1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/orderAccess.inline.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/perfMemory.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/statSampler.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/threadCritical.hpp"
  60 #include "runtime/timer.hpp"
  61 #include "services/attachListener.hpp"
  62 #include "services/memTracker.hpp"
  63 #include "services/runtimeService.hpp"
  64 #include "utilities/decoder.hpp"
  65 #include "utilities/defaultStream.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/elfFile.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 // put OS-includes here
  72 # include <sys/types.h>
  73 # include <sys/mman.h>
  74 # include <sys/stat.h>
  75 # include <sys/select.h>
  76 # include <pthread.h>
  77 # include <signal.h>
  78 # include <errno.h>
  79 # include <dlfcn.h>
  80 # include <stdio.h>
  81 # include <unistd.h>
  82 # include <sys/resource.h>
  83 # include <pthread.h>
  84 # include <sys/stat.h>
  85 # include <sys/time.h>
  86 # include <sys/times.h>
  87 # include <sys/utsname.h>
  88 # include <sys/socket.h>
  89 # include <sys/wait.h>
  90 # include <pwd.h>
  91 # include <poll.h>
  92 # include <semaphore.h>
  93 # include <fcntl.h>
  94 # include <string.h>
  95 # include <syscall.h>
  96 # include <sys/sysinfo.h>
  97 # include <gnu/libc-version.h>
  98 # include <sys/ipc.h>
  99 # include <sys/shm.h>
 100 # include <link.h>
 101 # include <stdint.h>
 102 # include <inttypes.h>
 103 # include <sys/ioctl.h>
 104 
 105 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 106 
 107 #ifndef _GNU_SOURCE
 108   #define _GNU_SOURCE
 109   #include <sched.h>
 110   #undef _GNU_SOURCE
 111 #else
 112   #include <sched.h>
 113 #endif
 114 
 115 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 116 // getrusage() is prepared to handle the associated failure.
 117 #ifndef RUSAGE_THREAD
 118 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 119 #endif
 120 
 121 #define MAX_PATH    (2 * K)
 122 
 123 #define MAX_SECS 100000000
 124 
 125 // for timer info max values which include all bits
 126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 127 
 128 #define LARGEPAGES_BIT (1 << 6)
 129 ////////////////////////////////////////////////////////////////////////////////
 130 // global variables
 131 julong os::Linux::_physical_memory = 0;
 132 
 133 address   os::Linux::_initial_thread_stack_bottom = NULL;
 134 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 135 
 136 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 137 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 138 Mutex* os::Linux::_createThread_lock = NULL;
 139 pthread_t os::Linux::_main_thread;
 140 int os::Linux::_page_size = -1;
 141 const int os::Linux::_vm_default_page_size = (8 * K);
 142 bool os::Linux::_is_floating_stack = false;
 143 bool os::Linux::_is_NPTL = false;
 144 bool os::Linux::_supports_fast_thread_cpu_time = false;
 145 const char * os::Linux::_glibc_version = NULL;
 146 const char * os::Linux::_libpthread_version = NULL;
 147 pthread_condattr_t os::Linux::_condattr[1];
 148 
 149 static jlong initial_time_count=0;
 150 
 151 static int clock_tics_per_sec = 100;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static sigset_t check_signal_done;
 155 static bool check_signals = true;
 156 
 157 static pid_t _initial_pid = 0;
 158 
 159 /* Signal number used to suspend/resume a thread */
 160 
 161 /* do not use any signal number less than SIGSEGV, see 4355769 */
 162 static int SR_signum = SIGUSR2;
 163 sigset_t SR_sigset;
 164 
 165 /* Used to protect dlsym() calls */
 166 static pthread_mutex_t dl_mutex;
 167 
 168 // Declarations
 169 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 170 
 171 // utility functions
 172 
 173 static int SR_initialize();
 174 
 175 julong os::available_memory() {
 176   return Linux::available_memory();
 177 }
 178 
 179 julong os::Linux::available_memory() {
 180   // values in struct sysinfo are "unsigned long"
 181   struct sysinfo si;
 182   sysinfo(&si);
 183 
 184   return (julong)si.freeram * si.mem_unit;
 185 }
 186 
 187 julong os::physical_memory() {
 188   return Linux::physical_memory();
 189 }
 190 
 191 ////////////////////////////////////////////////////////////////////////////////
 192 // environment support
 193 
 194 bool os::getenv(const char* name, char* buf, int len) {
 195   const char* val = ::getenv(name);
 196   if (val != NULL && strlen(val) < (size_t)len) {
 197     strcpy(buf, val);
 198     return true;
 199   }
 200   if (len > 0) buf[0] = 0;  // return a null string
 201   return false;
 202 }
 203 
 204 
 205 // Return true if user is running as root.
 206 
 207 bool os::have_special_privileges() {
 208   static bool init = false;
 209   static bool privileges = false;
 210   if (!init) {
 211     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 212     init = true;
 213   }
 214   return privileges;
 215 }
 216 
 217 
 218 #ifndef SYS_gettid
 219 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 220   #ifdef __ia64__
 221     #define SYS_gettid 1105
 222   #else
 223     #ifdef __i386__
 224       #define SYS_gettid 224
 225     #else
 226       #ifdef __amd64__
 227         #define SYS_gettid 186
 228       #else
 229         #ifdef __sparc__
 230           #define SYS_gettid 143
 231         #else
 232           #error define gettid for the arch
 233         #endif
 234       #endif
 235     #endif
 236   #endif
 237 #endif
 238 
 239 // Cpu architecture string
 240 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 241 
 242 // pid_t gettid()
 243 //
 244 // Returns the kernel thread id of the currently running thread. Kernel
 245 // thread id is used to access /proc.
 246 //
 247 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 248 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 249 //
 250 pid_t os::Linux::gettid() {
 251   int rslt = syscall(SYS_gettid);
 252   if (rslt == -1) {
 253      // old kernel, no NPTL support
 254      return getpid();
 255   } else {
 256      return (pid_t)rslt;
 257   }
 258 }
 259 
 260 // Most versions of linux have a bug where the number of processors are
 261 // determined by looking at the /proc file system.  In a chroot environment,
 262 // the system call returns 1.  This causes the VM to act as if it is
 263 // a single processor and elide locking (see is_MP() call).
 264 static bool unsafe_chroot_detected = false;
 265 static const char *unstable_chroot_error = "/proc file system not found.\n"
 266                      "Java may be unstable running multithreaded in a chroot "
 267                      "environment on Linux when /proc filesystem is not mounted.";
 268 
 269 void os::Linux::initialize_system_info() {
 270   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 271   if (processor_count() == 1) {
 272     pid_t pid = os::Linux::gettid();
 273     char fname[32];
 274     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 275     FILE *fp = fopen(fname, "r");
 276     if (fp == NULL) {
 277       unsafe_chroot_detected = true;
 278     } else {
 279       fclose(fp);
 280     }
 281   }
 282   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 283   assert(processor_count() > 0, "linux error");
 284 }
 285 
 286 void os::init_system_properties_values() {
 287   // The next steps are taken in the product version:
 288   //
 289   // Obtain the JAVA_HOME value from the location of libjvm.so.
 290   // This library should be located at:
 291   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 292   //
 293   // If "/jre/lib/" appears at the right place in the path, then we
 294   // assume libjvm.so is installed in a JDK and we use this path.
 295   //
 296   // Otherwise exit with message: "Could not create the Java virtual machine."
 297   //
 298   // The following extra steps are taken in the debugging version:
 299   //
 300   // If "/jre/lib/" does NOT appear at the right place in the path
 301   // instead of exit check for $JAVA_HOME environment variable.
 302   //
 303   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 304   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 305   // it looks like libjvm.so is installed there
 306   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 307   //
 308   // Otherwise exit.
 309   //
 310   // Important note: if the location of libjvm.so changes this
 311   // code needs to be changed accordingly.
 312 
 313 // See ld(1):
 314 //      The linker uses the following search paths to locate required
 315 //      shared libraries:
 316 //        1: ...
 317 //        ...
 318 //        7: The default directories, normally /lib and /usr/lib.
 319 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 320 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 321 #else
 322 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 323 #endif
 324 
 325 // Base path of extensions installed on the system.
 326 #define SYS_EXT_DIR     "/usr/java/packages"
 327 #define EXTENSIONS_DIR  "/lib/ext"
 328 #define ENDORSED_DIR    "/lib/endorsed"
 329 
 330   // Buffer that fits several sprintfs.
 331   // Note that the space for the colon and the trailing null are provided
 332   // by the nulls included by the sizeof operator.
 333   const size_t bufsize =
 334     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 335          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 336          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 337   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 338 
 339   // sysclasspath, java_home, dll_dir
 340   {
 341     char *pslash;
 342     os::jvm_path(buf, bufsize);
 343 
 344     // Found the full path to libjvm.so.
 345     // Now cut the path to <java_home>/jre if we can.
 346     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 347     pslash = strrchr(buf, '/');
 348     if (pslash != NULL) {
 349       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 350     }
 351     Arguments::set_dll_dir(buf);
 352 
 353     if (pslash != NULL) {
 354       pslash = strrchr(buf, '/');
 355       if (pslash != NULL) {
 356         *pslash = '\0';          // Get rid of /<arch>.
 357         pslash = strrchr(buf, '/');
 358         if (pslash != NULL) {
 359           *pslash = '\0';        // Get rid of /lib.
 360         }
 361       }
 362     }
 363     Arguments::set_java_home(buf);
 364     set_boot_path('/', ':');
 365   }
 366 
 367   // Where to look for native libraries.
 368   //
 369   // Note: Due to a legacy implementation, most of the library path
 370   // is set in the launcher. This was to accomodate linking restrictions
 371   // on legacy Linux implementations (which are no longer supported).
 372   // Eventually, all the library path setting will be done here.
 373   //
 374   // However, to prevent the proliferation of improperly built native
 375   // libraries, the new path component /usr/java/packages is added here.
 376   // Eventually, all the library path setting will be done here.
 377   {
 378     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 379     // should always exist (until the legacy problem cited above is
 380     // addressed).
 381     const char *v = ::getenv("LD_LIBRARY_PATH");
 382     const char *v_colon = ":";
 383     if (v == NULL) { v = ""; v_colon = ""; }
 384     // That's +1 for the colon and +1 for the trailing '\0'.
 385     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 386                                                      strlen(v) + 1 +
 387                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 388                                                      mtInternal);
 389     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 390     Arguments::set_library_path(ld_library_path);
 391     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 392   }
 393 
 394   // Extensions directories.
 395   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 396   Arguments::set_ext_dirs(buf);
 397 
 398   // Endorsed standards default directory.
 399   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 400   Arguments::set_endorsed_dirs(buf);
 401 
 402   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 403 
 404 #undef DEFAULT_LIBPATH
 405 #undef SYS_EXT_DIR
 406 #undef EXTENSIONS_DIR
 407 #undef ENDORSED_DIR
 408 }
 409 
 410 ////////////////////////////////////////////////////////////////////////////////
 411 // breakpoint support
 412 
 413 void os::breakpoint() {
 414   BREAKPOINT;
 415 }
 416 
 417 extern "C" void breakpoint() {
 418   // use debugger to set breakpoint here
 419 }
 420 
 421 ////////////////////////////////////////////////////////////////////////////////
 422 // signal support
 423 
 424 debug_only(static bool signal_sets_initialized = false);
 425 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 426 
 427 bool os::Linux::is_sig_ignored(int sig) {
 428       struct sigaction oact;
 429       sigaction(sig, (struct sigaction*)NULL, &oact);
 430       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 431                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 432       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 433            return true;
 434       else
 435            return false;
 436 }
 437 
 438 void os::Linux::signal_sets_init() {
 439   // Should also have an assertion stating we are still single-threaded.
 440   assert(!signal_sets_initialized, "Already initialized");
 441   // Fill in signals that are necessarily unblocked for all threads in
 442   // the VM. Currently, we unblock the following signals:
 443   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 444   //                         by -Xrs (=ReduceSignalUsage));
 445   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 446   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 447   // the dispositions or masks wrt these signals.
 448   // Programs embedding the VM that want to use the above signals for their
 449   // own purposes must, at this time, use the "-Xrs" option to prevent
 450   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 451   // (See bug 4345157, and other related bugs).
 452   // In reality, though, unblocking these signals is really a nop, since
 453   // these signals are not blocked by default.
 454   sigemptyset(&unblocked_sigs);
 455   sigemptyset(&allowdebug_blocked_sigs);
 456   sigaddset(&unblocked_sigs, SIGILL);
 457   sigaddset(&unblocked_sigs, SIGSEGV);
 458   sigaddset(&unblocked_sigs, SIGBUS);
 459   sigaddset(&unblocked_sigs, SIGFPE);
 460 #if defined(PPC64)
 461   sigaddset(&unblocked_sigs, SIGTRAP);
 462 #endif
 463   sigaddset(&unblocked_sigs, SR_signum);
 464 
 465   if (!ReduceSignalUsage) {
 466    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 468       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 469    }
 470    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 471       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 472       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 473    }
 474    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 475       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 476       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 477    }
 478   }
 479   // Fill in signals that are blocked by all but the VM thread.
 480   sigemptyset(&vm_sigs);
 481   if (!ReduceSignalUsage)
 482     sigaddset(&vm_sigs, BREAK_SIGNAL);
 483   debug_only(signal_sets_initialized = true);
 484 
 485 }
 486 
 487 // These are signals that are unblocked while a thread is running Java.
 488 // (For some reason, they get blocked by default.)
 489 sigset_t* os::Linux::unblocked_signals() {
 490   assert(signal_sets_initialized, "Not initialized");
 491   return &unblocked_sigs;
 492 }
 493 
 494 // These are the signals that are blocked while a (non-VM) thread is
 495 // running Java. Only the VM thread handles these signals.
 496 sigset_t* os::Linux::vm_signals() {
 497   assert(signal_sets_initialized, "Not initialized");
 498   return &vm_sigs;
 499 }
 500 
 501 // These are signals that are blocked during cond_wait to allow debugger in
 502 sigset_t* os::Linux::allowdebug_blocked_signals() {
 503   assert(signal_sets_initialized, "Not initialized");
 504   return &allowdebug_blocked_sigs;
 505 }
 506 
 507 void os::Linux::hotspot_sigmask(Thread* thread) {
 508 
 509   //Save caller's signal mask before setting VM signal mask
 510   sigset_t caller_sigmask;
 511   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 512 
 513   OSThread* osthread = thread->osthread();
 514   osthread->set_caller_sigmask(caller_sigmask);
 515 
 516   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 517 
 518   if (!ReduceSignalUsage) {
 519     if (thread->is_VM_thread()) {
 520       // Only the VM thread handles BREAK_SIGNAL ...
 521       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 522     } else {
 523       // ... all other threads block BREAK_SIGNAL
 524       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 525     }
 526   }
 527 }
 528 
 529 //////////////////////////////////////////////////////////////////////////////
 530 // detecting pthread library
 531 
 532 void os::Linux::libpthread_init() {
 533   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 534   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 535   // generic name for earlier versions.
 536   // Define macros here so we can build HotSpot on old systems.
 537 # ifndef _CS_GNU_LIBC_VERSION
 538 # define _CS_GNU_LIBC_VERSION 2
 539 # endif
 540 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 541 # define _CS_GNU_LIBPTHREAD_VERSION 3
 542 # endif
 543 
 544   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 545   if (n > 0) {
 546      char *str = (char *)malloc(n, mtInternal);
 547      confstr(_CS_GNU_LIBC_VERSION, str, n);
 548      os::Linux::set_glibc_version(str);
 549   } else {
 550      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 551      static char _gnu_libc_version[32];
 552      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 553               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 554      os::Linux::set_glibc_version(_gnu_libc_version);
 555   }
 556 
 557   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 558   if (n > 0) {
 559      char *str = (char *)malloc(n, mtInternal);
 560      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 561      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 562      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 563      // is the case. LinuxThreads has a hard limit on max number of threads.
 564      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 565      // On the other hand, NPTL does not have such a limit, sysconf()
 566      // will return -1 and errno is not changed. Check if it is really NPTL.
 567      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 568          strstr(str, "NPTL") &&
 569          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 570        free(str);
 571        os::Linux::set_libpthread_version("linuxthreads");
 572      } else {
 573        os::Linux::set_libpthread_version(str);
 574      }
 575   } else {
 576     // glibc before 2.3.2 only has LinuxThreads.
 577     os::Linux::set_libpthread_version("linuxthreads");
 578   }
 579 
 580   if (strstr(libpthread_version(), "NPTL")) {
 581      os::Linux::set_is_NPTL();
 582   } else {
 583      os::Linux::set_is_LinuxThreads();
 584   }
 585 
 586   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 587   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 588   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 589      os::Linux::set_is_floating_stack();
 590   }
 591 }
 592 
 593 /////////////////////////////////////////////////////////////////////////////
 594 // thread stack
 595 
 596 // Force Linux kernel to expand current thread stack. If "bottom" is close
 597 // to the stack guard, caller should block all signals.
 598 //
 599 // MAP_GROWSDOWN:
 600 //   A special mmap() flag that is used to implement thread stacks. It tells
 601 //   kernel that the memory region should extend downwards when needed. This
 602 //   allows early versions of LinuxThreads to only mmap the first few pages
 603 //   when creating a new thread. Linux kernel will automatically expand thread
 604 //   stack as needed (on page faults).
 605 //
 606 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 607 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 608 //   region, it's hard to tell if the fault is due to a legitimate stack
 609 //   access or because of reading/writing non-exist memory (e.g. buffer
 610 //   overrun). As a rule, if the fault happens below current stack pointer,
 611 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 612 //   application (see Linux kernel fault.c).
 613 //
 614 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 615 //   stack overflow detection.
 616 //
 617 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 618 //   not use this flag. However, the stack of initial thread is not created
 619 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 620 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 621 //   and then attach the thread to JVM.
 622 //
 623 // To get around the problem and allow stack banging on Linux, we need to
 624 // manually expand thread stack after receiving the SIGSEGV.
 625 //
 626 // There are two ways to expand thread stack to address "bottom", we used
 627 // both of them in JVM before 1.5:
 628 //   1. adjust stack pointer first so that it is below "bottom", and then
 629 //      touch "bottom"
 630 //   2. mmap() the page in question
 631 //
 632 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 633 // if current sp is already near the lower end of page 101, and we need to
 634 // call mmap() to map page 100, it is possible that part of the mmap() frame
 635 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 636 // That will destroy the mmap() frame and cause VM to crash.
 637 //
 638 // The following code works by adjusting sp first, then accessing the "bottom"
 639 // page to force a page fault. Linux kernel will then automatically expand the
 640 // stack mapping.
 641 //
 642 // _expand_stack_to() assumes its frame size is less than page size, which
 643 // should always be true if the function is not inlined.
 644 
 645 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 646 #define NOINLINE
 647 #else
 648 #define NOINLINE __attribute__ ((noinline))
 649 #endif
 650 
 651 static void _expand_stack_to(address bottom) NOINLINE;
 652 
 653 static void _expand_stack_to(address bottom) {
 654   address sp;
 655   size_t size;
 656   volatile char *p;
 657 
 658   // Adjust bottom to point to the largest address within the same page, it
 659   // gives us a one-page buffer if alloca() allocates slightly more memory.
 660   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 661   bottom += os::Linux::page_size() - 1;
 662 
 663   // sp might be slightly above current stack pointer; if that's the case, we
 664   // will alloca() a little more space than necessary, which is OK. Don't use
 665   // os::current_stack_pointer(), as its result can be slightly below current
 666   // stack pointer, causing us to not alloca enough to reach "bottom".
 667   sp = (address)&sp;
 668 
 669   if (sp > bottom) {
 670     size = sp - bottom;
 671     p = (volatile char *)alloca(size);
 672     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 673     p[0] = '\0';
 674   }
 675 }
 676 
 677 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 678   assert(t!=NULL, "just checking");
 679   assert(t->osthread()->expanding_stack(), "expand should be set");
 680   assert(t->stack_base() != NULL, "stack_base was not initialized");
 681 
 682   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 683     sigset_t mask_all, old_sigset;
 684     sigfillset(&mask_all);
 685     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 686     _expand_stack_to(addr);
 687     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 688     return true;
 689   }
 690   return false;
 691 }
 692 
 693 //////////////////////////////////////////////////////////////////////////////
 694 // create new thread
 695 
 696 static address highest_vm_reserved_address();
 697 
 698 // check if it's safe to start a new thread
 699 static bool _thread_safety_check(Thread* thread) {
 700   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 701     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 702     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 703     //   allocated (MAP_FIXED) from high address space. Every thread stack
 704     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 705     //   it to other values if they rebuild LinuxThreads).
 706     //
 707     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 708     // the memory region has already been mmap'ed. That means if we have too
 709     // many threads and/or very large heap, eventually thread stack will
 710     // collide with heap.
 711     //
 712     // Here we try to prevent heap/stack collision by comparing current
 713     // stack bottom with the highest address that has been mmap'ed by JVM
 714     // plus a safety margin for memory maps created by native code.
 715     //
 716     // This feature can be disabled by setting ThreadSafetyMargin to 0
 717     //
 718     if (ThreadSafetyMargin > 0) {
 719       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 720 
 721       // not safe if our stack extends below the safety margin
 722       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 723     } else {
 724       return true;
 725     }
 726   } else {
 727     // Floating stack LinuxThreads or NPTL:
 728     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 729     //   there's not enough space left, pthread_create() will fail. If we come
 730     //   here, that means enough space has been reserved for stack.
 731     return true;
 732   }
 733 }
 734 
 735 // Thread start routine for all newly created threads
 736 static void *java_start(Thread *thread) {
 737   // Try to randomize the cache line index of hot stack frames.
 738   // This helps when threads of the same stack traces evict each other's
 739   // cache lines. The threads can be either from the same JVM instance, or
 740   // from different JVM instances. The benefit is especially true for
 741   // processors with hyperthreading technology.
 742   static int counter = 0;
 743   int pid = os::current_process_id();
 744   alloca(((pid ^ counter++) & 7) * 128);
 745 
 746   ThreadLocalStorage::set_thread(thread);
 747 
 748   OSThread* osthread = thread->osthread();
 749   Monitor* sync = osthread->startThread_lock();
 750 
 751   // non floating stack LinuxThreads needs extra check, see above
 752   if (!_thread_safety_check(thread)) {
 753     // notify parent thread
 754     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 755     osthread->set_state(ZOMBIE);
 756     sync->notify_all();
 757     return NULL;
 758   }
 759 
 760   // thread_id is kernel thread id (similar to Solaris LWP id)
 761   osthread->set_thread_id(os::Linux::gettid());
 762 
 763   if (UseNUMA) {
 764     int lgrp_id = os::numa_get_group_id();
 765     if (lgrp_id != -1) {
 766       thread->set_lgrp_id(lgrp_id);
 767     }
 768   }
 769   // initialize signal mask for this thread
 770   os::Linux::hotspot_sigmask(thread);
 771 
 772   // initialize floating point control register
 773   os::Linux::init_thread_fpu_state();
 774 
 775   // handshaking with parent thread
 776   {
 777     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 778 
 779     // notify parent thread
 780     osthread->set_state(INITIALIZED);
 781     sync->notify_all();
 782 
 783     // wait until os::start_thread()
 784     while (osthread->get_state() == INITIALIZED) {
 785       sync->wait(Mutex::_no_safepoint_check_flag);
 786     }
 787   }
 788 
 789   // call one more level start routine
 790   thread->run();
 791 
 792   return 0;
 793 }
 794 
 795 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 796   assert(thread->osthread() == NULL, "caller responsible");
 797 
 798   // Allocate the OSThread object
 799   OSThread* osthread = new OSThread(NULL, NULL);
 800   if (osthread == NULL) {
 801     return false;
 802   }
 803 
 804   // set the correct thread state
 805   osthread->set_thread_type(thr_type);
 806 
 807   // Initial state is ALLOCATED but not INITIALIZED
 808   osthread->set_state(ALLOCATED);
 809 
 810   thread->set_osthread(osthread);
 811 
 812   // init thread attributes
 813   pthread_attr_t attr;
 814   pthread_attr_init(&attr);
 815   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 816 
 817   // stack size
 818   if (os::Linux::supports_variable_stack_size()) {
 819     // calculate stack size if it's not specified by caller
 820     if (stack_size == 0) {
 821       stack_size = os::Linux::default_stack_size(thr_type);
 822 
 823       switch (thr_type) {
 824       case os::java_thread:
 825         // Java threads use ThreadStackSize which default value can be
 826         // changed with the flag -Xss
 827         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 828         stack_size = JavaThread::stack_size_at_create();
 829         break;
 830       case os::compiler_thread:
 831         if (CompilerThreadStackSize > 0) {
 832           stack_size = (size_t)(CompilerThreadStackSize * K);
 833           break;
 834         } // else fall through:
 835           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 836       case os::vm_thread:
 837       case os::pgc_thread:
 838       case os::cgc_thread:
 839       case os::watcher_thread:
 840         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 841         break;
 842       }
 843     }
 844 
 845     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 846     pthread_attr_setstacksize(&attr, stack_size);
 847   } else {
 848     // let pthread_create() pick the default value.
 849   }
 850 
 851   // glibc guard page
 852   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 853 
 854   ThreadState state;
 855 
 856   {
 857     // Serialize thread creation if we are running with fixed stack LinuxThreads
 858     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 859     if (lock) {
 860       os::Linux::createThread_lock()->lock_without_safepoint_check();
 861     }
 862 
 863     pthread_t tid;
 864     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 865 
 866     pthread_attr_destroy(&attr);
 867 
 868     if (ret != 0) {
 869       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 870         perror("pthread_create()");
 871       }
 872       // Need to clean up stuff we've allocated so far
 873       thread->set_osthread(NULL);
 874       delete osthread;
 875       if (lock) os::Linux::createThread_lock()->unlock();
 876       return false;
 877     }
 878 
 879     // Store pthread info into the OSThread
 880     osthread->set_pthread_id(tid);
 881 
 882     // Wait until child thread is either initialized or aborted
 883     {
 884       Monitor* sync_with_child = osthread->startThread_lock();
 885       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 886       while ((state = osthread->get_state()) == ALLOCATED) {
 887         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 888       }
 889     }
 890 
 891     if (lock) {
 892       os::Linux::createThread_lock()->unlock();
 893     }
 894   }
 895 
 896   // Aborted due to thread limit being reached
 897   if (state == ZOMBIE) {
 898       thread->set_osthread(NULL);
 899       delete osthread;
 900       return false;
 901   }
 902 
 903   // The thread is returned suspended (in state INITIALIZED),
 904   // and is started higher up in the call chain
 905   assert(state == INITIALIZED, "race condition");
 906   return true;
 907 }
 908 
 909 /////////////////////////////////////////////////////////////////////////////
 910 // attach existing thread
 911 
 912 // bootstrap the main thread
 913 bool os::create_main_thread(JavaThread* thread) {
 914   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 915   return create_attached_thread(thread);
 916 }
 917 
 918 bool os::create_attached_thread(JavaThread* thread) {
 919 #ifdef ASSERT
 920     thread->verify_not_published();
 921 #endif
 922 
 923   // Allocate the OSThread object
 924   OSThread* osthread = new OSThread(NULL, NULL);
 925 
 926   if (osthread == NULL) {
 927     return false;
 928   }
 929 
 930   // Store pthread info into the OSThread
 931   osthread->set_thread_id(os::Linux::gettid());
 932   osthread->set_pthread_id(::pthread_self());
 933 
 934   // initialize floating point control register
 935   os::Linux::init_thread_fpu_state();
 936 
 937   // Initial thread state is RUNNABLE
 938   osthread->set_state(RUNNABLE);
 939 
 940   thread->set_osthread(osthread);
 941 
 942   if (UseNUMA) {
 943     int lgrp_id = os::numa_get_group_id();
 944     if (lgrp_id != -1) {
 945       thread->set_lgrp_id(lgrp_id);
 946     }
 947   }
 948 
 949   if (os::is_primordial_thread()) {
 950     // If current thread is primordial thread, its stack is mapped on demand,
 951     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 952     // the entire stack region to avoid SEGV in stack banging.
 953     // It is also useful to get around the heap-stack-gap problem on SuSE
 954     // kernel (see 4821821 for details). We first expand stack to the top
 955     // of yellow zone, then enable stack yellow zone (order is significant,
 956     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 957     // is no gap between the last two virtual memory regions.
 958 
 959     JavaThread *jt = (JavaThread *)thread;
 960     address addr = jt->stack_yellow_zone_base();
 961     assert(addr != NULL, "initialization problem?");
 962     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 963 
 964     osthread->set_expanding_stack();
 965     os::Linux::manually_expand_stack(jt, addr);
 966     osthread->clear_expanding_stack();
 967   }
 968 
 969   // initialize signal mask for this thread
 970   // and save the caller's signal mask
 971   os::Linux::hotspot_sigmask(thread);
 972 
 973   return true;
 974 }
 975 
 976 void os::pd_start_thread(Thread* thread) {
 977   OSThread * osthread = thread->osthread();
 978   assert(osthread->get_state() != INITIALIZED, "just checking");
 979   Monitor* sync_with_child = osthread->startThread_lock();
 980   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 981   sync_with_child->notify();
 982 }
 983 
 984 // Free Linux resources related to the OSThread
 985 void os::free_thread(OSThread* osthread) {
 986   assert(osthread != NULL, "osthread not set");
 987 
 988   if (Thread::current()->osthread() == osthread) {
 989     // Restore caller's signal mask
 990     sigset_t sigmask = osthread->caller_sigmask();
 991     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 992    }
 993 
 994   delete osthread;
 995 }
 996 
 997 //////////////////////////////////////////////////////////////////////////////
 998 // thread local storage
 999 
1000 // Restore the thread pointer if the destructor is called. This is in case
1001 // someone from JNI code sets up a destructor with pthread_key_create to run
1002 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1003 // will hang or crash. When detachCurrentThread is called the key will be set
1004 // to null and we will not be called again. If detachCurrentThread is never
1005 // called we could loop forever depending on the pthread implementation.
1006 static void restore_thread_pointer(void* p) {
1007   Thread* thread = (Thread*) p;
1008   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1009 }
1010 
1011 int os::allocate_thread_local_storage() {
1012   pthread_key_t key;
1013   int rslt = pthread_key_create(&key, restore_thread_pointer);
1014   assert(rslt == 0, "cannot allocate thread local storage");
1015   return (int)key;
1016 }
1017 
1018 // Note: This is currently not used by VM, as we don't destroy TLS key
1019 // on VM exit.
1020 void os::free_thread_local_storage(int index) {
1021   int rslt = pthread_key_delete((pthread_key_t)index);
1022   assert(rslt == 0, "invalid index");
1023 }
1024 
1025 void os::thread_local_storage_at_put(int index, void* value) {
1026   int rslt = pthread_setspecific((pthread_key_t)index, value);
1027   assert(rslt == 0, "pthread_setspecific failed");
1028 }
1029 
1030 extern "C" Thread* get_thread() {
1031   return ThreadLocalStorage::thread();
1032 }
1033 
1034 //////////////////////////////////////////////////////////////////////////////
1035 // primordial thread
1036 
1037 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1038 bool os::is_primordial_thread(void) {
1039   char dummy;
1040   // If called before init complete, thread stack bottom will be null.
1041   // Can be called if fatal error occurs before initialization.
1042   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1043   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1044          os::Linux::initial_thread_stack_size()   != 0,
1045          "os::init did not locate primordial thread's stack region");
1046   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1047       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1048                         os::Linux::initial_thread_stack_size()) {
1049        return true;
1050   } else {
1051        return false;
1052   }
1053 }
1054 
1055 // Find the virtual memory area that contains addr
1056 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1057   FILE *fp = fopen("/proc/self/maps", "r");
1058   if (fp) {
1059     address low, high;
1060     while (!feof(fp)) {
1061       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1062         if (low <= addr && addr < high) {
1063            if (vma_low)  *vma_low  = low;
1064            if (vma_high) *vma_high = high;
1065            fclose (fp);
1066            return true;
1067         }
1068       }
1069       for (;;) {
1070         int ch = fgetc(fp);
1071         if (ch == EOF || ch == (int)'\n') break;
1072       }
1073     }
1074     fclose(fp);
1075   }
1076   return false;
1077 }
1078 
1079 // Locate primordial thread stack. This special handling of primordial thread stack
1080 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1081 // bogus value for the primordial process thread. While the launcher has created
1082 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1083 // JNI invocation API from a primordial thread.
1084 void os::Linux::capture_initial_stack(size_t max_size) {
1085 
1086   // max_size is either 0 (which means accept OS default for thread stacks) or
1087   // a user-specified value known to be at least the minimum needed. If we
1088   // are actually on the primordial thread we can make it appear that we have a
1089   // smaller max_size stack by inserting the guard pages at that location. But we
1090   // cannot do anything to emulate a larger stack than what has been provided by
1091   // the OS or threading library. In fact if we try to use a stack greater than
1092   // what is set by rlimit then we will crash the hosting process.
1093 
1094   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1095   // If this is "unlimited" then it will be a huge value.
1096   struct rlimit rlim;
1097   getrlimit(RLIMIT_STACK, &rlim);
1098   size_t stack_size = rlim.rlim_cur;
1099 
1100   // 6308388: a bug in ld.so will relocate its own .data section to the
1101   //   lower end of primordial stack; reduce ulimit -s value a little bit
1102   //   so we won't install guard page on ld.so's data section.
1103   //   But ensure we don't underflow the stack size - allow 1 page spare
1104   if (stack_size >= (size_t)(3 * page_size())) {
1105     stack_size -= 2 * page_size();
1106   }
1107 
1108   // Try to figure out where the stack base (top) is. This is harder.
1109   //
1110   // When an application is started, glibc saves the initial stack pointer in
1111   // a global variable "__libc_stack_end", which is then used by system
1112   // libraries. __libc_stack_end should be pretty close to stack top. The
1113   // variable is available since the very early days. However, because it is
1114   // a private interface, it could disappear in the future.
1115   //
1116   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1117   // to __libc_stack_end, it is very close to stack top, but isn't the real
1118   // stack top. Note that /proc may not exist if VM is running as a chroot
1119   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1120   // /proc/<pid>/stat could change in the future (though unlikely).
1121   //
1122   // We try __libc_stack_end first. If that doesn't work, look for
1123   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1124   // as a hint, which should work well in most cases.
1125 
1126   uintptr_t stack_start;
1127 
1128   // try __libc_stack_end first
1129   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1130   if (p && *p) {
1131     stack_start = *p;
1132   } else {
1133     // see if we can get the start_stack field from /proc/self/stat
1134     FILE *fp;
1135     int pid;
1136     char state;
1137     int ppid;
1138     int pgrp;
1139     int session;
1140     int nr;
1141     int tpgrp;
1142     unsigned long flags;
1143     unsigned long minflt;
1144     unsigned long cminflt;
1145     unsigned long majflt;
1146     unsigned long cmajflt;
1147     unsigned long utime;
1148     unsigned long stime;
1149     long cutime;
1150     long cstime;
1151     long prio;
1152     long nice;
1153     long junk;
1154     long it_real;
1155     uintptr_t start;
1156     uintptr_t vsize;
1157     intptr_t rss;
1158     uintptr_t rsslim;
1159     uintptr_t scodes;
1160     uintptr_t ecode;
1161     int i;
1162 
1163     // Figure what the primordial thread stack base is. Code is inspired
1164     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1165     // followed by command name surrounded by parentheses, state, etc.
1166     char stat[2048];
1167     int statlen;
1168 
1169     fp = fopen("/proc/self/stat", "r");
1170     if (fp) {
1171       statlen = fread(stat, 1, 2047, fp);
1172       stat[statlen] = '\0';
1173       fclose(fp);
1174 
1175       // Skip pid and the command string. Note that we could be dealing with
1176       // weird command names, e.g. user could decide to rename java launcher
1177       // to "java 1.4.2 :)", then the stat file would look like
1178       //                1234 (java 1.4.2 :)) R ... ...
1179       // We don't really need to know the command string, just find the last
1180       // occurrence of ")" and then start parsing from there. See bug 4726580.
1181       char * s = strrchr(stat, ')');
1182 
1183       i = 0;
1184       if (s) {
1185         // Skip blank chars
1186         do s++; while (isspace(*s));
1187 
1188 #define _UFM UINTX_FORMAT
1189 #define _DFM INTX_FORMAT
1190 
1191         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1192         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1193         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1194              &state,          /* 3  %c  */
1195              &ppid,           /* 4  %d  */
1196              &pgrp,           /* 5  %d  */
1197              &session,        /* 6  %d  */
1198              &nr,             /* 7  %d  */
1199              &tpgrp,          /* 8  %d  */
1200              &flags,          /* 9  %lu  */
1201              &minflt,         /* 10 %lu  */
1202              &cminflt,        /* 11 %lu  */
1203              &majflt,         /* 12 %lu  */
1204              &cmajflt,        /* 13 %lu  */
1205              &utime,          /* 14 %lu  */
1206              &stime,          /* 15 %lu  */
1207              &cutime,         /* 16 %ld  */
1208              &cstime,         /* 17 %ld  */
1209              &prio,           /* 18 %ld  */
1210              &nice,           /* 19 %ld  */
1211              &junk,           /* 20 %ld  */
1212              &it_real,        /* 21 %ld  */
1213              &start,          /* 22 UINTX_FORMAT */
1214              &vsize,          /* 23 UINTX_FORMAT */
1215              &rss,            /* 24 INTX_FORMAT  */
1216              &rsslim,         /* 25 UINTX_FORMAT */
1217              &scodes,         /* 26 UINTX_FORMAT */
1218              &ecode,          /* 27 UINTX_FORMAT */
1219              &stack_start);   /* 28 UINTX_FORMAT */
1220       }
1221 
1222 #undef _UFM
1223 #undef _DFM
1224 
1225       if (i != 28 - 2) {
1226          assert(false, "Bad conversion from /proc/self/stat");
1227          // product mode - assume we are the primordial thread, good luck in the
1228          // embedded case.
1229          warning("Can't detect primordial thread stack location - bad conversion");
1230          stack_start = (uintptr_t) &rlim;
1231       }
1232     } else {
1233       // For some reason we can't open /proc/self/stat (for example, running on
1234       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1235       // most cases, so don't abort:
1236       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1237       stack_start = (uintptr_t) &rlim;
1238     }
1239   }
1240 
1241   // Now we have a pointer (stack_start) very close to the stack top, the
1242   // next thing to do is to figure out the exact location of stack top. We
1243   // can find out the virtual memory area that contains stack_start by
1244   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1245   // and its upper limit is the real stack top. (again, this would fail if
1246   // running inside chroot, because /proc may not exist.)
1247 
1248   uintptr_t stack_top;
1249   address low, high;
1250   if (find_vma((address)stack_start, &low, &high)) {
1251     // success, "high" is the true stack top. (ignore "low", because initial
1252     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1253     stack_top = (uintptr_t)high;
1254   } else {
1255     // failed, likely because /proc/self/maps does not exist
1256     warning("Can't detect primordial thread stack location - find_vma failed");
1257     // best effort: stack_start is normally within a few pages below the real
1258     // stack top, use it as stack top, and reduce stack size so we won't put
1259     // guard page outside stack.
1260     stack_top = stack_start;
1261     stack_size -= 16 * page_size();
1262   }
1263 
1264   // stack_top could be partially down the page so align it
1265   stack_top = align_size_up(stack_top, page_size());
1266 
1267   // Allowed stack value is minimum of max_size and what we derived from rlimit
1268   if (max_size > 0) {
1269     _initial_thread_stack_size = MIN2(max_size, stack_size);
1270   } else {
1271     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1272     // clamp it at 8MB as we do on Solaris
1273     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1274   }
1275 
1276   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1277   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1278   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1279 }
1280 
1281 ////////////////////////////////////////////////////////////////////////////////
1282 // time support
1283 
1284 // Time since start-up in seconds to a fine granularity.
1285 // Used by VMSelfDestructTimer and the MemProfiler.
1286 double os::elapsedTime() {
1287 
1288   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1289 }
1290 
1291 jlong os::elapsed_counter() {
1292   return javaTimeNanos() - initial_time_count;
1293 }
1294 
1295 jlong os::elapsed_frequency() {
1296   return NANOSECS_PER_SEC; // nanosecond resolution
1297 }
1298 
1299 bool os::supports_vtime() { return true; }
1300 bool os::enable_vtime()   { return false; }
1301 bool os::vtime_enabled()  { return false; }
1302 
1303 double os::elapsedVTime() {
1304   struct rusage usage;
1305   int retval = getrusage(RUSAGE_THREAD, &usage);
1306   if (retval == 0) {
1307     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1308   } else {
1309     // better than nothing, but not much
1310     return elapsedTime();
1311   }
1312 }
1313 
1314 jlong os::javaTimeMillis() {
1315   timeval time;
1316   int status = gettimeofday(&time, NULL);
1317   assert(status != -1, "linux error");
1318   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1319 }
1320 
1321 #ifndef CLOCK_MONOTONIC
1322 #define CLOCK_MONOTONIC (1)
1323 #endif
1324 
1325 void os::Linux::clock_init() {
1326   // we do dlopen's in this particular order due to bug in linux
1327   // dynamical loader (see 6348968) leading to crash on exit
1328   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1329   if (handle == NULL) {
1330     handle = dlopen("librt.so", RTLD_LAZY);
1331   }
1332 
1333   if (handle) {
1334     int (*clock_getres_func)(clockid_t, struct timespec*) =
1335            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1336     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1337            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1338     if (clock_getres_func && clock_gettime_func) {
1339       // See if monotonic clock is supported by the kernel. Note that some
1340       // early implementations simply return kernel jiffies (updated every
1341       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1342       // for nano time (though the monotonic property is still nice to have).
1343       // It's fixed in newer kernels, however clock_getres() still returns
1344       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1345       // resolution for now. Hopefully as people move to new kernels, this
1346       // won't be a problem.
1347       struct timespec res;
1348       struct timespec tp;
1349       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1350           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1351         // yes, monotonic clock is supported
1352         _clock_gettime = clock_gettime_func;
1353         return;
1354       } else {
1355         // close librt if there is no monotonic clock
1356         dlclose(handle);
1357       }
1358     }
1359   }
1360   warning("No monotonic clock was available - timed services may " \
1361           "be adversely affected if the time-of-day clock changes");
1362 }
1363 
1364 #ifndef SYS_clock_getres
1365 
1366 #if defined(IA32) || defined(AMD64)
1367 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1368 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1369 #else
1370 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1371 #define sys_clock_getres(x,y)  -1
1372 #endif
1373 
1374 #else
1375 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1376 #endif
1377 
1378 void os::Linux::fast_thread_clock_init() {
1379   if (!UseLinuxPosixThreadCPUClocks) {
1380     return;
1381   }
1382   clockid_t clockid;
1383   struct timespec tp;
1384   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1385       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1386 
1387   // Switch to using fast clocks for thread cpu time if
1388   // the sys_clock_getres() returns 0 error code.
1389   // Note, that some kernels may support the current thread
1390   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1391   // returned by the pthread_getcpuclockid().
1392   // If the fast Posix clocks are supported then the sys_clock_getres()
1393   // must return at least tp.tv_sec == 0 which means a resolution
1394   // better than 1 sec. This is extra check for reliability.
1395 
1396   if(pthread_getcpuclockid_func &&
1397      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1398      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1399 
1400     _supports_fast_thread_cpu_time = true;
1401     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1402   }
1403 }
1404 
1405 jlong os::javaTimeNanos() {
1406   if (Linux::supports_monotonic_clock()) {
1407     struct timespec tp;
1408     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1409     assert(status == 0, "gettime error");
1410     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1411     return result;
1412   } else {
1413     timeval time;
1414     int status = gettimeofday(&time, NULL);
1415     assert(status != -1, "linux error");
1416     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1417     return 1000 * usecs;
1418   }
1419 }
1420 
1421 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1422   if (Linux::supports_monotonic_clock()) {
1423     info_ptr->max_value = ALL_64_BITS;
1424 
1425     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1426     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1427     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1428   } else {
1429     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1430     info_ptr->max_value = ALL_64_BITS;
1431 
1432     // gettimeofday is a real time clock so it skips
1433     info_ptr->may_skip_backward = true;
1434     info_ptr->may_skip_forward = true;
1435   }
1436 
1437   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1438 }
1439 
1440 // Return the real, user, and system times in seconds from an
1441 // arbitrary fixed point in the past.
1442 bool os::getTimesSecs(double* process_real_time,
1443                       double* process_user_time,
1444                       double* process_system_time) {
1445   struct tms ticks;
1446   clock_t real_ticks = times(&ticks);
1447 
1448   if (real_ticks == (clock_t) (-1)) {
1449     return false;
1450   } else {
1451     double ticks_per_second = (double) clock_tics_per_sec;
1452     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1453     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1454     *process_real_time = ((double) real_ticks) / ticks_per_second;
1455 
1456     return true;
1457   }
1458 }
1459 
1460 
1461 char * os::local_time_string(char *buf, size_t buflen) {
1462   struct tm t;
1463   time_t long_time;
1464   time(&long_time);
1465   localtime_r(&long_time, &t);
1466   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1467                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1468                t.tm_hour, t.tm_min, t.tm_sec);
1469   return buf;
1470 }
1471 
1472 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1473   return localtime_r(clock, res);
1474 }
1475 
1476 ////////////////////////////////////////////////////////////////////////////////
1477 // runtime exit support
1478 
1479 // Note: os::shutdown() might be called very early during initialization, or
1480 // called from signal handler. Before adding something to os::shutdown(), make
1481 // sure it is async-safe and can handle partially initialized VM.
1482 void os::shutdown() {
1483 
1484   // allow PerfMemory to attempt cleanup of any persistent resources
1485   perfMemory_exit();
1486 
1487   // needs to remove object in file system
1488   AttachListener::abort();
1489 
1490   // flush buffered output, finish log files
1491   ostream_abort();
1492 
1493   // Check for abort hook
1494   abort_hook_t abort_hook = Arguments::abort_hook();
1495   if (abort_hook != NULL) {
1496     abort_hook();
1497   }
1498 
1499 }
1500 
1501 // Note: os::abort() might be called very early during initialization, or
1502 // called from signal handler. Before adding something to os::abort(), make
1503 // sure it is async-safe and can handle partially initialized VM.
1504 void os::abort(bool dump_core) {
1505   os::shutdown();
1506   if (dump_core) {
1507 #ifndef PRODUCT
1508     fdStream out(defaultStream::output_fd());
1509     out.print_raw("Current thread is ");
1510     char buf[16];
1511     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1512     out.print_raw_cr(buf);
1513     out.print_raw_cr("Dumping core ...");
1514 #endif
1515     ::abort(); // dump core
1516   }
1517 
1518   ::exit(1);
1519 }
1520 
1521 // Die immediately, no exit hook, no abort hook, no cleanup.
1522 void os::die() {
1523   // _exit() on LinuxThreads only kills current thread
1524   ::abort();
1525 }
1526 
1527 
1528 // This method is a copy of JDK's sysGetLastErrorString
1529 // from src/solaris/hpi/src/system_md.c
1530 
1531 size_t os::lasterror(char *buf, size_t len) {
1532 
1533   if (errno == 0)  return 0;
1534 
1535   const char *s = ::strerror(errno);
1536   size_t n = ::strlen(s);
1537   if (n >= len) {
1538     n = len - 1;
1539   }
1540   ::strncpy(buf, s, n);
1541   buf[n] = '\0';
1542   return n;
1543 }
1544 
1545 intx os::current_thread_id() { return (intx)pthread_self(); }
1546 int os::current_process_id() {
1547 
1548   // Under the old linux thread library, linux gives each thread
1549   // its own process id. Because of this each thread will return
1550   // a different pid if this method were to return the result
1551   // of getpid(2). Linux provides no api that returns the pid
1552   // of the launcher thread for the vm. This implementation
1553   // returns a unique pid, the pid of the launcher thread
1554   // that starts the vm 'process'.
1555 
1556   // Under the NPTL, getpid() returns the same pid as the
1557   // launcher thread rather than a unique pid per thread.
1558   // Use gettid() if you want the old pre NPTL behaviour.
1559 
1560   // if you are looking for the result of a call to getpid() that
1561   // returns a unique pid for the calling thread, then look at the
1562   // OSThread::thread_id() method in osThread_linux.hpp file
1563 
1564   return (int)(_initial_pid ? _initial_pid : getpid());
1565 }
1566 
1567 // DLL functions
1568 
1569 const char* os::dll_file_extension() { return ".so"; }
1570 
1571 // This must be hard coded because it's the system's temporary
1572 // directory not the java application's temp directory, ala java.io.tmpdir.
1573 const char* os::get_temp_directory() { return "/tmp"; }
1574 
1575 static bool file_exists(const char* filename) {
1576   struct stat statbuf;
1577   if (filename == NULL || strlen(filename) == 0) {
1578     return false;
1579   }
1580   return os::stat(filename, &statbuf) == 0;
1581 }
1582 
1583 bool os::dll_build_name(char* buffer, size_t buflen,
1584                         const char* pname, const char* fname) {
1585   bool retval = false;
1586   // Copied from libhpi
1587   const size_t pnamelen = pname ? strlen(pname) : 0;
1588 
1589   // Return error on buffer overflow.
1590   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1591     return retval;
1592   }
1593 
1594   if (pnamelen == 0) {
1595     snprintf(buffer, buflen, "lib%s.so", fname);
1596     retval = true;
1597   } else if (strchr(pname, *os::path_separator()) != NULL) {
1598     int n;
1599     char** pelements = split_path(pname, &n);
1600     if (pelements == NULL) {
1601       return false;
1602     }
1603     for (int i = 0 ; i < n ; i++) {
1604       // Really shouldn't be NULL, but check can't hurt
1605       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1606         continue; // skip the empty path values
1607       }
1608       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1609       if (file_exists(buffer)) {
1610         retval = true;
1611         break;
1612       }
1613     }
1614     // release the storage
1615     for (int i = 0 ; i < n ; i++) {
1616       if (pelements[i] != NULL) {
1617         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1618       }
1619     }
1620     if (pelements != NULL) {
1621       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1622     }
1623   } else {
1624     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1625     retval = true;
1626   }
1627   return retval;
1628 }
1629 
1630 // check if addr is inside libjvm.so
1631 bool os::address_is_in_vm(address addr) {
1632   static address libjvm_base_addr;
1633   Dl_info dlinfo;
1634 
1635   if (libjvm_base_addr == NULL) {
1636     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1637       libjvm_base_addr = (address)dlinfo.dli_fbase;
1638     }
1639     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1640   }
1641 
1642   if (dladdr((void *)addr, &dlinfo) != 0) {
1643     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1644   }
1645 
1646   return false;
1647 }
1648 
1649 bool os::dll_address_to_function_name(address addr, char *buf,
1650                                       int buflen, int *offset) {
1651   // buf is not optional, but offset is optional
1652   assert(buf != NULL, "sanity check");
1653 
1654   Dl_info dlinfo;
1655 
1656   if (dladdr((void*)addr, &dlinfo) != 0) {
1657     // see if we have a matching symbol
1658     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1659       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1660         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1661       }
1662       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1663       return true;
1664     }
1665     // no matching symbol so try for just file info
1666     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1667       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1668                           buf, buflen, offset, dlinfo.dli_fname)) {
1669         return true;
1670       }
1671     }
1672   }
1673 
1674   buf[0] = '\0';
1675   if (offset != NULL) *offset = -1;
1676   return false;
1677 }
1678 
1679 struct _address_to_library_name {
1680   address addr;          // input : memory address
1681   size_t  buflen;        //         size of fname
1682   char*   fname;         // output: library name
1683   address base;          //         library base addr
1684 };
1685 
1686 static int address_to_library_name_callback(struct dl_phdr_info *info,
1687                                             size_t size, void *data) {
1688   int i;
1689   bool found = false;
1690   address libbase = NULL;
1691   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1692 
1693   // iterate through all loadable segments
1694   for (i = 0; i < info->dlpi_phnum; i++) {
1695     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1696     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1697       // base address of a library is the lowest address of its loaded
1698       // segments.
1699       if (libbase == NULL || libbase > segbase) {
1700         libbase = segbase;
1701       }
1702       // see if 'addr' is within current segment
1703       if (segbase <= d->addr &&
1704           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1705         found = true;
1706       }
1707     }
1708   }
1709 
1710   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1711   // so dll_address_to_library_name() can fall through to use dladdr() which
1712   // can figure out executable name from argv[0].
1713   if (found && info->dlpi_name && info->dlpi_name[0]) {
1714     d->base = libbase;
1715     if (d->fname) {
1716       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1717     }
1718     return 1;
1719   }
1720   return 0;
1721 }
1722 
1723 bool os::dll_address_to_library_name(address addr, char* buf,
1724                                      int buflen, int* offset) {
1725   // buf is not optional, but offset is optional
1726   assert(buf != NULL, "sanity check");
1727 
1728   Dl_info dlinfo;
1729   struct _address_to_library_name data;
1730 
1731   // There is a bug in old glibc dladdr() implementation that it could resolve
1732   // to wrong library name if the .so file has a base address != NULL. Here
1733   // we iterate through the program headers of all loaded libraries to find
1734   // out which library 'addr' really belongs to. This workaround can be
1735   // removed once the minimum requirement for glibc is moved to 2.3.x.
1736   data.addr = addr;
1737   data.fname = buf;
1738   data.buflen = buflen;
1739   data.base = NULL;
1740   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1741 
1742   if (rslt) {
1743      // buf already contains library name
1744      if (offset) *offset = addr - data.base;
1745      return true;
1746   }
1747   if (dladdr((void*)addr, &dlinfo) != 0) {
1748     if (dlinfo.dli_fname != NULL) {
1749       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1750     }
1751     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1752       *offset = addr - (address)dlinfo.dli_fbase;
1753     }
1754     return true;
1755   }
1756 
1757   buf[0] = '\0';
1758   if (offset) *offset = -1;
1759   return false;
1760 }
1761 
1762   // Loads .dll/.so and
1763   // in case of error it checks if .dll/.so was built for the
1764   // same architecture as Hotspot is running on
1765 
1766 
1767 // Remember the stack's state. The Linux dynamic linker will change
1768 // the stack to 'executable' at most once, so we must safepoint only once.
1769 bool os::Linux::_stack_is_executable = false;
1770 
1771 // VM operation that loads a library.  This is necessary if stack protection
1772 // of the Java stacks can be lost during loading the library.  If we
1773 // do not stop the Java threads, they can stack overflow before the stacks
1774 // are protected again.
1775 class VM_LinuxDllLoad: public VM_Operation {
1776  private:
1777   const char *_filename;
1778   char *_ebuf;
1779   int _ebuflen;
1780   void *_lib;
1781  public:
1782   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1783     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1784   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1785   void doit() {
1786     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1787     os::Linux::_stack_is_executable = true;
1788   }
1789   void* loaded_library() { return _lib; }
1790 };
1791 
1792 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1793 {
1794   void * result = NULL;
1795   bool load_attempted = false;
1796 
1797   // Check whether the library to load might change execution rights
1798   // of the stack. If they are changed, the protection of the stack
1799   // guard pages will be lost. We need a safepoint to fix this.
1800   //
1801   // See Linux man page execstack(8) for more info.
1802   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1803     ElfFile ef(filename);
1804     if (!ef.specifies_noexecstack()) {
1805       if (!is_init_completed()) {
1806         os::Linux::_stack_is_executable = true;
1807         // This is OK - No Java threads have been created yet, and hence no
1808         // stack guard pages to fix.
1809         //
1810         // This should happen only when you are building JDK7 using a very
1811         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1812         //
1813         // Dynamic loader will make all stacks executable after
1814         // this function returns, and will not do that again.
1815         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1816       } else {
1817         warning("You have loaded library %s which might have disabled stack guard. "
1818                 "The VM will try to fix the stack guard now.\n"
1819                 "It's highly recommended that you fix the library with "
1820                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1821                 filename);
1822 
1823         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1824         JavaThread *jt = JavaThread::current();
1825         if (jt->thread_state() != _thread_in_native) {
1826           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1827           // that requires ExecStack. Cannot enter safe point. Let's give up.
1828           warning("Unable to fix stack guard. Giving up.");
1829         } else {
1830           if (!LoadExecStackDllInVMThread) {
1831             // This is for the case where the DLL has an static
1832             // constructor function that executes JNI code. We cannot
1833             // load such DLLs in the VMThread.
1834             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1835           }
1836 
1837           ThreadInVMfromNative tiv(jt);
1838           debug_only(VMNativeEntryWrapper vew;)
1839 
1840           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1841           VMThread::execute(&op);
1842           if (LoadExecStackDllInVMThread) {
1843             result = op.loaded_library();
1844           }
1845           load_attempted = true;
1846         }
1847       }
1848     }
1849   }
1850 
1851   if (!load_attempted) {
1852     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1853   }
1854 
1855   if (result != NULL) {
1856     // Successful loading
1857     return result;
1858   }
1859 
1860   Elf32_Ehdr elf_head;
1861   int diag_msg_max_length=ebuflen-strlen(ebuf);
1862   char* diag_msg_buf=ebuf+strlen(ebuf);
1863 
1864   if (diag_msg_max_length==0) {
1865     // No more space in ebuf for additional diagnostics message
1866     return NULL;
1867   }
1868 
1869 
1870   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1871 
1872   if (file_descriptor < 0) {
1873     // Can't open library, report dlerror() message
1874     return NULL;
1875   }
1876 
1877   bool failed_to_read_elf_head=
1878     (sizeof(elf_head)!=
1879         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1880 
1881   ::close(file_descriptor);
1882   if (failed_to_read_elf_head) {
1883     // file i/o error - report dlerror() msg
1884     return NULL;
1885   }
1886 
1887   typedef struct {
1888     Elf32_Half  code;         // Actual value as defined in elf.h
1889     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1890     char        elf_class;    // 32 or 64 bit
1891     char        endianess;    // MSB or LSB
1892     char*       name;         // String representation
1893   } arch_t;
1894 
1895   #ifndef EM_486
1896   #define EM_486          6               /* Intel 80486 */
1897   #endif
1898 
1899   static const arch_t arch_array[]={
1900     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1901     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1902     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1903     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1904     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1905     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1906     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1907     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1908 #if defined(VM_LITTLE_ENDIAN)
1909     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1910 #else
1911     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1912 #endif
1913     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1914     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1915     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1916     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1917     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1918     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1919     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1920   };
1921 
1922   #if  (defined IA32)
1923     static  Elf32_Half running_arch_code=EM_386;
1924   #elif   (defined AMD64)
1925     static  Elf32_Half running_arch_code=EM_X86_64;
1926   #elif  (defined IA64)
1927     static  Elf32_Half running_arch_code=EM_IA_64;
1928   #elif  (defined __sparc) && (defined _LP64)
1929     static  Elf32_Half running_arch_code=EM_SPARCV9;
1930   #elif  (defined __sparc) && (!defined _LP64)
1931     static  Elf32_Half running_arch_code=EM_SPARC;
1932   #elif  (defined __powerpc64__)
1933     static  Elf32_Half running_arch_code=EM_PPC64;
1934   #elif  (defined __powerpc__)
1935     static  Elf32_Half running_arch_code=EM_PPC;
1936   #elif  (defined ARM)
1937     static  Elf32_Half running_arch_code=EM_ARM;
1938   #elif  (defined S390)
1939     static  Elf32_Half running_arch_code=EM_S390;
1940   #elif  (defined ALPHA)
1941     static  Elf32_Half running_arch_code=EM_ALPHA;
1942   #elif  (defined MIPSEL)
1943     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1944   #elif  (defined PARISC)
1945     static  Elf32_Half running_arch_code=EM_PARISC;
1946   #elif  (defined MIPS)
1947     static  Elf32_Half running_arch_code=EM_MIPS;
1948   #elif  (defined M68K)
1949     static  Elf32_Half running_arch_code=EM_68K;
1950   #else
1951     #error Method os::dll_load requires that one of following is defined:\
1952          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1953   #endif
1954 
1955   // Identify compatability class for VM's architecture and library's architecture
1956   // Obtain string descriptions for architectures
1957 
1958   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1959   int running_arch_index=-1;
1960 
1961   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1962     if (running_arch_code == arch_array[i].code) {
1963       running_arch_index    = i;
1964     }
1965     if (lib_arch.code == arch_array[i].code) {
1966       lib_arch.compat_class = arch_array[i].compat_class;
1967       lib_arch.name         = arch_array[i].name;
1968     }
1969   }
1970 
1971   assert(running_arch_index != -1,
1972     "Didn't find running architecture code (running_arch_code) in arch_array");
1973   if (running_arch_index == -1) {
1974     // Even though running architecture detection failed
1975     // we may still continue with reporting dlerror() message
1976     return NULL;
1977   }
1978 
1979   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1980     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1981     return NULL;
1982   }
1983 
1984 #ifndef S390
1985   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1986     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1987     return NULL;
1988   }
1989 #endif // !S390
1990 
1991   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1992     if ( lib_arch.name!=NULL ) {
1993       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1994         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1995         lib_arch.name, arch_array[running_arch_index].name);
1996     } else {
1997       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1998       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1999         lib_arch.code,
2000         arch_array[running_arch_index].name);
2001     }
2002   }
2003 
2004   return NULL;
2005 }
2006 
2007 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2008   void * result = ::dlopen(filename, RTLD_LAZY);
2009   if (result == NULL) {
2010     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2011     ebuf[ebuflen-1] = '\0';
2012   }
2013   return result;
2014 }
2015 
2016 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2017   void * result = NULL;
2018   if (LoadExecStackDllInVMThread) {
2019     result = dlopen_helper(filename, ebuf, ebuflen);
2020   }
2021 
2022   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2023   // library that requires an executable stack, or which does not have this
2024   // stack attribute set, dlopen changes the stack attribute to executable. The
2025   // read protection of the guard pages gets lost.
2026   //
2027   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2028   // may have been queued at the same time.
2029 
2030   if (!_stack_is_executable) {
2031     JavaThread *jt = Threads::first();
2032 
2033     while (jt) {
2034       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2035           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2036         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2037                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2038           warning("Attempt to reguard stack yellow zone failed.");
2039         }
2040       }
2041       jt = jt->next();
2042     }
2043   }
2044 
2045   return result;
2046 }
2047 
2048 /*
2049  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2050  * chances are you might want to run the generated bits against glibc-2.0
2051  * libdl.so, so always use locking for any version of glibc.
2052  */
2053 void* os::dll_lookup(void* handle, const char* name) {
2054   pthread_mutex_lock(&dl_mutex);
2055   void* res = dlsym(handle, name);
2056   pthread_mutex_unlock(&dl_mutex);
2057   return res;
2058 }
2059 
2060 void* os::get_default_process_handle() {
2061   return (void*)::dlopen(NULL, RTLD_LAZY);
2062 }
2063 
2064 static bool _print_ascii_file(const char* filename, outputStream* st) {
2065   int fd = ::open(filename, O_RDONLY);
2066   if (fd == -1) {
2067      return false;
2068   }
2069 
2070   char buf[32];
2071   int bytes;
2072   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2073     st->print_raw(buf, bytes);
2074   }
2075 
2076   ::close(fd);
2077 
2078   return true;
2079 }
2080 
2081 void os::print_dll_info(outputStream *st) {
2082    st->print_cr("Dynamic libraries:");
2083 
2084    char fname[32];
2085    pid_t pid = os::Linux::gettid();
2086 
2087    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2088 
2089    if (!_print_ascii_file(fname, st)) {
2090      st->print("Can not get library information for pid = %d\n", pid);
2091    }
2092 }
2093 
2094 void os::print_os_info_brief(outputStream* st) {
2095   os::Linux::print_distro_info(st);
2096 
2097   os::Posix::print_uname_info(st);
2098 
2099   os::Linux::print_libversion_info(st);
2100 
2101 }
2102 
2103 void os::print_os_info(outputStream* st) {
2104   st->print("OS:");
2105 
2106   os::Linux::print_distro_info(st);
2107 
2108   os::Posix::print_uname_info(st);
2109 
2110   // Print warning if unsafe chroot environment detected
2111   if (unsafe_chroot_detected) {
2112     st->print("WARNING!! ");
2113     st->print_cr("%s", unstable_chroot_error);
2114   }
2115 
2116   os::Linux::print_libversion_info(st);
2117 
2118   os::Posix::print_rlimit_info(st);
2119 
2120   os::Posix::print_load_average(st);
2121 
2122   os::Linux::print_full_memory_info(st);
2123 }
2124 
2125 // Try to identify popular distros.
2126 // Most Linux distributions have a /etc/XXX-release file, which contains
2127 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2128 // file that also contains the OS version string. Some have more than one
2129 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2130 // /etc/redhat-release.), so the order is important.
2131 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2132 // their own specific XXX-release file as well as a redhat-release file.
2133 // Because of this the XXX-release file needs to be searched for before the
2134 // redhat-release file.
2135 // Since Red Hat has a lsb-release file that is not very descriptive the
2136 // search for redhat-release needs to be before lsb-release.
2137 // Since the lsb-release file is the new standard it needs to be searched
2138 // before the older style release files.
2139 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2140 // next to last resort.  The os-release file is a new standard that contains
2141 // distribution information and the system-release file seems to be an old
2142 // standard that has been replaced by the lsb-release and os-release files.
2143 // Searching for the debian_version file is the last resort.  It contains
2144 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2145 // "Debian " is printed before the contents of the debian_version file.
2146 void os::Linux::print_distro_info(outputStream* st) {
2147    if (!_print_ascii_file("/etc/oracle-release", st) &&
2148        !_print_ascii_file("/etc/mandriva-release", st) &&
2149        !_print_ascii_file("/etc/mandrake-release", st) &&
2150        !_print_ascii_file("/etc/sun-release", st) &&
2151        !_print_ascii_file("/etc/redhat-release", st) &&
2152        !_print_ascii_file("/etc/lsb-release", st) &&
2153        !_print_ascii_file("/etc/SuSE-release", st) &&
2154        !_print_ascii_file("/etc/turbolinux-release", st) &&
2155        !_print_ascii_file("/etc/gentoo-release", st) &&
2156        !_print_ascii_file("/etc/ltib-release", st) &&
2157        !_print_ascii_file("/etc/angstrom-version", st) &&
2158        !_print_ascii_file("/etc/system-release", st) &&
2159        !_print_ascii_file("/etc/os-release", st)) {
2160 
2161        if (file_exists("/etc/debian_version")) {
2162          st->print("Debian ");
2163          _print_ascii_file("/etc/debian_version", st);
2164        } else {
2165          st->print("Linux");
2166        }
2167    }
2168    st->cr();
2169 }
2170 
2171 void os::Linux::print_libversion_info(outputStream* st) {
2172   // libc, pthread
2173   st->print("libc:");
2174   st->print("%s ", os::Linux::glibc_version());
2175   st->print("%s ", os::Linux::libpthread_version());
2176   if (os::Linux::is_LinuxThreads()) {
2177      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2178   }
2179   st->cr();
2180 }
2181 
2182 void os::Linux::print_full_memory_info(outputStream* st) {
2183    st->print("\n/proc/meminfo:\n");
2184    _print_ascii_file("/proc/meminfo", st);
2185    st->cr();
2186 }
2187 
2188 void os::print_memory_info(outputStream* st) {
2189 
2190   st->print("Memory:");
2191   st->print(" %dk page", os::vm_page_size()>>10);
2192 
2193   // values in struct sysinfo are "unsigned long"
2194   struct sysinfo si;
2195   sysinfo(&si);
2196 
2197   st->print(", physical " UINT64_FORMAT "k",
2198             os::physical_memory() >> 10);
2199   st->print("(" UINT64_FORMAT "k free)",
2200             os::available_memory() >> 10);
2201   st->print(", swap " UINT64_FORMAT "k",
2202             ((jlong)si.totalswap * si.mem_unit) >> 10);
2203   st->print("(" UINT64_FORMAT "k free)",
2204             ((jlong)si.freeswap * si.mem_unit) >> 10);
2205   st->cr();
2206 }
2207 
2208 void os::pd_print_cpu_info(outputStream* st) {
2209   st->print("\n/proc/cpuinfo:\n");
2210   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2211     st->print("  <Not Available>");
2212   }
2213   st->cr();
2214 }
2215 
2216 void os::print_siginfo(outputStream* st, void* siginfo) {
2217   const siginfo_t* si = (const siginfo_t*)siginfo;
2218 
2219   os::Posix::print_siginfo_brief(st, si);
2220 #if INCLUDE_CDS
2221   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2222       UseSharedSpaces) {
2223     FileMapInfo* mapinfo = FileMapInfo::current_info();
2224     if (mapinfo->is_in_shared_space(si->si_addr)) {
2225       st->print("\n\nError accessing class data sharing archive."   \
2226                 " Mapped file inaccessible during execution, "      \
2227                 " possible disk/network problem.");
2228     }
2229   }
2230 #endif
2231   st->cr();
2232 }
2233 
2234 
2235 static void print_signal_handler(outputStream* st, int sig,
2236                                  char* buf, size_t buflen);
2237 
2238 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2239   st->print_cr("Signal Handlers:");
2240   print_signal_handler(st, SIGSEGV, buf, buflen);
2241   print_signal_handler(st, SIGBUS , buf, buflen);
2242   print_signal_handler(st, SIGFPE , buf, buflen);
2243   print_signal_handler(st, SIGPIPE, buf, buflen);
2244   print_signal_handler(st, SIGXFSZ, buf, buflen);
2245   print_signal_handler(st, SIGILL , buf, buflen);
2246   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2247   print_signal_handler(st, SR_signum, buf, buflen);
2248   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2249   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2250   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2251   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2252 #if defined(PPC64)
2253   print_signal_handler(st, SIGTRAP, buf, buflen);
2254 #endif
2255 }
2256 
2257 static char saved_jvm_path[MAXPATHLEN] = {0};
2258 
2259 // Find the full path to the current module, libjvm.so
2260 void os::jvm_path(char *buf, jint buflen) {
2261   // Error checking.
2262   if (buflen < MAXPATHLEN) {
2263     assert(false, "must use a large-enough buffer");
2264     buf[0] = '\0';
2265     return;
2266   }
2267   // Lazy resolve the path to current module.
2268   if (saved_jvm_path[0] != 0) {
2269     strcpy(buf, saved_jvm_path);
2270     return;
2271   }
2272 
2273   char dli_fname[MAXPATHLEN];
2274   bool ret = dll_address_to_library_name(
2275                 CAST_FROM_FN_PTR(address, os::jvm_path),
2276                 dli_fname, sizeof(dli_fname), NULL);
2277   assert(ret, "cannot locate libjvm");
2278   char *rp = NULL;
2279   if (ret && dli_fname[0] != '\0') {
2280     rp = realpath(dli_fname, buf);
2281   }
2282   if (rp == NULL)
2283     return;
2284 
2285   if (Arguments::created_by_gamma_launcher()) {
2286     // Support for the gamma launcher.  Typical value for buf is
2287     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2288     // the right place in the string, then assume we are installed in a JDK and
2289     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2290     // up the path so it looks like libjvm.so is installed there (append a
2291     // fake suffix hotspot/libjvm.so).
2292     const char *p = buf + strlen(buf) - 1;
2293     for (int count = 0; p > buf && count < 5; ++count) {
2294       for (--p; p > buf && *p != '/'; --p)
2295         /* empty */ ;
2296     }
2297 
2298     if (strncmp(p, "/jre/lib/", 9) != 0) {
2299       // Look for JAVA_HOME in the environment.
2300       char* java_home_var = ::getenv("JAVA_HOME");
2301       if (java_home_var != NULL && java_home_var[0] != 0) {
2302         char* jrelib_p;
2303         int len;
2304 
2305         // Check the current module name "libjvm.so".
2306         p = strrchr(buf, '/');
2307         assert(strstr(p, "/libjvm") == p, "invalid library name");
2308 
2309         rp = realpath(java_home_var, buf);
2310         if (rp == NULL)
2311           return;
2312 
2313         // determine if this is a legacy image or modules image
2314         // modules image doesn't have "jre" subdirectory
2315         len = strlen(buf);
2316         assert(len < buflen, "Ran out of buffer room");
2317         jrelib_p = buf + len;
2318         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2319         if (0 != access(buf, F_OK)) {
2320           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2321         }
2322 
2323         if (0 == access(buf, F_OK)) {
2324           // Use current module name "libjvm.so"
2325           len = strlen(buf);
2326           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2327         } else {
2328           // Go back to path of .so
2329           rp = realpath(dli_fname, buf);
2330           if (rp == NULL)
2331             return;
2332         }
2333       }
2334     }
2335   }
2336 
2337   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2338 }
2339 
2340 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2341   // no prefix required, not even "_"
2342 }
2343 
2344 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2345   // no suffix required
2346 }
2347 
2348 ////////////////////////////////////////////////////////////////////////////////
2349 // sun.misc.Signal support
2350 
2351 static volatile jint sigint_count = 0;
2352 
2353 static void
2354 UserHandler(int sig, void *siginfo, void *context) {
2355   // 4511530 - sem_post is serialized and handled by the manager thread. When
2356   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2357   // don't want to flood the manager thread with sem_post requests.
2358   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2359       return;
2360 
2361   // Ctrl-C is pressed during error reporting, likely because the error
2362   // handler fails to abort. Let VM die immediately.
2363   if (sig == SIGINT && is_error_reported()) {
2364      os::die();
2365   }
2366 
2367   os::signal_notify(sig);
2368 }
2369 
2370 void* os::user_handler() {
2371   return CAST_FROM_FN_PTR(void*, UserHandler);
2372 }
2373 
2374 class Semaphore : public StackObj {
2375   public:
2376     Semaphore();
2377     ~Semaphore();
2378     void signal();
2379     void wait();
2380     bool trywait();
2381     bool timedwait(unsigned int sec, int nsec);
2382   private:
2383     sem_t _semaphore;
2384 };
2385 
2386 Semaphore::Semaphore() {
2387   sem_init(&_semaphore, 0, 0);
2388 }
2389 
2390 Semaphore::~Semaphore() {
2391   sem_destroy(&_semaphore);
2392 }
2393 
2394 void Semaphore::signal() {
2395   sem_post(&_semaphore);
2396 }
2397 
2398 void Semaphore::wait() {
2399   sem_wait(&_semaphore);
2400 }
2401 
2402 bool Semaphore::trywait() {
2403   return sem_trywait(&_semaphore) == 0;
2404 }
2405 
2406 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2407 
2408   struct timespec ts;
2409   // Semaphore's are always associated with CLOCK_REALTIME
2410   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2411   // see unpackTime for discussion on overflow checking
2412   if (sec >= MAX_SECS) {
2413     ts.tv_sec += MAX_SECS;
2414     ts.tv_nsec = 0;
2415   } else {
2416     ts.tv_sec += sec;
2417     ts.tv_nsec += nsec;
2418     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2419       ts.tv_nsec -= NANOSECS_PER_SEC;
2420       ++ts.tv_sec; // note: this must be <= max_secs
2421     }
2422   }
2423 
2424   while (1) {
2425     int result = sem_timedwait(&_semaphore, &ts);
2426     if (result == 0) {
2427       return true;
2428     } else if (errno == EINTR) {
2429       continue;
2430     } else if (errno == ETIMEDOUT) {
2431       return false;
2432     } else {
2433       return false;
2434     }
2435   }
2436 }
2437 
2438 extern "C" {
2439   typedef void (*sa_handler_t)(int);
2440   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2441 }
2442 
2443 void* os::signal(int signal_number, void* handler) {
2444   struct sigaction sigAct, oldSigAct;
2445 
2446   sigfillset(&(sigAct.sa_mask));
2447   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2448   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2449 
2450   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2451     // -1 means registration failed
2452     return (void *)-1;
2453   }
2454 
2455   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2456 }
2457 
2458 void os::signal_raise(int signal_number) {
2459   ::raise(signal_number);
2460 }
2461 
2462 /*
2463  * The following code is moved from os.cpp for making this
2464  * code platform specific, which it is by its very nature.
2465  */
2466 
2467 // Will be modified when max signal is changed to be dynamic
2468 int os::sigexitnum_pd() {
2469   return NSIG;
2470 }
2471 
2472 // a counter for each possible signal value
2473 static volatile jint pending_signals[NSIG+1] = { 0 };
2474 
2475 // Linux(POSIX) specific hand shaking semaphore.
2476 static sem_t sig_sem;
2477 static Semaphore sr_semaphore;
2478 
2479 void os::signal_init_pd() {
2480   // Initialize signal structures
2481   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2482 
2483   // Initialize signal semaphore
2484   ::sem_init(&sig_sem, 0, 0);
2485 }
2486 
2487 void os::signal_notify(int sig) {
2488   Atomic::inc(&pending_signals[sig]);
2489   ::sem_post(&sig_sem);
2490 }
2491 
2492 static int check_pending_signals(bool wait) {
2493   Atomic::store(0, &sigint_count);
2494   for (;;) {
2495     for (int i = 0; i < NSIG + 1; i++) {
2496       jint n = pending_signals[i];
2497       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2498         return i;
2499       }
2500     }
2501     if (!wait) {
2502       return -1;
2503     }
2504     JavaThread *thread = JavaThread::current();
2505     ThreadBlockInVM tbivm(thread);
2506 
2507     bool threadIsSuspended;
2508     do {
2509       thread->set_suspend_equivalent();
2510       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2511       ::sem_wait(&sig_sem);
2512 
2513       // were we externally suspended while we were waiting?
2514       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2515       if (threadIsSuspended) {
2516         //
2517         // The semaphore has been incremented, but while we were waiting
2518         // another thread suspended us. We don't want to continue running
2519         // while suspended because that would surprise the thread that
2520         // suspended us.
2521         //
2522         ::sem_post(&sig_sem);
2523 
2524         thread->java_suspend_self();
2525       }
2526     } while (threadIsSuspended);
2527   }
2528 }
2529 
2530 int os::signal_lookup() {
2531   return check_pending_signals(false);
2532 }
2533 
2534 int os::signal_wait() {
2535   return check_pending_signals(true);
2536 }
2537 
2538 ////////////////////////////////////////////////////////////////////////////////
2539 // Virtual Memory
2540 
2541 int os::vm_page_size() {
2542   // Seems redundant as all get out
2543   assert(os::Linux::page_size() != -1, "must call os::init");
2544   return os::Linux::page_size();
2545 }
2546 
2547 // Solaris allocates memory by pages.
2548 int os::vm_allocation_granularity() {
2549   assert(os::Linux::page_size() != -1, "must call os::init");
2550   return os::Linux::page_size();
2551 }
2552 
2553 // Rationale behind this function:
2554 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2555 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2556 //  samples for JITted code. Here we create private executable mapping over the code cache
2557 //  and then we can use standard (well, almost, as mapping can change) way to provide
2558 //  info for the reporting script by storing timestamp and location of symbol
2559 void linux_wrap_code(char* base, size_t size) {
2560   static volatile jint cnt = 0;
2561 
2562   if (!UseOprofile) {
2563     return;
2564   }
2565 
2566   char buf[PATH_MAX+1];
2567   int num = Atomic::add(1, &cnt);
2568 
2569   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2570            os::get_temp_directory(), os::current_process_id(), num);
2571   unlink(buf);
2572 
2573   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2574 
2575   if (fd != -1) {
2576     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2577     if (rv != (off_t)-1) {
2578       if (::write(fd, "", 1) == 1) {
2579         mmap(base, size,
2580              PROT_READ|PROT_WRITE|PROT_EXEC,
2581              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2582       }
2583     }
2584     ::close(fd);
2585     unlink(buf);
2586   }
2587 }
2588 
2589 static bool recoverable_mmap_error(int err) {
2590   // See if the error is one we can let the caller handle. This
2591   // list of errno values comes from JBS-6843484. I can't find a
2592   // Linux man page that documents this specific set of errno
2593   // values so while this list currently matches Solaris, it may
2594   // change as we gain experience with this failure mode.
2595   switch (err) {
2596   case EBADF:
2597   case EINVAL:
2598   case ENOTSUP:
2599     // let the caller deal with these errors
2600     return true;
2601 
2602   default:
2603     // Any remaining errors on this OS can cause our reserved mapping
2604     // to be lost. That can cause confusion where different data
2605     // structures think they have the same memory mapped. The worst
2606     // scenario is if both the VM and a library think they have the
2607     // same memory mapped.
2608     return false;
2609   }
2610 }
2611 
2612 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2613                                     int err) {
2614   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2615           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2616           strerror(err), err);
2617 }
2618 
2619 static void warn_fail_commit_memory(char* addr, size_t size,
2620                                     size_t alignment_hint, bool exec,
2621                                     int err) {
2622   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2623           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2624           alignment_hint, exec, strerror(err), err);
2625 }
2626 
2627 // NOTE: Linux kernel does not really reserve the pages for us.
2628 //       All it does is to check if there are enough free pages
2629 //       left at the time of mmap(). This could be a potential
2630 //       problem.
2631 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2632   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2633   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2634                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2635   if (res != (uintptr_t) MAP_FAILED) {
2636     if (UseNUMAInterleaving) {
2637       numa_make_global(addr, size);
2638     }
2639     return 0;
2640   }
2641 
2642   int err = errno;  // save errno from mmap() call above
2643 
2644   if (!recoverable_mmap_error(err)) {
2645     warn_fail_commit_memory(addr, size, exec, err);
2646     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2647   }
2648 
2649   return err;
2650 }
2651 
2652 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2653   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2654 }
2655 
2656 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2657                                   const char* mesg) {
2658   assert(mesg != NULL, "mesg must be specified");
2659   int err = os::Linux::commit_memory_impl(addr, size, exec);
2660   if (err != 0) {
2661     // the caller wants all commit errors to exit with the specified mesg:
2662     warn_fail_commit_memory(addr, size, exec, err);
2663     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2664   }
2665 }
2666 
2667 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2668 #ifndef MAP_HUGETLB
2669 #define MAP_HUGETLB 0x40000
2670 #endif
2671 
2672 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2673 #ifndef MADV_HUGEPAGE
2674 #define MADV_HUGEPAGE 14
2675 #endif
2676 
2677 int os::Linux::commit_memory_impl(char* addr, size_t size,
2678                                   size_t alignment_hint, bool exec) {
2679   int err = os::Linux::commit_memory_impl(addr, size, exec);
2680   if (err == 0) {
2681     realign_memory(addr, size, alignment_hint);
2682   }
2683   return err;
2684 }
2685 
2686 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2687                           bool exec) {
2688   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2689 }
2690 
2691 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2692                                   size_t alignment_hint, bool exec,
2693                                   const char* mesg) {
2694   assert(mesg != NULL, "mesg must be specified");
2695   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2696   if (err != 0) {
2697     // the caller wants all commit errors to exit with the specified mesg:
2698     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2699     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2700   }
2701 }
2702 
2703 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2704   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2705     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2706     // be supported or the memory may already be backed by huge pages.
2707     ::madvise(addr, bytes, MADV_HUGEPAGE);
2708   }
2709 }
2710 
2711 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2712   // This method works by doing an mmap over an existing mmaping and effectively discarding
2713   // the existing pages. However it won't work for SHM-based large pages that cannot be
2714   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2715   // small pages on top of the SHM segment. This method always works for small pages, so we
2716   // allow that in any case.
2717   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2718     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2719   }
2720 }
2721 
2722 void os::numa_make_global(char *addr, size_t bytes) {
2723   Linux::numa_interleave_memory(addr, bytes);
2724 }
2725 
2726 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2727 // bind policy to MPOL_PREFERRED for the current thread.
2728 #define USE_MPOL_PREFERRED 0
2729 
2730 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2731   // To make NUMA and large pages more robust when both enabled, we need to ease
2732   // the requirements on where the memory should be allocated. MPOL_BIND is the
2733   // default policy and it will force memory to be allocated on the specified
2734   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2735   // the specified node, but will not force it. Using this policy will prevent
2736   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2737   // free large pages.
2738   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2739   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2740 }
2741 
2742 bool os::numa_topology_changed()   { return false; }
2743 
2744 size_t os::numa_get_groups_num() {
2745   // Return just the number of nodes in which it's possible to allocate memory
2746   // (in numa terminology, configured nodes).
2747   return Linux::numa_num_configured_nodes();
2748 }
2749 
2750 int os::numa_get_group_id() {
2751   int cpu_id = Linux::sched_getcpu();
2752   if (cpu_id != -1) {
2753     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2754     if (lgrp_id != -1) {
2755       return lgrp_id;
2756     }
2757   }
2758   return 0;
2759 }
2760 
2761 int os::Linux::get_existing_num_nodes() {
2762   size_t node;
2763   size_t highest_node_number = Linux::numa_max_node();
2764   int num_nodes = 0;
2765 
2766   // Get the total number of nodes in the system including nodes without memory.
2767   for (node = 0; node <= highest_node_number; node++) {
2768     if (isnode_in_existing_nodes(node)) {
2769       num_nodes++;
2770     }
2771   }
2772   return num_nodes;
2773 }
2774 
2775 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2776   size_t highest_node_number = Linux::numa_max_node();
2777   size_t i = 0;
2778 
2779   // Map all node ids in which is possible to allocate memory. Also nodes are
2780   // not always consecutively available, i.e. available from 0 to the highest
2781   // node number.
2782   for (size_t node = 0; node <= highest_node_number; node++) {
2783     if (Linux::isnode_in_configured_nodes(node)) {
2784       ids[i++] = node;
2785     }
2786   }
2787   return i;
2788 }
2789 
2790 bool os::get_page_info(char *start, page_info* info) {
2791   return false;
2792 }
2793 
2794 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2795   return end;
2796 }
2797 
2798 
2799 int os::Linux::sched_getcpu_syscall(void) {
2800   unsigned int cpu = 0;
2801   int retval = -1;
2802 
2803 #if defined(IA32)
2804 # ifndef SYS_getcpu
2805 # define SYS_getcpu 318
2806 # endif
2807   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2808 #elif defined(AMD64)
2809 // Unfortunately we have to bring all these macros here from vsyscall.h
2810 // to be able to compile on old linuxes.
2811 # define __NR_vgetcpu 2
2812 # define VSYSCALL_START (-10UL << 20)
2813 # define VSYSCALL_SIZE 1024
2814 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2815   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2816   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2817   retval = vgetcpu(&cpu, NULL, NULL);
2818 #endif
2819 
2820   return (retval == -1) ? retval : cpu;
2821 }
2822 
2823 // Something to do with the numa-aware allocator needs these symbols
2824 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2825 extern "C" JNIEXPORT void numa_error(char *where) { }
2826 extern "C" JNIEXPORT int fork1() { return fork(); }
2827 
2828 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2829 // load symbol from base version instead.
2830 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2831   void *f = dlvsym(handle, name, "libnuma_1.1");
2832   if (f == NULL) {
2833     f = dlsym(handle, name);
2834   }
2835   return f;
2836 }
2837 
2838 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2839 // Return NULL if the symbol is not defined in this particular version.
2840 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2841   return dlvsym(handle, name, "libnuma_1.2");
2842 }
2843 
2844 bool os::Linux::libnuma_init() {
2845   // sched_getcpu() should be in libc.
2846   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2847                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2848 
2849   // If it's not, try a direct syscall.
2850   if (sched_getcpu() == -1)
2851     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2852 
2853   if (sched_getcpu() != -1) { // Does it work?
2854     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2855     if (handle != NULL) {
2856       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2857                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2858       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2859                                        libnuma_dlsym(handle, "numa_max_node")));
2860       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2861                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2862       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2863                                         libnuma_dlsym(handle, "numa_available")));
2864       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2865                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2866       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2867                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2868       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2869                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2870       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2871                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2872       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2873                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2874       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2875                                        libnuma_dlsym(handle, "numa_distance")));
2876 
2877       if (numa_available() != -1) {
2878         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2879         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2880         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2881         // Create an index -> node mapping, since nodes are not always consecutive
2882         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2883         rebuild_nindex_to_node_map();
2884         // Create a cpu -> node mapping
2885         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2886         rebuild_cpu_to_node_map();
2887         return true;
2888       }
2889     }
2890   }
2891   return false;
2892 }
2893 
2894 void os::Linux::rebuild_nindex_to_node_map() {
2895   int highest_node_number = Linux::numa_max_node();
2896 
2897   nindex_to_node()->clear();
2898   for (int node = 0; node <= highest_node_number; node++) {
2899     if (Linux::isnode_in_existing_nodes(node)) {
2900       nindex_to_node()->append(node);
2901     }
2902   }
2903 }
2904 
2905 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2906 // The table is later used in get_node_by_cpu().
2907 void os::Linux::rebuild_cpu_to_node_map() {
2908   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2909                               // in libnuma (possible values are starting from 16,
2910                               // and continuing up with every other power of 2, but less
2911                               // than the maximum number of CPUs supported by kernel), and
2912                               // is a subject to change (in libnuma version 2 the requirements
2913                               // are more reasonable) we'll just hardcode the number they use
2914                               // in the library.
2915   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2916 
2917   size_t cpu_num = processor_count();
2918   size_t cpu_map_size = NCPUS / BitsPerCLong;
2919   size_t cpu_map_valid_size =
2920     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2921 
2922   cpu_to_node()->clear();
2923   cpu_to_node()->at_grow(cpu_num - 1);
2924 
2925   size_t node_num = get_existing_num_nodes();
2926 
2927   int distance = 0;
2928   int closest_distance = INT_MAX;
2929   int closest_node = 0;
2930   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2931   for (size_t i = 0; i < node_num; i++) {
2932     // Check if node is configured (not a memory-less node). If it is not, find
2933     // the closest configured node.
2934     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2935       closest_distance = INT_MAX;
2936       // Check distance from all remaining nodes in the system. Ignore distance
2937       // from itself and from another non-configured node.
2938       for (size_t m = 0; m < node_num; m++) {
2939         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2940           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2941           // If a closest node is found, update. There is always at least one
2942           // configured node in the system so there is always at least one node
2943           // close.
2944           if (distance != 0 && distance < closest_distance) {
2945             closest_distance = distance;
2946             closest_node = nindex_to_node()->at(m);
2947           }
2948         }
2949       }
2950      } else {
2951        // Current node is already a configured node.
2952        closest_node = nindex_to_node()->at(i);
2953      }
2954 
2955     // Get cpus from the original node and map them to the closest node. If node
2956     // is a configured node (not a memory-less node), then original node and
2957     // closest node are the same.
2958     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2959       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2960         if (cpu_map[j] != 0) {
2961           for (size_t k = 0; k < BitsPerCLong; k++) {
2962             if (cpu_map[j] & (1UL << k)) {
2963               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2964             }
2965           }
2966         }
2967       }
2968     }
2969   }
2970   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2971 }
2972 
2973 int os::Linux::get_node_by_cpu(int cpu_id) {
2974   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2975     return cpu_to_node()->at(cpu_id);
2976   }
2977   return -1;
2978 }
2979 
2980 GrowableArray<int>* os::Linux::_cpu_to_node;
2981 GrowableArray<int>* os::Linux::_nindex_to_node;
2982 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2983 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2984 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2985 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
2986 os::Linux::numa_available_func_t os::Linux::_numa_available;
2987 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2988 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2989 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
2990 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2991 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
2992 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
2993 unsigned long* os::Linux::_numa_all_nodes;
2994 struct bitmask* os::Linux::_numa_all_nodes_ptr;
2995 struct bitmask* os::Linux::_numa_nodes_ptr;
2996 
2997 bool os::pd_uncommit_memory(char* addr, size_t size) {
2998   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2999                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3000   return res  != (uintptr_t) MAP_FAILED;
3001 }
3002 
3003 static
3004 address get_stack_commited_bottom(address bottom, size_t size) {
3005   address nbot = bottom;
3006   address ntop = bottom + size;
3007 
3008   size_t page_sz = os::vm_page_size();
3009   unsigned pages = size / page_sz;
3010 
3011   unsigned char vec[1];
3012   unsigned imin = 1, imax = pages + 1, imid;
3013   int mincore_return_value = 0;
3014 
3015   assert(imin <= imax, "Unexpected page size");
3016 
3017   while (imin < imax) {
3018     imid = (imax + imin) / 2;
3019     nbot = ntop - (imid * page_sz);
3020 
3021     // Use a trick with mincore to check whether the page is mapped or not.
3022     // mincore sets vec to 1 if page resides in memory and to 0 if page
3023     // is swapped output but if page we are asking for is unmapped
3024     // it returns -1,ENOMEM
3025     mincore_return_value = mincore(nbot, page_sz, vec);
3026 
3027     if (mincore_return_value == -1) {
3028       // Page is not mapped go up
3029       // to find first mapped page
3030       if (errno != EAGAIN) {
3031         assert(errno == ENOMEM, "Unexpected mincore errno");
3032         imax = imid;
3033       }
3034     } else {
3035       // Page is mapped go down
3036       // to find first not mapped page
3037       imin = imid + 1;
3038     }
3039   }
3040 
3041   nbot = nbot + page_sz;
3042 
3043   // Adjust stack bottom one page up if last checked page is not mapped
3044   if (mincore_return_value == -1) {
3045     nbot = nbot + page_sz;
3046   }
3047 
3048   return nbot;
3049 }
3050 
3051 
3052 // Linux uses a growable mapping for the stack, and if the mapping for
3053 // the stack guard pages is not removed when we detach a thread the
3054 // stack cannot grow beyond the pages where the stack guard was
3055 // mapped.  If at some point later in the process the stack expands to
3056 // that point, the Linux kernel cannot expand the stack any further
3057 // because the guard pages are in the way, and a segfault occurs.
3058 //
3059 // However, it's essential not to split the stack region by unmapping
3060 // a region (leaving a hole) that's already part of the stack mapping,
3061 // so if the stack mapping has already grown beyond the guard pages at
3062 // the time we create them, we have to truncate the stack mapping.
3063 // So, we need to know the extent of the stack mapping when
3064 // create_stack_guard_pages() is called.
3065 
3066 // We only need this for stacks that are growable: at the time of
3067 // writing thread stacks don't use growable mappings (i.e. those
3068 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3069 // only applies to the main thread.
3070 
3071 // If the (growable) stack mapping already extends beyond the point
3072 // where we're going to put our guard pages, truncate the mapping at
3073 // that point by munmap()ping it.  This ensures that when we later
3074 // munmap() the guard pages we don't leave a hole in the stack
3075 // mapping. This only affects the main/primordial thread
3076 
3077 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3078 
3079   if (os::is_primordial_thread()) {
3080     // As we manually grow stack up to bottom inside create_attached_thread(),
3081     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3082     // we don't need to do anything special.
3083     // Check it first, before calling heavy function.
3084     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3085     unsigned char vec[1];
3086 
3087     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3088       // Fallback to slow path on all errors, including EAGAIN
3089       stack_extent = (uintptr_t) get_stack_commited_bottom(
3090                                     os::Linux::initial_thread_stack_bottom(),
3091                                     (size_t)addr - stack_extent);
3092     }
3093 
3094     if (stack_extent < (uintptr_t)addr) {
3095       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3096     }
3097   }
3098 
3099   return os::commit_memory(addr, size, !ExecMem);
3100 }
3101 
3102 // If this is a growable mapping, remove the guard pages entirely by
3103 // munmap()ping them.  If not, just call uncommit_memory(). This only
3104 // affects the main/primordial thread, but guard against future OS changes.
3105 // It's safe to always unmap guard pages for primordial thread because we
3106 // always place it right after end of the mapped region.
3107 
3108 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3109   uintptr_t stack_extent, stack_base;
3110 
3111   if (os::is_primordial_thread()) {
3112     return ::munmap(addr, size) == 0;
3113   }
3114 
3115   return os::uncommit_memory(addr, size);
3116 }
3117 
3118 static address _highest_vm_reserved_address = NULL;
3119 
3120 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3121 // at 'requested_addr'. If there are existing memory mappings at the same
3122 // location, however, they will be overwritten. If 'fixed' is false,
3123 // 'requested_addr' is only treated as a hint, the return value may or
3124 // may not start from the requested address. Unlike Linux mmap(), this
3125 // function returns NULL to indicate failure.
3126 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3127   char * addr;
3128   int flags;
3129 
3130   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3131   if (fixed) {
3132     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3133     flags |= MAP_FIXED;
3134   }
3135 
3136   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3137   // touch an uncommitted page. Otherwise, the read/write might
3138   // succeed if we have enough swap space to back the physical page.
3139   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3140                        flags, -1, 0);
3141 
3142   if (addr != MAP_FAILED) {
3143     // anon_mmap() should only get called during VM initialization,
3144     // don't need lock (actually we can skip locking even it can be called
3145     // from multiple threads, because _highest_vm_reserved_address is just a
3146     // hint about the upper limit of non-stack memory regions.)
3147     if ((address)addr + bytes > _highest_vm_reserved_address) {
3148       _highest_vm_reserved_address = (address)addr + bytes;
3149     }
3150   }
3151 
3152   return addr == MAP_FAILED ? NULL : addr;
3153 }
3154 
3155 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3156 //   (req_addr != NULL) or with a given alignment.
3157 //  - bytes shall be a multiple of alignment.
3158 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3159 //  - alignment sets the alignment at which memory shall be allocated.
3160 //     It must be a multiple of allocation granularity.
3161 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3162 //  req_addr or NULL.
3163 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3164 
3165   size_t extra_size = bytes;
3166   if (req_addr == NULL && alignment > 0) {
3167     extra_size += alignment;
3168   }
3169 
3170   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3171     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3172     -1, 0);
3173   if (start == MAP_FAILED) {
3174     start = NULL;
3175   } else {
3176     if (req_addr != NULL) {
3177       if (start != req_addr) {
3178         ::munmap(start, extra_size);
3179         start = NULL;
3180       }
3181     } else {
3182       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3183       char* const end_aligned = start_aligned + bytes;
3184       char* const end = start + extra_size;
3185       if (start_aligned > start) {
3186         ::munmap(start, start_aligned - start);
3187       }
3188       if (end_aligned < end) {
3189         ::munmap(end_aligned, end - end_aligned);
3190       }
3191       start = start_aligned;
3192     }
3193   }
3194   return start;
3195 }
3196 
3197 // Don't update _highest_vm_reserved_address, because there might be memory
3198 // regions above addr + size. If so, releasing a memory region only creates
3199 // a hole in the address space, it doesn't help prevent heap-stack collision.
3200 //
3201 static int anon_munmap(char * addr, size_t size) {
3202   return ::munmap(addr, size) == 0;
3203 }
3204 
3205 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3206                          size_t alignment_hint) {
3207   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3208 }
3209 
3210 bool os::pd_release_memory(char* addr, size_t size) {
3211   return anon_munmap(addr, size);
3212 }
3213 
3214 static address highest_vm_reserved_address() {
3215   return _highest_vm_reserved_address;
3216 }
3217 
3218 static bool linux_mprotect(char* addr, size_t size, int prot) {
3219   // Linux wants the mprotect address argument to be page aligned.
3220   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3221 
3222   // According to SUSv3, mprotect() should only be used with mappings
3223   // established by mmap(), and mmap() always maps whole pages. Unaligned
3224   // 'addr' likely indicates problem in the VM (e.g. trying to change
3225   // protection of malloc'ed or statically allocated memory). Check the
3226   // caller if you hit this assert.
3227   assert(addr == bottom, "sanity check");
3228 
3229   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3230   return ::mprotect(bottom, size, prot) == 0;
3231 }
3232 
3233 // Set protections specified
3234 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3235                         bool is_committed) {
3236   unsigned int p = 0;
3237   switch (prot) {
3238   case MEM_PROT_NONE: p = PROT_NONE; break;
3239   case MEM_PROT_READ: p = PROT_READ; break;
3240   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3241   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3242   default:
3243     ShouldNotReachHere();
3244   }
3245   // is_committed is unused.
3246   return linux_mprotect(addr, bytes, p);
3247 }
3248 
3249 bool os::guard_memory(char* addr, size_t size) {
3250   return linux_mprotect(addr, size, PROT_NONE);
3251 }
3252 
3253 bool os::unguard_memory(char* addr, size_t size) {
3254   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3255 }
3256 
3257 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3258   bool result = false;
3259   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3260                  MAP_ANONYMOUS|MAP_PRIVATE,
3261                  -1, 0);
3262   if (p != MAP_FAILED) {
3263     void *aligned_p = align_ptr_up(p, page_size);
3264 
3265     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3266 
3267     munmap(p, page_size * 2);
3268   }
3269 
3270   if (warn && !result) {
3271     warning("TransparentHugePages is not supported by the operating system.");
3272   }
3273 
3274   return result;
3275 }
3276 
3277 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3278   bool result = false;
3279   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3280                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3281                  -1, 0);
3282 
3283   if (p != MAP_FAILED) {
3284     // We don't know if this really is a huge page or not.
3285     FILE *fp = fopen("/proc/self/maps", "r");
3286     if (fp) {
3287       while (!feof(fp)) {
3288         char chars[257];
3289         long x = 0;
3290         if (fgets(chars, sizeof(chars), fp)) {
3291           if (sscanf(chars, "%lx-%*x", &x) == 1
3292               && x == (long)p) {
3293             if (strstr (chars, "hugepage")) {
3294               result = true;
3295               break;
3296             }
3297           }
3298         }
3299       }
3300       fclose(fp);
3301     }
3302     munmap(p, page_size);
3303   }
3304 
3305   if (warn && !result) {
3306     warning("HugeTLBFS is not supported by the operating system.");
3307   }
3308 
3309   return result;
3310 }
3311 
3312 /*
3313 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3314 *
3315 * From the coredump_filter documentation:
3316 *
3317 * - (bit 0) anonymous private memory
3318 * - (bit 1) anonymous shared memory
3319 * - (bit 2) file-backed private memory
3320 * - (bit 3) file-backed shared memory
3321 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3322 *           effective only if the bit 2 is cleared)
3323 * - (bit 5) hugetlb private memory
3324 * - (bit 6) hugetlb shared memory
3325 */
3326 static void set_coredump_filter(void) {
3327   FILE *f;
3328   long cdm;
3329 
3330   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3331     return;
3332   }
3333 
3334   if (fscanf(f, "%lx", &cdm) != 1) {
3335     fclose(f);
3336     return;
3337   }
3338 
3339   rewind(f);
3340 
3341   if ((cdm & LARGEPAGES_BIT) == 0) {
3342     cdm |= LARGEPAGES_BIT;
3343     fprintf(f, "%#lx", cdm);
3344   }
3345 
3346   fclose(f);
3347 }
3348 
3349 // Large page support
3350 
3351 static size_t _large_page_size = 0;
3352 
3353 size_t os::Linux::find_large_page_size() {
3354   size_t large_page_size = 0;
3355 
3356   // large_page_size on Linux is used to round up heap size. x86 uses either
3357   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3358   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3359   // page as large as 256M.
3360   //
3361   // Here we try to figure out page size by parsing /proc/meminfo and looking
3362   // for a line with the following format:
3363   //    Hugepagesize:     2048 kB
3364   //
3365   // If we can't determine the value (e.g. /proc is not mounted, or the text
3366   // format has been changed), we'll use the largest page size supported by
3367   // the processor.
3368 
3369 #ifndef ZERO
3370   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3371                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3372 #endif // ZERO
3373 
3374   FILE *fp = fopen("/proc/meminfo", "r");
3375   if (fp) {
3376     while (!feof(fp)) {
3377       int x = 0;
3378       char buf[16];
3379       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3380         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3381           large_page_size = x * K;
3382           break;
3383         }
3384       } else {
3385         // skip to next line
3386         for (;;) {
3387           int ch = fgetc(fp);
3388           if (ch == EOF || ch == (int)'\n') break;
3389         }
3390       }
3391     }
3392     fclose(fp);
3393   }
3394 
3395   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3396     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3397         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3398         proper_unit_for_byte_size(large_page_size));
3399   }
3400 
3401   return large_page_size;
3402 }
3403 
3404 size_t os::Linux::setup_large_page_size() {
3405   _large_page_size = Linux::find_large_page_size();
3406   const size_t default_page_size = (size_t)Linux::page_size();
3407   if (_large_page_size > default_page_size) {
3408     _page_sizes[0] = _large_page_size;
3409     _page_sizes[1] = default_page_size;
3410     _page_sizes[2] = 0;
3411   }
3412 
3413   return _large_page_size;
3414 }
3415 
3416 bool os::Linux::setup_large_page_type(size_t page_size) {
3417   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3418       FLAG_IS_DEFAULT(UseSHM) &&
3419       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3420 
3421     // The type of large pages has not been specified by the user.
3422 
3423     // Try UseHugeTLBFS and then UseSHM.
3424     UseHugeTLBFS = UseSHM = true;
3425 
3426     // Don't try UseTransparentHugePages since there are known
3427     // performance issues with it turned on. This might change in the future.
3428     UseTransparentHugePages = false;
3429   }
3430 
3431   if (UseTransparentHugePages) {
3432     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3433     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3434       UseHugeTLBFS = false;
3435       UseSHM = false;
3436       return true;
3437     }
3438     UseTransparentHugePages = false;
3439   }
3440 
3441   if (UseHugeTLBFS) {
3442     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3443     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3444       UseSHM = false;
3445       return true;
3446     }
3447     UseHugeTLBFS = false;
3448   }
3449 
3450   return UseSHM;
3451 }
3452 
3453 void os::large_page_init() {
3454   if (!UseLargePages &&
3455       !UseTransparentHugePages &&
3456       !UseHugeTLBFS &&
3457       !UseSHM) {
3458     // Not using large pages.
3459     return;
3460   }
3461 
3462   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3463     // The user explicitly turned off large pages.
3464     // Ignore the rest of the large pages flags.
3465     UseTransparentHugePages = false;
3466     UseHugeTLBFS = false;
3467     UseSHM = false;
3468     return;
3469   }
3470 
3471   size_t large_page_size = Linux::setup_large_page_size();
3472   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3473 
3474   set_coredump_filter();
3475 }
3476 
3477 #ifndef SHM_HUGETLB
3478 #define SHM_HUGETLB 04000
3479 #endif
3480 
3481 #define shm_warning_format(format, ...)              \
3482   do {                                               \
3483     if (UseLargePages &&                             \
3484         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3485          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3486          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3487       warning(format, __VA_ARGS__);                  \
3488     }                                                \
3489   } while (0)
3490 
3491 #define shm_warning(str) shm_warning_format("%s", str)
3492 
3493 #define shm_warning_with_errno(str)                \
3494   do {                                             \
3495     int err = errno;                               \
3496     shm_warning_format(str " (error = %d)", err);  \
3497   } while (0)
3498 
3499 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3500   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3501 
3502   if (!is_size_aligned(alignment, SHMLBA)) {
3503     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3504     return NULL;
3505   }
3506 
3507   // To ensure that we get 'alignment' aligned memory from shmat,
3508   // we pre-reserve aligned virtual memory and then attach to that.
3509 
3510   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3511   if (pre_reserved_addr == NULL) {
3512     // Couldn't pre-reserve aligned memory.
3513     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3514     return NULL;
3515   }
3516 
3517   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3518   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3519 
3520   if ((intptr_t)addr == -1) {
3521     int err = errno;
3522     shm_warning_with_errno("Failed to attach shared memory.");
3523 
3524     assert(err != EACCES, "Unexpected error");
3525     assert(err != EIDRM,  "Unexpected error");
3526     assert(err != EINVAL, "Unexpected error");
3527 
3528     // Since we don't know if the kernel unmapped the pre-reserved memory area
3529     // we can't unmap it, since that would potentially unmap memory that was
3530     // mapped from other threads.
3531     return NULL;
3532   }
3533 
3534   return addr;
3535 }
3536 
3537 static char* shmat_at_address(int shmid, char* req_addr) {
3538   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3539     assert(false, "Requested address needs to be SHMLBA aligned");
3540     return NULL;
3541   }
3542 
3543   char* addr = (char*)shmat(shmid, req_addr, 0);
3544 
3545   if ((intptr_t)addr == -1) {
3546     shm_warning_with_errno("Failed to attach shared memory.");
3547     return NULL;
3548   }
3549 
3550   return addr;
3551 }
3552 
3553 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3554   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3555   if (req_addr != NULL) {
3556     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3557     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3558     return shmat_at_address(shmid, req_addr);
3559   }
3560 
3561   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3562   // return large page size aligned memory addresses when req_addr == NULL.
3563   // However, if the alignment is larger than the large page size, we have
3564   // to manually ensure that the memory returned is 'alignment' aligned.
3565   if (alignment > os::large_page_size()) {
3566     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3567     return shmat_with_alignment(shmid, bytes, alignment);
3568   } else {
3569     return shmat_at_address(shmid, NULL);
3570   }
3571 }
3572 
3573 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3574   // "exec" is passed in but not used.  Creating the shared image for
3575   // the code cache doesn't have an SHM_X executable permission to check.
3576   assert(UseLargePages && UseSHM, "only for SHM large pages");
3577   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3578   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3579 
3580   if (!is_size_aligned(bytes, os::large_page_size())) {
3581     return NULL; // Fallback to small pages.
3582   }
3583 
3584   // Create a large shared memory region to attach to based on size.
3585   // Currently, size is the total size of the heap.
3586   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3587   if (shmid == -1) {
3588     // Possible reasons for shmget failure:
3589     // 1. shmmax is too small for Java heap.
3590     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3591     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3592     // 2. not enough large page memory.
3593     //    > check available large pages: cat /proc/meminfo
3594     //    > increase amount of large pages:
3595     //          echo new_value > /proc/sys/vm/nr_hugepages
3596     //      Note 1: different Linux may use different name for this property,
3597     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3598     //      Note 2: it's possible there's enough physical memory available but
3599     //            they are so fragmented after a long run that they can't
3600     //            coalesce into large pages. Try to reserve large pages when
3601     //            the system is still "fresh".
3602     shm_warning_with_errno("Failed to reserve shared memory.");
3603     return NULL;
3604   }
3605 
3606   // Attach to the region.
3607   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3608 
3609   // Remove shmid. If shmat() is successful, the actual shared memory segment
3610   // will be deleted when it's detached by shmdt() or when the process
3611   // terminates. If shmat() is not successful this will remove the shared
3612   // segment immediately.
3613   shmctl(shmid, IPC_RMID, NULL);
3614 
3615   return addr;
3616 }
3617 
3618 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3619   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3620 
3621   bool warn_on_failure = UseLargePages &&
3622       (!FLAG_IS_DEFAULT(UseLargePages) ||
3623        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3624        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3625 
3626   if (warn_on_failure) {
3627     char msg[128];
3628     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3629         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3630     warning("%s", msg);
3631   }
3632 }
3633 
3634 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3635   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3636   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3637   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3638 
3639   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3640   char* addr = (char*)::mmap(req_addr, bytes, prot,
3641                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3642                              -1, 0);
3643 
3644   if (addr == MAP_FAILED) {
3645     warn_on_large_pages_failure(req_addr, bytes, errno);
3646     return NULL;
3647   }
3648 
3649   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3650 
3651   return addr;
3652 }
3653 
3654 // Reserve memory using mmap(MAP_HUGETLB).
3655 //  - bytes shall be a multiple of alignment.
3656 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3657 //  - alignment sets the alignment at which memory shall be allocated.
3658 //     It must be a multiple of allocation granularity.
3659 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3660 //  req_addr or NULL.
3661 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3662   size_t large_page_size = os::large_page_size();
3663   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3664 
3665   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3666   assert(is_size_aligned(bytes, alignment), "Must be");
3667 
3668   // First reserve - but not commit - the address range in small pages.
3669   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3670 
3671   if (start == NULL) {
3672     return NULL;
3673   }
3674 
3675   assert(is_ptr_aligned(start, alignment), "Must be");
3676 
3677   char* end = start + bytes;
3678 
3679   // Find the regions of the allocated chunk that can be promoted to large pages.
3680   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3681   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3682 
3683   size_t lp_bytes = lp_end - lp_start;
3684 
3685   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3686 
3687   if (lp_bytes == 0) {
3688     // The mapped region doesn't even span the start and the end of a large page.
3689     // Fall back to allocate a non-special area.
3690     ::munmap(start, end - start);
3691     return NULL;
3692   }
3693 
3694   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3695 
3696   void* result;
3697 
3698   // Commit small-paged leading area.
3699   if (start != lp_start) {
3700     result = ::mmap(start, lp_start - start, prot,
3701                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3702                     -1, 0);
3703     if (result == MAP_FAILED) {
3704       ::munmap(lp_start, end - lp_start);
3705       return NULL;
3706     }
3707   }
3708 
3709   // Commit large-paged area.
3710   result = ::mmap(lp_start, lp_bytes, prot,
3711                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3712                   -1, 0);
3713   if (result == MAP_FAILED) {
3714     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3715     // If the mmap above fails, the large pages region will be unmapped and we
3716     // have regions before and after with small pages. Release these regions.
3717     //
3718     // |  mapped  |  unmapped  |  mapped  |
3719     // ^          ^            ^          ^
3720     // start      lp_start     lp_end     end
3721     //
3722     ::munmap(start, lp_start - start);
3723     ::munmap(lp_end, end - lp_end);
3724     return NULL;
3725   }
3726 
3727   // Commit small-paged trailing area.
3728   if (lp_end != end) {
3729       result = ::mmap(lp_end, end - lp_end, prot,
3730                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3731                       -1, 0);
3732     if (result == MAP_FAILED) {
3733       ::munmap(start, lp_end - start);
3734       return NULL;
3735     }
3736   }
3737 
3738   return start;
3739 }
3740 
3741 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3742   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3743   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3744   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3745   assert(is_power_of_2(os::large_page_size()), "Must be");
3746   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3747 
3748   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3749     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3750   } else {
3751     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3752   }
3753 }
3754 
3755 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3756   assert(UseLargePages, "only for large pages");
3757 
3758   char* addr;
3759   if (UseSHM) {
3760     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3761   } else {
3762     assert(UseHugeTLBFS, "must be");
3763     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3764   }
3765 
3766   if (addr != NULL) {
3767     if (UseNUMAInterleaving) {
3768       numa_make_global(addr, bytes);
3769     }
3770 
3771     // The memory is committed
3772     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3773   }
3774 
3775   return addr;
3776 }
3777 
3778 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3779   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3780   return shmdt(base) == 0;
3781 }
3782 
3783 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3784   return pd_release_memory(base, bytes);
3785 }
3786 
3787 bool os::release_memory_special(char* base, size_t bytes) {
3788   bool res;
3789   if (MemTracker::tracking_level() > NMT_minimal) {
3790     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3791     res = os::Linux::release_memory_special_impl(base, bytes);
3792     if (res) {
3793       tkr.record((address)base, bytes);
3794     }
3795 
3796   } else {
3797     res = os::Linux::release_memory_special_impl(base, bytes);
3798   }
3799   return res;
3800 }
3801 
3802 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3803   assert(UseLargePages, "only for large pages");
3804   bool res;
3805 
3806   if (UseSHM) {
3807     res = os::Linux::release_memory_special_shm(base, bytes);
3808   } else {
3809     assert(UseHugeTLBFS, "must be");
3810     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3811   }
3812   return res;
3813 }
3814 
3815 size_t os::large_page_size() {
3816   return _large_page_size;
3817 }
3818 
3819 // With SysV SHM the entire memory region must be allocated as shared
3820 // memory.
3821 // HugeTLBFS allows application to commit large page memory on demand.
3822 // However, when committing memory with HugeTLBFS fails, the region
3823 // that was supposed to be committed will lose the old reservation
3824 // and allow other threads to steal that memory region. Because of this
3825 // behavior we can't commit HugeTLBFS memory.
3826 bool os::can_commit_large_page_memory() {
3827   return UseTransparentHugePages;
3828 }
3829 
3830 bool os::can_execute_large_page_memory() {
3831   return UseTransparentHugePages || UseHugeTLBFS;
3832 }
3833 
3834 // Reserve memory at an arbitrary address, only if that area is
3835 // available (and not reserved for something else).
3836 
3837 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3838   const int max_tries = 10;
3839   char* base[max_tries];
3840   size_t size[max_tries];
3841   const size_t gap = 0x000000;
3842 
3843   // Assert only that the size is a multiple of the page size, since
3844   // that's all that mmap requires, and since that's all we really know
3845   // about at this low abstraction level.  If we need higher alignment,
3846   // we can either pass an alignment to this method or verify alignment
3847   // in one of the methods further up the call chain.  See bug 5044738.
3848   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3849 
3850   // Repeatedly allocate blocks until the block is allocated at the
3851   // right spot. Give up after max_tries. Note that reserve_memory() will
3852   // automatically update _highest_vm_reserved_address if the call is
3853   // successful. The variable tracks the highest memory address every reserved
3854   // by JVM. It is used to detect heap-stack collision if running with
3855   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3856   // space than needed, it could confuse the collision detecting code. To
3857   // solve the problem, save current _highest_vm_reserved_address and
3858   // calculate the correct value before return.
3859   address old_highest = _highest_vm_reserved_address;
3860 
3861   // Linux mmap allows caller to pass an address as hint; give it a try first,
3862   // if kernel honors the hint then we can return immediately.
3863   char * addr = anon_mmap(requested_addr, bytes, false);
3864   if (addr == requested_addr) {
3865      return requested_addr;
3866   }
3867 
3868   if (addr != NULL) {
3869      // mmap() is successful but it fails to reserve at the requested address
3870      anon_munmap(addr, bytes);
3871   }
3872 
3873   int i;
3874   for (i = 0; i < max_tries; ++i) {
3875     base[i] = reserve_memory(bytes);
3876 
3877     if (base[i] != NULL) {
3878       // Is this the block we wanted?
3879       if (base[i] == requested_addr) {
3880         size[i] = bytes;
3881         break;
3882       }
3883 
3884       // Does this overlap the block we wanted? Give back the overlapped
3885       // parts and try again.
3886 
3887       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3888       if (top_overlap >= 0 && top_overlap < bytes) {
3889         unmap_memory(base[i], top_overlap);
3890         base[i] += top_overlap;
3891         size[i] = bytes - top_overlap;
3892       } else {
3893         size_t bottom_overlap = base[i] + bytes - requested_addr;
3894         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3895           unmap_memory(requested_addr, bottom_overlap);
3896           size[i] = bytes - bottom_overlap;
3897         } else {
3898           size[i] = bytes;
3899         }
3900       }
3901     }
3902   }
3903 
3904   // Give back the unused reserved pieces.
3905 
3906   for (int j = 0; j < i; ++j) {
3907     if (base[j] != NULL) {
3908       unmap_memory(base[j], size[j]);
3909     }
3910   }
3911 
3912   if (i < max_tries) {
3913     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3914     return requested_addr;
3915   } else {
3916     _highest_vm_reserved_address = old_highest;
3917     return NULL;
3918   }
3919 }
3920 
3921 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3922   return ::read(fd, buf, nBytes);
3923 }
3924 
3925 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3926 // Solaris uses poll(), linux uses park().
3927 // Poll() is likely a better choice, assuming that Thread.interrupt()
3928 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3929 // SIGSEGV, see 4355769.
3930 
3931 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3932   assert(thread == Thread::current(),  "thread consistency check");
3933 
3934   ParkEvent * const slp = thread->_SleepEvent ;
3935   slp->reset() ;
3936   OrderAccess::fence() ;
3937 
3938   if (interruptible) {
3939     jlong prevtime = javaTimeNanos();
3940 
3941     for (;;) {
3942       if (os::is_interrupted(thread, true)) {
3943         return OS_INTRPT;
3944       }
3945 
3946       jlong newtime = javaTimeNanos();
3947 
3948       if (newtime - prevtime < 0) {
3949         // time moving backwards, should only happen if no monotonic clock
3950         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3951         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3952       } else {
3953         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3954       }
3955 
3956       if(millis <= 0) {
3957         return OS_OK;
3958       }
3959 
3960       prevtime = newtime;
3961 
3962       {
3963         assert(thread->is_Java_thread(), "sanity check");
3964         JavaThread *jt = (JavaThread *) thread;
3965         ThreadBlockInVM tbivm(jt);
3966         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3967 
3968         jt->set_suspend_equivalent();
3969         // cleared by handle_special_suspend_equivalent_condition() or
3970         // java_suspend_self() via check_and_wait_while_suspended()
3971 
3972         slp->park(millis);
3973 
3974         // were we externally suspended while we were waiting?
3975         jt->check_and_wait_while_suspended();
3976       }
3977     }
3978   } else {
3979     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3980     jlong prevtime = javaTimeNanos();
3981 
3982     for (;;) {
3983       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3984       // the 1st iteration ...
3985       jlong newtime = javaTimeNanos();
3986 
3987       if (newtime - prevtime < 0) {
3988         // time moving backwards, should only happen if no monotonic clock
3989         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3990         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3991       } else {
3992         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3993       }
3994 
3995       if(millis <= 0) break ;
3996 
3997       prevtime = newtime;
3998       slp->park(millis);
3999     }
4000     return OS_OK ;
4001   }
4002 }
4003 
4004 //
4005 // Short sleep, direct OS call.
4006 //
4007 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4008 // sched_yield(2) will actually give up the CPU:
4009 //
4010 //   * Alone on this pariticular CPU, keeps running.
4011 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4012 //     (pre 2.6.39).
4013 //
4014 // So calling this with 0 is an alternative.
4015 //
4016 void os::naked_short_sleep(jlong ms) {
4017   struct timespec req;
4018 
4019   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4020   req.tv_sec = 0;
4021   if (ms > 0) {
4022     req.tv_nsec = (ms % 1000) * 1000000;
4023   }
4024   else {
4025     req.tv_nsec = 1;
4026   }
4027 
4028   nanosleep(&req, NULL);
4029 
4030   return;
4031 }
4032 
4033 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4034 void os::infinite_sleep() {
4035   while (true) {    // sleep forever ...
4036     ::sleep(100);   // ... 100 seconds at a time
4037   }
4038 }
4039 
4040 // Used to convert frequent JVM_Yield() to nops
4041 bool os::dont_yield() {
4042   return DontYieldALot;
4043 }
4044 
4045 void os::yield() {
4046   sched_yield();
4047 }
4048 
4049 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
4050 
4051 void os::yield_all(int attempts) {
4052   // Yields to all threads, including threads with lower priorities
4053   // Threads on Linux are all with same priority. The Solaris style
4054   // os::yield_all() with nanosleep(1ms) is not necessary.
4055   sched_yield();
4056 }
4057 
4058 // Called from the tight loops to possibly influence time-sharing heuristics
4059 void os::loop_breaker(int attempts) {
4060   os::yield_all(attempts);
4061 }
4062 
4063 ////////////////////////////////////////////////////////////////////////////////
4064 // thread priority support
4065 
4066 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4067 // only supports dynamic priority, static priority must be zero. For real-time
4068 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4069 // However, for large multi-threaded applications, SCHED_RR is not only slower
4070 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4071 // of 5 runs - Sep 2005).
4072 //
4073 // The following code actually changes the niceness of kernel-thread/LWP. It
4074 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4075 // not the entire user process, and user level threads are 1:1 mapped to kernel
4076 // threads. It has always been the case, but could change in the future. For
4077 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4078 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4079 
4080 int os::java_to_os_priority[CriticalPriority + 1] = {
4081   19,              // 0 Entry should never be used
4082 
4083    4,              // 1 MinPriority
4084    3,              // 2
4085    2,              // 3
4086 
4087    1,              // 4
4088    0,              // 5 NormPriority
4089   -1,              // 6
4090 
4091   -2,              // 7
4092   -3,              // 8
4093   -4,              // 9 NearMaxPriority
4094 
4095   -5,              // 10 MaxPriority
4096 
4097   -5               // 11 CriticalPriority
4098 };
4099 
4100 static int prio_init() {
4101   if (ThreadPriorityPolicy == 1) {
4102     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4103     // if effective uid is not root. Perhaps, a more elegant way of doing
4104     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4105     if (geteuid() != 0) {
4106       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4107         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4108       }
4109       ThreadPriorityPolicy = 0;
4110     }
4111   }
4112   if (UseCriticalJavaThreadPriority) {
4113     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4114   }
4115   return 0;
4116 }
4117 
4118 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4119   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
4120 
4121   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4122   return (ret == 0) ? OS_OK : OS_ERR;
4123 }
4124 
4125 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
4126   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
4127     *priority_ptr = java_to_os_priority[NormPriority];
4128     return OS_OK;
4129   }
4130 
4131   errno = 0;
4132   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4133   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4134 }
4135 
4136 // Hint to the underlying OS that a task switch would not be good.
4137 // Void return because it's a hint and can fail.
4138 void os::hint_no_preempt() {}
4139 
4140 ////////////////////////////////////////////////////////////////////////////////
4141 // suspend/resume support
4142 
4143 //  the low-level signal-based suspend/resume support is a remnant from the
4144 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4145 //  within hotspot. Now there is a single use-case for this:
4146 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
4147 //      that runs in the watcher thread.
4148 //  The remaining code is greatly simplified from the more general suspension
4149 //  code that used to be used.
4150 //
4151 //  The protocol is quite simple:
4152 //  - suspend:
4153 //      - sends a signal to the target thread
4154 //      - polls the suspend state of the osthread using a yield loop
4155 //      - target thread signal handler (SR_handler) sets suspend state
4156 //        and blocks in sigsuspend until continued
4157 //  - resume:
4158 //      - sets target osthread state to continue
4159 //      - sends signal to end the sigsuspend loop in the SR_handler
4160 //
4161 //  Note that the SR_lock plays no role in this suspend/resume protocol.
4162 //
4163 
4164 static void resume_clear_context(OSThread *osthread) {
4165   osthread->set_ucontext(NULL);
4166   osthread->set_siginfo(NULL);
4167 }
4168 
4169 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
4170   osthread->set_ucontext(context);
4171   osthread->set_siginfo(siginfo);
4172 }
4173 
4174 //
4175 // Handler function invoked when a thread's execution is suspended or
4176 // resumed. We have to be careful that only async-safe functions are
4177 // called here (Note: most pthread functions are not async safe and
4178 // should be avoided.)
4179 //
4180 // Note: sigwait() is a more natural fit than sigsuspend() from an
4181 // interface point of view, but sigwait() prevents the signal hander
4182 // from being run. libpthread would get very confused by not having
4183 // its signal handlers run and prevents sigwait()'s use with the
4184 // mutex granting granting signal.
4185 //
4186 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4187 //
4188 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4189   // Save and restore errno to avoid confusing native code with EINTR
4190   // after sigsuspend.
4191   int old_errno = errno;
4192 
4193   Thread* thread = Thread::current();
4194   OSThread* osthread = thread->osthread();
4195   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4196 
4197   os::SuspendResume::State current = osthread->sr.state();
4198   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4199     suspend_save_context(osthread, siginfo, context);
4200 
4201     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4202     os::SuspendResume::State state = osthread->sr.suspended();
4203     if (state == os::SuspendResume::SR_SUSPENDED) {
4204       sigset_t suspend_set;  // signals for sigsuspend()
4205 
4206       // get current set of blocked signals and unblock resume signal
4207       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4208       sigdelset(&suspend_set, SR_signum);
4209 
4210       sr_semaphore.signal();
4211       // wait here until we are resumed
4212       while (1) {
4213         sigsuspend(&suspend_set);
4214 
4215         os::SuspendResume::State result = osthread->sr.running();
4216         if (result == os::SuspendResume::SR_RUNNING) {
4217           sr_semaphore.signal();
4218           break;
4219         }
4220       }
4221 
4222     } else if (state == os::SuspendResume::SR_RUNNING) {
4223       // request was cancelled, continue
4224     } else {
4225       ShouldNotReachHere();
4226     }
4227 
4228     resume_clear_context(osthread);
4229   } else if (current == os::SuspendResume::SR_RUNNING) {
4230     // request was cancelled, continue
4231   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4232     // ignore
4233   } else {
4234     // ignore
4235   }
4236 
4237   errno = old_errno;
4238 }
4239 
4240 
4241 static int SR_initialize() {
4242   struct sigaction act;
4243   char *s;
4244   /* Get signal number to use for suspend/resume */
4245   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4246     int sig = ::strtol(s, 0, 10);
4247     if (sig > 0 || sig < _NSIG) {
4248         SR_signum = sig;
4249     }
4250   }
4251 
4252   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4253         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4254 
4255   sigemptyset(&SR_sigset);
4256   sigaddset(&SR_sigset, SR_signum);
4257 
4258   /* Set up signal handler for suspend/resume */
4259   act.sa_flags = SA_RESTART|SA_SIGINFO;
4260   act.sa_handler = (void (*)(int)) SR_handler;
4261 
4262   // SR_signum is blocked by default.
4263   // 4528190 - We also need to block pthread restart signal (32 on all
4264   // supported Linux platforms). Note that LinuxThreads need to block
4265   // this signal for all threads to work properly. So we don't have
4266   // to use hard-coded signal number when setting up the mask.
4267   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4268 
4269   if (sigaction(SR_signum, &act, 0) == -1) {
4270     return -1;
4271   }
4272 
4273   // Save signal flag
4274   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4275   return 0;
4276 }
4277 
4278 static int sr_notify(OSThread* osthread) {
4279   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4280   assert_status(status == 0, status, "pthread_kill");
4281   return status;
4282 }
4283 
4284 // "Randomly" selected value for how long we want to spin
4285 // before bailing out on suspending a thread, also how often
4286 // we send a signal to a thread we want to resume
4287 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4288 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4289 
4290 // returns true on success and false on error - really an error is fatal
4291 // but this seems the normal response to library errors
4292 static bool do_suspend(OSThread* osthread) {
4293   assert(osthread->sr.is_running(), "thread should be running");
4294   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4295 
4296   // mark as suspended and send signal
4297   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4298     // failed to switch, state wasn't running?
4299     ShouldNotReachHere();
4300     return false;
4301   }
4302 
4303   if (sr_notify(osthread) != 0) {
4304     ShouldNotReachHere();
4305   }
4306 
4307   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4308   while (true) {
4309     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4310       break;
4311     } else {
4312       // timeout
4313       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4314       if (cancelled == os::SuspendResume::SR_RUNNING) {
4315         return false;
4316       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4317         // make sure that we consume the signal on the semaphore as well
4318         sr_semaphore.wait();
4319         break;
4320       } else {
4321         ShouldNotReachHere();
4322         return false;
4323       }
4324     }
4325   }
4326 
4327   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4328   return true;
4329 }
4330 
4331 static void do_resume(OSThread* osthread) {
4332   assert(osthread->sr.is_suspended(), "thread should be suspended");
4333   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4334 
4335   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4336     // failed to switch to WAKEUP_REQUEST
4337     ShouldNotReachHere();
4338     return;
4339   }
4340 
4341   while (true) {
4342     if (sr_notify(osthread) == 0) {
4343       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4344         if (osthread->sr.is_running()) {
4345           return;
4346         }
4347       }
4348     } else {
4349       ShouldNotReachHere();
4350     }
4351   }
4352 
4353   guarantee(osthread->sr.is_running(), "Must be running!");
4354 }
4355 
4356 ////////////////////////////////////////////////////////////////////////////////
4357 // interrupt support
4358 
4359 void os::interrupt(Thread* thread) {
4360   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4361     "possibility of dangling Thread pointer");
4362 
4363   OSThread* osthread = thread->osthread();
4364 
4365   if (!osthread->interrupted()) {
4366     osthread->set_interrupted(true);
4367     // More than one thread can get here with the same value of osthread,
4368     // resulting in multiple notifications.  We do, however, want the store
4369     // to interrupted() to be visible to other threads before we execute unpark().
4370     OrderAccess::fence();
4371     ParkEvent * const slp = thread->_SleepEvent ;
4372     if (slp != NULL) slp->unpark() ;
4373   }
4374 
4375   // For JSR166. Unpark even if interrupt status already was set
4376   if (thread->is_Java_thread())
4377     ((JavaThread*)thread)->parker()->unpark();
4378 
4379   ParkEvent * ev = thread->_ParkEvent ;
4380   if (ev != NULL) ev->unpark() ;
4381 
4382 }
4383 
4384 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4385   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4386     "possibility of dangling Thread pointer");
4387 
4388   OSThread* osthread = thread->osthread();
4389 
4390   bool interrupted = osthread->interrupted();
4391 
4392   if (interrupted && clear_interrupted) {
4393     osthread->set_interrupted(false);
4394     // consider thread->_SleepEvent->reset() ... optional optimization
4395   }
4396 
4397   return interrupted;
4398 }
4399 
4400 ///////////////////////////////////////////////////////////////////////////////////
4401 // signal handling (except suspend/resume)
4402 
4403 // This routine may be used by user applications as a "hook" to catch signals.
4404 // The user-defined signal handler must pass unrecognized signals to this
4405 // routine, and if it returns true (non-zero), then the signal handler must
4406 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4407 // routine will never retun false (zero), but instead will execute a VM panic
4408 // routine kill the process.
4409 //
4410 // If this routine returns false, it is OK to call it again.  This allows
4411 // the user-defined signal handler to perform checks either before or after
4412 // the VM performs its own checks.  Naturally, the user code would be making
4413 // a serious error if it tried to handle an exception (such as a null check
4414 // or breakpoint) that the VM was generating for its own correct operation.
4415 //
4416 // This routine may recognize any of the following kinds of signals:
4417 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4418 // It should be consulted by handlers for any of those signals.
4419 //
4420 // The caller of this routine must pass in the three arguments supplied
4421 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4422 // field of the structure passed to sigaction().  This routine assumes that
4423 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4424 //
4425 // Note that the VM will print warnings if it detects conflicting signal
4426 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4427 //
4428 extern "C" JNIEXPORT int
4429 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4430                         void* ucontext, int abort_if_unrecognized);
4431 
4432 void signalHandler(int sig, siginfo_t* info, void* uc) {
4433   assert(info != NULL && uc != NULL, "it must be old kernel");
4434   int orig_errno = errno;  // Preserve errno value over signal handler.
4435   JVM_handle_linux_signal(sig, info, uc, true);
4436   errno = orig_errno;
4437 }
4438 
4439 
4440 // This boolean allows users to forward their own non-matching signals
4441 // to JVM_handle_linux_signal, harmlessly.
4442 bool os::Linux::signal_handlers_are_installed = false;
4443 
4444 // For signal-chaining
4445 struct sigaction os::Linux::sigact[MAXSIGNUM];
4446 unsigned int os::Linux::sigs = 0;
4447 bool os::Linux::libjsig_is_loaded = false;
4448 typedef struct sigaction *(*get_signal_t)(int);
4449 get_signal_t os::Linux::get_signal_action = NULL;
4450 
4451 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4452   struct sigaction *actp = NULL;
4453 
4454   if (libjsig_is_loaded) {
4455     // Retrieve the old signal handler from libjsig
4456     actp = (*get_signal_action)(sig);
4457   }
4458   if (actp == NULL) {
4459     // Retrieve the preinstalled signal handler from jvm
4460     actp = get_preinstalled_handler(sig);
4461   }
4462 
4463   return actp;
4464 }
4465 
4466 static bool call_chained_handler(struct sigaction *actp, int sig,
4467                                  siginfo_t *siginfo, void *context) {
4468   // Call the old signal handler
4469   if (actp->sa_handler == SIG_DFL) {
4470     // It's more reasonable to let jvm treat it as an unexpected exception
4471     // instead of taking the default action.
4472     return false;
4473   } else if (actp->sa_handler != SIG_IGN) {
4474     if ((actp->sa_flags & SA_NODEFER) == 0) {
4475       // automaticlly block the signal
4476       sigaddset(&(actp->sa_mask), sig);
4477     }
4478 
4479     sa_handler_t hand = NULL;
4480     sa_sigaction_t sa = NULL;
4481     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4482     // retrieve the chained handler
4483     if (siginfo_flag_set) {
4484       sa = actp->sa_sigaction;
4485     } else {
4486       hand = actp->sa_handler;
4487     }
4488 
4489     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4490       actp->sa_handler = SIG_DFL;
4491     }
4492 
4493     // try to honor the signal mask
4494     sigset_t oset;
4495     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4496 
4497     // call into the chained handler
4498     if (siginfo_flag_set) {
4499       (*sa)(sig, siginfo, context);
4500     } else {
4501       (*hand)(sig);
4502     }
4503 
4504     // restore the signal mask
4505     pthread_sigmask(SIG_SETMASK, &oset, 0);
4506   }
4507   // Tell jvm's signal handler the signal is taken care of.
4508   return true;
4509 }
4510 
4511 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4512   bool chained = false;
4513   // signal-chaining
4514   if (UseSignalChaining) {
4515     struct sigaction *actp = get_chained_signal_action(sig);
4516     if (actp != NULL) {
4517       chained = call_chained_handler(actp, sig, siginfo, context);
4518     }
4519   }
4520   return chained;
4521 }
4522 
4523 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4524   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4525     return &sigact[sig];
4526   }
4527   return NULL;
4528 }
4529 
4530 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4531   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4532   sigact[sig] = oldAct;
4533   sigs |= (unsigned int)1 << sig;
4534 }
4535 
4536 // for diagnostic
4537 int os::Linux::sigflags[MAXSIGNUM];
4538 
4539 int os::Linux::get_our_sigflags(int sig) {
4540   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4541   return sigflags[sig];
4542 }
4543 
4544 void os::Linux::set_our_sigflags(int sig, int flags) {
4545   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4546   sigflags[sig] = flags;
4547 }
4548 
4549 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4550   // Check for overwrite.
4551   struct sigaction oldAct;
4552   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4553 
4554   void* oldhand = oldAct.sa_sigaction
4555                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4556                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4557   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4558       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4559       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4560     if (AllowUserSignalHandlers || !set_installed) {
4561       // Do not overwrite; user takes responsibility to forward to us.
4562       return;
4563     } else if (UseSignalChaining) {
4564       // save the old handler in jvm
4565       save_preinstalled_handler(sig, oldAct);
4566       // libjsig also interposes the sigaction() call below and saves the
4567       // old sigaction on it own.
4568     } else {
4569       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4570                     "%#lx for signal %d.", (long)oldhand, sig));
4571     }
4572   }
4573 
4574   struct sigaction sigAct;
4575   sigfillset(&(sigAct.sa_mask));
4576   sigAct.sa_handler = SIG_DFL;
4577   if (!set_installed) {
4578     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4579   } else {
4580     sigAct.sa_sigaction = signalHandler;
4581     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4582   }
4583   // Save flags, which are set by ours
4584   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4585   sigflags[sig] = sigAct.sa_flags;
4586 
4587   int ret = sigaction(sig, &sigAct, &oldAct);
4588   assert(ret == 0, "check");
4589 
4590   void* oldhand2  = oldAct.sa_sigaction
4591                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4592                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4593   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4594 }
4595 
4596 // install signal handlers for signals that HotSpot needs to
4597 // handle in order to support Java-level exception handling.
4598 
4599 void os::Linux::install_signal_handlers() {
4600   if (!signal_handlers_are_installed) {
4601     signal_handlers_are_installed = true;
4602 
4603     // signal-chaining
4604     typedef void (*signal_setting_t)();
4605     signal_setting_t begin_signal_setting = NULL;
4606     signal_setting_t end_signal_setting = NULL;
4607     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4608                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4609     if (begin_signal_setting != NULL) {
4610       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4611                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4612       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4613                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4614       libjsig_is_loaded = true;
4615       assert(UseSignalChaining, "should enable signal-chaining");
4616     }
4617     if (libjsig_is_loaded) {
4618       // Tell libjsig jvm is setting signal handlers
4619       (*begin_signal_setting)();
4620     }
4621 
4622     set_signal_handler(SIGSEGV, true);
4623     set_signal_handler(SIGPIPE, true);
4624     set_signal_handler(SIGBUS, true);
4625     set_signal_handler(SIGILL, true);
4626     set_signal_handler(SIGFPE, true);
4627 #if defined(PPC64)
4628     set_signal_handler(SIGTRAP, true);
4629 #endif
4630     set_signal_handler(SIGXFSZ, true);
4631 
4632     if (libjsig_is_loaded) {
4633       // Tell libjsig jvm finishes setting signal handlers
4634       (*end_signal_setting)();
4635     }
4636 
4637     // We don't activate signal checker if libjsig is in place, we trust ourselves
4638     // and if UserSignalHandler is installed all bets are off.
4639     // Log that signal checking is off only if -verbose:jni is specified.
4640     if (CheckJNICalls) {
4641       if (libjsig_is_loaded) {
4642         if (PrintJNIResolving) {
4643           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4644         }
4645         check_signals = false;
4646       }
4647       if (AllowUserSignalHandlers) {
4648         if (PrintJNIResolving) {
4649           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4650         }
4651         check_signals = false;
4652       }
4653     }
4654   }
4655 }
4656 
4657 // This is the fastest way to get thread cpu time on Linux.
4658 // Returns cpu time (user+sys) for any thread, not only for current.
4659 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4660 // It might work on 2.6.10+ with a special kernel/glibc patch.
4661 // For reference, please, see IEEE Std 1003.1-2004:
4662 //   http://www.unix.org/single_unix_specification
4663 
4664 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4665   struct timespec tp;
4666   int rc = os::Linux::clock_gettime(clockid, &tp);
4667   assert(rc == 0, "clock_gettime is expected to return 0 code");
4668 
4669   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4670 }
4671 
4672 /////
4673 // glibc on Linux platform uses non-documented flag
4674 // to indicate, that some special sort of signal
4675 // trampoline is used.
4676 // We will never set this flag, and we should
4677 // ignore this flag in our diagnostic
4678 #ifdef SIGNIFICANT_SIGNAL_MASK
4679 #undef SIGNIFICANT_SIGNAL_MASK
4680 #endif
4681 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4682 
4683 static const char* get_signal_handler_name(address handler,
4684                                            char* buf, int buflen) {
4685   int offset = 0;
4686   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4687   if (found) {
4688     // skip directory names
4689     const char *p1, *p2;
4690     p1 = buf;
4691     size_t len = strlen(os::file_separator());
4692     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4693     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4694   } else {
4695     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4696   }
4697   return buf;
4698 }
4699 
4700 static void print_signal_handler(outputStream* st, int sig,
4701                                  char* buf, size_t buflen) {
4702   struct sigaction sa;
4703 
4704   sigaction(sig, NULL, &sa);
4705 
4706   // See comment for SIGNIFICANT_SIGNAL_MASK define
4707   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4708 
4709   st->print("%s: ", os::exception_name(sig, buf, buflen));
4710 
4711   address handler = (sa.sa_flags & SA_SIGINFO)
4712     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4713     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4714 
4715   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4716     st->print("SIG_DFL");
4717   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4718     st->print("SIG_IGN");
4719   } else {
4720     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4721   }
4722 
4723   st->print(", sa_mask[0]=");
4724   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4725 
4726   address rh = VMError::get_resetted_sighandler(sig);
4727   // May be, handler was resetted by VMError?
4728   if(rh != NULL) {
4729     handler = rh;
4730     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4731   }
4732 
4733   st->print(", sa_flags=");
4734   os::Posix::print_sa_flags(st, sa.sa_flags);
4735 
4736   // Check: is it our handler?
4737   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4738      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4739     // It is our signal handler
4740     // check for flags, reset system-used one!
4741     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4742       st->print(
4743                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4744                 os::Linux::get_our_sigflags(sig));
4745     }
4746   }
4747   st->cr();
4748 }
4749 
4750 
4751 #define DO_SIGNAL_CHECK(sig) \
4752   if (!sigismember(&check_signal_done, sig)) \
4753     os::Linux::check_signal_handler(sig)
4754 
4755 // This method is a periodic task to check for misbehaving JNI applications
4756 // under CheckJNI, we can add any periodic checks here
4757 
4758 void os::run_periodic_checks() {
4759 
4760   if (check_signals == false) return;
4761 
4762   // SEGV and BUS if overridden could potentially prevent
4763   // generation of hs*.log in the event of a crash, debugging
4764   // such a case can be very challenging, so we absolutely
4765   // check the following for a good measure:
4766   DO_SIGNAL_CHECK(SIGSEGV);
4767   DO_SIGNAL_CHECK(SIGILL);
4768   DO_SIGNAL_CHECK(SIGFPE);
4769   DO_SIGNAL_CHECK(SIGBUS);
4770   DO_SIGNAL_CHECK(SIGPIPE);
4771   DO_SIGNAL_CHECK(SIGXFSZ);
4772 #if defined(PPC64)
4773   DO_SIGNAL_CHECK(SIGTRAP);
4774 #endif
4775 
4776   // ReduceSignalUsage allows the user to override these handlers
4777   // see comments at the very top and jvm_solaris.h
4778   if (!ReduceSignalUsage) {
4779     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4780     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4781     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4782     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4783   }
4784 
4785   DO_SIGNAL_CHECK(SR_signum);
4786   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4787 }
4788 
4789 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4790 
4791 static os_sigaction_t os_sigaction = NULL;
4792 
4793 void os::Linux::check_signal_handler(int sig) {
4794   char buf[O_BUFLEN];
4795   address jvmHandler = NULL;
4796 
4797 
4798   struct sigaction act;
4799   if (os_sigaction == NULL) {
4800     // only trust the default sigaction, in case it has been interposed
4801     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4802     if (os_sigaction == NULL) return;
4803   }
4804 
4805   os_sigaction(sig, (struct sigaction*)NULL, &act);
4806 
4807 
4808   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4809 
4810   address thisHandler = (act.sa_flags & SA_SIGINFO)
4811     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4812     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4813 
4814 
4815   switch(sig) {
4816   case SIGSEGV:
4817   case SIGBUS:
4818   case SIGFPE:
4819   case SIGPIPE:
4820   case SIGILL:
4821   case SIGXFSZ:
4822     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4823     break;
4824 
4825   case SHUTDOWN1_SIGNAL:
4826   case SHUTDOWN2_SIGNAL:
4827   case SHUTDOWN3_SIGNAL:
4828   case BREAK_SIGNAL:
4829     jvmHandler = (address)user_handler();
4830     break;
4831 
4832   case INTERRUPT_SIGNAL:
4833     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4834     break;
4835 
4836   default:
4837     if (sig == SR_signum) {
4838       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4839     } else {
4840       return;
4841     }
4842     break;
4843   }
4844 
4845   if (thisHandler != jvmHandler) {
4846     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4847     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4848     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4849     // No need to check this sig any longer
4850     sigaddset(&check_signal_done, sig);
4851     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4852     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4853       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4854                     exception_name(sig, buf, O_BUFLEN));
4855     }
4856   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4857     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4858     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4859     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4860     // No need to check this sig any longer
4861     sigaddset(&check_signal_done, sig);
4862   }
4863 
4864   // Dump all the signal
4865   if (sigismember(&check_signal_done, sig)) {
4866     print_signal_handlers(tty, buf, O_BUFLEN);
4867   }
4868 }
4869 
4870 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4871 
4872 extern bool signal_name(int signo, char* buf, size_t len);
4873 
4874 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4875   if (0 < exception_code && exception_code <= SIGRTMAX) {
4876     // signal
4877     if (!signal_name(exception_code, buf, size)) {
4878       jio_snprintf(buf, size, "SIG%d", exception_code);
4879     }
4880     return buf;
4881   } else {
4882     return NULL;
4883   }
4884 }
4885 
4886 // this is called _before_ most of the global arguments have been parsed
4887 void os::init(void) {
4888   char dummy;   /* used to get a guess on initial stack address */
4889 
4890   // With LinuxThreads the JavaMain thread pid (primordial thread)
4891   // is different than the pid of the java launcher thread.
4892   // So, on Linux, the launcher thread pid is passed to the VM
4893   // via the sun.java.launcher.pid property.
4894   // Use this property instead of getpid() if it was correctly passed.
4895   // See bug 6351349.
4896   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4897 
4898   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4899 
4900   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4901 
4902   init_random(1234567);
4903 
4904   ThreadCritical::initialize();
4905 
4906   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4907   if (Linux::page_size() == -1) {
4908     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4909                   strerror(errno)));
4910   }
4911   init_page_sizes((size_t) Linux::page_size());
4912 
4913   Linux::initialize_system_info();
4914 
4915   // _main_thread points to the thread that created/loaded the JVM.
4916   Linux::_main_thread = pthread_self();
4917 
4918   Linux::clock_init();
4919   initial_time_count = javaTimeNanos();
4920 
4921   // pthread_condattr initialization for monotonic clock
4922   int status;
4923   pthread_condattr_t* _condattr = os::Linux::condAttr();
4924   if ((status = pthread_condattr_init(_condattr)) != 0) {
4925     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4926   }
4927   // Only set the clock if CLOCK_MONOTONIC is available
4928   if (Linux::supports_monotonic_clock()) {
4929     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4930       if (status == EINVAL) {
4931         warning("Unable to use monotonic clock with relative timed-waits" \
4932                 " - changes to the time-of-day clock may have adverse affects");
4933       } else {
4934         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4935       }
4936     }
4937   }
4938   // else it defaults to CLOCK_REALTIME
4939 
4940   pthread_mutex_init(&dl_mutex, NULL);
4941 
4942   // If the pagesize of the VM is greater than 8K determine the appropriate
4943   // number of initial guard pages.  The user can change this with the
4944   // command line arguments, if needed.
4945   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4946     StackYellowPages = 1;
4947     StackRedPages = 1;
4948     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4949   }
4950 }
4951 
4952 // To install functions for atexit system call
4953 extern "C" {
4954   static void perfMemory_exit_helper() {
4955     perfMemory_exit();
4956   }
4957 }
4958 
4959 // this is called _after_ the global arguments have been parsed
4960 jint os::init_2(void)
4961 {
4962   Linux::fast_thread_clock_init();
4963 
4964   // Allocate a single page and mark it as readable for safepoint polling
4965   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4966   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4967 
4968   os::set_polling_page( polling_page );
4969 
4970 #ifndef PRODUCT
4971   if(Verbose && PrintMiscellaneous)
4972     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4973 #endif
4974 
4975   if (!UseMembar) {
4976     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4977     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4978     os::set_memory_serialize_page( mem_serialize_page );
4979 
4980 #ifndef PRODUCT
4981     if(Verbose && PrintMiscellaneous)
4982       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4983 #endif
4984   }
4985 
4986   // initialize suspend/resume support - must do this before signal_sets_init()
4987   if (SR_initialize() != 0) {
4988     perror("SR_initialize failed");
4989     return JNI_ERR;
4990   }
4991 
4992   Linux::signal_sets_init();
4993   Linux::install_signal_handlers();
4994 
4995   // Check minimum allowable stack size for thread creation and to initialize
4996   // the java system classes, including StackOverflowError - depends on page
4997   // size.  Add a page for compiler2 recursion in main thread.
4998   // Add in 2*BytesPerWord times page size to account for VM stack during
4999   // class initialization depending on 32 or 64 bit VM.
5000   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
5001             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
5002                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
5003 
5004   size_t threadStackSizeInBytes = ThreadStackSize * K;
5005   if (threadStackSizeInBytes != 0 &&
5006       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
5007         tty->print_cr("\nThe stack size specified is too small, "
5008                       "Specify at least %dk",
5009                       os::Linux::min_stack_allowed/ K);
5010         return JNI_ERR;
5011   }
5012 
5013   // Make the stack size a multiple of the page size so that
5014   // the yellow/red zones can be guarded.
5015   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
5016         vm_page_size()));
5017 
5018   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5019 
5020 #if defined(IA32)
5021   workaround_expand_exec_shield_cs_limit();
5022 #endif
5023 
5024   Linux::libpthread_init();
5025   if (PrintMiscellaneous && (Verbose || WizardMode)) {
5026      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
5027           Linux::glibc_version(), Linux::libpthread_version(),
5028           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
5029   }
5030 
5031   if (UseNUMA) {
5032     if (!Linux::libnuma_init()) {
5033       UseNUMA = false;
5034     } else {
5035       if ((Linux::numa_max_node() < 1)) {
5036         // There's only one node(they start from 0), disable NUMA.
5037         UseNUMA = false;
5038       }
5039     }
5040     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5041     // we can make the adaptive lgrp chunk resizing work. If the user specified
5042     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
5043     // disable adaptive resizing.
5044     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5045       if (FLAG_IS_DEFAULT(UseNUMA)) {
5046         UseNUMA = false;
5047       } else {
5048         if (FLAG_IS_DEFAULT(UseLargePages) &&
5049             FLAG_IS_DEFAULT(UseSHM) &&
5050             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
5051           UseLargePages = false;
5052         } else {
5053           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
5054           UseAdaptiveSizePolicy = false;
5055           UseAdaptiveNUMAChunkSizing = false;
5056         }
5057       }
5058     }
5059     if (!UseNUMA && ForceNUMA) {
5060       UseNUMA = true;
5061     }
5062   }
5063 
5064   if (MaxFDLimit) {
5065     // set the number of file descriptors to max. print out error
5066     // if getrlimit/setrlimit fails but continue regardless.
5067     struct rlimit nbr_files;
5068     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5069     if (status != 0) {
5070       if (PrintMiscellaneous && (Verbose || WizardMode))
5071         perror("os::init_2 getrlimit failed");
5072     } else {
5073       nbr_files.rlim_cur = nbr_files.rlim_max;
5074       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5075       if (status != 0) {
5076         if (PrintMiscellaneous && (Verbose || WizardMode))
5077           perror("os::init_2 setrlimit failed");
5078       }
5079     }
5080   }
5081 
5082   // Initialize lock used to serialize thread creation (see os::create_thread)
5083   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5084 
5085   // at-exit methods are called in the reverse order of their registration.
5086   // atexit functions are called on return from main or as a result of a
5087   // call to exit(3C). There can be only 32 of these functions registered
5088   // and atexit() does not set errno.
5089 
5090   if (PerfAllowAtExitRegistration) {
5091     // only register atexit functions if PerfAllowAtExitRegistration is set.
5092     // atexit functions can be delayed until process exit time, which
5093     // can be problematic for embedded VM situations. Embedded VMs should
5094     // call DestroyJavaVM() to assure that VM resources are released.
5095 
5096     // note: perfMemory_exit_helper atexit function may be removed in
5097     // the future if the appropriate cleanup code can be added to the
5098     // VM_Exit VMOperation's doit method.
5099     if (atexit(perfMemory_exit_helper) != 0) {
5100       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5101     }
5102   }
5103 
5104   // initialize thread priority policy
5105   prio_init();
5106 
5107   return JNI_OK;
5108 }
5109 
5110 // Mark the polling page as unreadable
5111 void os::make_polling_page_unreadable(void) {
5112   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
5113     fatal("Could not disable polling page");
5114 };
5115 
5116 // Mark the polling page as readable
5117 void os::make_polling_page_readable(void) {
5118   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5119     fatal("Could not enable polling page");
5120   }
5121 };
5122 
5123 static int os_cpu_count(const cpu_set_t* cpus) {
5124   int count = 0;
5125   // only look up to the number of configured processors
5126   for (int i = 0; i < os::processor_count(); i++) {
5127     if (CPU_ISSET(i, cpus)) {
5128       count++;
5129     }
5130   }
5131   return count;
5132 }
5133 
5134 // Get the current number of available processors for this process.
5135 // This value can change at any time during a process's lifetime.
5136 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5137 // If anything goes wrong we fallback to returning the number of online
5138 // processors - which can be greater than the number available to the process.
5139 int os::active_processor_count() {
5140   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5141   int cpus_size = sizeof(cpu_set_t);
5142   int cpu_count = 0;
5143 
5144   // pid 0 means the current thread - which we have to assume represents the process
5145   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
5146     cpu_count = os_cpu_count(&cpus);
5147     if (PrintActiveCpus) {
5148       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5149     }
5150   }
5151   else {
5152     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5153     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5154             "which may exceed available processors", strerror(errno), cpu_count);
5155   }
5156 
5157   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5158   return cpu_count;
5159 }
5160 
5161 void os::set_native_thread_name(const char *name) {
5162   // Not yet implemented.
5163   return;
5164 }
5165 
5166 bool os::distribute_processes(uint length, uint* distribution) {
5167   // Not yet implemented.
5168   return false;
5169 }
5170 
5171 bool os::bind_to_processor(uint processor_id) {
5172   // Not yet implemented.
5173   return false;
5174 }
5175 
5176 ///
5177 
5178 void os::SuspendedThreadTask::internal_do_task() {
5179   if (do_suspend(_thread->osthread())) {
5180     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5181     do_task(context);
5182     do_resume(_thread->osthread());
5183   }
5184 }
5185 
5186 class PcFetcher : public os::SuspendedThreadTask {
5187 public:
5188   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5189   ExtendedPC result();
5190 protected:
5191   void do_task(const os::SuspendedThreadTaskContext& context);
5192 private:
5193   ExtendedPC _epc;
5194 };
5195 
5196 ExtendedPC PcFetcher::result() {
5197   guarantee(is_done(), "task is not done yet.");
5198   return _epc;
5199 }
5200 
5201 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5202   Thread* thread = context.thread();
5203   OSThread* osthread = thread->osthread();
5204   if (osthread->ucontext() != NULL) {
5205     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
5206   } else {
5207     // NULL context is unexpected, double-check this is the VMThread
5208     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5209   }
5210 }
5211 
5212 // Suspends the target using the signal mechanism and then grabs the PC before
5213 // resuming the target. Used by the flat-profiler only
5214 ExtendedPC os::get_thread_pc(Thread* thread) {
5215   // Make sure that it is called by the watcher for the VMThread
5216   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5217   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5218 
5219   PcFetcher fetcher(thread);
5220   fetcher.run();
5221   return fetcher.result();
5222 }
5223 
5224 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
5225 {
5226    if (is_NPTL()) {
5227       return pthread_cond_timedwait(_cond, _mutex, _abstime);
5228    } else {
5229       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
5230       // word back to default 64bit precision if condvar is signaled. Java
5231       // wants 53bit precision.  Save and restore current value.
5232       int fpu = get_fpu_control_word();
5233       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5234       set_fpu_control_word(fpu);
5235       return status;
5236    }
5237 }
5238 
5239 ////////////////////////////////////////////////////////////////////////////////
5240 // debug support
5241 
5242 bool os::find(address addr, outputStream* st) {
5243   Dl_info dlinfo;
5244   memset(&dlinfo, 0, sizeof(dlinfo));
5245   if (dladdr(addr, &dlinfo) != 0) {
5246     st->print(PTR_FORMAT ": ", addr);
5247     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5248       st->print("%s+%#x", dlinfo.dli_sname,
5249                  addr - (intptr_t)dlinfo.dli_saddr);
5250     } else if (dlinfo.dli_fbase != NULL) {
5251       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5252     } else {
5253       st->print("<absolute address>");
5254     }
5255     if (dlinfo.dli_fname != NULL) {
5256       st->print(" in %s", dlinfo.dli_fname);
5257     }
5258     if (dlinfo.dli_fbase != NULL) {
5259       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5260     }
5261     st->cr();
5262 
5263     if (Verbose) {
5264       // decode some bytes around the PC
5265       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5266       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5267       address       lowest = (address) dlinfo.dli_sname;
5268       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5269       if (begin < lowest)  begin = lowest;
5270       Dl_info dlinfo2;
5271       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5272           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5273         end = (address) dlinfo2.dli_saddr;
5274       Disassembler::decode(begin, end, st);
5275     }
5276     return true;
5277   }
5278   return false;
5279 }
5280 
5281 ////////////////////////////////////////////////////////////////////////////////
5282 // misc
5283 
5284 // This does not do anything on Linux. This is basically a hook for being
5285 // able to use structured exception handling (thread-local exception filters)
5286 // on, e.g., Win32.
5287 void
5288 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5289                          JavaCallArguments* args, Thread* thread) {
5290   f(value, method, args, thread);
5291 }
5292 
5293 void os::print_statistics() {
5294 }
5295 
5296 int os::message_box(const char* title, const char* message) {
5297   int i;
5298   fdStream err(defaultStream::error_fd());
5299   for (i = 0; i < 78; i++) err.print_raw("=");
5300   err.cr();
5301   err.print_raw_cr(title);
5302   for (i = 0; i < 78; i++) err.print_raw("-");
5303   err.cr();
5304   err.print_raw_cr(message);
5305   for (i = 0; i < 78; i++) err.print_raw("=");
5306   err.cr();
5307 
5308   char buf[16];
5309   // Prevent process from exiting upon "read error" without consuming all CPU
5310   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5311 
5312   return buf[0] == 'y' || buf[0] == 'Y';
5313 }
5314 
5315 int os::stat(const char *path, struct stat *sbuf) {
5316   char pathbuf[MAX_PATH];
5317   if (strlen(path) > MAX_PATH - 1) {
5318     errno = ENAMETOOLONG;
5319     return -1;
5320   }
5321   os::native_path(strcpy(pathbuf, path));
5322   return ::stat(pathbuf, sbuf);
5323 }
5324 
5325 bool os::check_heap(bool force) {
5326   return true;
5327 }
5328 
5329 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5330   return ::vsnprintf(buf, count, format, args);
5331 }
5332 
5333 // Is a (classpath) directory empty?
5334 bool os::dir_is_empty(const char* path) {
5335   DIR *dir = NULL;
5336   struct dirent *ptr;
5337 
5338   dir = opendir(path);
5339   if (dir == NULL) return true;
5340 
5341   /* Scan the directory */
5342   bool result = true;
5343   char buf[sizeof(struct dirent) + MAX_PATH];
5344   while (result && (ptr = ::readdir(dir)) != NULL) {
5345     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5346       result = false;
5347     }
5348   }
5349   closedir(dir);
5350   return result;
5351 }
5352 
5353 // This code originates from JDK's sysOpen and open64_w
5354 // from src/solaris/hpi/src/system_md.c
5355 
5356 #ifndef O_DELETE
5357 #define O_DELETE 0x10000
5358 #endif
5359 
5360 // Open a file. Unlink the file immediately after open returns
5361 // if the specified oflag has the O_DELETE flag set.
5362 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5363 
5364 int os::open(const char *path, int oflag, int mode) {
5365 
5366   if (strlen(path) > MAX_PATH - 1) {
5367     errno = ENAMETOOLONG;
5368     return -1;
5369   }
5370   int fd;
5371   int o_delete = (oflag & O_DELETE);
5372   oflag = oflag & ~O_DELETE;
5373 
5374   fd = ::open64(path, oflag, mode);
5375   if (fd == -1) return -1;
5376 
5377   //If the open succeeded, the file might still be a directory
5378   {
5379     struct stat64 buf64;
5380     int ret = ::fstat64(fd, &buf64);
5381     int st_mode = buf64.st_mode;
5382 
5383     if (ret != -1) {
5384       if ((st_mode & S_IFMT) == S_IFDIR) {
5385         errno = EISDIR;
5386         ::close(fd);
5387         return -1;
5388       }
5389     } else {
5390       ::close(fd);
5391       return -1;
5392     }
5393   }
5394 
5395     /*
5396      * All file descriptors that are opened in the JVM and not
5397      * specifically destined for a subprocess should have the
5398      * close-on-exec flag set.  If we don't set it, then careless 3rd
5399      * party native code might fork and exec without closing all
5400      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5401      * UNIXProcess.c), and this in turn might:
5402      *
5403      * - cause end-of-file to fail to be detected on some file
5404      *   descriptors, resulting in mysterious hangs, or
5405      *
5406      * - might cause an fopen in the subprocess to fail on a system
5407      *   suffering from bug 1085341.
5408      *
5409      * (Yes, the default setting of the close-on-exec flag is a Unix
5410      * design flaw)
5411      *
5412      * See:
5413      * 1085341: 32-bit stdio routines should support file descriptors >255
5414      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5415      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5416      */
5417 #ifdef FD_CLOEXEC
5418     {
5419         int flags = ::fcntl(fd, F_GETFD);
5420         if (flags != -1)
5421             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5422     }
5423 #endif
5424 
5425   if (o_delete != 0) {
5426     ::unlink(path);
5427   }
5428   return fd;
5429 }
5430 
5431 
5432 // create binary file, rewriting existing file if required
5433 int os::create_binary_file(const char* path, bool rewrite_existing) {
5434   int oflags = O_WRONLY | O_CREAT;
5435   if (!rewrite_existing) {
5436     oflags |= O_EXCL;
5437   }
5438   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5439 }
5440 
5441 // return current position of file pointer
5442 jlong os::current_file_offset(int fd) {
5443   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5444 }
5445 
5446 // move file pointer to the specified offset
5447 jlong os::seek_to_file_offset(int fd, jlong offset) {
5448   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5449 }
5450 
5451 // This code originates from JDK's sysAvailable
5452 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5453 
5454 int os::available(int fd, jlong *bytes) {
5455   jlong cur, end;
5456   int mode;
5457   struct stat64 buf64;
5458 
5459   if (::fstat64(fd, &buf64) >= 0) {
5460     mode = buf64.st_mode;
5461     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5462       /*
5463       * XXX: is the following call interruptible? If so, this might
5464       * need to go through the INTERRUPT_IO() wrapper as for other
5465       * blocking, interruptible calls in this file.
5466       */
5467       int n;
5468       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5469         *bytes = n;
5470         return 1;
5471       }
5472     }
5473   }
5474   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5475     return 0;
5476   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5477     return 0;
5478   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5479     return 0;
5480   }
5481   *bytes = end - cur;
5482   return 1;
5483 }
5484 
5485 int os::socket_available(int fd, jint *pbytes) {
5486   // Linux doc says EINTR not returned, unlike Solaris
5487   int ret = ::ioctl(fd, FIONREAD, pbytes);
5488 
5489   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5490   // is expected to return 0 on failure and 1 on success to the jdk.
5491   return (ret < 0) ? 0 : 1;
5492 }
5493 
5494 // Map a block of memory.
5495 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5496                      char *addr, size_t bytes, bool read_only,
5497                      bool allow_exec) {
5498   int prot;
5499   int flags = MAP_PRIVATE;
5500 
5501   if (read_only) {
5502     prot = PROT_READ;
5503   } else {
5504     prot = PROT_READ | PROT_WRITE;
5505   }
5506 
5507   if (allow_exec) {
5508     prot |= PROT_EXEC;
5509   }
5510 
5511   if (addr != NULL) {
5512     flags |= MAP_FIXED;
5513   }
5514 
5515   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5516                                      fd, file_offset);
5517   if (mapped_address == MAP_FAILED) {
5518     return NULL;
5519   }
5520   return mapped_address;
5521 }
5522 
5523 
5524 // Remap a block of memory.
5525 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5526                        char *addr, size_t bytes, bool read_only,
5527                        bool allow_exec) {
5528   // same as map_memory() on this OS
5529   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5530                         allow_exec);
5531 }
5532 
5533 
5534 // Unmap a block of memory.
5535 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5536   return munmap(addr, bytes) == 0;
5537 }
5538 
5539 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5540 
5541 static clockid_t thread_cpu_clockid(Thread* thread) {
5542   pthread_t tid = thread->osthread()->pthread_id();
5543   clockid_t clockid;
5544 
5545   // Get thread clockid
5546   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5547   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5548   return clockid;
5549 }
5550 
5551 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5552 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5553 // of a thread.
5554 //
5555 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5556 // the fast estimate available on the platform.
5557 
5558 jlong os::current_thread_cpu_time() {
5559   if (os::Linux::supports_fast_thread_cpu_time()) {
5560     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5561   } else {
5562     // return user + sys since the cost is the same
5563     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5564   }
5565 }
5566 
5567 jlong os::thread_cpu_time(Thread* thread) {
5568   // consistent with what current_thread_cpu_time() returns
5569   if (os::Linux::supports_fast_thread_cpu_time()) {
5570     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5571   } else {
5572     return slow_thread_cpu_time(thread, true /* user + sys */);
5573   }
5574 }
5575 
5576 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5577   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5578     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5579   } else {
5580     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5581   }
5582 }
5583 
5584 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5585   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5586     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5587   } else {
5588     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5589   }
5590 }
5591 
5592 //
5593 //  -1 on error.
5594 //
5595 
5596 PRAGMA_DIAG_PUSH
5597 PRAGMA_FORMAT_NONLITERAL_IGNORED
5598 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5599   static bool proc_task_unchecked = true;
5600   static const char *proc_stat_path = "/proc/%d/stat";
5601   pid_t  tid = thread->osthread()->thread_id();
5602   char *s;
5603   char stat[2048];
5604   int statlen;
5605   char proc_name[64];
5606   int count;
5607   long sys_time, user_time;
5608   char cdummy;
5609   int idummy;
5610   long ldummy;
5611   FILE *fp;
5612 
5613   // The /proc/<tid>/stat aggregates per-process usage on
5614   // new Linux kernels 2.6+ where NPTL is supported.
5615   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5616   // See bug 6328462.
5617   // There possibly can be cases where there is no directory
5618   // /proc/self/task, so we check its availability.
5619   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5620     // This is executed only once
5621     proc_task_unchecked = false;
5622     fp = fopen("/proc/self/task", "r");
5623     if (fp != NULL) {
5624       proc_stat_path = "/proc/self/task/%d/stat";
5625       fclose(fp);
5626     }
5627   }
5628 
5629   sprintf(proc_name, proc_stat_path, tid);
5630   fp = fopen(proc_name, "r");
5631   if ( fp == NULL ) return -1;
5632   statlen = fread(stat, 1, 2047, fp);
5633   stat[statlen] = '\0';
5634   fclose(fp);
5635 
5636   // Skip pid and the command string. Note that we could be dealing with
5637   // weird command names, e.g. user could decide to rename java launcher
5638   // to "java 1.4.2 :)", then the stat file would look like
5639   //                1234 (java 1.4.2 :)) R ... ...
5640   // We don't really need to know the command string, just find the last
5641   // occurrence of ")" and then start parsing from there. See bug 4726580.
5642   s = strrchr(stat, ')');
5643   if (s == NULL ) return -1;
5644 
5645   // Skip blank chars
5646   do s++; while (isspace(*s));
5647 
5648   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5649                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5650                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5651                  &user_time, &sys_time);
5652   if ( count != 13 ) return -1;
5653   if (user_sys_cpu_time) {
5654     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5655   } else {
5656     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5657   }
5658 }
5659 PRAGMA_DIAG_POP
5660 
5661 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5662   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5663   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5664   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5665   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5666 }
5667 
5668 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5669   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5670   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5671   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5672   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5673 }
5674 
5675 bool os::is_thread_cpu_time_supported() {
5676   return true;
5677 }
5678 
5679 // System loadavg support.  Returns -1 if load average cannot be obtained.
5680 // Linux doesn't yet have a (official) notion of processor sets,
5681 // so just return the system wide load average.
5682 int os::loadavg(double loadavg[], int nelem) {
5683   return ::getloadavg(loadavg, nelem);
5684 }
5685 
5686 void os::pause() {
5687   char filename[MAX_PATH];
5688   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5689     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5690   } else {
5691     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5692   }
5693 
5694   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5695   if (fd != -1) {
5696     struct stat buf;
5697     ::close(fd);
5698     while (::stat(filename, &buf) == 0) {
5699       (void)::poll(NULL, 0, 100);
5700     }
5701   } else {
5702     jio_fprintf(stderr,
5703       "Could not open pause file '%s', continuing immediately.\n", filename);
5704   }
5705 }
5706 
5707 
5708 // Refer to the comments in os_solaris.cpp park-unpark.
5709 //
5710 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5711 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5712 // For specifics regarding the bug see GLIBC BUGID 261237 :
5713 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5714 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5715 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5716 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5717 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5718 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5719 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5720 // of libpthread avoids the problem, but isn't practical.
5721 //
5722 // Possible remedies:
5723 //
5724 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5725 //      This is palliative and probabilistic, however.  If the thread is preempted
5726 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5727 //      than the minimum period may have passed, and the abstime may be stale (in the
5728 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5729 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5730 //
5731 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5732 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5733 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5734 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5735 //      thread.
5736 //
5737 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5738 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5739 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5740 //      This also works well.  In fact it avoids kernel-level scalability impediments
5741 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5742 //      timers in a graceful fashion.
5743 //
5744 // 4.   When the abstime value is in the past it appears that control returns
5745 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5746 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5747 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5748 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5749 //      It may be possible to avoid reinitialization by checking the return
5750 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5751 //      condvar we must establish the invariant that cond_signal() is only called
5752 //      within critical sections protected by the adjunct mutex.  This prevents
5753 //      cond_signal() from "seeing" a condvar that's in the midst of being
5754 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5755 //      desirable signal-after-unlock optimization that avoids futile context switching.
5756 //
5757 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5758 //      structure when a condvar is used or initialized.  cond_destroy()  would
5759 //      release the helper structure.  Our reinitialize-after-timedwait fix
5760 //      put excessive stress on malloc/free and locks protecting the c-heap.
5761 //
5762 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5763 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5764 // and only enabling the work-around for vulnerable environments.
5765 
5766 // utility to compute the abstime argument to timedwait:
5767 // millis is the relative timeout time
5768 // abstime will be the absolute timeout time
5769 // TODO: replace compute_abstime() with unpackTime()
5770 
5771 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5772   if (millis < 0)  millis = 0;
5773 
5774   jlong seconds = millis / 1000;
5775   millis %= 1000;
5776   if (seconds > 50000000) { // see man cond_timedwait(3T)
5777     seconds = 50000000;
5778   }
5779 
5780   if (os::Linux::supports_monotonic_clock()) {
5781     struct timespec now;
5782     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5783     assert_status(status == 0, status, "clock_gettime");
5784     abstime->tv_sec = now.tv_sec  + seconds;
5785     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5786     if (nanos >= NANOSECS_PER_SEC) {
5787       abstime->tv_sec += 1;
5788       nanos -= NANOSECS_PER_SEC;
5789     }
5790     abstime->tv_nsec = nanos;
5791   } else {
5792     struct timeval now;
5793     int status = gettimeofday(&now, NULL);
5794     assert(status == 0, "gettimeofday");
5795     abstime->tv_sec = now.tv_sec  + seconds;
5796     long usec = now.tv_usec + millis * 1000;
5797     if (usec >= 1000000) {
5798       abstime->tv_sec += 1;
5799       usec -= 1000000;
5800     }
5801     abstime->tv_nsec = usec * 1000;
5802   }
5803   return abstime;
5804 }
5805 
5806 
5807 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5808 // Conceptually TryPark() should be equivalent to park(0).
5809 
5810 int os::PlatformEvent::TryPark() {
5811   for (;;) {
5812     const int v = _Event ;
5813     guarantee ((v == 0) || (v == 1), "invariant") ;
5814     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5815   }
5816 }
5817 
5818 void os::PlatformEvent::park() {       // AKA "down()"
5819   // Invariant: Only the thread associated with the Event/PlatformEvent
5820   // may call park().
5821   // TODO: assert that _Assoc != NULL or _Assoc == Self
5822   int v ;
5823   for (;;) {
5824       v = _Event ;
5825       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5826   }
5827   guarantee (v >= 0, "invariant") ;
5828   if (v == 0) {
5829      // Do this the hard way by blocking ...
5830      int status = pthread_mutex_lock(_mutex);
5831      assert_status(status == 0, status, "mutex_lock");
5832      guarantee (_nParked == 0, "invariant") ;
5833      ++ _nParked ;
5834      while (_Event < 0) {
5835         status = pthread_cond_wait(_cond, _mutex);
5836         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5837         // Treat this the same as if the wait was interrupted
5838         if (status == ETIME) { status = EINTR; }
5839         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5840      }
5841      -- _nParked ;
5842 
5843     _Event = 0 ;
5844      status = pthread_mutex_unlock(_mutex);
5845      assert_status(status == 0, status, "mutex_unlock");
5846     // Paranoia to ensure our locked and lock-free paths interact
5847     // correctly with each other.
5848     OrderAccess::fence();
5849   }
5850   guarantee (_Event >= 0, "invariant") ;
5851 }
5852 
5853 int os::PlatformEvent::park(jlong millis) {
5854   guarantee (_nParked == 0, "invariant") ;
5855 
5856   int v ;
5857   for (;;) {
5858       v = _Event ;
5859       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5860   }
5861   guarantee (v >= 0, "invariant") ;
5862   if (v != 0) return OS_OK ;
5863 
5864   // We do this the hard way, by blocking the thread.
5865   // Consider enforcing a minimum timeout value.
5866   struct timespec abst;
5867   compute_abstime(&abst, millis);
5868 
5869   int ret = OS_TIMEOUT;
5870   int status = pthread_mutex_lock(_mutex);
5871   assert_status(status == 0, status, "mutex_lock");
5872   guarantee (_nParked == 0, "invariant") ;
5873   ++_nParked ;
5874 
5875   // Object.wait(timo) will return because of
5876   // (a) notification
5877   // (b) timeout
5878   // (c) thread.interrupt
5879   //
5880   // Thread.interrupt and object.notify{All} both call Event::set.
5881   // That is, we treat thread.interrupt as a special case of notification.
5882   // The underlying Solaris implementation, cond_timedwait, admits
5883   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5884   // JVM from making those visible to Java code.  As such, we must
5885   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5886   //
5887   // TODO: properly differentiate simultaneous notify+interrupt.
5888   // In that case, we should propagate the notify to another waiter.
5889 
5890   while (_Event < 0) {
5891     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5892     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5893       pthread_cond_destroy (_cond);
5894       pthread_cond_init (_cond, os::Linux::condAttr()) ;
5895     }
5896     assert_status(status == 0 || status == EINTR ||
5897                   status == ETIME || status == ETIMEDOUT,
5898                   status, "cond_timedwait");
5899     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5900     if (status == ETIME || status == ETIMEDOUT) break ;
5901     // We consume and ignore EINTR and spurious wakeups.
5902   }
5903   --_nParked ;
5904   if (_Event >= 0) {
5905      ret = OS_OK;
5906   }
5907   _Event = 0 ;
5908   status = pthread_mutex_unlock(_mutex);
5909   assert_status(status == 0, status, "mutex_unlock");
5910   assert (_nParked == 0, "invariant") ;
5911   // Paranoia to ensure our locked and lock-free paths interact
5912   // correctly with each other.
5913   OrderAccess::fence();
5914   return ret;
5915 }
5916 
5917 void os::PlatformEvent::unpark() {
5918   // Transitions for _Event:
5919   //    0 :=> 1
5920   //    1 :=> 1
5921   //   -1 :=> either 0 or 1; must signal target thread
5922   //          That is, we can safely transition _Event from -1 to either
5923   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5924   //          unpark() calls.
5925   // See also: "Semaphores in Plan 9" by Mullender & Cox
5926   //
5927   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5928   // that it will take two back-to-back park() calls for the owning
5929   // thread to block. This has the benefit of forcing a spurious return
5930   // from the first park() call after an unpark() call which will help
5931   // shake out uses of park() and unpark() without condition variables.
5932 
5933   if (Atomic::xchg(1, &_Event) >= 0) return;
5934 
5935   // Wait for the thread associated with the event to vacate
5936   int status = pthread_mutex_lock(_mutex);
5937   assert_status(status == 0, status, "mutex_lock");
5938   int AnyWaiters = _nParked;
5939   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5940   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5941     AnyWaiters = 0;
5942     pthread_cond_signal(_cond);
5943   }
5944   status = pthread_mutex_unlock(_mutex);
5945   assert_status(status == 0, status, "mutex_unlock");
5946   if (AnyWaiters != 0) {
5947     status = pthread_cond_signal(_cond);
5948     assert_status(status == 0, status, "cond_signal");
5949   }
5950 
5951   // Note that we signal() _after dropping the lock for "immortal" Events.
5952   // This is safe and avoids a common class of  futile wakeups.  In rare
5953   // circumstances this can cause a thread to return prematurely from
5954   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5955   // simply re-test the condition and re-park itself.
5956 }
5957 
5958 
5959 // JSR166
5960 // -------------------------------------------------------
5961 
5962 /*
5963  * The solaris and linux implementations of park/unpark are fairly
5964  * conservative for now, but can be improved. They currently use a
5965  * mutex/condvar pair, plus a a count.
5966  * Park decrements count if > 0, else does a condvar wait.  Unpark
5967  * sets count to 1 and signals condvar.  Only one thread ever waits
5968  * on the condvar. Contention seen when trying to park implies that someone
5969  * is unparking you, so don't wait. And spurious returns are fine, so there
5970  * is no need to track notifications.
5971  */
5972 
5973 /*
5974  * This code is common to linux and solaris and will be moved to a
5975  * common place in dolphin.
5976  *
5977  * The passed in time value is either a relative time in nanoseconds
5978  * or an absolute time in milliseconds. Either way it has to be unpacked
5979  * into suitable seconds and nanoseconds components and stored in the
5980  * given timespec structure.
5981  * Given time is a 64-bit value and the time_t used in the timespec is only
5982  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5983  * overflow if times way in the future are given. Further on Solaris versions
5984  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5985  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5986  * As it will be 28 years before "now + 100000000" will overflow we can
5987  * ignore overflow and just impose a hard-limit on seconds using the value
5988  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5989  * years from "now".
5990  */
5991 
5992 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5993   assert (time > 0, "convertTime");
5994   time_t max_secs = 0;
5995 
5996   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
5997     struct timeval now;
5998     int status = gettimeofday(&now, NULL);
5999     assert(status == 0, "gettimeofday");
6000 
6001     max_secs = now.tv_sec + MAX_SECS;
6002 
6003     if (isAbsolute) {
6004       jlong secs = time / 1000;
6005       if (secs > max_secs) {
6006         absTime->tv_sec = max_secs;
6007       } else {
6008         absTime->tv_sec = secs;
6009       }
6010       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
6011     } else {
6012       jlong secs = time / NANOSECS_PER_SEC;
6013       if (secs >= MAX_SECS) {
6014         absTime->tv_sec = max_secs;
6015         absTime->tv_nsec = 0;
6016       } else {
6017         absTime->tv_sec = now.tv_sec + secs;
6018         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
6019         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6020           absTime->tv_nsec -= NANOSECS_PER_SEC;
6021           ++absTime->tv_sec; // note: this must be <= max_secs
6022         }
6023       }
6024     }
6025   } else {
6026     // must be relative using monotonic clock
6027     struct timespec now;
6028     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
6029     assert_status(status == 0, status, "clock_gettime");
6030     max_secs = now.tv_sec + MAX_SECS;
6031     jlong secs = time / NANOSECS_PER_SEC;
6032     if (secs >= MAX_SECS) {
6033       absTime->tv_sec = max_secs;
6034       absTime->tv_nsec = 0;
6035     } else {
6036       absTime->tv_sec = now.tv_sec + secs;
6037       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
6038       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6039         absTime->tv_nsec -= NANOSECS_PER_SEC;
6040         ++absTime->tv_sec; // note: this must be <= max_secs
6041       }
6042     }
6043   }
6044   assert(absTime->tv_sec >= 0, "tv_sec < 0");
6045   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
6046   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
6047   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
6048 }
6049 
6050 void Parker::park(bool isAbsolute, jlong time) {
6051   // Ideally we'd do something useful while spinning, such
6052   // as calling unpackTime().
6053 
6054   // Optional fast-path check:
6055   // Return immediately if a permit is available.
6056   // We depend on Atomic::xchg() having full barrier semantics
6057   // since we are doing a lock-free update to _counter.
6058   if (Atomic::xchg(0, &_counter) > 0) return;
6059 
6060   Thread* thread = Thread::current();
6061   assert(thread->is_Java_thread(), "Must be JavaThread");
6062   JavaThread *jt = (JavaThread *)thread;
6063 
6064   // Optional optimization -- avoid state transitions if there's an interrupt pending.
6065   // Check interrupt before trying to wait
6066   if (Thread::is_interrupted(thread, false)) {
6067     return;
6068   }
6069 
6070   // Next, demultiplex/decode time arguments
6071   timespec absTime;
6072   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
6073     return;
6074   }
6075   if (time > 0) {
6076     unpackTime(&absTime, isAbsolute, time);
6077   }
6078 
6079 
6080   // Enter safepoint region
6081   // Beware of deadlocks such as 6317397.
6082   // The per-thread Parker:: mutex is a classic leaf-lock.
6083   // In particular a thread must never block on the Threads_lock while
6084   // holding the Parker:: mutex.  If safepoints are pending both the
6085   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
6086   ThreadBlockInVM tbivm(jt);
6087 
6088   // Don't wait if cannot get lock since interference arises from
6089   // unblocking.  Also. check interrupt before trying wait
6090   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
6091     return;
6092   }
6093 
6094   int status ;
6095   if (_counter > 0)  { // no wait needed
6096     _counter = 0;
6097     status = pthread_mutex_unlock(_mutex);
6098     assert (status == 0, "invariant") ;
6099     // Paranoia to ensure our locked and lock-free paths interact
6100     // correctly with each other and Java-level accesses.
6101     OrderAccess::fence();
6102     return;
6103   }
6104 
6105 #ifdef ASSERT
6106   // Don't catch signals while blocked; let the running threads have the signals.
6107   // (This allows a debugger to break into the running thread.)
6108   sigset_t oldsigs;
6109   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
6110   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
6111 #endif
6112 
6113   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
6114   jt->set_suspend_equivalent();
6115   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
6116 
6117   assert(_cur_index == -1, "invariant");
6118   if (time == 0) {
6119     _cur_index = REL_INDEX; // arbitrary choice when not timed
6120     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
6121   } else {
6122     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
6123     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
6124     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
6125       pthread_cond_destroy (&_cond[_cur_index]) ;
6126       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
6127     }
6128   }
6129   _cur_index = -1;
6130   assert_status(status == 0 || status == EINTR ||
6131                 status == ETIME || status == ETIMEDOUT,
6132                 status, "cond_timedwait");
6133 
6134 #ifdef ASSERT
6135   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
6136 #endif
6137 
6138   _counter = 0 ;
6139   status = pthread_mutex_unlock(_mutex) ;
6140   assert_status(status == 0, status, "invariant") ;
6141   // Paranoia to ensure our locked and lock-free paths interact
6142   // correctly with each other and Java-level accesses.
6143   OrderAccess::fence();
6144 
6145   // If externally suspended while waiting, re-suspend
6146   if (jt->handle_special_suspend_equivalent_condition()) {
6147     jt->java_suspend_self();
6148   }
6149 }
6150 
6151 void Parker::unpark() {
6152   int s, status ;
6153   status = pthread_mutex_lock(_mutex);
6154   assert (status == 0, "invariant") ;
6155   s = _counter;
6156   _counter = 1;
6157   if (s < 1) {
6158     // thread might be parked
6159     if (_cur_index != -1) {
6160       // thread is definitely parked
6161       if (WorkAroundNPTLTimedWaitHang) {
6162         status = pthread_cond_signal (&_cond[_cur_index]);
6163         assert (status == 0, "invariant");
6164         status = pthread_mutex_unlock(_mutex);
6165         assert (status == 0, "invariant");
6166       } else {
6167         // must capture correct index before unlocking
6168         int index = _cur_index;
6169         status = pthread_mutex_unlock(_mutex);
6170         assert (status == 0, "invariant");
6171         status = pthread_cond_signal (&_cond[index]);
6172         assert (status == 0, "invariant");
6173       }
6174     } else {
6175       pthread_mutex_unlock(_mutex);
6176       assert (status == 0, "invariant") ;
6177     }
6178   } else {
6179     pthread_mutex_unlock(_mutex);
6180     assert (status == 0, "invariant") ;
6181   }
6182 }
6183 
6184 
6185 extern char** environ;
6186 
6187 // Run the specified command in a separate process. Return its exit value,
6188 // or -1 on failure (e.g. can't fork a new process).
6189 // Unlike system(), this function can be called from signal handler. It
6190 // doesn't block SIGINT et al.
6191 int os::fork_and_exec(char* cmd) {
6192   const char * argv[4] = {"sh", "-c", cmd, NULL};
6193 
6194   pid_t pid = fork();
6195 
6196   if (pid < 0) {
6197     // fork failed
6198     return -1;
6199 
6200   } else if (pid == 0) {
6201     // child process
6202 
6203     execve("/bin/sh", (char* const*)argv, environ);
6204 
6205     // execve failed
6206     _exit(-1);
6207 
6208   } else  {
6209     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6210     // care about the actual exit code, for now.
6211 
6212     int status;
6213 
6214     // Wait for the child process to exit.  This returns immediately if
6215     // the child has already exited. */
6216     while (waitpid(pid, &status, 0) < 0) {
6217         switch (errno) {
6218         case ECHILD: return 0;
6219         case EINTR: break;
6220         default: return -1;
6221         }
6222     }
6223 
6224     if (WIFEXITED(status)) {
6225        // The child exited normally; get its exit code.
6226        return WEXITSTATUS(status);
6227     } else if (WIFSIGNALED(status)) {
6228        // The child exited because of a signal
6229        // The best value to return is 0x80 + signal number,
6230        // because that is what all Unix shells do, and because
6231        // it allows callers to distinguish between process exit and
6232        // process death by signal.
6233        return 0x80 + WTERMSIG(status);
6234     } else {
6235        // Unknown exit code; pass it through
6236        return status;
6237     }
6238   }
6239 }
6240 
6241 // is_headless_jre()
6242 //
6243 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6244 // in order to report if we are running in a headless jre
6245 //
6246 // Since JDK8 xawt/libmawt.so was moved into the same directory
6247 // as libawt.so, and renamed libawt_xawt.so
6248 //
6249 bool os::is_headless_jre() {
6250     struct stat statbuf;
6251     char buf[MAXPATHLEN];
6252     char libmawtpath[MAXPATHLEN];
6253     const char *xawtstr  = "/xawt/libmawt.so";
6254     const char *new_xawtstr = "/libawt_xawt.so";
6255     char *p;
6256 
6257     // Get path to libjvm.so
6258     os::jvm_path(buf, sizeof(buf));
6259 
6260     // Get rid of libjvm.so
6261     p = strrchr(buf, '/');
6262     if (p == NULL) return false;
6263     else *p = '\0';
6264 
6265     // Get rid of client or server
6266     p = strrchr(buf, '/');
6267     if (p == NULL) return false;
6268     else *p = '\0';
6269 
6270     // check xawt/libmawt.so
6271     strcpy(libmawtpath, buf);
6272     strcat(libmawtpath, xawtstr);
6273     if (::stat(libmawtpath, &statbuf) == 0) return false;
6274 
6275     // check libawt_xawt.so
6276     strcpy(libmawtpath, buf);
6277     strcat(libmawtpath, new_xawtstr);
6278     if (::stat(libmawtpath, &statbuf) == 0) return false;
6279 
6280     return true;
6281 }
6282 
6283 // Get the default path to the core file
6284 // Returns the length of the string
6285 int os::get_core_path(char* buffer, size_t bufferSize) {
6286   const char* p = get_current_directory(buffer, bufferSize);
6287 
6288   if (p == NULL) {
6289     assert(p != NULL, "failed to get current directory");
6290     return 0;
6291   }
6292 
6293   return strlen(buffer);
6294 }
6295 
6296 /////////////// Unit tests ///////////////
6297 
6298 #ifndef PRODUCT
6299 
6300 #define test_log(...) \
6301   do {\
6302     if (VerboseInternalVMTests) { \
6303       tty->print_cr(__VA_ARGS__); \
6304       tty->flush(); \
6305     }\
6306   } while (false)
6307 
6308 class TestReserveMemorySpecial : AllStatic {
6309  public:
6310   static void small_page_write(void* addr, size_t size) {
6311     size_t page_size = os::vm_page_size();
6312 
6313     char* end = (char*)addr + size;
6314     for (char* p = (char*)addr; p < end; p += page_size) {
6315       *p = 1;
6316     }
6317   }
6318 
6319   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6320     if (!UseHugeTLBFS) {
6321       return;
6322     }
6323 
6324     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6325 
6326     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6327 
6328     if (addr != NULL) {
6329       small_page_write(addr, size);
6330 
6331       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6332     }
6333   }
6334 
6335   static void test_reserve_memory_special_huge_tlbfs_only() {
6336     if (!UseHugeTLBFS) {
6337       return;
6338     }
6339 
6340     size_t lp = os::large_page_size();
6341 
6342     for (size_t size = lp; size <= lp * 10; size += lp) {
6343       test_reserve_memory_special_huge_tlbfs_only(size);
6344     }
6345   }
6346 
6347   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6348     size_t lp = os::large_page_size();
6349     size_t ag = os::vm_allocation_granularity();
6350 
6351     // sizes to test
6352     const size_t sizes[] = {
6353       lp, lp + ag, lp + lp / 2, lp * 2,
6354       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6355       lp * 10, lp * 10 + lp / 2
6356     };
6357     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6358 
6359     // For each size/alignment combination, we test three scenarios:
6360     // 1) with req_addr == NULL
6361     // 2) with a non-null req_addr at which we expect to successfully allocate
6362     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6363     //    expect the allocation to either fail or to ignore req_addr
6364 
6365     // Pre-allocate two areas; they shall be as large as the largest allocation
6366     //  and aligned to the largest alignment we will be testing.
6367     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6368     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6369       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6370       -1, 0);
6371     assert(mapping1 != MAP_FAILED, "should work");
6372 
6373     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6374       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6375       -1, 0);
6376     assert(mapping2 != MAP_FAILED, "should work");
6377 
6378     // Unmap the first mapping, but leave the second mapping intact: the first
6379     // mapping will serve as a value for a "good" req_addr (case 2). The second
6380     // mapping, still intact, as "bad" req_addr (case 3).
6381     ::munmap(mapping1, mapping_size);
6382 
6383     // Case 1
6384     test_log("%s, req_addr NULL:", __FUNCTION__);
6385     test_log("size            align           result");
6386 
6387     for (int i = 0; i < num_sizes; i++) {
6388       const size_t size = sizes[i];
6389       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6390         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6391         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6392             size, alignment, p, (p != NULL ? "" : "(failed)"));
6393         if (p != NULL) {
6394           assert(is_ptr_aligned(p, alignment), "must be");
6395           small_page_write(p, size);
6396           os::Linux::release_memory_special_huge_tlbfs(p, size);
6397         }
6398       }
6399     }
6400 
6401     // Case 2
6402     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6403     test_log("size            align           req_addr         result");
6404 
6405     for (int i = 0; i < num_sizes; i++) {
6406       const size_t size = sizes[i];
6407       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6408         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6409         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6410         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6411             size, alignment, req_addr, p,
6412             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6413         if (p != NULL) {
6414           assert(p == req_addr, "must be");
6415           small_page_write(p, size);
6416           os::Linux::release_memory_special_huge_tlbfs(p, size);
6417         }
6418       }
6419     }
6420 
6421     // Case 3
6422     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6423     test_log("size            align           req_addr         result");
6424 
6425     for (int i = 0; i < num_sizes; i++) {
6426       const size_t size = sizes[i];
6427       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6428         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6429         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6430         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6431             size, alignment, req_addr, p,
6432             ((p != NULL ? "" : "(failed)")));
6433         // as the area around req_addr contains already existing mappings, the API should always
6434         // return NULL (as per contract, it cannot return another address)
6435         assert(p == NULL, "must be");
6436       }
6437     }
6438 
6439     ::munmap(mapping2, mapping_size);
6440 
6441   }
6442 
6443   static void test_reserve_memory_special_huge_tlbfs() {
6444     if (!UseHugeTLBFS) {
6445       return;
6446     }
6447 
6448     test_reserve_memory_special_huge_tlbfs_only();
6449     test_reserve_memory_special_huge_tlbfs_mixed();
6450   }
6451 
6452   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6453     if (!UseSHM) {
6454       return;
6455     }
6456 
6457     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6458 
6459     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6460 
6461     if (addr != NULL) {
6462       assert(is_ptr_aligned(addr, alignment), "Check");
6463       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6464 
6465       small_page_write(addr, size);
6466 
6467       os::Linux::release_memory_special_shm(addr, size);
6468     }
6469   }
6470 
6471   static void test_reserve_memory_special_shm() {
6472     size_t lp = os::large_page_size();
6473     size_t ag = os::vm_allocation_granularity();
6474 
6475     for (size_t size = ag; size < lp * 3; size += ag) {
6476       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6477         test_reserve_memory_special_shm(size, alignment);
6478       }
6479     }
6480   }
6481 
6482   static void test() {
6483     test_reserve_memory_special_huge_tlbfs();
6484     test_reserve_memory_special_shm();
6485   }
6486 };
6487 
6488 void TestReserveMemorySpecial_test() {
6489   TestReserveMemorySpecial::test();
6490 }
6491 
6492 #endif