1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
  26 #define SHARE_VM_UTILITIES_GROWABLEARRAY_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "utilities/debug.hpp"
  31 #include "utilities/globalDefinitions.hpp"
  32 #include "utilities/top.hpp"
  33 
  34 // A growable array.
  35 
  36 /*************************************************************************/
  37 /*                                                                       */
  38 /*     WARNING WARNING WARNING WARNING WARNING WARNING WARNING WARNING   */
  39 /*                                                                       */
  40 /* Should you use GrowableArrays to contain handles you must be certain  */
  41 /* the the GrowableArray does not outlive the HandleMark that contains   */
  42 /* the handles. Since GrowableArrays are typically resource allocated    */
  43 /* the following is an example of INCORRECT CODE,                        */
  44 /*                                                                       */
  45 /* ResourceMark rm;                                                      */
  46 /* GrowableArray<Handle>* arr = new GrowableArray<Handle>(size);         */
  47 /* if (blah) {                                                           */
  48 /*    while (...) {                                                      */
  49 /*      HandleMark hm;                                                   */
  50 /*      ...                                                              */
  51 /*      Handle h(THREAD, some_oop);                                      */
  52 /*      arr->append(h);                                                  */
  53 /*    }                                                                  */
  54 /* }                                                                     */
  55 /* if (arr->length() != 0 ) {                                            */
  56 /*    oop bad_oop = arr->at(0)(); // Handle is BAD HERE.                 */
  57 /*    ...                                                                */
  58 /* }                                                                     */
  59 /*                                                                       */
  60 /* If the GrowableArrays you are creating is C_Heap allocated then it    */
  61 /* hould not old handles since the handles could trivially try and       */
  62 /* outlive their HandleMark. In some situations you might need to do     */
  63 /* this and it would be legal but be very careful and see if you can do  */
  64 /* the code in some other manner.                                        */
  65 /*                                                                       */
  66 /*************************************************************************/
  67 
  68 // To call default constructor the placement operator new() is used.
  69 // It should be empty (it only returns the passed void* pointer).
  70 // The definition of placement operator new(size_t, void*) in the <new>.
  71 
  72 #include <new>
  73 
  74 // Need the correct linkage to call qsort without warnings
  75 extern "C" {
  76   typedef int (*_sort_Fn)(const void *, const void *);
  77 }
  78 
  79 class GenericGrowableArray : public ResourceObj {
  80   friend class VMStructs;
  81 
  82  protected:
  83   int    _len;          // current length
  84   int    _max;          // maximum length
  85   Arena* _arena;        // Indicates where allocation occurs:
  86                         //   0 means default ResourceArea
  87                         //   1 means on C heap
  88                         //   otherwise, allocate in _arena
  89 
  90   MEMFLAGS   _memflags;   // memory type if allocation in C heap
  91 
  92 #ifdef ASSERT
  93   int    _nesting;      // resource area nesting at creation
  94   void   set_nesting();
  95   void   check_nesting();
  96 #else
  97 #define  set_nesting();
  98 #define  check_nesting();
  99 #endif
 100 
 101   // Where are we going to allocate memory?
 102   bool on_C_heap() { return _arena == (Arena*)1; }
 103   bool on_stack () { return _arena == NULL;      }
 104   bool on_arena () { return _arena >  (Arena*)1;  }
 105 
 106   // This GA will use the resource stack for storage if c_heap==false,
 107   // Else it will use the C heap.  Use clear_and_deallocate to avoid leaks.
 108   GenericGrowableArray(int initial_size, int initial_len, bool c_heap, MEMFLAGS flags = mtNone) {
 109     _len = initial_len;
 110     _max = initial_size;
 111     _memflags = flags;
 112 
 113     // memory type has to be specified for C heap allocation
 114     assert(!(c_heap && flags == mtNone), "memory type not specified for C heap object");
 115 
 116     assert(_len >= 0 && _len <= _max, "initial_len too big");
 117     _arena = (c_heap ? (Arena*)1 : NULL);
 118     set_nesting();
 119     assert(!on_C_heap() || allocated_on_C_heap(), "growable array must be on C heap if elements are");
 120     assert(!on_stack() ||
 121            (allocated_on_res_area() || allocated_on_stack()),
 122            "growable array must be on stack if elements are not on arena and not on C heap");
 123   }
 124 
 125   // This GA will use the given arena for storage.
 126   // Consider using new(arena) GrowableArray<T> to allocate the header.
 127   GenericGrowableArray(Arena* arena, int initial_size, int initial_len) {
 128     _len = initial_len;
 129     _max = initial_size;
 130     assert(_len >= 0 && _len <= _max, "initial_len too big");
 131     _arena = arena;
 132     _memflags = mtNone;
 133 
 134     assert(on_arena(), "arena has taken on reserved value 0 or 1");
 135     // Relax next assert to allow object allocation on resource area,
 136     // on stack or embedded into an other object.
 137     assert(allocated_on_arena() || allocated_on_stack(),
 138            "growable array must be on arena or on stack if elements are on arena");
 139   }
 140 
 141   void* raw_allocate(int elementSize);
 142 
 143   // some uses pass the Thread explicitly for speed (4990299 tuning)
 144   void* raw_allocate(Thread* thread, int elementSize) {
 145     assert(on_stack(), "fast ResourceObj path only");
 146     return (void*)resource_allocate_bytes(thread, elementSize * _max);
 147   }
 148 };
 149 
 150 template<class E> class GrowableArray : public GenericGrowableArray {
 151   friend class VMStructs;
 152 
 153  private:
 154   E*     _data;         // data array
 155 
 156   void grow(int j);
 157   void raw_at_put_grow(int i, const E& p, const E& fill);
 158   void  clear_and_deallocate();
 159  public:
 160   GrowableArray(Thread* thread, int initial_size) : GenericGrowableArray(initial_size, 0, false) {
 161     _data = (E*)raw_allocate(thread, sizeof(E));
 162     for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
 163   }
 164 
 165   GrowableArray(int initial_size, bool C_heap = false, MEMFLAGS F = mtInternal)
 166     : GenericGrowableArray(initial_size, 0, C_heap, F) {
 167     _data = (E*)raw_allocate(sizeof(E));
 168     for (int i = 0; i < _max; i++) ::new ((void*)&_data[i]) E();
 169   }
 170 
 171   GrowableArray(int initial_size, int initial_len, const E& filler, bool C_heap = false, MEMFLAGS memflags = mtInternal)
 172     : GenericGrowableArray(initial_size, initial_len, C_heap, memflags) {
 173     _data = (E*)raw_allocate(sizeof(E));
 174     int i = 0;
 175     for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
 176     for (; i < _max; i++) ::new ((void*)&_data[i]) E();
 177   }
 178 
 179   GrowableArray(Arena* arena, int initial_size, int initial_len, const E& filler) : GenericGrowableArray(arena, initial_size, initial_len) {
 180     _data = (E*)raw_allocate(sizeof(E));
 181     int i = 0;
 182     for (; i < _len; i++) ::new ((void*)&_data[i]) E(filler);
 183     for (; i < _max; i++) ::new ((void*)&_data[i]) E();
 184   }
 185 
 186   GrowableArray() : GenericGrowableArray(2, 0, false) {
 187     _data = (E*)raw_allocate(sizeof(E));
 188     ::new ((void*)&_data[0]) E();
 189     ::new ((void*)&_data[1]) E();
 190   }
 191 
 192                                 // Does nothing for resource and arena objects
 193   ~GrowableArray()              { if (on_C_heap()) clear_and_deallocate(); }
 194 
 195   void  clear()                 { _len = 0; }
 196   int   length() const          { return _len; }
 197   int   max_length() const      { return _max; }
 198   void  trunc_to(int l)         { assert(l <= _len,"cannot increase length"); _len = l; }
 199   bool  is_empty() const        { return _len == 0; }
 200   bool  is_nonempty() const     { return _len != 0; }
 201   bool  is_full() const         { return _len == _max; }
 202   DEBUG_ONLY(E* data_addr() const      { return _data; })
 203 
 204   void print();
 205 
 206   int append(const E& elem) {
 207     check_nesting();
 208     if (_len == _max) grow(_len);
 209     int idx = _len++;
 210     _data[idx] = elem;
 211     return idx;
 212   }
 213 
 214   bool append_if_missing(const E& elem) {
 215     // Returns TRUE if elem is added.
 216     bool missed = !contains(elem);
 217     if (missed) append(elem);
 218     return missed;
 219   }
 220 
 221   E at(int i) const {
 222     assert(0 <= i && i < _len, "illegal index");
 223     return _data[i];
 224   }
 225 
 226   E* adr_at(int i) const {
 227     assert(0 <= i && i < _len, "illegal index");
 228     return &_data[i];
 229   }
 230 
 231   E first() const {
 232     assert(_len > 0, "empty list");
 233     return _data[0];
 234   }
 235 
 236   E top() const {
 237     assert(_len > 0, "empty list");
 238     return _data[_len-1];
 239   }
 240 
 241   void push(const E& elem) { append(elem); }
 242 
 243   E pop() {
 244     assert(_len > 0, "empty list");
 245     return _data[--_len];
 246   }
 247 
 248   void at_put(int i, const E& elem) {
 249     assert(0 <= i && i < _len, "illegal index");
 250     _data[i] = elem;
 251   }
 252 
 253   E at_grow(int i, const E& fill = E()) {
 254     assert(0 <= i, "negative index");
 255     check_nesting();
 256     if (i >= _len) {
 257       if (i >= _max) grow(i);
 258       for (int j = _len; j <= i; j++)
 259         _data[j] = fill;
 260       _len = i+1;
 261     }
 262     return _data[i];
 263   }
 264 
 265   void at_put_grow(int i, const E& elem, const E& fill = E()) {
 266     assert(0 <= i, "negative index");
 267     check_nesting();
 268     raw_at_put_grow(i, elem, fill);
 269   }
 270 
 271   bool contains(const E& elem) const {
 272     for (int i = 0; i < _len; i++) {
 273       if (_data[i] == elem) return true;
 274     }
 275     return false;
 276   }
 277 
 278   int  find(const E& elem) const {
 279     for (int i = 0; i < _len; i++) {
 280       if (_data[i] == elem) return i;
 281     }
 282     return -1;
 283   }
 284 
 285   int  find_from_end(const E& elem) const {
 286     for (int i = _len-1; i >= 0; i--) {
 287       if (_data[i] == elem) return i;
 288     }
 289     return -1;
 290   }
 291 
 292   int  find(void* token, bool f(void*, E)) const {
 293     for (int i = 0; i < _len; i++) {
 294       if (f(token, _data[i])) return i;
 295     }
 296     return -1;
 297   }
 298 
 299   int  find_at_end(void* token, bool f(void*, E)) const {
 300     // start at the end of the array
 301     for (int i = _len-1; i >= 0; i--) {
 302       if (f(token, _data[i])) return i;
 303     }
 304     return -1;
 305   }
 306 
 307   void remove(const E& elem) {
 308     for (int i = 0; i < _len; i++) {
 309       if (_data[i] == elem) {
 310         for (int j = i + 1; j < _len; j++) _data[j-1] = _data[j];
 311         _len--;
 312         return;
 313       }
 314     }
 315     ShouldNotReachHere();
 316   }
 317 
 318   // The order is preserved.
 319   void remove_at(int index) {
 320     assert(0 <= index && index < _len, "illegal index");
 321     for (int j = index + 1; j < _len; j++) _data[j-1] = _data[j];
 322     _len--;
 323   }
 324 
 325   // The order is changed.
 326   void delete_at(int index) {
 327     assert(0 <= index && index < _len, "illegal index");
 328     if (index < --_len) {
 329       // Replace removed element with last one.
 330       _data[index] = _data[_len];
 331     }
 332   }
 333 
 334   // inserts the given element before the element at index i
 335   void insert_before(const int idx, const E& elem) {
 336     check_nesting();
 337     if (_len == _max) grow(_len);
 338     for (int j = _len - 1; j >= idx; j--) {
 339       _data[j + 1] = _data[j];
 340     }
 341     _len++;
 342     _data[idx] = elem;
 343   }
 344 
 345   void appendAll(const GrowableArray<E>* l) {
 346     for (int i = 0; i < l->_len; i++) {
 347       raw_at_put_grow(_len, l->_data[i], 0);
 348     }
 349   }
 350 
 351   void sort(int f(E*,E*)) {
 352     qsort(_data, length(), sizeof(E), (_sort_Fn)f);
 353   }
 354   // sort by fixed-stride sub arrays:
 355   void sort(int f(E*,E*), int stride) {
 356     qsort(_data, length() / stride, sizeof(E) * stride, (_sort_Fn)f);
 357   }
 358 };
 359 
 360 // Global GrowableArray methods (one instance in the library per each 'E' type).
 361 
 362 template<class E> void GrowableArray<E>::grow(int j) {
 363     // grow the array by doubling its size (amortized growth)
 364     int old_max = _max;
 365     if (_max == 0) _max = 1; // prevent endless loop
 366     while (j >= _max) _max = _max*2;
 367     // j < _max
 368     E* newData = (E*)raw_allocate(sizeof(E));
 369     int i = 0;
 370     for (     ; i < _len; i++) ::new ((void*)&newData[i]) E(_data[i]);
 371     for (     ; i < _max; i++) ::new ((void*)&newData[i]) E();
 372     for (i = 0; i < old_max; i++) _data[i].~E();
 373     if (on_C_heap() && _data != NULL) {
 374       FreeHeap(_data);
 375     }
 376     _data = newData;
 377 }
 378 
 379 template<class E> void GrowableArray<E>::raw_at_put_grow(int i, const E& p, const E& fill) {
 380     if (i >= _len) {
 381       if (i >= _max) grow(i);
 382       for (int j = _len; j < i; j++)
 383         _data[j] = fill;
 384       _len = i+1;
 385     }
 386     _data[i] = p;
 387 }
 388 
 389 // This function clears and deallocate the data in the growable array that
 390 // has been allocated on the C heap.  It's not public - called by the
 391 // destructor.
 392 template<class E> void GrowableArray<E>::clear_and_deallocate() {
 393     assert(on_C_heap(),
 394            "clear_and_deallocate should only be called when on C heap");
 395     clear();
 396     if (_data != NULL) {
 397       for (int i = 0; i < _max; i++) _data[i].~E();
 398       FreeHeap(_data);
 399       _data = NULL;
 400     }
 401 }
 402 
 403 template<class E> void GrowableArray<E>::print() {
 404     tty->print("Growable Array " INTPTR_FORMAT, this);
 405     tty->print(": length %ld (_max %ld) { ", _len, _max);
 406     for (int i = 0; i < _len; i++) tty->print(INTPTR_FORMAT " ", *(intptr_t*)&(_data[i]));
 407     tty->print("}\n");
 408 }
 409 
 410 #endif // SHARE_VM_UTILITIES_GROWABLEARRAY_HPP