result_rgn);
1379     result = _gvn.transform(result_phi);
1380 
1381   } else { // Use LibraryCallKit::string_indexOf
1382     // don't intrinsify if argument isn't a constant string.
1383     if (!arg->is_Con()) {
1384      return false;
1385     }
1386     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1387     if (str_type == NULL) {
1388       return false;
1389     }
1390     ciInstanceKlass* klass = env()->String_klass();
1391     ciObject* str_const = str_type->const_oop();
1392     if (str_const == NULL || str_const->klass() != klass) {
1393       return false;
1394     }
1395     ciInstance* str = str_const->as_instance();
1396     assert(str != NULL, "must be instance");
1397 
1398     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1399     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1400 
1401     int o;
1402     int c;
1403     if (java_lang_String::has_offset_field()) {
1404       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1405       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1406     } else {
1407       o = 0;
1408       c = pat->length();
1409     }
1410 
1411     // constant strings have no offset and count == length which
1412     // simplifies the resulting code somewhat so lets optimize for that.
1413     if (o != 0 || c != pat->length()) {
1414      return false;
1415     }
1416 
1417     receiver = null_check(receiver, T_OBJECT);
1418     // NOTE: No null check on the argument is needed since it's a constant String oop.
1419     if (stopped()) {
1420       return true;
1421     }
1422 
1423     // The null string as a pattern always returns 0 (match at beginning of string)
1424     if (c == 0) {
1425       set_result(intcon(0));
1426       return true;
1427     }
1428 
1429     // Generate default indexOf
1430     jchar lastChar = pat->char_at(o + (c - 1));
1431     int cache = 0;
1432     int i;
1433     for (i = 0; i < c - 1; i++) {
1434       assert(i < pat->length(), "out of range");
1435       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1436     }
1437 
1438     int md2 = c;
1439     for (i = 0; i < c - 1; i++) {
1440       assert(i < pat->length(), "out of range");
1441       if (pat->char_at(o + i) == lastChar) {
1442         md2 = (c - 1) - i;
1443       }
1444     }
1445 
1446     result = string_indexOf(receiver, pat, o, cache, md2);
1447   }
1448   set_result(result);
1449   return true;
1450 }
1451 
1452 //--------------------------round_double_node--------------------------------
1453 // Round a double node if necessary.
1454 Node* LibraryCallKit::round_double_node(Node* n) {
1455   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1456     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1457   return n;
1458 }
1459 
1460 //------------------------------inline_math-----------------------------------
1461 // public static double Math.abs(double)
1462 // public static double Math.sqrt(double)
1463 // public static double Math.log(double)
1464 // public static double Math.log10(double)
1465 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1466   Node* arg = round_double_node(argument(0));
1467   Node* n;
1468   switch (id) {
1469   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1470   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1471   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1472   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1473   default:  fatal_unexpected_iid(id);  break;
1474   }
1475   set_result(_gvn.transform(n));
1476   return true;
1477 }
1478 
1479 //------------------------------inline_trig----------------------------------
1480 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1481 // argument reduction which will turn into a fast/slow diamond.
1482 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1483   Node* arg = round_double_node(argument(0));
1484   Node* n = NULL;
1485 
1486   switch (id) {
1487   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1488   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1489   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1490   default:  fatal_unexpected_iid(id);  break;
1491   }
1492   n = _gvn.transform(n);
1493 
1494   // Rounding required?  Check for argument reduction!
1495   if (Matcher::strict_fp_requires_explicit_rounding) {
1496     static const double     pi_4 =  0.7853981633974483;
1497     static const double neg_pi_4 = -0.7853981633974483;
1498     // pi/2 in 80-bit extended precision
1499     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1500     // -pi/2 in 80-bit extended precision
1501     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1502     // Cutoff value for using this argument reduction technique
1503     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1504     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1505 
1506     // Pseudocode for sin:
1507     // if (x <= Math.PI / 4.0) {
1508     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1509     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1510     // } else {
1511     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1512     // }
1513     // return StrictMath.sin(x);
1514 
1515     // Pseudocode for cos:
1516     // if (x <= Math.PI / 4.0) {
1517     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1518     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1519     // } else {
1520     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1521     // }
1522     // return StrictMath.cos(x);
1523 
1524     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1525     // requires a special machine instruction to load it.  Instead we'll try
1526     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1527     // probably do the math inside the SIN encoding.
1528 
1529     // Make the merge point
1530     RegionNode* r = new (C) RegionNode(3);
1531     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1532 
1533     // Flatten arg so we need only 1 test
1534     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1535     // Node for PI/4 constant
1536     Node *pi4 = makecon(TypeD::make(pi_4));
1537     // Check PI/4 : abs(arg)
1538     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1539     // Check: If PI/4 < abs(arg) then go slow
1540     Node *bol = _gvn.transform( new (C) BoolNode( cmp, BoolTest::lt ) );
1541     // Branch either way
1542     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1543     set_control(opt_iff(r,iff));
1544 
1545     // Set fast path result
1546     phi->init_req(2, n);
1547 
1548     // Slow path - non-blocking leaf call
1549     Node* call = NULL;
1550     switch (id) {
1551     case vmIntrinsics::_dsin:
1552       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1553                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1554                                "Sin", NULL, arg, top());
1555       break;
1556     case vmIntrinsics::_dcos:
1557       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1558                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1559                                "Cos", NULL, arg, top());
1560       break;
1561     case vmIntrinsics::_dtan:
1562       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1563                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1564                                "Tan", NULL, arg, top());
1565       break;
1566     }
1567     assert(control()->in(0) == call, "");
1568     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1569     r->init_req(1, control());
1570     phi->init_req(1, slow_result);
1571 
1572     // Post-merge
1573     set_control(_gvn.transform(r));
1574     record_for_igvn(r);
1575     n = _gvn.transform(phi);
1576 
1577     C->set_has_split_ifs(true); // Has chance for split-if optimization
1578   }
1579   set_result(n);
1580   return true;
1581 }
1582 
1583 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1584   //-------------------
1585   //result=(result.isNaN())? funcAddr():result;
1586   // Check: If isNaN() by checking result!=result? then either trap
1587   // or go to runtime
1588   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1589   // Build the boolean node
1590   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1591 
1592   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1593     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1594       // The pow or exp intrinsic returned a NaN, which requires a call
1595       // to the runtime.  Recompile with the runtime call.
1596       uncommon_trap(Deoptimization::Reason_intrinsic,
1597                     Deoptimization::Action_make_not_entrant);
1598     }
1599     return result;
1600   } else {
1601     // If this inlining ever returned NaN in the past, we compile a call
1602     // to the runtime to properly handle corner cases
1603 
1604     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1605     Node* if_slow = _gvn.transform( new (C) IfFalseNode(iff) );
1606     Node* if_fast = _gvn.transform( new (C) IfTrueNode(iff) );
1607 
1608     if (!if_slow->is_top()) {
1609       RegionNode* result_region = new (C) RegionNode(3);
1610       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1611 
1612       result_region->init_req(1, if_fast);
1613       result_val->init_req(1, result);
1614 
1615       set_control(if_slow);
1616 
1617       const TypePtr* no_memory_effects = NULL;
1618       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1619                                    no_memory_effects,
1620                                    x, top(), y, y ? top() : NULL);
1621       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1622 #ifdef ASSERT
1623       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1624       assert(value_top == top(), "second value must be top");
1625 #endif
1626 
1627       result_region->init_req(2, control());
1628       result_val->init_req(2, value);
1629       set_control(_gvn.transform(result_region));
1630       return _gvn.transform(result_val);
1631     } else {
1632       return result;
1633     }
1634   }
1635 }
1636 
1637 //------------------------------inline_exp-------------------------------------
1638 // Inline exp instructions, if possible.  The Intel hardware only misses
1639 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1640 bool LibraryCallKit::inline_exp() {
1641   Node* arg = round_double_node(argument(0));
1642   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1643 
1644   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1645   set_result(n);
1646 
1647   C->set_has_split_ifs(true); // Has chance for split-if optimization
1648   return true;
1649 }
1650 
1651 //------------------------------inline_pow-------------------------------------
1652 // Inline power instructions, if possible.
1653 bool LibraryCallKit::inline_pow() {
1654   // Pseudocode for pow
1655   // if (y == 2) {
1656   //   return x * x;
1657   // } else {
1658   //   if (x <= 0.0) {
1659   //     long longy = (long)y;
1660   //     if ((double)longy == y) { // if y is long
1661   //       if (y + 1 == y) longy = 0; // huge number: even
1662   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1663   //     } else {
1664   //       result = NaN;
1665   //     }
1666   //   } else {
1667   //     result = DPow(x,y);
1668   //   }
1669   //   if (result != result)?  {
1670   //     result = uncommon_trap() or runtime_call();
1671   //   }
1672   //   return result;
1673   // }
1674 
1675   Node* x = round_double_node(argument(0));
1676   Node* y = round_double_node(argument(2));
1677 
1678   Node* result = NULL;
1679 
1680   Node*   const_two_node = makecon(TypeD::make(2.0));
1681   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
1682   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
1683   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1684   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
1685   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
1686 
1687   RegionNode* region_node = new (C) RegionNode(3);
1688   region_node->init_req(1, if_true);
1689 
1690   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
1691   // special case for x^y where y == 2, we can convert it to x * x
1692   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
1693 
1694   // set control to if_false since we will now process the false branch
1695   set_control(if_false);
1696 
1697   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1698     // Short form: skip the fancy tests and just check for NaN result.
1699     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1700   } else {
1701     // If this inlining ever returned NaN in the past, include all
1702     // checks + call to the runtime.
1703 
1704     // Set the merge point for If node with condition of (x <= 0.0)
1705     // There are four possible paths to region node and phi node
1706     RegionNode *r = new (C) RegionNode(4);
1707     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1708 
1709     // Build the first if node: if (x <= 0.0)
1710     // Node for 0 constant
1711     Node *zeronode = makecon(TypeD::ZERO);
1712     // Check x:0
1713     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1714     // Check: If (x<=0) then go complex path
1715     Node *bol1 = _gvn.transform( new (C) BoolNode( cmp, BoolTest::le ) );
1716     // Branch either way
1717     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1718     // Fast path taken; set region slot 3
1719     Node *fast_taken = _gvn.transform( new (C) IfFalseNode(if1) );
1720     r->init_req(3,fast_taken); // Capture fast-control
1721 
1722     // Fast path not-taken, i.e. slow path
1723     Node *complex_path = _gvn.transform( new (C) IfTrueNode(if1) );
1724 
1725     // Set fast path result
1726     Node *fast_result = _gvn.transform( new (C) PowDNode(C, control(), x, y) );
1727     phi->init_req(3, fast_result);
1728 
1729     // Complex path
1730     // Build the second if node (if y is long)
1731     // Node for (long)y
1732     Node *longy = _gvn.transform( new (C) ConvD2LNode(y));
1733     // Node for (double)((long) y)
1734     Node *doublelongy= _gvn.transform( new (C) ConvL2DNode(longy));
1735     // Check (double)((long) y) : y
1736     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1737     // Check if (y isn't long) then go to slow path
1738 
1739     Node *bol2 = _gvn.transform( new (C) BoolNode( cmplongy, BoolTest::ne ) );
1740     // Branch either way
1741     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1742     Node* ylong_path = _gvn.transform( new (C) IfFalseNode(if2));
1743 
1744     Node *slow_path = _gvn.transform( new (C) IfTrueNode(if2) );
1745 
1746     // Calculate DPow(abs(x), y)*(1 & (long)y)
1747     // Node for constant 1
1748     Node *conone = longcon(1);
1749     // 1& (long)y
1750     Node *signnode= _gvn.transform( new (C) AndLNode(conone, longy) );
1751 
1752     // A huge number is always even. Detect a huge number by checking
1753     // if y + 1 == y and set integer to be tested for parity to 0.
1754     // Required for corner case:
1755     // (long)9.223372036854776E18 = max_jlong
1756     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1757     // max_jlong is odd but 9.223372036854776E18 is even
1758     Node* yplus1 = _gvn.transform( new (C) AddDNode(y, makecon(TypeD::make(1))));
1759     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1760     Node *bolyplus1 = _gvn.transform( new (C) BoolNode( cmpyplus1, BoolTest::eq ) );
1761     Node* correctedsign = NULL;
1762     if (ConditionalMoveLimit != 0) {
1763       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1764     } else {
1765       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1766       RegionNode *r = new (C) RegionNode(3);
1767       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1768       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyplus1)));
1769       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyplus1)));
1770       phi->init_req(1, signnode);
1771       phi->init_req(2, longcon(0));
1772       correctedsign = _gvn.transform(phi);
1773       ylong_path = _gvn.transform(r);
1774       record_for_igvn(r);
1775     }
1776 
1777     // zero node
1778     Node *conzero = longcon(0);
1779     // Check (1&(long)y)==0?
1780     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1781     // Check if (1&(long)y)!=0?, if so the result is negative
1782     Node *bol3 = _gvn.transform( new (C) BoolNode( cmpeq1, BoolTest::ne ) );
1783     // abs(x)
1784     Node *absx=_gvn.transform( new (C) AbsDNode(x));
1785     // abs(x)^y
1786     Node *absxpowy = _gvn.transform( new (C) PowDNode(C, control(), absx, y) );
1787     // -abs(x)^y
1788     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1789     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1790     Node *signresult = NULL;
1791     if (ConditionalMoveLimit != 0) {
1792       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1793     } else {
1794       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1795       RegionNode *r = new (C) RegionNode(3);
1796       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1797       r->init_req(1, _gvn.transform( new (C) IfFalseNode(ifyeven)));
1798       r->init_req(2, _gvn.transform( new (C) IfTrueNode(ifyeven)));
1799       phi->init_req(1, absxpowy);
1800       phi->init_req(2, negabsxpowy);
1801       signresult = _gvn.transform(phi);
1802       ylong_path = _gvn.transform(r);
1803       record_for_igvn(r);
1804     }
1805     // Set complex path fast result
1806     r->init_req(2, ylong_path);
1807     phi->init_req(2, signresult);
1808 
1809     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1810     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1811     r->init_req(1,slow_path);
1812     phi->init_req(1,slow_result);
1813 
1814     // Post merge
1815     set_control(_gvn.transform(r));
1816     record_for_igvn(r);
1817     result = _gvn.transform(phi);
1818   }
1819 
1820   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1821 
1822   // control from finish_pow_exp is now input to the region node
1823   region_node->set_req(2, control());
1824   // the result from finish_pow_exp is now input to the phi node
1825   phi_node->init_req(2, result);
1826   set_control(_gvn.transform(region_node));
1827   record_for_igvn(region_node);
1828   set_result(_gvn.transform(phi_node));
1829 
1830   C->set_has_split_ifs(true); // Has chance for split-if optimization
1831   return true;
1832 }
1833 
1834 //------------------------------runtime_math-----------------------------
1835 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1836   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1837          "must be (DD)D or (D)D type");
1838 
1839   // Inputs
1840   Node* a = round_double_node(argument(0));
1841   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1842 
1843   const TypePtr* no_memory_effects = NULL;
1844   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1845                                  no_memory_effects,
1846                                  a, top(), b, b ? top() : NULL);
1847   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1848 #ifdef ASSERT
1849   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1850   assert(value_top == top(), "second value must be top");
1851 #endif
1852 
1853   set_result(value);
1854   return true;
1855 }
1856 
1857 //------------------------------inline_math_native-----------------------------
1858 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1859 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1860   switch (id) {
1861     // These intrinsics are not properly supported on all hardware
1862   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1863     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1864   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1865     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1866   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1867     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1868 
1869   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1870     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1871   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1872     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1873 
1874     // These intrinsics are supported on all hardware
1875   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1876   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1877 
1878   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1879     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1880   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1881     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1882 #undef FN_PTR
1883 
1884    // These intrinsics are not yet correctly implemented
1885   case vmIntrinsics::_datan2:
1886     return false;
1887 
1888   default:
1889     fatal_unexpected_iid(id);
1890     return false;
1891   }
1892 }
1893 
1894 static bool is_simple_name(Node* n) {
1895   return (n->req() == 1         // constant
1896           || (n->is_Type() && n->as_Type()->type()->singleton())
1897           || n->is_Proj()       // parameter or return value
1898           || n->is_Phi()        // local of some sort
1899           );
1900 }
1901 
1902 //----------------------------inline_min_max-----------------------------------
1903 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
1904   set_result(generate_min_max(id, argument(0), argument(1)));
1905   return true;
1906 }
1907 
1908 Node*
1909 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
1910   // These are the candidate return value:
1911   Node* xvalue = x0;
1912   Node* yvalue = y0;
1913 
1914   if (xvalue == yvalue) {
1915     return xvalue;
1916   }
1917 
1918   bool want_max = (id == vmIntrinsics::_max);
1919 
1920   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
1921   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
1922   if (txvalue == NULL || tyvalue == NULL)  return top();
1923   // This is not really necessary, but it is consistent with a
1924   // hypothetical MaxINode::Value method:
1925   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
1926 
1927   // %%% This folding logic should (ideally) be in a different place.
1928   // Some should be inside IfNode, and there to be a more reliable
1929   // transformation of ?: style patterns into cmoves.  We also want
1930   // more powerful optimizations around cmove and min/max.
1931 
1932   // Try to find a dominating comparison of these guys.
1933   // It can simplify the index computation for Arrays.copyOf
1934   // and similar uses of System.arraycopy.
1935   // First, compute the normalized version of CmpI(x, y).
1936   int   cmp_op = Op_CmpI;
1937   Node* xkey = xvalue;
1938   Node* ykey = yvalue;
1939   Node* ideal_cmpxy = _gvn.transform( new(C) CmpINode(xkey, ykey) );
1940   if (ideal_cmpxy->is_Cmp()) {
1941     // E.g., if we have CmpI(length - offset, count),
1942     // it might idealize to CmpI(length, count + offset)
1943     cmp_op = ideal_cmpxy->Opcode();
1944     xkey = ideal_cmpxy->in(1);
1945     ykey = ideal_cmpxy->in(2);
1946   }
1947 
1948   // Start by locating any relevant comparisons.
1949   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
1950   Node* cmpxy = NULL;
1951   Node* cmpyx = NULL;
1952   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
1953     Node* cmp = start_from->fast_out(k);
1954     if (cmp->outcnt() > 0 &&            // must have prior uses
1955         cmp->in(0) == NULL &&           // must be context-independent
1956         cmp->Opcode() == cmp_op) {      // right kind of compare
1957       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
1958       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
1959     }
1960   }
1961 
1962   const int NCMPS = 2;
1963   Node* cmps[NCMPS] = { cmpxy, cmpyx };
1964   int cmpn;
1965   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
1966     if (cmps[cmpn] != NULL)  break;     // find a result
1967   }
1968   if (cmpn < NCMPS) {
1969     // Look for a dominating test that tells us the min and max.
1970     int depth = 0;                // Limit search depth for speed
1971     Node* dom = control();
1972     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
1973       if (++depth >= 100)  break;
1974       Node* ifproj = dom;
1975       if (!ifproj->is_Proj())  continue;
1976       Node* iff = ifproj->in(0);
1977       if (!iff->is_If())  continue;
1978       Node* bol = iff->in(1);
1979       if (!bol->is_Bool())  continue;
1980       Node* cmp = bol->in(1);
1981       if (cmp == NULL)  continue;
1982       for (cmpn = 0; cmpn < NCMPS; cmpn++)
1983         if (cmps[cmpn] == cmp)  break;
1984       if (cmpn == NCMPS)  continue;
1985       BoolTest::mask btest = bol->as_Bool()->_test._test;
1986       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
1987       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
1988       // At this point, we know that 'x btest y' is true.
1989       switch (btest) {
1990       case BoolTest::eq:
1991         // They are proven equal, so we can collapse the min/max.
1992         // Either value is the answer.  Choose the simpler.
1993         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
1994           return yvalue;
1995         return xvalue;
1996       case BoolTest::lt:          // x < y
1997       case BoolTest::le:          // x <= y
1998         return (want_max ? yvalue : xvalue);
1999       case BoolTest::gt:          // x > y
2000       case BoolTest::ge:          // x >= y
2001         return (want_max ? xvalue : yvalue);
2002       }
2003     }
2004   }
2005 
2006   // We failed to find a dominating test.
2007   // Let's pick a test that might GVN with prior tests.
2008   Node*          best_bol   = NULL;
2009   BoolTest::mask best_btest = BoolTest::illegal;
2010   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2011     Node* cmp = cmps[cmpn];
2012     if (cmp == NULL)  continue;
2013     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2014       Node* bol = cmp->fast_out(j);
2015       if (!bol->is_Bool())  continue;
2016       BoolTest::mask btest = bol->as_Bool()->_test._test;
2017       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2018       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2019       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2020         best_bol   = bol->as_Bool();
2021         best_btest = btest;
2022       }
2023     }
2024   }
2025 
2026   Node* answer_if_true  = NULL;
2027   Node* answer_if_false = NULL;
2028   switch (best_btest) {
2029   default:
2030     if (cmpxy == NULL)
2031       cmpxy = ideal_cmpxy;
2032     best_bol = _gvn.transform( new(C) BoolNode(cmpxy, BoolTest::lt) );
2033     // and fall through:
2034   case BoolTest::lt:          // x < y
2035   case BoolTest::le:          // x <= y
2036     answer_if_true  = (want_max ? yvalue : xvalue);
2037     answer_if_false = (want_max ? xvalue : yvalue);
2038     break;
2039   case BoolTest::gt:          // x > y
2040   case BoolTest::ge:          // x >= y
2041     answer_if_true  = (want_max ? xvalue : yvalue);
2042     answer_if_false = (want_max ? yvalue : xvalue);
2043     break;
2044   }
2045 
2046   jint hi, lo;
2047   if (want_max) {
2048     // We can sharpen the minimum.
2049     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2050     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2051   } else {
2052     // We can sharpen the maximum.
2053     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2054     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2055   }
2056 
2057   // Use a flow-free graph structure, to avoid creating excess control edges
2058   // which could hinder other optimizations.
2059   // Since Math.min/max is often used with arraycopy, we want
2060   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2061   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2062                                answer_if_false, answer_if_true,
2063                                TypeInt::make(lo, hi, widen));
2064 
2065   return _gvn.transform(cmov);
2066 
2067   /*
2068   // This is not as desirable as it may seem, since Min and Max
2069   // nodes do not have a full set of optimizations.
2070   // And they would interfere, anyway, with 'if' optimizations
2071   // and with CMoveI canonical forms.
2072   switch (id) {
2073   case vmIntrinsics::_min:
2074     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2075   case vmIntrinsics::_max:
2076     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2077   default:
2078     ShouldNotReachHere();
2079   }
2080   */
2081 }
2082 
2083 inline int
2084 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2085   const TypePtr* base_type = TypePtr::NULL_PTR;
2086   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2087   if (base_type == NULL) {
2088     // Unknown type.
2089     return Type::AnyPtr;
2090   } else if (base_type == TypePtr::NULL_PTR) {
2091     // Since this is a NULL+long form, we have to switch to a rawptr.
2092     base   = _gvn.transform( new (C) CastX2PNode(offset) );
2093     offset = MakeConX(0);
2094     return Type::RawPtr;
2095   } else if (base_type->base() == Type::RawPtr) {
2096     return Type::RawPtr;
2097   } else if (base_type->isa_oopptr()) {
2098     // Base is never null => always a heap address.
2099     if (base_type->ptr() == TypePtr::NotNull) {
2100       return Type::OopPtr;
2101     }
2102     // Offset is small => always a heap address.
2103     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2104     if (offset_type != NULL &&
2105         base_type->offset() == 0 &&     // (should always be?)
2106         offset_type->_lo >= 0 &&
2107         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2108       return Type::OopPtr;
2109     }
2110     // Otherwise, it might either be oop+off or NULL+addr.
2111     return Type::AnyPtr;
2112   } else {
2113     // No information:
2114     return Type::AnyPtr;
2115   }
2116 }
2117 
2118 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2119   int kind = classify_unsafe_addr(base, offset);
2120   if (kind == Type::RawPtr) {
2121     return basic_plus_adr(top(), base, offset);
2122   } else {
2123     return basic_plus_adr(base, offset);
2124   }
2125 }
2126 
2127 //--------------------------inline_number_methods-----------------------------
2128 // inline int     Integer.numberOfLeadingZeros(int)
2129 // inline int        Long.numberOfLeadingZeros(long)
2130 //
2131 // inline int     Integer.numberOfTrailingZeros(int)
2132 // inline int        Long.numberOfTrailingZeros(long)
2133 //
2134 // inline int     Integer.bitCount(int)
2135 // inline int        Long.bitCount(long)
2136 //
2137 // inline char  Character.reverseBytes(char)
2138 // inline short     Short.reverseBytes(short)
2139 // inline int     Integer.reverseBytes(int)
2140 // inline long       Long.reverseBytes(long)
2141 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2142   Node* arg = argument(0);
2143   Node* n;
2144   switch (id) {
2145   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2146   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2147   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2148   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2149   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2150   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2151   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2152   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2153   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2154   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2155   default:  fatal_unexpected_iid(id);  break;
2156   }
2157   set_result(_gvn.transform(n));
2158   return true;
2159 }
2160 
2161 //----------------------------inline_unsafe_access----------------------------
2162 
2163 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2164 
2165 // Helper that guards and inserts a pre-barrier.
2166 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2167                                         Node* pre_val, bool need_mem_bar) {
2168   // We could be accessing the referent field of a reference object. If so, when G1
2169   // is enabled, we need to log the value in the referent field in an SATB buffer.
2170   // This routine performs some compile time filters and generates suitable
2171   // runtime filters that guard the pre-barrier code.
2172   // Also add memory barrier for non volatile load from the referent field
2173   // to prevent commoning of loads across safepoint.
2174   if (!UseG1GC && !need_mem_bar)
2175     return;
2176 
2177   // Some compile time checks.
2178 
2179   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2180   const TypeX* otype = offset->find_intptr_t_type();
2181   if (otype != NULL && otype->is_con() &&
2182       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2183     // Constant offset but not the reference_offset so just return
2184     return;
2185   }
2186 
2187   // We only need to generate the runtime guards for instances.
2188   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2189   if (btype != NULL) {
2190     if (btype->isa_aryptr()) {
2191       // Array type so nothing to do
2192       return;
2193     }
2194 
2195     const TypeInstPtr* itype = btype->isa_instptr();
2196     if (itype != NULL) {
2197       // Can the klass of base_oop be statically determined to be
2198       // _not_ a sub-class of Reference and _not_ Object?
2199       ciKlass* klass = itype->klass();
2200       if ( klass->is_loaded() &&
2201           !klass->is_subtype_of(env()->Reference_klass()) &&
2202           !env()->Object_klass()->is_subtype_of(klass)) {
2203         return;
2204       }
2205     }
2206   }
2207 
2208   // The compile time filters did not reject base_oop/offset so
2209   // we need to generate the following runtime filters
2210   //
2211   // if (offset == java_lang_ref_Reference::_reference_offset) {
2212   //   if (instance_of(base, java.lang.ref.Reference)) {
2213   //     pre_barrier(_, pre_val, ...);
2214   //   }
2215   // }
2216 
2217   float likely   = PROB_LIKELY(  0.999);
2218   float unlikely = PROB_UNLIKELY(0.999);
2219 
2220   IdealKit ideal(this);
2221 #define __ ideal.
2222 
2223   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2224 
2225   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2226       // Update graphKit memory and control from IdealKit.
2227       sync_kit(ideal);
2228 
2229       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2230       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2231 
2232       // Update IdealKit memory and control from graphKit.
2233       __ sync_kit(this);
2234 
2235       Node* one = __ ConI(1);
2236       // is_instof == 0 if base_oop == NULL
2237       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2238 
2239         // Update graphKit from IdeakKit.
2240         sync_kit(ideal);
2241 
2242         // Use the pre-barrier to record the value in the referent field
2243         pre_barrier(false /* do_load */,
2244                     __ ctrl(),
2245                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2246                     pre_val /* pre_val */,
2247                     T_OBJECT);
2248         if (need_mem_bar) {
2249           // Add memory barrier to prevent commoning reads from this field
2250           // across safepoint since GC can change its value.
2251           insert_mem_bar(Op_MemBarCPUOrder);
2252         }
2253         // Update IdealKit from graphKit.
2254         __ sync_kit(this);
2255 
2256       } __ end_if(); // _ref_type != ref_none
2257   } __ end_if(); // offset == referent_offset
2258 
2259   // Final sync IdealKit and GraphKit.
2260   final_sync(ideal);
2261 #undef __
2262 }
2263 
2264 
2265 // Interpret Unsafe.fieldOffset cookies correctly:
2266 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2267 
2268 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2269   // Attempt to infer a sharper value type from the offset and base type.
2270   ciKlass* sharpened_klass = NULL;
2271 
2272   // See if it is an instance field, with an object type.
2273   if (alias_type->field() != NULL) {
2274     assert(!is_native_ptr, "native pointer op cannot use a java address");
2275     if (alias_type->field()->type()->is_klass()) {
2276       sharpened_klass = alias_type->field()->type()->as_klass();
2277     }
2278   }
2279 
2280   // See if it is a narrow oop array.
2281   if (adr_type->isa_aryptr()) {
2282     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2283       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2284       if (elem_type != NULL) {
2285         sharpened_klass = elem_type->klass();
2286       }
2287     }
2288   }
2289 
2290   // The sharpened class might be unloaded if there is no class loader
2291   // contraint in place.
2292   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2293     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2294 
2295 #ifndef PRODUCT
2296     if (C->print_intrinsics() || C->print_inlining()) {
2297       tty->print("  from base type: ");  adr_type->dump();
2298       tty->print("  sharpened value: ");  tjp->dump();
2299     }
2300 #endif
2301     // Sharpen the value type.
2302     return tjp;
2303   }
2304   return NULL;
2305 }
2306 
2307 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2308   if (callee()->is_static())  return false;  // caller must have the capability!
2309 
2310 #ifndef PRODUCT
2311   {
2312     ResourceMark rm;
2313     // Check the signatures.
2314     ciSignature* sig = callee()->signature();
2315 #ifdef ASSERT
2316     if (!is_store) {
2317       // Object getObject(Object base, int/long offset), etc.
2318       BasicType rtype = sig->return_type()->basic_type();
2319       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2320           rtype = T_ADDRESS;  // it is really a C void*
2321       assert(rtype == type, "getter must return the expected value");
2322       if (!is_native_ptr) {
2323         assert(sig->count() == 2, "oop getter has 2 arguments");
2324         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2325         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2326       } else {
2327         assert(sig->count() == 1, "native getter has 1 argument");
2328         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2329       }
2330     } else {
2331       // void putObject(Object base, int/long offset, Object x), etc.
2332       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2333       if (!is_native_ptr) {
2334         assert(sig->count() == 3, "oop putter has 3 arguments");
2335         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2336         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2337       } else {
2338         assert(sig->count() == 2, "native putter has 2 arguments");
2339         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2340       }
2341       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2342       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2343         vtype = T_ADDRESS;  // it is really a C void*
2344       assert(vtype == type, "putter must accept the expected value");
2345     }
2346 #endif // ASSERT
2347  }
2348 #endif //PRODUCT
2349 
2350   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2351 
2352   Node* receiver = argument(0);  // type: oop
2353 
2354   // Build address expression.  See the code in inline_unsafe_prefetch.
2355   Node* adr;
2356   Node* heap_base_oop = top();
2357   Node* offset = top();
2358   Node* val;
2359 
2360   if (!is_native_ptr) {
2361     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2362     Node* base = argument(1);  // type: oop
2363     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2364     offset = argument(2);  // type: long
2365     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2366     // to be plain byte offsets, which are also the same as those accepted
2367     // by oopDesc::field_base.
2368     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2369            "fieldOffset must be byte-scaled");
2370     // 32-bit machines ignore the high half!
2371     offset = ConvL2X(offset);
2372     adr = make_unsafe_address(base, offset);
2373     heap_base_oop = base;
2374     val = is_store ? argument(4) : NULL;
2375   } else {
2376     Node* ptr = argument(1);  // type: long
2377     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2378     adr = make_unsafe_address(NULL, ptr);
2379     val = is_store ? argument(3) : NULL;
2380   }
2381 
2382   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2383 
2384   // First guess at the value type.
2385   const Type *value_type = Type::get_const_basic_type(type);
2386 
2387   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2388   // there was not enough information to nail it down.
2389   Compile::AliasType* alias_type = C->alias_type(adr_type);
2390   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2391 
2392   // We will need memory barriers unless we can determine a unique
2393   // alias category for this reference.  (Note:  If for some reason
2394   // the barriers get omitted and the unsafe reference begins to "pollute"
2395   // the alias analysis of the rest of the graph, either Compile::can_alias
2396   // or Compile::must_alias will throw a diagnostic assert.)
2397   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2398 
2399   // If we are reading the value of the referent field of a Reference
2400   // object (either by using Unsafe directly or through reflection)
2401   // then, if G1 is enabled, we need to record the referent in an
2402   // SATB log buffer using the pre-barrier mechanism.
2403   // Also we need to add memory barrier to prevent commoning reads
2404   // from this field across safepoint since GC can change its value.
2405   bool need_read_barrier = !is_native_ptr && !is_store &&
2406                            offset != top() && heap_base_oop != top();
2407 
2408   if (!is_store && type == T_OBJECT) {
2409     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2410     if (tjp != NULL) {
2411       value_type = tjp;
2412     }
2413   }
2414 
2415   receiver = null_check(receiver);
2416   if (stopped()) {
2417     return true;
2418   }
2419   // Heap pointers get a null-check from the interpreter,
2420   // as a courtesy.  However, this is not guaranteed by Unsafe,
2421   // and it is not possible to fully distinguish unintended nulls
2422   // from intended ones in this API.
2423 
2424   if (is_volatile) {
2425     // We need to emit leading and trailing CPU membars (see below) in
2426     // addition to memory membars when is_volatile. This is a little
2427     // too strong, but avoids the need to insert per-alias-type
2428     // volatile membars (for stores; compare Parse::do_put_xxx), which
2429     // we cannot do effectively here because we probably only have a
2430     // rough approximation of type.
2431     need_mem_bar = true;
2432     // For Stores, place a memory ordering barrier now.
2433     if (is_store)
2434       insert_mem_bar(Op_MemBarRelease);
2435 #ifdef PPC64
2436     // Support ordering of "Independent Reads of Independent Writes" (see Parse::do_get_xxx).
2437     // Solution: implement volatile read as fence-load-acquire
2438     else
2439       insert_mem_bar(Op_MemBarVolatile);
2440 #endif
2441   }
2442 
2443   // Memory barrier to prevent normal and 'unsafe' accesses from
2444   // bypassing each other.  Happens after null checks, so the
2445   // exception paths do not take memory state from the memory barrier,
2446   // so there's no problems making a strong assert about mixing users
2447   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2448   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2449   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2450 
2451   if (!is_store) {
2452     Node* p = make_load(control(), adr, value_type, type, adr_type, is_volatile);
2453     // load value
2454     switch (type) {
2455     case T_BOOLEAN:
2456     case T_CHAR:
2457     case T_BYTE:
2458     case T_SHORT:
2459     case T_INT:
2460     case T_LONG:
2461     case T_FLOAT:
2462     case T_DOUBLE:
2463       break;
2464     case T_OBJECT:
2465       if (need_read_barrier) {
2466         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2467       }
2468       break;
2469     case T_ADDRESS:
2470       // Cast to an int type.
2471       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2472       p = ConvX2UL(p);
2473       break;
2474     default:
2475       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2476       break;
2477     }
2478     // The load node has the control of the preceding MemBarCPUOrder.  All
2479     // following nodes will have the control of the MemBarCPUOrder inserted at
2480     // the end of this method.  So, pushing the load onto the stack at a later
2481     // point is fine.
2482     set_result(p);
2483   } else {
2484     // place effect of store into memory
2485     switch (type) {
2486     case T_DOUBLE:
2487       val = dstore_rounding(val);
2488       break;
2489     case T_ADDRESS:
2490       // Repackage the long as a pointer.
2491       val = ConvL2X(val);
2492       val = _gvn.transform( new (C) CastX2PNode(val) );
2493       break;
2494     }
2495 
2496     StoreNode::Sem sem = is_volatile ? StoreNode::release : StoreNode::unordered;
2497     if (type != T_OBJECT ) {
2498       (void) store_to_memory(control(), adr, val, type, adr_type, is_volatile, sem);
2499     } else {
2500       // Possibly an oop being stored to Java heap or native memory
2501       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2502         // oop to Java heap.
2503         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, sem);
2504       } else {
2505         // We can't tell at compile time if we are storing in the Java heap or outside
2506         // of it. So we need to emit code to conditionally do the proper type of
2507         // store.
2508 
2509         IdealKit ideal(this);
2510 #define __ ideal.
2511         // QQQ who knows what probability is here??
2512         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2513           // Sync IdealKit and graphKit.
2514           sync_kit(ideal);
2515           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, sem);
2516           // Update IdealKit memory.
2517           __ sync_kit(this);
2518         } __ else_(); {
2519           __ store(__ ctrl(), adr, val, type, alias_type->index(), is_volatile, sem);
2520         } __ end_if();
2521         // Final sync IdealKit and GraphKit.
2522         final_sync(ideal);
2523 #undef __
2524       }
2525     }
2526   }
2527 
2528   if (is_volatile) {
2529     if (!is_store)
2530       insert_mem_bar(Op_MemBarAcquire);
2531 #ifndef PPC64
2532     // Changed volatiles/Unsafe: lwsync-store, fence-load-acquire.
2533     else
2534       insert_mem_bar(Op_MemBarVolatile);
2535 #endif
2536   }
2537 
2538   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2539 
2540   return true;
2541 }
2542 
2543 //----------------------------inline_unsafe_prefetch----------------------------
2544 
2545 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2546 #ifndef PRODUCT
2547   {
2548     ResourceMark rm;
2549     // Check the signatures.
2550     ciSignature* sig = callee()->signature();
2551 #ifdef ASSERT
2552     // Object getObject(Object base, int/long offset), etc.
2553     BasicType rtype = sig->return_type()->basic_type();
2554     if (!is_native_ptr) {
2555       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2556       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2557       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2558     } else {
2559       assert(sig->count() == 1, "native prefetch has 1 argument");
2560       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2561     }
2562 #endif // ASSERT
2563   }
2564 #endif // !PRODUCT
2565 
2566   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2567 
2568   const int idx = is_static ? 0 : 1;
2569   if (!is_static) {
2570     null_check_receiver();
2571     if (stopped()) {
2572       return true;
2573     }
2574   }
2575 
2576   // Build address expression.  See the code in inline_unsafe_access.
2577   Node *adr;
2578   if (!is_native_ptr) {
2579     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2580     Node* base   = argument(idx + 0);  // type: oop
2581     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2582     Node* offset = argument(idx + 1);  // type: long
2583     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2584     // to be plain byte offsets, which are also the same as those accepted
2585     // by oopDesc::field_base.
2586     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2587            "fieldOffset must be byte-scaled");
2588     // 32-bit machines ignore the high half!
2589     offset = ConvL2X(offset);
2590     adr = make_unsafe_address(base, offset);
2591   } else {
2592     Node* ptr = argument(idx + 0);  // type: long
2593     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2594     adr = make_unsafe_address(NULL, ptr);
2595   }
2596 
2597   // Generate the read or write prefetch
2598   Node *prefetch;
2599   if (is_store) {
2600     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2601   } else {
2602     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2603   }
2604   prefetch->init_req(0, control());
2605   set_i_o(_gvn.transform(prefetch));
2606 
2607   return true;
2608 }
2609 
2610 //----------------------------inline_unsafe_load_store----------------------------
2611 // This method serves a couple of different customers (depending on LoadStoreKind):
2612 //
2613 // LS_cmpxchg:
2614 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2615 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2616 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2617 //
2618 // LS_xadd:
2619 //   public int  getAndAddInt( Object o, long offset, int  delta)
2620 //   public long getAndAddLong(Object o, long offset, long delta)
2621 //
2622 // LS_xchg:
2623 //   int    getAndSet(Object o, long offset, int    newValue)
2624 //   long   getAndSet(Object o, long offset, long   newValue)
2625 //   Object getAndSet(Object o, long offset, Object newValue)
2626 //
2627 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2628   // This basic scheme here is the same as inline_unsafe_access, but
2629   // differs in enough details that combining them would make the code
2630   // overly confusing.  (This is a true fact! I originally combined
2631   // them, but even I was confused by it!) As much code/comments as
2632   // possible are retained from inline_unsafe_access though to make
2633   // the correspondences clearer. - dl
2634 
2635   if (callee()->is_static())  return false;  // caller must have the capability!
2636 
2637 #ifndef PRODUCT
2638   BasicType rtype;
2639   {
2640     ResourceMark rm;
2641     // Check the signatures.
2642     ciSignature* sig = callee()->signature();
2643     rtype = sig->return_type()->basic_type();
2644     if (kind == LS_xadd || kind == LS_xchg) {
2645       // Check the signatures.
2646 #ifdef ASSERT
2647       assert(rtype == type, "get and set must return the expected type");
2648       assert(sig->count() == 3, "get and set has 3 arguments");
2649       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2650       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2651       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2652 #endif // ASSERT
2653     } else if (kind == LS_cmpxchg) {
2654       // Check the signatures.
2655 #ifdef ASSERT
2656       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2657       assert(sig->count() == 4, "CAS has 4 arguments");
2658       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2659       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2660 #endif // ASSERT
2661     } else {
2662       ShouldNotReachHere();
2663     }
2664   }
2665 #endif //PRODUCT
2666 
2667   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2668 
2669   // Get arguments:
2670   Node* receiver = NULL;
2671   Node* base     = NULL;
2672   Node* offset   = NULL;
2673   Node* oldval   = NULL;
2674   Node* newval   = NULL;
2675   if (kind == LS_cmpxchg) {
2676     const bool two_slot_type = type2size[type] == 2;
2677     receiver = argument(0);  // type: oop
2678     base     = argument(1);  // type: oop
2679     offset   = argument(2);  // type: long
2680     oldval   = argument(4);  // type: oop, int, or long
2681     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2682   } else if (kind == LS_xadd || kind == LS_xchg){
2683     receiver = argument(0);  // type: oop
2684     base     = argument(1);  // type: oop
2685     offset   = argument(2);  // type: long
2686     oldval   = NULL;
2687     newval   = argument(4);  // type: oop, int, or long
2688   }
2689 
2690   // Null check receiver.
2691   receiver = null_check(receiver);
2692   if (stopped()) {
2693     return true;
2694   }
2695 
2696   // Build field offset expression.
2697   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2698   // to be plain byte offsets, which are also the same as those accepted
2699   // by oopDesc::field_base.
2700   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2701   // 32-bit machines ignore the high half of long offsets
2702   offset = ConvL2X(offset);
2703   Node* adr = make_unsafe_address(base, offset);
2704   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2705 
2706   // For CAS, unlike inline_unsafe_access, there seems no point in
2707   // trying to refine types. Just use the coarse types here.
2708   const Type *value_type = Type::get_const_basic_type(type);
2709   Compile::AliasType* alias_type = C->alias_type(adr_type);
2710   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2711 
2712   if (kind == LS_xchg && type == T_OBJECT) {
2713     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2714     if (tjp != NULL) {
2715       value_type = tjp;
2716     }
2717   }
2718 
2719   int alias_idx = C->get_alias_index(adr_type);
2720 
2721   // Memory-model-wise, a LoadStore acts like a little synchronized
2722   // block, so needs barriers on each side.  These don't translate
2723   // into actual barriers on most machines, but we still need rest of
2724   // compiler to respect ordering.
2725 
2726   insert_mem_bar(Op_MemBarRelease);
2727   insert_mem_bar(Op_MemBarCPUOrder);
2728 
2729   // 4984716: MemBars must be inserted before this
2730   //          memory node in order to avoid a false
2731   //          dependency which will confuse the scheduler.
2732   Node *mem = memory(alias_idx);
2733 
2734   // For now, we handle only those cases that actually exist: ints,
2735   // longs, and Object. Adding others should be straightforward.
2736   Node* load_store;
2737   switch(type) {
2738   case T_INT:
2739     if (kind == LS_xadd) {
2740       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2741     } else if (kind == LS_xchg) {
2742       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2743     } else if (kind == LS_cmpxchg) {
2744       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2745     } else {
2746       ShouldNotReachHere();
2747     }
2748     break;
2749   case T_LONG:
2750     if (kind == LS_xadd) {
2751       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2752     } else if (kind == LS_xchg) {
2753       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2754     } else if (kind == LS_cmpxchg) {
2755       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2756     } else {
2757       ShouldNotReachHere();
2758     }
2759     break;
2760   case T_OBJECT:
2761     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2762     // could be delayed during Parse (for example, in adjust_map_after_if()).
2763     // Execute transformation here to avoid barrier generation in such case.
2764     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2765       newval = _gvn.makecon(TypePtr::NULL_PTR);
2766 
2767     // Reference stores need a store barrier.
2768     pre_barrier(true /* do_load*/,
2769                 control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2770                 NULL /* pre_val*/,
2771                 T_OBJECT);
2772 #ifdef _LP64
2773     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2774       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2775       if (kind == LS_xchg) {
2776         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2777                                                               newval_enc, adr_type, value_type->make_narrowoop()));
2778       } else {
2779         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2780         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2781         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2782                                                                    newval_enc, oldval_enc));
2783       }
2784     } else
2785 #endif
2786     {
2787       if (kind == LS_xchg) {
2788         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2789       } else {
2790         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2791         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2792       }
2793     }
2794     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2795     break;
2796   default:
2797     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2798     break;
2799   }
2800 
2801   // SCMemProjNodes represent the memory state of a LoadStore. Their
2802   // main role is to prevent LoadStore nodes from being optimized away
2803   // when their results aren't used.
2804   Node* proj = _gvn.transform( new (C) SCMemProjNode(load_store));
2805   set_memory(proj, alias_idx);
2806 
2807   // Add the trailing membar surrounding the access
2808   insert_mem_bar(Op_MemBarCPUOrder);
2809   // On power we need a fence to prevent succeeding loads from floating
2810   // above the store of the compare-exchange.
2811 #ifdef PPC64
2812   insert_mem_bar(Op_MemBarVolatile);
2813 #else
2814   insert_mem_bar(Op_MemBarAcquire);
2815 #endif
2816 
2817 #ifdef _LP64
2818   if (type == T_OBJECT && adr->bottom_type()->is_ptr_to_narrowoop() && kind == LS_xchg) {
2819     load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
2820   }
2821 #endif
2822 
2823   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
2824   set_result(load_store);
2825   return true;
2826 }
2827 
2828 //----------------------------inline_unsafe_ordered_store----------------------
2829 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
2830 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
2831 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
2832 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
2833   // This is another variant of inline_unsafe_access, differing in
2834   // that it always issues store-store ("release") barrier and ensures
2835   // store-atomicity (which only matters for "long").
2836 
2837   if (callee()->is_static())  return false;  // caller must have the capability!
2838 
2839 #ifndef PRODUCT
2840   {
2841     ResourceMark rm;
2842     // Check the signatures.
2843     ciSignature* sig = callee()->signature();
2844 #ifdef ASSERT
2845     BasicType rtype = sig->return_type()->basic_type();
2846     assert(rtype == T_VOID, "must return void");
2847     assert(sig->count() == 3, "has 3 arguments");
2848     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
2849     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
2850 #endif // ASSERT
2851   }
2852 #endif //PRODUCT
2853 
2854   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2855 
2856   // Get arguments:
2857   Node* receiver = argument(0);  // type: oop
2858   Node* base     = argument(1);  // type: oop
2859   Node* offset   = argument(2);  // type: long
2860   Node* val      = argument(4);  // type: oop, int, or long
2861 
2862   // Null check receiver.
2863   receiver = null_check(receiver);
2864   if (stopped()) {
2865     return true;
2866   }
2867 
2868   // Build field offset expression.
2869   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2870   // 32-bit machines ignore the high half of long offsets
2871   offset = ConvL2X(offset);
2872   Node* adr = make_unsafe_address(base, offset);
2873   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2874   const Type *value_type = Type::get_const_basic_type(type);
2875   Compile::AliasType* alias_type = C->alias_type(adr_type);
2876 
2877   insert_mem_bar(Op_MemBarRelease);
2878   insert_mem_bar(Op_MemBarCPUOrder);
2879   // Ensure that the store is atomic for longs:
2880   const bool require_atomic_access = true;
2881   Node* store;
2882   if (type == T_OBJECT) // reference stores need a store barrier.
2883     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type);
2884   else {
2885     store = store_to_memory(control(), adr, val, type, adr_type, require_atomic_access);
2886   }
2887   insert_mem_bar(Op_MemBarCPUOrder);
2888   return true;
2889 }
2890 
2891 //----------------------------inline_unsafe_allocate---------------------------
2892 // public native Object sun.mics.Unsafe.allocateInstance(Class<?> cls);
2893 bool LibraryCallKit::inline_unsafe_allocate() {
2894   if (callee()->is_static())  return false;  // caller must have the capability!
2895 
2896   null_check_receiver();  // null-check, then ignore
2897   Node* cls = null_check(argument(1));
2898   if (stopped())  return true;
2899 
2900   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2901   kls = null_check(kls);
2902   if (stopped())  return true;  // argument was like int.class
2903 
2904   // Note:  The argument might still be an illegal value like
2905   // Serializable.class or Object[].class.   The runtime will handle it.
2906   // But we must make an explicit check for initialization.
2907   Node* insp = basic_plus_adr(kls, in_bytes(instanceKlass::init_state_offset()));
2908   // Use T_BOOLEAN for instanceKlass::_init_state so the compiler
2909   // can generate code to load it as unsigned byte.
2910   Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN);
2911   Node* bits = intcon(instanceKlass::fully_initialized);
2912   Node* test = _gvn.transform(new (C) SubINode(inst, bits));
2913   // The 'test' is non-zero if we need to take a slow path.
2914 
2915   Node* obj = new_instance(kls, test);
2916   set_result(obj);
2917   return true;
2918 }
2919 
2920 #ifdef TRACE_HAVE_INTRINSICS
2921 /*
2922  * oop -> myklass
2923  * myklass->trace_id |= USED
2924  * return myklass->trace_id & ~0x3
2925  */
2926 bool LibraryCallKit::inline_native_classID() {
2927   null_check_receiver();  // null-check, then ignore
2928   Node* cls = null_check(argument(1), T_OBJECT);
2929   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
2930   kls = null_check(kls, T_OBJECT);
2931   ByteSize offset = TRACE_ID_OFFSET;
2932   Node* insp = basic_plus_adr(kls, in_bytes(offset));
2933   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG);
2934   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
2935   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
2936   Node* clsused = longcon(0x01l); // set the class bit
2937   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
2938 
2939   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
2940   store_to_memory(control(), insp, orl, T_LONG, adr_type);
2941   set_result(andl);
2942   return true;
2943 }
2944 
2945 bool LibraryCallKit::inline_native_threadID() {
2946   Node* tls_ptr = NULL;
2947   Node* cur_thr = generate_current_thread(tls_ptr);
2948   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
2949   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
2950   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
2951 
2952   Node* threadid = NULL;
2953   size_t thread_id_size = OSThread::thread_id_size();
2954   if (thread_id_size == (size_t) BytesPerLong) {
2955     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG));
2956   } else if (thread_id_size == (size_t) BytesPerInt) {
2957     threadid = make_load(control(), p, TypeInt::INT, T_INT);
2958   } else {
2959     ShouldNotReachHere();
2960   }
2961   set_result(threadid);
2962   return true;
2963 }
2964 #endif
2965 
2966 //------------------------inline_native_time_funcs--------------
2967 // inline code for System.currentTimeMillis() and System.nanoTime()
2968 // these have the same type and signature
2969 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
2970   const TypeFunc* tf = OptoRuntime::void_long_Type();
2971   const TypePtr* no_memory_effects = NULL;
2972   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
2973   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
2974 #ifdef ASSERT
2975   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
2976   assert(value_top == top(), "second value must be top");
2977 #endif
2978   set_result(value);
2979   return true;
2980 }
2981 
2982 //------------------------inline_native_currentThread------------------
2983 bool LibraryCallKit::inline_native_currentThread() {
2984   Node* junk = NULL;
2985   set_result(generate_current_thread(junk));
2986   return true;
2987 }
2988 
2989 //------------------------inline_native_isInterrupted------------------
2990 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
2991 bool LibraryCallKit::inline_native_isInterrupted() {
2992   // Add a fast path to t.isInterrupted(clear_int):
2993   //   (t == Thread.current() && (!TLS._osthread._interrupted || !clear_int))
2994   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
2995   // So, in the common case that the interrupt bit is false,
2996   // we avoid making a call into the VM.  Even if the interrupt bit
2997   // is true, if the clear_int argument is false, we avoid the VM call.
2998   // However, if the receiver is not currentThread, we must call the VM,
2999   // because there must be some locking done around the operation.
3000 
3001   // We only go to the fast case code if we pass two guards.
3002   // Paths which do not pass are accumulated in the slow_region.
3003 
3004   enum {
3005     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3006     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3007     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3008     PATH_LIMIT
3009   };
3010 
3011   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3012   // out of the function.
3013   insert_mem_bar(Op_MemBarCPUOrder);
3014 
3015   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3016   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3017 
3018   RegionNode* slow_region = new (C) RegionNode(1);
3019   record_for_igvn(slow_region);
3020 
3021   // (a) Receiving thread must be the current thread.
3022   Node* rec_thr = argument(0);
3023   Node* tls_ptr = NULL;
3024   Node* cur_thr = generate_current_thread(tls_ptr);
3025   Node* cmp_thr = _gvn.transform( new (C) CmpPNode(cur_thr, rec_thr) );
3026   Node* bol_thr = _gvn.transform( new (C) BoolNode(cmp_thr, BoolTest::ne) );
3027 
3028   generate_slow_guard(bol_thr, slow_region);
3029 
3030   // (b) Interrupt bit on TLS must be false.
3031   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3032   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS);
3033   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3034 
3035   // Set the control input on the field _interrupted read to prevent it floating up.
3036   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT);
3037   Node* cmp_bit = _gvn.transform( new (C) CmpINode(int_bit, intcon(0)) );
3038   Node* bol_bit = _gvn.transform( new (C) BoolNode(cmp_bit, BoolTest::ne) );
3039 
3040   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3041 
3042   // First fast path:  if (!TLS._interrupted) return false;
3043   Node* false_bit = _gvn.transform( new (C) IfFalseNode(iff_bit) );
3044   result_rgn->init_req(no_int_result_path, false_bit);
3045   result_val->init_req(no_int_result_path, intcon(0));
3046 
3047   // drop through to next case
3048   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)) );
3049 
3050   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3051   Node* clr_arg = argument(1);
3052   Node* cmp_arg = _gvn.transform( new (C) CmpINode(clr_arg, intcon(0)) );
3053   Node* bol_arg = _gvn.transform( new (C) BoolNode(cmp_arg, BoolTest::ne) );
3054   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3055 
3056   // Second fast path:  ... else if (!clear_int) return true;
3057   Node* false_arg = _gvn.transform( new (C) IfFalseNode(iff_arg) );
3058   result_rgn->init_req(no_clear_result_path, false_arg);
3059   result_val->init_req(no_clear_result_path, intcon(1));
3060 
3061   // drop through to next case
3062   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)) );
3063 
3064   // (d) Otherwise, go to the slow path.
3065   slow_region->add_req(control());
3066   set_control( _gvn.transform(slow_region) );
3067 
3068   if (stopped()) {
3069     // There is no slow path.
3070     result_rgn->init_req(slow_result_path, top());
3071     result_val->init_req(slow_result_path, top());
3072   } else {
3073     // non-virtual because it is a private non-static
3074     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3075 
3076     Node* slow_val = set_results_for_java_call(slow_call);
3077     // this->control() comes from set_results_for_java_call
3078 
3079     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3080     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3081 
3082     // These two phis are pre-filled with copies of of the fast IO and Memory
3083     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3084     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3085 
3086     result_rgn->init_req(slow_result_path, control());
3087     result_io ->init_req(slow_result_path, i_o());
3088     result_mem->init_req(slow_result_path, reset_memory());
3089     result_val->init_req(slow_result_path, slow_val);
3090 
3091     set_all_memory(_gvn.transform(result_mem));
3092     set_i_o(       _gvn.transform(result_io));
3093   }
3094 
3095   C->set_has_split_ifs(true); // Has chance for split-if optimization
3096   set_result(result_rgn, result_val);
3097   return true;
3098 }
3099 
3100 //---------------------------load_mirror_from_klass----------------------------
3101 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3102 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3103   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3104   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT);
3105 }
3106 
3107 //-----------------------load_klass_from_mirror_common-------------------------
3108 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3109 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3110 // and branch to the given path on the region.
3111 // If never_see_null, take an uncommon trap on null, so we can optimistically
3112 // compile for the non-null case.
3113 // If the region is NULL, force never_see_null = true.
3114 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3115                                                     bool never_see_null,
3116                                                     RegionNode* region,
3117                                                     int null_path,
3118                                                     int offset) {
3119   if (region == NULL)  never_see_null = true;
3120   Node* p = basic_plus_adr(mirror, offset);
3121   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3122   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type) );
3123   Node* null_ctl = top();
3124   kls = null_check_oop(kls, &null_ctl, never_see_null);
3125   if (region != NULL) {
3126     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3127     region->init_req(null_path, null_ctl);
3128   } else {
3129     assert(null_ctl == top(), "no loose ends");
3130   }
3131   return kls;
3132 }
3133 
3134 //--------------------(inline_native_Class_query helpers)---------------------
3135 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3136 // Fall through if (mods & mask) == bits, take the guard otherwise.
3137 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3138   // Branch around if the given klass has the given modifier bit set.
3139   // Like generate_guard, adds a new path onto the region.
3140   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3141   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT);
3142   Node* mask = intcon(modifier_mask);
3143   Node* bits = intcon(modifier_bits);
3144   Node* mbit = _gvn.transform( new (C) AndINode(mods, mask) );
3145   Node* cmp  = _gvn.transform( new (C) CmpINode(mbit, bits) );
3146   Node* bol  = _gvn.transform( new (C) BoolNode(cmp, BoolTest::ne) );
3147   return generate_fair_guard(bol, region);
3148 }
3149 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3150   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3151 }
3152 
3153 //-------------------------inline_native_Class_query-------------------
3154 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3155   const Type* return_type = TypeInt::BOOL;
3156   Node* prim_return_value = top();  // what happens if it's a primitive class?
3157   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3158   bool expect_prim = false;     // most of these guys expect to work on refs
3159 
3160   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3161 
3162   Node* mirror = argument(0);
3163   Node* obj    = top();
3164 
3165   switch (id) {
3166   case vmIntrinsics::_isInstance:
3167     // nothing is an instance of a primitive type
3168     prim_return_value = intcon(0);
3169     obj = argument(1);
3170     break;
3171   case vmIntrinsics::_getModifiers:
3172     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3173     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3174     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3175     break;
3176   case vmIntrinsics::_isInterface:
3177     prim_return_value = intcon(0);
3178     break;
3179   case vmIntrinsics::_isArray:
3180     prim_return_value = intcon(0);
3181     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3182     break;
3183   case vmIntrinsics::_isPrimitive:
3184     prim_return_value = intcon(1);
3185     expect_prim = true;  // obviously
3186     break;
3187   case vmIntrinsics::_getSuperclass:
3188     prim_return_value = null();
3189     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3190     break;
3191   case vmIntrinsics::_getComponentType:
3192     prim_return_value = null();
3193     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3194     break;
3195   case vmIntrinsics::_getClassAccessFlags:
3196     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3197     return_type = TypeInt::INT;  // not bool!  6297094
3198     break;
3199   default:
3200     fatal_unexpected_iid(id);
3201     break;
3202   }
3203 
3204   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3205   if (mirror_con == NULL)  return false;  // cannot happen?
3206 
3207 #ifndef PRODUCT
3208   if (C->print_intrinsics() || C->print_inlining()) {
3209     ciType* k = mirror_con->java_mirror_type();
3210     if (k) {
3211       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3212       k->print_name();
3213       tty->cr();
3214     }
3215   }
3216 #endif
3217 
3218   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3219   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3220   record_for_igvn(region);
3221   PhiNode* phi = new (C) PhiNode(region, return_type);
3222 
3223   // The mirror will never be null of Reflection.getClassAccessFlags, however
3224   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3225   // if it is. See bug 4774291.
3226 
3227   // For Reflection.getClassAccessFlags(), the null check occurs in
3228   // the wrong place; see inline_unsafe_access(), above, for a similar
3229   // situation.
3230   mirror = null_check(mirror);
3231   // If mirror or obj is dead, only null-path is taken.
3232   if (stopped())  return true;
3233 
3234   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3235 
3236   // Now load the mirror's klass metaobject, and null-check it.
3237   // Side-effects region with the control path if the klass is null.
3238   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3239   // If kls is null, we have a primitive mirror.
3240   phi->init_req(_prim_path, prim_return_value);
3241   if (stopped()) { set_result(region, phi); return true; }
3242 
3243   Node* p;  // handy temp
3244   Node* null_ctl;
3245 
3246   // Now that we have the non-null klass, we can perform the real query.
3247   // For constant classes, the query will constant-fold in LoadNode::Value.
3248   Node* query_value = top();
3249   switch (id) {
3250   case vmIntrinsics::_isInstance:
3251     // nothing is an instance of a primitive type
3252     query_value = gen_instanceof(obj, kls);
3253     break;
3254 
3255   case vmIntrinsics::_getModifiers:
3256     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3257     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3258     break;
3259 
3260   case vmIntrinsics::_isInterface:
3261     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3262     if (generate_interface_guard(kls, region) != NULL)
3263       // A guard was added.  If the guard is taken, it was an interface.
3264       phi->add_req(intcon(1));
3265     // If we fall through, it's a plain class.
3266     query_value = intcon(0);
3267     break;
3268 
3269   case vmIntrinsics::_isArray:
3270     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3271     if (generate_array_guard(kls, region) != NULL)
3272       // A guard was added.  If the guard is taken, it was an array.
3273       phi->add_req(intcon(1));
3274     // If we fall through, it's a plain class.
3275     query_value = intcon(0);
3276     break;
3277 
3278   case vmIntrinsics::_isPrimitive:
3279     query_value = intcon(0); // "normal" path produces false
3280     break;
3281 
3282   case vmIntrinsics::_getSuperclass:
3283     // The rules here are somewhat unfortunate, but we can still do better
3284     // with random logic than with a JNI call.
3285     // Interfaces store null or Object as _super, but must report null.
3286     // Arrays store an intermediate super as _super, but must report Object.
3287     // Other types can report the actual _super.
3288     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3289     if (generate_interface_guard(kls, region) != NULL)
3290       // A guard was added.  If the guard is taken, it was an interface.
3291       phi->add_req(null());
3292     if (generate_array_guard(kls, region) != NULL)
3293       // A guard was added.  If the guard is taken, it was an array.
3294       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3295     // If we fall through, it's a plain class.  Get its _super.
3296     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3297     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL) );
3298     null_ctl = top();
3299     kls = null_check_oop(kls, &null_ctl);
3300     if (null_ctl != top()) {
3301       // If the guard is taken, Object.superClass is null (both klass and mirror).
3302       region->add_req(null_ctl);
3303       phi   ->add_req(null());
3304     }
3305     if (!stopped()) {
3306       query_value = load_mirror_from_klass(kls);
3307     }
3308     break;
3309 
3310   case vmIntrinsics::_getComponentType:
3311     if (generate_array_guard(kls, region) != NULL) {
3312       // Be sure to pin the oop load to the guard edge just created:
3313       Node* is_array_ctrl = region->in(region->req()-1);
3314       Node* cma = basic_plus_adr(kls, in_bytes(arrayKlass::component_mirror_offset()));
3315       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT);
3316       phi->add_req(cmo);
3317     }
3318     query_value = null();  // non-array case is null
3319     break;
3320 
3321   case vmIntrinsics::_getClassAccessFlags:
3322     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3323     query_value = make_load(NULL, p, TypeInt::INT, T_INT);
3324     break;
3325 
3326   default:
3327     fatal_unexpected_iid(id);
3328     break;
3329   }
3330 
3331   // Fall-through is the normal case of a query to a real class.
3332   phi->init_req(1, query_value);
3333   region->init_req(1, control());
3334 
3335   C->set_has_split_ifs(true); // Has chance for split-if optimization
3336   set_result(region, phi);
3337   return true;
3338 }
3339 
3340 //--------------------------inline_native_subtype_check------------------------
3341 // This intrinsic takes the JNI calls out of the heart of
3342 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3343 bool LibraryCallKit::inline_native_subtype_check() {
3344   // Pull both arguments off the stack.
3345   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3346   args[0] = argument(0);
3347   args[1] = argument(1);
3348   Node* klasses[2];             // corresponding Klasses: superk, subk
3349   klasses[0] = klasses[1] = top();
3350 
3351   enum {
3352     // A full decision tree on {superc is prim, subc is prim}:
3353     _prim_0_path = 1,           // {P,N} => false
3354                                 // {P,P} & superc!=subc => false
3355     _prim_same_path,            // {P,P} & superc==subc => true
3356     _prim_1_path,               // {N,P} => false
3357     _ref_subtype_path,          // {N,N} & subtype check wins => true
3358     _both_ref_path,             // {N,N} & subtype check loses => false
3359     PATH_LIMIT
3360   };
3361 
3362   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3363   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3364   record_for_igvn(region);
3365 
3366   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3367   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3368   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3369 
3370   // First null-check both mirrors and load each mirror's klass metaobject.
3371   int which_arg;
3372   for (which_arg = 0; which_arg <= 1; which_arg++) {
3373     Node* arg = args[which_arg];
3374     arg = null_check(arg);
3375     if (stopped())  break;
3376     args[which_arg] = arg;
3377 
3378     Node* p = basic_plus_adr(arg, class_klass_offset);
3379     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3380     klasses[which_arg] = _gvn.transform(kls);
3381   }
3382 
3383   // Having loaded both klasses, test each for null.
3384   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3385   for (which_arg = 0; which_arg <= 1; which_arg++) {
3386     Node* kls = klasses[which_arg];
3387     Node* null_ctl = top();
3388     kls = null_check_oop(kls, &null_ctl, never_see_null);
3389     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3390     region->init_req(prim_path, null_ctl);
3391     if (stopped())  break;
3392     klasses[which_arg] = kls;
3393   }
3394 
3395   if (!stopped()) {
3396     // now we have two reference types, in klasses[0..1]
3397     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3398     Node* superk = klasses[0];  // the receiver
3399     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3400     // now we have a successful reference subtype check
3401     region->set_req(_ref_subtype_path, control());
3402   }
3403 
3404   // If both operands are primitive (both klasses null), then
3405   // we must return true when they are identical primitives.
3406   // It is convenient to test this after the first null klass check.
3407   set_control(region->in(_prim_0_path)); // go back to first null check
3408   if (!stopped()) {
3409     // Since superc is primitive, make a guard for the superc==subc case.
3410     Node* cmp_eq = _gvn.transform( new (C) CmpPNode(args[0], args[1]) );
3411     Node* bol_eq = _gvn.transform( new (C) BoolNode(cmp_eq, BoolTest::eq) );
3412     generate_guard(bol_eq, region, PROB_FAIR);
3413     if (region->req() == PATH_LIMIT+1) {
3414       // A guard was added.  If the added guard is taken, superc==subc.
3415       region->swap_edges(PATH_LIMIT, _prim_same_path);
3416       region->del_req(PATH_LIMIT);
3417     }
3418     region->set_req(_prim_0_path, control()); // Not equal after all.
3419   }
3420 
3421   // these are the only paths that produce 'true':
3422   phi->set_req(_prim_same_path,   intcon(1));
3423   phi->set_req(_ref_subtype_path, intcon(1));
3424 
3425   // pull together the cases:
3426   assert(region->req() == PATH_LIMIT, "sane region");
3427   for (uint i = 1; i < region->req(); i++) {
3428     Node* ctl = region->in(i);
3429     if (ctl == NULL || ctl == top()) {
3430       region->set_req(i, top());
3431       phi   ->set_req(i, top());
3432     } else if (phi->in(i) == NULL) {
3433       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3434     }
3435   }
3436 
3437   set_control(_gvn.transform(region));
3438   set_result(_gvn.transform(phi));
3439   return true;
3440 }
3441 
3442 //---------------------generate_array_guard_common------------------------
3443 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3444                                                   bool obj_array, bool not_array) {
3445   // If obj_array/non_array==false/false:
3446   // Branch around if the given klass is in fact an array (either obj or prim).
3447   // If obj_array/non_array==false/true:
3448   // Branch around if the given klass is not an array klass of any kind.
3449   // If obj_array/non_array==true/true:
3450   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3451   // If obj_array/non_array==true/false:
3452   // Branch around if the kls is an oop array (Object[] or subtype)
3453   //
3454   // Like generate_guard, adds a new path onto the region.
3455   jint  layout_con = 0;
3456   Node* layout_val = get_layout_helper(kls, layout_con);
3457   if (layout_val == NULL) {
3458     bool query = (obj_array
3459                   ? Klass::layout_helper_is_objArray(layout_con)
3460                   : Klass::layout_helper_is_javaArray(layout_con));
3461     if (query == not_array) {
3462       return NULL;                       // never a branch
3463     } else {                             // always a branch
3464       Node* always_branch = control();
3465       if (region != NULL)
3466         region->add_req(always_branch);
3467       set_control(top());
3468       return always_branch;
3469     }
3470   }
3471   // Now test the correct condition.
3472   jint  nval = (obj_array
3473                 ? ((jint)Klass::_lh_array_tag_type_value
3474                    <<    Klass::_lh_array_tag_shift)
3475                 : Klass::_lh_neutral_value);
3476   Node* cmp = _gvn.transform( new(C) CmpINode(layout_val, intcon(nval)) );
3477   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3478   // invert the test if we are looking for a non-array
3479   if (not_array)  btest = BoolTest(btest).negate();
3480   Node* bol = _gvn.transform( new(C) BoolNode(cmp, btest) );
3481   return generate_fair_guard(bol, region);
3482 }
3483 
3484 
3485 //-----------------------inline_native_newArray--------------------------
3486 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3487 bool LibraryCallKit::inline_native_newArray() {
3488   Node* mirror    = argument(0);
3489   Node* count_val = argument(1);
3490 
3491   mirror = null_check(mirror);
3492   // If mirror or obj is dead, only null-path is taken.
3493   if (stopped())  return true;
3494 
3495   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3496   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3497   PhiNode*    result_val = new(C) PhiNode(result_reg,
3498                                           TypeInstPtr::NOTNULL);
3499   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3500   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3501                                           TypePtr::BOTTOM);
3502 
3503   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3504   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3505                                                   result_reg, _slow_path);
3506   Node* normal_ctl   = control();
3507   Node* no_array_ctl = result_reg->in(_slow_path);
3508 
3509   // Generate code for the slow case.  We make a call to newArray().
3510   set_control(no_array_ctl);
3511   if (!stopped()) {
3512     // Either the input type is void.class, or else the
3513     // array klass has not yet been cached.  Either the
3514     // ensuing call will throw an exception, or else it
3515     // will cache the array klass for next time.
3516     PreserveJVMState pjvms(this);
3517     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3518     Node* slow_result = set_results_for_java_call(slow_call);
3519     // this->control() comes from set_results_for_java_call
3520     result_reg->set_req(_slow_path, control());
3521     result_val->set_req(_slow_path, slow_result);
3522     result_io ->set_req(_slow_path, i_o());
3523     result_mem->set_req(_slow_path, reset_memory());
3524   }
3525 
3526   set_control(normal_ctl);
3527   if (!stopped()) {
3528     // Normal case:  The array type has been cached in the java.lang.Class.
3529     // The following call works fine even if the array type is polymorphic.
3530     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3531     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3532     result_reg->init_req(_normal_path, control());
3533     result_val->init_req(_normal_path, obj);
3534     result_io ->init_req(_normal_path, i_o());
3535     result_mem->init_req(_normal_path, reset_memory());
3536   }
3537 
3538   // Return the combined state.
3539   set_i_o(        _gvn.transform(result_io)  );
3540   set_all_memory( _gvn.transform(result_mem) );
3541 
3542   C->set_has_split_ifs(true); // Has chance for split-if optimization
3543   set_result(result_reg, result_val);
3544   return true;
3545 }
3546 
3547 //----------------------inline_native_getLength--------------------------
3548 // public static native int java.lang.reflect.Array.getLength(Object array);
3549 bool LibraryCallKit::inline_native_getLength() {
3550   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3551 
3552   Node* array = null_check(argument(0));
3553   // If array is dead, only null-path is taken.
3554   if (stopped())  return true;
3555 
3556   // Deoptimize if it is a non-array.
3557   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3558 
3559   if (non_array != NULL) {
3560     PreserveJVMState pjvms(this);
3561     set_control(non_array);
3562     uncommon_trap(Deoptimization::Reason_intrinsic,
3563                   Deoptimization::Action_maybe_recompile);
3564   }
3565 
3566   // If control is dead, only non-array-path is taken.
3567   if (stopped())  return true;
3568 
3569   // The works fine even if the array type is polymorphic.
3570   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3571   Node* result = load_array_length(array);
3572 
3573   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3574   set_result(result);
3575   return true;
3576 }
3577 
3578 //------------------------inline_array_copyOf----------------------------
3579 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3580 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3581 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3582   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3583 
3584   // Get the arguments.
3585   Node* original          = argument(0);
3586   Node* start             = is_copyOfRange? argument(1): intcon(0);
3587   Node* end               = is_copyOfRange? argument(2): argument(1);
3588   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3589 
3590   Node* newcopy;
3591 
3592   // Set the original stack and the reexecute bit for the interpreter to reexecute
3593   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3594   { PreserveReexecuteState preexecs(this);
3595     jvms()->set_should_reexecute(true);
3596 
3597     array_type_mirror = null_check(array_type_mirror);
3598     original          = null_check(original);
3599 
3600     // Check if a null path was taken unconditionally.
3601     if (stopped())  return true;
3602 
3603     Node* orig_length = load_array_length(original);
3604 
3605     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3606     klass_node = null_check(klass_node);
3607 
3608     RegionNode* bailout = new (C) RegionNode(1);
3609     record_for_igvn(bailout);
3610 
3611     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3612     // Bail out if that is so.
3613     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3614     if (not_objArray != NULL) {
3615       // Improve the klass node's type from the new optimistic assumption:
3616       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3617       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3618       Node* cast = new (C) CastPPNode(klass_node, akls);
3619       cast->init_req(0, control());
3620       klass_node = _gvn.transform(cast);
3621     }
3622 
3623     // Bail out if either start or end is negative.
3624     generate_negative_guard(start, bailout, &start);
3625     generate_negative_guard(end,   bailout, &end);
3626 
3627     Node* length = end;
3628     if (_gvn.type(start) != TypeInt::ZERO) {
3629       length = _gvn.transform(new (C) SubINode(end, start));
3630     }
3631 
3632     // Bail out if length is negative.
3633     // Without this the new_array would throw
3634     // NegativeArraySizeException but IllegalArgumentException is what
3635     // should be thrown
3636     generate_negative_guard(length, bailout, &length);
3637 
3638     if (bailout->req() > 1) {
3639       PreserveJVMState pjvms(this);
3640       set_control(_gvn.transform(bailout));
3641       uncommon_trap(Deoptimization::Reason_intrinsic,
3642                     Deoptimization::Action_maybe_recompile);
3643     }
3644 
3645     if (!stopped()) {
3646       // How many elements will we copy from the original?
3647       // The answer is MinI(orig_length - start, length).
3648       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3649       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3650 
3651       newcopy = new_array(klass_node, length, 0);  // no argments to push
3652 
3653       // Generate a direct call to the right arraycopy function(s).
3654       // We know the copy is disjoint but we might not know if the
3655       // oop stores need checking.
3656       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3657       // This will fail a store-check if x contains any non-nulls.
3658       bool disjoint_bases = true;
3659       // if start > orig_length then the length of the copy may be
3660       // negative.
3661       bool length_never_negative = !is_copyOfRange;
3662       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3663                          original, start, newcopy, intcon(0), moved,
3664                          disjoint_bases, length_never_negative);
3665     }
3666   } // original reexecute is set back here
3667 
3668   C->set_has_split_ifs(true); // Has chance for split-if optimization
3669   if (!stopped()) {
3670     set_result(newcopy);
3671   }
3672   return true;
3673 }
3674 
3675 
3676 //----------------------generate_virtual_guard---------------------------
3677 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3678 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3679                                              RegionNode* slow_region) {
3680   ciMethod* method = callee();
3681   int vtable_index = method->vtable_index();
3682   // Get the methodOop out of the appropriate vtable entry.
3683   int entry_offset  = (instanceKlass::vtable_start_offset() +
3684                      vtable_index*vtableEntry::size()) * wordSize +
3685                      vtableEntry::method_offset_in_bytes();
3686   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3687   Node* target_call = make_load(NULL, entry_addr, TypeInstPtr::NOTNULL, T_OBJECT);
3688 
3689   // Compare the target method with the expected method (e.g., Object.hashCode).
3690   const TypeInstPtr* native_call_addr = TypeInstPtr::make(method);
3691 
3692   Node* native_call = makecon(native_call_addr);
3693   Node* chk_native  = _gvn.transform( new(C) CmpPNode(target_call, native_call) );
3694   Node* test_native = _gvn.transform( new(C) BoolNode(chk_native, BoolTest::ne) );
3695 
3696   return generate_slow_guard(test_native, slow_region);
3697 }
3698 
3699 //-----------------------generate_method_call----------------------------
3700 // Use generate_method_call to make a slow-call to the real
3701 // method if the fast path fails.  An alternative would be to
3702 // use a stub like OptoRuntime::slow_arraycopy_Java.
3703 // This only works for expanding the current library call,
3704 // not another intrinsic.  (E.g., don't use this for making an
3705 // arraycopy call inside of the copyOf intrinsic.)
3706 CallJavaNode*
3707 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3708   // When compiling the intrinsic method itself, do not use this technique.
3709   guarantee(callee() != C->method(), "cannot make slow-call to self");
3710 
3711   ciMethod* method = callee();
3712   // ensure the JVMS we have will be correct for this call
3713   guarantee(method_id == method->intrinsic_id(), "must match");
3714 
3715   const TypeFunc* tf = TypeFunc::make(method);
3716   CallJavaNode* slow_call;
3717   if (is_static) {
3718     assert(!is_virtual, "");
3719     slow_call = new(C) CallStaticJavaNode(tf,
3720                            SharedRuntime::get_resolve_static_call_stub(),
3721                            method, bci());
3722   } else if (is_virtual) {
3723     null_check_receiver();
3724     int vtable_index = methodOopDesc::invalid_vtable_index;
3725     if (UseInlineCaches) {
3726       // Suppress the vtable call
3727     } else {
3728       // hashCode and clone are not a miranda methods,
3729       // so the vtable index is fixed.
3730       // No need to use the linkResolver to get it.
3731        vtable_index = method->vtable_index();
3732     }
3733     slow_call = new(C) CallDynamicJavaNode(tf,
3734                           SharedRuntime::get_resolve_virtual_call_stub(),
3735                           method, vtable_index, bci());
3736   } else {  // neither virtual nor static:  opt_virtual
3737     null_check_receiver();
3738     slow_call = new(C) CallStaticJavaNode(tf,
3739                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3740                                 method, bci());
3741     slow_call->set_optimized_virtual(true);
3742   }
3743   set_arguments_for_java_call(slow_call);
3744   set_edges_for_java_call(slow_call);
3745   return slow_call;
3746 }
3747 
3748 
3749 /**
3750  * Build special case code for calls to hashCode on an object. This call may
3751  * be virtual (invokevirtual) or bound (invokespecial). For each case we generate
3752  * slightly different code.
3753  */
3754 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3755   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3756   assert(!(is_virtual && is_static), "either virtual, special, or static");
3757 
3758   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3759 
3760   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3761   PhiNode*    result_val = new(C) PhiNode(result_reg, TypeInt::INT);
3762   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3763   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY, TypePtr::BOTTOM);
3764   Node* obj = NULL;
3765   if (!is_static) {
3766     // Check for hashing null object
3767     obj = null_check_receiver();
3768     if (stopped())  return true;        // unconditionally null
3769     result_reg->init_req(_null_path, top());
3770     result_val->init_req(_null_path, top());
3771   } else {
3772     // Do a null check, and return zero if null.
3773     // System.identityHashCode(null) == 0
3774     obj = argument(0);
3775     Node* null_ctl = top();
3776     obj = null_check_oop(obj, &null_ctl);
3777     result_reg->init_req(_null_path, null_ctl);
3778     result_val->init_req(_null_path, _gvn.intcon(0));
3779   }
3780 
3781   // Unconditionally null?  Then return right away.
3782   if (stopped()) {
3783     set_control( result_reg->in(_null_path));
3784     if (!stopped())
3785       set_result(result_val->in(_null_path));
3786     return true;
3787   }
3788 
3789   // We only go to the fast case code if we pass a number of guards.  The
3790   // paths which do not pass are accumulated in the slow_region.
3791   RegionNode* slow_region = new (C) RegionNode(1);
3792   record_for_igvn(slow_region);
3793 
3794   // If this is a virtual call, we generate a funny guard.  We pull out
3795   // the vtable entry corresponding to hashCode() from the target object.
3796   // If the target method which we are calling happens to be the native
3797   // Object hashCode() method, we pass the guard.  We do not need this
3798   // guard for non-virtual calls -- the caller is known to be the native
3799   // Object hashCode().
3800   if (is_virtual) {
3801     // After null check, get the object's klass.
3802     Node* obj_klass = load_object_klass(obj);
3803     generate_virtual_guard(obj_klass, slow_region);
3804   }
3805 
3806   // Get the header out of the object, use LoadMarkNode when available
3807   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3808   // The control of the load must be NULL. Otherwise, the load can move before
3809   // the null check after castPP removal.
3810   Node* no_ctrl = NULL;
3811   Node* header = make_load(no_ctrl, header_addr, TypeX_X, TypeX_X->basic_type());
3812 
3813   // Test the header to see if it is unlocked.
3814   Node* lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
3815   Node* lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
3816   Node* unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
3817   Node* chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
3818   Node* test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
3819 
3820   generate_slow_guard(test_unlocked, slow_region);
3821 
3822   // Get the hash value and check to see that it has been properly assigned.
3823   // We depend on hash_mask being at most 32 bits and avoid the use of
3824   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
3825   // vm: see markOop.hpp.
3826   Node* hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
3827   Node* hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
3828   Node* hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
3829   // This hack lets the hash bits live anywhere in the mark object now, as long
3830   // as the shift drops the relevant bits into the low 32 bits.  Note that
3831   // Java spec says that HashCode is an int so there's no point in capturing
3832   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
3833   hshifted_header      = ConvX2I(hshifted_header);
3834   Node* hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
3835 
3836   Node* no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
3837   Node* chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
3838   Node* test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
3839 
3840   generate_slow_guard(test_assigned, slow_region);
3841 
3842   Node* init_mem = reset_memory();
3843   // fill in the rest of the null path:
3844   result_io ->init_req(_null_path, i_o());
3845   result_mem->init_req(_null_path, init_mem);
3846 
3847   result_val->init_req(_fast_path, hash_val);
3848   result_reg->init_req(_fast_path, control());
3849   result_io ->init_req(_fast_path, i_o());
3850   result_mem->init_req(_fast_path, init_mem);
3851 
3852   // Generate code for the slow case.  We make a call to hashCode().
3853   set_control(_gvn.transform(slow_region));
3854   if (!stopped()) {
3855     // No need for PreserveJVMState, because we're using up the present state.
3856     set_all_memory(init_mem);
3857     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
3858     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
3859     Node* slow_result = set_results_for_java_call(slow_call);
3860     // this->control() comes from set_results_for_java_call
3861     result_reg->init_req(_slow_path, control());
3862     result_val->init_req(_slow_path, slow_result);
3863     result_io  ->set_req(_slow_path, i_o());
3864     result_mem ->set_req(_slow_path, reset_memory());
3865   }
3866 
3867   // Return the combined state.
3868   set_i_o(        _gvn.transform(result_io)  );
3869   set_all_memory( _gvn.transform(result_mem) );
3870 
3871   set_result(result_reg, result_val);
3872   return true;
3873 }
3874 
3875 //---------------------------inline_native_getClass----------------------------
3876 // public final native Class<?> java.lang.Object.getClass();
3877 //
3878 // Build special case code for calls to getClass on an object.
3879 bool LibraryCallKit::inline_native_getClass() {
3880   Node* obj = null_check_receiver();
3881   if (stopped())  return true;
3882   set_result(load_mirror_from_klass(load_object_klass(obj)));
3883   return true;
3884 }
3885 
3886 //-----------------inline_native_Reflection_getCallerClass---------------------
3887 // public static native Class<?> sun.reflect.Reflection.getCallerClass(int realFramesToSkip);
3888 //
3889 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
3890 //
3891 // NOTE that this code must perform the same logic as
3892 // vframeStream::security_get_caller_frame in that it must skip
3893 // Method.invoke() and auxiliary frames.
3894 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
3895 #ifndef PRODUCT
3896   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3897     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
3898   }
3899 #endif
3900 
3901   Node* caller_depth_node = argument(0);
3902 
3903   // The depth value must be a constant in order for the runtime call
3904   // to be eliminated.
3905   const TypeInt* caller_depth_type = _gvn.type(caller_depth_node)->isa_int();
3906   if (caller_depth_type == NULL || !caller_depth_type->is_con()) {
3907 #ifndef PRODUCT
3908     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3909       tty->print_cr("  Bailing out because caller depth was not a constant");
3910     }
3911 #endif
3912     return false;
3913   }
3914   // Note that the JVM state at this point does not include the
3915   // getCallerClass() frame which we are trying to inline. The
3916   // semantics of getCallerClass(), however, are that the "first"
3917   // frame is the getCallerClass() frame, so we subtract one from the
3918   // requested depth before continuing. We don't inline requests of
3919   // getCallerClass(0).
3920   int caller_depth = caller_depth_type->get_con() - 1;
3921   if (caller_depth < 0) {
3922 #ifndef PRODUCT
3923     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3924       tty->print_cr("  Bailing out because caller depth was %d", caller_depth);
3925     }
3926 #endif
3927     return false;
3928   }
3929 
3930   if (!jvms()->has_method()) {
3931 #ifndef PRODUCT
3932     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3933       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
3934     }
3935 #endif
3936     return false;
3937   }
3938   int _depth = jvms()->depth();  // cache call chain depth
3939 
3940   // Walk back up the JVM state to find the caller at the required
3941   // depth. NOTE that this code must perform the same logic as
3942   // vframeStream::security_get_caller_frame in that it must skip
3943   // Method.invoke() and auxiliary frames. Note also that depth is
3944   // 1-based (1 is the bottom of the inlining).
3945   int inlining_depth = _depth;
3946   JVMState* caller_jvms = NULL;
3947 
3948   if (inlining_depth > 0) {
3949     caller_jvms = jvms();
3950     assert(caller_jvms = jvms()->of_depth(inlining_depth), "inlining_depth == our depth");
3951     do {
3952       // The following if-tests should be performed in this order
3953       if (is_method_invoke_or_aux_frame(caller_jvms)) {
3954         // Skip a Method.invoke() or auxiliary frame
3955       } else if (caller_depth > 0) {
3956         // Skip real frame
3957         --caller_depth;
3958       } else {
3959         // We're done: reached desired caller after skipping.
3960         break;
3961       }
3962       caller_jvms = caller_jvms->caller();
3963       --inlining_depth;
3964     } while (inlining_depth > 0);
3965   }
3966 
3967   if (inlining_depth == 0) {
3968 #ifndef PRODUCT
3969     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3970       tty->print_cr("  Bailing out because caller depth (%d) exceeded inlining depth (%d)", caller_depth_type->get_con(), _depth);
3971       tty->print_cr("  JVM state at this point:");
3972       for (int i = _depth; i >= 1; i--) {
3973         ciMethod* m = jvms()->of_depth(i)->method();
3974         tty->print_cr("   %d) %s.%s", i, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3975       }
3976     }
3977 #endif
3978     return false; // Reached end of inlining
3979   }
3980 
3981   // Acquire method holder as java.lang.Class
3982   ciInstanceKlass* caller_klass  = caller_jvms->method()->holder();
3983   ciInstance*      caller_mirror = caller_klass->java_mirror();
3984 
3985   // Push this as a constant
3986   set_result(makecon(TypeInstPtr::make(caller_mirror)));
3987 
3988 #ifndef PRODUCT
3989   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
3990     tty->print_cr("  Succeeded: caller = %s.%s, caller depth = %d, depth = %d", caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), caller_depth_type->get_con(), _depth);
3991     tty->print_cr("  JVM state at this point:");
3992     for (int i = _depth; i >= 1; i--) {
3993       ciMethod* m = jvms()->of_depth(i)->method();
3994       tty->print_cr("   %d) %s.%s", i, m->holder()->name()->as_utf8(), m->name()->as_utf8());
3995     }
3996   }
3997 #endif
3998   return true;
3999 }
4000 
4001 // Helper routine for above
4002 bool LibraryCallKit::is_method_invoke_or_aux_frame(JVMState* jvms) {
4003   ciMethod* method = jvms->method();
4004 
4005   // Is this the Method.invoke method itself?
4006   if (method->intrinsic_id() == vmIntrinsics::_invoke)
4007     return true;
4008 
4009   // Is this a helper, defined somewhere underneath MethodAccessorImpl.
4010   ciKlass* k = method->holder();
4011   if (k->is_instance_klass()) {
4012     ciInstanceKlass* ik = k->as_instance_klass();
4013     for (; ik != NULL; ik = ik->super()) {
4014       if (ik->name() == ciSymbol::sun_reflect_MethodAccessorImpl() &&
4015           ik == env()->find_system_klass(ik->name())) {
4016         return true;
4017       }
4018     }
4019   }
4020 
4021   if (method->is_method_handle_intrinsic() ||
4022            method->is_compiled_lambda_form()) {
4023     // This is an internal adapter frame from the MethodHandleCompiler -- skip it
4024     return true;
4025   }
4026 
4027   return false;
4028 }
4029 
4030 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4031   Node* arg = argument(0);
4032   Node* result;
4033 
4034   switch (id) {
4035   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4036   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4037   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4038   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4039 
4040   case vmIntrinsics::_doubleToLongBits: {
4041     // two paths (plus control) merge in a wood
4042     RegionNode *r = new (C) RegionNode(3);
4043     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4044 
4045     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4046     // Build the boolean node
4047     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4048 
4049     // Branch either way.
4050     // NaN case is less traveled, which makes all the difference.
4051     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4052     Node *opt_isnan = _gvn.transform(ifisnan);
4053     assert( opt_isnan->is_If(), "Expect an IfNode");
4054     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4055     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
4056 
4057     set_control(iftrue);
4058 
4059     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4060     Node *slow_result = longcon(nan_bits); // return NaN
4061     phi->init_req(1, _gvn.transform( slow_result ));
4062     r->init_req(1, iftrue);
4063 
4064     // Else fall through
4065     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4066     set_control(iffalse);
4067 
4068     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4069     r->init_req(2, iffalse);
4070 
4071     // Post merge
4072     set_control(_gvn.transform(r));
4073     record_for_igvn(r);
4074 
4075     C->set_has_split_ifs(true); // Has chance for split-if optimization
4076     result = phi;
4077     assert(result->bottom_type()->isa_long(), "must be");
4078     break;
4079   }
4080 
4081   case vmIntrinsics::_floatToIntBits: {
4082     // two paths (plus control) merge in a wood
4083     RegionNode *r = new (C) RegionNode(3);
4084     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4085 
4086     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4087     // Build the boolean node
4088     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4089 
4090     // Branch either way.
4091     // NaN case is less traveled, which makes all the difference.
4092     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4093     Node *opt_isnan = _gvn.transform(ifisnan);
4094     assert( opt_isnan->is_If(), "Expect an IfNode");
4095     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4096     Node *iftrue = _gvn.transform( new (C) IfTrueNode(opt_ifisnan) );
4097 
4098     set_control(iftrue);
4099 
4100     static const jint nan_bits = 0x7fc00000;
4101     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4102     phi->init_req(1, _gvn.transform( slow_result ));
4103     r->init_req(1, iftrue);
4104 
4105     // Else fall through
4106     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4107     set_control(iffalse);
4108 
4109     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4110     r->init_req(2, iffalse);
4111 
4112     // Post merge
4113     set_control(_gvn.transform(r));
4114     record_for_igvn(r);
4115 
4116     C->set_has_split_ifs(true); // Has chance for split-if optimization
4117     result = phi;
4118     assert(result->bottom_type()->isa_int(), "must be");
4119     break;
4120   }
4121 
4122   default:
4123     fatal_unexpected_iid(id);
4124     break;
4125   }
4126   set_result(_gvn.transform(result));
4127   return true;
4128 }
4129 
4130 #ifdef _LP64
4131 #define XTOP ,top() /*additional argument*/
4132 #else  //_LP64
4133 #define XTOP        /*no additional argument*/
4134 #endif //_LP64
4135 
4136 //----------------------inline_unsafe_copyMemory-------------------------
4137 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4138 bool LibraryCallKit::inline_unsafe_copyMemory() {
4139   if (callee()->is_static())  return false;  // caller must have the capability!
4140   null_check_receiver();  // null-check receiver
4141   if (stopped())  return true;
4142 
4143   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4144 
4145   Node* src_ptr =         argument(1);   // type: oop
4146   Node* src_off = ConvL2X(argument(2));  // type: long
4147   Node* dst_ptr =         argument(4);   // type: oop
4148   Node* dst_off = ConvL2X(argument(5));  // type: long
4149   Node* size    = ConvL2X(argument(7));  // type: long
4150 
4151   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4152          "fieldOffset must be byte-scaled");
4153 
4154   Node* src = make_unsafe_address(src_ptr, src_off);
4155   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4156 
4157   // Conservatively insert a memory barrier on all memory slices.
4158   // Do not let writes of the copy source or destination float below the copy.
4159   insert_mem_bar(Op_MemBarCPUOrder);
4160 
4161   // Call it.  Note that the length argument is not scaled.
4162   make_runtime_call(RC_LEAF|RC_NO_FP,
4163                     OptoRuntime::fast_arraycopy_Type(),
4164                     StubRoutines::unsafe_arraycopy(),
4165                     "unsafe_arraycopy",
4166                     TypeRawPtr::BOTTOM,
4167                     src, dst, size XTOP);
4168 
4169   // Do not let reads of the copy destination float above the copy.
4170   insert_mem_bar(Op_MemBarCPUOrder);
4171 
4172   return true;
4173 }
4174 
4175 //------------------------clone_coping-----------------------------------
4176 // Helper function for inline_native_clone.
4177 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4178   assert(obj_size != NULL, "");
4179   Node* raw_obj = alloc_obj->in(1);
4180   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4181 
4182   AllocateNode* alloc = NULL;
4183   if (ReduceBulkZeroing) {
4184     // We will be completely responsible for initializing this object -
4185     // mark Initialize node as complete.
4186     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4187     // The object was just allocated - there should be no any stores!
4188     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4189     // Mark as complete_with_arraycopy so that on AllocateNode
4190     // expansion, we know this AllocateNode is initialized by an array
4191     // copy and a StoreStore barrier exists after the array copy.
4192     alloc->initialization()->set_complete_with_arraycopy();
4193   }
4194 
4195   // Copy the fastest available way.
4196   // TODO: generate fields copies for small objects instead.
4197   Node* src  = obj;
4198   Node* dest = alloc_obj;
4199   Node* size = _gvn.transform(obj_size);
4200 
4201   // Exclude the header but include array length to copy by 8 bytes words.
4202   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4203   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4204                             instanceOopDesc::base_offset_in_bytes();
4205   // base_off:
4206   // 8  - 32-bit VM
4207   // 12 - 64-bit VM, compressed oops
4208   // 16 - 64-bit VM, normal oops
4209   if (base_off % BytesPerLong != 0) {
4210     assert(UseCompressedOops, "");
4211     if (is_array) {
4212       // Exclude length to copy by 8 bytes words.
4213       base_off += sizeof(int);
4214     } else {
4215       // Include klass to copy by 8 bytes words.
4216       base_off = instanceOopDesc::klass_offset_in_bytes();
4217     }
4218     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4219   }
4220   src  = basic_plus_adr(src,  base_off);
4221   dest = basic_plus_adr(dest, base_off);
4222 
4223   // Compute the length also, if needed:
4224   Node* countx = size;
4225   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(base_off)) );
4226   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4227 
4228   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4229   bool disjoint_bases = true;
4230   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4231                                src, NULL, dest, NULL, countx,
4232                                /*dest_uninitialized*/true);
4233 
4234   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4235   if (card_mark) {
4236     assert(!is_array, "");
4237     // Put in store barrier for any and all oops we are sticking
4238     // into this object.  (We could avoid this if we could prove
4239     // that the object type contains no oop fields at all.)
4240     Node* no_particular_value = NULL;
4241     Node* no_particular_field = NULL;
4242     int raw_adr_idx = Compile::AliasIdxRaw;
4243     post_barrier(control(),
4244                  memory(raw_adr_type),
4245                  alloc_obj,
4246                  no_particular_field,
4247                  raw_adr_idx,
4248                  no_particular_value,
4249                  T_OBJECT,
4250                  false);
4251   }
4252 
4253   // Do not let reads from the cloned object float above the arraycopy.
4254   if (alloc != NULL) {
4255     // Do not let stores that initialize this object be reordered with
4256     // a subsequent store that would make this object accessible by
4257     // other threads.
4258     // Record what AllocateNode this StoreStore protects so that
4259     // escape analysis can go from the MemBarStoreStoreNode to the
4260     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4261     // based on the escape status of the AllocateNode.
4262     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4263   } else {
4264     insert_mem_bar(Op_MemBarCPUOrder);
4265   }
4266 }
4267 
4268 //------------------------inline_native_clone----------------------------
4269 // protected native Object java.lang.Object.clone();
4270 //
4271 // Here are the simple edge cases:
4272 //  null receiver => normal trap
4273 //  virtual and clone was overridden => slow path to out-of-line clone
4274 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4275 //
4276 // The general case has two steps, allocation and copying.
4277 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4278 //
4279 // Copying also has two cases, oop arrays and everything else.
4280 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4281 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4282 //
4283 // These steps fold up nicely if and when the cloned object's klass
4284 // can be sharply typed as an object array, a type array, or an instance.
4285 //
4286 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4287   PhiNode* result_val;
4288 
4289   // Set the reexecute bit for the interpreter to reexecute
4290   // the bytecode that invokes Object.clone if deoptimization happens.
4291   { PreserveReexecuteState preexecs(this);
4292     jvms()->set_should_reexecute(true);
4293 
4294     Node* obj = null_check_receiver();
4295     if (stopped())  return true;
4296 
4297     Node* obj_klass = load_object_klass(obj);
4298     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4299     const TypeOopPtr*   toop   = ((tklass != NULL)
4300                                 ? tklass->as_instance_type()
4301                                 : TypeInstPtr::NOTNULL);
4302 
4303     // Conservatively insert a memory barrier on all memory slices.
4304     // Do not let writes into the original float below the clone.
4305     insert_mem_bar(Op_MemBarCPUOrder);
4306 
4307     // paths into result_reg:
4308     enum {
4309       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4310       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4311       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4312       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4313       PATH_LIMIT
4314     };
4315     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4316     result_val             = new(C) PhiNode(result_reg,
4317                                             TypeInstPtr::NOTNULL);
4318     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4319     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4320                                             TypePtr::BOTTOM);
4321     record_for_igvn(result_reg);
4322 
4323     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4324     int raw_adr_idx = Compile::AliasIdxRaw;
4325 
4326     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4327     if (array_ctl != NULL) {
4328       // It's an array.
4329       PreserveJVMState pjvms(this);
4330       set_control(array_ctl);
4331       Node* obj_length = load_array_length(obj);
4332       Node* obj_size  = NULL;
4333       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4334 
4335       if (!use_ReduceInitialCardMarks()) {
4336         // If it is an oop array, it requires very special treatment,
4337         // because card marking is required on each card of the array.
4338         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4339         if (is_obja != NULL) {
4340           PreserveJVMState pjvms2(this);
4341           set_control(is_obja);
4342           // Generate a direct call to the right arraycopy function(s).
4343           bool disjoint_bases = true;
4344           bool length_never_negative = true;
4345           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4346                              obj, intcon(0), alloc_obj, intcon(0),
4347                              obj_length,
4348                              disjoint_bases, length_never_negative);
4349           result_reg->init_req(_objArray_path, control());
4350           result_val->init_req(_objArray_path, alloc_obj);
4351           result_i_o ->set_req(_objArray_path, i_o());
4352           result_mem ->set_req(_objArray_path, reset_memory());
4353         }
4354       }
4355       // Otherwise, there are no card marks to worry about.
4356       // (We can dispense with card marks if we know the allocation
4357       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4358       //  causes the non-eden paths to take compensating steps to
4359       //  simulate a fresh allocation, so that no further
4360       //  card marks are required in compiled code to initialize
4361       //  the object.)
4362 
4363       if (!stopped()) {
4364         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4365 
4366         // Present the results of the copy.
4367         result_reg->init_req(_array_path, control());
4368         result_val->init_req(_array_path, alloc_obj);
4369         result_i_o ->set_req(_array_path, i_o());
4370         result_mem ->set_req(_array_path, reset_memory());
4371       }
4372     }
4373 
4374     // We only go to the instance fast case code if we pass a number of guards.
4375     // The paths which do not pass are accumulated in the slow_region.
4376     RegionNode* slow_region = new (C) RegionNode(1);
4377     record_for_igvn(slow_region);
4378     if (!stopped()) {
4379       // It's an instance (we did array above).  Make the slow-path tests.
4380       // If this is a virtual call, we generate a funny guard.  We grab
4381       // the vtable entry corresponding to clone() from the target object.
4382       // If the target method which we are calling happens to be the
4383       // Object clone() method, we pass the guard.  We do not need this
4384       // guard for non-virtual calls; the caller is known to be the native
4385       // Object clone().
4386       if (is_virtual) {
4387         generate_virtual_guard(obj_klass, slow_region);
4388       }
4389 
4390       // The object must be cloneable and must not have a finalizer.
4391       // Both of these conditions may be checked in a single test.
4392       // We could optimize the cloneable test further, but we don't care.
4393       generate_access_flags_guard(obj_klass,
4394                                   // Test both conditions:
4395                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4396                                   // Must be cloneable but not finalizer:
4397                                   JVM_ACC_IS_CLONEABLE,
4398                                   slow_region);
4399     }
4400 
4401     if (!stopped()) {
4402       // It's an instance, and it passed the slow-path tests.
4403       PreserveJVMState pjvms(this);
4404       Node* obj_size  = NULL;
4405       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4406 
4407       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4408 
4409       // Present the results of the slow call.
4410       result_reg->init_req(_instance_path, control());
4411       result_val->init_req(_instance_path, alloc_obj);
4412       result_i_o ->set_req(_instance_path, i_o());
4413       result_mem ->set_req(_instance_path, reset_memory());
4414     }
4415 
4416     // Generate code for the slow case.  We make a call to clone().
4417     set_control(_gvn.transform(slow_region));
4418     if (!stopped()) {
4419       PreserveJVMState pjvms(this);
4420       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4421       Node* slow_result = set_results_for_java_call(slow_call);
4422       // this->control() comes from set_results_for_java_call
4423       result_reg->init_req(_slow_path, control());
4424       result_val->init_req(_slow_path, slow_result);
4425       result_i_o ->set_req(_slow_path, i_o());
4426       result_mem ->set_req(_slow_path, reset_memory());
4427     }
4428 
4429     // Return the combined state.
4430     set_control(    _gvn.transform(result_reg) );
4431     set_i_o(        _gvn.transform(result_i_o) );
4432     set_all_memory( _gvn.transform(result_mem) );
4433   } // original reexecute is set back here
4434 
4435   set_result(_gvn.transform(result_val));
4436   return true;
4437 }
4438 
4439 //------------------------------basictype2arraycopy----------------------------
4440 address LibraryCallKit::basictype2arraycopy(BasicType t,
4441                                             Node* src_offset,
4442                                             Node* dest_offset,
4443                                             bool disjoint_bases,
4444                                             const char* &name,
4445                                             bool dest_uninitialized) {
4446   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4447   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4448 
4449   bool aligned = false;
4450   bool disjoint = disjoint_bases;
4451 
4452   // if the offsets are the same, we can treat the memory regions as
4453   // disjoint, because either the memory regions are in different arrays,
4454   // or they are identical (which we can treat as disjoint.)  We can also
4455   // treat a copy with a destination index  less that the source index
4456   // as disjoint since a low->high copy will work correctly in this case.
4457   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4458       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4459     // both indices are constants
4460     int s_offs = src_offset_inttype->get_con();
4461     int d_offs = dest_offset_inttype->get_con();
4462     int element_size = type2aelembytes(t);
4463     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4464               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4465     if (s_offs >= d_offs)  disjoint = true;
4466   } else if (src_offset == dest_offset && src_offset != NULL) {
4467     // This can occur if the offsets are identical non-constants.
4468     disjoint = true;
4469   }
4470 
4471   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4472 }
4473 
4474 
4475 //------------------------------inline_arraycopy-----------------------
4476 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4477 //                                                      Object dest, int destPos,
4478 //                                                      int length);
4479 bool LibraryCallKit::inline_arraycopy() {
4480   // Get the arguments.
4481   Node* src         = argument(0);  // type: oop
4482   Node* src_offset  = argument(1);  // type: int
4483   Node* dest        = argument(2);  // type: oop
4484   Node* dest_offset = argument(3);  // type: int
4485   Node* length      = argument(4);  // type: int
4486 
4487   // Compile time checks.  If any of these checks cannot be verified at compile time,
4488   // we do not make a fast path for this call.  Instead, we let the call remain as it
4489   // is.  The checks we choose to mandate at compile time are:
4490   //
4491   // (1) src and dest are arrays.
4492   const Type* src_type  = src->Value(&_gvn);
4493   const Type* dest_type = dest->Value(&_gvn);
4494   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4495   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4496   if (top_src  == NULL || top_src->klass()  == NULL ||
4497       top_dest == NULL || top_dest->klass() == NULL) {
4498     // Conservatively insert a memory barrier on all memory slices.
4499     // Do not let writes into the source float below the arraycopy.
4500     insert_mem_bar(Op_MemBarCPUOrder);
4501 
4502     // Call StubRoutines::generic_arraycopy stub.
4503     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4504                        src, src_offset, dest, dest_offset, length);
4505 
4506     // Do not let reads from the destination float above the arraycopy.
4507     // Since we cannot type the arrays, we don't know which slices
4508     // might be affected.  We could restrict this barrier only to those
4509     // memory slices which pertain to array elements--but don't bother.
4510     if (!InsertMemBarAfterArraycopy)
4511       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4512       insert_mem_bar(Op_MemBarCPUOrder);
4513     return true;
4514   }
4515 
4516   // (2) src and dest arrays must have elements of the same BasicType
4517   // Figure out the size and type of the elements we will be copying.
4518   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4519   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4520   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4521   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4522 
4523   if (src_elem != dest_elem || dest_elem == T_VOID) {
4524     // The component types are not the same or are not recognized.  Punt.
4525     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4526     generate_slow_arraycopy(TypePtr::BOTTOM,
4527                             src, src_offset, dest, dest_offset, length,
4528                             /*dest_uninitialized*/false);
4529     return true;
4530   }
4531 
4532   //---------------------------------------------------------------------------
4533   // We will make a fast path for this call to arraycopy.
4534 
4535   // We have the following tests left to perform:
4536   //
4537   // (3) src and dest must not be null.
4538   // (4) src_offset must not be negative.
4539   // (5) dest_offset must not be negative.
4540   // (6) length must not be negative.
4541   // (7) src_offset + length must not exceed length of src.
4542   // (8) dest_offset + length must not exceed length of dest.
4543   // (9) each element of an oop array must be assignable
4544 
4545   RegionNode* slow_region = new (C) RegionNode(1);
4546   record_for_igvn(slow_region);
4547 
4548   // (3) operands must not be null
4549   // We currently perform our null checks with the null_check routine.
4550   // This means that the null exceptions will be reported in the caller
4551   // rather than (correctly) reported inside of the native arraycopy call.
4552   // This should be corrected, given time.  We do our null check with the
4553   // stack pointer restored.
4554   src  = null_check(src,  T_ARRAY);
4555   dest = null_check(dest, T_ARRAY);
4556 
4557   // (4) src_offset must not be negative.
4558   generate_negative_guard(src_offset, slow_region);
4559 
4560   // (5) dest_offset must not be negative.
4561   generate_negative_guard(dest_offset, slow_region);
4562 
4563   // (6) length must not be negative (moved to generate_arraycopy()).
4564   // generate_negative_guard(length, slow_region);
4565 
4566   // (7) src_offset + length must not exceed length of src.
4567   generate_limit_guard(src_offset, length,
4568                        load_array_length(src),
4569                        slow_region);
4570 
4571   // (8) dest_offset + length must not exceed length of dest.
4572   generate_limit_guard(dest_offset, length,
4573                        load_array_length(dest),
4574                        slow_region);
4575 
4576   // (9) each element of an oop array must be assignable
4577   // The generate_arraycopy subroutine checks this.
4578 
4579   // This is where the memory effects are placed:
4580   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4581   generate_arraycopy(adr_type, dest_elem,
4582                      src, src_offset, dest, dest_offset, length,
4583                      false, false, slow_region);
4584 
4585   return true;
4586 }
4587 
4588 //-----------------------------generate_arraycopy----------------------
4589 // Generate an optimized call to arraycopy.
4590 // Caller must guard against non-arrays.
4591 // Caller must determine a common array basic-type for both arrays.
4592 // Caller must validate offsets against array bounds.
4593 // The slow_region has already collected guard failure paths
4594 // (such as out of bounds length or non-conformable array types).
4595 // The generated code has this shape, in general:
4596 //
4597 //     if (length == 0)  return   // via zero_path
4598 //     slowval = -1
4599 //     if (types unknown) {
4600 //       slowval = call generic copy loop
4601 //       if (slowval == 0)  return  // via checked_path
4602 //     } else if (indexes in bounds) {
4603 //       if ((is object array) && !(array type check)) {
4604 //         slowval = call checked copy loop
4605 //         if (slowval == 0)  return  // via checked_path
4606 //       } else {
4607 //         call bulk copy loop
4608 //         return  // via fast_path
4609 //       }
4610 //     }
4611 //     // adjust params for remaining work:
4612 //     if (slowval != -1) {
4613 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4614 //     }
4615 //   slow_region:
4616 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4617 //     return  // via slow_call_path
4618 //
4619 // This routine is used from several intrinsics:  System.arraycopy,
4620 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4621 //
4622 void
4623 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4624                                    BasicType basic_elem_type,
4625                                    Node* src,  Node* src_offset,
4626                                    Node* dest, Node* dest_offset,
4627                                    Node* copy_length,
4628                                    bool disjoint_bases,
4629                                    bool length_never_negative,
4630                                    RegionNode* slow_region) {
4631 
4632   if (slow_region == NULL) {
4633     slow_region = new(C) RegionNode(1);
4634     record_for_igvn(slow_region);
4635   }
4636 
4637   Node* original_dest      = dest;
4638   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4639   bool  dest_uninitialized = false;
4640 
4641   // See if this is the initialization of a newly-allocated array.
4642   // If so, we will take responsibility here for initializing it to zero.
4643   // (Note:  Because tightly_coupled_allocation performs checks on the
4644   // out-edges of the dest, we need to avoid making derived pointers
4645   // from it until we have checked its uses.)
4646   if (ReduceBulkZeroing
4647       && !ZeroTLAB              // pointless if already zeroed
4648       && basic_elem_type != T_CONFLICT // avoid corner case
4649       && !src->eqv_uncast(dest)
4650       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4651           != NULL)
4652       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4653       && alloc->maybe_set_complete(&_gvn)) {
4654     // "You break it, you buy it."
4655     InitializeNode* init = alloc->initialization();
4656     assert(init->is_complete(), "we just did this");
4657     init->set_complete_with_arraycopy();
4658     assert(dest->is_CheckCastPP(), "sanity");
4659     assert(dest->in(0)->in(0) == init, "dest pinned");
4660     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4661     // From this point on, every exit path is responsible for
4662     // initializing any non-copied parts of the object to zero.
4663     // Also, if this flag is set we make sure that arraycopy interacts properly
4664     // with G1, eliding pre-barriers. See CR 6627983.
4665     dest_uninitialized = true;
4666   } else {
4667     // No zeroing elimination here.
4668     alloc             = NULL;
4669     //original_dest   = dest;
4670     //dest_uninitialized = false;
4671   }
4672 
4673   // Results are placed here:
4674   enum { fast_path        = 1,  // normal void-returning assembly stub
4675          checked_path     = 2,  // special assembly stub with cleanup
4676          slow_call_path   = 3,  // something went wrong; call the VM
4677          zero_path        = 4,  // bypass when length of copy is zero
4678          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4679          PATH_LIMIT       = 6
4680   };
4681   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4682   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4683   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4684   record_for_igvn(result_region);
4685   _gvn.set_type_bottom(result_i_o);
4686   _gvn.set_type_bottom(result_memory);
4687   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4688 
4689   // The slow_control path:
4690   Node* slow_control;
4691   Node* slow_i_o = i_o();
4692   Node* slow_mem = memory(adr_type);
4693   debug_only(slow_control = (Node*) badAddress);
4694 
4695   // Checked control path:
4696   Node* checked_control = top();
4697   Node* checked_mem     = NULL;
4698   Node* checked_i_o     = NULL;
4699   Node* checked_value   = NULL;
4700 
4701   if (basic_elem_type == T_CONFLICT) {
4702     assert(!dest_uninitialized, "");
4703     Node* cv = generate_generic_arraycopy(adr_type,
4704                                           src, src_offset, dest, dest_offset,
4705                                           copy_length, dest_uninitialized);
4706     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4707     checked_control = control();
4708     checked_i_o     = i_o();
4709     checked_mem     = memory(adr_type);
4710     checked_value   = cv;
4711     set_control(top());         // no fast path
4712   }
4713 
4714   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4715   if (not_pos != NULL) {
4716     PreserveJVMState pjvms(this);
4717     set_control(not_pos);
4718 
4719     // (6) length must not be negative.
4720     if (!length_never_negative) {
4721       generate_negative_guard(copy_length, slow_region);
4722     }
4723 
4724     // copy_length is 0.
4725     if (!stopped() && dest_uninitialized) {
4726       Node* dest_length = alloc->in(AllocateNode::ALength);
4727       if (copy_length->eqv_uncast(dest_length)
4728           || _gvn.find_int_con(dest_length, 1) <= 0) {
4729         // There is no zeroing to do. No need for a secondary raw memory barrier.
4730       } else {
4731         // Clear the whole thing since there are no source elements to copy.
4732         generate_clear_array(adr_type, dest, basic_elem_type,
4733                              intcon(0), NULL,
4734                              alloc->in(AllocateNode::AllocSize));
4735         // Use a secondary InitializeNode as raw memory barrier.
4736         // Currently it is needed only on this path since other
4737         // paths have stub or runtime calls as raw memory barriers.
4738         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
4739                                                        Compile::AliasIdxRaw,
4740                                                        top())->as_Initialize();
4741         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
4742       }
4743     }
4744 
4745     // Present the results of the fast call.
4746     result_region->init_req(zero_path, control());
4747     result_i_o   ->init_req(zero_path, i_o());
4748     result_memory->init_req(zero_path, memory(adr_type));
4749   }
4750 
4751   if (!stopped() && dest_uninitialized) {
4752     // We have to initialize the *uncopied* part of the array to zero.
4753     // The copy destination is the slice dest[off..off+len].  The other slices
4754     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
4755     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
4756     Node* dest_length = alloc->in(AllocateNode::ALength);
4757     Node* dest_tail   = _gvn.transform( new(C) AddINode(dest_offset,
4758                                                           copy_length) );
4759 
4760     // If there is a head section that needs zeroing, do it now.
4761     if (find_int_con(dest_offset, -1) != 0) {
4762       generate_clear_array(adr_type, dest, basic_elem_type,
4763                            intcon(0), dest_offset,
4764                            NULL);
4765     }
4766 
4767     // Next, perform a dynamic check on the tail length.
4768     // It is often zero, and we can win big if we prove this.
4769     // There are two wins:  Avoid generating the ClearArray
4770     // with its attendant messy index arithmetic, and upgrade
4771     // the copy to a more hardware-friendly word size of 64 bits.
4772     Node* tail_ctl = NULL;
4773     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
4774       Node* cmp_lt   = _gvn.transform( new(C) CmpINode(dest_tail, dest_length) );
4775       Node* bol_lt   = _gvn.transform( new(C) BoolNode(cmp_lt, BoolTest::lt) );
4776       tail_ctl = generate_slow_guard(bol_lt, NULL);
4777       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
4778     }
4779 
4780     // At this point, let's assume there is no tail.
4781     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
4782       // There is no tail.  Try an upgrade to a 64-bit copy.
4783       bool didit = false;
4784       { PreserveJVMState pjvms(this);
4785         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
4786                                          src, src_offset, dest, dest_offset,
4787                                          dest_size, dest_uninitialized);
4788         if (didit) {
4789           // Present the results of the block-copying fast call.
4790           result_region->init_req(bcopy_path, control());
4791           result_i_o   ->init_req(bcopy_path, i_o());
4792           result_memory->init_req(bcopy_path, memory(adr_type));
4793         }
4794       }
4795       if (didit)
4796         set_control(top());     // no regular fast path
4797     }
4798 
4799     // Clear the tail, if any.
4800     if (tail_ctl != NULL) {
4801       Node* notail_ctl = stopped() ? NULL : control();
4802       set_control(tail_ctl);
4803       if (notail_ctl == NULL) {
4804         generate_clear_array(adr_type, dest, basic_elem_type,
4805                              dest_tail, NULL,
4806                              dest_size);
4807       } else {
4808         // Make a local merge.
4809         Node* done_ctl = new(C) RegionNode(3);
4810         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
4811         done_ctl->init_req(1, notail_ctl);
4812         done_mem->init_req(1, memory(adr_type));
4813         generate_clear_array(adr_type, dest, basic_elem_type,
4814                              dest_tail, NULL,
4815                              dest_size);
4816         done_ctl->init_req(2, control());
4817         done_mem->init_req(2, memory(adr_type));
4818         set_control( _gvn.transform(done_ctl) );
4819         set_memory(  _gvn.transform(done_mem), adr_type );
4820       }
4821     }
4822   }
4823 
4824   BasicType copy_type = basic_elem_type;
4825   assert(basic_elem_type != T_ARRAY, "caller must fix this");
4826   if (!stopped() && copy_type == T_OBJECT) {
4827     // If src and dest have compatible element types, we can copy bits.
4828     // Types S[] and D[] are compatible if D is a supertype of S.
4829     //
4830     // If they are not, we will use checked_oop_disjoint_arraycopy,
4831     // which performs a fast optimistic per-oop check, and backs off
4832     // further to JVM_ArrayCopy on the first per-oop check that fails.
4833     // (Actually, we don't move raw bits only; the GC requires card marks.)
4834 
4835     // Get the klassOop for both src and dest
4836     Node* src_klass  = load_object_klass(src);
4837     Node* dest_klass = load_object_klass(dest);
4838 
4839     // Generate the subtype check.
4840     // This might fold up statically, or then again it might not.
4841     //
4842     // Non-static example:  Copying List<String>.elements to a new String[].
4843     // The backing store for a List<String> is always an Object[],
4844     // but its elements are always type String, if the generic types
4845     // are correct at the source level.
4846     //
4847     // Test S[] against D[], not S against D, because (probably)
4848     // the secondary supertype cache is less busy for S[] than S.
4849     // This usually only matters when D is an interface.
4850     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
4851     // Plug failing path into checked_oop_disjoint_arraycopy
4852     if (not_subtype_ctrl != top()) {
4853       PreserveJVMState pjvms(this);
4854       set_control(not_subtype_ctrl);
4855       // (At this point we can assume disjoint_bases, since types differ.)
4856       int ek_offset = in_bytes(objArrayKlass::element_klass_offset());
4857       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
4858       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
4859       Node* dest_elem_klass = _gvn.transform(n1);
4860       Node* cv = generate_checkcast_arraycopy(adr_type,
4861                                               dest_elem_klass,
4862                                               src, src_offset, dest, dest_offset,
4863                                               ConvI2X(copy_length), dest_uninitialized);
4864       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4865       checked_control = control();
4866       checked_i_o     = i_o();
4867       checked_mem     = memory(adr_type);
4868       checked_value   = cv;
4869     }
4870     // At this point we know we do not need type checks on oop stores.
4871 
4872     // Let's see if we need card marks:
4873     if (alloc != NULL && use_ReduceInitialCardMarks()) {
4874       // If we do not need card marks, copy using the jint or jlong stub.
4875       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
4876       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
4877              "sizes agree");
4878     }
4879   }
4880 
4881   if (!stopped()) {
4882     // Generate the fast path, if possible.
4883     PreserveJVMState pjvms(this);
4884     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
4885                                  src, src_offset, dest, dest_offset,
4886                                  ConvI2X(copy_length), dest_uninitialized);
4887 
4888     // Present the results of the fast call.
4889     result_region->init_req(fast_path, control());
4890     result_i_o   ->init_req(fast_path, i_o());
4891     result_memory->init_req(fast_path, memory(adr_type));
4892   }
4893 
4894   // Here are all the slow paths up to this point, in one bundle:
4895   slow_control = top();
4896   if (slow_region != NULL)
4897     slow_control = _gvn.transform(slow_region);
4898   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
4899 
4900   set_control(checked_control);
4901   if (!stopped()) {
4902     // Clean up after the checked call.
4903     // The returned value is either 0 or -1^K,
4904     // where K = number of partially transferred array elements.
4905     Node* cmp = _gvn.transform( new(C) CmpINode(checked_value, intcon(0)) );
4906     Node* bol = _gvn.transform( new(C) BoolNode(cmp, BoolTest::eq) );
4907     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
4908 
4909     // If it is 0, we are done, so transfer to the end.
4910     Node* checks_done = _gvn.transform( new(C) IfTrueNode(iff) );
4911     result_region->init_req(checked_path, checks_done);
4912     result_i_o   ->init_req(checked_path, checked_i_o);
4913     result_memory->init_req(checked_path, checked_mem);
4914 
4915     // If it is not zero, merge into the slow call.
4916     set_control( _gvn.transform( new(C) IfFalseNode(iff) ));
4917     RegionNode* slow_reg2 = new(C) RegionNode(3);
4918     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
4919     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
4920     record_for_igvn(slow_reg2);
4921     slow_reg2  ->init_req(1, slow_control);
4922     slow_i_o2  ->init_req(1, slow_i_o);
4923     slow_mem2  ->init_req(1, slow_mem);
4924     slow_reg2  ->init_req(2, control());
4925     slow_i_o2  ->init_req(2, checked_i_o);
4926     slow_mem2  ->init_req(2, checked_mem);
4927 
4928     slow_control = _gvn.transform(slow_reg2);
4929     slow_i_o     = _gvn.transform(slow_i_o2);
4930     slow_mem     = _gvn.transform(slow_mem2);
4931 
4932     if (alloc != NULL) {
4933       // We'll restart from the very beginning, after zeroing the whole thing.
4934       // This can cause double writes, but that's OK since dest is brand new.
4935       // So we ignore the low 31 bits of the value returned from the stub.
4936     } else {
4937       // We must continue the copy exactly where it failed, or else
4938       // another thread might see the wrong number of writes to dest.
4939       Node* checked_offset = _gvn.transform( new(C) XorINode(checked_value, intcon(-1)) );
4940       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
4941       slow_offset->init_req(1, intcon(0));
4942       slow_offset->init_req(2, checked_offset);
4943       slow_offset  = _gvn.transform(slow_offset);
4944 
4945       // Adjust the arguments by the conditionally incoming offset.
4946       Node* src_off_plus  = _gvn.transform( new(C) AddINode(src_offset,  slow_offset) );
4947       Node* dest_off_plus = _gvn.transform( new(C) AddINode(dest_offset, slow_offset) );
4948       Node* length_minus  = _gvn.transform( new(C) SubINode(copy_length, slow_offset) );
4949 
4950       // Tweak the node variables to adjust the code produced below:
4951       src_offset  = src_off_plus;
4952       dest_offset = dest_off_plus;
4953       copy_length = length_minus;
4954     }
4955   }
4956 
4957   set_control(slow_control);
4958   if (!stopped()) {
4959     // Generate the slow path, if needed.
4960     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
4961 
4962     set_memory(slow_mem, adr_type);
4963     set_i_o(slow_i_o);
4964 
4965     if (dest_uninitialized) {
4966       generate_clear_array(adr_type, dest, basic_elem_type,
4967                            intcon(0), NULL,
4968                            alloc->in(AllocateNode::AllocSize));
4969     }
4970 
4971     generate_slow_arraycopy(adr_type,
4972                             src, src_offset, dest, dest_offset,
4973                             copy_length, /*dest_uninitialized*/false);
4974 
4975     result_region->init_req(slow_call_path, control());
4976     result_i_o   ->init_req(slow_call_path, i_o());
4977     result_memory->init_req(slow_call_path, memory(adr_type));
4978   }
4979 
4980   // Remove unused edges.
4981   for (uint i = 1; i < result_region->req(); i++) {
4982     if (result_region->in(i) == NULL)
4983       result_region->init_req(i, top());
4984   }
4985 
4986   // Finished; return the combined state.
4987   set_control( _gvn.transform(result_region) );
4988   set_i_o(     _gvn.transform(result_i_o)    );
4989   set_memory(  _gvn.transform(result_memory), adr_type );
4990 
4991   // The memory edges above are precise in order to model effects around
4992   // array copies accurately to allow value numbering of field loads around
4993   // arraycopy.  Such field loads, both before and after, are common in Java
4994   // collections and similar classes involving header/array data structures.
4995   //
4996   // But with low number of register or when some registers are used or killed
4997   // by arraycopy calls it causes registers spilling on stack. See 6544710.
4998   // The next memory barrier is added to avoid it. If the arraycopy can be
4999   // optimized away (which it can, sometimes) then we can manually remove
5000   // the membar also.
5001   //
5002   // Do not let reads from the cloned object float above the arraycopy.
5003   if (alloc != NULL) {
5004     // Do not let stores that initialize this object be reordered with
5005     // a subsequent store that would make this object accessible by
5006     // other threads.
5007     // Record what AllocateNode this StoreStore protects so that
5008     // escape analysis can go from the MemBarStoreStoreNode to the
5009     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5010     // based on the escape status of the AllocateNode.
5011     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5012   } else if (InsertMemBarAfterArraycopy)
5013     insert_mem_bar(Op_MemBarCPUOrder);
5014 }
5015 
5016 
5017 // Helper function which determines if an arraycopy immediately follows
5018 // an allocation, with no intervening tests or other escapes for the object.
5019 AllocateArrayNode*
5020 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5021                                            RegionNode* slow_region) {
5022   if (stopped())             return NULL;  // no fast path
5023   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5024 
5025   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5026   if (alloc == NULL)  return NULL;
5027 
5028   Node* rawmem = memory(Compile::AliasIdxRaw);
5029   // Is the allocation's memory state untouched?
5030   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5031     // Bail out if there have been raw-memory effects since the allocation.
5032     // (Example:  There might have been a call or safepoint.)
5033     return NULL;
5034   }
5035   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5036   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5037     return NULL;
5038   }
5039 
5040   // There must be no unexpected observers of this allocation.
5041   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5042     Node* obs = ptr->fast_out(i);
5043     if (obs != this->map()) {
5044       return NULL;
5045     }
5046   }
5047 
5048   // This arraycopy must unconditionally follow the allocation of the ptr.
5049   Node* alloc_ctl = ptr->in(0);
5050   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5051 
5052   Node* ctl = control();
5053   while (ctl != alloc_ctl) {
5054     // There may be guards which feed into the slow_region.
5055     // Any other control flow means that we might not get a chance
5056     // to finish initializing the allocated object.
5057     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5058       IfNode* iff = ctl->in(0)->as_If();
5059       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5060       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5061       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5062         ctl = iff->in(0);       // This test feeds the known slow_region.
5063         continue;
5064       }
5065       // One more try:  Various low-level checks bottom out in
5066       // uncommon traps.  If the debug-info of the trap omits
5067       // any reference to the allocation, as we've already
5068       // observed, then there can be no objection to the trap.
5069       bool found_trap = false;
5070       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5071         Node* obs = not_ctl->fast_out(j);
5072         if (obs->in(0) == not_ctl && obs->is_Call() &&
5073             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5074           found_trap = true; break;
5075         }
5076       }
5077       if (found_trap) {
5078         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5079         continue;
5080       }
5081     }
5082     return NULL;
5083   }
5084 
5085   // If we get this far, we have an allocation which immediately
5086   // precedes the arraycopy, and we can take over zeroing the new object.
5087   // The arraycopy will finish the initialization, and provide
5088   // a new control state to which we will anchor the destination pointer.
5089 
5090   return alloc;
5091 }
5092 
5093 // Helper for initialization of arrays, creating a ClearArray.
5094 // It writes zero bits in [start..end), within the body of an array object.
5095 // The memory effects are all chained onto the 'adr_type' alias category.
5096 //
5097 // Since the object is otherwise uninitialized, we are free
5098 // to put a little "slop" around the edges of the cleared area,
5099 // as long as it does not go back into the array's header,
5100 // or beyond the array end within the heap.
5101 //
5102 // The lower edge can be rounded down to the nearest jint and the
5103 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5104 //
5105 // Arguments:
5106 //   adr_type           memory slice where writes are generated
5107 //   dest               oop of the destination array
5108 //   basic_elem_type    element type of the destination
5109 //   slice_idx          array index of first element to store
5110 //   slice_len          number of elements to store (or NULL)
5111 //   dest_size          total size in bytes of the array object
5112 //
5113 // Exactly one of slice_len or dest_size must be non-NULL.
5114 // If dest_size is non-NULL, zeroing extends to the end of the object.
5115 // If slice_len is non-NULL, the slice_idx value must be a constant.
5116 void
5117 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5118                                      Node* dest,
5119                                      BasicType basic_elem_type,
5120                                      Node* slice_idx,
5121                                      Node* slice_len,
5122                                      Node* dest_size) {
5123   // one or the other but not both of slice_len and dest_size:
5124   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5125   if (slice_len == NULL)  slice_len = top();
5126   if (dest_size == NULL)  dest_size = top();
5127 
5128   // operate on this memory slice:
5129   Node* mem = memory(adr_type); // memory slice to operate on
5130 
5131   // scaling and rounding of indexes:
5132   int scale = exact_log2(type2aelembytes(basic_elem_type));
5133   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5134   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5135   int bump_bit  = (-1 << scale) & BytesPerInt;
5136 
5137   // determine constant starts and ends
5138   const intptr_t BIG_NEG = -128;
5139   assert(BIG_NEG + 2*abase < 0, "neg enough");
5140   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5141   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5142   if (slice_len_con == 0) {
5143     return;                     // nothing to do here
5144   }
5145   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5146   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5147   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5148     assert(end_con < 0, "not two cons");
5149     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5150                        BytesPerLong);
5151   }
5152 
5153   if (start_con >= 0 && end_con >= 0) {
5154     // Constant start and end.  Simple.
5155     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5156                                        start_con, end_con, &_gvn);
5157   } else if (start_con >= 0 && dest_size != top()) {
5158     // Constant start, pre-rounded end after the tail of the array.
5159     Node* end = dest_size;
5160     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5161                                        start_con, end, &_gvn);
5162   } else if (start_con >= 0 && slice_len != top()) {
5163     // Constant start, non-constant end.  End needs rounding up.
5164     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5165     intptr_t end_base  = abase + (slice_idx_con << scale);
5166     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5167     Node*    end       = ConvI2X(slice_len);
5168     if (scale != 0)
5169       end = _gvn.transform( new(C) LShiftXNode(end, intcon(scale) ));
5170     end_base += end_round;
5171     end = _gvn.transform( new(C) AddXNode(end, MakeConX(end_base)) );
5172     end = _gvn.transform( new(C) AndXNode(end, MakeConX(~end_round)) );
5173     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5174                                        start_con, end, &_gvn);
5175   } else if (start_con < 0 && dest_size != top()) {
5176     // Non-constant start, pre-rounded end after the tail of the array.
5177     // This is almost certainly a "round-to-end" operation.
5178     Node* start = slice_idx;
5179     start = ConvI2X(start);
5180     if (scale != 0)
5181       start = _gvn.transform( new(C) LShiftXNode( start, intcon(scale) ));
5182     start = _gvn.transform( new(C) AddXNode(start, MakeConX(abase)) );
5183     if ((bump_bit | clear_low) != 0) {
5184       int to_clear = (bump_bit | clear_low);
5185       // Align up mod 8, then store a jint zero unconditionally
5186       // just before the mod-8 boundary.
5187       if (((abase + bump_bit) & ~to_clear) - bump_bit
5188           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5189         bump_bit = 0;
5190         assert((abase & to_clear) == 0, "array base must be long-aligned");
5191       } else {
5192         // Bump 'start' up to (or past) the next jint boundary:
5193         start = _gvn.transform( new(C) AddXNode(start, MakeConX(bump_bit)) );
5194         assert((abase & clear_low) == 0, "array base must be int-aligned");
5195       }
5196       // Round bumped 'start' down to jlong boundary in body of array.
5197       start = _gvn.transform( new(C) AndXNode(start, MakeConX(~to_clear)) );
5198       if (bump_bit != 0) {
5199         // Store a zero to the immediately preceding jint:
5200         Node* x1 = _gvn.transform( new(C) AddXNode(start, MakeConX(-bump_bit)) );
5201         Node* p1 = basic_plus_adr(dest, x1);
5202         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, StoreNode::unordered);
5203         mem = _gvn.transform(mem);
5204       }
5205     }
5206     Node* end = dest_size; // pre-rounded
5207     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5208                                        start, end, &_gvn);
5209   } else {
5210     // Non-constant start, unrounded non-constant end.
5211     // (Nobody zeroes a random midsection of an array using this routine.)
5212     ShouldNotReachHere();       // fix caller
5213   }
5214 
5215   // Done.
5216   set_memory(mem, adr_type);
5217 }
5218 
5219 
5220 bool
5221 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5222                                          BasicType basic_elem_type,
5223                                          AllocateNode* alloc,
5224                                          Node* src,  Node* src_offset,
5225                                          Node* dest, Node* dest_offset,
5226                                          Node* dest_size, bool dest_uninitialized) {
5227   // See if there is an advantage from block transfer.
5228   int scale = exact_log2(type2aelembytes(basic_elem_type));
5229   if (scale >= LogBytesPerLong)
5230     return false;               // it is already a block transfer
5231 
5232   // Look at the alignment of the starting offsets.
5233   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5234 
5235   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5236   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5237   if (src_off_con < 0 || dest_off_con < 0)
5238     // At present, we can only understand constants.
5239     return false;
5240 
5241   intptr_t src_off  = abase + (src_off_con  << scale);
5242   intptr_t dest_off = abase + (dest_off_con << scale);
5243 
5244   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5245     // Non-aligned; too bad.
5246     // One more chance:  Pick off an initial 32-bit word.
5247     // This is a common case, since abase can be odd mod 8.
5248     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5249         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5250       Node* sptr = basic_plus_adr(src,  src_off);
5251       Node* dptr = basic_plus_adr(dest, dest_off);
5252       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type);
5253       store_to_memory(control(), dptr, sval, T_INT, adr_type);
5254       src_off += BytesPerInt;
5255       dest_off += BytesPerInt;
5256     } else {
5257       return false;
5258     }
5259   }
5260   assert(src_off % BytesPerLong == 0, "");
5261   assert(dest_off % BytesPerLong == 0, "");
5262 
5263   // Do this copy by giant steps.
5264   Node* sptr  = basic_plus_adr(src,  src_off);
5265   Node* dptr  = basic_plus_adr(dest, dest_off);
5266   Node* countx = dest_size;
5267   countx = _gvn.transform( new (C) SubXNode(countx, MakeConX(dest_off)) );
5268   countx = _gvn.transform( new (C) URShiftXNode(countx, intcon(LogBytesPerLong)) );
5269 
5270   bool disjoint_bases = true;   // since alloc != NULL
5271   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5272                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5273 
5274   return true;
5275 }
5276 
5277 
5278 // Helper function; generates code for the slow case.
5279 // We make a call to a runtime method which emulates the native method,
5280 // but without the native wrapper overhead.
5281 void
5282 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5283                                         Node* src,  Node* src_offset,
5284                                         Node* dest, Node* dest_offset,
5285                                         Node* copy_length, bool dest_uninitialized) {
5286   assert(!dest_uninitialized, "Invariant");
5287   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5288                                  OptoRuntime::slow_arraycopy_Type(),
5289                                  OptoRuntime::slow_arraycopy_Java(),
5290                                  "slow_arraycopy", adr_type,
5291                                  src, src_offset, dest, dest_offset,
5292                                  copy_length);
5293 
5294   // Handle exceptions thrown by this fellow:
5295   make_slow_call_ex(call, env()->Throwable_klass(), false);
5296 }
5297 
5298 // Helper function; generates code for cases requiring runtime checks.
5299 Node*
5300 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5301                                              Node* dest_elem_klass,
5302                                              Node* src,  Node* src_offset,
5303                                              Node* dest, Node* dest_offset,
5304                                              Node* copy_length, bool dest_uninitialized) {
5305   if (stopped())  return NULL;
5306 
5307   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5308   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5309     return NULL;
5310   }
5311 
5312   // Pick out the parameters required to perform a store-check
5313   // for the target array.  This is an optimistic check.  It will
5314   // look in each non-null element's class, at the desired klass's
5315   // super_check_offset, for the desired klass.
5316   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5317   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5318   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr());
5319   Node* check_offset = ConvI2X(_gvn.transform(n3));
5320   Node* check_value  = dest_elem_klass;
5321 
5322   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5323   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5324 
5325   // (We know the arrays are never conjoint, because their types differ.)
5326   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5327                                  OptoRuntime::checkcast_arraycopy_Type(),
5328                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5329                                  // five arguments, of which two are
5330                                  // intptr_t (jlong in LP64)
5331                                  src_start, dest_start,
5332                                  copy_length XTOP,
5333                                  check_offset XTOP,
5334                                  check_value);
5335 
5336   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5337 }
5338 
5339 
5340 // Helper function; generates code for cases requiring runtime checks.
5341 Node*
5342 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5343                                            Node* src,  Node* src_offset,
5344                                            Node* dest, Node* dest_offset,
5345                                            Node* copy_length, bool dest_uninitialized) {
5346   assert(!dest_uninitialized, "Invariant");
5347   if (stopped())  return NULL;
5348   address copyfunc_addr = StubRoutines::generic_arraycopy();
5349   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5350     return NULL;
5351   }
5352 
5353   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5354                     OptoRuntime::generic_arraycopy_Type(),
5355                     copyfunc_addr, "generic_arraycopy", adr_type,
5356                     src, src_offset, dest, dest_offset, copy_length);
5357 
5358   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5359 }
5360 
5361 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5362 void
5363 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5364                                              BasicType basic_elem_type,
5365                                              bool disjoint_bases,
5366                                              Node* src,  Node* src_offset,
5367                                              Node* dest, Node* dest_offset,
5368                                              Node* copy_length, bool dest_uninitialized) {
5369   if (stopped())  return;               // nothing to do
5370 
5371   Node* src_start  = src;
5372   Node* dest_start = dest;
5373   if (src_offset != NULL || dest_offset != NULL) {
5374     assert(src_offset != NULL && dest_offset != NULL, "");
5375     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5376     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5377   }
5378 
5379   // Figure out which arraycopy runtime method to call.
5380   const char* copyfunc_name = "arraycopy";
5381   address     copyfunc_addr =
5382       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5383                           disjoint_bases, copyfunc_name, dest_uninitialized);
5384 
5385   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5386   make_runtime_call(RC_LEAF|RC_NO_FP,
5387                     OptoRuntime::fast_arraycopy_Type(),
5388                     copyfunc_addr, copyfunc_name, adr_type,
5389                     src_start, dest_start, copy_length XTOP);
5390 }
5391 
5392 //----------------------------inline_reference_get----------------------------
5393 // public T java.lang.ref.Reference.get();
5394 bool LibraryCallKit::inline_reference_get() {
5395   const int referent_offset = java_lang_ref_Reference::referent_offset;
5396   guarantee(referent_offset > 0, "should have already been set");
5397 
5398   // Get the argument:
5399   Node* reference_obj = null_check_receiver();
5400   if (stopped()) return true;
5401 
5402   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5403 
5404   ciInstanceKlass* klass = env()->Object_klass();
5405   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5406 
5407   Node* no_ctrl = NULL;
5408   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT);
5409 
5410   // Use the pre-barrier to record the value in the referent field
5411   pre_barrier(false /* do_load */,
5412               control(),
5413               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5414               result /* pre_val */,
5415               T_OBJECT);
5416 
5417   // Add memory barrier to prevent commoning reads from this field
5418   // across safepoint since GC can change its value.
5419   insert_mem_bar(Op_MemBarCPUOrder);
5420 
5421   set_result(result);
5422   return true;
5423 }
5424 
5425 
5426 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5427                                               bool is_exact=true, bool is_static=false) {
5428 
5429   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5430   assert(tinst != NULL, "obj is null");
5431   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5432   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5433 
5434   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5435                                                                           ciSymbol::make(fieldTypeString),
5436                                                                           is_static);
5437   if (field == NULL) return (Node *) NULL;
5438   assert (field != NULL, "undefined field");
5439 
5440   // Next code  copied from Parse::do_get_xxx():
5441 
5442   // Compute address and memory type.
5443   int offset  = field->offset_in_bytes();
5444   bool is_vol = field->is_volatile();
5445   ciType* field_klass = field->type();
5446   assert(field_klass->is_loaded(), "should be loaded");
5447   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5448   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5449   BasicType bt = field->layout_type();
5450 
5451   // Build the resultant type of the load
5452   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5453 
5454   // Build the load.
5455   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, is_vol);
5456   return loadedField;
5457 }
5458 
5459 
5460 //------------------------------inline_aescrypt_Block-----------------------
5461 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5462   address stubAddr;
5463   const char *stubName;
5464   assert(UseAES, "need AES instruction support");
5465 
5466   switch(id) {
5467   case vmIntrinsics::_aescrypt_encryptBlock:
5468     stubAddr = StubRoutines::aescrypt_encryptBlock();
5469     stubName = "aescrypt_encryptBlock";
5470     break;
5471   case vmIntrinsics::_aescrypt_decryptBlock:
5472     stubAddr = StubRoutines::aescrypt_decryptBlock();
5473     stubName = "aescrypt_decryptBlock";
5474     break;
5475   }
5476   if (stubAddr == NULL) return false;
5477 
5478   Node* aescrypt_object = argument(0);
5479   Node* src             = argument(1);
5480   Node* src_offset      = argument(2);
5481   Node* dest            = argument(3);
5482   Node* dest_offset     = argument(4);
5483 
5484   // (1) src and dest are arrays.
5485   const Type* src_type = src->Value(&_gvn);
5486   const Type* dest_type = dest->Value(&_gvn);
5487   const TypeAryPtr* top_src = src_type->isa_aryptr();
5488   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5489   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5490 
5491   // for the quick and dirty code we will skip all the checks.
5492   // we are just trying to get the call to be generated.
5493   Node* src_start  = src;
5494   Node* dest_start = dest;
5495   if (src_offset != NULL || dest_offset != NULL) {
5496     assert(src_offset != NULL && dest_offset != NULL, "");
5497     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5498     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5499   }
5500 
5501   // now need to get the start of its expanded key array
5502   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5503   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5504   if (k_start == NULL) return false;
5505 
5506   // Call the stub.
5507   make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5508                     stubAddr, stubName, TypePtr::BOTTOM,
5509                     src_start, dest_start, k_start);
5510 
5511   return true;
5512 }
5513 
5514 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5515 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5516   address stubAddr;
5517   const char *stubName;
5518 
5519   assert(UseAES, "need AES instruction support");
5520 
5521   switch(id) {
5522   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5523     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5524     stubName = "cipherBlockChaining_encryptAESCrypt";
5525     break;
5526   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5527     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5528     stubName = "cipherBlockChaining_decryptAESCrypt";
5529     break;
5530   }
5531   if (stubAddr == NULL) return false;
5532 
5533   Node* cipherBlockChaining_object = argument(0);
5534   Node* src                        = argument(1);
5535   Node* src_offset                 = argument(2);
5536   Node* len                        = argument(3);
5537   Node* dest                       = argument(4);
5538   Node* dest_offset                = argument(5);
5539 
5540   // (1) src and dest are arrays.
5541   const Type* src_type = src->Value(&_gvn);
5542   const Type* dest_type = dest->Value(&_gvn);
5543   const TypeAryPtr* top_src = src_type->isa_aryptr();
5544   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5545   assert (top_src  != NULL && top_src->klass()  != NULL
5546           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5547 
5548   // checks are the responsibility of the caller
5549   Node* src_start  = src;
5550   Node* dest_start = dest;
5551   if (src_offset != NULL || dest_offset != NULL) {
5552     assert(src_offset != NULL && dest_offset != NULL, "");
5553     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5554     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5555   }
5556 
5557   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5558   // (because of the predicated logic executed earlier).
5559   // so we cast it here safely.
5560   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5561 
5562   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5563   if (embeddedCipherObj == NULL) return false;
5564 
5565   // cast it to what we know it will be at runtime
5566   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5567   assert(tinst != NULL, "CBC obj is null");
5568   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5569   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5570   if (!klass_AESCrypt->is_loaded()) return false;
5571 
5572   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5573   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
5574   const TypeOopPtr* xtype = aklass->as_instance_type();
5575   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
5576   aescrypt_object = _gvn.transform(aescrypt_object);
5577 
5578   // we need to get the start of the aescrypt_object's expanded key array
5579   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5580   if (k_start == NULL) return false;
5581 
5582   // similarly, get the start address of the r vector
5583   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
5584   if (objRvec == NULL) return false;
5585   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
5586 
5587   // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
5588   make_runtime_call(RC_LEAF|RC_NO_FP,
5589                     OptoRuntime::cipherBlockChaining_aescrypt_Type(),
5590                     stubAddr, stubName, TypePtr::BOTTOM,
5591                     src_start, dest_start, k_start, r_start, len);
5592 
5593   // return is void so no result needs to be pushed
5594 
5595   return true;
5596 }
5597 
5598 //------------------------------get_key_start_from_aescrypt_object-----------------------
5599 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
5600   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
5601   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
5602   if (objAESCryptKey == NULL) return (Node *) NULL;
5603 
5604   // now have the array, need to get the start address of the K array
5605   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
5606   return k_start;
5607 }
5608 
5609 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
5610 // Return node representing slow path of predicate check.
5611 // the pseudo code we want to emulate with this predicate is:
5612 // for encryption:
5613 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
5614 // for decryption:
5615 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
5616 //    note cipher==plain is more conservative than the original java code but that's OK
5617 //
5618 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
5619   // First, check receiver for NULL since it is virtual method.
5620   Node* objCBC = argument(0);
5621   objCBC = null_check(objCBC);
5622 
5623   if (stopped()) return NULL; // Always NULL
5624 
5625   // Load embeddedCipher field of CipherBlockChaining object.
5626   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5627 
5628   // get AESCrypt klass for instanceOf check
5629   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
5630   // will have same classloader as CipherBlockChaining object
5631   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
5632   assert(tinst != NULL, "CBCobj is null");
5633   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
5634 
5635   // we want to do an instanceof comparison against the AESCrypt class
5636   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5637   if (!klass_AESCrypt->is_loaded()) {
5638     // if AESCrypt is not even loaded, we never take the intrinsic fast path
5639     Node* ctrl = control();
5640     set_control(top()); // no regular fast path
5641     return ctrl;
5642   }
5643   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5644 
5645   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
5646   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
5647   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
5648 
5649   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
5650 
5651   // for encryption, we are done
5652   if (!decrypting)
5653     return instof_false;  // even if it is NULL
5654 
5655   // for decryption, we need to add a further check to avoid
5656   // taking the intrinsic path when cipher and plain are the same
5657   // see the original java code for why.
5658   RegionNode* region = new(C) RegionNode(3);
5659   region->init_req(1, instof_false);
5660   Node* src = argument(1);
5661   Node* dest = argument(4);
5662   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
5663   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
5664   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
5665   region->init_req(2, src_dest_conjoint);
5666 
5667   record_for_igvn(region);
5668   return _gvn.transform(region);
5669 }