1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "libadt/vectset.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/cfgnode.hpp"
  29 #include "opto/connode.hpp"
  30 #include "opto/loopnode.hpp"
  31 #include "opto/machnode.hpp"
  32 #include "opto/matcher.hpp"
  33 #include "opto/node.hpp"
  34 #include "opto/opcodes.hpp"
  35 #include "opto/regmask.hpp"
  36 #include "opto/type.hpp"
  37 #include "utilities/copy.hpp"
  38 
  39 class RegMask;
  40 // #include "phase.hpp"
  41 class PhaseTransform;
  42 class PhaseGVN;
  43 
  44 // Arena we are currently building Nodes in
  45 const uint Node::NotAMachineReg = 0xffff0000;
  46 
  47 #ifndef PRODUCT
  48 extern int nodes_created;
  49 #endif
  50 
  51 #ifdef ASSERT
  52 
  53 //-------------------------- construct_node------------------------------------
  54 // Set a breakpoint here to identify where a particular node index is built.
  55 void Node::verify_construction() {
  56   _debug_orig = NULL;
  57   int old_debug_idx = Compile::debug_idx();
  58   int new_debug_idx = old_debug_idx+1;
  59   if (new_debug_idx > 0) {
  60     // Arrange that the lowest five decimal digits of _debug_idx
  61     // will repeat those of _idx. In case this is somehow pathological,
  62     // we continue to assign negative numbers (!) consecutively.
  63     const int mod = 100000;
  64     int bump = (int)(_idx - new_debug_idx) % mod;
  65     if (bump < 0)  bump += mod;
  66     assert(bump >= 0 && bump < mod, "");
  67     new_debug_idx += bump;
  68   }
  69   Compile::set_debug_idx(new_debug_idx);
  70   set_debug_idx( new_debug_idx );
  71   assert(Compile::current()->unique() < (UINT_MAX - 1), "Node limit exceeded UINT_MAX");
  72   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  73     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  74     BREAKPOINT;
  75   }
  76 #if OPTO_DU_ITERATOR_ASSERT
  77   _last_del = NULL;
  78   _del_tick = 0;
  79 #endif
  80   _hash_lock = 0;
  81 }
  82 
  83 
  84 // #ifdef ASSERT ...
  85 
  86 #if OPTO_DU_ITERATOR_ASSERT
  87 void DUIterator_Common::sample(const Node* node) {
  88   _vdui     = VerifyDUIterators;
  89   _node     = node;
  90   _outcnt   = node->_outcnt;
  91   _del_tick = node->_del_tick;
  92   _last     = NULL;
  93 }
  94 
  95 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
  96   assert(_node     == node, "consistent iterator source");
  97   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
  98 }
  99 
 100 void DUIterator_Common::verify_resync() {
 101   // Ensure that the loop body has just deleted the last guy produced.
 102   const Node* node = _node;
 103   // Ensure that at least one copy of the last-seen edge was deleted.
 104   // Note:  It is OK to delete multiple copies of the last-seen edge.
 105   // Unfortunately, we have no way to verify that all the deletions delete
 106   // that same edge.  On this point we must use the Honor System.
 107   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 108   assert(node->_last_del == _last, "must have deleted the edge just produced");
 109   // We liked this deletion, so accept the resulting outcnt and tick.
 110   _outcnt   = node->_outcnt;
 111   _del_tick = node->_del_tick;
 112 }
 113 
 114 void DUIterator_Common::reset(const DUIterator_Common& that) {
 115   if (this == &that)  return;  // ignore assignment to self
 116   if (!_vdui) {
 117     // We need to initialize everything, overwriting garbage values.
 118     _last = that._last;
 119     _vdui = that._vdui;
 120   }
 121   // Note:  It is legal (though odd) for an iterator over some node x
 122   // to be reassigned to iterate over another node y.  Some doubly-nested
 123   // progress loops depend on being able to do this.
 124   const Node* node = that._node;
 125   // Re-initialize everything, except _last.
 126   _node     = node;
 127   _outcnt   = node->_outcnt;
 128   _del_tick = node->_del_tick;
 129 }
 130 
 131 void DUIterator::sample(const Node* node) {
 132   DUIterator_Common::sample(node);      // Initialize the assertion data.
 133   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 134 }
 135 
 136 void DUIterator::verify(const Node* node, bool at_end_ok) {
 137   DUIterator_Common::verify(node, at_end_ok);
 138   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 139 }
 140 
 141 void DUIterator::verify_increment() {
 142   if (_refresh_tick & 1) {
 143     // We have refreshed the index during this loop.
 144     // Fix up _idx to meet asserts.
 145     if (_idx > _outcnt)  _idx = _outcnt;
 146   }
 147   verify(_node, true);
 148 }
 149 
 150 void DUIterator::verify_resync() {
 151   // Note:  We do not assert on _outcnt, because insertions are OK here.
 152   DUIterator_Common::verify_resync();
 153   // Make sure we are still in sync, possibly with no more out-edges:
 154   verify(_node, true);
 155 }
 156 
 157 void DUIterator::reset(const DUIterator& that) {
 158   if (this == &that)  return;  // self assignment is always a no-op
 159   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 160   assert(that._idx          == 0, "assign only the result of Node::outs()");
 161   assert(_idx               == that._idx, "already assigned _idx");
 162   if (!_vdui) {
 163     // We need to initialize everything, overwriting garbage values.
 164     sample(that._node);
 165   } else {
 166     DUIterator_Common::reset(that);
 167     if (_refresh_tick & 1) {
 168       _refresh_tick++;                  // Clear the "was refreshed" flag.
 169     }
 170     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 171   }
 172 }
 173 
 174 void DUIterator::refresh() {
 175   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 176   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 177 }
 178 
 179 void DUIterator::verify_finish() {
 180   // If the loop has killed the node, do not require it to re-run.
 181   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 182   // If this assert triggers, it means that a loop used refresh_out_pos
 183   // to re-synch an iteration index, but the loop did not correctly
 184   // re-run itself, using a "while (progress)" construct.
 185   // This iterator enforces the rule that you must keep trying the loop
 186   // until it "runs clean" without any need for refreshing.
 187   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 188 }
 189 
 190 
 191 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 192   DUIterator_Common::verify(node, at_end_ok);
 193   Node** out    = node->_out;
 194   uint   cnt    = node->_outcnt;
 195   assert(cnt == _outcnt, "no insertions allowed");
 196   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 197   // This last check is carefully designed to work for NO_OUT_ARRAY.
 198 }
 199 
 200 void DUIterator_Fast::verify_limit() {
 201   const Node* node = _node;
 202   verify(node, true);
 203   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 204 }
 205 
 206 void DUIterator_Fast::verify_resync() {
 207   const Node* node = _node;
 208   if (_outp == node->_out + _outcnt) {
 209     // Note that the limit imax, not the pointer i, gets updated with the
 210     // exact count of deletions.  (For the pointer it's always "--i".)
 211     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 212     // This is a limit pointer, with a name like "imax".
 213     // Fudge the _last field so that the common assert will be happy.
 214     _last = (Node*) node->_last_del;
 215     DUIterator_Common::verify_resync();
 216   } else {
 217     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 218     // A normal internal pointer.
 219     DUIterator_Common::verify_resync();
 220     // Make sure we are still in sync, possibly with no more out-edges:
 221     verify(node, true);
 222   }
 223 }
 224 
 225 void DUIterator_Fast::verify_relimit(uint n) {
 226   const Node* node = _node;
 227   assert((int)n > 0, "use imax -= n only with a positive count");
 228   // This must be a limit pointer, with a name like "imax".
 229   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 230   // The reported number of deletions must match what the node saw.
 231   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 232   // Fudge the _last field so that the common assert will be happy.
 233   _last = (Node*) node->_last_del;
 234   DUIterator_Common::verify_resync();
 235 }
 236 
 237 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 238   assert(_outp              == that._outp, "already assigned _outp");
 239   DUIterator_Common::reset(that);
 240 }
 241 
 242 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 243   // at_end_ok means the _outp is allowed to underflow by 1
 244   _outp += at_end_ok;
 245   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 246   _outp -= at_end_ok;
 247   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 248 }
 249 
 250 void DUIterator_Last::verify_limit() {
 251   // Do not require the limit address to be resynched.
 252   //verify(node, true);
 253   assert(_outp == _node->_out, "limit still correct");
 254 }
 255 
 256 void DUIterator_Last::verify_step(uint num_edges) {
 257   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 258   _outcnt   -= num_edges;
 259   _del_tick += num_edges;
 260   // Make sure we are still in sync, possibly with no more out-edges:
 261   const Node* node = _node;
 262   verify(node, true);
 263   assert(node->_last_del == _last, "must have deleted the edge just produced");
 264 }
 265 
 266 #endif //OPTO_DU_ITERATOR_ASSERT
 267 
 268 
 269 #endif //ASSERT
 270 
 271 
 272 // This constant used to initialize _out may be any non-null value.
 273 // The value NULL is reserved for the top node only.
 274 #define NO_OUT_ARRAY ((Node**)-1)
 275 
 276 // This funny expression handshakes with Node::operator new
 277 // to pull Compile::current out of the new node's _out field,
 278 // and then calls a subroutine which manages most field
 279 // initializations.  The only one which is tricky is the
 280 // _idx field, which is const, and so must be initialized
 281 // by a return value, not an assignment.
 282 //
 283 // (Aren't you thankful that Java finals don't require so many tricks?)
 284 #define IDX_INIT(req) this->Init((req), (Compile*) this->_out)
 285 #ifdef _MSC_VER // the IDX_INIT hack falls foul of warning C4355
 286 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 287 #endif
 288 
 289 // Out-of-line code from node constructors.
 290 // Executed only when extra debug info. is being passed around.
 291 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 292   C->set_node_notes_at(idx, nn);
 293 }
 294 
 295 // Shared initialization code.
 296 inline int Node::Init(int req, Compile* C) {
 297   assert(Compile::current() == C, "must use operator new(Compile*)");
 298   int idx = C->next_unique();
 299 
 300   // Allocate memory for the necessary number of edges.
 301   if (req > 0) {
 302     // Allocate space for _in array to have double alignment.
 303     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 304 #ifdef ASSERT
 305     _in[req-1] = this; // magic cookie for assertion check
 306 #endif
 307   }
 308   // If there are default notes floating around, capture them:
 309   Node_Notes* nn = C->default_node_notes();
 310   if (nn != NULL)  init_node_notes(C, idx, nn);
 311 
 312   // Note:  At this point, C is dead,
 313   // and we begin to initialize the new Node.
 314 
 315   _cnt = _max = req;
 316   _outcnt = _outmax = 0;
 317   _class_id = Class_Node;
 318   _flags = 0;
 319   _out = NO_OUT_ARRAY;
 320   return idx;
 321 }
 322 
 323 //------------------------------Node-------------------------------------------
 324 // Create a Node, with a given number of required edges.
 325 Node::Node(uint req)
 326   : _idx(IDX_INIT(req))
 327 {
 328   assert( req < (uint)(MaxNodeLimit - NodeLimitFudgeFactor), "Input limit exceeded" );
 329   debug_only( verify_construction() );
 330   NOT_PRODUCT(nodes_created++);
 331   if (req == 0) {
 332     assert( _in == (Node**)this, "Must not pass arg count to 'new'" );
 333     _in = NULL;
 334   } else {
 335     assert( _in[req-1] == this, "Must pass arg count to 'new'" );
 336     Node** to = _in;
 337     for(uint i = 0; i < req; i++) {
 338       to[i] = NULL;
 339     }
 340   }
 341 }
 342 
 343 //------------------------------Node-------------------------------------------
 344 Node::Node(Node *n0)
 345   : _idx(IDX_INIT(1))
 346 {
 347   debug_only( verify_construction() );
 348   NOT_PRODUCT(nodes_created++);
 349   // Assert we allocated space for input array already
 350   assert( _in[0] == this, "Must pass arg count to 'new'" );
 351   assert( is_not_dead(n0), "can not use dead node");
 352   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 353 }
 354 
 355 //------------------------------Node-------------------------------------------
 356 Node::Node(Node *n0, Node *n1)
 357   : _idx(IDX_INIT(2))
 358 {
 359   debug_only( verify_construction() );
 360   NOT_PRODUCT(nodes_created++);
 361   // Assert we allocated space for input array already
 362   assert( _in[1] == this, "Must pass arg count to 'new'" );
 363   assert( is_not_dead(n0), "can not use dead node");
 364   assert( is_not_dead(n1), "can not use dead node");
 365   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 366   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 367 }
 368 
 369 //------------------------------Node-------------------------------------------
 370 Node::Node(Node *n0, Node *n1, Node *n2)
 371   : _idx(IDX_INIT(3))
 372 {
 373   debug_only( verify_construction() );
 374   NOT_PRODUCT(nodes_created++);
 375   // Assert we allocated space for input array already
 376   assert( _in[2] == this, "Must pass arg count to 'new'" );
 377   assert( is_not_dead(n0), "can not use dead node");
 378   assert( is_not_dead(n1), "can not use dead node");
 379   assert( is_not_dead(n2), "can not use dead node");
 380   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 381   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 382   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 383 }
 384 
 385 //------------------------------Node-------------------------------------------
 386 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 387   : _idx(IDX_INIT(4))
 388 {
 389   debug_only( verify_construction() );
 390   NOT_PRODUCT(nodes_created++);
 391   // Assert we allocated space for input array already
 392   assert( _in[3] == this, "Must pass arg count to 'new'" );
 393   assert( is_not_dead(n0), "can not use dead node");
 394   assert( is_not_dead(n1), "can not use dead node");
 395   assert( is_not_dead(n2), "can not use dead node");
 396   assert( is_not_dead(n3), "can not use dead node");
 397   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 398   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 399   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 400   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 401 }
 402 
 403 //------------------------------Node-------------------------------------------
 404 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 405   : _idx(IDX_INIT(5))
 406 {
 407   debug_only( verify_construction() );
 408   NOT_PRODUCT(nodes_created++);
 409   // Assert we allocated space for input array already
 410   assert( _in[4] == this, "Must pass arg count to 'new'" );
 411   assert( is_not_dead(n0), "can not use dead node");
 412   assert( is_not_dead(n1), "can not use dead node");
 413   assert( is_not_dead(n2), "can not use dead node");
 414   assert( is_not_dead(n3), "can not use dead node");
 415   assert( is_not_dead(n4), "can not use dead node");
 416   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 417   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 418   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 419   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 420   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 421 }
 422 
 423 //------------------------------Node-------------------------------------------
 424 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 425                      Node *n4, Node *n5)
 426   : _idx(IDX_INIT(6))
 427 {
 428   debug_only( verify_construction() );
 429   NOT_PRODUCT(nodes_created++);
 430   // Assert we allocated space for input array already
 431   assert( _in[5] == this, "Must pass arg count to 'new'" );
 432   assert( is_not_dead(n0), "can not use dead node");
 433   assert( is_not_dead(n1), "can not use dead node");
 434   assert( is_not_dead(n2), "can not use dead node");
 435   assert( is_not_dead(n3), "can not use dead node");
 436   assert( is_not_dead(n4), "can not use dead node");
 437   assert( is_not_dead(n5), "can not use dead node");
 438   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 439   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 440   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 441   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 442   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 443   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 444 }
 445 
 446 //------------------------------Node-------------------------------------------
 447 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 448                      Node *n4, Node *n5, Node *n6)
 449   : _idx(IDX_INIT(7))
 450 {
 451   debug_only( verify_construction() );
 452   NOT_PRODUCT(nodes_created++);
 453   // Assert we allocated space for input array already
 454   assert( _in[6] == this, "Must pass arg count to 'new'" );
 455   assert( is_not_dead(n0), "can not use dead node");
 456   assert( is_not_dead(n1), "can not use dead node");
 457   assert( is_not_dead(n2), "can not use dead node");
 458   assert( is_not_dead(n3), "can not use dead node");
 459   assert( is_not_dead(n4), "can not use dead node");
 460   assert( is_not_dead(n5), "can not use dead node");
 461   assert( is_not_dead(n6), "can not use dead node");
 462   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 463   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 464   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 465   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 466   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 467   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 468   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 469 }
 470 
 471 
 472 //------------------------------clone------------------------------------------
 473 // Clone a Node.
 474 Node *Node::clone() const {
 475   Compile *compile = Compile::current();
 476   uint s = size_of();           // Size of inherited Node
 477   Node *n = (Node*)compile->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 478   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 479   // Set the new input pointer array
 480   n->_in = (Node**)(((char*)n)+s);
 481   // Cannot share the old output pointer array, so kill it
 482   n->_out = NO_OUT_ARRAY;
 483   // And reset the counters to 0
 484   n->_outcnt = 0;
 485   n->_outmax = 0;
 486   // Unlock this guy, since he is not in any hash table.
 487   debug_only(n->_hash_lock = 0);
 488   // Walk the old node's input list to duplicate its edges
 489   uint i;
 490   for( i = 0; i < len(); i++ ) {
 491     Node *x = in(i);
 492     n->_in[i] = x;
 493     if (x != NULL) x->add_out(n);
 494   }
 495   if (is_macro())
 496     compile->add_macro_node(n);
 497   if (is_expensive())
 498     compile->add_expensive_node(n);
 499 
 500   n->set_idx(compile->next_unique()); // Get new unique index as well
 501   debug_only( n->verify_construction() );
 502   NOT_PRODUCT(nodes_created++);
 503   // Do not patch over the debug_idx of a clone, because it makes it
 504   // impossible to break on the clone's moment of creation.
 505   //debug_only( n->set_debug_idx( debug_idx() ) );
 506 
 507   compile->copy_node_notes_to(n, (Node*) this);
 508 
 509   // MachNode clone
 510   uint nopnds;
 511   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 512     MachNode *mach  = n->as_Mach();
 513     MachNode *mthis = this->as_Mach();
 514     // Get address of _opnd_array.
 515     // It should be the same offset since it is the clone of this node.
 516     MachOper **from = mthis->_opnds;
 517     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 518                     pointer_delta((const void*)from,
 519                                   (const void*)(&mthis->_opnds), 1));
 520     mach->_opnds = to;
 521     for ( uint i = 0; i < nopnds; ++i ) {
 522       to[i] = from[i]->clone(compile);
 523     }
 524   }
 525   // cloning CallNode may need to clone JVMState
 526   if (n->is_Call()) {
 527     CallNode *call = n->as_Call();
 528     call->clone_jvms();
 529   }
 530   if (n->is_SafePoint()) {
 531     n->as_SafePoint()->clone_replaced_nodes();
 532   }
 533   return n;                     // Return the clone
 534 }
 535 
 536 //---------------------------setup_is_top--------------------------------------
 537 // Call this when changing the top node, to reassert the invariants
 538 // required by Node::is_top.  See Compile::set_cached_top_node.
 539 void Node::setup_is_top() {
 540   if (this == (Node*)Compile::current()->top()) {
 541     // This node has just become top.  Kill its out array.
 542     _outcnt = _outmax = 0;
 543     _out = NULL;                           // marker value for top
 544     assert(is_top(), "must be top");
 545   } else {
 546     if (_out == NULL)  _out = NO_OUT_ARRAY;
 547     assert(!is_top(), "must not be top");
 548   }
 549 }
 550 
 551 
 552 //------------------------------~Node------------------------------------------
 553 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 554 extern int reclaim_idx ;
 555 extern int reclaim_in  ;
 556 extern int reclaim_node;
 557 void Node::destruct() {
 558   // Eagerly reclaim unique Node numberings
 559   Compile* compile = Compile::current();
 560   if ((uint)_idx+1 == compile->unique()) {
 561     compile->set_unique(compile->unique()-1);
 562 #ifdef ASSERT
 563     reclaim_idx++;
 564 #endif
 565   }
 566   // Clear debug info:
 567   Node_Notes* nn = compile->node_notes_at(_idx);
 568   if (nn != NULL)  nn->clear();
 569   // Walk the input array, freeing the corresponding output edges
 570   _cnt = _max;  // forget req/prec distinction
 571   uint i;
 572   for( i = 0; i < _max; i++ ) {
 573     set_req(i, NULL);
 574     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 575   }
 576   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 577   // See if the input array was allocated just prior to the object
 578   int edge_size = _max*sizeof(void*);
 579   int out_edge_size = _outmax*sizeof(void*);
 580   char *edge_end = ((char*)_in) + edge_size;
 581   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 582   char *out_edge_end = out_array + out_edge_size;
 583   int node_size = size_of();
 584 
 585   // Free the output edge array
 586   if (out_edge_size > 0) {
 587 #ifdef ASSERT
 588     if( out_edge_end == compile->node_arena()->hwm() )
 589       reclaim_in  += out_edge_size;  // count reclaimed out edges with in edges
 590 #endif
 591     compile->node_arena()->Afree(out_array, out_edge_size);
 592   }
 593 
 594   // Free the input edge array and the node itself
 595   if( edge_end == (char*)this ) {
 596 #ifdef ASSERT
 597     if( edge_end+node_size == compile->node_arena()->hwm() ) {
 598       reclaim_in  += edge_size;
 599       reclaim_node+= node_size;
 600     }
 601 #else
 602     // It was; free the input array and object all in one hit
 603     compile->node_arena()->Afree(_in,edge_size+node_size);
 604 #endif
 605   } else {
 606 
 607     // Free just the input array
 608 #ifdef ASSERT
 609     if( edge_end == compile->node_arena()->hwm() )
 610       reclaim_in  += edge_size;
 611 #endif
 612     compile->node_arena()->Afree(_in,edge_size);
 613 
 614     // Free just the object
 615 #ifdef ASSERT
 616     if( ((char*)this) + node_size == compile->node_arena()->hwm() )
 617       reclaim_node+= node_size;
 618 #else
 619     compile->node_arena()->Afree(this,node_size);
 620 #endif
 621   }
 622   if (is_macro()) {
 623     compile->remove_macro_node(this);
 624   }
 625   if (is_expensive()) {
 626     compile->remove_expensive_node(this);
 627   }
 628   if (is_SafePoint()) {
 629     as_SafePoint()->delete_replaced_nodes();
 630   }
 631 #ifdef ASSERT
 632   // We will not actually delete the storage, but we'll make the node unusable.
 633   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 634   _in = _out = (Node**) badAddress;
 635   _max = _cnt = _outmax = _outcnt = 0;
 636 #endif
 637 }
 638 
 639 //------------------------------grow-------------------------------------------
 640 // Grow the input array, making space for more edges
 641 void Node::grow( uint len ) {
 642   Arena* arena = Compile::current()->node_arena();
 643   uint new_max = _max;
 644   if( new_max == 0 ) {
 645     _max = 4;
 646     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 647     Node** to = _in;
 648     to[0] = NULL;
 649     to[1] = NULL;
 650     to[2] = NULL;
 651     to[3] = NULL;
 652     return;
 653   }
 654   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 655   // Trimming to limit allows a uint8 to handle up to 255 edges.
 656   // Previously I was using only powers-of-2 which peaked at 128 edges.
 657   //if( new_max >= limit ) new_max = limit-1;
 658   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 659   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 660   _max = new_max;               // Record new max length
 661   // This assertion makes sure that Node::_max is wide enough to
 662   // represent the numerical value of new_max.
 663   assert(_max == new_max && _max > len, "int width of _max is too small");
 664 }
 665 
 666 //-----------------------------out_grow----------------------------------------
 667 // Grow the input array, making space for more edges
 668 void Node::out_grow( uint len ) {
 669   assert(!is_top(), "cannot grow a top node's out array");
 670   Arena* arena = Compile::current()->node_arena();
 671   uint new_max = _outmax;
 672   if( new_max == 0 ) {
 673     _outmax = 4;
 674     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 675     return;
 676   }
 677   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 678   // Trimming to limit allows a uint8 to handle up to 255 edges.
 679   // Previously I was using only powers-of-2 which peaked at 128 edges.
 680   //if( new_max >= limit ) new_max = limit-1;
 681   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 682   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 683   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 684   _outmax = new_max;               // Record new max length
 685   // This assertion makes sure that Node::_max is wide enough to
 686   // represent the numerical value of new_max.
 687   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 688 }
 689 
 690 #ifdef ASSERT
 691 //------------------------------is_dead----------------------------------------
 692 bool Node::is_dead() const {
 693   // Mach and pinch point nodes may look like dead.
 694   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 695     return false;
 696   for( uint i = 0; i < _max; i++ )
 697     if( _in[i] != NULL )
 698       return false;
 699   dump();
 700   return true;
 701 }
 702 #endif
 703 
 704 
 705 //------------------------------is_unreachable---------------------------------
 706 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 707   assert(!is_Mach(), "doesn't work with MachNodes");
 708   return outcnt() == 0 || igvn.type(this) == Type::TOP || in(0)->is_top();
 709 }
 710 
 711 //------------------------------add_req----------------------------------------
 712 // Add a new required input at the end
 713 void Node::add_req( Node *n ) {
 714   assert( is_not_dead(n), "can not use dead node");
 715 
 716   // Look to see if I can move precedence down one without reallocating
 717   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 718     grow( _max+1 );
 719 
 720   // Find a precedence edge to move
 721   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 722     uint i;
 723     for( i=_cnt; i<_max; i++ )
 724       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 725         break;                  // There must be one, since we grew the array
 726     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 727   }
 728   _in[_cnt++] = n;            // Stuff over old prec edge
 729   if (n != NULL) n->add_out((Node *)this);
 730 }
 731 
 732 //---------------------------add_req_batch-------------------------------------
 733 // Add a new required input at the end
 734 void Node::add_req_batch( Node *n, uint m ) {
 735   assert( is_not_dead(n), "can not use dead node");
 736   // check various edge cases
 737   if ((int)m <= 1) {
 738     assert((int)m >= 0, "oob");
 739     if (m != 0)  add_req(n);
 740     return;
 741   }
 742 
 743   // Look to see if I can move precedence down one without reallocating
 744   if( (_cnt+m) > _max || _in[_max-m] )
 745     grow( _max+m );
 746 
 747   // Find a precedence edge to move
 748   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 749     uint i;
 750     for( i=_cnt; i<_max; i++ )
 751       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 752         break;                  // There must be one, since we grew the array
 753     // Slide all the precs over by m positions (assume #prec << m).
 754     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 755   }
 756 
 757   // Stuff over the old prec edges
 758   for(uint i=0; i<m; i++ ) {
 759     _in[_cnt++] = n;
 760   }
 761 
 762   // Insert multiple out edges on the node.
 763   if (n != NULL && !n->is_top()) {
 764     for(uint i=0; i<m; i++ ) {
 765       n->add_out((Node *)this);
 766     }
 767   }
 768 }
 769 
 770 //------------------------------del_req----------------------------------------
 771 // Delete the required edge and compact the edge array
 772 void Node::del_req( uint idx ) {
 773   assert( idx < _cnt, "oob");
 774   assert( !VerifyHashTableKeys || _hash_lock == 0,
 775           "remove node from hash table before modifying it");
 776   // First remove corresponding def-use edge
 777   Node *n = in(idx);
 778   if (n != NULL) n->del_out((Node *)this);
 779   _in[idx] = in(--_cnt);  // Compact the array
 780   _in[_cnt] = NULL;       // NULL out emptied slot
 781 }
 782 
 783 //------------------------------ins_req----------------------------------------
 784 // Insert a new required input at the end
 785 void Node::ins_req( uint idx, Node *n ) {
 786   assert( is_not_dead(n), "can not use dead node");
 787   add_req(NULL);                // Make space
 788   assert( idx < _max, "Must have allocated enough space");
 789   // Slide over
 790   if(_cnt-idx-1 > 0) {
 791     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 792   }
 793   _in[idx] = n;                            // Stuff over old required edge
 794   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 795 }
 796 
 797 //-----------------------------find_edge---------------------------------------
 798 int Node::find_edge(Node* n) {
 799   for (uint i = 0; i < len(); i++) {
 800     if (_in[i] == n)  return i;
 801   }
 802   return -1;
 803 }
 804 
 805 //----------------------------replace_edge-------------------------------------
 806 int Node::replace_edge(Node* old, Node* neww) {
 807   if (old == neww)  return 0;  // nothing to do
 808   uint nrep = 0;
 809   for (uint i = 0; i < len(); i++) {
 810     if (in(i) == old) {
 811       if (i < req())
 812         set_req(i, neww);
 813       else
 814         set_prec(i, neww);
 815       nrep++;
 816     }
 817   }
 818   return nrep;
 819 }
 820 
 821 //-------------------------disconnect_inputs-----------------------------------
 822 // NULL out all inputs to eliminate incoming Def-Use edges.
 823 // Return the number of edges between 'n' and 'this'
 824 int Node::disconnect_inputs(Node *n, Compile* C) {
 825   int edges_to_n = 0;
 826 
 827   uint cnt = req();
 828   for( uint i = 0; i < cnt; ++i ) {
 829     if( in(i) == 0 ) continue;
 830     if( in(i) == n ) ++edges_to_n;
 831     set_req(i, NULL);
 832   }
 833   // Remove precedence edges if any exist
 834   // Note: Safepoints may have precedence edges, even during parsing
 835   if( (req() != len()) && (in(req()) != NULL) ) {
 836     uint max = len();
 837     for( uint i = 0; i < max; ++i ) {
 838       if( in(i) == 0 ) continue;
 839       if( in(i) == n ) ++edges_to_n;
 840       set_prec(i, NULL);
 841     }
 842   }
 843 
 844   // Node::destruct requires all out edges be deleted first
 845   // debug_only(destruct();)   // no reuse benefit expected
 846   if (edges_to_n == 0) {
 847     C->record_dead_node(_idx);
 848   }
 849   return edges_to_n;
 850 }
 851 
 852 //-----------------------------uncast---------------------------------------
 853 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 854 // Strip away casting.  (It is depth-limited.)
 855 Node* Node::uncast() const {
 856   // Should be inline:
 857   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 858   if (is_ConstraintCast() || is_CheckCastPP())
 859     return uncast_helper(this);
 860   else
 861     return (Node*) this;
 862 }
 863 
 864 //---------------------------uncast_helper-------------------------------------
 865 Node* Node::uncast_helper(const Node* p) {
 866 #ifdef ASSERT
 867   uint depth_count = 0;
 868   const Node* orig_p = p;
 869 #endif
 870 
 871   while (true) {
 872 #ifdef ASSERT
 873     if (depth_count >= K) {
 874       orig_p->dump(4);
 875       if (p != orig_p)
 876         p->dump(1);
 877     }
 878     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 879 #endif
 880     if (p == NULL || p->req() != 2) {
 881       break;
 882     } else if (p->is_ConstraintCast()) {
 883       p = p->in(1);
 884     } else if (p->is_CheckCastPP()) {
 885       p = p->in(1);
 886     } else {
 887       break;
 888     }
 889   }
 890   return (Node*) p;
 891 }
 892 
 893 //------------------------------add_prec---------------------------------------
 894 // Add a new precedence input.  Precedence inputs are unordered, with
 895 // duplicates removed and NULLs packed down at the end.
 896 void Node::add_prec( Node *n ) {
 897   assert( is_not_dead(n), "can not use dead node");
 898 
 899   // Check for NULL at end
 900   if( _cnt >= _max || in(_max-1) )
 901     grow( _max+1 );
 902 
 903   // Find a precedence edge to move
 904   uint i = _cnt;
 905   while( in(i) != NULL ) i++;
 906   _in[i] = n;                                // Stuff prec edge over NULL
 907   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 908 }
 909 
 910 //------------------------------rm_prec----------------------------------------
 911 // Remove a precedence input.  Precedence inputs are unordered, with
 912 // duplicates removed and NULLs packed down at the end.
 913 void Node::rm_prec( uint j ) {
 914 
 915   // Find end of precedence list to pack NULLs
 916   uint i;
 917   for( i=j; i<_max; i++ )
 918     if( !_in[i] )               // Find the NULL at end of prec edge list
 919       break;
 920   if (_in[j] != NULL) _in[j]->del_out((Node *)this);
 921   _in[j] = _in[--i];            // Move last element over removed guy
 922   _in[i] = NULL;                // NULL out last element
 923 }
 924 
 925 //------------------------------size_of----------------------------------------
 926 uint Node::size_of() const { return sizeof(*this); }
 927 
 928 //------------------------------ideal_reg--------------------------------------
 929 uint Node::ideal_reg() const { return 0; }
 930 
 931 //------------------------------jvms-------------------------------------------
 932 JVMState* Node::jvms() const { return NULL; }
 933 
 934 #ifdef ASSERT
 935 //------------------------------jvms-------------------------------------------
 936 bool Node::verify_jvms(const JVMState* using_jvms) const {
 937   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
 938     if (jvms == using_jvms)  return true;
 939   }
 940   return false;
 941 }
 942 
 943 //------------------------------init_NodeProperty------------------------------
 944 void Node::init_NodeProperty() {
 945   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
 946   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
 947 }
 948 #endif
 949 
 950 //------------------------------format-----------------------------------------
 951 // Print as assembly
 952 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
 953 //------------------------------emit-------------------------------------------
 954 // Emit bytes starting at parameter 'ptr'.
 955 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
 956 //------------------------------lateExpand-------------------------------------
 957 // Expand node after register allocation.
 958 void Node::lateExpand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {}
 959 //------------------------------size-------------------------------------------
 960 // Size of instruction in bytes
 961 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
 962 
 963 //------------------------------CFG Construction-------------------------------
 964 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
 965 // Goto and Return.
 966 const Node *Node::is_block_proj() const { return 0; }
 967 
 968 // Minimum guaranteed type
 969 const Type *Node::bottom_type() const { return Type::BOTTOM; }
 970 
 971 
 972 //------------------------------raise_bottom_type------------------------------
 973 // Get the worst-case Type output for this Node.
 974 void Node::raise_bottom_type(const Type* new_type) {
 975   if (is_Type()) {
 976     TypeNode *n = this->as_Type();
 977     if (VerifyAliases) {
 978       assert(new_type->higher_equal(n->type()), "new type must refine old type");
 979     }
 980     n->set_type(new_type);
 981   } else if (is_Load()) {
 982     LoadNode *n = this->as_Load();
 983     if (VerifyAliases) {
 984       assert(new_type->higher_equal(n->type()), "new type must refine old type");
 985     }
 986     n->set_type(new_type);
 987   }
 988 }
 989 
 990 //------------------------------Identity---------------------------------------
 991 // Return a node that the given node is equivalent to.
 992 Node *Node::Identity( PhaseTransform * ) {
 993   return this;                  // Default to no identities
 994 }
 995 
 996 //------------------------------Value------------------------------------------
 997 // Compute a new Type for a node using the Type of the inputs.
 998 const Type *Node::Value( PhaseTransform * ) const {
 999   return bottom_type();         // Default to worst-case Type
1000 }
1001 
1002 //------------------------------Ideal------------------------------------------
1003 //
1004 // 'Idealize' the graph rooted at this Node.
1005 //
1006 // In order to be efficient and flexible there are some subtle invariants
1007 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1008 // these invariants, although its too slow to have on by default.  If you are
1009 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1010 //
1011 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1012 // pointer.  If ANY change is made, it must return the root of the reshaped
1013 // graph - even if the root is the same Node.  Example: swapping the inputs
1014 // to an AddINode gives the same answer and same root, but you still have to
1015 // return the 'this' pointer instead of NULL.
1016 //
1017 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1018 // Identity call to return an old Node; basically if Identity can find
1019 // another Node have the Ideal call make no change and return NULL.
1020 // Example: AddINode::Ideal must check for add of zero; in this case it
1021 // returns NULL instead of doing any graph reshaping.
1022 //
1023 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1024 // sharing there may be other users of the old Nodes relying on their current
1025 // semantics.  Modifying them will break the other users.
1026 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1027 // "X+3" unchanged in case it is shared.
1028 //
1029 // If you modify the 'this' pointer's inputs, you should use
1030 // 'set_req'.  If you are making a new Node (either as the new root or
1031 // some new internal piece) you may use 'init_req' to set the initial
1032 // value.  You can make a new Node with either 'new' or 'clone'.  In
1033 // either case, def-use info is correctly maintained.
1034 //
1035 // Example: reshape "(X+3)+4" into "X+7":
1036 //    set_req(1, in(1)->in(1));
1037 //    set_req(2, phase->intcon(7));
1038 //    return this;
1039 // Example: reshape "X*4" into "X<<2"
1040 //    return new (C) LShiftINode(in(1), phase->intcon(2));
1041 //
1042 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1043 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1044 //    Node *shift=phase->transform(new(C)LShiftINode(in(1),phase->intcon(5)));
1045 //    return new (C) AddINode(shift, in(1));
1046 //
1047 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1048 // These forms are faster than 'phase->transform(new (C) ConNode())' and Do
1049 // The Right Thing with def-use info.
1050 //
1051 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1052 // graph uses the 'this' Node it must be the root.  If you want a Node with
1053 // the same Opcode as the 'this' pointer use 'clone'.
1054 //
1055 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1056   return NULL;                  // Default to being Ideal already
1057 }
1058 
1059 // Some nodes have specific Ideal subgraph transformations only if they are
1060 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1061 // for the transformations to happen.
1062 bool Node::has_special_unique_user() const {
1063   assert(outcnt() == 1, "match only for unique out");
1064   Node* n = unique_out();
1065   int op  = Opcode();
1066   if( this->is_Store() ) {
1067     // Condition for back-to-back stores folding.
1068     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1069   } else if( op == Op_AddL ) {
1070     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1071     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1072   } else if( op == Op_SubI || op == Op_SubL ) {
1073     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1074     return n->Opcode() == op && n->in(2) == this;
1075   }
1076   return false;
1077 };
1078 
1079 //--------------------------find_exact_control---------------------------------
1080 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1081 Node* Node::find_exact_control(Node* ctrl) {
1082   if (ctrl == NULL && this->is_Region())
1083     ctrl = this->as_Region()->is_copy();
1084 
1085   if (ctrl != NULL && ctrl->is_CatchProj()) {
1086     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1087       ctrl = ctrl->in(0);
1088     if (ctrl != NULL && !ctrl->is_top())
1089       ctrl = ctrl->in(0);
1090   }
1091 
1092   if (ctrl != NULL && ctrl->is_Proj())
1093     ctrl = ctrl->in(0);
1094 
1095   return ctrl;
1096 }
1097 
1098 //--------------------------dominates------------------------------------------
1099 // Helper function for MemNode::all_controls_dominate().
1100 // Check if 'this' control node dominates or equal to 'sub' control node.
1101 // We already know that if any path back to Root or Start reaches 'this',
1102 // then all paths so, so this is a simple search for one example,
1103 // not an exhaustive search for a counterexample.
1104 bool Node::dominates(Node* sub, Node_List &nlist) {
1105   assert(this->is_CFG(), "expecting control");
1106   assert(sub != NULL && sub->is_CFG(), "expecting control");
1107 
1108   // detect dead cycle without regions
1109   int iterations_without_region_limit = DominatorSearchLimit;
1110 
1111   Node* orig_sub = sub;
1112   Node* dom      = this;
1113   bool  met_dom  = false;
1114   nlist.clear();
1115 
1116   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1117   // After seeing 'dom', continue up to Root or Start.
1118   // If we hit a region (backward split point), it may be a loop head.
1119   // Keep going through one of the region's inputs.  If we reach the
1120   // same region again, go through a different input.  Eventually we
1121   // will either exit through the loop head, or give up.
1122   // (If we get confused, break out and return a conservative 'false'.)
1123   while (sub != NULL) {
1124     if (sub->is_top())  break; // Conservative answer for dead code.
1125     if (sub == dom) {
1126       if (nlist.size() == 0) {
1127         // No Region nodes except loops were visited before and the EntryControl
1128         // path was taken for loops: it did not walk in a cycle.
1129         return true;
1130       } else if (met_dom) {
1131         break;          // already met before: walk in a cycle
1132       } else {
1133         // Region nodes were visited. Continue walk up to Start or Root
1134         // to make sure that it did not walk in a cycle.
1135         met_dom = true; // first time meet
1136         iterations_without_region_limit = DominatorSearchLimit; // Reset
1137      }
1138     }
1139     if (sub->is_Start() || sub->is_Root()) {
1140       // Success if we met 'dom' along a path to Start or Root.
1141       // We assume there are no alternative paths that avoid 'dom'.
1142       // (This assumption is up to the caller to ensure!)
1143       return met_dom;
1144     }
1145     Node* up = sub->in(0);
1146     // Normalize simple pass-through regions and projections:
1147     up = sub->find_exact_control(up);
1148     // If sub == up, we found a self-loop.  Try to push past it.
1149     if (sub == up && sub->is_Loop()) {
1150       // Take loop entry path on the way up to 'dom'.
1151       up = sub->in(1); // in(LoopNode::EntryControl);
1152     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1153       // Always take in(1) path on the way up to 'dom' for clone regions
1154       // (with only one input) or regions which merge > 2 paths
1155       // (usually used to merge fast/slow paths).
1156       up = sub->in(1);
1157     } else if (sub == up && sub->is_Region()) {
1158       // Try both paths for Regions with 2 input paths (it may be a loop head).
1159       // It could give conservative 'false' answer without information
1160       // which region's input is the entry path.
1161       iterations_without_region_limit = DominatorSearchLimit; // Reset
1162 
1163       bool region_was_visited_before = false;
1164       // Was this Region node visited before?
1165       // If so, we have reached it because we accidentally took a
1166       // loop-back edge from 'sub' back into the body of the loop,
1167       // and worked our way up again to the loop header 'sub'.
1168       // So, take the first unexplored path on the way up to 'dom'.
1169       for (int j = nlist.size() - 1; j >= 0; j--) {
1170         intptr_t ni = (intptr_t)nlist.at(j);
1171         Node* visited = (Node*)(ni & ~1);
1172         bool  visited_twice_already = ((ni & 1) != 0);
1173         if (visited == sub) {
1174           if (visited_twice_already) {
1175             // Visited 2 paths, but still stuck in loop body.  Give up.
1176             return false;
1177           }
1178           // The Region node was visited before only once.
1179           // (We will repush with the low bit set, below.)
1180           nlist.remove(j);
1181           // We will find a new edge and re-insert.
1182           region_was_visited_before = true;
1183           break;
1184         }
1185       }
1186 
1187       // Find an incoming edge which has not been seen yet; walk through it.
1188       assert(up == sub, "");
1189       uint skip = region_was_visited_before ? 1 : 0;
1190       for (uint i = 1; i < sub->req(); i++) {
1191         Node* in = sub->in(i);
1192         if (in != NULL && !in->is_top() && in != sub) {
1193           if (skip == 0) {
1194             up = in;
1195             break;
1196           }
1197           --skip;               // skip this nontrivial input
1198         }
1199       }
1200 
1201       // Set 0 bit to indicate that both paths were taken.
1202       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1203     }
1204 
1205     if (up == sub) {
1206       break;    // some kind of tight cycle
1207     }
1208     if (up == orig_sub && met_dom) {
1209       // returned back after visiting 'dom'
1210       break;    // some kind of cycle
1211     }
1212     if (--iterations_without_region_limit < 0) {
1213       break;    // dead cycle
1214     }
1215     sub = up;
1216   }
1217 
1218   // Did not meet Root or Start node in pred. chain.
1219   // Conservative answer for dead code.
1220   return false;
1221 }
1222 
1223 //------------------------------remove_dead_region-----------------------------
1224 // This control node is dead.  Follow the subgraph below it making everything
1225 // using it dead as well.  This will happen normally via the usual IterGVN
1226 // worklist but this call is more efficient.  Do not update use-def info
1227 // inside the dead region, just at the borders.
1228 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1229   // Con's are a popular node to re-hit in the hash table again.
1230   if( dead->is_Con() ) return;
1231 
1232   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1233   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1234   Node_List  nstack(Thread::current()->resource_area());
1235 
1236   Node *top = igvn->C->top();
1237   nstack.push(dead);
1238   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1239 
1240   while (nstack.size() > 0) {
1241     dead = nstack.pop();
1242     if (dead->outcnt() > 0) {
1243       // Keep dead node on stack until all uses are processed.
1244       nstack.push(dead);
1245       // For all Users of the Dead...    ;-)
1246       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1247         Node* use = dead->last_out(k);
1248         igvn->hash_delete(use);       // Yank from hash table prior to mod
1249         if (use->in(0) == dead) {     // Found another dead node
1250           assert (!use->is_Con(), "Control for Con node should be Root node.");
1251           use->set_req(0, top);       // Cut dead edge to prevent processing
1252           nstack.push(use);           // the dead node again.
1253         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1254                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1255                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1256           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1257           use->set_req(0, top);       // Cut self edge
1258           nstack.push(use);
1259         } else {                      // Else found a not-dead user
1260           // Dead if all inputs are top or null
1261           bool dead_use = !use->is_Root(); // Keep empty graph alive
1262           for (uint j = 1; j < use->req(); j++) {
1263             Node* in = use->in(j);
1264             if (in == dead) {         // Turn all dead inputs into TOP
1265               use->set_req(j, top);
1266             } else if (in != NULL && !in->is_top()) {
1267               dead_use = false;
1268             }
1269           }
1270           if (dead_use) {
1271             if (use->is_Region()) {
1272               use->set_req(0, top);   // Cut self edge
1273             }
1274             nstack.push(use);
1275           } else {
1276             igvn->_worklist.push(use);
1277           }
1278         }
1279         // Refresh the iterator, since any number of kills might have happened.
1280         k = dead->last_outs(kmin);
1281       }
1282     } else { // (dead->outcnt() == 0)
1283       // Done with outputs.
1284       igvn->hash_delete(dead);
1285       igvn->_worklist.remove(dead);
1286       igvn->set_type(dead, Type::TOP);
1287       if (dead->is_macro()) {
1288         igvn->C->remove_macro_node(dead);
1289       }
1290       if (dead->is_expensive()) {
1291         igvn->C->remove_expensive_node(dead);
1292       }
1293       igvn->C->record_dead_node(dead->_idx);
1294       // Kill all inputs to the dead guy
1295       for (uint i=0; i < dead->req(); i++) {
1296         Node *n = dead->in(i);      // Get input to dead guy
1297         if (n != NULL && !n->is_top()) { // Input is valid?
1298           dead->set_req(i, top);    // Smash input away
1299           if (n->outcnt() == 0) {   // Input also goes dead?
1300             if (!n->is_Con())
1301               nstack.push(n);       // Clear it out as well
1302           } else if (n->outcnt() == 1 &&
1303                      n->has_special_unique_user()) {
1304             igvn->add_users_to_worklist( n );
1305           } else if (n->outcnt() <= 2 && n->is_Store()) {
1306             // Push store's uses on worklist to enable folding optimization for
1307             // store/store and store/load to the same address.
1308             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1309             // and remove_globally_dead_node().
1310             igvn->add_users_to_worklist( n );
1311           }
1312         }
1313       }
1314     } // (dead->outcnt() == 0)
1315   }   // while (nstack.size() > 0) for outputs
1316   return;
1317 }
1318 
1319 //------------------------------remove_dead_region-----------------------------
1320 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1321   Node *n = in(0);
1322   if( !n ) return false;
1323   // Lost control into this guy?  I.e., it became unreachable?
1324   // Aggressively kill all unreachable code.
1325   if (can_reshape && n->is_top()) {
1326     kill_dead_code(this, phase->is_IterGVN());
1327     return false; // Node is dead.
1328   }
1329 
1330   if( n->is_Region() && n->as_Region()->is_copy() ) {
1331     Node *m = n->nonnull_req();
1332     set_req(0, m);
1333     return true;
1334   }
1335   return false;
1336 }
1337 
1338 //------------------------------Ideal_DU_postCCP-------------------------------
1339 // Idealize graph, using DU info.  Must clone result into new-space
1340 Node *Node::Ideal_DU_postCCP( PhaseCCP * ) {
1341   return NULL;                 // Default to no change
1342 }
1343 
1344 //------------------------------hash-------------------------------------------
1345 // Hash function over Nodes.
1346 uint Node::hash() const {
1347   uint sum = 0;
1348   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1349     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1350   return (sum>>2) + _cnt + Opcode();
1351 }
1352 
1353 //------------------------------cmp--------------------------------------------
1354 // Compare special parts of simple Nodes
1355 uint Node::cmp( const Node &n ) const {
1356   return 1;                     // Must be same
1357 }
1358 
1359 //------------------------------rematerialize-----------------------------------
1360 // Should we clone rather than spill this instruction?
1361 bool Node::rematerialize() const {
1362   if ( is_Mach() )
1363     return this->as_Mach()->rematerialize();
1364   else
1365     return (_flags & Flag_rematerialize) != 0;
1366 }
1367 
1368 //------------------------------needs_anti_dependence_check---------------------
1369 // Nodes which use memory without consuming it, hence need antidependences.
1370 bool Node::needs_anti_dependence_check() const {
1371   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1372     return false;
1373   else
1374     return in(1)->bottom_type()->has_memory();
1375 }
1376 
1377 
1378 // Get an integer constant from a ConNode (or CastIINode).
1379 // Return a default value if there is no apparent constant here.
1380 const TypeInt* Node::find_int_type() const {
1381   if (this->is_Type()) {
1382     return this->as_Type()->type()->isa_int();
1383   } else if (this->is_Con()) {
1384     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1385     return this->bottom_type()->isa_int();
1386   }
1387   return NULL;
1388 }
1389 
1390 // Get a pointer constant from a ConstNode.
1391 // Returns the constant if it is a pointer ConstNode
1392 intptr_t Node::get_ptr() const {
1393   assert( Opcode() == Op_ConP, "" );
1394   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1395 }
1396 
1397 // Get a narrow oop constant from a ConNNode.
1398 intptr_t Node::get_narrowcon() const {
1399   assert( Opcode() == Op_ConN, "" );
1400   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1401 }
1402 
1403 // Get a long constant from a ConNode.
1404 // Return a default value if there is no apparent constant here.
1405 const TypeLong* Node::find_long_type() const {
1406   if (this->is_Type()) {
1407     return this->as_Type()->type()->isa_long();
1408   } else if (this->is_Con()) {
1409     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1410     return this->bottom_type()->isa_long();
1411   }
1412   return NULL;
1413 }
1414 
1415 
1416 /**
1417  * Return a ptr type for nodes which should have it.
1418  */
1419 const TypePtr* Node::get_ptr_type() const {
1420   const TypePtr* tp = this->bottom_type()->make_ptr();
1421 #ifdef ASSERT
1422   if (tp == NULL) {
1423     this->dump(1);
1424     assert((tp != NULL), "unexpected node type");
1425   }
1426 #endif
1427   return tp;
1428 }
1429 
1430 // Get a double constant from a ConstNode.
1431 // Returns the constant if it is a double ConstNode
1432 jdouble Node::getd() const {
1433   assert( Opcode() == Op_ConD, "" );
1434   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1435 }
1436 
1437 // Get a float constant from a ConstNode.
1438 // Returns the constant if it is a float ConstNode
1439 jfloat Node::getf() const {
1440   assert( Opcode() == Op_ConF, "" );
1441   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1442 }
1443 
1444 #ifndef PRODUCT
1445 
1446 //----------------------------NotANode----------------------------------------
1447 // Used in debugging code to avoid walking across dead or uninitialized edges.
1448 static inline bool NotANode(const Node* n) {
1449   if (n == NULL)                   return true;
1450   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
1451   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
1452   return false;
1453 }
1454 
1455 
1456 //------------------------------find------------------------------------------
1457 // Find a neighbor of this Node with the given _idx
1458 // If idx is negative, find its absolute value, following both _in and _out.
1459 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1460                         VectorSet* old_space, VectorSet* new_space ) {
1461   int node_idx = (idx >= 0) ? idx : -idx;
1462   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1463   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1464   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1465   if( v->test(n->_idx) ) return;
1466   if( (int)n->_idx == node_idx
1467       debug_only(|| n->debug_idx() == node_idx) ) {
1468     if (result != NULL)
1469       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1470                  (uintptr_t)result, (uintptr_t)n, node_idx);
1471     result = n;
1472   }
1473   v->set(n->_idx);
1474   for( uint i=0; i<n->len(); i++ ) {
1475     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1476     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1477   }
1478   // Search along forward edges also:
1479   if (idx < 0 && !only_ctrl) {
1480     for( uint j=0; j<n->outcnt(); j++ ) {
1481       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1482     }
1483   }
1484 #ifdef ASSERT
1485   // Search along debug_orig edges last, checking for cycles
1486   Node* orig = n->debug_orig();
1487   if (orig != NULL) {
1488     do {
1489       if (NotANode(orig))  break;
1490       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1491       orig = orig->debug_orig();
1492     } while (orig != NULL && orig != n->debug_orig());
1493   }
1494 #endif //ASSERT
1495 }
1496 
1497 // call this from debugger:
1498 Node* find_node(Node* n, int idx) {
1499   return n->find(idx);
1500 }
1501 
1502 //------------------------------find-------------------------------------------
1503 Node* Node::find(int idx) const {
1504   ResourceArea *area = Thread::current()->resource_area();
1505   VectorSet old_space(area), new_space(area);
1506   Node* result = NULL;
1507   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1508   return result;
1509 }
1510 
1511 //------------------------------find_ctrl--------------------------------------
1512 // Find an ancestor to this node in the control history with given _idx
1513 Node* Node::find_ctrl(int idx) const {
1514   ResourceArea *area = Thread::current()->resource_area();
1515   VectorSet old_space(area), new_space(area);
1516   Node* result = NULL;
1517   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1518   return result;
1519 }
1520 #endif
1521 
1522 
1523 
1524 #ifndef PRODUCT
1525 
1526 // -----------------------------Name-------------------------------------------
1527 extern const char *NodeClassNames[];
1528 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1529 
1530 static bool is_disconnected(const Node* n) {
1531   for (uint i = 0; i < n->req(); i++) {
1532     if (n->in(i) != NULL)  return false;
1533   }
1534   return true;
1535 }
1536 
1537 #ifdef ASSERT
1538 static void dump_orig(Node* orig, outputStream *st) {
1539   Compile* C = Compile::current();
1540   if (NotANode(orig)) orig = NULL;
1541   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1542   if (orig == NULL) return;
1543   st->print(" !orig=");
1544   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1545   if (NotANode(fast)) fast = NULL;
1546   while (orig != NULL) {
1547     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1548     if (discon) st->print("[");
1549     if (!Compile::current()->node_arena()->contains(orig))
1550       st->print("o");
1551     st->print("%d", orig->_idx);
1552     if (discon) st->print("]");
1553     orig = orig->debug_orig();
1554     if (NotANode(orig)) orig = NULL;
1555     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1556     if (orig != NULL) st->print(",");
1557     if (fast != NULL) {
1558       // Step fast twice for each single step of orig:
1559       fast = fast->debug_orig();
1560       if (NotANode(fast)) fast = NULL;
1561       if (fast != NULL && fast != orig) {
1562         fast = fast->debug_orig();
1563         if (NotANode(fast)) fast = NULL;
1564       }
1565       if (fast == orig) {
1566         st->print("...");
1567         break;
1568       }
1569     }
1570   }
1571 }
1572 
1573 void Node::set_debug_orig(Node* orig) {
1574   _debug_orig = orig;
1575   if (BreakAtNode == 0)  return;
1576   if (NotANode(orig))  orig = NULL;
1577   int trip = 10;
1578   while (orig != NULL) {
1579     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1580       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1581                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1582       BREAKPOINT;
1583     }
1584     orig = orig->debug_orig();
1585     if (NotANode(orig))  orig = NULL;
1586     if (trip-- <= 0)  break;
1587   }
1588 }
1589 #endif //ASSERT
1590 
1591 //------------------------------dump------------------------------------------
1592 // Dump a Node
1593 void Node::dump(const char* suffix, outputStream *st) const {
1594   Compile* C = Compile::current();
1595   bool is_new = C->node_arena()->contains(this);
1596   C->_in_dump_cnt++;
1597   st->print("%c%d\t%s\t=== ", is_new ? ' ' : 'o', _idx, Name());
1598 
1599   // Dump the required and precedence inputs
1600   dump_req(st);
1601   dump_prec(st);
1602   // Dump the outputs
1603   dump_out(st);
1604 
1605   if (is_disconnected(this)) {
1606 #ifdef ASSERT
1607     st->print("  [%d]",debug_idx());
1608     dump_orig(debug_orig(), st);
1609 #endif
1610     st->cr();
1611     C->_in_dump_cnt--;
1612     return;                     // don't process dead nodes
1613   }
1614 
1615   // Dump node-specific info
1616   dump_spec(st);
1617 #ifdef ASSERT
1618   // Dump the non-reset _debug_idx
1619   if (Verbose && WizardMode) {
1620     st->print("  [%d]",debug_idx());
1621   }
1622 #endif
1623 
1624   const Type *t = bottom_type();
1625 
1626   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1627     const TypeInstPtr  *toop = t->isa_instptr();
1628     const TypeKlassPtr *tkls = t->isa_klassptr();
1629     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1630     if (klass && klass->is_loaded() && klass->is_interface()) {
1631       st->print("  Interface:");
1632     } else if (toop) {
1633       st->print("  Oop:");
1634     } else if (tkls) {
1635       st->print("  Klass:");
1636     }
1637     t->dump_on(st);
1638   } else if (t == Type::MEMORY) {
1639     st->print("  Memory:");
1640     MemNode::dump_adr_type(this, adr_type(), st);
1641   } else if (Verbose || WizardMode) {
1642     st->print("  Type:");
1643     if (t) {
1644       t->dump_on(st);
1645     } else {
1646       st->print("no type");
1647     }
1648   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1649     // Dump MachSpillcopy vector type.
1650     t->dump_on(st);
1651   }
1652   if (is_new) {
1653     debug_only(dump_orig(debug_orig(), st));
1654     Node_Notes* nn = C->node_notes_at(_idx);
1655     if (nn != NULL && !nn->is_clear()) {
1656       if (nn->jvms() != NULL) {
1657         st->print(" !jvms:");
1658         nn->jvms()->dump_spec(st);
1659       }
1660     }
1661   }
1662   if (suffix) st->print(suffix);
1663   C->_in_dump_cnt--;
1664 }
1665 
1666 //------------------------------dump_req--------------------------------------
1667 void Node::dump_req(outputStream *st) const {
1668   // Dump the required input edges
1669   for (uint i = 0; i < req(); i++) {    // For all required inputs
1670     Node* d = in(i);
1671     if (d == NULL) {
1672       st->print("_ ");
1673     } else if (NotANode(d)) {
1674       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1675     } else {
1676       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1677     }
1678   }
1679 }
1680 
1681 
1682 //------------------------------dump_prec-------------------------------------
1683 void Node::dump_prec(outputStream *st) const {
1684   // Dump the precedence edges
1685   int any_prec = 0;
1686   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1687     Node* p = in(i);
1688     if (p != NULL) {
1689       if (!any_prec++) st->print(" |");
1690       if (NotANode(p)) { st->print("NotANode "); continue; }
1691       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1692     }
1693   }
1694 }
1695 
1696 //------------------------------dump_out--------------------------------------
1697 void Node::dump_out(outputStream *st) const {
1698   // Delimit the output edges
1699   st->print(" [[");
1700   // Dump the output edges
1701   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1702     Node* u = _out[i];
1703     if (u == NULL) {
1704       st->print("_ ");
1705     } else if (NotANode(u)) {
1706       st->print("NotANode ");
1707     } else {
1708       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1709     }
1710   }
1711   st->print("]] ");
1712 }
1713 
1714 //------------------------------dump_nodes-------------------------------------
1715 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1716   Node* s = (Node*)start; // remove const
1717   if (NotANode(s)) return;
1718 
1719   uint depth = (uint)ABS(d);
1720   int direction = d;
1721   Compile* C = Compile::current();
1722   GrowableArray <Node *> nstack(C->unique());
1723 
1724   nstack.append(s);
1725   int begin = 0;
1726   int end = 0;
1727   for(uint i = 0; i < depth; i++) {
1728     end = nstack.length();
1729     for(int j = begin; j < end; j++) {
1730       Node* tp  = nstack.at(j);
1731       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1732       for(uint k = 0; k < limit; k++) {
1733         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1734 
1735         if (NotANode(n))  continue;
1736         // do not recurse through top or the root (would reach unrelated stuff)
1737         if (n->is_Root() || n->is_top())  continue;
1738         if (only_ctrl && !n->is_CFG()) continue;
1739 
1740         bool on_stack = nstack.contains(n);
1741         if (!on_stack) {
1742           nstack.append(n);
1743         }
1744       }
1745     }
1746     begin = end;
1747   }
1748   end = nstack.length();
1749   if (direction > 0) {
1750     for(int j = end-1; j >= 0; j--) {
1751       nstack.at(j)->dump();
1752     }
1753   } else {
1754     for(int j = 0; j < end; j++) {
1755       nstack.at(j)->dump();
1756     }
1757   }
1758 }
1759 
1760 //------------------------------dump-------------------------------------------
1761 void Node::dump(int d) const {
1762   dump_nodes(this, d, false);
1763 }
1764 
1765 //------------------------------dump_ctrl--------------------------------------
1766 // Dump a Node's control history to depth
1767 void Node::dump_ctrl(int d) const {
1768   dump_nodes(this, d, true);
1769 }
1770 
1771 // VERIFICATION CODE
1772 // For each input edge to a node (ie - for each Use-Def edge), verify that
1773 // there is a corresponding Def-Use edge.
1774 //------------------------------verify_edges-----------------------------------
1775 void Node::verify_edges(Unique_Node_List &visited) {
1776   uint i, j, idx;
1777   int  cnt;
1778   Node *n;
1779 
1780   // Recursive termination test
1781   if (visited.member(this))  return;
1782   visited.push(this);
1783 
1784   // Walk over all input edges, checking for correspondence
1785   for( i = 0; i < len(); i++ ) {
1786     n = in(i);
1787     if (n != NULL && !n->is_top()) {
1788       // Count instances of (Node *)this
1789       cnt = 0;
1790       for (idx = 0; idx < n->_outcnt; idx++ ) {
1791         if (n->_out[idx] == (Node *)this)  cnt++;
1792       }
1793       assert( cnt > 0,"Failed to find Def-Use edge." );
1794       // Check for duplicate edges
1795       // walk the input array downcounting the input edges to n
1796       for( j = 0; j < len(); j++ ) {
1797         if( in(j) == n ) cnt--;
1798       }
1799       assert( cnt == 0,"Mismatched edge count.");
1800     } else if (n == NULL) {
1801       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
1802     } else {
1803       assert(n->is_top(), "sanity");
1804       // Nothing to check.
1805     }
1806   }
1807   // Recursive walk over all input edges
1808   for( i = 0; i < len(); i++ ) {
1809     n = in(i);
1810     if( n != NULL )
1811       in(i)->verify_edges(visited);
1812   }
1813 }
1814 
1815 //------------------------------verify_recur-----------------------------------
1816 static const Node *unique_top = NULL;
1817 
1818 void Node::verify_recur(const Node *n, int verify_depth,
1819                         VectorSet &old_space, VectorSet &new_space) {
1820   if ( verify_depth == 0 )  return;
1821   if (verify_depth > 0)  --verify_depth;
1822 
1823   Compile* C = Compile::current();
1824 
1825   // Contained in new_space or old_space?
1826   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
1827   // Check for visited in the proper space.  Numberings are not unique
1828   // across spaces so we need a separate VectorSet for each space.
1829   if( v->test_set(n->_idx) ) return;
1830 
1831   if (n->is_Con() && n->bottom_type() == Type::TOP) {
1832     if (C->cached_top_node() == NULL)
1833       C->set_cached_top_node((Node*)n);
1834     assert(C->cached_top_node() == n, "TOP node must be unique");
1835   }
1836 
1837   for( uint i = 0; i < n->len(); i++ ) {
1838     Node *x = n->in(i);
1839     if (!x || x->is_top()) continue;
1840 
1841     // Verify my input has a def-use edge to me
1842     if (true /*VerifyDefUse*/) {
1843       // Count use-def edges from n to x
1844       int cnt = 0;
1845       for( uint j = 0; j < n->len(); j++ )
1846         if( n->in(j) == x )
1847           cnt++;
1848       // Count def-use edges from x to n
1849       uint max = x->_outcnt;
1850       for( uint k = 0; k < max; k++ )
1851         if (x->_out[k] == n)
1852           cnt--;
1853       assert( cnt == 0, "mismatched def-use edge counts" );
1854     }
1855 
1856     verify_recur(x, verify_depth, old_space, new_space);
1857   }
1858 
1859 }
1860 
1861 //------------------------------verify-----------------------------------------
1862 // Check Def-Use info for my subgraph
1863 void Node::verify() const {
1864   Compile* C = Compile::current();
1865   Node* old_top = C->cached_top_node();
1866   ResourceMark rm;
1867   ResourceArea *area = Thread::current()->resource_area();
1868   VectorSet old_space(area), new_space(area);
1869   verify_recur(this, -1, old_space, new_space);
1870   C->set_cached_top_node(old_top);
1871 }
1872 #endif
1873 
1874 
1875 //------------------------------walk-------------------------------------------
1876 // Graph walk, with both pre-order and post-order functions
1877 void Node::walk(NFunc pre, NFunc post, void *env) {
1878   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
1879   walk_(pre, post, env, visited);
1880 }
1881 
1882 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
1883   if( visited.test_set(_idx) ) return;
1884   pre(*this,env);               // Call the pre-order walk function
1885   for( uint i=0; i<_max; i++ )
1886     if( in(i) )                 // Input exists and is not walked?
1887       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
1888   post(*this,env);              // Call the post-order walk function
1889 }
1890 
1891 void Node::nop(Node &, void*) {}
1892 
1893 //------------------------------Registers--------------------------------------
1894 // Do we Match on this edge index or not?  Generally false for Control
1895 // and true for everything else.  Weird for calls & returns.
1896 uint Node::match_edge(uint idx) const {
1897   return idx;                   // True for other than index 0 (control)
1898 }
1899 
1900 // Register classes are defined for specific machines
1901 const RegMask &Node::out_RegMask() const {
1902   ShouldNotCallThis();
1903   return *(new RegMask());
1904 }
1905 
1906 const RegMask &Node::in_RegMask(uint) const {
1907   ShouldNotCallThis();
1908   return *(new RegMask());
1909 }
1910 
1911 //=============================================================================
1912 //-----------------------------------------------------------------------------
1913 void Node_Array::reset( Arena *new_arena ) {
1914   _a->Afree(_nodes,_max*sizeof(Node*));
1915   _max   = 0;
1916   _nodes = NULL;
1917   _a     = new_arena;
1918 }
1919 
1920 //------------------------------clear------------------------------------------
1921 // Clear all entries in _nodes to NULL but keep storage
1922 void Node_Array::clear() {
1923   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
1924 }
1925 
1926 //-----------------------------------------------------------------------------
1927 void Node_Array::grow( uint i ) {
1928   if( !_max ) {
1929     _max = 1;
1930     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
1931     _nodes[0] = NULL;
1932   }
1933   uint old = _max;
1934   while( i >= _max ) _max <<= 1;        // Double to fit
1935   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
1936   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
1937 }
1938 
1939 //-----------------------------------------------------------------------------
1940 void Node_Array::insert( uint i, Node *n ) {
1941   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
1942   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
1943   _nodes[i] = n;
1944 }
1945 
1946 //-----------------------------------------------------------------------------
1947 void Node_Array::remove( uint i ) {
1948   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
1949   _nodes[_max-1] = NULL;
1950 }
1951 
1952 //-----------------------------------------------------------------------------
1953 void Node_Array::sort( C_sort_func_t func) {
1954   qsort( _nodes, _max, sizeof( Node* ), func );
1955 }
1956 
1957 //-----------------------------------------------------------------------------
1958 void Node_Array::dump() const {
1959 #ifndef PRODUCT
1960   for( uint i = 0; i < _max; i++ ) {
1961     Node *nn = _nodes[i];
1962     if( nn != NULL ) {
1963       tty->print("%5d--> ",i); nn->dump();
1964     }
1965   }
1966 #endif
1967 }
1968 
1969 //--------------------------is_iteratively_computed------------------------------
1970 // Operation appears to be iteratively computed (such as an induction variable)
1971 // It is possible for this operation to return false for a loop-varying
1972 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
1973 bool Node::is_iteratively_computed() {
1974   if (ideal_reg()) { // does operation have a result register?
1975     for (uint i = 1; i < req(); i++) {
1976       Node* n = in(i);
1977       if (n != NULL && n->is_Phi()) {
1978         for (uint j = 1; j < n->req(); j++) {
1979           if (n->in(j) == this) {
1980             return true;
1981           }
1982         }
1983       }
1984     }
1985   }
1986   return false;
1987 }
1988 
1989 //--------------------------find_similar------------------------------
1990 // Return a node with opcode "opc" and same inputs as "this" if one can
1991 // be found; Otherwise return NULL;
1992 Node* Node::find_similar(int opc) {
1993   if (req() >= 2) {
1994     Node* def = in(1);
1995     if (def && def->outcnt() >= 2) {
1996       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
1997         Node* use = def->fast_out(i);
1998         if (use->Opcode() == opc &&
1999             use->req() == req()) {
2000           uint j;
2001           for (j = 0; j < use->req(); j++) {
2002             if (use->in(j) != in(j)) {
2003               break;
2004             }
2005           }
2006           if (j == use->req()) {
2007             return use;
2008           }
2009         }
2010       }
2011     }
2012   }
2013   return NULL;
2014 }
2015 
2016 
2017 //--------------------------unique_ctrl_out------------------------------
2018 // Return the unique control out if only one. Null if none or more than one.
2019 Node* Node::unique_ctrl_out() {
2020   Node* found = NULL;
2021   for (uint i = 0; i < outcnt(); i++) {
2022     Node* use = raw_out(i);
2023     if (use->is_CFG() && use != this) {
2024       if (found != NULL) return NULL;
2025       found = use;
2026     }
2027   }
2028   return found;
2029 }
2030 
2031 //=============================================================================
2032 //------------------------------yank-------------------------------------------
2033 // Find and remove
2034 void Node_List::yank( Node *n ) {
2035   uint i;
2036   for( i = 0; i < _cnt; i++ )
2037     if( _nodes[i] == n )
2038       break;
2039 
2040   if( i < _cnt )
2041     _nodes[i] = _nodes[--_cnt];
2042 }
2043 
2044 //------------------------------dump-------------------------------------------
2045 void Node_List::dump() const {
2046 #ifndef PRODUCT
2047   for( uint i = 0; i < _cnt; i++ )
2048     if( _nodes[i] ) {
2049       tty->print("%5d--> ",i);
2050       _nodes[i]->dump();
2051     }
2052 #endif
2053 }
2054 
2055 //=============================================================================
2056 //------------------------------remove-----------------------------------------
2057 void Unique_Node_List::remove( Node *n ) {
2058   if( _in_worklist[n->_idx] ) {
2059     for( uint i = 0; i < size(); i++ )
2060       if( _nodes[i] == n ) {
2061         map(i,Node_List::pop());
2062         _in_worklist >>= n->_idx;
2063         return;
2064       }
2065     ShouldNotReachHere();
2066   }
2067 }
2068 
2069 //-----------------------remove_useless_nodes----------------------------------
2070 // Remove useless nodes from worklist
2071 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2072 
2073   for( uint i = 0; i < size(); ++i ) {
2074     Node *n = at(i);
2075     assert( n != NULL, "Did not expect null entries in worklist");
2076     if( ! useful.test(n->_idx) ) {
2077       _in_worklist >>= n->_idx;
2078       map(i,Node_List::pop());
2079       // Node *replacement = Node_List::pop();
2080       // if( i != size() ) { // Check if removing last entry
2081       //   _nodes[i] = replacement;
2082       // }
2083       --i;  // Visit popped node
2084       // If it was last entry, loop terminates since size() was also reduced
2085     }
2086   }
2087 }
2088 
2089 //=============================================================================
2090 void Node_Stack::grow() {
2091   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2092   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2093   size_t max = old_max << 1;             // max * 2
2094   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2095   _inode_max = _inodes + max;
2096   _inode_top = _inodes + old_top;        // restore _top
2097 }
2098 
2099 // Node_Stack is used to map nodes.
2100 Node* Node_Stack::find(uint idx) const {
2101   uint sz = size();
2102   for (uint i=0; i < sz; i++) {
2103     if (idx == index_at(i) )
2104       return node_at(i);
2105   }
2106   return NULL;
2107 }
2108 
2109 //=============================================================================
2110 uint TypeNode::size_of() const { return sizeof(*this); }
2111 #ifndef PRODUCT
2112 void TypeNode::dump_spec(outputStream *st) const {
2113   if( !Verbose && !WizardMode ) {
2114     // standard dump does this in Verbose and WizardMode
2115     st->print(" #"); _type->dump_on(st);
2116   }
2117 }
2118 #endif
2119 uint TypeNode::hash() const {
2120   return Node::hash() + _type->hash();
2121 }
2122 uint TypeNode::cmp( const Node &n ) const
2123 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2124 const Type *TypeNode::bottom_type() const { return _type; }
2125 const Type *TypeNode::Value( PhaseTransform * ) const { return _type; }
2126 
2127 //------------------------------ideal_reg--------------------------------------
2128 uint TypeNode::ideal_reg() const {
2129   return Matcher::base2reg[_type->base()];
2130 }