1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "oops/methodOop.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/idealGraphPrinter.hpp"
  31 #include "opto/locknode.hpp"
  32 #include "opto/memnode.hpp"
  33 #include "opto/parse.hpp"
  34 #include "opto/rootnode.hpp"
  35 #include "opto/runtime.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/handles.inline.hpp"
  38 #include "runtime/sharedRuntime.hpp"
  39 #include "utilities/copy.hpp"
  40 
  41 // Static array so we can figure out which bytecodes stop us from compiling
  42 // the most. Some of the non-static variables are needed in bytecodeInfo.cpp
  43 // and eventually should be encapsulated in a proper class (gri 8/18/98).
  44 
  45 int nodes_created              = 0;
  46 int methods_parsed             = 0;
  47 int methods_seen               = 0;
  48 int blocks_parsed              = 0;
  49 int blocks_seen                = 0;
  50 
  51 int explicit_null_checks_inserted = 0;
  52 int explicit_null_checks_elided   = 0;
  53 int all_null_checks_found         = 0, implicit_null_checks              = 0;
  54 int implicit_null_throws          = 0;
  55 
  56 int reclaim_idx  = 0;
  57 int reclaim_in   = 0;
  58 int reclaim_node = 0;
  59 
  60 #ifndef PRODUCT
  61 bool Parse::BytecodeParseHistogram::_initialized = false;
  62 uint Parse::BytecodeParseHistogram::_bytecodes_parsed [Bytecodes::number_of_codes];
  63 uint Parse::BytecodeParseHistogram::_nodes_constructed[Bytecodes::number_of_codes];
  64 uint Parse::BytecodeParseHistogram::_nodes_transformed[Bytecodes::number_of_codes];
  65 uint Parse::BytecodeParseHistogram::_new_values       [Bytecodes::number_of_codes];
  66 #endif
  67 
  68 //------------------------------print_statistics-------------------------------
  69 #ifndef PRODUCT
  70 void Parse::print_statistics() {
  71   tty->print_cr("--- Compiler Statistics ---");
  72   tty->print("Methods seen: %d  Methods parsed: %d", methods_seen, methods_parsed);
  73   tty->print("  Nodes created: %d", nodes_created);
  74   tty->cr();
  75   if (methods_seen != methods_parsed)
  76     tty->print_cr("Reasons for parse failures (NOT cumulative):");
  77   tty->print_cr("Blocks parsed: %d  Blocks seen: %d", blocks_parsed, blocks_seen);
  78 
  79   if( explicit_null_checks_inserted )
  80     tty->print_cr("%d original NULL checks - %d elided (%2d%%); optimizer leaves %d,", explicit_null_checks_inserted, explicit_null_checks_elided, (100*explicit_null_checks_elided)/explicit_null_checks_inserted, all_null_checks_found);
  81   if( all_null_checks_found )
  82     tty->print_cr("%d made implicit (%2d%%)", implicit_null_checks,
  83                   (100*implicit_null_checks)/all_null_checks_found);
  84   if( implicit_null_throws )
  85     tty->print_cr("%d implicit null exceptions at runtime",
  86                   implicit_null_throws);
  87 
  88   if( PrintParseStatistics && BytecodeParseHistogram::initialized() ) {
  89     BytecodeParseHistogram::print();
  90   }
  91 }
  92 #endif
  93 
  94 //------------------------------ON STACK REPLACEMENT---------------------------
  95 
  96 // Construct a node which can be used to get incoming state for
  97 // on stack replacement.
  98 Node *Parse::fetch_interpreter_state(int index,
  99                                      BasicType bt,
 100                                      Node *local_addrs,
 101                                      Node *local_addrs_base) {
 102   Node *mem = memory(Compile::AliasIdxRaw);
 103   Node *adr = basic_plus_adr( local_addrs_base, local_addrs, -index*wordSize );
 104   Node *ctl = control();
 105 
 106   // Very similar to LoadNode::make, except we handle un-aligned longs and
 107   // doubles on Sparc.  Intel can handle them just fine directly.
 108   Node *l;
 109   switch( bt ) {                // Signature is flattened
 110   case T_INT:     l = new (C) LoadINode( ctl, mem, adr, TypeRawPtr::BOTTOM ); break;
 111   case T_FLOAT:   l = new (C) LoadFNode( ctl, mem, adr, TypeRawPtr::BOTTOM ); break;
 112   case T_ADDRESS: l = new (C) LoadPNode( ctl, mem, adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM  ); break;
 113   case T_OBJECT:  l = new (C) LoadPNode( ctl, mem, adr, TypeRawPtr::BOTTOM, TypeInstPtr::BOTTOM ); break;
 114   case T_LONG:
 115   case T_DOUBLE: {
 116     // Since arguments are in reverse order, the argument address 'adr'
 117     // refers to the back half of the long/double.  Recompute adr.
 118     adr = basic_plus_adr( local_addrs_base, local_addrs, -(index+1)*wordSize );
 119     if( Matcher::misaligned_doubles_ok ) {
 120       l = (bt == T_DOUBLE)
 121         ? (Node*)new (C) LoadDNode( ctl, mem, adr, TypeRawPtr::BOTTOM )
 122         : (Node*)new (C) LoadLNode( ctl, mem, adr, TypeRawPtr::BOTTOM );
 123     } else {
 124       l = (bt == T_DOUBLE)
 125         ? (Node*)new (C) LoadD_unalignedNode( ctl, mem, adr, TypeRawPtr::BOTTOM )
 126         : (Node*)new (C) LoadL_unalignedNode( ctl, mem, adr, TypeRawPtr::BOTTOM );
 127     }
 128     break;
 129   }
 130   default: ShouldNotReachHere();
 131   }
 132   return _gvn.transform(l);
 133 }
 134 
 135 // Helper routine to prevent the interpreter from handing
 136 // unexpected typestate to an OSR method.
 137 // The Node l is a value newly dug out of the interpreter frame.
 138 // The type is the type predicted by ciTypeFlow.  Note that it is
 139 // not a general type, but can only come from Type::get_typeflow_type.
 140 // The safepoint is a map which will feed an uncommon trap.
 141 Node* Parse::check_interpreter_type(Node* l, const Type* type,
 142                                     SafePointNode* &bad_type_exit) {
 143 
 144   const TypeOopPtr* tp = type->isa_oopptr();
 145 
 146   // TypeFlow may assert null-ness if a type appears unloaded.
 147   if (type == TypePtr::NULL_PTR ||
 148       (tp != NULL && !tp->klass()->is_loaded())) {
 149     // Value must be null, not a real oop.
 150     Node* chk = _gvn.transform( new (C) CmpPNode(l, null()) );
 151     Node* tst = _gvn.transform( new (C) BoolNode(chk, BoolTest::eq) );
 152     IfNode* iff = create_and_map_if(control(), tst, PROB_MAX, COUNT_UNKNOWN);
 153     set_control(_gvn.transform( new (C) IfTrueNode(iff) ));
 154     Node* bad_type = _gvn.transform( new (C) IfFalseNode(iff) );
 155     bad_type_exit->control()->add_req(bad_type);
 156     l = null();
 157   }
 158 
 159   // Typeflow can also cut off paths from the CFG, based on
 160   // types which appear unloaded, or call sites which appear unlinked.
 161   // When paths are cut off, values at later merge points can rise
 162   // toward more specific classes.  Make sure these specific classes
 163   // are still in effect.
 164   if (tp != NULL && tp->klass() != C->env()->Object_klass()) {
 165     // TypeFlow asserted a specific object type.  Value must have that type.
 166     Node* bad_type_ctrl = NULL;
 167     l = gen_checkcast(l, makecon(TypeKlassPtr::make(tp->klass())), &bad_type_ctrl);
 168     bad_type_exit->control()->add_req(bad_type_ctrl);
 169   }
 170 
 171   BasicType bt_l = _gvn.type(l)->basic_type();
 172   BasicType bt_t = type->basic_type();
 173   assert(_gvn.type(l)->higher_equal(type), "must constrain OSR typestate");
 174   return l;
 175 }
 176 
 177 // Helper routine which sets up elements of the initial parser map when
 178 // performing a parse for on stack replacement.  Add values into map.
 179 // The only parameter contains the address of a interpreter arguments.
 180 void Parse::load_interpreter_state(Node* osr_buf) {
 181   int index;
 182   int max_locals = jvms()->loc_size();
 183   int max_stack  = jvms()->stk_size();
 184 
 185 
 186   // Mismatch between method and jvms can occur since map briefly held
 187   // an OSR entry state (which takes up one RawPtr word).
 188   assert(max_locals == method()->max_locals(), "sanity");
 189   assert(max_stack  >= method()->max_stack(),  "sanity");
 190   assert((int)jvms()->endoff() == TypeFunc::Parms + max_locals + max_stack, "sanity");
 191   assert((int)jvms()->endoff() == (int)map()->req(), "sanity");
 192 
 193   // Find the start block.
 194   Block* osr_block = start_block();
 195   assert(osr_block->start() == osr_bci(), "sanity");
 196 
 197   // Set initial BCI.
 198   set_parse_bci(osr_block->start());
 199 
 200   // Set initial stack depth.
 201   set_sp(osr_block->start_sp());
 202 
 203   // Check bailouts.  We currently do not perform on stack replacement
 204   // of loops in catch blocks or loops which branch with a non-empty stack.
 205   if (sp() != 0) {
 206     C->record_method_not_compilable("OSR starts with non-empty stack");
 207     return;
 208   }
 209   // Do not OSR inside finally clauses:
 210   if (osr_block->has_trap_at(osr_block->start())) {
 211     C->record_method_not_compilable("OSR starts with an immediate trap");
 212     return;
 213   }
 214 
 215   // Commute monitors from interpreter frame to compiler frame.
 216   assert(jvms()->monitor_depth() == 0, "should be no active locks at beginning of osr");
 217   int mcnt = osr_block->flow()->monitor_count();
 218   Node *monitors_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals+mcnt*2-1)*wordSize);
 219   for (index = 0; index < mcnt; index++) {
 220     // Make a BoxLockNode for the monitor.
 221     Node *box = _gvn.transform(new (C) BoxLockNode(next_monitor()));
 222 
 223 
 224     // Displaced headers and locked objects are interleaved in the
 225     // temp OSR buffer.  We only copy the locked objects out here.
 226     // Fetch the locked object from the OSR temp buffer and copy to our fastlock node.
 227     Node *lock_object = fetch_interpreter_state(index*2, T_OBJECT, monitors_addr, osr_buf);
 228     // Try and copy the displaced header to the BoxNode
 229     Node *displaced_hdr = fetch_interpreter_state((index*2) + 1, T_ADDRESS, monitors_addr, osr_buf);
 230 
 231 
 232     store_to_memory(control(), box, displaced_hdr, T_ADDRESS, Compile::AliasIdxRaw);
 233 
 234     // Build a bogus FastLockNode (no code will be generated) and push the
 235     // monitor into our debug info.
 236     const FastLockNode *flock = _gvn.transform(new (C) FastLockNode( 0, lock_object, box ))->as_FastLock();
 237     map()->push_monitor(flock);
 238 
 239     // If the lock is our method synchronization lock, tuck it away in
 240     // _sync_lock for return and rethrow exit paths.
 241     if (index == 0 && method()->is_synchronized()) {
 242       _synch_lock = flock;
 243     }
 244   }
 245 
 246   // Use the raw liveness computation to make sure that unexpected
 247   // values don't propagate into the OSR frame.
 248   MethodLivenessResult live_locals = method()->liveness_at_bci(osr_bci());
 249   if (!live_locals.is_valid()) {
 250     // Degenerate or breakpointed method.
 251     C->record_method_not_compilable("OSR in empty or breakpointed method");
 252     return;
 253   }
 254 
 255   // Extract the needed locals from the interpreter frame.
 256   Node *locals_addr = basic_plus_adr(osr_buf, osr_buf, (max_locals-1)*wordSize);
 257 
 258   // find all the locals that the interpreter thinks contain live oops
 259   const BitMap live_oops = method()->live_local_oops_at_bci(osr_bci());
 260   for (index = 0; index < max_locals; index++) {
 261 
 262     if (!live_locals.at(index)) {
 263       continue;
 264     }
 265 
 266     const Type *type = osr_block->local_type_at(index);
 267 
 268     if (type->isa_oopptr() != NULL) {
 269 
 270       // 6403625: Verify that the interpreter oopMap thinks that the oop is live
 271       // else we might load a stale oop if the MethodLiveness disagrees with the
 272       // result of the interpreter. If the interpreter says it is dead we agree
 273       // by making the value go to top.
 274       //
 275 
 276       if (!live_oops.at(index)) {
 277         if (C->log() != NULL) {
 278           C->log()->elem("OSR_mismatch local_index='%d'",index);
 279         }
 280         set_local(index, null());
 281         // and ignore it for the loads
 282         continue;
 283       }
 284     }
 285 
 286     // Filter out TOP, HALF, and BOTTOM.  (Cf. ensure_phi.)
 287     if (type == Type::TOP || type == Type::HALF) {
 288       continue;
 289     }
 290     // If the type falls to bottom, then this must be a local that
 291     // is mixing ints and oops or some such.  Forcing it to top
 292     // makes it go dead.
 293     if (type == Type::BOTTOM) {
 294       continue;
 295     }
 296     // Construct code to access the appropriate local.
 297     BasicType bt = type->basic_type();
 298     if (type == TypePtr::NULL_PTR) {
 299       // Ptr types are mixed together with T_ADDRESS but NULL is
 300       // really for T_OBJECT types so correct it.
 301       bt = T_OBJECT;
 302     }
 303     Node *value = fetch_interpreter_state(index, bt, locals_addr, osr_buf);
 304     set_local(index, value);
 305   }
 306 
 307   // Extract the needed stack entries from the interpreter frame.
 308   for (index = 0; index < sp(); index++) {
 309     const Type *type = osr_block->stack_type_at(index);
 310     if (type != Type::TOP) {
 311       // Currently the compiler bails out when attempting to on stack replace
 312       // at a bci with a non-empty stack.  We should not reach here.
 313       ShouldNotReachHere();
 314     }
 315   }
 316 
 317   // End the OSR migration
 318   make_runtime_call(RC_LEAF, OptoRuntime::osr_end_Type(),
 319                     CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
 320                     "OSR_migration_end", TypeRawPtr::BOTTOM,
 321                     osr_buf);
 322 
 323   // Now that the interpreter state is loaded, make sure it will match
 324   // at execution time what the compiler is expecting now:
 325   SafePointNode* bad_type_exit = clone_map();
 326   bad_type_exit->set_control(new (C) RegionNode(1));
 327 
 328   assert(osr_block->flow()->jsrs()->size() == 0, "should be no jsrs live at osr point");
 329   for (index = 0; index < max_locals; index++) {
 330     if (stopped())  break;
 331     Node* l = local(index);
 332     if (l->is_top())  continue;  // nothing here
 333     const Type *type = osr_block->local_type_at(index);
 334     if (type->isa_oopptr() != NULL) {
 335       if (!live_oops.at(index)) {
 336         // skip type check for dead oops
 337         continue;
 338       }
 339     }
 340     if (osr_block->flow()->local_type_at(index)->is_return_address()) {
 341       // In our current system it's illegal for jsr addresses to be
 342       // live into an OSR entry point because the compiler performs
 343       // inlining of jsrs.  ciTypeFlow has a bailout that detect this
 344       // case and aborts the compile if addresses are live into an OSR
 345       // entry point.  Because of that we can assume that any address
 346       // locals at the OSR entry point are dead.  Method liveness
 347       // isn't precise enought to figure out that they are dead in all
 348       // cases so simply skip checking address locals all
 349       // together. Any type check is guaranteed to fail since the
 350       // interpreter type is the result of a load which might have any
 351       // value and the expected type is a constant.
 352       continue;
 353     }
 354     set_local(index, check_interpreter_type(l, type, bad_type_exit));
 355   }
 356 
 357   for (index = 0; index < sp(); index++) {
 358     if (stopped())  break;
 359     Node* l = stack(index);
 360     if (l->is_top())  continue;  // nothing here
 361     const Type *type = osr_block->stack_type_at(index);
 362     set_stack(index, check_interpreter_type(l, type, bad_type_exit));
 363   }
 364 
 365   if (bad_type_exit->control()->req() > 1) {
 366     // Build an uncommon trap here, if any inputs can be unexpected.
 367     bad_type_exit->set_control(_gvn.transform( bad_type_exit->control() ));
 368     record_for_igvn(bad_type_exit->control());
 369     SafePointNode* types_are_good = map();
 370     set_map(bad_type_exit);
 371     // The unexpected type happens because a new edge is active
 372     // in the CFG, which typeflow had previously ignored.
 373     // E.g., Object x = coldAtFirst() && notReached()? "str": new Integer(123).
 374     // This x will be typed as Integer if notReached is not yet linked.
 375     // It could also happen due to a problem in ciTypeFlow analysis.
 376     uncommon_trap(Deoptimization::Reason_constraint,
 377                   Deoptimization::Action_reinterpret);
 378     set_map(types_are_good);
 379   }
 380 }
 381 
 382 //------------------------------Parse------------------------------------------
 383 // Main parser constructor.
 384 Parse::Parse(JVMState* caller, ciMethod* parse_method, float expected_uses)
 385   : _exits(caller)
 386 {
 387   // Init some variables
 388   _caller = caller;
 389   _method = parse_method;
 390   _expected_uses = expected_uses;
 391   _depth = 1 + (caller->has_method() ? caller->depth() : 0);
 392   _wrote_final = false;
 393   // Add MemBarRelease for constructors which write volatile field (PPC64).
 394   PPC64_ONLY(_wrote_volatile = false;)
 395   _entry_bci = InvocationEntryBci;
 396   _tf = NULL;
 397   _block = NULL;
 398   _first_return = true;
 399   _replaced_nodes_for_exceptions = false;
 400   _new_idx = C->unique();
 401   debug_only(_block_count = -1);
 402   debug_only(_blocks = (Block*)-1);
 403 #ifndef PRODUCT
 404   if (PrintCompilation || PrintOpto) {
 405     // Make sure I have an inline tree, so I can print messages about it.
 406     JVMState* ilt_caller = is_osr_parse() ? caller->caller() : caller;
 407     InlineTree::find_subtree_from_root(C->ilt(), ilt_caller, parse_method);
 408   }
 409   _max_switch_depth = 0;
 410   _est_switch_depth = 0;
 411 #endif
 412 
 413   _tf = TypeFunc::make(method());
 414   _iter.reset_to_method(method());
 415   _flow = method()->get_flow_analysis();
 416   if (_flow->failing()) {
 417     C->record_method_not_compilable_all_tiers(_flow->failure_reason());
 418   }
 419 
 420 #ifndef PRODUCT
 421   if (_flow->has_irreducible_entry()) {
 422     C->set_parsed_irreducible_loop(true);
 423   }
 424 #endif
 425 
 426   if (_expected_uses <= 0) {
 427     _prof_factor = 1;
 428   } else {
 429     float prof_total = parse_method->interpreter_invocation_count();
 430     if (prof_total <= _expected_uses) {
 431       _prof_factor = 1;
 432     } else {
 433       _prof_factor = _expected_uses / prof_total;
 434     }
 435   }
 436 
 437   CompileLog* log = C->log();
 438   if (log != NULL) {
 439     log->begin_head("parse method='%d' uses='%g'",
 440                     log->identify(parse_method), expected_uses);
 441     if (depth() == 1 && C->is_osr_compilation()) {
 442       log->print(" osr_bci='%d'", C->entry_bci());
 443     }
 444     log->stamp();
 445     log->end_head();
 446   }
 447 
 448   // Accumulate deoptimization counts.
 449   // (The range_check and store_check counts are checked elsewhere.)
 450   ciMethodData* md = method()->method_data();
 451   for (uint reason = 0; reason < md->trap_reason_limit(); reason++) {
 452     uint md_count = md->trap_count(reason);
 453     if (md_count != 0) {
 454       if (md_count == md->trap_count_limit())
 455         md_count += md->overflow_trap_count();
 456       uint total_count = C->trap_count(reason);
 457       uint old_count   = total_count;
 458       total_count += md_count;
 459       // Saturate the add if it overflows.
 460       if (total_count < old_count || total_count < md_count)
 461         total_count = (uint)-1;
 462       C->set_trap_count(reason, total_count);
 463       if (log != NULL)
 464         log->elem("observe trap='%s' count='%d' total='%d'",
 465                   Deoptimization::trap_reason_name(reason),
 466                   md_count, total_count);
 467     }
 468   }
 469   // Accumulate total sum of decompilations, also.
 470   C->set_decompile_count(C->decompile_count() + md->decompile_count());
 471 
 472   _count_invocations = C->do_count_invocations();
 473   _method_data_update = C->do_method_data_update();
 474 
 475   if (log != NULL && method()->has_exception_handlers()) {
 476     log->elem("observe that='has_exception_handlers'");
 477   }
 478 
 479   assert(method()->can_be_compiled(),       "Can not parse this method, cutout earlier");
 480   assert(method()->has_balanced_monitors(), "Can not parse unbalanced monitors, cutout earlier");
 481 
 482   // Always register dependence if JVMTI is enabled, because
 483   // either breakpoint setting or hotswapping of methods may
 484   // cause deoptimization.
 485   if (C->env()->jvmti_can_hotswap_or_post_breakpoint()) {
 486     C->dependencies()->assert_evol_method(method());
 487   }
 488 
 489   methods_seen++;
 490 
 491   // Do some special top-level things.
 492   if (depth() == 1 && C->is_osr_compilation()) {
 493     _entry_bci = C->entry_bci();
 494     _flow = method()->get_osr_flow_analysis(osr_bci());
 495     if (_flow->failing()) {
 496       C->record_method_not_compilable(_flow->failure_reason());
 497 #ifndef PRODUCT
 498       if (PrintOpto && (Verbose || WizardMode)) {
 499         tty->print_cr("OSR @%d type flow bailout: %s", _entry_bci, _flow->failure_reason());
 500         if (Verbose) {
 501           method()->print_oop();
 502           method()->print_codes();
 503           _flow->print();
 504         }
 505       }
 506 #endif
 507     }
 508     _tf = C->tf();     // the OSR entry type is different
 509   }
 510 
 511 #ifdef ASSERT
 512   if (depth() == 1) {
 513     assert(C->is_osr_compilation() == this->is_osr_parse(), "OSR in sync");
 514     if (C->tf() != tf()) {
 515       MutexLockerEx ml(Compile_lock, Mutex::_no_safepoint_check_flag);
 516       assert(C->env()->system_dictionary_modification_counter_changed(),
 517              "Must invalidate if TypeFuncs differ");
 518     }
 519   } else {
 520     assert(!this->is_osr_parse(), "no recursive OSR");
 521   }
 522 #endif
 523 
 524   methods_parsed++;
 525 #ifndef PRODUCT
 526   // add method size here to guarantee that inlined methods are added too
 527   if (TimeCompiler)
 528     _total_bytes_compiled += method()->code_size();
 529 
 530   show_parse_info();
 531 #endif
 532 
 533   if (failing()) {
 534     if (log)  log->done("parse");
 535     return;
 536   }
 537 
 538   gvn().set_type(root(), root()->bottom_type());
 539   gvn().transform(top());
 540 
 541   // Import the results of the ciTypeFlow.
 542   init_blocks();
 543 
 544   // Merge point for all normal exits
 545   build_exits();
 546 
 547   // Setup the initial JVM state map.
 548   SafePointNode* entry_map = create_entry_map();
 549 
 550   // Check for bailouts during map initialization
 551   if (failing() || entry_map == NULL) {
 552     if (log)  log->done("parse");
 553     return;
 554   }
 555 
 556   Node_Notes* caller_nn = C->default_node_notes();
 557   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
 558   if (DebugInlinedCalls || depth() == 1) {
 559     C->set_default_node_notes(make_node_notes(caller_nn));
 560   }
 561 
 562   if (is_osr_parse()) {
 563     Node* osr_buf = entry_map->in(TypeFunc::Parms+0);
 564     entry_map->set_req(TypeFunc::Parms+0, top());
 565     set_map(entry_map);
 566     load_interpreter_state(osr_buf);
 567   } else {
 568     set_map(entry_map);
 569     do_method_entry();
 570   }
 571 
 572   // Check for bailouts during method entry.
 573   if (failing()) {
 574     if (log)  log->done("parse");
 575     C->set_default_node_notes(caller_nn);
 576     return;
 577   }
 578 
 579   entry_map = map();  // capture any changes performed by method setup code
 580   assert(jvms()->endoff() == map()->req(), "map matches JVMS layout");
 581 
 582   // We begin parsing as if we have just encountered a jump to the
 583   // method entry.
 584   Block* entry_block = start_block();
 585   assert(entry_block->start() == (is_osr_parse() ? osr_bci() : 0), "");
 586   set_map_clone(entry_map);
 587   merge_common(entry_block, entry_block->next_path_num());
 588 
 589 #ifndef PRODUCT
 590   BytecodeParseHistogram *parse_histogram_obj = new (C->env()->arena()) BytecodeParseHistogram(this, C);
 591   set_parse_histogram( parse_histogram_obj );
 592 #endif
 593 
 594   // Parse all the basic blocks.
 595   do_all_blocks();
 596 
 597   C->set_default_node_notes(caller_nn);
 598 
 599   // Check for bailouts during conversion to graph
 600   if (failing()) {
 601     if (log)  log->done("parse");
 602     return;
 603   }
 604 
 605   // Fix up all exiting control flow.
 606   set_map(entry_map);
 607   do_exits();
 608 
 609   if (log)  log->done("parse nodes='%d' live='%d' memory='%d'",
 610                       C->unique(), C->live_nodes(), C->node_arena()->used());
 611 }
 612 
 613 //---------------------------do_all_blocks-------------------------------------
 614 void Parse::do_all_blocks() {
 615   bool has_irreducible = flow()->has_irreducible_entry();
 616 
 617   // Walk over all blocks in Reverse Post-Order.
 618   while (true) {
 619     bool progress = false;
 620     for (int rpo = 0; rpo < block_count(); rpo++) {
 621       Block* block = rpo_at(rpo);
 622 
 623       if (block->is_parsed()) continue;
 624 
 625       if (!block->is_merged()) {
 626         // Dead block, no state reaches this block
 627         continue;
 628       }
 629 
 630       // Prepare to parse this block.
 631       load_state_from(block);
 632 
 633       if (stopped()) {
 634         // Block is dead.
 635         continue;
 636       }
 637 
 638       blocks_parsed++;
 639 
 640       progress = true;
 641       if (block->is_loop_head() || block->is_handler() || has_irreducible && !block->is_ready()) {
 642         // Not all preds have been parsed.  We must build phis everywhere.
 643         // (Note that dead locals do not get phis built, ever.)
 644         ensure_phis_everywhere();
 645 
 646         if (block->is_SEL_head() &&
 647             (UseLoopPredicate || LoopLimitCheck)) {
 648           // Add predicate to single entry (not irreducible) loop head.
 649           assert(!block->has_merged_backedge(), "only entry paths should be merged for now");
 650           // Need correct bci for predicate.
 651           // It is fine to set it here since do_one_block() will set it anyway.
 652           set_parse_bci(block->start());
 653           add_predicate();
 654           // Add new region for back branches.
 655           int edges = block->pred_count() - block->preds_parsed() + 1; // +1 for original region
 656           RegionNode *r = new (C) RegionNode(edges+1);
 657           _gvn.set_type(r, Type::CONTROL);
 658           record_for_igvn(r);
 659           r->init_req(edges, control());
 660           set_control(r);
 661           // Add new phis.
 662           ensure_phis_everywhere();
 663         }
 664 
 665         // Leave behind an undisturbed copy of the map, for future merges.
 666         set_map(clone_map());
 667       }
 668 
 669       if (control()->is_Region() && !block->is_loop_head() && !has_irreducible && !block->is_handler()) {
 670         // In the absence of irreducible loops, the Region and Phis
 671         // associated with a merge that doesn't involve a backedge can
 672         // be simplified now since the RPO parsing order guarantees
 673         // that any path which was supposed to reach here has already
 674         // been parsed or must be dead.
 675         Node* c = control();
 676         Node* result = _gvn.transform_no_reclaim(control());
 677         if (c != result && TraceOptoParse) {
 678           tty->print_cr("Block #%d replace %d with %d", block->rpo(), c->_idx, result->_idx);
 679         }
 680         if (result != top()) {
 681           record_for_igvn(result);
 682         }
 683       }
 684 
 685       // Parse the block.
 686       do_one_block();
 687 
 688       // Check for bailouts.
 689       if (failing())  return;
 690     }
 691 
 692     // with irreducible loops multiple passes might be necessary to parse everything
 693     if (!has_irreducible || !progress) {
 694       break;
 695     }
 696   }
 697 
 698   blocks_seen += block_count();
 699 
 700 #ifndef PRODUCT
 701   // Make sure there are no half-processed blocks remaining.
 702   // Every remaining unprocessed block is dead and may be ignored now.
 703   for (int rpo = 0; rpo < block_count(); rpo++) {
 704     Block* block = rpo_at(rpo);
 705     if (!block->is_parsed()) {
 706       if (TraceOptoParse) {
 707         tty->print_cr("Skipped dead block %d at bci:%d", rpo, block->start());
 708       }
 709       assert(!block->is_merged(), "no half-processed blocks");
 710     }
 711   }
 712 #endif
 713 }
 714 
 715 static Node* mask_int_value(Node* v, BasicType bt, PhaseGVN* gvn) {
 716   Compile* C = gvn->C;
 717   switch (bt) {
 718   case T_BYTE:
 719     v = gvn->transform(new (C) LShiftINode(v, gvn->intcon(24)));
 720     v = gvn->transform(new (C) RShiftINode(v, gvn->intcon(24)));
 721     break;
 722   case T_SHORT:
 723     v = gvn->transform(new (C) LShiftINode(v, gvn->intcon(16)));
 724     v = gvn->transform(new (C) RShiftINode(v, gvn->intcon(16)));
 725     break;
 726   case T_CHAR:
 727     v = gvn->transform(new (C) AndINode(v, gvn->intcon(0xFFFF)));
 728     break;
 729   case T_BOOLEAN:
 730     v = gvn->transform(new (C) AndINode(v, gvn->intcon(0x1)));
 731     break;
 732   }
 733   return v;
 734 }
 735 
 736 //-------------------------------build_exits----------------------------------
 737 // Build normal and exceptional exit merge points.
 738 void Parse::build_exits() {
 739   // make a clone of caller to prevent sharing of side-effects
 740   _exits.set_map(_exits.clone_map());
 741   _exits.clean_stack(_exits.sp());
 742   _exits.sync_jvms();
 743 
 744   RegionNode* region = new (C) RegionNode(1);
 745   record_for_igvn(region);
 746   gvn().set_type_bottom(region);
 747   _exits.set_control(region);
 748 
 749   // Note:  iophi and memphi are not transformed until do_exits.
 750   Node* iophi  = new (C) PhiNode(region, Type::ABIO);
 751   Node* memphi = new (C) PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 752   _exits.set_i_o(iophi);
 753   _exits.set_all_memory(memphi);
 754 
 755   // Add a return value to the exit state.  (Do not push it yet.)
 756   if (tf()->range()->cnt() > TypeFunc::Parms) {
 757     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 758     if (ret_type->isa_int()) {
 759       BasicType ret_bt = method()->return_type()->basic_type();
 760       if (ret_bt == T_BOOLEAN ||
 761           ret_bt == T_CHAR ||
 762           ret_bt == T_BYTE ||
 763           ret_bt == T_SHORT) {
 764         ret_type = TypeInt::INT;
 765       }
 766     }
 767 
 768     // Don't "bind" an unloaded return klass to the ret_phi. If the klass
 769     // becomes loaded during the subsequent parsing, the loaded and unloaded
 770     // types will not join when we transform and push in do_exits().
 771     const TypeOopPtr* ret_oop_type = ret_type->isa_oopptr();
 772     if (ret_oop_type && !ret_oop_type->klass()->is_loaded()) {
 773       ret_type = TypeOopPtr::BOTTOM;
 774     }
 775     int         ret_size = type2size[ret_type->basic_type()];
 776     Node*       ret_phi  = new (C) PhiNode(region, ret_type);
 777     _exits.ensure_stack(ret_size);
 778     assert((int)(tf()->range()->cnt() - TypeFunc::Parms) == ret_size, "good tf range");
 779     assert(method()->return_type()->size() == ret_size, "tf agrees w/ method");
 780     _exits.set_argument(0, ret_phi);  // here is where the parser finds it
 781     // Note:  ret_phi is not yet pushed, until do_exits.
 782   }
 783 }
 784 
 785 
 786 //----------------------------build_start_state-------------------------------
 787 // Construct a state which contains only the incoming arguments from an
 788 // unknown caller.  The method & bci will be NULL & InvocationEntryBci.
 789 JVMState* Compile::build_start_state(StartNode* start, const TypeFunc* tf) {
 790   int        arg_size = tf->domain()->cnt();
 791   int        max_size = MAX2(arg_size, (int)tf->range()->cnt());
 792   JVMState*  jvms     = new (this) JVMState(max_size - TypeFunc::Parms);
 793   SafePointNode* map  = new (this) SafePointNode(max_size, NULL);
 794   record_for_igvn(map);
 795   assert(arg_size == TypeFunc::Parms + (is_osr_compilation() ? 1 : method()->arg_size()), "correct arg_size");
 796   Node_Notes* old_nn = default_node_notes();
 797   if (old_nn != NULL && has_method()) {
 798     Node_Notes* entry_nn = old_nn->clone(this);
 799     JVMState* entry_jvms = new(this) JVMState(method(), old_nn->jvms());
 800     entry_jvms->set_offsets(0);
 801     entry_jvms->set_bci(entry_bci());
 802     entry_nn->set_jvms(entry_jvms);
 803     set_default_node_notes(entry_nn);
 804   }
 805   uint i;
 806   for (i = 0; i < (uint)arg_size; i++) {
 807     Node* parm = initial_gvn()->transform(new (this) ParmNode(start, i));
 808     map->init_req(i, parm);
 809     // Record all these guys for later GVN.
 810     record_for_igvn(parm);
 811   }
 812   for (; i < map->req(); i++) {
 813     map->init_req(i, top());
 814   }
 815   assert(jvms->argoff() == TypeFunc::Parms, "parser gets arguments here");
 816   set_default_node_notes(old_nn);
 817   map->set_jvms(jvms);
 818   jvms->set_map(map);
 819   return jvms;
 820 }
 821 
 822 //-----------------------------make_node_notes---------------------------------
 823 Node_Notes* Parse::make_node_notes(Node_Notes* caller_nn) {
 824   if (caller_nn == NULL)  return NULL;
 825   Node_Notes* nn = caller_nn->clone(C);
 826   JVMState* caller_jvms = nn->jvms();
 827   JVMState* jvms = new (C) JVMState(method(), caller_jvms);
 828   jvms->set_offsets(0);
 829   jvms->set_bci(_entry_bci);
 830   nn->set_jvms(jvms);
 831   return nn;
 832 }
 833 
 834 
 835 //--------------------------return_values--------------------------------------
 836 void Compile::return_values(JVMState* jvms) {
 837   GraphKit kit(jvms);
 838   Node* ret = new (this) ReturnNode(TypeFunc::Parms,
 839                              kit.control(),
 840                              kit.i_o(),
 841                              kit.reset_memory(),
 842                              kit.frameptr(),
 843                              kit.returnadr());
 844   // Add zero or 1 return values
 845   int ret_size = tf()->range()->cnt() - TypeFunc::Parms;
 846   if (ret_size > 0) {
 847     kit.inc_sp(-ret_size);  // pop the return value(s)
 848     kit.sync_jvms();
 849     ret->add_req(kit.argument(0));
 850     // Note:  The second dummy edge is not needed by a ReturnNode.
 851   }
 852   // bind it to root
 853   root()->add_req(ret);
 854   record_for_igvn(ret);
 855   initial_gvn()->transform_no_reclaim(ret);
 856 }
 857 
 858 //------------------------rethrow_exceptions-----------------------------------
 859 // Bind all exception states in the list into a single RethrowNode.
 860 void Compile::rethrow_exceptions(JVMState* jvms) {
 861   GraphKit kit(jvms);
 862   if (!kit.has_exceptions())  return;  // nothing to generate
 863   // Load my combined exception state into the kit, with all phis transformed:
 864   SafePointNode* ex_map = kit.combine_and_pop_all_exception_states();
 865   Node* ex_oop = kit.use_exception_state(ex_map);
 866   RethrowNode* exit = new (this) RethrowNode(kit.control(),
 867                                       kit.i_o(), kit.reset_memory(),
 868                                       kit.frameptr(), kit.returnadr(),
 869                                       // like a return but with exception input
 870                                       ex_oop);
 871   // bind to root
 872   root()->add_req(exit);
 873   record_for_igvn(exit);
 874   initial_gvn()->transform_no_reclaim(exit);
 875 }
 876 
 877 //---------------------------do_exceptions-------------------------------------
 878 // Process exceptions arising from the current bytecode.
 879 // Send caught exceptions to the proper handler within this method.
 880 // Unhandled exceptions feed into _exit.
 881 void Parse::do_exceptions() {
 882   if (!has_exceptions())  return;
 883 
 884   if (failing()) {
 885     // Pop them all off and throw them away.
 886     while (pop_exception_state() != NULL) ;
 887     return;
 888   }
 889 
 890   PreserveJVMState pjvms(this, false);
 891 
 892   SafePointNode* ex_map;
 893   while ((ex_map = pop_exception_state()) != NULL) {
 894     if (!method()->has_exception_handlers()) {
 895       // Common case:  Transfer control outward.
 896       // Doing it this early allows the exceptions to common up
 897       // even between adjacent method calls.
 898       throw_to_exit(ex_map);
 899     } else {
 900       // Have to look at the exception first.
 901       assert(stopped(), "catch_inline_exceptions trashes the map");
 902       catch_inline_exceptions(ex_map);
 903       stop_and_kill_map();      // we used up this exception state; kill it
 904     }
 905   }
 906 
 907   // We now return to our regularly scheduled program:
 908 }
 909 
 910 //---------------------------throw_to_exit-------------------------------------
 911 // Merge the given map into an exception exit from this method.
 912 // The exception exit will handle any unlocking of receiver.
 913 // The ex_oop must be saved within the ex_map, unlike merge_exception.
 914 void Parse::throw_to_exit(SafePointNode* ex_map) {
 915   // Pop the JVMS to (a copy of) the caller.
 916   GraphKit caller;
 917   caller.set_map_clone(_caller->map());
 918   caller.set_bci(_caller->bci());
 919   caller.set_sp(_caller->sp());
 920   // Copy out the standard machine state:
 921   for (uint i = 0; i < TypeFunc::Parms; i++) {
 922     caller.map()->set_req(i, ex_map->in(i));
 923   }
 924   if (ex_map->has_replaced_nodes()) {
 925     _replaced_nodes_for_exceptions = true;
 926   }
 927   caller.map()->transfer_replaced_nodes_from(ex_map, _new_idx);
 928   // ...and the exception:
 929   Node*          ex_oop        = saved_ex_oop(ex_map);
 930   SafePointNode* caller_ex_map = caller.make_exception_state(ex_oop);
 931   // Finally, collect the new exception state in my exits:
 932   _exits.add_exception_state(caller_ex_map);
 933 }
 934 
 935 //------------------------------do_exits---------------------------------------
 936 void Parse::do_exits() {
 937   set_parse_bci(InvocationEntryBci);
 938 
 939   // Now peephole on the return bits
 940   Node* region = _exits.control();
 941   _exits.set_control(gvn().transform(region));
 942 
 943   Node* iophi = _exits.i_o();
 944   _exits.set_i_o(gvn().transform(iophi));
 945 
 946   // Add MemBarRelease for constructors which write volatile field (PPC64).
 947   // Intention is to avoid that other threads can observe initial values even though the
 948   // constructor has set the volatile field. Java programmers wouldn't like it and we wanna be nice.
 949   if (wrote_final() PPC64_ONLY(|| (wrote_volatile() && method()->is_initializer()))) {
 950     // This method (which must be a constructor by the rules of Java)
 951     // wrote a final.  The effects of all initializations must be
 952     // committed to memory before any code after the constructor
 953     // publishes the reference to the newly constructor object.
 954     // Rather than wait for the publication, we simply block the
 955     // writes here.  Rather than put a barrier on only those writes
 956     // which are required to complete, we force all writes to complete.
 957     //
 958     // "All bets are off" unless the first publication occurs after a
 959     // normal return from the constructor.  We do not attempt to detect
 960     // such unusual early publications.  But no barrier is needed on
 961     // exceptional returns, since they cannot publish normally.
 962     //
 963     _exits.insert_mem_bar(Op_MemBarRelease);
 964 #ifndef PRODUCT
 965     if (PrintOpto && (Verbose || WizardMode)) {
 966       method()->print_name();
 967       tty->print_cr(" writes finals and needs a memory barrier");
 968     }
 969 #endif
 970   }
 971 
 972   for (MergeMemStream mms(_exits.merged_memory()); mms.next_non_empty(); ) {
 973     // transform each slice of the original memphi:
 974     mms.set_memory(_gvn.transform(mms.memory()));
 975   }
 976 
 977   if (tf()->range()->cnt() > TypeFunc::Parms) {
 978     const Type* ret_type = tf()->range()->field_at(TypeFunc::Parms);
 979     Node*       ret_phi  = _gvn.transform( _exits.argument(0) );
 980     assert(_exits.control()->is_top() || !_gvn.type(ret_phi)->empty(), "return value must be well defined");
 981     if (ret_type->isa_int()) {
 982       BasicType ret_bt = method()->return_type()->basic_type();
 983       ret_phi = mask_int_value(ret_phi, ret_bt, &_gvn);
 984     }
 985     _exits.push_node(ret_type->basic_type(), ret_phi);
 986   }
 987 
 988   // Note:  Logic for creating and optimizing the ReturnNode is in Compile.
 989 
 990   // Unlock along the exceptional paths.
 991   // This is done late so that we can common up equivalent exceptions
 992   // (e.g., null checks) arising from multiple points within this method.
 993   // See GraphKit::add_exception_state, which performs the commoning.
 994   bool do_synch = method()->is_synchronized() && GenerateSynchronizationCode;
 995 
 996   // record exit from a method if compiled while Dtrace is turned on.
 997   if (do_synch || C->env()->dtrace_method_probes() || _replaced_nodes_for_exceptions) {
 998     // First move the exception list out of _exits:
 999     GraphKit kit(_exits.transfer_exceptions_into_jvms());
1000     SafePointNode* normal_map = kit.map();  // keep this guy safe
1001     // Now re-collect the exceptions into _exits:
1002     SafePointNode* ex_map;
1003     while ((ex_map = kit.pop_exception_state()) != NULL) {
1004       Node* ex_oop = kit.use_exception_state(ex_map);
1005       // Force the exiting JVM state to have this method at InvocationEntryBci.
1006       // The exiting JVM state is otherwise a copy of the calling JVMS.
1007       JVMState* caller = kit.jvms();
1008       JVMState* ex_jvms = caller->clone_shallow(C);
1009       ex_jvms->set_map(kit.clone_map());
1010       ex_jvms->map()->set_jvms(ex_jvms);
1011       ex_jvms->set_bci(   InvocationEntryBci);
1012       kit.set_jvms(ex_jvms);
1013       if (do_synch) {
1014         // Add on the synchronized-method box/object combo
1015         kit.map()->push_monitor(_synch_lock);
1016         // Unlock!
1017         kit.shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
1018       }
1019       if (C->env()->dtrace_method_probes()) {
1020         kit.make_dtrace_method_exit(method());
1021       }
1022       if (_replaced_nodes_for_exceptions) {
1023         kit.map()->apply_replaced_nodes(_new_idx);
1024       }
1025       // Done with exception-path processing.
1026       ex_map = kit.make_exception_state(ex_oop);
1027       assert(ex_jvms->same_calls_as(ex_map->jvms()), "sanity");
1028       // Pop the last vestige of this method:
1029       ex_map->set_jvms(caller->clone_shallow(C));
1030       ex_map->jvms()->set_map(ex_map);
1031       _exits.push_exception_state(ex_map);
1032     }
1033     assert(_exits.map() == normal_map, "keep the same return state");
1034   }
1035 
1036   {
1037     // Capture very early exceptions (receiver null checks) from caller JVMS
1038     GraphKit caller(_caller);
1039     SafePointNode* ex_map;
1040     while ((ex_map = caller.pop_exception_state()) != NULL) {
1041       _exits.add_exception_state(ex_map);
1042     }
1043   }
1044   _exits.map()->apply_replaced_nodes(_new_idx);
1045 }
1046 
1047 //-----------------------------create_entry_map-------------------------------
1048 // Initialize our parser map to contain the types at method entry.
1049 // For OSR, the map contains a single RawPtr parameter.
1050 // Initial monitor locking for sync. methods is performed by do_method_entry.
1051 SafePointNode* Parse::create_entry_map() {
1052   // Check for really stupid bail-out cases.
1053   uint len = TypeFunc::Parms + method()->max_locals() + method()->max_stack();
1054   if (len >= 32760) {
1055     C->record_method_not_compilable_all_tiers("too many local variables");
1056     return NULL;
1057   }
1058 
1059   // clear current replaced nodes that are of no use from here on (map was cloned in build_exits).
1060   _caller->map()->delete_replaced_nodes();
1061 
1062   // If this is an inlined method, we may have to do a receiver null check.
1063   if (_caller->has_method() && is_normal_parse() && !method()->is_static()) {
1064     GraphKit kit(_caller);
1065     kit.null_check_receiver_before_call(method());
1066     _caller = kit.transfer_exceptions_into_jvms();
1067     if (kit.stopped()) {
1068       _exits.add_exception_states_from(_caller);
1069       _exits.set_jvms(_caller);
1070       return NULL;
1071     }
1072   }
1073 
1074   assert(method() != NULL, "parser must have a method");
1075 
1076   // Create an initial safepoint to hold JVM state during parsing
1077   JVMState* jvms = new (C) JVMState(method(), _caller->has_method() ? _caller : NULL);
1078   set_map(new (C) SafePointNode(len, jvms));
1079   jvms->set_map(map());
1080   record_for_igvn(map());
1081   assert(jvms->endoff() == len, "correct jvms sizing");
1082 
1083   SafePointNode* inmap = _caller->map();
1084   assert(inmap != NULL, "must have inmap");
1085   // In case of null check on receiver above
1086   map()->transfer_replaced_nodes_from(inmap, _new_idx);
1087 
1088   uint i;
1089 
1090   // Pass thru the predefined input parameters.
1091   for (i = 0; i < TypeFunc::Parms; i++) {
1092     map()->init_req(i, inmap->in(i));
1093   }
1094 
1095   if (depth() == 1) {
1096     assert(map()->memory()->Opcode() == Op_Parm, "");
1097     // Insert the memory aliasing node
1098     set_all_memory(reset_memory());
1099   }
1100   assert(merged_memory(), "");
1101 
1102   // Now add the locals which are initially bound to arguments:
1103   uint arg_size = tf()->domain()->cnt();
1104   ensure_stack(arg_size - TypeFunc::Parms);  // OSR methods have funny args
1105   for (i = TypeFunc::Parms; i < arg_size; i++) {
1106     map()->init_req(i, inmap->argument(_caller, i - TypeFunc::Parms));
1107   }
1108 
1109   // Clear out the rest of the map (locals and stack)
1110   for (i = arg_size; i < len; i++) {
1111     map()->init_req(i, top());
1112   }
1113 
1114   SafePointNode* entry_map = stop();
1115   return entry_map;
1116 }
1117 
1118 //-----------------------------do_method_entry--------------------------------
1119 // Emit any code needed in the pseudo-block before BCI zero.
1120 // The main thing to do is lock the receiver of a synchronized method.
1121 void Parse::do_method_entry() {
1122   set_parse_bci(InvocationEntryBci); // Pseudo-BCP
1123   set_sp(0);                      // Java Stack Pointer
1124 
1125   NOT_PRODUCT( count_compiled_calls(true/*at_method_entry*/, false/*is_inline*/); )
1126 
1127   if (C->env()->dtrace_method_probes()) {
1128     make_dtrace_method_entry(method());
1129   }
1130 
1131   // If the method is synchronized, we need to construct a lock node, attach
1132   // it to the Start node, and pin it there.
1133   if (method()->is_synchronized()) {
1134     // Insert a FastLockNode right after the Start which takes as arguments
1135     // the current thread pointer, the "this" pointer & the address of the
1136     // stack slot pair used for the lock.  The "this" pointer is a projection
1137     // off the start node, but the locking spot has to be constructed by
1138     // creating a ConLNode of 0, and boxing it with a BoxLockNode.  The BoxLockNode
1139     // becomes the second argument to the FastLockNode call.  The
1140     // FastLockNode becomes the new control parent to pin it to the start.
1141 
1142     // Setup Object Pointer
1143     Node *lock_obj = NULL;
1144     if(method()->is_static()) {
1145       ciInstance* mirror = _method->holder()->java_mirror();
1146       const TypeInstPtr *t_lock = TypeInstPtr::make(mirror);
1147       lock_obj = makecon(t_lock);
1148     } else {                  // Else pass the "this" pointer,
1149       lock_obj = local(0);    // which is Parm0 from StartNode
1150     }
1151     // Clear out dead values from the debug info.
1152     kill_dead_locals();
1153     // Build the FastLockNode
1154     _synch_lock = shared_lock(lock_obj);
1155   }
1156 
1157   if (depth() == 1) {
1158     increment_and_test_invocation_counter(Tier2CompileThreshold);
1159   }
1160 }
1161 
1162 //------------------------------init_blocks------------------------------------
1163 // Initialize our parser map to contain the types/monitors at method entry.
1164 void Parse::init_blocks() {
1165   // Create the blocks.
1166   _block_count = flow()->block_count();
1167   _blocks = NEW_RESOURCE_ARRAY(Block, _block_count);
1168   Copy::zero_to_bytes(_blocks, sizeof(Block)*_block_count);
1169 
1170   int rpo;
1171 
1172   // Initialize the structs.
1173   for (rpo = 0; rpo < block_count(); rpo++) {
1174     Block* block = rpo_at(rpo);
1175     block->init_node(this, rpo);
1176   }
1177 
1178   // Collect predecessor and successor information.
1179   for (rpo = 0; rpo < block_count(); rpo++) {
1180     Block* block = rpo_at(rpo);
1181     block->init_graph(this);
1182   }
1183 }
1184 
1185 //-------------------------------init_node-------------------------------------
1186 void Parse::Block::init_node(Parse* outer, int rpo) {
1187   _flow = outer->flow()->rpo_at(rpo);
1188   _pred_count = 0;
1189   _preds_parsed = 0;
1190   _count = 0;
1191   assert(pred_count() == 0 && preds_parsed() == 0, "sanity");
1192   assert(!(is_merged() || is_parsed() || is_handler() || has_merged_backedge()), "sanity");
1193   assert(_live_locals.size() == 0, "sanity");
1194 
1195   // entry point has additional predecessor
1196   if (flow()->is_start())  _pred_count++;
1197   assert(flow()->is_start() == (this == outer->start_block()), "");
1198 }
1199 
1200 //-------------------------------init_graph------------------------------------
1201 void Parse::Block::init_graph(Parse* outer) {
1202   // Create the successor list for this parser block.
1203   GrowableArray<ciTypeFlow::Block*>* tfs = flow()->successors();
1204   GrowableArray<ciTypeFlow::Block*>* tfe = flow()->exceptions();
1205   int ns = tfs->length();
1206   int ne = tfe->length();
1207   _num_successors = ns;
1208   _all_successors = ns+ne;
1209   _successors = (ns+ne == 0) ? NULL : NEW_RESOURCE_ARRAY(Block*, ns+ne);
1210   int p = 0;
1211   for (int i = 0; i < ns+ne; i++) {
1212     ciTypeFlow::Block* tf2 = (i < ns) ? tfs->at(i) : tfe->at(i-ns);
1213     Block* block2 = outer->rpo_at(tf2->rpo());
1214     _successors[i] = block2;
1215 
1216     // Accumulate pred info for the other block, too.
1217     if (i < ns) {
1218       block2->_pred_count++;
1219     } else {
1220       block2->_is_handler = true;
1221     }
1222 
1223     #ifdef ASSERT
1224     // A block's successors must be distinguishable by BCI.
1225     // That is, no bytecode is allowed to branch to two different
1226     // clones of the same code location.
1227     for (int j = 0; j < i; j++) {
1228       Block* block1 = _successors[j];
1229       if (block1 == block2)  continue;  // duplicates are OK
1230       assert(block1->start() != block2->start(), "successors have unique bcis");
1231     }
1232     #endif
1233   }
1234 
1235   // Note: We never call next_path_num along exception paths, so they
1236   // never get processed as "ready".  Also, the input phis of exception
1237   // handlers get specially processed, so that
1238 }
1239 
1240 //---------------------------successor_for_bci---------------------------------
1241 Parse::Block* Parse::Block::successor_for_bci(int bci) {
1242   for (int i = 0; i < all_successors(); i++) {
1243     Block* block2 = successor_at(i);
1244     if (block2->start() == bci)  return block2;
1245   }
1246   // We can actually reach here if ciTypeFlow traps out a block
1247   // due to an unloaded class, and concurrently with compilation the
1248   // class is then loaded, so that a later phase of the parser is
1249   // able to see more of the bytecode CFG.  Or, the flow pass and
1250   // the parser can have a minor difference of opinion about executability
1251   // of bytecodes.  For example, "obj.field = null" is executable even
1252   // if the field's type is an unloaded class; the flow pass used to
1253   // make a trap for such code.
1254   return NULL;
1255 }
1256 
1257 
1258 //-----------------------------stack_type_at-----------------------------------
1259 const Type* Parse::Block::stack_type_at(int i) const {
1260   return get_type(flow()->stack_type_at(i));
1261 }
1262 
1263 
1264 //-----------------------------local_type_at-----------------------------------
1265 const Type* Parse::Block::local_type_at(int i) const {
1266   // Make dead locals fall to bottom.
1267   if (_live_locals.size() == 0) {
1268     MethodLivenessResult live_locals = flow()->outer()->method()->liveness_at_bci(start());
1269     // This bitmap can be zero length if we saw a breakpoint.
1270     // In such cases, pretend they are all live.
1271     ((Block*)this)->_live_locals = live_locals;
1272   }
1273   if (_live_locals.size() > 0 && !_live_locals.at(i))
1274     return Type::BOTTOM;
1275 
1276   return get_type(flow()->local_type_at(i));
1277 }
1278 
1279 
1280 #ifndef PRODUCT
1281 
1282 //----------------------------name_for_bc--------------------------------------
1283 // helper method for BytecodeParseHistogram
1284 static const char* name_for_bc(int i) {
1285   return Bytecodes::is_defined(i) ? Bytecodes::name(Bytecodes::cast(i)) : "xxxunusedxxx";
1286 }
1287 
1288 //----------------------------BytecodeParseHistogram------------------------------------
1289 Parse::BytecodeParseHistogram::BytecodeParseHistogram(Parse *p, Compile *c) {
1290   _parser   = p;
1291   _compiler = c;
1292   if( ! _initialized ) { _initialized = true; reset(); }
1293 }
1294 
1295 //----------------------------current_count------------------------------------
1296 int Parse::BytecodeParseHistogram::current_count(BPHType bph_type) {
1297   switch( bph_type ) {
1298   case BPH_transforms: { return _parser->gvn().made_progress(); }
1299   case BPH_values:     { return _parser->gvn().made_new_values(); }
1300   default: { ShouldNotReachHere(); return 0; }
1301   }
1302 }
1303 
1304 //----------------------------initialized--------------------------------------
1305 bool Parse::BytecodeParseHistogram::initialized() { return _initialized; }
1306 
1307 //----------------------------reset--------------------------------------------
1308 void Parse::BytecodeParseHistogram::reset() {
1309   int i = Bytecodes::number_of_codes;
1310   while (i-- > 0) { _bytecodes_parsed[i] = 0; _nodes_constructed[i] = 0; _nodes_transformed[i] = 0; _new_values[i] = 0; }
1311 }
1312 
1313 //----------------------------set_initial_state--------------------------------
1314 // Record info when starting to parse one bytecode
1315 void Parse::BytecodeParseHistogram::set_initial_state( Bytecodes::Code bc ) {
1316   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1317     _initial_bytecode    = bc;
1318     _initial_node_count  = _compiler->unique();
1319     _initial_transforms  = current_count(BPH_transforms);
1320     _initial_values      = current_count(BPH_values);
1321   }
1322 }
1323 
1324 //----------------------------record_change--------------------------------
1325 // Record results of parsing one bytecode
1326 void Parse::BytecodeParseHistogram::record_change() {
1327   if( PrintParseStatistics && !_parser->is_osr_parse() ) {
1328     ++_bytecodes_parsed[_initial_bytecode];
1329     _nodes_constructed [_initial_bytecode] += (_compiler->unique() - _initial_node_count);
1330     _nodes_transformed [_initial_bytecode] += (current_count(BPH_transforms) - _initial_transforms);
1331     _new_values        [_initial_bytecode] += (current_count(BPH_values)     - _initial_values);
1332   }
1333 }
1334 
1335 
1336 //----------------------------print--------------------------------------------
1337 void Parse::BytecodeParseHistogram::print(float cutoff) {
1338   ResourceMark rm;
1339   // print profile
1340   int total  = 0;
1341   int i      = 0;
1342   for( i = 0; i < Bytecodes::number_of_codes; ++i ) { total += _bytecodes_parsed[i]; }
1343   int abs_sum = 0;
1344   tty->cr();   //0123456789012345678901234567890123456789012345678901234567890123456789
1345   tty->print_cr("Histogram of %d parsed bytecodes:", total);
1346   if( total == 0 ) { return; }
1347   tty->cr();
1348   tty->print_cr("absolute:  count of compiled bytecodes of this type");
1349   tty->print_cr("relative:  percentage contribution to compiled nodes");
1350   tty->print_cr("nodes   :  Average number of nodes constructed per bytecode");
1351   tty->print_cr("rnodes  :  Significance towards total nodes constructed, (nodes*relative)");
1352   tty->print_cr("transforms: Average amount of tranform progress per bytecode compiled");
1353   tty->print_cr("values  :  Average number of node values improved per bytecode");
1354   tty->print_cr("name    :  Bytecode name");
1355   tty->cr();
1356   tty->print_cr("  absolute  relative   nodes  rnodes  transforms  values   name");
1357   tty->print_cr("----------------------------------------------------------------------");
1358   while (--i > 0) {
1359     int       abs = _bytecodes_parsed[i];
1360     float     rel = abs * 100.0F / total;
1361     float   nodes = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_constructed[i])/_bytecodes_parsed[i];
1362     float  rnodes = _bytecodes_parsed[i] == 0 ? 0 :  rel * nodes;
1363     float  xforms = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _nodes_transformed[i])/_bytecodes_parsed[i];
1364     float  values = _bytecodes_parsed[i] == 0 ? 0 : (1.0F * _new_values       [i])/_bytecodes_parsed[i];
1365     if (cutoff <= rel) {
1366       tty->print_cr("%10d  %7.2f%%  %6.1f  %6.2f   %6.1f   %6.1f     %s", abs, rel, nodes, rnodes, xforms, values, name_for_bc(i));
1367       abs_sum += abs;
1368     }
1369   }
1370   tty->print_cr("----------------------------------------------------------------------");
1371   float rel_sum = abs_sum * 100.0F / total;
1372   tty->print_cr("%10d  %7.2f%%    (cutoff = %.2f%%)", abs_sum, rel_sum, cutoff);
1373   tty->print_cr("----------------------------------------------------------------------");
1374   tty->cr();
1375 }
1376 #endif
1377 
1378 //----------------------------load_state_from----------------------------------
1379 // Load block/map/sp.  But not do not touch iter/bci.
1380 void Parse::load_state_from(Block* block) {
1381   set_block(block);
1382   // load the block's JVM state:
1383   set_map(block->start_map());
1384   set_sp( block->start_sp());
1385 }
1386 
1387 
1388 //-----------------------------record_state------------------------------------
1389 void Parse::Block::record_state(Parse* p) {
1390   assert(!is_merged(), "can only record state once, on 1st inflow");
1391   assert(start_sp() == p->sp(), "stack pointer must agree with ciTypeFlow");
1392   set_start_map(p->stop());
1393 }
1394 
1395 
1396 //------------------------------do_one_block-----------------------------------
1397 void Parse::do_one_block() {
1398   if (TraceOptoParse) {
1399     Block *b = block();
1400     int ns = b->num_successors();
1401     int nt = b->all_successors();
1402 
1403     tty->print("Parsing block #%d at bci [%d,%d), successors: ",
1404                   block()->rpo(), block()->start(), block()->limit());
1405     for (int i = 0; i < nt; i++) {
1406       tty->print((( i < ns) ? " %d" : " %d(e)"), b->successor_at(i)->rpo());
1407     }
1408     if (b->is_loop_head()) tty->print("  lphd");
1409     tty->print_cr("");
1410   }
1411 
1412   assert(block()->is_merged(), "must be merged before being parsed");
1413   block()->mark_parsed();
1414   ++_blocks_parsed;
1415 
1416   // Set iterator to start of block.
1417   iter().reset_to_bci(block()->start());
1418 
1419   CompileLog* log = C->log();
1420 
1421   // Parse bytecodes
1422   while (!stopped() && !failing()) {
1423     iter().next();
1424 
1425     // Learn the current bci from the iterator:
1426     set_parse_bci(iter().cur_bci());
1427 
1428     if (bci() == block()->limit()) {
1429       // Do not walk into the next block until directed by do_all_blocks.
1430       merge(bci());
1431       break;
1432     }
1433     assert(bci() < block()->limit(), "bci still in block");
1434 
1435     if (log != NULL) {
1436       // Output an optional context marker, to help place actions
1437       // that occur during parsing of this BC.  If there is no log
1438       // output until the next context string, this context string
1439       // will be silently ignored.
1440       log->set_context("bc code='%d' bci='%d'", (int)bc(), bci());
1441     }
1442 
1443     if (block()->has_trap_at(bci())) {
1444       // We must respect the flow pass's traps, because it will refuse
1445       // to produce successors for trapping blocks.
1446       int trap_index = block()->flow()->trap_index();
1447       assert(trap_index != 0, "trap index must be valid");
1448       uncommon_trap(trap_index);
1449       break;
1450     }
1451 
1452     NOT_PRODUCT( parse_histogram()->set_initial_state(bc()); );
1453 
1454 #ifdef ASSERT
1455     int pre_bc_sp = sp();
1456     int inputs, depth;
1457     bool have_se = !stopped() && compute_stack_effects(inputs, depth);
1458     assert(!have_se || pre_bc_sp >= inputs, err_msg_res("have enough stack to execute this BC: pre_bc_sp=%d, inputs=%d", pre_bc_sp, inputs));
1459 #endif //ASSERT
1460 
1461     do_one_bytecode();
1462 
1463     assert(!have_se || stopped() || failing() || (sp() - pre_bc_sp) == depth,
1464            err_msg_res("incorrect depth prediction: sp=%d, pre_bc_sp=%d, depth=%d", sp(), pre_bc_sp, depth));
1465 
1466     do_exceptions();
1467 
1468     NOT_PRODUCT( parse_histogram()->record_change(); );
1469 
1470     if (log != NULL)
1471       log->clear_context();  // skip marker if nothing was printed
1472 
1473     // Fall into next bytecode.  Each bytecode normally has 1 sequential
1474     // successor which is typically made ready by visiting this bytecode.
1475     // If the successor has several predecessors, then it is a merge
1476     // point, starts a new basic block, and is handled like other basic blocks.
1477   }
1478 }
1479 
1480 
1481 //------------------------------merge------------------------------------------
1482 void Parse::set_parse_bci(int bci) {
1483   set_bci(bci);
1484   Node_Notes* nn = C->default_node_notes();
1485   if (nn == NULL)  return;
1486 
1487   // Collect debug info for inlined calls unless -XX:-DebugInlinedCalls.
1488   if (!DebugInlinedCalls && depth() > 1) {
1489     return;
1490   }
1491 
1492   // Update the JVMS annotation, if present.
1493   JVMState* jvms = nn->jvms();
1494   if (jvms != NULL && jvms->bci() != bci) {
1495     // Update the JVMS.
1496     jvms = jvms->clone_shallow(C);
1497     jvms->set_bci(bci);
1498     nn->set_jvms(jvms);
1499   }
1500 }
1501 
1502 //------------------------------merge------------------------------------------
1503 // Merge the current mapping into the basic block starting at bci
1504 void Parse::merge(int target_bci) {
1505   Block* target = successor_for_bci(target_bci);
1506   if (target == NULL) { handle_missing_successor(target_bci); return; }
1507   assert(!target->is_ready(), "our arrival must be expected");
1508   int pnum = target->next_path_num();
1509   merge_common(target, pnum);
1510 }
1511 
1512 //-------------------------merge_new_path--------------------------------------
1513 // Merge the current mapping into the basic block, using a new path
1514 void Parse::merge_new_path(int target_bci) {
1515   Block* target = successor_for_bci(target_bci);
1516   if (target == NULL) { handle_missing_successor(target_bci); return; }
1517   assert(!target->is_ready(), "new path into frozen graph");
1518   int pnum = target->add_new_path();
1519   merge_common(target, pnum);
1520 }
1521 
1522 //-------------------------merge_exception-------------------------------------
1523 // Merge the current mapping into the basic block starting at bci
1524 // The ex_oop must be pushed on the stack, unlike throw_to_exit.
1525 void Parse::merge_exception(int target_bci) {
1526   assert(sp() == 1, "must have only the throw exception on the stack");
1527   Block* target = successor_for_bci(target_bci);
1528   if (target == NULL) { handle_missing_successor(target_bci); return; }
1529   assert(target->is_handler(), "exceptions are handled by special blocks");
1530   int pnum = target->add_new_path();
1531   merge_common(target, pnum);
1532 }
1533 
1534 //--------------------handle_missing_successor---------------------------------
1535 void Parse::handle_missing_successor(int target_bci) {
1536 #ifndef PRODUCT
1537   Block* b = block();
1538   int trap_bci = b->flow()->has_trap()? b->flow()->trap_bci(): -1;
1539   tty->print_cr("### Missing successor at bci:%d for block #%d (trap_bci:%d)", target_bci, b->rpo(), trap_bci);
1540 #endif
1541   ShouldNotReachHere();
1542 }
1543 
1544 //--------------------------merge_common---------------------------------------
1545 void Parse::merge_common(Parse::Block* target, int pnum) {
1546   if (TraceOptoParse) {
1547     tty->print("Merging state at block #%d bci:%d", target->rpo(), target->start());
1548   }
1549 
1550   // Zap extra stack slots to top
1551   assert(sp() == target->start_sp(), "");
1552   clean_stack(sp());
1553 
1554   if (!target->is_merged()) {   // No prior mapping at this bci
1555     if (TraceOptoParse) { tty->print(" with empty state");  }
1556 
1557     // If this path is dead, do not bother capturing it as a merge.
1558     // It is "as if" we had 1 fewer predecessors from the beginning.
1559     if (stopped()) {
1560       if (TraceOptoParse)  tty->print_cr(", but path is dead and doesn't count");
1561       return;
1562     }
1563 
1564     // Record that a new block has been merged.
1565     ++_blocks_merged;
1566 
1567     // Make a region if we know there are multiple or unpredictable inputs.
1568     // (Also, if this is a plain fall-through, we might see another region,
1569     // which must not be allowed into this block's map.)
1570     if (pnum > PhiNode::Input         // Known multiple inputs.
1571         || target->is_handler()       // These have unpredictable inputs.
1572         || target->is_loop_head()     // Known multiple inputs
1573         || control()->is_Region()) {  // We must hide this guy.
1574 
1575       int current_bci = bci();
1576       set_parse_bci(target->start()); // Set target bci
1577       if (target->is_SEL_head()) {
1578         DEBUG_ONLY( target->mark_merged_backedge(block()); )
1579         if (target->start() == 0) {
1580           // Add loop predicate for the special case when
1581           // there are backbranches to the method entry.
1582           add_predicate();
1583         }
1584       }
1585       // Add a Region to start the new basic block.  Phis will be added
1586       // later lazily.
1587       int edges = target->pred_count();
1588       if (edges < pnum)  edges = pnum;  // might be a new path!
1589       RegionNode *r = new (C) RegionNode(edges+1);
1590       gvn().set_type(r, Type::CONTROL);
1591       record_for_igvn(r);
1592       // zap all inputs to NULL for debugging (done in Node(uint) constructor)
1593       // for (int j = 1; j < edges+1; j++) { r->init_req(j, NULL); }
1594       r->init_req(pnum, control());
1595       set_control(r);
1596       set_parse_bci(current_bci); // Restore bci
1597     }
1598 
1599     // Convert the existing Parser mapping into a mapping at this bci.
1600     store_state_to(target);
1601     assert(target->is_merged(), "do not come here twice");
1602 
1603   } else {                      // Prior mapping at this bci
1604     if (TraceOptoParse) {  tty->print(" with previous state"); }
1605 #ifdef ASSERT
1606     if (target->is_SEL_head()) {
1607       target->mark_merged_backedge(block());
1608     }
1609 #endif
1610     // We must not manufacture more phis if the target is already parsed.
1611     bool nophi = target->is_parsed();
1612 
1613     SafePointNode* newin = map();// Hang on to incoming mapping
1614     Block* save_block = block(); // Hang on to incoming block;
1615     load_state_from(target);    // Get prior mapping
1616 
1617     assert(newin->jvms()->locoff() == jvms()->locoff(), "JVMS layouts agree");
1618     assert(newin->jvms()->stkoff() == jvms()->stkoff(), "JVMS layouts agree");
1619     assert(newin->jvms()->monoff() == jvms()->monoff(), "JVMS layouts agree");
1620     assert(newin->jvms()->endoff() == jvms()->endoff(), "JVMS layouts agree");
1621 
1622     // Iterate over my current mapping and the old mapping.
1623     // Where different, insert Phi functions.
1624     // Use any existing Phi functions.
1625     assert(control()->is_Region(), "must be merging to a region");
1626     RegionNode* r = control()->as_Region();
1627 
1628     // Compute where to merge into
1629     // Merge incoming control path
1630     r->init_req(pnum, newin->control());
1631 
1632     if (pnum == 1) {            // Last merge for this Region?
1633       if (!block()->flow()->is_irreducible_entry()) {
1634         Node* result = _gvn.transform_no_reclaim(r);
1635         if (r != result && TraceOptoParse) {
1636           tty->print_cr("Block #%d replace %d with %d", block()->rpo(), r->_idx, result->_idx);
1637         }
1638       }
1639       record_for_igvn(r);
1640     }
1641 
1642     // Update all the non-control inputs to map:
1643     assert(TypeFunc::Parms == newin->jvms()->locoff(), "parser map should contain only youngest jvms");
1644     bool check_elide_phi = target->is_SEL_backedge(save_block);
1645     for (uint j = 1; j < newin->req(); j++) {
1646       Node* m = map()->in(j);   // Current state of target.
1647       Node* n = newin->in(j);   // Incoming change to target state.
1648       PhiNode* phi;
1649       if (m->is_Phi() && m->as_Phi()->region() == r)
1650         phi = m->as_Phi();
1651       else
1652         phi = NULL;
1653       if (m != n) {             // Different; must merge
1654         switch (j) {
1655         // Frame pointer and Return Address never changes
1656         case TypeFunc::FramePtr:// Drop m, use the original value
1657         case TypeFunc::ReturnAdr:
1658           break;
1659         case TypeFunc::Memory:  // Merge inputs to the MergeMem node
1660           assert(phi == NULL, "the merge contains phis, not vice versa");
1661           merge_memory_edges(n->as_MergeMem(), pnum, nophi);
1662           continue;
1663         default:                // All normal stuff
1664           if (phi == NULL) {
1665             const JVMState* jvms = map()->jvms();
1666             if (EliminateNestedLocks &&
1667                 jvms->is_mon(j) && jvms->is_monitor_box(j)) {
1668               // BoxLock nodes are not commoning.
1669               // Use old BoxLock node as merged box.
1670               assert(newin->jvms()->is_monitor_box(j), "sanity");
1671               // This assert also tests that nodes are BoxLock.
1672               assert(BoxLockNode::same_slot(n, m), "sanity");
1673               C->gvn_replace_by(n, m);
1674             } else if (!check_elide_phi || !target->can_elide_SEL_phi(j)) {
1675               phi = ensure_phi(j, nophi);
1676             }
1677           }
1678           break;
1679         }
1680       }
1681       // At this point, n might be top if:
1682       //  - there is no phi (because TypeFlow detected a conflict), or
1683       //  - the corresponding control edges is top (a dead incoming path)
1684       // It is a bug if we create a phi which sees a garbage value on a live path.
1685 
1686       if (phi != NULL) {
1687         assert(n != top() || r->in(pnum) == top(), "live value must not be garbage");
1688         assert(phi->region() == r, "");
1689         phi->set_req(pnum, n);  // Then add 'n' to the merge
1690         if (pnum == PhiNode::Input) {
1691           // Last merge for this Phi.
1692           // So far, Phis have had a reasonable type from ciTypeFlow.
1693           // Now _gvn will join that with the meet of current inputs.
1694           // BOTTOM is never permissible here, 'cause pessimistically
1695           // Phis of pointers cannot lose the basic pointer type.
1696           debug_only(const Type* bt1 = phi->bottom_type());
1697           assert(bt1 != Type::BOTTOM, "should not be building conflict phis");
1698           map()->set_req(j, _gvn.transform_no_reclaim(phi));
1699           debug_only(const Type* bt2 = phi->bottom_type());
1700           assert(bt2->higher_equal(bt1), "must be consistent with type-flow");
1701           record_for_igvn(phi);
1702         }
1703       }
1704     } // End of for all values to be merged
1705 
1706     if (pnum == PhiNode::Input &&
1707         !r->in(0)) {         // The occasional useless Region
1708       assert(control() == r, "");
1709       set_control(r->nonnull_req());
1710     }
1711 
1712     map()->merge_replaced_nodes_with(newin);
1713 
1714     // newin has been subsumed into the lazy merge, and is now dead.
1715     set_block(save_block);
1716 
1717     stop();                     // done with this guy, for now
1718   }
1719 
1720   if (TraceOptoParse) {
1721     tty->print_cr(" on path %d", pnum);
1722   }
1723 
1724   // Done with this parser state.
1725   assert(stopped(), "");
1726 }
1727 
1728 
1729 //--------------------------merge_memory_edges---------------------------------
1730 void Parse::merge_memory_edges(MergeMemNode* n, int pnum, bool nophi) {
1731   // (nophi means we must not create phis, because we already parsed here)
1732   assert(n != NULL, "");
1733   // Merge the inputs to the MergeMems
1734   MergeMemNode* m = merged_memory();
1735 
1736   assert(control()->is_Region(), "must be merging to a region");
1737   RegionNode* r = control()->as_Region();
1738 
1739   PhiNode* base = NULL;
1740   MergeMemNode* remerge = NULL;
1741   for (MergeMemStream mms(m, n); mms.next_non_empty2(); ) {
1742     Node *p = mms.force_memory();
1743     Node *q = mms.memory2();
1744     if (mms.is_empty() && nophi) {
1745       // Trouble:  No new splits allowed after a loop body is parsed.
1746       // Instead, wire the new split into a MergeMem on the backedge.
1747       // The optimizer will sort it out, slicing the phi.
1748       if (remerge == NULL) {
1749         assert(base != NULL, "");
1750         assert(base->in(0) != NULL, "should not be xformed away");
1751         remerge = MergeMemNode::make(C, base->in(pnum));
1752         gvn().set_type(remerge, Type::MEMORY);
1753         base->set_req(pnum, remerge);
1754       }
1755       remerge->set_memory_at(mms.alias_idx(), q);
1756       continue;
1757     }
1758     assert(!q->is_MergeMem(), "");
1759     PhiNode* phi;
1760     if (p != q) {
1761       phi = ensure_memory_phi(mms.alias_idx(), nophi);
1762     } else {
1763       if (p->is_Phi() && p->as_Phi()->region() == r)
1764         phi = p->as_Phi();
1765       else
1766         phi = NULL;
1767     }
1768     // Insert q into local phi
1769     if (phi != NULL) {
1770       assert(phi->region() == r, "");
1771       p = phi;
1772       phi->set_req(pnum, q);
1773       if (mms.at_base_memory()) {
1774         base = phi;  // delay transforming it
1775       } else if (pnum == 1) {
1776         record_for_igvn(phi);
1777         p = _gvn.transform_no_reclaim(phi);
1778       }
1779       mms.set_memory(p);// store back through the iterator
1780     }
1781   }
1782   // Transform base last, in case we must fiddle with remerging.
1783   if (base != NULL && pnum == 1) {
1784     record_for_igvn(base);
1785     m->set_base_memory( _gvn.transform_no_reclaim(base) );
1786   }
1787 }
1788 
1789 
1790 //------------------------ensure_phis_everywhere-------------------------------
1791 void Parse::ensure_phis_everywhere() {
1792   ensure_phi(TypeFunc::I_O);
1793 
1794   // Ensure a phi on all currently known memories.
1795   for (MergeMemStream mms(merged_memory()); mms.next_non_empty(); ) {
1796     ensure_memory_phi(mms.alias_idx());
1797     debug_only(mms.set_memory());  // keep the iterator happy
1798   }
1799 
1800   // Note:  This is our only chance to create phis for memory slices.
1801   // If we miss a slice that crops up later, it will have to be
1802   // merged into the base-memory phi that we are building here.
1803   // Later, the optimizer will comb out the knot, and build separate
1804   // phi-loops for each memory slice that matters.
1805 
1806   // Monitors must nest nicely and not get confused amongst themselves.
1807   // Phi-ify everything up to the monitors, though.
1808   uint monoff = map()->jvms()->monoff();
1809   uint nof_monitors = map()->jvms()->nof_monitors();
1810 
1811   assert(TypeFunc::Parms == map()->jvms()->locoff(), "parser map should contain only youngest jvms");
1812   bool check_elide_phi = block()->is_SEL_head();
1813   for (uint i = TypeFunc::Parms; i < monoff; i++) {
1814     if (!check_elide_phi || !block()->can_elide_SEL_phi(i)) {
1815       ensure_phi(i);
1816     }
1817   }
1818 
1819   // Even monitors need Phis, though they are well-structured.
1820   // This is true for OSR methods, and also for the rare cases where
1821   // a monitor object is the subject of a replace_in_map operation.
1822   // See bugs 4426707 and 5043395.
1823   for (uint m = 0; m < nof_monitors; m++) {
1824     ensure_phi(map()->jvms()->monitor_obj_offset(m));
1825   }
1826 }
1827 
1828 
1829 //-----------------------------add_new_path------------------------------------
1830 // Add a previously unaccounted predecessor to this block.
1831 int Parse::Block::add_new_path() {
1832   // If there is no map, return the lowest unused path number.
1833   if (!is_merged())  return pred_count()+1;  // there will be a map shortly
1834 
1835   SafePointNode* map = start_map();
1836   if (!map->control()->is_Region())
1837     return pred_count()+1;  // there may be a region some day
1838   RegionNode* r = map->control()->as_Region();
1839 
1840   // Add new path to the region.
1841   uint pnum = r->req();
1842   r->add_req(NULL);
1843 
1844   for (uint i = 1; i < map->req(); i++) {
1845     Node* n = map->in(i);
1846     if (i == TypeFunc::Memory) {
1847       // Ensure a phi on all currently known memories.
1848       for (MergeMemStream mms(n->as_MergeMem()); mms.next_non_empty(); ) {
1849         Node* phi = mms.memory();
1850         if (phi->is_Phi() && phi->as_Phi()->region() == r) {
1851           assert(phi->req() == pnum, "must be same size as region");
1852           phi->add_req(NULL);
1853         }
1854       }
1855     } else {
1856       if (n->is_Phi() && n->as_Phi()->region() == r) {
1857         assert(n->req() == pnum, "must be same size as region");
1858         n->add_req(NULL);
1859       }
1860     }
1861   }
1862 
1863   return pnum;
1864 }
1865 
1866 //------------------------------ensure_phi-------------------------------------
1867 // Turn the idx'th entry of the current map into a Phi
1868 PhiNode *Parse::ensure_phi(int idx, bool nocreate) {
1869   SafePointNode* map = this->map();
1870   Node* region = map->control();
1871   assert(region->is_Region(), "");
1872 
1873   Node* o = map->in(idx);
1874   assert(o != NULL, "");
1875 
1876   if (o == top())  return NULL; // TOP always merges into TOP
1877 
1878   if (o->is_Phi() && o->as_Phi()->region() == region) {
1879     return o->as_Phi();
1880   }
1881 
1882   // Now use a Phi here for merging
1883   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1884   const JVMState* jvms = map->jvms();
1885   const Type* t;
1886   if (jvms->is_loc(idx)) {
1887     t = block()->local_type_at(idx - jvms->locoff());
1888   } else if (jvms->is_stk(idx)) {
1889     t = block()->stack_type_at(idx - jvms->stkoff());
1890   } else if (jvms->is_mon(idx)) {
1891     assert(!jvms->is_monitor_box(idx), "no phis for boxes");
1892     t = TypeInstPtr::BOTTOM; // this is sufficient for a lock object
1893   } else if ((uint)idx < TypeFunc::Parms) {
1894     t = o->bottom_type();  // Type::RETURN_ADDRESS or such-like.
1895   } else {
1896     assert(false, "no type information for this phi");
1897   }
1898 
1899   // If the type falls to bottom, then this must be a local that
1900   // is mixing ints and oops or some such.  Forcing it to top
1901   // makes it go dead.
1902   if (t == Type::BOTTOM) {
1903     map->set_req(idx, top());
1904     return NULL;
1905   }
1906 
1907   // Do not create phis for top either.
1908   // A top on a non-null control flow must be an unused even after the.phi.
1909   if (t == Type::TOP || t == Type::HALF) {
1910     map->set_req(idx, top());
1911     return NULL;
1912   }
1913 
1914   PhiNode* phi = PhiNode::make(region, o, t);
1915   gvn().set_type(phi, t);
1916   if (C->do_escape_analysis()) record_for_igvn(phi);
1917   map->set_req(idx, phi);
1918   return phi;
1919 }
1920 
1921 //--------------------------ensure_memory_phi----------------------------------
1922 // Turn the idx'th slice of the current memory into a Phi
1923 PhiNode *Parse::ensure_memory_phi(int idx, bool nocreate) {
1924   MergeMemNode* mem = merged_memory();
1925   Node* region = control();
1926   assert(region->is_Region(), "");
1927 
1928   Node *o = (idx == Compile::AliasIdxBot)? mem->base_memory(): mem->memory_at(idx);
1929   assert(o != NULL && o != top(), "");
1930 
1931   PhiNode* phi;
1932   if (o->is_Phi() && o->as_Phi()->region() == region) {
1933     phi = o->as_Phi();
1934     if (phi == mem->base_memory() && idx >= Compile::AliasIdxRaw) {
1935       // clone the shared base memory phi to make a new memory split
1936       assert(!nocreate, "Cannot build a phi for a block already parsed.");
1937       const Type* t = phi->bottom_type();
1938       const TypePtr* adr_type = C->get_adr_type(idx);
1939       phi = phi->slice_memory(adr_type);
1940       gvn().set_type(phi, t);
1941     }
1942     return phi;
1943   }
1944 
1945   // Now use a Phi here for merging
1946   assert(!nocreate, "Cannot build a phi for a block already parsed.");
1947   const Type* t = o->bottom_type();
1948   const TypePtr* adr_type = C->get_adr_type(idx);
1949   phi = PhiNode::make(region, o, t, adr_type);
1950   gvn().set_type(phi, t);
1951   if (idx == Compile::AliasIdxBot)
1952     mem->set_base_memory(phi);
1953   else
1954     mem->set_memory_at(idx, phi);
1955   return phi;
1956 }
1957 
1958 //------------------------------call_register_finalizer-----------------------
1959 // Check the klass of the receiver and call register_finalizer if the
1960 // class need finalization.
1961 void Parse::call_register_finalizer() {
1962   Node* receiver = local(0);
1963   assert(receiver != NULL && receiver->bottom_type()->isa_instptr() != NULL,
1964          "must have non-null instance type");
1965 
1966   const TypeInstPtr *tinst = receiver->bottom_type()->isa_instptr();
1967   if (tinst != NULL && tinst->klass()->is_loaded() && !tinst->klass_is_exact()) {
1968     // The type isn't known exactly so see if CHA tells us anything.
1969     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
1970     if (!Dependencies::has_finalizable_subclass(ik)) {
1971       // No finalizable subclasses so skip the dynamic check.
1972       C->dependencies()->assert_has_no_finalizable_subclasses(ik);
1973       return;
1974     }
1975   }
1976 
1977   // Insert a dynamic test for whether the instance needs
1978   // finalization.  In general this will fold up since the concrete
1979   // class is often visible so the access flags are constant.
1980   Node* klass_addr = basic_plus_adr( receiver, receiver, oopDesc::klass_offset_in_bytes() );
1981   Node* klass = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), klass_addr, TypeInstPtr::KLASS) );
1982 
1983   Node* access_flags_addr = basic_plus_adr(klass, klass, in_bytes(Klass::access_flags_offset()));
1984   Node* access_flags = make_load(NULL, access_flags_addr, TypeInt::INT, T_INT);
1985 
1986   Node* mask  = _gvn.transform(new (C) AndINode(access_flags, intcon(JVM_ACC_HAS_FINALIZER)));
1987   Node* check = _gvn.transform(new (C) CmpINode(mask, intcon(0)));
1988   Node* test  = _gvn.transform(new (C) BoolNode(check, BoolTest::ne));
1989 
1990   IfNode* iff = create_and_map_if(control(), test, PROB_MAX, COUNT_UNKNOWN);
1991 
1992   RegionNode* result_rgn = new (C) RegionNode(3);
1993   record_for_igvn(result_rgn);
1994 
1995   Node *skip_register = _gvn.transform(new (C) IfFalseNode(iff));
1996   result_rgn->init_req(1, skip_register);
1997 
1998   Node *needs_register = _gvn.transform(new (C) IfTrueNode(iff));
1999   set_control(needs_register);
2000   if (stopped()) {
2001     // There is no slow path.
2002     result_rgn->init_req(2, top());
2003   } else {
2004     Node *call = make_runtime_call(RC_NO_LEAF,
2005                                    OptoRuntime::register_finalizer_Type(),
2006                                    OptoRuntime::register_finalizer_Java(),
2007                                    NULL, TypePtr::BOTTOM,
2008                                    receiver);
2009     make_slow_call_ex(call, env()->Throwable_klass(), true);
2010 
2011     Node* fast_io  = call->in(TypeFunc::I_O);
2012     Node* fast_mem = call->in(TypeFunc::Memory);
2013     // These two phis are pre-filled with copies of of the fast IO and Memory
2014     Node* io_phi   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
2015     Node* mem_phi  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
2016 
2017     result_rgn->init_req(2, control());
2018     io_phi    ->init_req(2, i_o());
2019     mem_phi   ->init_req(2, reset_memory());
2020 
2021     set_all_memory( _gvn.transform(mem_phi) );
2022     set_i_o(        _gvn.transform(io_phi) );
2023   }
2024 
2025   set_control( _gvn.transform(result_rgn) );
2026 }
2027 
2028 //------------------------------return_current---------------------------------
2029 // Append current _map to _exit_return
2030 void Parse::return_current(Node* value) {
2031   if (RegisterFinalizersAtInit &&
2032       method()->intrinsic_id() == vmIntrinsics::_Object_init) {
2033     call_register_finalizer();
2034   }
2035 
2036   // Do not set_parse_bci, so that return goo is credited to the return insn.
2037   set_bci(InvocationEntryBci);
2038   if (method()->is_synchronized() && GenerateSynchronizationCode) {
2039     shared_unlock(_synch_lock->box_node(), _synch_lock->obj_node());
2040   }
2041   if (C->env()->dtrace_method_probes()) {
2042     make_dtrace_method_exit(method());
2043   }
2044   SafePointNode* exit_return = _exits.map();
2045   exit_return->in( TypeFunc::Control  )->add_req( control() );
2046   exit_return->in( TypeFunc::I_O      )->add_req( i_o    () );
2047   Node *mem = exit_return->in( TypeFunc::Memory   );
2048   for (MergeMemStream mms(mem->as_MergeMem(), merged_memory()); mms.next_non_empty2(); ) {
2049     if (mms.is_empty()) {
2050       // get a copy of the base memory, and patch just this one input
2051       const TypePtr* adr_type = mms.adr_type(C);
2052       Node* phi = mms.force_memory()->as_Phi()->slice_memory(adr_type);
2053       assert(phi->as_Phi()->region() == mms.base_memory()->in(0), "");
2054       gvn().set_type_bottom(phi);
2055       phi->del_req(phi->req()-1);  // prepare to re-patch
2056       mms.set_memory(phi);
2057     }
2058     mms.memory()->add_req(mms.memory2());
2059   }
2060 
2061   // frame pointer is always same, already captured
2062   if (value != NULL) {
2063     // If returning oops to an interface-return, there is a silent free
2064     // cast from oop to interface allowed by the Verifier.  Make it explicit
2065     // here.
2066     Node* phi = _exits.argument(0);
2067     const TypeInstPtr *tr = phi->bottom_type()->isa_instptr();
2068     if( tr && tr->klass()->is_loaded() &&
2069         tr->klass()->is_interface() ) {
2070       const TypeInstPtr *tp = value->bottom_type()->isa_instptr();
2071       if (tp && tp->klass()->is_loaded() &&
2072           !tp->klass()->is_interface()) {
2073         // sharpen the type eagerly; this eases certain assert checking
2074         if (tp->higher_equal(TypeInstPtr::NOTNULL))
2075           tr = tr->join(TypeInstPtr::NOTNULL)->is_instptr();
2076         value = _gvn.transform(new (C) CheckCastPPNode(0,value,tr));
2077       }
2078     }
2079     phi->add_req(value);
2080   }
2081 
2082   if (_first_return) {
2083     _exits.map()->transfer_replaced_nodes_from(map(), _new_idx);
2084     _first_return = false;
2085   } else {
2086     _exits.map()->merge_replaced_nodes_with(map());
2087   }
2088 
2089   stop_and_kill_map();          // This CFG path dies here
2090 }
2091 
2092 
2093 //------------------------------add_safepoint----------------------------------
2094 void Parse::add_safepoint() {
2095   // See if we can avoid this safepoint.  No need for a SafePoint immediately
2096   // after a Call (except Leaf Call) or another SafePoint.
2097   Node *proj = control();
2098   bool add_poll_param = SafePointNode::needs_polling_address_input();
2099   uint parms = add_poll_param ? TypeFunc::Parms+1 : TypeFunc::Parms;
2100   if( proj->is_Proj() ) {
2101     Node *n0 = proj->in(0);
2102     if( n0->is_Catch() ) {
2103       n0 = n0->in(0)->in(0);
2104       assert( n0->is_Call(), "expect a call here" );
2105     }
2106     if( n0->is_Call() ) {
2107       if( n0->as_Call()->guaranteed_safepoint() )
2108         return;
2109     } else if( n0->is_SafePoint() && n0->req() >= parms ) {
2110       return;
2111     }
2112   }
2113 
2114   // Clear out dead values from the debug info.
2115   kill_dead_locals();
2116 
2117   // Clone the JVM State
2118   SafePointNode *sfpnt = new (C) SafePointNode(parms, NULL);
2119 
2120   // Capture memory state BEFORE a SafePoint.  Since we can block at a
2121   // SafePoint we need our GC state to be safe; i.e. we need all our current
2122   // write barriers (card marks) to not float down after the SafePoint so we
2123   // must read raw memory.  Likewise we need all oop stores to match the card
2124   // marks.  If deopt can happen, we need ALL stores (we need the correct JVM
2125   // state on a deopt).
2126 
2127   // We do not need to WRITE the memory state after a SafePoint.  The control
2128   // edge will keep card-marks and oop-stores from floating up from below a
2129   // SafePoint and our true dependency added here will keep them from floating
2130   // down below a SafePoint.
2131 
2132   // Clone the current memory state
2133   Node* mem = MergeMemNode::make(C, map()->memory());
2134 
2135   mem = _gvn.transform(mem);
2136 
2137   // Pass control through the safepoint
2138   sfpnt->init_req(TypeFunc::Control  , control());
2139   // Fix edges normally used by a call
2140   sfpnt->init_req(TypeFunc::I_O      , top() );
2141   sfpnt->init_req(TypeFunc::Memory   , mem   );
2142   sfpnt->init_req(TypeFunc::ReturnAdr, top() );
2143   sfpnt->init_req(TypeFunc::FramePtr , top() );
2144 
2145   // Create a node for the polling address
2146   if( add_poll_param ) {
2147     Node *polladr = ConPNode::make(C, (address)os::get_polling_page());
2148     sfpnt->init_req(TypeFunc::Parms+0, _gvn.transform(polladr));
2149   }
2150 
2151   // Fix up the JVM State edges
2152   add_safepoint_edges(sfpnt);
2153   Node *transformed_sfpnt = _gvn.transform(sfpnt);
2154   set_control(transformed_sfpnt);
2155 
2156   // Provide an edge from root to safepoint.  This makes the safepoint
2157   // appear useful until the parse has completed.
2158   if( OptoRemoveUseless && transformed_sfpnt->is_SafePoint() ) {
2159     assert(C->root() != NULL, "Expect parse is still valid");
2160     C->root()->add_prec(transformed_sfpnt);
2161   }
2162 }
2163 
2164 #ifndef PRODUCT
2165 //------------------------show_parse_info--------------------------------------
2166 void Parse::show_parse_info() {
2167   InlineTree* ilt = NULL;
2168   if (C->ilt() != NULL) {
2169     JVMState* caller_jvms = is_osr_parse() ? caller()->caller() : caller();
2170     ilt = InlineTree::find_subtree_from_root(C->ilt(), caller_jvms, method());
2171   }
2172   if (PrintCompilation && Verbose) {
2173     if (depth() == 1) {
2174       if( ilt->count_inlines() ) {
2175         tty->print("    __inlined %d (%d bytes)", ilt->count_inlines(),
2176                      ilt->count_inline_bcs());
2177         tty->cr();
2178       }
2179     } else {
2180       if (method()->is_synchronized())         tty->print("s");
2181       if (method()->has_exception_handlers())  tty->print("!");
2182       // Check this is not the final compiled version
2183       if (C->trap_can_recompile()) {
2184         tty->print("-");
2185       } else {
2186         tty->print(" ");
2187       }
2188       method()->print_short_name();
2189       if (is_osr_parse()) {
2190         tty->print(" @ %d", osr_bci());
2191       }
2192       tty->print(" (%d bytes)",method()->code_size());
2193       if (ilt->count_inlines()) {
2194         tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2195                    ilt->count_inline_bcs());
2196       }
2197       tty->cr();
2198     }
2199   }
2200   if (PrintOpto && (depth() == 1 || PrintOptoInlining)) {
2201     // Print that we succeeded; suppress this message on the first osr parse.
2202 
2203     if (method()->is_synchronized())         tty->print("s");
2204     if (method()->has_exception_handlers())  tty->print("!");
2205     // Check this is not the final compiled version
2206     if (C->trap_can_recompile() && depth() == 1) {
2207       tty->print("-");
2208     } else {
2209       tty->print(" ");
2210     }
2211     if( depth() != 1 ) { tty->print("   "); }  // missing compile count
2212     for (int i = 1; i < depth(); ++i) { tty->print("  "); }
2213     method()->print_short_name();
2214     if (is_osr_parse()) {
2215       tty->print(" @ %d", osr_bci());
2216     }
2217     if (ilt->caller_bci() != -1) {
2218       tty->print(" @ %d", ilt->caller_bci());
2219     }
2220     tty->print(" (%d bytes)",method()->code_size());
2221     if (ilt->count_inlines()) {
2222       tty->print(" __inlined %d (%d bytes)", ilt->count_inlines(),
2223                  ilt->count_inline_bcs());
2224     }
2225     tty->cr();
2226   }
2227 }
2228 
2229 
2230 //------------------------------dump-------------------------------------------
2231 // Dump information associated with the bytecodes of current _method
2232 void Parse::dump() {
2233   if( method() != NULL ) {
2234     // Iterate over bytecodes
2235     ciBytecodeStream iter(method());
2236     for( Bytecodes::Code bc = iter.next(); bc != ciBytecodeStream::EOBC() ; bc = iter.next() ) {
2237       dump_bci( iter.cur_bci() );
2238       tty->cr();
2239     }
2240   }
2241 }
2242 
2243 // Dump information associated with a byte code index, 'bci'
2244 void Parse::dump_bci(int bci) {
2245   // Output info on merge-points, cloning, and within _jsr..._ret
2246   // NYI
2247   tty->print(" bci:%d", bci);
2248 }
2249 
2250 #endif