1 /*
   2  * Copyright (c) 1998, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "code/debugInfo.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "compiler/compileBroker.hpp"
  30 #include "compiler/oopMap.hpp"
  31 #include "memory/allocation.inline.hpp"
  32 #include "opto/callnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/locknode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/output.hpp"
  37 #include "opto/regalloc.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "opto/type.hpp"
  41 #include "runtime/handles.inline.hpp"
  42 #include "utilities/xmlstream.hpp"
  43 
  44 extern uint size_java_to_interp();
  45 extern uint reloc_java_to_interp();
  46 extern uint size_exception_handler();
  47 extern uint size_deopt_handler();
  48 
  49 #ifndef PRODUCT
  50 #define DEBUG_ARG(x) , x
  51 #else
  52 #define DEBUG_ARG(x)
  53 #endif
  54 
  55 extern int emit_exception_handler(CodeBuffer &cbuf);
  56 extern int emit_deopt_handler(CodeBuffer &cbuf);
  57 
  58 //------------------------------Output-----------------------------------------
  59 // Convert Nodes to instruction bits and pass off to the VM
  60 void Compile::Output() {
  61   // RootNode goes
  62   assert( _cfg->_broot->_nodes.size() == 0, "" );
  63 
  64   // The number of new nodes (mostly MachNop) is proportional to
  65   // the number of java calls and inner loops which are aligned.
  66   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  67                             C->inner_loops()*(OptoLoopAlignment-1)),
  68                            "out of nodes before code generation" ) ) {
  69     return;
  70   }
  71   // Make sure I can find the Start Node
  72   Block_Array& bbs = _cfg->_bbs;
  73   Block *entry = _cfg->_blocks[1];
  74   Block *broot = _cfg->_broot;
  75 
  76   const StartNode *start = entry->_nodes[0]->as_Start();
  77 
  78   // Replace StartNode with prolog
  79   MachPrologNode *prolog = new (this) MachPrologNode();
  80   entry->_nodes.map( 0, prolog );
  81   bbs.map( prolog->_idx, entry );
  82   bbs.map( start->_idx, NULL ); // start is no longer in any block
  83 
  84   // Virtual methods need an unverified entry point
  85 
  86   if( is_osr_compilation() ) {
  87     if( PoisonOSREntry ) {
  88       // TODO: Should use a ShouldNotReachHereNode...
  89       _cfg->insert( broot, 0, new (this) MachBreakpointNode() );
  90     }
  91   } else {
  92     if( _method && !_method->flags().is_static() ) {
  93       // Insert unvalidated entry point
  94       _cfg->insert( broot, 0, new (this) MachUEPNode() );
  95     }
  96 
  97   }
  98 
  99 
 100   // Break before main entry point
 101   if( (_method && _method->break_at_execute())
 102 #ifndef PRODUCT
 103     ||(OptoBreakpoint && is_method_compilation())
 104     ||(OptoBreakpointOSR && is_osr_compilation())
 105     ||(OptoBreakpointC2R && !_method)
 106 #endif
 107     ) {
 108     // checking for _method means that OptoBreakpoint does not apply to
 109     // runtime stubs or frame converters
 110     _cfg->insert( entry, 1, new (this) MachBreakpointNode() );
 111   }
 112 
 113   // Insert epilogs before every return
 114   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 115     Block *b = _cfg->_blocks[i];
 116     if( !b->is_connector() && b->non_connector_successor(0) == _cfg->_broot ) { // Found a program exit point?
 117       Node *m = b->end();
 118       if( m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt ) {
 119         MachEpilogNode *epilog = new (this) MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 120         b->add_inst( epilog );
 121         bbs.map(epilog->_idx, b);
 122         //_regalloc->set_bad(epilog->_idx); // Already initialized this way.
 123       }
 124     }
 125   }
 126 
 127 # ifdef ENABLE_ZAP_DEAD_LOCALS
 128   if ( ZapDeadCompiledLocals )  Insert_zap_nodes();
 129 # endif
 130 
 131   uint* blk_starts = NEW_RESOURCE_ARRAY(uint,_cfg->_num_blocks+1);
 132   blk_starts[0]    = 0;
 133 
 134   // Initialize code buffer and process short branches.
 135   CodeBuffer* cb = init_buffer(blk_starts);
 136 
 137   if (cb == NULL || failing())  return;
 138 
 139   ScheduleAndBundle();
 140 
 141 #ifndef PRODUCT
 142   if (trace_opto_output()) {
 143     tty->print("\n---- After ScheduleAndBundle ----\n");
 144     for (uint i = 0; i < _cfg->_num_blocks; i++) {
 145       tty->print("\nBB#%03d:\n", i);
 146       Block *bb = _cfg->_blocks[i];
 147       for (uint j = 0; j < bb->_nodes.size(); j++) {
 148         Node *n = bb->_nodes[j];
 149         OptoReg::Name reg = _regalloc->get_reg_first(n);
 150         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 151         n->dump();
 152       }
 153     }
 154   }
 155 #endif
 156 
 157   if (failing())  return;
 158 
 159   BuildOopMaps();
 160 
 161   if (failing())  return;
 162 
 163   fill_buffer(cb, blk_starts);
 164 }
 165 
 166 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 167   // Determine if we need to generate a stack overflow check.
 168   // Do it if the method is not a stub function and
 169   // has java calls or has frame size > vm_page_size/8.
 170   return (UseStackBanging && stub_function() == NULL &&
 171           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3));
 172 }
 173 
 174 bool Compile::need_register_stack_bang() const {
 175   // Determine if we need to generate a register stack overflow check.
 176   // This is only used on architectures which have split register
 177   // and memory stacks (ie. IA64).
 178   // Bang if the method is not a stub function and has java calls
 179   return (stub_function() == NULL && has_java_calls());
 180 }
 181 
 182 # ifdef ENABLE_ZAP_DEAD_LOCALS
 183 
 184 
 185 // In order to catch compiler oop-map bugs, we have implemented
 186 // a debugging mode called ZapDeadCompilerLocals.
 187 // This mode causes the compiler to insert a call to a runtime routine,
 188 // "zap_dead_locals", right before each place in compiled code
 189 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 190 // The runtime routine checks that locations mapped as oops are really
 191 // oops, that locations mapped as values do not look like oops,
 192 // and that locations mapped as dead are not used later
 193 // (by zapping them to an invalid address).
 194 
 195 int Compile::_CompiledZap_count = 0;
 196 
 197 void Compile::Insert_zap_nodes() {
 198   bool skip = false;
 199 
 200 
 201   // Dink with static counts because code code without the extra
 202   // runtime calls is MUCH faster for debugging purposes
 203 
 204        if ( CompileZapFirst  ==  0  ) ; // nothing special
 205   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 206   else if ( CompileZapFirst  == CompiledZap_count() )
 207     warning("starting zap compilation after skipping");
 208 
 209        if ( CompileZapLast  ==  -1  ) ; // nothing special
 210   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 211   else if ( CompileZapLast  ==  CompiledZap_count() )
 212     warning("about to compile last zap");
 213 
 214   ++_CompiledZap_count; // counts skipped zaps, too
 215 
 216   if ( skip )  return;
 217 
 218 
 219   if ( _method == NULL )
 220     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 221 
 222   // Insert call to zap runtime stub before every node with an oop map
 223   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
 224     Block *b = _cfg->_blocks[i];
 225     for ( uint j = 0;  j < b->_nodes.size();  ++j ) {
 226       Node *n = b->_nodes[j];
 227 
 228       // Determining if we should insert a zap-a-lot node in output.
 229       // We do that for all nodes that has oopmap info, except for calls
 230       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 231       // and expect the C code to reset it.  Hence, there can be no safepoints between
 232       // the inlined-allocation and the call to new_Java, etc.
 233       // We also cannot zap monitor calls, as they must hold the microlock
 234       // during the call to Zap, which also wants to grab the microlock.
 235       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 236       if ( insert ) { // it is MachSafePoint
 237         if ( !n->is_MachCall() ) {
 238           insert = false;
 239         } else if ( n->is_MachCall() ) {
 240           MachCallNode* call = n->as_MachCall();
 241           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 242               call->entry_point() == OptoRuntime::new_array_Java() ||
 243               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 244               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 245               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 246               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 247               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 248               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 249               ) {
 250             insert = false;
 251           }
 252         }
 253         if (insert) {
 254           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 255           b->_nodes.insert( j, zap );
 256           _cfg->_bbs.map( zap->_idx, b );
 257           ++j;
 258         }
 259       }
 260     }
 261   }
 262 }
 263 
 264 
 265 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 266   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 267   CallStaticJavaNode* ideal_node =
 268     new (this) CallStaticJavaNode( tf,
 269          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 270                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
 271   // We need to copy the OopMap from the site we're zapping at.
 272   // We have to make a copy, because the zap site might not be
 273   // a call site, and zap_dead is a call site.
 274   OopMap* clone = node_to_check->oop_map()->deep_copy();
 275 
 276   // Add the cloned OopMap to the zap node
 277   ideal_node->set_oop_map(clone);
 278   return _matcher->match_sfpt(ideal_node);
 279 }
 280 
 281 //------------------------------is_node_getting_a_safepoint--------------------
 282 bool Compile::is_node_getting_a_safepoint( Node* n) {
 283   // This code duplicates the logic prior to the call of add_safepoint
 284   // below in this file.
 285   if( n->is_MachSafePoint() ) return true;
 286   return false;
 287 }
 288 
 289 # endif // ENABLE_ZAP_DEAD_LOCALS
 290 
 291 //------------------------------compute_loop_first_inst_sizes------------------
 292 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 293 // of a loop. When aligning a loop we need to provide enough instructions
 294 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 295 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 296 // By default, the size is set to 999999 by Block's constructor so that
 297 // a loop will be aligned if the size is not reset here.
 298 //
 299 // Note: Mach instructions could contain several HW instructions
 300 // so the size is estimated only.
 301 //
 302 void Compile::compute_loop_first_inst_sizes() {
 303   // The next condition is used to gate the loop alignment optimization.
 304   // Don't aligned a loop if there are enough instructions at the head of a loop
 305   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 306   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 307   // equal to 11 bytes which is the largest address NOP instruction.
 308   if( MaxLoopPad < OptoLoopAlignment-1 ) {
 309     uint last_block = _cfg->_num_blocks-1;
 310     for( uint i=1; i <= last_block; i++ ) {
 311       Block *b = _cfg->_blocks[i];
 312       // Check the first loop's block which requires an alignment.
 313       if( b->loop_alignment() > (uint)relocInfo::addr_unit() ) {
 314         uint sum_size = 0;
 315         uint inst_cnt = NumberOfLoopInstrToAlign;
 316         inst_cnt = b->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 317 
 318         // Check subsequent fallthrough blocks if the loop's first
 319         // block(s) does not have enough instructions.
 320         Block *nb = b;
 321         while( inst_cnt > 0 &&
 322                i < last_block &&
 323                !_cfg->_blocks[i+1]->has_loop_alignment() &&
 324                !nb->has_successor(b) ) {
 325           i++;
 326           nb = _cfg->_blocks[i];
 327           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 328         } // while( inst_cnt > 0 && i < last_block  )
 329 
 330         b->set_first_inst_size(sum_size);
 331       } // f( b->head()->is_Loop() )
 332     } // for( i <= last_block )
 333   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 334 }
 335 
 336 //----------------------shorten_branches---------------------------------------
 337 // The architecture description provides short branch variants for some long
 338 // branch instructions. Replace eligible long branches with short branches.
 339 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
 340 
 341   // ------------------
 342   // Compute size of each block, method size, and relocation information size
 343   uint nblocks  = _cfg->_num_blocks;
 344 
 345   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 346   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 347   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 348 
 349   // Collect worst case block paddings
 350   int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
 351   memset(block_worst_case_pad, 0, nblocks * sizeof(int));
 352 
 353   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 354   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 355 
 356   bool has_short_branch_candidate = false;
 357 
 358   // Initialize the sizes to 0
 359   code_size  = 0;          // Size in bytes of generated code
 360   stub_size  = 0;          // Size in bytes of all stub entries
 361   // Size in bytes of all relocation entries, including those in local stubs.
 362   // Start with 2-bytes of reloc info for the unvalidated entry point
 363   reloc_size = 1;          // Number of relocation entries
 364 
 365   // Make three passes.  The first computes pessimistic blk_starts,
 366   // relative jmp_offset and reloc_size information.  The second performs
 367   // short branch substitution using the pessimistic sizing.  The
 368   // third inserts nops where needed.
 369 
 370   // Step one, perform a pessimistic sizing pass.
 371   uint last_call_adr = max_uint;
 372   uint last_avoid_back_to_back_adr = max_uint;
 373   uint nop_size = (new (this) MachNopNode())->size(_regalloc);
 374   for (uint i = 0; i < nblocks; i++) { // For all blocks
 375     Block *b = _cfg->_blocks[i];
 376 
 377     // During short branch replacement, we store the relative (to blk_starts)
 378     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 379     // This is so that we do not need to recompute sizes of all nodes when
 380     // we compute correct blk_starts in our next sizing pass.
 381     jmp_offset[i] = 0;
 382     jmp_size[i]   = 0;
 383     jmp_nidx[i]   = -1;
 384     DEBUG_ONLY( jmp_target[i] = 0; )
 385     DEBUG_ONLY( jmp_rule[i]   = 0; )
 386 
 387     // Sum all instruction sizes to compute block size
 388     uint last_inst = b->_nodes.size();
 389     uint blk_size = 0;
 390     for (uint j = 0; j < last_inst; j++) {
 391       Node* nj = b->_nodes[j];
 392       // Handle machine instruction nodes
 393       if (nj->is_Mach()) {
 394         MachNode *mach = nj->as_Mach();
 395         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 396         reloc_size += mach->reloc();
 397         if( mach->is_MachCall() ) {
 398           MachCallNode *mcall = mach->as_MachCall();
 399           // This destination address is NOT PC-relative
 400 
 401           mcall->method_set((intptr_t)mcall->entry_point());
 402 
 403           if( mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method ) {
 404             stub_size  += size_java_to_interp();
 405             reloc_size += reloc_java_to_interp();
 406           }
 407         } else if (mach->is_MachSafePoint()) {
 408           // If call/safepoint are adjacent, account for possible
 409           // nop to disambiguate the two safepoints.
 410           // ScheduleAndBundle() can rearrange nodes in a block,
 411           // check for all offsets inside this block.
 412           if (last_call_adr >= blk_starts[i]) {
 413             blk_size += nop_size;
 414           }
 415         }
 416         if (mach->avoid_back_to_back()) {
 417           // Nop is inserted between "avoid back to back" instructions.
 418           // ScheduleAndBundle() can rearrange nodes in a block,
 419           // check for all offsets inside this block.
 420           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 421             blk_size += nop_size;
 422           }
 423         }
 424         if (mach->may_be_short_branch()) {
 425           if (!nj->is_MachBranch()) {
 426 #ifndef PRODUCT
 427             nj->dump(3);
 428 #endif
 429             Unimplemented();
 430           }
 431           assert(jmp_nidx[i] == -1, "block should have only one branch");
 432           jmp_offset[i] = blk_size;
 433           jmp_size[i]   = nj->size(_regalloc);
 434           jmp_nidx[i]   = j;
 435           has_short_branch_candidate = true;
 436         }
 437       }
 438       blk_size += nj->size(_regalloc);
 439       // Remember end of call offset
 440       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 441         last_call_adr = blk_starts[i]+blk_size;
 442       }
 443       // Remember end of avoid_back_to_back offset
 444       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back()) {
 445         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 446       }
 447     }
 448 
 449     // When the next block starts a loop, we may insert pad NOP
 450     // instructions.  Since we cannot know our future alignment,
 451     // assume the worst.
 452     if (i< nblocks-1) {
 453       Block *nb = _cfg->_blocks[i+1];
 454       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 455       if (max_loop_pad > 0) {
 456         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 457         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 458         // If either is the last instruction in this block, bump by
 459         // max_loop_pad in lock-step with blk_size, so sizing
 460         // calculations in subsequent blocks still can conservatively
 461         // detect that it may the last instruction in this block.
 462         if (last_call_adr == blk_starts[i]+blk_size) {
 463           last_call_adr += max_loop_pad;
 464         }
 465         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 466           last_avoid_back_to_back_adr += max_loop_pad;
 467         }
 468         blk_size += max_loop_pad;
 469         block_worst_case_pad[i + 1] = max_loop_pad;
 470       }
 471     }
 472 
 473     // Save block size; update total method size
 474     blk_starts[i+1] = blk_starts[i]+blk_size;
 475   }
 476 
 477   // Step two, replace eligible long jumps.
 478   bool progress = true;
 479   uint last_may_be_short_branch_adr = max_uint;
 480   while (has_short_branch_candidate && progress) {
 481     progress = false;
 482     has_short_branch_candidate = false;
 483     int adjust_block_start = 0;
 484     for (uint i = 0; i < nblocks; i++) {
 485       Block *b = _cfg->_blocks[i];
 486       int idx = jmp_nidx[i];
 487       MachNode* mach = (idx == -1) ? NULL: b->_nodes[idx]->as_Mach();
 488       if (mach != NULL && mach->may_be_short_branch()) {
 489 #ifdef ASSERT
 490         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 491         int j;
 492         // Find the branch; ignore trailing NOPs.
 493         for (j = b->_nodes.size()-1; j>=0; j--) {
 494           Node* n = b->_nodes[j];
 495           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 496             break;
 497         }
 498         assert(j >= 0 && j == idx && b->_nodes[j] == (Node*)mach, "sanity");
 499 #endif
 500         int br_size = jmp_size[i];
 501         int br_offs = blk_starts[i] + jmp_offset[i];
 502 
 503         // This requires the TRUE branch target be in succs[0]
 504         uint bnum = b->non_connector_successor(0)->_pre_order;
 505         int offset = blk_starts[bnum] - br_offs;
 506         if (bnum > i) { // adjust following block's offset
 507           offset -= adjust_block_start;
 508         }
 509 
 510         // This block can be a loop header, account for the padding
 511         // in the previous block.
 512         int block_padding = block_worst_case_pad[i];
 513         assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
 514         // In the following code a nop could be inserted before
 515         // the branch which will increase the backward distance.
 516         bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
 517         assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
 518 
 519         if (needs_padding && offset <= 0)
 520           offset -= nop_size;
 521 
 522         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
 523           // We've got a winner.  Replace this branch.
 524           MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
 525 
 526           // Update the jmp_size.
 527           int new_size = replacement->size(_regalloc);
 528           int diff     = br_size - new_size;
 529           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 530           // Conservatively take into accound padding between
 531           // avoid_back_to_back branches. Previous branch could be
 532           // converted into avoid_back_to_back branch during next
 533           // rounds.
 534           if (needs_padding && replacement->avoid_back_to_back()) {
 535             jmp_offset[i] += nop_size;
 536             diff -= nop_size;
 537           }
 538           adjust_block_start += diff;
 539           b->_nodes.map(idx, replacement);
 540           mach->subsume_by(replacement, C);
 541           mach = replacement;
 542           progress = true;
 543 
 544           jmp_size[i] = new_size;
 545           DEBUG_ONLY( jmp_target[i] = bnum; );
 546           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 547         } else {
 548           // The jump distance is not short, try again during next iteration.
 549           has_short_branch_candidate = true;
 550         }
 551       } // (mach->may_be_short_branch())
 552       if (mach != NULL && (mach->may_be_short_branch() ||
 553                            mach->avoid_back_to_back())) {
 554         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 555       }
 556       blk_starts[i+1] -= adjust_block_start;
 557     }
 558   }
 559 
 560 #ifdef ASSERT
 561   for (uint i = 0; i < nblocks; i++) { // For all blocks
 562     if (jmp_target[i] != 0) {
 563       int br_size = jmp_size[i];
 564       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 565       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 566         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 567       }
 568       assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 569     }
 570   }
 571 #endif
 572 
 573   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 574   // after ScheduleAndBundle().
 575 
 576   // ------------------
 577   // Compute size for code buffer
 578   code_size = blk_starts[nblocks];
 579 
 580   // Relocation records
 581   reloc_size += 1;              // Relo entry for exception handler
 582 
 583   // Adjust reloc_size to number of record of relocation info
 584   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 585   // a relocation index.
 586   // The CodeBuffer will expand the locs array if this estimate is too low.
 587   reloc_size *= 10 / sizeof(relocInfo);
 588 }
 589 
 590 //------------------------------FillLocArray-----------------------------------
 591 // Create a bit of debug info and append it to the array.  The mapping is from
 592 // Java local or expression stack to constant, register or stack-slot.  For
 593 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 594 // entry has been taken care of and caller should skip it).
 595 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 596   // This should never have accepted Bad before
 597   assert(OptoReg::is_valid(regnum), "location must be valid");
 598   return (OptoReg::is_reg(regnum))
 599     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 600     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 601 }
 602 
 603 
 604 ObjectValue*
 605 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 606   for (int i = 0; i < objs->length(); i++) {
 607     assert(objs->at(i)->is_object(), "corrupt object cache");
 608     ObjectValue* sv = (ObjectValue*) objs->at(i);
 609     if (sv->id() == id) {
 610       return sv;
 611     }
 612   }
 613   // Otherwise..
 614   return NULL;
 615 }
 616 
 617 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 618                                      ObjectValue* sv ) {
 619   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 620   objs->append(sv);
 621 }
 622 
 623 
 624 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 625                             GrowableArray<ScopeValue*> *array,
 626                             GrowableArray<ScopeValue*> *objs ) {
 627   assert( local, "use _top instead of null" );
 628   if (array->length() != idx) {
 629     assert(array->length() == idx + 1, "Unexpected array count");
 630     // Old functionality:
 631     //   return
 632     // New functionality:
 633     //   Assert if the local is not top. In product mode let the new node
 634     //   override the old entry.
 635     assert(local == top(), "LocArray collision");
 636     if (local == top()) {
 637       return;
 638     }
 639     array->pop();
 640   }
 641   const Type *t = local->bottom_type();
 642 
 643   // Is it a safepoint scalar object node?
 644   if (local->is_SafePointScalarObject()) {
 645     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 646 
 647     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 648     if (sv == NULL) {
 649       ciKlass* cik = t->is_oopptr()->klass();
 650       assert(cik->is_instance_klass() ||
 651              cik->is_array_klass(), "Not supported allocation.");
 652       sv = new ObjectValue(spobj->_idx,
 653                            new ConstantOopWriteValue(cik->constant_encoding()));
 654       Compile::set_sv_for_object_node(objs, sv);
 655 
 656       uint first_ind = spobj->first_index();
 657       for (uint i = 0; i < spobj->n_fields(); i++) {
 658         Node* fld_node = sfpt->in(first_ind+i);
 659         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 660       }
 661     }
 662     array->append(sv);
 663     return;
 664   }
 665 
 666   // Grab the register number for the local
 667   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 668   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 669     // Record the double as two float registers.
 670     // The register mask for such a value always specifies two adjacent
 671     // float registers, with the lower register number even.
 672     // Normally, the allocation of high and low words to these registers
 673     // is irrelevant, because nearly all operations on register pairs
 674     // (e.g., StoreD) treat them as a single unit.
 675     // Here, we assume in addition that the words in these two registers
 676     // stored "naturally" (by operations like StoreD and double stores
 677     // within the interpreter) such that the lower-numbered register
 678     // is written to the lower memory address.  This may seem like
 679     // a machine dependency, but it is not--it is a requirement on
 680     // the author of the <arch>.ad file to ensure that, for every
 681     // even/odd double-register pair to which a double may be allocated,
 682     // the word in the even single-register is stored to the first
 683     // memory word.  (Note that register numbers are completely
 684     // arbitrary, and are not tied to any machine-level encodings.)
 685 #ifdef _LP64
 686     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 687       array->append(new ConstantIntValue(0));
 688       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 689     } else if ( t->base() == Type::Long ) {
 690       array->append(new ConstantIntValue(0));
 691       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 692     } else if ( t->base() == Type::RawPtr ) {
 693       // jsr/ret return address which must be restored into a the full
 694       // width 64-bit stack slot.
 695       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 696     }
 697 #else //_LP64
 698 #ifdef SPARC
 699     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 700       // For SPARC we have to swap high and low words for
 701       // long values stored in a single-register (g0-g7).
 702       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 703       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 704     } else
 705 #endif //SPARC
 706     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 707       // Repack the double/long as two jints.
 708       // The convention the interpreter uses is that the second local
 709       // holds the first raw word of the native double representation.
 710       // This is actually reasonable, since locals and stack arrays
 711       // grow downwards in all implementations.
 712       // (If, on some machine, the interpreter's Java locals or stack
 713       // were to grow upwards, the embedded doubles would be word-swapped.)
 714       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 715       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 716     }
 717 #endif //_LP64
 718     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 719                OptoReg::is_reg(regnum) ) {
 720       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
 721                                    ? Location::float_in_dbl : Location::normal ));
 722     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 723       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 724                                    ? Location::int_in_long : Location::normal ));
 725     } else if( t->base() == Type::NarrowOop ) {
 726       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 727     } else {
 728       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 729     }
 730     return;
 731   }
 732 
 733   // No register.  It must be constant data.
 734   switch (t->base()) {
 735   case Type::Half:              // Second half of a double
 736     ShouldNotReachHere();       // Caller should skip 2nd halves
 737     break;
 738   case Type::AnyPtr:
 739     array->append(new ConstantOopWriteValue(NULL));
 740     break;
 741   case Type::AryPtr:
 742   case Type::InstPtr:
 743   case Type::KlassPtr:          // fall through
 744     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 745     break;
 746   case Type::NarrowOop:
 747     if (t == TypeNarrowOop::NULL_PTR) {
 748       array->append(new ConstantOopWriteValue(NULL));
 749     } else {
 750       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 751     }
 752     break;
 753   case Type::Int:
 754     array->append(new ConstantIntValue(t->is_int()->get_con()));
 755     break;
 756   case Type::RawPtr:
 757     // A return address (T_ADDRESS).
 758     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 759 #ifdef _LP64
 760     // Must be restored to the full-width 64-bit stack slot.
 761     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 762 #else
 763     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 764 #endif
 765     break;
 766   case Type::FloatCon: {
 767     float f = t->is_float_constant()->getf();
 768     array->append(new ConstantIntValue(jint_cast(f)));
 769     break;
 770   }
 771   case Type::DoubleCon: {
 772     jdouble d = t->is_double_constant()->getd();
 773 #ifdef _LP64
 774     array->append(new ConstantIntValue(0));
 775     array->append(new ConstantDoubleValue(d));
 776 #else
 777     // Repack the double as two jints.
 778     // The convention the interpreter uses is that the second local
 779     // holds the first raw word of the native double representation.
 780     // This is actually reasonable, since locals and stack arrays
 781     // grow downwards in all implementations.
 782     // (If, on some machine, the interpreter's Java locals or stack
 783     // were to grow upwards, the embedded doubles would be word-swapped.)
 784     jint   *dp = (jint*)&d;
 785     array->append(new ConstantIntValue(dp[1]));
 786     array->append(new ConstantIntValue(dp[0]));
 787 #endif
 788     break;
 789   }
 790   case Type::Long: {
 791     jlong d = t->is_long()->get_con();
 792 #ifdef _LP64
 793     array->append(new ConstantIntValue(0));
 794     array->append(new ConstantLongValue(d));
 795 #else
 796     // Repack the long as two jints.
 797     // The convention the interpreter uses is that the second local
 798     // holds the first raw word of the native double representation.
 799     // This is actually reasonable, since locals and stack arrays
 800     // grow downwards in all implementations.
 801     // (If, on some machine, the interpreter's Java locals or stack
 802     // were to grow upwards, the embedded doubles would be word-swapped.)
 803     jint *dp = (jint*)&d;
 804     array->append(new ConstantIntValue(dp[1]));
 805     array->append(new ConstantIntValue(dp[0]));
 806 #endif
 807     break;
 808   }
 809   case Type::Top:               // Add an illegal value here
 810     array->append(new LocationValue(Location()));
 811     break;
 812   default:
 813     ShouldNotReachHere();
 814     break;
 815   }
 816 }
 817 
 818 // Determine if this node starts a bundle
 819 bool Compile::starts_bundle(const Node *n) const {
 820   return (_node_bundling_limit > n->_idx &&
 821           _node_bundling_base[n->_idx].starts_bundle());
 822 }
 823 
 824 //--------------------------Process_OopMap_Node--------------------------------
 825 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 826 
 827   // Handle special safepoint nodes for synchronization
 828   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 829   MachCallNode      *mcall;
 830 
 831 #ifdef ENABLE_ZAP_DEAD_LOCALS
 832   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 833 #endif
 834 
 835   int safepoint_pc_offset = current_offset;
 836   bool is_method_handle_invoke = false;
 837   bool return_oop = false;
 838 
 839   // Add the safepoint in the DebugInfoRecorder
 840   if( !mach->is_MachCall() ) {
 841     mcall = NULL;
 842     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 843   } else {
 844     mcall = mach->as_MachCall();
 845 
 846     // Is the call a MethodHandle call?
 847     if (mcall->is_MachCallJava()) {
 848       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 849         assert(has_method_handle_invokes(), "must have been set during call generation");
 850         is_method_handle_invoke = true;
 851       }
 852     }
 853 
 854     // Check if a call returns an object.
 855     if (mcall->return_value_is_used() &&
 856         mcall->tf()->range()->field_at(TypeFunc::Parms)->isa_ptr()) {
 857       return_oop = true;
 858     }
 859     safepoint_pc_offset += mcall->ret_addr_offset();
 860     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 861   }
 862 
 863   // Loop over the JVMState list to add scope information
 864   // Do not skip safepoints with a NULL method, they need monitor info
 865   JVMState* youngest_jvms = sfn->jvms();
 866   int max_depth = youngest_jvms->depth();
 867 
 868   // Allocate the object pool for scalar-replaced objects -- the map from
 869   // small-integer keys (which can be recorded in the local and ostack
 870   // arrays) to descriptions of the object state.
 871   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 872 
 873   // Visit scopes from oldest to youngest.
 874   for (int depth = 1; depth <= max_depth; depth++) {
 875     JVMState* jvms = youngest_jvms->of_depth(depth);
 876     int idx;
 877     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 878     // Safepoints that do not have method() set only provide oop-map and monitor info
 879     // to support GC; these do not support deoptimization.
 880     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 881     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 882     int num_mon  = jvms->nof_monitors();
 883     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 884            "JVMS local count must match that of the method");
 885 
 886     // Add Local and Expression Stack Information
 887 
 888     // Insert locals into the locarray
 889     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 890     for( idx = 0; idx < num_locs; idx++ ) {
 891       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 892     }
 893 
 894     // Insert expression stack entries into the exparray
 895     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 896     for( idx = 0; idx < num_exps; idx++ ) {
 897       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 898     }
 899 
 900     // Add in mappings of the monitors
 901     assert( !method ||
 902             !method->is_synchronized() ||
 903             method->is_native() ||
 904             num_mon > 0 ||
 905             !GenerateSynchronizationCode,
 906             "monitors must always exist for synchronized methods");
 907 
 908     // Build the growable array of ScopeValues for exp stack
 909     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 910 
 911     // Loop over monitors and insert into array
 912     for(idx = 0; idx < num_mon; idx++) {
 913       // Grab the node that defines this monitor
 914       Node* box_node = sfn->monitor_box(jvms, idx);
 915       Node* obj_node = sfn->monitor_obj(jvms, idx);
 916 
 917       // Create ScopeValue for object
 918       ScopeValue *scval = NULL;
 919 
 920       if( obj_node->is_SafePointScalarObject() ) {
 921         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 922         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 923         if (scval == NULL) {
 924           const Type *t = obj_node->bottom_type();
 925           ciKlass* cik = t->is_oopptr()->klass();
 926           assert(cik->is_instance_klass() ||
 927                  cik->is_array_klass(), "Not supported allocation.");
 928           ObjectValue* sv = new ObjectValue(spobj->_idx,
 929                                 new ConstantOopWriteValue(cik->constant_encoding()));
 930           Compile::set_sv_for_object_node(objs, sv);
 931 
 932           uint first_ind = spobj->first_index();
 933           for (uint i = 0; i < spobj->n_fields(); i++) {
 934             Node* fld_node = sfn->in(first_ind+i);
 935             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 936           }
 937           scval = sv;
 938         }
 939       } else if( !obj_node->is_Con() ) {
 940         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 941         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 942           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 943         } else {
 944           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 945         }
 946       } else {
 947         const TypePtr *tp = obj_node->get_ptr_type();
 948         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
 949       }
 950 
 951       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
 952       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 953       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
 954       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
 955     }
 956 
 957     // We dump the object pool first, since deoptimization reads it in first.
 958     debug_info()->dump_object_pool(objs);
 959 
 960     // Build first class objects to pass to scope
 961     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 962     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 963     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 964 
 965     // Make method available for all Safepoints
 966     ciMethod* scope_method = method ? method : _method;
 967     // Describe the scope here
 968     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 969     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
 970     // Now we can describe the scope.
 971     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
 972   } // End jvms loop
 973 
 974   // Mark the end of the scope set.
 975   debug_info()->end_safepoint(safepoint_pc_offset);
 976 }
 977 
 978 
 979 
 980 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 981 class NonSafepointEmitter {
 982   Compile*  C;
 983   JVMState* _pending_jvms;
 984   int       _pending_offset;
 985 
 986   void emit_non_safepoint();
 987 
 988  public:
 989   NonSafepointEmitter(Compile* compile) {
 990     this->C = compile;
 991     _pending_jvms = NULL;
 992     _pending_offset = 0;
 993   }
 994 
 995   void observe_instruction(Node* n, int pc_offset) {
 996     if (!C->debug_info()->recording_non_safepoints())  return;
 997 
 998     Node_Notes* nn = C->node_notes_at(n->_idx);
 999     if (nn == NULL || nn->jvms() == NULL)  return;
1000     if (_pending_jvms != NULL &&
1001         _pending_jvms->same_calls_as(nn->jvms())) {
1002       // Repeated JVMS?  Stretch it up here.
1003       _pending_offset = pc_offset;
1004     } else {
1005       if (_pending_jvms != NULL &&
1006           _pending_offset < pc_offset) {
1007         emit_non_safepoint();
1008       }
1009       _pending_jvms = NULL;
1010       if (pc_offset > C->debug_info()->last_pc_offset()) {
1011         // This is the only way _pending_jvms can become non-NULL:
1012         _pending_jvms = nn->jvms();
1013         _pending_offset = pc_offset;
1014       }
1015     }
1016   }
1017 
1018   // Stay out of the way of real safepoints:
1019   void observe_safepoint(JVMState* jvms, int pc_offset) {
1020     if (_pending_jvms != NULL &&
1021         !_pending_jvms->same_calls_as(jvms) &&
1022         _pending_offset < pc_offset) {
1023       emit_non_safepoint();
1024     }
1025     _pending_jvms = NULL;
1026   }
1027 
1028   void flush_at_end() {
1029     if (_pending_jvms != NULL) {
1030       emit_non_safepoint();
1031     }
1032     _pending_jvms = NULL;
1033   }
1034 };
1035 
1036 void NonSafepointEmitter::emit_non_safepoint() {
1037   JVMState* youngest_jvms = _pending_jvms;
1038   int       pc_offset     = _pending_offset;
1039 
1040   // Clear it now:
1041   _pending_jvms = NULL;
1042 
1043   DebugInformationRecorder* debug_info = C->debug_info();
1044   assert(debug_info->recording_non_safepoints(), "sanity");
1045 
1046   debug_info->add_non_safepoint(pc_offset);
1047   int max_depth = youngest_jvms->depth();
1048 
1049   // Visit scopes from oldest to youngest.
1050   for (int depth = 1; depth <= max_depth; depth++) {
1051     JVMState* jvms = youngest_jvms->of_depth(depth);
1052     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1053     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1054     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1055   }
1056 
1057   // Mark the end of the scope set.
1058   debug_info->end_non_safepoint(pc_offset);
1059 }
1060 
1061 
1062 
1063 // helper for fill_buffer bailout logic
1064 static void turn_off_compiler(Compile* C) {
1065   if (CodeCache::largest_free_block() >= CodeCacheMinimumFreeSpace*10) {
1066     // Do not turn off compilation if a single giant method has
1067     // blown the code cache size.
1068     C->record_failure("excessive request to CodeCache");
1069   } else {
1070     // Let CompilerBroker disable further compilations.
1071     C->record_failure("CodeCache is full");
1072   }
1073 }
1074 
1075 
1076 //------------------------------init_buffer------------------------------------
1077 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1078 
1079   // Set the initially allocated size
1080   int  code_req   = initial_code_capacity;
1081   int  locs_req   = initial_locs_capacity;
1082   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1083   int  const_req  = initial_const_capacity;
1084 
1085   int  pad_req    = NativeCall::instruction_size;
1086   // The extra spacing after the code is necessary on some platforms.
1087   // Sometimes we need to patch in a jump after the last instruction,
1088   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1089 
1090   // Compute the byte offset where we can store the deopt pc.
1091   if (fixed_slots() != 0) {
1092     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1093   }
1094 
1095   // Compute prolog code size
1096   _method_size = 0;
1097   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1098 #if defined(IA64) && !defined(AIX)
1099   if (save_argument_registers()) {
1100     // 4815101: this is a stub with implicit and unknown precision fp args.
1101     // The usual spill mechanism can only generate stfd's in this case, which
1102     // doesn't work if the fp reg to spill contains a single-precision denorm.
1103     // Instead, we hack around the normal spill mechanism using stfspill's and
1104     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1105     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1106     //
1107     // If we ever implement 16-byte 'registers' == stack slots, we can
1108     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1109     // instead of stfd/stfs/ldfd/ldfs.
1110     _frame_slots += 8*(16/BytesPerInt);
1111   }
1112 #endif
1113   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1114 
1115   if (has_mach_constant_base_node()) {
1116     uint add_size = 0;
1117     // Fill the constant table.
1118     // Note:  This must happen before shorten_branches.
1119     for (uint i = 0; i < _cfg->_num_blocks; i++) {
1120       Block* b = _cfg->_blocks[i];
1121 
1122       for (uint j = 0; j < b->_nodes.size(); j++) {
1123         Node* n = b->_nodes[j];
1124 
1125         // If the node is a MachConstantNode evaluate the constant
1126         // value section.
1127         if (n->is_MachConstant()) {
1128           MachConstantNode* machcon = n->as_MachConstant();
1129           machcon->eval_constant(C);
1130         } else if (n->is_Mach()) {
1131           // On Power there are more nodes that issue constants.
1132           add_size += (n->as_Mach()->ins_num_consts() * 8);
1133         }
1134       }
1135     }
1136 
1137     // Calculate the offsets of the constants and the size of the
1138     // constant table (including the padding to the next section).
1139     constant_table().calculate_offsets_and_size();
1140     const_req = constant_table().size() + add_size;
1141   }
1142 
1143 #if defined(ASSERT) && defined(PPC64)
1144   // Increase const_req by 40 for better behaviour of constant-pool overflow assertions below.
1145   const_req += 40;
1146 #endif
1147 
1148   // Initialize the space for the BufferBlob used to find and verify
1149   // instruction size in MachNode::emit_size()
1150   init_scratch_buffer_blob(const_req);
1151   if (failing())  return NULL; // Out of memory
1152 
1153   // Pre-compute the length of blocks and replace
1154   // long branches with short if machine supports it.
1155   shorten_branches(blk_starts, code_req, locs_req, stub_req);
1156 
1157   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1158   int exception_handler_req = size_exception_handler();
1159   int deopt_handler_req = size_deopt_handler();
1160   exception_handler_req += MAX_stubs_size; // add marginal slop for handler
1161   deopt_handler_req += MAX_stubs_size; // add marginal slop for handler
1162   stub_req += MAX_stubs_size;   // ensure per-stub margin
1163   code_req += MAX_inst_size;    // ensure per-instruction margin
1164 
1165   if (StressCodeBuffers)
1166     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1167 
1168   int total_req =
1169     const_req +
1170     code_req +
1171     pad_req +
1172     stub_req +
1173     exception_handler_req +
1174     deopt_handler_req;               // deopt handler
1175 
1176   if (has_method_handle_invokes())
1177     total_req += deopt_handler_req;  // deopt MH handler
1178 
1179   CodeBuffer* cb = code_buffer();
1180   cb->initialize(total_req, locs_req);
1181 
1182   // Have we run out of code space?
1183   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1184     turn_off_compiler(this);
1185     return NULL;
1186   }
1187   // Configure the code buffer.
1188   cb->initialize_consts_size(const_req);
1189   cb->initialize_stubs_size(stub_req);
1190   cb->initialize_oop_recorder(env()->oop_recorder());
1191 
1192   // fill in the nop array for bundling computations
1193   MachNode *_nop_list[Bundle::_nop_count];
1194   Bundle::initialize_nops(_nop_list, this);
1195 
1196   return cb;
1197 }
1198 
1199 //------------------------------fill_buffer------------------------------------
1200 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1201   // blk_starts[] contains offsets calculated during short branches processing,
1202   // offsets should not be increased during following steps.
1203 
1204   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1205   // of a loop. It is used to determine the padding for loop alignment.
1206   compute_loop_first_inst_sizes();
1207 
1208   // Create oopmap set.
1209   _oop_map_set = new OopMapSet();
1210 
1211   // !!!!! This preserves old handling of oopmaps for now
1212   debug_info()->set_oopmaps(_oop_map_set);
1213 
1214   uint nblocks  = _cfg->_num_blocks;
1215   // Count and start of implicit null check instructions
1216   uint inct_cnt = 0;
1217   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1218 
1219   // Count and start of calls
1220   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1221 
1222   uint  return_offset = 0;
1223   int nop_size = (new (this) MachNopNode())->size(_regalloc);
1224 
1225   int previous_offset = 0;
1226   int current_offset  = 0;
1227   int last_call_offset = -1;
1228   int last_avoid_back_to_back_offset = -1;
1229 #ifdef ASSERT
1230   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1231   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1232   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1233   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1234 #endif
1235 
1236   // Create an array of unused labels, one for each basic block, if printing is enabled
1237 #ifndef PRODUCT
1238   int *node_offsets      = NULL;
1239   uint node_offset_limit = unique();
1240 
1241   if (print_assembly())
1242     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1243 #endif
1244 
1245   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1246 
1247   // Emit the constant table.
1248   if (has_mach_constant_base_node()) {
1249     constant_table().emit(*cb);
1250   }
1251 
1252   // Create an array of labels, one for each basic block
1253   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1254   for (uint i=0; i <= nblocks; i++) {
1255     blk_labels[i].init();
1256   }
1257 
1258   // ------------------
1259   // Now fill in the code buffer
1260   Node *delay_slot = NULL;
1261 
1262   for (uint i=0; i < nblocks; i++) {
1263     Block *b = _cfg->_blocks[i];
1264 
1265     Node *head = b->head();
1266 
1267     // If this block needs to start aligned (i.e, can be reached other
1268     // than by falling-thru from the previous block), then force the
1269     // start of a new bundle.
1270     if (Pipeline::requires_bundling() && starts_bundle(head))
1271       cb->flush_bundle(true);
1272 
1273 #ifdef ASSERT
1274     if (!b->is_connector()) {
1275       stringStream st;
1276       b->dump_head(&_cfg->_bbs, &st);
1277       MacroAssembler(cb).block_comment(st.as_string());
1278     }
1279     jmp_target[i] = 0;
1280     jmp_offset[i] = 0;
1281     jmp_size[i]   = 0;
1282     jmp_rule[i]   = 0;
1283 #endif
1284     int blk_offset = current_offset;
1285 
1286     // Define the label at the beginning of the basic block
1287     MacroAssembler(cb).bind(blk_labels[b->_pre_order]);
1288 
1289     uint last_inst = b->_nodes.size();
1290 
1291     // Emit block normally, except for last instruction.
1292     // Emit means "dump code bits into code buffer".
1293     for (uint j = 0; j<last_inst; j++) {
1294 
1295       // Get the node
1296       Node* n = b->_nodes[j];
1297 
1298       // See if delay slots are supported
1299       if (valid_bundle_info(n) &&
1300           node_bundling(n)->used_in_unconditional_delay()) {
1301         assert(delay_slot == NULL, "no use of delay slot node");
1302         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1303 
1304         delay_slot = n;
1305         continue;
1306       }
1307 
1308       // If this starts a new instruction group, then flush the current one
1309       // (but allow split bundles)
1310       if (Pipeline::requires_bundling() && starts_bundle(n))
1311         cb->flush_bundle(false);
1312 
1313       // The following logic is duplicated in the code ifdeffed for
1314       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1315       // should be factored out.  Or maybe dispersed to the nodes?
1316 
1317       // Special handling for SafePoint/Call Nodes
1318       bool is_mcall = false;
1319       if (n->is_Mach()) {
1320         MachNode *mach = n->as_Mach();
1321         is_mcall = n->is_MachCall();
1322         bool is_sfn = n->is_MachSafePoint();
1323 
1324         // If this requires all previous instructions be flushed, then do so
1325         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1326           cb->flush_bundle(true);
1327           current_offset = cb->insts_size();
1328         }
1329 
1330         // A padding may be needed again since a previous instruction
1331         // could be moved to delay slot.
1332 
1333         // align the instruction if necessary
1334         int padding = mach->compute_padding(current_offset);
1335         // Make sure safepoint node for polling is distinct from a call's
1336         // return by adding a nop if needed.
1337         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1338           padding = nop_size;
1339         }
1340         if (padding == 0 && mach->avoid_back_to_back() &&
1341             current_offset == last_avoid_back_to_back_offset) {
1342           // Avoid back to back some instructions.
1343           padding = nop_size;
1344         }
1345 
1346         if(padding > 0) {
1347           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1348           int nops_cnt = padding / nop_size;
1349           MachNode *nop = new (this) MachNopNode(nops_cnt);
1350           b->_nodes.insert(j++, nop);
1351           last_inst++;
1352           _cfg->_bbs.map( nop->_idx, b );
1353           nop->emit(*cb, _regalloc);
1354           cb->flush_bundle(true);
1355           current_offset = cb->insts_size();
1356         }
1357 
1358         // Remember the start of the last call in a basic block
1359         if (is_mcall) {
1360           MachCallNode *mcall = mach->as_MachCall();
1361 
1362           // This destination address is NOT PC-relative
1363           mcall->method_set((intptr_t)mcall->entry_point());
1364 
1365           // Save the return address
1366           call_returns[b->_pre_order] = current_offset + mcall->ret_addr_offset();
1367 
1368           if (mcall->is_MachCallLeaf()) {
1369             is_mcall = false;
1370             is_sfn = false;
1371           }
1372         }
1373 
1374         // sfn will be valid whenever mcall is valid now because of inheritance
1375         if (is_sfn || is_mcall) {
1376 
1377           // Handle special safepoint nodes for synchronization
1378           if (!is_mcall) {
1379             MachSafePointNode *sfn = mach->as_MachSafePoint();
1380             // !!!!! Stubs only need an oopmap right now, so bail out
1381             if (sfn->jvms()->method() == NULL) {
1382               // Write the oopmap directly to the code blob??!!
1383 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1384               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1385 #             endif
1386               continue;
1387             }
1388           } // End synchronization
1389 
1390           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1391                                            current_offset);
1392           Process_OopMap_Node(mach, current_offset);
1393         } // End if safepoint
1394 
1395         // If this is a null check, then add the start of the previous instruction to the list
1396         else if( mach->is_MachNullCheck() ) {
1397           inct_starts[inct_cnt++] = previous_offset;
1398         }
1399 
1400         // If this is a branch, then fill in the label with the target BB's label
1401         else if (mach->is_MachBranch()) {
1402           // This requires the TRUE branch target be in succs[0]
1403           uint block_num = b->non_connector_successor(0)->_pre_order;
1404 
1405           // Try to replace long branch if delay slot is not used,
1406           // it is mostly for back branches since forward branch's
1407           // distance is not updated yet.
1408           bool delay_slot_is_used = valid_bundle_info(n) &&
1409                                     node_bundling(n)->use_unconditional_delay();
1410           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1411            assert(delay_slot == NULL, "not expecting delay slot node");
1412            int br_size = n->size(_regalloc);
1413             int offset = blk_starts[block_num] - current_offset;
1414             if (block_num >= i) {
1415               // Current and following block's offset are not
1416               // finalized yet, adjust distance by the difference
1417               // between calculated and final offsets of current block.
1418               offset -= (blk_starts[i] - blk_offset);
1419             }
1420             // In the following code a nop could be inserted before
1421             // the branch which will increase the backward distance.
1422             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1423             if (needs_padding && offset <= 0)
1424               offset -= nop_size;
1425 
1426             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1427               // We've got a winner.  Replace this branch.
1428               MachNode* replacement = mach->as_MachBranch()->short_branch_version(this);
1429 
1430               // Update the jmp_size.
1431               int new_size = replacement->size(_regalloc);
1432               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1433               // Insert padding between avoid_back_to_back branches.
1434               if (needs_padding && replacement->avoid_back_to_back()) {
1435                 MachNode *nop = new (this) MachNopNode();
1436                 b->_nodes.insert(j++, nop);
1437                 _cfg->_bbs.map(nop->_idx, b);
1438                 last_inst++;
1439                 nop->emit(*cb, _regalloc);
1440                 cb->flush_bundle(true);
1441                 current_offset = cb->insts_size();
1442               }
1443 #ifdef ASSERT
1444               jmp_target[i] = block_num;
1445               jmp_offset[i] = current_offset - blk_offset;
1446               jmp_size[i]   = new_size;
1447               jmp_rule[i]   = mach->rule();
1448 #endif
1449               b->_nodes.map(j, replacement);
1450               mach->subsume_by(replacement, C);
1451               n    = replacement;
1452               mach = replacement;
1453             }
1454           }
1455           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1456         } else if (mach->ideal_Opcode() == Op_Jump) {
1457           for (uint h = 0; h < b->_num_succs; h++) {
1458             Block* succs_block = b->_succs[h];
1459             for (uint j = 1; j < succs_block->num_preds(); j++) {
1460               Node* jpn = succs_block->pred(j);
1461               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1462                 uint block_num = succs_block->non_connector()->_pre_order;
1463                 Label *blkLabel = &blk_labels[block_num];
1464                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1465               }
1466             }
1467           }
1468         }
1469 
1470 #ifdef ASSERT
1471         // Check that oop-store precedes the card-mark
1472         else if (mach->ideal_Opcode() == Op_StoreCM) {
1473           uint storeCM_idx = j;
1474           int count = 0;
1475           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1476             Node *oop_store = mach->in(prec);  // Precedence edge
1477             if (oop_store == NULL) continue;
1478             count++;
1479             uint i4;
1480             for( i4 = 0; i4 < last_inst; ++i4 ) {
1481               if( b->_nodes[i4] == oop_store ) break;
1482             }
1483             // Note: This test can provide a false failure if other precedence
1484             // edges have been added to the storeCMNode.
1485             assert( i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1486           }
1487           assert(count > 0, "storeCM expects at least one precedence edge");
1488         }
1489 #endif
1490 
1491         else if (!n->is_Proj()) {
1492           // Remember the beginning of the previous instruction, in case
1493           // it's followed by a flag-kill and a null-check.  Happens on
1494           // Intel all the time, with add-to-memory kind of opcodes.
1495           previous_offset = current_offset;
1496         }
1497 
1498         // Not an else-if!
1499         // If this is a trap based cmp then add its offset to the list.
1500         if (mach->is_TrapBasedCheckNode()) {
1501           inct_starts[inct_cnt++] = current_offset;
1502         }
1503       }
1504 
1505       // Verify that there is sufficient space remaining
1506       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1507       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1508         turn_off_compiler(this);
1509         return;
1510       }
1511 
1512       // Save the offset for the listing
1513 #ifndef PRODUCT
1514       if (node_offsets && n->_idx < node_offset_limit)
1515         node_offsets[n->_idx] = cb->insts_size();
1516 #endif
1517 
1518       // "Normal" instruction case
1519       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1520       n->emit(*cb, _regalloc);
1521       current_offset  = cb->insts_size();
1522 
1523 #ifdef ASSERT
1524       if (n->size(_regalloc) < (current_offset-instr_offset)) {
1525         n->dump();
1526         assert(false, "wrong size of mach node");
1527       }
1528 #endif
1529       non_safepoints.observe_instruction(n, current_offset);
1530 
1531       // mcall is last "call" that can be a safepoint
1532       // record it so we can see if a poll will directly follow it
1533       // in which case we'll need a pad to make the PcDesc sites unique
1534       // see  5010568. This can be slightly inaccurate but conservative
1535       // in the case that return address is not actually at current_offset.
1536       // This is a small price to pay.
1537 
1538       if (is_mcall) {
1539         last_call_offset = current_offset;
1540       }
1541 
1542       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back()) {
1543         // Avoid back to back some instructions.
1544         last_avoid_back_to_back_offset = current_offset;
1545       }
1546 
1547       // See if this instruction has a delay slot
1548       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1549         assert(delay_slot != NULL, "expecting delay slot node");
1550 
1551         // Back up 1 instruction
1552         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1553 
1554         // Save the offset for the listing
1555 #ifndef PRODUCT
1556         if (node_offsets && delay_slot->_idx < node_offset_limit)
1557           node_offsets[delay_slot->_idx] = cb->insts_size();
1558 #endif
1559 
1560         // Support a SafePoint in the delay slot
1561         if (delay_slot->is_MachSafePoint()) {
1562           MachNode *mach = delay_slot->as_Mach();
1563           // !!!!! Stubs only need an oopmap right now, so bail out
1564           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1565             // Write the oopmap directly to the code blob??!!
1566 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1567             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1568 #           endif
1569             delay_slot = NULL;
1570             continue;
1571           }
1572 
1573           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1574           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1575                                            adjusted_offset);
1576           // Generate an OopMap entry
1577           Process_OopMap_Node(mach, adjusted_offset);
1578         }
1579 
1580         // Insert the delay slot instruction
1581         delay_slot->emit(*cb, _regalloc);
1582 
1583         // Don't reuse it
1584         delay_slot = NULL;
1585       }
1586 
1587     } // End for all instructions in block
1588 
1589     // If the next block is the top of a loop, pad this block out to align
1590     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1591     if (i < nblocks-1) {
1592       Block *nb = _cfg->_blocks[i+1];
1593       int padding = nb->alignment_padding(current_offset);
1594       if( padding > 0 ) {
1595         MachNode *nop = new (this) MachNopNode(padding / nop_size);
1596         b->_nodes.insert( b->_nodes.size(), nop );
1597         _cfg->_bbs.map( nop->_idx, b );
1598         nop->emit(*cb, _regalloc);
1599         current_offset = cb->insts_size();
1600       }
1601     }
1602     // Verify that the distance for generated before forward
1603     // short branches is still valid.
1604     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1605 
1606     // Save new block start offset
1607     blk_starts[i] = blk_offset;
1608   } // End of for all blocks
1609   blk_starts[nblocks] = current_offset;
1610 
1611   non_safepoints.flush_at_end();
1612 
1613   // Offset too large?
1614   if (failing())  return;
1615 
1616   // Define a pseudo-label at the end of the code
1617   MacroAssembler(cb).bind( blk_labels[nblocks] );
1618 
1619   // Compute the size of the first block
1620   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1621 
1622   assert(cb->insts_size() < 500000, "method is unreasonably large");
1623 
1624 #ifdef ASSERT
1625   for (uint i = 0; i < nblocks; i++) { // For all blocks
1626     if (jmp_target[i] != 0) {
1627       int br_size = jmp_size[i];
1628       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1629       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1630         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1631         assert(false, "Displacement too large for short jmp");
1632       }
1633     }
1634   }
1635 #endif
1636 
1637   // ------------------
1638 
1639 #ifndef PRODUCT
1640   // Information on the size of the method, without the extraneous code
1641   Scheduling::increment_method_size(cb->insts_size());
1642 #endif
1643 
1644   // ------------------
1645   // Fill in exception table entries.
1646   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1647 
1648   // Only java methods have exception handlers and deopt handlers
1649   if (_method) {
1650     // Emit the exception handler code.
1651     _code_offsets.set_value(CodeOffsets::Exceptions, emit_exception_handler(*cb));
1652     // Emit the deopt handler code.
1653     _code_offsets.set_value(CodeOffsets::Deopt, emit_deopt_handler(*cb));
1654 
1655     // Emit the MethodHandle deopt handler code (if required).
1656     if (has_method_handle_invokes()) {
1657       // We can use the same code as for the normal deopt handler, we
1658       // just need a different entry point address.
1659       _code_offsets.set_value(CodeOffsets::DeoptMH, emit_deopt_handler(*cb));
1660     }
1661   }
1662 
1663   // One last check for failed CodeBuffer::expand:
1664   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1665     turn_off_compiler(this);
1666     return;
1667   }
1668 
1669 #ifndef PRODUCT
1670   // Dump the assembly code, including basic-block numbers
1671   if (print_assembly()) {
1672     ttyLocker ttyl;  // keep the following output all in one block
1673     if (!VMThread::should_terminate()) {  // test this under the tty lock
1674       // This output goes directly to the tty, not the compiler log.
1675       // To enable tools to match it up with the compilation activity,
1676       // be sure to tag this tty output with the compile ID.
1677       if (xtty != NULL) {
1678         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1679                    is_osr_compilation()    ? " compile_kind='osr'" :
1680                    "");
1681       }
1682       if (method() != NULL) {
1683         method()->print_oop();
1684         print_codes();
1685       }
1686       dump_asm(node_offsets, node_offset_limit);
1687       if (xtty != NULL) {
1688         xtty->tail("opto_assembly");
1689       }
1690     }
1691   }
1692 #endif
1693 
1694 }
1695 
1696 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1697   _inc_table.set_size(cnt);
1698 
1699   uint inct_cnt = 0;
1700   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1701     Block *b = _cfg->_blocks[i];
1702     Node *n = NULL;
1703     int j;
1704 
1705     // Find the branch; ignore trailing NOPs.
1706     for( j = b->_nodes.size()-1; j>=0; j-- ) {
1707       n = b->_nodes[j];
1708       if( !n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con )
1709         break;
1710     }
1711 
1712     // If we didn't find anything, continue
1713     if( j < 0 ) continue;
1714 
1715     // Compute ExceptionHandlerTable subtable entry and add it
1716     // (skip empty blocks)
1717     if( n->is_Catch() ) {
1718 
1719       // Get the offset of the return from the call
1720       uint call_return = call_returns[b->_pre_order];
1721 #ifdef ASSERT
1722       assert( call_return > 0, "no call seen for this basic block" );
1723       while( b->_nodes[--j]->is_MachProj() ) ;
1724       assert( b->_nodes[j]->is_MachCall(), "CatchProj must follow call" );
1725 #endif
1726       // last instruction is a CatchNode, find it's CatchProjNodes
1727       int nof_succs = b->_num_succs;
1728       // allocate space
1729       GrowableArray<intptr_t> handler_bcis(nof_succs);
1730       GrowableArray<intptr_t> handler_pcos(nof_succs);
1731       // iterate through all successors
1732       for (int j = 0; j < nof_succs; j++) {
1733         Block* s = b->_succs[j];
1734         bool found_p = false;
1735         for( uint k = 1; k < s->num_preds(); k++ ) {
1736           Node *pk = s->pred(k);
1737           if( pk->is_CatchProj() && pk->in(0) == n ) {
1738             const CatchProjNode* p = pk->as_CatchProj();
1739             found_p = true;
1740             // add the corresponding handler bci & pco information
1741             if( p->_con != CatchProjNode::fall_through_index ) {
1742               // p leads to an exception handler (and is not fall through)
1743               assert(s == _cfg->_blocks[s->_pre_order],"bad numbering");
1744               // no duplicates, please
1745               if( !handler_bcis.contains(p->handler_bci()) ) {
1746                 uint block_num = s->non_connector()->_pre_order;
1747                 handler_bcis.append(p->handler_bci());
1748                 handler_pcos.append(blk_labels[block_num].loc_pos());
1749               }
1750             }
1751           }
1752         }
1753         assert(found_p, "no matching predecessor found");
1754         // Note:  Due to empty block removal, one block may have
1755         // several CatchProj inputs, from the same Catch.
1756       }
1757 
1758       // Set the offset of the return from the call
1759       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1760       continue;
1761     }
1762 
1763     // Handle implicit null exception table updates
1764     if( n->is_MachNullCheck() ) {
1765       uint block_num = b->non_connector_successor(0)->_pre_order;
1766       _inc_table.append( inct_starts[inct_cnt++], blk_labels[block_num].loc_pos() );
1767       continue;
1768     }
1769     // Handle implicit exception table updates: trap instructions.
1770     if (n->is_TrapBasedCheckNode()) {
1771       uint block_num = b->non_connector_successor(0)->_pre_order;
1772       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1773       continue;
1774     }
1775   } // End of for all blocks fill in exception table entries
1776 }
1777 
1778 // Static Variables
1779 #ifndef PRODUCT
1780 uint Scheduling::_total_nop_size = 0;
1781 uint Scheduling::_total_method_size = 0;
1782 uint Scheduling::_total_branches = 0;
1783 uint Scheduling::_total_unconditional_delays = 0;
1784 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1785 #endif
1786 
1787 // Initializer for class Scheduling
1788 
1789 Scheduling::Scheduling(Arena *arena, Compile &compile)
1790   : _arena(arena),
1791     _cfg(compile.cfg()),
1792     _bbs(compile.cfg()->_bbs),
1793     _regalloc(compile.regalloc()),
1794     _reg_node(arena),
1795     _bundle_instr_count(0),
1796     _bundle_cycle_number(0),
1797     _scheduled(arena),
1798     _available(arena),
1799     _next_node(NULL),
1800     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1801     _pinch_free_list(arena)
1802 #ifndef PRODUCT
1803   , _branches(0)
1804   , _unconditional_delays(0)
1805 #endif
1806 {
1807   // Create a MachNopNode
1808   _nop = new (&compile) MachNopNode();
1809 
1810   // Now that the nops are in the array, save the count
1811   // (but allow entries for the nops)
1812   _node_bundling_limit = compile.unique();
1813   uint node_max = _regalloc->node_regs_max_index();
1814 
1815   compile.set_node_bundling_limit(_node_bundling_limit);
1816 
1817   // This one is persistent within the Compile class
1818   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1819 
1820   // Allocate space for fixed-size arrays
1821   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1822   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1823   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1824 
1825   // Clear the arrays
1826   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1827   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1828   memset(_uses,               0, node_max * sizeof(short));
1829   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1830 
1831   // Clear the bundling information
1832   memcpy(_bundle_use_elements,
1833     Pipeline_Use::elaborated_elements,
1834     sizeof(Pipeline_Use::elaborated_elements));
1835 
1836   // Get the last node
1837   Block *bb = _cfg->_blocks[_cfg->_blocks.size()-1];
1838 
1839   _next_node = bb->_nodes[bb->_nodes.size()-1];
1840 }
1841 
1842 #ifndef PRODUCT
1843 // Scheduling destructor
1844 Scheduling::~Scheduling() {
1845   _total_branches             += _branches;
1846   _total_unconditional_delays += _unconditional_delays;
1847 }
1848 #endif
1849 
1850 // Step ahead "i" cycles
1851 void Scheduling::step(uint i) {
1852 
1853   Bundle *bundle = node_bundling(_next_node);
1854   bundle->set_starts_bundle();
1855 
1856   // Update the bundle record, but leave the flags information alone
1857   if (_bundle_instr_count > 0) {
1858     bundle->set_instr_count(_bundle_instr_count);
1859     bundle->set_resources_used(_bundle_use.resourcesUsed());
1860   }
1861 
1862   // Update the state information
1863   _bundle_instr_count = 0;
1864   _bundle_cycle_number += i;
1865   _bundle_use.step(i);
1866 }
1867 
1868 void Scheduling::step_and_clear() {
1869   Bundle *bundle = node_bundling(_next_node);
1870   bundle->set_starts_bundle();
1871 
1872   // Update the bundle record
1873   if (_bundle_instr_count > 0) {
1874     bundle->set_instr_count(_bundle_instr_count);
1875     bundle->set_resources_used(_bundle_use.resourcesUsed());
1876 
1877     _bundle_cycle_number += 1;
1878   }
1879 
1880   // Clear the bundling information
1881   _bundle_instr_count = 0;
1882   _bundle_use.reset();
1883 
1884   memcpy(_bundle_use_elements,
1885     Pipeline_Use::elaborated_elements,
1886     sizeof(Pipeline_Use::elaborated_elements));
1887 }
1888 
1889 //------------------------------ScheduleAndBundle------------------------------
1890 // Perform instruction scheduling and bundling over the sequence of
1891 // instructions in backwards order.
1892 void Compile::ScheduleAndBundle() {
1893 
1894   // Don't optimize this if it isn't a method
1895   if (!_method)
1896     return;
1897 
1898   // Don't optimize this if scheduling is disabled
1899   if (!do_scheduling())
1900     return;
1901 
1902   // Scheduling code works only with pairs (8 bytes) maximum.
1903   if (max_vector_size() > 8)
1904     return;
1905 
1906   NOT_PRODUCT( TracePhase t2("isched", &_t_instrSched, TimeCompiler); )
1907 
1908   // Create a data structure for all the scheduling information
1909   Scheduling scheduling(Thread::current()->resource_area(), *this);
1910 
1911   // Walk backwards over each basic block, computing the needed alignment
1912   // Walk over all the basic blocks
1913   scheduling.DoScheduling();
1914 }
1915 
1916 //------------------------------ComputeLocalLatenciesForward-------------------
1917 // Compute the latency of all the instructions.  This is fairly simple,
1918 // because we already have a legal ordering.  Walk over the instructions
1919 // from first to last, and compute the latency of the instruction based
1920 // on the latency of the preceding instruction(s).
1921 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1922 #ifndef PRODUCT
1923   if (_cfg->C->trace_opto_output())
1924     tty->print("# -> ComputeLocalLatenciesForward\n");
1925 #endif
1926 
1927   // Walk over all the schedulable instructions
1928   for( uint j=_bb_start; j < _bb_end; j++ ) {
1929 
1930     // This is a kludge, forcing all latency calculations to start at 1.
1931     // Used to allow latency 0 to force an instruction to the beginning
1932     // of the bb
1933     uint latency = 1;
1934     Node *use = bb->_nodes[j];
1935     uint nlen = use->len();
1936 
1937     // Walk over all the inputs
1938     for ( uint k=0; k < nlen; k++ ) {
1939       Node *def = use->in(k);
1940       if (!def)
1941         continue;
1942 
1943       uint l = _node_latency[def->_idx] + use->latency(k);
1944       if (latency < l)
1945         latency = l;
1946     }
1947 
1948     _node_latency[use->_idx] = latency;
1949 
1950 #ifndef PRODUCT
1951     if (_cfg->C->trace_opto_output()) {
1952       tty->print("# latency %4d: ", latency);
1953       use->dump();
1954     }
1955 #endif
1956   }
1957 
1958 #ifndef PRODUCT
1959   if (_cfg->C->trace_opto_output())
1960     tty->print("# <- ComputeLocalLatenciesForward\n");
1961 #endif
1962 
1963 } // end ComputeLocalLatenciesForward
1964 
1965 // See if this node fits into the present instruction bundle
1966 bool Scheduling::NodeFitsInBundle(Node *n) {
1967   uint n_idx = n->_idx;
1968 
1969   // If this is the unconditional delay instruction, then it fits
1970   if (n == _unconditional_delay_slot) {
1971 #ifndef PRODUCT
1972     if (_cfg->C->trace_opto_output())
1973       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1974 #endif
1975     return (true);
1976   }
1977 
1978   // If the node cannot be scheduled this cycle, skip it
1979   if (_current_latency[n_idx] > _bundle_cycle_number) {
1980 #ifndef PRODUCT
1981     if (_cfg->C->trace_opto_output())
1982       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1983         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1984 #endif
1985     return (false);
1986   }
1987 
1988   const Pipeline *node_pipeline = n->pipeline();
1989 
1990   uint instruction_count = node_pipeline->instructionCount();
1991   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1992     instruction_count = 0;
1993   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1994     instruction_count++;
1995 
1996   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1997 #ifndef PRODUCT
1998     if (_cfg->C->trace_opto_output())
1999       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
2000         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
2001 #endif
2002     return (false);
2003   }
2004 
2005   // Don't allow non-machine nodes to be handled this way
2006   if (!n->is_Mach() && instruction_count == 0)
2007     return (false);
2008 
2009   // See if there is any overlap
2010   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
2011 
2012   if (delay > 0) {
2013 #ifndef PRODUCT
2014     if (_cfg->C->trace_opto_output())
2015       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
2016 #endif
2017     return false;
2018   }
2019 
2020 #ifndef PRODUCT
2021   if (_cfg->C->trace_opto_output())
2022     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
2023 #endif
2024 
2025   return true;
2026 }
2027 
2028 Node * Scheduling::ChooseNodeToBundle() {
2029   uint siz = _available.size();
2030 
2031   if (siz == 0) {
2032 
2033 #ifndef PRODUCT
2034     if (_cfg->C->trace_opto_output())
2035       tty->print("#   ChooseNodeToBundle: NULL\n");
2036 #endif
2037     return (NULL);
2038   }
2039 
2040   // Fast path, if only 1 instruction in the bundle
2041   if (siz == 1) {
2042 #ifndef PRODUCT
2043     if (_cfg->C->trace_opto_output()) {
2044       tty->print("#   ChooseNodeToBundle (only 1): ");
2045       _available[0]->dump();
2046     }
2047 #endif
2048     return (_available[0]);
2049   }
2050 
2051   // Don't bother, if the bundle is already full
2052   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2053     for ( uint i = 0; i < siz; i++ ) {
2054       Node *n = _available[i];
2055 
2056       // Skip projections, we'll handle them another way
2057       if (n->is_Proj())
2058         continue;
2059 
2060       // This presupposed that instructions are inserted into the
2061       // available list in a legality order; i.e. instructions that
2062       // must be inserted first are at the head of the list
2063       if (NodeFitsInBundle(n)) {
2064 #ifndef PRODUCT
2065         if (_cfg->C->trace_opto_output()) {
2066           tty->print("#   ChooseNodeToBundle: ");
2067           n->dump();
2068         }
2069 #endif
2070         return (n);
2071       }
2072     }
2073   }
2074 
2075   // Nothing fits in this bundle, choose the highest priority
2076 #ifndef PRODUCT
2077   if (_cfg->C->trace_opto_output()) {
2078     tty->print("#   ChooseNodeToBundle: ");
2079     _available[0]->dump();
2080   }
2081 #endif
2082 
2083   return _available[0];
2084 }
2085 
2086 //------------------------------AddNodeToAvailableList-------------------------
2087 void Scheduling::AddNodeToAvailableList(Node *n) {
2088   assert( !n->is_Proj(), "projections never directly made available" );
2089 #ifndef PRODUCT
2090   if (_cfg->C->trace_opto_output()) {
2091     tty->print("#   AddNodeToAvailableList: ");
2092     n->dump();
2093   }
2094 #endif
2095 
2096   int latency = _current_latency[n->_idx];
2097 
2098   // Insert in latency order (insertion sort)
2099   uint i;
2100   for ( i=0; i < _available.size(); i++ )
2101     if (_current_latency[_available[i]->_idx] > latency)
2102       break;
2103 
2104   // Special Check for compares following branches
2105   if( n->is_Mach() && _scheduled.size() > 0 ) {
2106     int op = n->as_Mach()->ideal_Opcode();
2107     Node *last = _scheduled[0];
2108     if( last->is_MachIf() && last->in(1) == n &&
2109         ( op == Op_CmpI ||
2110           op == Op_CmpU ||
2111           op == Op_CmpP ||
2112           op == Op_CmpF ||
2113           op == Op_CmpD ||
2114           op == Op_CmpL ) ) {
2115 
2116       // Recalculate position, moving to front of same latency
2117       for ( i=0 ; i < _available.size(); i++ )
2118         if (_current_latency[_available[i]->_idx] >= latency)
2119           break;
2120     }
2121   }
2122 
2123   // Insert the node in the available list
2124   _available.insert(i, n);
2125 
2126 #ifndef PRODUCT
2127   if (_cfg->C->trace_opto_output())
2128     dump_available();
2129 #endif
2130 }
2131 
2132 //------------------------------DecrementUseCounts-----------------------------
2133 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2134   for ( uint i=0; i < n->len(); i++ ) {
2135     Node *def = n->in(i);
2136     if (!def) continue;
2137     if( def->is_Proj() )        // If this is a machine projection, then
2138       def = def->in(0);         // propagate usage thru to the base instruction
2139 
2140     if( _bbs[def->_idx] != bb ) // Ignore if not block-local
2141       continue;
2142 
2143     // Compute the latency
2144     uint l = _bundle_cycle_number + n->latency(i);
2145     if (_current_latency[def->_idx] < l)
2146       _current_latency[def->_idx] = l;
2147 
2148     // If this does not have uses then schedule it
2149     if ((--_uses[def->_idx]) == 0)
2150       AddNodeToAvailableList(def);
2151   }
2152 }
2153 
2154 //------------------------------AddNodeToBundle--------------------------------
2155 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2156 #ifndef PRODUCT
2157   if (_cfg->C->trace_opto_output()) {
2158     tty->print("#   AddNodeToBundle: ");
2159     n->dump();
2160   }
2161 #endif
2162 
2163   // Remove this from the available list
2164   uint i;
2165   for (i = 0; i < _available.size(); i++)
2166     if (_available[i] == n)
2167       break;
2168   assert(i < _available.size(), "entry in _available list not found");
2169   _available.remove(i);
2170 
2171   // See if this fits in the current bundle
2172   const Pipeline *node_pipeline = n->pipeline();
2173   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2174 
2175   // Check for instructions to be placed in the delay slot. We
2176   // do this before we actually schedule the current instruction,
2177   // because the delay slot follows the current instruction.
2178   if (Pipeline::_branch_has_delay_slot &&
2179       node_pipeline->hasBranchDelay() &&
2180       !_unconditional_delay_slot) {
2181 
2182     uint siz = _available.size();
2183 
2184     // Conditional branches can support an instruction that
2185     // is unconditionally executed and not dependent by the
2186     // branch, OR a conditionally executed instruction if
2187     // the branch is taken.  In practice, this means that
2188     // the first instruction at the branch target is
2189     // copied to the delay slot, and the branch goes to
2190     // the instruction after that at the branch target
2191     if ( n->is_MachBranch() ) {
2192 
2193       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2194       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2195 
2196 #ifndef PRODUCT
2197       _branches++;
2198 #endif
2199 
2200       // At least 1 instruction is on the available list
2201       // that is not dependent on the branch
2202       for (uint i = 0; i < siz; i++) {
2203         Node *d = _available[i];
2204         const Pipeline *avail_pipeline = d->pipeline();
2205 
2206         // Don't allow safepoints in the branch shadow, that will
2207         // cause a number of difficulties
2208         if ( avail_pipeline->instructionCount() == 1 &&
2209             !avail_pipeline->hasMultipleBundles() &&
2210             !avail_pipeline->hasBranchDelay() &&
2211             Pipeline::instr_has_unit_size() &&
2212             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2213             NodeFitsInBundle(d) &&
2214             !node_bundling(d)->used_in_delay()) {
2215 
2216           if (d->is_Mach() && !d->is_MachSafePoint()) {
2217             // A node that fits in the delay slot was found, so we need to
2218             // set the appropriate bits in the bundle pipeline information so
2219             // that it correctly indicates resource usage.  Later, when we
2220             // attempt to add this instruction to the bundle, we will skip
2221             // setting the resource usage.
2222             _unconditional_delay_slot = d;
2223             node_bundling(n)->set_use_unconditional_delay();
2224             node_bundling(d)->set_used_in_unconditional_delay();
2225             _bundle_use.add_usage(avail_pipeline->resourceUse());
2226             _current_latency[d->_idx] = _bundle_cycle_number;
2227             _next_node = d;
2228             ++_bundle_instr_count;
2229 #ifndef PRODUCT
2230             _unconditional_delays++;
2231 #endif
2232             break;
2233           }
2234         }
2235       }
2236     }
2237 
2238     // No delay slot, add a nop to the usage
2239     if (!_unconditional_delay_slot) {
2240       // See if adding an instruction in the delay slot will overflow
2241       // the bundle.
2242       if (!NodeFitsInBundle(_nop)) {
2243 #ifndef PRODUCT
2244         if (_cfg->C->trace_opto_output())
2245           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2246 #endif
2247         step(1);
2248       }
2249 
2250       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2251       _next_node = _nop;
2252       ++_bundle_instr_count;
2253     }
2254 
2255     // See if the instruction in the delay slot requires a
2256     // step of the bundles
2257     if (!NodeFitsInBundle(n)) {
2258 #ifndef PRODUCT
2259         if (_cfg->C->trace_opto_output())
2260           tty->print("#  *** STEP(branch won't fit) ***\n");
2261 #endif
2262         // Update the state information
2263         _bundle_instr_count = 0;
2264         _bundle_cycle_number += 1;
2265         _bundle_use.step(1);
2266     }
2267   }
2268 
2269   // Get the number of instructions
2270   uint instruction_count = node_pipeline->instructionCount();
2271   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2272     instruction_count = 0;
2273 
2274   // Compute the latency information
2275   uint delay = 0;
2276 
2277   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2278     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2279     if (relative_latency < 0)
2280       relative_latency = 0;
2281 
2282     delay = _bundle_use.full_latency(relative_latency, node_usage);
2283 
2284     // Does not fit in this bundle, start a new one
2285     if (delay > 0) {
2286       step(delay);
2287 
2288 #ifndef PRODUCT
2289       if (_cfg->C->trace_opto_output())
2290         tty->print("#  *** STEP(%d) ***\n", delay);
2291 #endif
2292     }
2293   }
2294 
2295   // If this was placed in the delay slot, ignore it
2296   if (n != _unconditional_delay_slot) {
2297 
2298     if (delay == 0) {
2299       if (node_pipeline->hasMultipleBundles()) {
2300 #ifndef PRODUCT
2301         if (_cfg->C->trace_opto_output())
2302           tty->print("#  *** STEP(multiple instructions) ***\n");
2303 #endif
2304         step(1);
2305       }
2306 
2307       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2308 #ifndef PRODUCT
2309         if (_cfg->C->trace_opto_output())
2310           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2311             instruction_count + _bundle_instr_count,
2312             Pipeline::_max_instrs_per_cycle);
2313 #endif
2314         step(1);
2315       }
2316     }
2317 
2318     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2319       _bundle_instr_count++;
2320 
2321     // Set the node's latency
2322     _current_latency[n->_idx] = _bundle_cycle_number;
2323 
2324     // Now merge the functional unit information
2325     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2326       _bundle_use.add_usage(node_usage);
2327 
2328     // Increment the number of instructions in this bundle
2329     _bundle_instr_count += instruction_count;
2330 
2331     // Remember this node for later
2332     if (n->is_Mach())
2333       _next_node = n;
2334   }
2335 
2336   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2337   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2338   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2339   // into the block.  All other scheduled nodes get put in the schedule here.
2340   int op = n->Opcode();
2341   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2342       (op != Op_Node &&         // Not an unused antidepedence node and
2343        // not an unallocated boxlock
2344        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2345 
2346     // Push any trailing projections
2347     if( bb->_nodes[bb->_nodes.size()-1] != n ) {
2348       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2349         Node *foi = n->fast_out(i);
2350         if( foi->is_Proj() )
2351           _scheduled.push(foi);
2352       }
2353     }
2354 
2355     // Put the instruction in the schedule list
2356     _scheduled.push(n);
2357   }
2358 
2359 #ifndef PRODUCT
2360   if (_cfg->C->trace_opto_output())
2361     dump_available();
2362 #endif
2363 
2364   // Walk all the definitions, decrementing use counts, and
2365   // if a definition has a 0 use count, place it in the available list.
2366   DecrementUseCounts(n,bb);
2367 }
2368 
2369 //------------------------------ComputeUseCount--------------------------------
2370 // This method sets the use count within a basic block.  We will ignore all
2371 // uses outside the current basic block.  As we are doing a backwards walk,
2372 // any node we reach that has a use count of 0 may be scheduled.  This also
2373 // avoids the problem of cyclic references from phi nodes, as long as phi
2374 // nodes are at the front of the basic block.  This method also initializes
2375 // the available list to the set of instructions that have no uses within this
2376 // basic block.
2377 void Scheduling::ComputeUseCount(const Block *bb) {
2378 #ifndef PRODUCT
2379   if (_cfg->C->trace_opto_output())
2380     tty->print("# -> ComputeUseCount\n");
2381 #endif
2382 
2383   // Clear the list of available and scheduled instructions, just in case
2384   _available.clear();
2385   _scheduled.clear();
2386 
2387   // No delay slot specified
2388   _unconditional_delay_slot = NULL;
2389 
2390 #ifdef ASSERT
2391   for( uint i=0; i < bb->_nodes.size(); i++ )
2392     assert( _uses[bb->_nodes[i]->_idx] == 0, "_use array not clean" );
2393 #endif
2394 
2395   // Force the _uses count to never go to zero for unscheduable pieces
2396   // of the block
2397   for( uint k = 0; k < _bb_start; k++ )
2398     _uses[bb->_nodes[k]->_idx] = 1;
2399   for( uint l = _bb_end; l < bb->_nodes.size(); l++ )
2400     _uses[bb->_nodes[l]->_idx] = 1;
2401 
2402   // Iterate backwards over the instructions in the block.  Don't count the
2403   // branch projections at end or the block header instructions.
2404   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2405     Node *n = bb->_nodes[j];
2406     if( n->is_Proj() ) continue; // Projections handled another way
2407 
2408     // Account for all uses
2409     for ( uint k = 0; k < n->len(); k++ ) {
2410       Node *inp = n->in(k);
2411       if (!inp) continue;
2412       assert(inp != n, "no cycles allowed" );
2413       if( _bbs[inp->_idx] == bb ) { // Block-local use?
2414         if( inp->is_Proj() )    // Skip through Proj's
2415           inp = inp->in(0);
2416         ++_uses[inp->_idx];     // Count 1 block-local use
2417       }
2418     }
2419 
2420     // If this instruction has a 0 use count, then it is available
2421     if (!_uses[n->_idx]) {
2422       _current_latency[n->_idx] = _bundle_cycle_number;
2423       AddNodeToAvailableList(n);
2424     }
2425 
2426 #ifndef PRODUCT
2427     if (_cfg->C->trace_opto_output()) {
2428       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2429       n->dump();
2430     }
2431 #endif
2432   }
2433 
2434 #ifndef PRODUCT
2435   if (_cfg->C->trace_opto_output())
2436     tty->print("# <- ComputeUseCount\n");
2437 #endif
2438 }
2439 
2440 // This routine performs scheduling on each basic block in reverse order,
2441 // using instruction latencies and taking into account function unit
2442 // availability.
2443 void Scheduling::DoScheduling() {
2444 #ifndef PRODUCT
2445   if (_cfg->C->trace_opto_output())
2446     tty->print("# -> DoScheduling\n");
2447 #endif
2448 
2449   Block *succ_bb = NULL;
2450   Block *bb;
2451 
2452   // Walk over all the basic blocks in reverse order
2453   for( int i=_cfg->_num_blocks-1; i >= 0; succ_bb = bb, i-- ) {
2454     bb = _cfg->_blocks[i];
2455 
2456 #ifndef PRODUCT
2457     if (_cfg->C->trace_opto_output()) {
2458       tty->print("#  Schedule BB#%03d (initial)\n", i);
2459       for (uint j = 0; j < bb->_nodes.size(); j++)
2460         bb->_nodes[j]->dump();
2461     }
2462 #endif
2463 
2464     // On the head node, skip processing
2465     if( bb == _cfg->_broot )
2466       continue;
2467 
2468     // Skip empty, connector blocks
2469     if (bb->is_connector())
2470       continue;
2471 
2472     // If the following block is not the sole successor of
2473     // this one, then reset the pipeline information
2474     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2475 #ifndef PRODUCT
2476       if (_cfg->C->trace_opto_output()) {
2477         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2478                    _next_node->_idx, _bundle_instr_count);
2479       }
2480 #endif
2481       step_and_clear();
2482     }
2483 
2484     // Leave untouched the starting instruction, any Phis, a CreateEx node
2485     // or Top.  bb->_nodes[_bb_start] is the first schedulable instruction.
2486     _bb_end = bb->_nodes.size()-1;
2487     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2488       Node *n = bb->_nodes[_bb_start];
2489       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2490       // Also, MachIdealNodes do not get scheduled
2491       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2492       MachNode *mach = n->as_Mach();
2493       int iop = mach->ideal_Opcode();
2494       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2495       if( iop == Op_Con ) continue;      // Do not schedule Top
2496       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2497           mach->pipeline() == MachNode::pipeline_class() &&
2498           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2499         continue;
2500       break;                    // Funny loop structure to be sure...
2501     }
2502     // Compute last "interesting" instruction in block - last instruction we
2503     // might schedule.  _bb_end points just after last schedulable inst.  We
2504     // normally schedule conditional branches (despite them being forced last
2505     // in the block), because they have delay slots we can fill.  Calls all
2506     // have their delay slots filled in the template expansions, so we don't
2507     // bother scheduling them.
2508     Node *last = bb->_nodes[_bb_end];
2509     // Ignore trailing NOPs.
2510     while (_bb_end > 0 && last->is_Mach() &&
2511            last->as_Mach()->ideal_Opcode() == Op_Con) {
2512       last = bb->_nodes[--_bb_end];
2513     }
2514     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2515     if( last->is_Catch() ||
2516        // Exclude unreachable path case when Halt node is in a separate block.
2517        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2518       // There must be a prior call.  Skip it.
2519       while( !bb->_nodes[--_bb_end]->is_MachCall() ) {
2520         assert( bb->_nodes[_bb_end]->is_MachProj(), "skipping projections after expected call" );
2521       }
2522     } else if( last->is_MachNullCheck() ) {
2523       // Backup so the last null-checked memory instruction is
2524       // outside the schedulable range. Skip over the nullcheck,
2525       // projection, and the memory nodes.
2526       Node *mem = last->in(1);
2527       do {
2528         _bb_end--;
2529       } while (mem != bb->_nodes[_bb_end]);
2530     } else {
2531       // Set _bb_end to point after last schedulable inst.
2532       _bb_end++;
2533     }
2534 
2535     assert( _bb_start <= _bb_end, "inverted block ends" );
2536 
2537     // Compute the register antidependencies for the basic block
2538     ComputeRegisterAntidependencies(bb);
2539     if (_cfg->C->failing())  return;  // too many D-U pinch points
2540 
2541     // Compute intra-bb latencies for the nodes
2542     ComputeLocalLatenciesForward(bb);
2543 
2544     // Compute the usage within the block, and set the list of all nodes
2545     // in the block that have no uses within the block.
2546     ComputeUseCount(bb);
2547 
2548     // Schedule the remaining instructions in the block
2549     while ( _available.size() > 0 ) {
2550       Node *n = ChooseNodeToBundle();
2551       AddNodeToBundle(n,bb);
2552     }
2553 
2554     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2555 #ifdef ASSERT
2556     for( uint l = _bb_start; l < _bb_end; l++ ) {
2557       Node *n = bb->_nodes[l];
2558       uint m;
2559       for( m = 0; m < _bb_end-_bb_start; m++ )
2560         if( _scheduled[m] == n )
2561           break;
2562       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2563     }
2564 #endif
2565 
2566     // Now copy the instructions (in reverse order) back to the block
2567     for ( uint k = _bb_start; k < _bb_end; k++ )
2568       bb->_nodes.map(k, _scheduled[_bb_end-k-1]);
2569 
2570 #ifndef PRODUCT
2571     if (_cfg->C->trace_opto_output()) {
2572       tty->print("#  Schedule BB#%03d (final)\n", i);
2573       uint current = 0;
2574       for (uint j = 0; j < bb->_nodes.size(); j++) {
2575         Node *n = bb->_nodes[j];
2576         if( valid_bundle_info(n) ) {
2577           Bundle *bundle = node_bundling(n);
2578           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2579             tty->print("*** Bundle: ");
2580             bundle->dump();
2581           }
2582           n->dump();
2583         }
2584       }
2585     }
2586 #endif
2587 #ifdef ASSERT
2588   verify_good_schedule(bb,"after block local scheduling");
2589 #endif
2590   }
2591 
2592 #ifndef PRODUCT
2593   if (_cfg->C->trace_opto_output())
2594     tty->print("# <- DoScheduling\n");
2595 #endif
2596 
2597   // Record final node-bundling array location
2598   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2599 
2600 } // end DoScheduling
2601 
2602 //------------------------------verify_good_schedule---------------------------
2603 // Verify that no live-range used in the block is killed in the block by a
2604 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2605 
2606 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2607 static bool edge_from_to( Node *from, Node *to ) {
2608   for( uint i=0; i<from->len(); i++ )
2609     if( from->in(i) == to )
2610       return true;
2611   return false;
2612 }
2613 
2614 #ifdef ASSERT
2615 //------------------------------verify_do_def----------------------------------
2616 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2617   // Check for bad kills
2618   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2619     Node *prior_use = _reg_node[def];
2620     if( prior_use && !edge_from_to(prior_use,n) ) {
2621       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2622       n->dump();
2623       tty->print_cr("...");
2624       prior_use->dump();
2625       assert(edge_from_to(prior_use,n),msg);
2626     }
2627     _reg_node.map(def,NULL); // Kill live USEs
2628   }
2629 }
2630 
2631 //------------------------------verify_good_schedule---------------------------
2632 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2633 
2634   // Zap to something reasonable for the verify code
2635   _reg_node.clear();
2636 
2637   // Walk over the block backwards.  Check to make sure each DEF doesn't
2638   // kill a live value (other than the one it's supposed to).  Add each
2639   // USE to the live set.
2640   for( uint i = b->_nodes.size()-1; i >= _bb_start; i-- ) {
2641     Node *n = b->_nodes[i];
2642     int n_op = n->Opcode();
2643     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2644       // Fat-proj kills a slew of registers
2645       RegMask rm = n->out_RegMask();// Make local copy
2646       while( rm.is_NotEmpty() ) {
2647         OptoReg::Name kill = rm.find_first_elem();
2648         rm.Remove(kill);
2649         verify_do_def( n, kill, msg );
2650       }
2651     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2652       // Get DEF'd registers the normal way
2653       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2654       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2655     }
2656 
2657     // Now make all USEs live
2658     for( uint i=1; i<n->req(); i++ ) {
2659       Node *def = n->in(i);
2660       assert(def != 0, "input edge required");
2661       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2662       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2663       if( OptoReg::is_valid(reg_lo) ) {
2664         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2665         _reg_node.map(reg_lo,n);
2666       }
2667       if( OptoReg::is_valid(reg_hi) ) {
2668         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2669         _reg_node.map(reg_hi,n);
2670       }
2671     }
2672 
2673   }
2674 
2675   // Zap to something reasonable for the Antidependence code
2676   _reg_node.clear();
2677 }
2678 #endif
2679 
2680 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2681 static void add_prec_edge_from_to( Node *from, Node *to ) {
2682   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2683     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2684     from = from->in(0);
2685   }
2686   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2687       !edge_from_to( from, to ) ) // Avoid duplicate edge
2688     from->add_prec(to);
2689 }
2690 
2691 //------------------------------anti_do_def------------------------------------
2692 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2693   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2694     return;
2695 
2696   Node *pinch = _reg_node[def_reg]; // Get pinch point
2697   if( !pinch || _bbs[pinch->_idx] != b || // No pinch-point yet?
2698       is_def ) {    // Check for a true def (not a kill)
2699     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2700     return;
2701   }
2702 
2703   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2704   debug_only( def = (Node*)0xdeadbeef; )
2705 
2706   // After some number of kills there _may_ be a later def
2707   Node *later_def = NULL;
2708 
2709   // Finding a kill requires a real pinch-point.
2710   // Check for not already having a pinch-point.
2711   // Pinch points are Op_Node's.
2712   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2713     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2714     if ( _pinch_free_list.size() > 0) {
2715       pinch = _pinch_free_list.pop();
2716     } else {
2717       pinch = new (_cfg->C) Node(1); // Pinch point to-be
2718     }
2719     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2720       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2721       return;
2722     }
2723     _bbs.map(pinch->_idx,b);      // Pretend it's valid in this block (lazy init)
2724     _reg_node.map(def_reg,pinch); // Record pinch-point
2725     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2726     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2727       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2728       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2729       later_def = NULL;           // and no later def
2730     }
2731     pinch->set_req(0,later_def);  // Hook later def so we can find it
2732   } else {                        // Else have valid pinch point
2733     if( pinch->in(0) )            // If there is a later-def
2734       later_def = pinch->in(0);   // Get it
2735   }
2736 
2737   // Add output-dependence edge from later def to kill
2738   if( later_def )               // If there is some original def
2739     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2740 
2741   // See if current kill is also a use, and so is forced to be the pinch-point.
2742   if( pinch->Opcode() == Op_Node ) {
2743     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2744     for( uint i=1; i<uses->req(); i++ ) {
2745       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2746           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2747         // Yes, found a use/kill pinch-point
2748         pinch->set_req(0,NULL);  //
2749         pinch->replace_by(kill); // Move anti-dep edges up
2750         pinch = kill;
2751         _reg_node.map(def_reg,pinch);
2752         return;
2753       }
2754     }
2755   }
2756 
2757   // Add edge from kill to pinch-point
2758   add_prec_edge_from_to(kill,pinch);
2759 }
2760 
2761 //------------------------------anti_do_use------------------------------------
2762 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2763   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2764     return;
2765   Node *pinch = _reg_node[use_reg]; // Get pinch point
2766   // Check for no later def_reg/kill in block
2767   if( pinch && _bbs[pinch->_idx] == b &&
2768       // Use has to be block-local as well
2769       _bbs[use->_idx] == b ) {
2770     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2771         pinch->req() == 1 ) {   // pinch not yet in block?
2772       pinch->del_req(0);        // yank pointer to later-def, also set flag
2773       // Insert the pinch-point in the block just after the last use
2774       b->_nodes.insert(b->find_node(use)+1,pinch);
2775       _bb_end++;                // Increase size scheduled region in block
2776     }
2777 
2778     add_prec_edge_from_to(pinch,use);
2779   }
2780 }
2781 
2782 //------------------------------ComputeRegisterAntidependences-----------------
2783 // We insert antidependences between the reads and following write of
2784 // allocated registers to prevent illegal code motion. Hopefully, the
2785 // number of added references should be fairly small, especially as we
2786 // are only adding references within the current basic block.
2787 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2788 
2789 #ifdef ASSERT
2790   verify_good_schedule(b,"before block local scheduling");
2791 #endif
2792 
2793   // A valid schedule, for each register independently, is an endless cycle
2794   // of: a def, then some uses (connected to the def by true dependencies),
2795   // then some kills (defs with no uses), finally the cycle repeats with a new
2796   // def.  The uses are allowed to float relative to each other, as are the
2797   // kills.  No use is allowed to slide past a kill (or def).  This requires
2798   // antidependencies between all uses of a single def and all kills that
2799   // follow, up to the next def.  More edges are redundant, because later defs
2800   // & kills are already serialized with true or antidependencies.  To keep
2801   // the edge count down, we add a 'pinch point' node if there's more than
2802   // one use or more than one kill/def.
2803 
2804   // We add dependencies in one bottom-up pass.
2805 
2806   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2807 
2808   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2809   // register.  If not, we record the DEF/KILL in _reg_node, the
2810   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2811   // "pinch point", a new Node that's in the graph but not in the block.
2812   // We put edges from the prior and current DEF/KILLs to the pinch point.
2813   // We put the pinch point in _reg_node.  If there's already a pinch point
2814   // we merely add an edge from the current DEF/KILL to the pinch point.
2815 
2816   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2817   // put an edge from the pinch point to the USE.
2818 
2819   // To be expedient, the _reg_node array is pre-allocated for the whole
2820   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2821   // or a valid def/kill/pinch-point, or a leftover node from some prior
2822   // block.  Leftover node from some prior block is treated like a NULL (no
2823   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2824   // it being in the current block.
2825   bool fat_proj_seen = false;
2826   uint last_safept = _bb_end-1;
2827   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->_nodes[last_safept] : NULL;
2828   Node* last_safept_node = end_node;
2829   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2830     Node *n = b->_nodes[i];
2831     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2832     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2833       // Fat-proj kills a slew of registers
2834       // This can add edges to 'n' and obscure whether or not it was a def,
2835       // hence the is_def flag.
2836       fat_proj_seen = true;
2837       RegMask rm = n->out_RegMask();// Make local copy
2838       while( rm.is_NotEmpty() ) {
2839         OptoReg::Name kill = rm.find_first_elem();
2840         rm.Remove(kill);
2841         anti_do_def( b, n, kill, is_def );
2842       }
2843     } else {
2844       // Get DEF'd registers the normal way
2845       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2846       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2847     }
2848 
2849     // Kill projections on a branch should appear to occur on the
2850     // branch, not afterwards, so grab the masks from the projections
2851     // and process them.
2852     if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2853       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2854         Node* use = n->fast_out(i);
2855         if (use->is_Proj()) {
2856           RegMask rm = use->out_RegMask();// Make local copy
2857           while( rm.is_NotEmpty() ) {
2858             OptoReg::Name kill = rm.find_first_elem();
2859             rm.Remove(kill);
2860             anti_do_def( b, n, kill, false );
2861           }
2862         }
2863       }
2864     }
2865 
2866     // Check each register used by this instruction for a following DEF/KILL
2867     // that must occur afterward and requires an anti-dependence edge.
2868     for( uint j=0; j<n->req(); j++ ) {
2869       Node *def = n->in(j);
2870       if( def ) {
2871         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2872         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2873         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2874       }
2875     }
2876     // Do not allow defs of new derived values to float above GC
2877     // points unless the base is definitely available at the GC point.
2878 
2879     Node *m = b->_nodes[i];
2880 
2881     // Add precedence edge from following safepoint to use of derived pointer
2882     if( last_safept_node != end_node &&
2883         m != last_safept_node) {
2884       for (uint k = 1; k < m->req(); k++) {
2885         const Type *t = m->in(k)->bottom_type();
2886         if( t->isa_oop_ptr() &&
2887             t->is_ptr()->offset() != 0 ) {
2888           last_safept_node->add_prec( m );
2889           break;
2890         }
2891       }
2892     }
2893 
2894     if( n->jvms() ) {           // Precedence edge from derived to safept
2895       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2896       if( b->_nodes[last_safept] != last_safept_node ) {
2897         last_safept = b->find_node(last_safept_node);
2898       }
2899       for( uint j=last_safept; j > i; j-- ) {
2900         Node *mach = b->_nodes[j];
2901         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2902           mach->add_prec( n );
2903       }
2904       last_safept = i;
2905       last_safept_node = m;
2906     }
2907   }
2908 
2909   if (fat_proj_seen) {
2910     // Garbage collect pinch nodes that were not consumed.
2911     // They are usually created by a fat kill MachProj for a call.
2912     garbage_collect_pinch_nodes();
2913   }
2914 }
2915 
2916 //------------------------------garbage_collect_pinch_nodes-------------------------------
2917 
2918 // Garbage collect pinch nodes for reuse by other blocks.
2919 //
2920 // The block scheduler's insertion of anti-dependence
2921 // edges creates many pinch nodes when the block contains
2922 // 2 or more Calls.  A pinch node is used to prevent a
2923 // combinatorial explosion of edges.  If a set of kills for a
2924 // register is anti-dependent on a set of uses (or defs), rather
2925 // than adding an edge in the graph between each pair of kill
2926 // and use (or def), a pinch is inserted between them:
2927 //
2928 //            use1   use2  use3
2929 //                \   |   /
2930 //                 \  |  /
2931 //                  pinch
2932 //                 /  |  \
2933 //                /   |   \
2934 //            kill1 kill2 kill3
2935 //
2936 // One pinch node is created per register killed when
2937 // the second call is encountered during a backwards pass
2938 // over the block.  Most of these pinch nodes are never
2939 // wired into the graph because the register is never
2940 // used or def'ed in the block.
2941 //
2942 void Scheduling::garbage_collect_pinch_nodes() {
2943 #ifndef PRODUCT
2944     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2945 #endif
2946     int trace_cnt = 0;
2947     for (uint k = 0; k < _reg_node.Size(); k++) {
2948       Node* pinch = _reg_node[k];
2949       if (pinch != NULL && pinch->Opcode() == Op_Node &&
2950           // no predecence input edges
2951           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2952         cleanup_pinch(pinch);
2953         _pinch_free_list.push(pinch);
2954         _reg_node.map(k, NULL);
2955 #ifndef PRODUCT
2956         if (_cfg->C->trace_opto_output()) {
2957           trace_cnt++;
2958           if (trace_cnt > 40) {
2959             tty->print("\n");
2960             trace_cnt = 0;
2961           }
2962           tty->print(" %d", pinch->_idx);
2963         }
2964 #endif
2965       }
2966     }
2967 #ifndef PRODUCT
2968     if (_cfg->C->trace_opto_output()) tty->print("\n");
2969 #endif
2970 }
2971 
2972 // Clean up a pinch node for reuse.
2973 void Scheduling::cleanup_pinch( Node *pinch ) {
2974   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2975 
2976   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2977     Node* use = pinch->last_out(i);
2978     uint uses_found = 0;
2979     for (uint j = use->req(); j < use->len(); j++) {
2980       if (use->in(j) == pinch) {
2981         use->rm_prec(j);
2982         uses_found++;
2983       }
2984     }
2985     assert(uses_found > 0, "must be a precedence edge");
2986     i -= uses_found;    // we deleted 1 or more copies of this edge
2987   }
2988   // May have a later_def entry
2989   pinch->set_req(0, NULL);
2990 }
2991 
2992 //------------------------------print_statistics-------------------------------
2993 #ifndef PRODUCT
2994 
2995 void Scheduling::dump_available() const {
2996   tty->print("#Availist  ");
2997   for (uint i = 0; i < _available.size(); i++)
2998     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2999   tty->cr();
3000 }
3001 
3002 // Print Scheduling Statistics
3003 void Scheduling::print_statistics() {
3004   // Print the size added by nops for bundling
3005   tty->print("Nops added %d bytes to total of %d bytes",
3006     _total_nop_size, _total_method_size);
3007   if (_total_method_size > 0)
3008     tty->print(", for %.2f%%",
3009       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
3010   tty->print("\n");
3011 
3012   // Print the number of branch shadows filled
3013   if (Pipeline::_branch_has_delay_slot) {
3014     tty->print("Of %d branches, %d had unconditional delay slots filled",
3015       _total_branches, _total_unconditional_delays);
3016     if (_total_branches > 0)
3017       tty->print(", for %.2f%%",
3018         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
3019     tty->print("\n");
3020   }
3021 
3022   uint total_instructions = 0, total_bundles = 0;
3023 
3024   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
3025     uint bundle_count   = _total_instructions_per_bundle[i];
3026     total_instructions += bundle_count * i;
3027     total_bundles      += bundle_count;
3028   }
3029 
3030   if (total_bundles > 0)
3031     tty->print("Average ILP (excluding nops) is %.2f\n",
3032       ((double)total_instructions) / ((double)total_bundles));
3033 }
3034 #endif