1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/orderAccess.inline.hpp"
  53 #include "runtime/osThread.hpp"
  54 #include "runtime/perfMemory.hpp"
  55 #include "runtime/sharedRuntime.hpp"
  56 #include "runtime/statSampler.hpp"
  57 #include "runtime/stubRoutines.hpp"
  58 #include "runtime/thread.inline.hpp"
  59 #include "runtime/threadCritical.hpp"
  60 #include "runtime/timer.hpp"
  61 #include "services/attachListener.hpp"
  62 #include "services/memTracker.hpp"
  63 #include "services/runtimeService.hpp"
  64 #include "utilities/decoder.hpp"
  65 #include "utilities/defaultStream.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/elfFile.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 // put OS-includes here
  72 # include <sys/types.h>
  73 # include <sys/mman.h>
  74 # include <sys/stat.h>
  75 # include <sys/select.h>
  76 # include <pthread.h>
  77 # include <signal.h>
  78 # include <errno.h>
  79 # include <dlfcn.h>
  80 # include <stdio.h>
  81 # include <unistd.h>
  82 # include <sys/resource.h>
  83 # include <pthread.h>
  84 # include <sys/stat.h>
  85 # include <sys/time.h>
  86 # include <sys/times.h>
  87 # include <sys/utsname.h>
  88 # include <sys/socket.h>
  89 # include <sys/wait.h>
  90 # include <pwd.h>
  91 # include <poll.h>
  92 # include <semaphore.h>
  93 # include <fcntl.h>
  94 # include <string.h>
  95 # include <syscall.h>
  96 # include <sys/sysinfo.h>
  97 # include <gnu/libc-version.h>
  98 # include <sys/ipc.h>
  99 # include <sys/shm.h>
 100 # include <link.h>
 101 # include <stdint.h>
 102 # include <inttypes.h>
 103 # include <sys/ioctl.h>
 104 
 105 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 106 
 107 #ifndef _GNU_SOURCE
 108   #define _GNU_SOURCE
 109   #include <sched.h>
 110   #undef _GNU_SOURCE
 111 #else
 112   #include <sched.h>
 113 #endif
 114 
 115 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 116 // getrusage() is prepared to handle the associated failure.
 117 #ifndef RUSAGE_THREAD
 118 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 119 #endif
 120 
 121 #define MAX_PATH    (2 * K)
 122 
 123 #define MAX_SECS 100000000
 124 
 125 // for timer info max values which include all bits
 126 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 127 
 128 #define LARGEPAGES_BIT (1 << 6)
 129 ////////////////////////////////////////////////////////////////////////////////
 130 // global variables
 131 julong os::Linux::_physical_memory = 0;
 132 
 133 address   os::Linux::_initial_thread_stack_bottom = NULL;
 134 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 135 
 136 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 137 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 138 Mutex* os::Linux::_createThread_lock = NULL;
 139 pthread_t os::Linux::_main_thread;
 140 int os::Linux::_page_size = -1;
 141 const int os::Linux::_vm_default_page_size = (8 * K);
 142 bool os::Linux::_is_floating_stack = false;
 143 bool os::Linux::_is_NPTL = false;
 144 bool os::Linux::_supports_fast_thread_cpu_time = false;
 145 const char * os::Linux::_glibc_version = NULL;
 146 const char * os::Linux::_libpthread_version = NULL;
 147 pthread_condattr_t os::Linux::_condattr[1];
 148 
 149 static jlong initial_time_count=0;
 150 
 151 static int clock_tics_per_sec = 100;
 152 
 153 // For diagnostics to print a message once. see run_periodic_checks
 154 static sigset_t check_signal_done;
 155 static bool check_signals = true;
 156 
 157 static pid_t _initial_pid = 0;
 158 
 159 /* Signal number used to suspend/resume a thread */
 160 
 161 /* do not use any signal number less than SIGSEGV, see 4355769 */
 162 static int SR_signum = SIGUSR2;
 163 sigset_t SR_sigset;
 164 
 165 /* Used to protect dlsym() calls */
 166 static pthread_mutex_t dl_mutex;
 167 
 168 // Declarations
 169 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 170 
 171 // utility functions
 172 
 173 static int SR_initialize();
 174 
 175 julong os::available_memory() {
 176   return Linux::available_memory();
 177 }
 178 
 179 julong os::Linux::available_memory() {
 180   // values in struct sysinfo are "unsigned long"
 181   struct sysinfo si;
 182   sysinfo(&si);
 183 
 184   return (julong)si.freeram * si.mem_unit;
 185 }
 186 
 187 julong os::physical_memory() {
 188   return Linux::physical_memory();
 189 }
 190 
 191 ////////////////////////////////////////////////////////////////////////////////
 192 // environment support
 193 
 194 bool os::getenv(const char* name, char* buf, int len) {
 195   const char* val = ::getenv(name);
 196   if (val != NULL && strlen(val) < (size_t)len) {
 197     strcpy(buf, val);
 198     return true;
 199   }
 200   if (len > 0) buf[0] = 0;  // return a null string
 201   return false;
 202 }
 203 
 204 
 205 // Return true if user is running as root.
 206 
 207 bool os::have_special_privileges() {
 208   static bool init = false;
 209   static bool privileges = false;
 210   if (!init) {
 211     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 212     init = true;
 213   }
 214   return privileges;
 215 }
 216 
 217 
 218 #ifndef SYS_gettid
 219 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 220   #ifdef __ia64__
 221     #define SYS_gettid 1105
 222   #else
 223     #ifdef __i386__
 224       #define SYS_gettid 224
 225     #else
 226       #ifdef __amd64__
 227         #define SYS_gettid 186
 228       #else
 229         #ifdef __sparc__
 230           #define SYS_gettid 143
 231         #else
 232           #error define gettid for the arch
 233         #endif
 234       #endif
 235     #endif
 236   #endif
 237 #endif
 238 
 239 // Cpu architecture string
 240 static char cpu_arch[] = HOTSPOT_LIB_ARCH;
 241 
 242 // pid_t gettid()
 243 //
 244 // Returns the kernel thread id of the currently running thread. Kernel
 245 // thread id is used to access /proc.
 246 //
 247 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 248 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 249 //
 250 pid_t os::Linux::gettid() {
 251   int rslt = syscall(SYS_gettid);
 252   if (rslt == -1) {
 253      // old kernel, no NPTL support
 254      return getpid();
 255   } else {
 256      return (pid_t)rslt;
 257   }
 258 }
 259 
 260 // Most versions of linux have a bug where the number of processors are
 261 // determined by looking at the /proc file system.  In a chroot environment,
 262 // the system call returns 1.  This causes the VM to act as if it is
 263 // a single processor and elide locking (see is_MP() call).
 264 static bool unsafe_chroot_detected = false;
 265 static const char *unstable_chroot_error = "/proc file system not found.\n"
 266                      "Java may be unstable running multithreaded in a chroot "
 267                      "environment on Linux when /proc filesystem is not mounted.";
 268 
 269 void os::Linux::initialize_system_info() {
 270   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 271   if (processor_count() == 1) {
 272     pid_t pid = os::Linux::gettid();
 273     char fname[32];
 274     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 275     FILE *fp = fopen(fname, "r");
 276     if (fp == NULL) {
 277       unsafe_chroot_detected = true;
 278     } else {
 279       fclose(fp);
 280     }
 281   }
 282   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 283   assert(processor_count() > 0, "linux error");
 284 }
 285 
 286 void os::init_system_properties_values() {
 287   // The next steps are taken in the product version:
 288   //
 289   // Obtain the JAVA_HOME value from the location of libjvm.so.
 290   // This library should be located at:
 291   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 292   //
 293   // If "/jre/lib/" appears at the right place in the path, then we
 294   // assume libjvm.so is installed in a JDK and we use this path.
 295   //
 296   // Otherwise exit with message: "Could not create the Java virtual machine."
 297   //
 298   // The following extra steps are taken in the debugging version:
 299   //
 300   // If "/jre/lib/" does NOT appear at the right place in the path
 301   // instead of exit check for $JAVA_HOME environment variable.
 302   //
 303   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 304   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 305   // it looks like libjvm.so is installed there
 306   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 307   //
 308   // Otherwise exit.
 309   //
 310   // Important note: if the location of libjvm.so changes this
 311   // code needs to be changed accordingly.
 312 
 313 // See ld(1):
 314 //      The linker uses the following search paths to locate required
 315 //      shared libraries:
 316 //        1: ...
 317 //        ...
 318 //        7: The default directories, normally /lib and /usr/lib.
 319 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 320 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 321 #else
 322 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 323 #endif
 324 
 325 // Base path of extensions installed on the system.
 326 #define SYS_EXT_DIR     "/usr/java/packages"
 327 #define EXTENSIONS_DIR  "/lib/ext"
 328 #define ENDORSED_DIR    "/lib/endorsed"
 329 
 330   // Buffer that fits several sprintfs.
 331   // Note that the space for the colon and the trailing null are provided
 332   // by the nulls included by the sizeof operator.
 333   const size_t bufsize =
 334     MAX3((size_t)MAXPATHLEN,  // For dll_dir & friends.
 335          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR), // extensions dir
 336          (size_t)MAXPATHLEN + sizeof(ENDORSED_DIR)); // endorsed dir
 337   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 338 
 339   // sysclasspath, java_home, dll_dir
 340   {
 341     char *pslash;
 342     os::jvm_path(buf, bufsize);
 343 
 344     // Found the full path to libjvm.so.
 345     // Now cut the path to <java_home>/jre if we can.
 346     *(strrchr(buf, '/')) = '\0'; // Get rid of /libjvm.so.
 347     pslash = strrchr(buf, '/');
 348     if (pslash != NULL) {
 349       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 350     }
 351     Arguments::set_dll_dir(buf);
 352 
 353     if (pslash != NULL) {
 354       pslash = strrchr(buf, '/');
 355       if (pslash != NULL) {
 356         *pslash = '\0';          // Get rid of /<arch>.
 357         pslash = strrchr(buf, '/');
 358         if (pslash != NULL) {
 359           *pslash = '\0';        // Get rid of /lib.
 360         }
 361       }
 362     }
 363     Arguments::set_java_home(buf);
 364     set_boot_path('/', ':');
 365   }
 366 
 367   // Where to look for native libraries.
 368   //
 369   // Note: Due to a legacy implementation, most of the library path
 370   // is set in the launcher. This was to accomodate linking restrictions
 371   // on legacy Linux implementations (which are no longer supported).
 372   // Eventually, all the library path setting will be done here.
 373   //
 374   // However, to prevent the proliferation of improperly built native
 375   // libraries, the new path component /usr/java/packages is added here.
 376   // Eventually, all the library path setting will be done here.
 377   {
 378     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 379     // should always exist (until the legacy problem cited above is
 380     // addressed).
 381     const char *v = ::getenv("LD_LIBRARY_PATH");
 382     const char *v_colon = ":";
 383     if (v == NULL) { v = ""; v_colon = ""; }
 384     // That's +1 for the colon and +1 for the trailing '\0'.
 385     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 386                                                      strlen(v) + 1 +
 387                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH) + 1,
 388                                                      mtInternal);
 389     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib/%s:" DEFAULT_LIBPATH, v, v_colon, cpu_arch);
 390     Arguments::set_library_path(ld_library_path);
 391     FREE_C_HEAP_ARRAY(char, ld_library_path, mtInternal);
 392   }
 393 
 394   // Extensions directories.
 395   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 396   Arguments::set_ext_dirs(buf);
 397 
 398   // Endorsed standards default directory.
 399   sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 400   Arguments::set_endorsed_dirs(buf);
 401 
 402   FREE_C_HEAP_ARRAY(char, buf, mtInternal);
 403 
 404 #undef DEFAULT_LIBPATH
 405 #undef SYS_EXT_DIR
 406 #undef EXTENSIONS_DIR
 407 #undef ENDORSED_DIR
 408 }
 409 
 410 ////////////////////////////////////////////////////////////////////////////////
 411 // breakpoint support
 412 
 413 void os::breakpoint() {
 414   BREAKPOINT;
 415 }
 416 
 417 extern "C" void breakpoint() {
 418   // use debugger to set breakpoint here
 419 }
 420 
 421 ////////////////////////////////////////////////////////////////////////////////
 422 // signal support
 423 
 424 debug_only(static bool signal_sets_initialized = false);
 425 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 426 
 427 bool os::Linux::is_sig_ignored(int sig) {
 428       struct sigaction oact;
 429       sigaction(sig, (struct sigaction*)NULL, &oact);
 430       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 431                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 432       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 433            return true;
 434       else
 435            return false;
 436 }
 437 
 438 void os::Linux::signal_sets_init() {
 439   // Should also have an assertion stating we are still single-threaded.
 440   assert(!signal_sets_initialized, "Already initialized");
 441   // Fill in signals that are necessarily unblocked for all threads in
 442   // the VM. Currently, we unblock the following signals:
 443   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 444   //                         by -Xrs (=ReduceSignalUsage));
 445   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 446   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 447   // the dispositions or masks wrt these signals.
 448   // Programs embedding the VM that want to use the above signals for their
 449   // own purposes must, at this time, use the "-Xrs" option to prevent
 450   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 451   // (See bug 4345157, and other related bugs).
 452   // In reality, though, unblocking these signals is really a nop, since
 453   // these signals are not blocked by default.
 454   sigemptyset(&unblocked_sigs);
 455   sigemptyset(&allowdebug_blocked_sigs);
 456   sigaddset(&unblocked_sigs, SIGILL);
 457   sigaddset(&unblocked_sigs, SIGSEGV);
 458   sigaddset(&unblocked_sigs, SIGBUS);
 459   sigaddset(&unblocked_sigs, SIGFPE);
 460 #if defined(PPC64)
 461   sigaddset(&unblocked_sigs, SIGTRAP);
 462 #endif
 463   sigaddset(&unblocked_sigs, SR_signum);
 464 
 465   if (!ReduceSignalUsage) {
 466    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 467       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 468       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 469    }
 470    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 471       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 472       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 473    }
 474    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 475       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 476       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 477    }
 478   }
 479   // Fill in signals that are blocked by all but the VM thread.
 480   sigemptyset(&vm_sigs);
 481   if (!ReduceSignalUsage)
 482     sigaddset(&vm_sigs, BREAK_SIGNAL);
 483   debug_only(signal_sets_initialized = true);
 484 
 485 }
 486 
 487 // These are signals that are unblocked while a thread is running Java.
 488 // (For some reason, they get blocked by default.)
 489 sigset_t* os::Linux::unblocked_signals() {
 490   assert(signal_sets_initialized, "Not initialized");
 491   return &unblocked_sigs;
 492 }
 493 
 494 // These are the signals that are blocked while a (non-VM) thread is
 495 // running Java. Only the VM thread handles these signals.
 496 sigset_t* os::Linux::vm_signals() {
 497   assert(signal_sets_initialized, "Not initialized");
 498   return &vm_sigs;
 499 }
 500 
 501 // These are signals that are blocked during cond_wait to allow debugger in
 502 sigset_t* os::Linux::allowdebug_blocked_signals() {
 503   assert(signal_sets_initialized, "Not initialized");
 504   return &allowdebug_blocked_sigs;
 505 }
 506 
 507 void os::Linux::hotspot_sigmask(Thread* thread) {
 508 
 509   //Save caller's signal mask before setting VM signal mask
 510   sigset_t caller_sigmask;
 511   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 512 
 513   OSThread* osthread = thread->osthread();
 514   osthread->set_caller_sigmask(caller_sigmask);
 515 
 516   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 517 
 518   if (!ReduceSignalUsage) {
 519     if (thread->is_VM_thread()) {
 520       // Only the VM thread handles BREAK_SIGNAL ...
 521       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 522     } else {
 523       // ... all other threads block BREAK_SIGNAL
 524       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 525     }
 526   }
 527 }
 528 
 529 //////////////////////////////////////////////////////////////////////////////
 530 // detecting pthread library
 531 
 532 void os::Linux::libpthread_init() {
 533   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 534   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 535   // generic name for earlier versions.
 536   // Define macros here so we can build HotSpot on old systems.
 537 # ifndef _CS_GNU_LIBC_VERSION
 538 # define _CS_GNU_LIBC_VERSION 2
 539 # endif
 540 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 541 # define _CS_GNU_LIBPTHREAD_VERSION 3
 542 # endif
 543 
 544   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 545   if (n > 0) {
 546      char *str = (char *)malloc(n, mtInternal);
 547      confstr(_CS_GNU_LIBC_VERSION, str, n);
 548      os::Linux::set_glibc_version(str);
 549   } else {
 550      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 551      static char _gnu_libc_version[32];
 552      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 553               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 554      os::Linux::set_glibc_version(_gnu_libc_version);
 555   }
 556 
 557   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 558   if (n > 0) {
 559      char *str = (char *)malloc(n, mtInternal);
 560      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 561      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 562      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 563      // is the case. LinuxThreads has a hard limit on max number of threads.
 564      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 565      // On the other hand, NPTL does not have such a limit, sysconf()
 566      // will return -1 and errno is not changed. Check if it is really NPTL.
 567      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 568          strstr(str, "NPTL") &&
 569          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 570        free(str);
 571        os::Linux::set_libpthread_version("linuxthreads");
 572      } else {
 573        os::Linux::set_libpthread_version(str);
 574      }
 575   } else {
 576     // glibc before 2.3.2 only has LinuxThreads.
 577     os::Linux::set_libpthread_version("linuxthreads");
 578   }
 579 
 580   if (strstr(libpthread_version(), "NPTL")) {
 581      os::Linux::set_is_NPTL();
 582   } else {
 583      os::Linux::set_is_LinuxThreads();
 584   }
 585 
 586   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 587   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 588   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 589      os::Linux::set_is_floating_stack();
 590   }
 591 }
 592 
 593 /////////////////////////////////////////////////////////////////////////////
 594 // thread stack
 595 
 596 // Force Linux kernel to expand current thread stack. If "bottom" is close
 597 // to the stack guard, caller should block all signals.
 598 //
 599 // MAP_GROWSDOWN:
 600 //   A special mmap() flag that is used to implement thread stacks. It tells
 601 //   kernel that the memory region should extend downwards when needed. This
 602 //   allows early versions of LinuxThreads to only mmap the first few pages
 603 //   when creating a new thread. Linux kernel will automatically expand thread
 604 //   stack as needed (on page faults).
 605 //
 606 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 607 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 608 //   region, it's hard to tell if the fault is due to a legitimate stack
 609 //   access or because of reading/writing non-exist memory (e.g. buffer
 610 //   overrun). As a rule, if the fault happens below current stack pointer,
 611 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 612 //   application (see Linux kernel fault.c).
 613 //
 614 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 615 //   stack overflow detection.
 616 //
 617 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 618 //   not use this flag. However, the stack of initial thread is not created
 619 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 620 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 621 //   and then attach the thread to JVM.
 622 //
 623 // To get around the problem and allow stack banging on Linux, we need to
 624 // manually expand thread stack after receiving the SIGSEGV.
 625 //
 626 // There are two ways to expand thread stack to address "bottom", we used
 627 // both of them in JVM before 1.5:
 628 //   1. adjust stack pointer first so that it is below "bottom", and then
 629 //      touch "bottom"
 630 //   2. mmap() the page in question
 631 //
 632 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 633 // if current sp is already near the lower end of page 101, and we need to
 634 // call mmap() to map page 100, it is possible that part of the mmap() frame
 635 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 636 // That will destroy the mmap() frame and cause VM to crash.
 637 //
 638 // The following code works by adjusting sp first, then accessing the "bottom"
 639 // page to force a page fault. Linux kernel will then automatically expand the
 640 // stack mapping.
 641 //
 642 // _expand_stack_to() assumes its frame size is less than page size, which
 643 // should always be true if the function is not inlined.
 644 
 645 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 646 #define NOINLINE
 647 #else
 648 #define NOINLINE __attribute__ ((noinline))
 649 #endif
 650 
 651 static void _expand_stack_to(address bottom) NOINLINE;
 652 
 653 static void _expand_stack_to(address bottom) {
 654   address sp;
 655   size_t size;
 656   volatile char *p;
 657 
 658   // Adjust bottom to point to the largest address within the same page, it
 659   // gives us a one-page buffer if alloca() allocates slightly more memory.
 660   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 661   bottom += os::Linux::page_size() - 1;
 662 
 663   // sp might be slightly above current stack pointer; if that's the case, we
 664   // will alloca() a little more space than necessary, which is OK. Don't use
 665   // os::current_stack_pointer(), as its result can be slightly below current
 666   // stack pointer, causing us to not alloca enough to reach "bottom".
 667   sp = (address)&sp;
 668 
 669   if (sp > bottom) {
 670     size = sp - bottom;
 671     p = (volatile char *)alloca(size);
 672     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 673     p[0] = '\0';
 674   }
 675 }
 676 
 677 void os::Linux::expand_stack_to(address bottom) {
 678   _expand_stack_to(bottom);
 679 }
 680 
 681 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 682   assert(t!=NULL, "just checking");
 683   assert(t->osthread()->expanding_stack(), "expand should be set");
 684   assert(t->stack_base() != NULL, "stack_base was not initialized");
 685 
 686   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 687     sigset_t mask_all, old_sigset;
 688     sigfillset(&mask_all);
 689     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 690     _expand_stack_to(addr);
 691     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 692     return true;
 693   }
 694   return false;
 695 }
 696 
 697 //////////////////////////////////////////////////////////////////////////////
 698 // create new thread
 699 
 700 static address highest_vm_reserved_address();
 701 
 702 // check if it's safe to start a new thread
 703 static bool _thread_safety_check(Thread* thread) {
 704   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 705     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 706     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 707     //   allocated (MAP_FIXED) from high address space. Every thread stack
 708     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 709     //   it to other values if they rebuild LinuxThreads).
 710     //
 711     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 712     // the memory region has already been mmap'ed. That means if we have too
 713     // many threads and/or very large heap, eventually thread stack will
 714     // collide with heap.
 715     //
 716     // Here we try to prevent heap/stack collision by comparing current
 717     // stack bottom with the highest address that has been mmap'ed by JVM
 718     // plus a safety margin for memory maps created by native code.
 719     //
 720     // This feature can be disabled by setting ThreadSafetyMargin to 0
 721     //
 722     if (ThreadSafetyMargin > 0) {
 723       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 724 
 725       // not safe if our stack extends below the safety margin
 726       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 727     } else {
 728       return true;
 729     }
 730   } else {
 731     // Floating stack LinuxThreads or NPTL:
 732     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 733     //   there's not enough space left, pthread_create() will fail. If we come
 734     //   here, that means enough space has been reserved for stack.
 735     return true;
 736   }
 737 }
 738 
 739 // Thread start routine for all newly created threads
 740 static void *java_start(Thread *thread) {
 741   // Try to randomize the cache line index of hot stack frames.
 742   // This helps when threads of the same stack traces evict each other's
 743   // cache lines. The threads can be either from the same JVM instance, or
 744   // from different JVM instances. The benefit is especially true for
 745   // processors with hyperthreading technology.
 746   static int counter = 0;
 747   int pid = os::current_process_id();
 748   alloca(((pid ^ counter++) & 7) * 128);
 749 
 750   ThreadLocalStorage::set_thread(thread);
 751 
 752   OSThread* osthread = thread->osthread();
 753   Monitor* sync = osthread->startThread_lock();
 754 
 755   // non floating stack LinuxThreads needs extra check, see above
 756   if (!_thread_safety_check(thread)) {
 757     // notify parent thread
 758     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 759     osthread->set_state(ZOMBIE);
 760     sync->notify_all();
 761     return NULL;
 762   }
 763 
 764   // thread_id is kernel thread id (similar to Solaris LWP id)
 765   osthread->set_thread_id(os::Linux::gettid());
 766 
 767   if (UseNUMA) {
 768     int lgrp_id = os::numa_get_group_id();
 769     if (lgrp_id != -1) {
 770       thread->set_lgrp_id(lgrp_id);
 771     }
 772   }
 773   // initialize signal mask for this thread
 774   os::Linux::hotspot_sigmask(thread);
 775 
 776   // initialize floating point control register
 777   os::Linux::init_thread_fpu_state();
 778 
 779   // handshaking with parent thread
 780   {
 781     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 782 
 783     // notify parent thread
 784     osthread->set_state(INITIALIZED);
 785     sync->notify_all();
 786 
 787     // wait until os::start_thread()
 788     while (osthread->get_state() == INITIALIZED) {
 789       sync->wait(Mutex::_no_safepoint_check_flag);
 790     }
 791   }
 792 
 793   // call one more level start routine
 794   thread->run();
 795 
 796   return 0;
 797 }
 798 
 799 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 800   assert(thread->osthread() == NULL, "caller responsible");
 801 
 802   // Allocate the OSThread object
 803   OSThread* osthread = new OSThread(NULL, NULL);
 804   if (osthread == NULL) {
 805     return false;
 806   }
 807 
 808   // set the correct thread state
 809   osthread->set_thread_type(thr_type);
 810 
 811   // Initial state is ALLOCATED but not INITIALIZED
 812   osthread->set_state(ALLOCATED);
 813 
 814   thread->set_osthread(osthread);
 815 
 816   // init thread attributes
 817   pthread_attr_t attr;
 818   pthread_attr_init(&attr);
 819   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 820 
 821   // stack size
 822   if (os::Linux::supports_variable_stack_size()) {
 823     // calculate stack size if it's not specified by caller
 824     if (stack_size == 0) {
 825       stack_size = os::Linux::default_stack_size(thr_type);
 826 
 827       switch (thr_type) {
 828       case os::java_thread:
 829         // Java threads use ThreadStackSize which default value can be
 830         // changed with the flag -Xss
 831         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 832         stack_size = JavaThread::stack_size_at_create();
 833         break;
 834       case os::compiler_thread:
 835         if (CompilerThreadStackSize > 0) {
 836           stack_size = (size_t)(CompilerThreadStackSize * K);
 837           break;
 838         } // else fall through:
 839           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 840       case os::vm_thread:
 841       case os::pgc_thread:
 842       case os::cgc_thread:
 843       case os::watcher_thread:
 844         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 845         break;
 846       }
 847     }
 848 
 849     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 850     pthread_attr_setstacksize(&attr, stack_size);
 851   } else {
 852     // let pthread_create() pick the default value.
 853   }
 854 
 855   // glibc guard page
 856   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 857 
 858   ThreadState state;
 859 
 860   {
 861     // Serialize thread creation if we are running with fixed stack LinuxThreads
 862     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 863     if (lock) {
 864       os::Linux::createThread_lock()->lock_without_safepoint_check();
 865     }
 866 
 867     pthread_t tid;
 868     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 869 
 870     pthread_attr_destroy(&attr);
 871 
 872     if (ret != 0) {
 873       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 874         perror("pthread_create()");
 875       }
 876       // Need to clean up stuff we've allocated so far
 877       thread->set_osthread(NULL);
 878       delete osthread;
 879       if (lock) os::Linux::createThread_lock()->unlock();
 880       return false;
 881     }
 882 
 883     // Store pthread info into the OSThread
 884     osthread->set_pthread_id(tid);
 885 
 886     // Wait until child thread is either initialized or aborted
 887     {
 888       Monitor* sync_with_child = osthread->startThread_lock();
 889       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 890       while ((state = osthread->get_state()) == ALLOCATED) {
 891         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 892       }
 893     }
 894 
 895     if (lock) {
 896       os::Linux::createThread_lock()->unlock();
 897     }
 898   }
 899 
 900   // Aborted due to thread limit being reached
 901   if (state == ZOMBIE) {
 902       thread->set_osthread(NULL);
 903       delete osthread;
 904       return false;
 905   }
 906 
 907   // The thread is returned suspended (in state INITIALIZED),
 908   // and is started higher up in the call chain
 909   assert(state == INITIALIZED, "race condition");
 910   return true;
 911 }
 912 
 913 /////////////////////////////////////////////////////////////////////////////
 914 // attach existing thread
 915 
 916 // bootstrap the main thread
 917 bool os::create_main_thread(JavaThread* thread) {
 918   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 919   return create_attached_thread(thread);
 920 }
 921 
 922 bool os::create_attached_thread(JavaThread* thread) {
 923 #ifdef ASSERT
 924     thread->verify_not_published();
 925 #endif
 926 
 927   // Allocate the OSThread object
 928   OSThread* osthread = new OSThread(NULL, NULL);
 929 
 930   if (osthread == NULL) {
 931     return false;
 932   }
 933 
 934   // Store pthread info into the OSThread
 935   osthread->set_thread_id(os::Linux::gettid());
 936   osthread->set_pthread_id(::pthread_self());
 937 
 938   // initialize floating point control register
 939   os::Linux::init_thread_fpu_state();
 940 
 941   // Initial thread state is RUNNABLE
 942   osthread->set_state(RUNNABLE);
 943 
 944   thread->set_osthread(osthread);
 945 
 946   if (UseNUMA) {
 947     int lgrp_id = os::numa_get_group_id();
 948     if (lgrp_id != -1) {
 949       thread->set_lgrp_id(lgrp_id);
 950     }
 951   }
 952 
 953   if (os::is_primordial_thread()) {
 954     // If current thread is primordial thread, its stack is mapped on demand,
 955     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 956     // the entire stack region to avoid SEGV in stack banging.
 957     // It is also useful to get around the heap-stack-gap problem on SuSE
 958     // kernel (see 4821821 for details). We first expand stack to the top
 959     // of yellow zone, then enable stack yellow zone (order is significant,
 960     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 961     // is no gap between the last two virtual memory regions.
 962 
 963     JavaThread *jt = (JavaThread *)thread;
 964     address addr = jt->stack_yellow_zone_base();
 965     assert(addr != NULL, "initialization problem?");
 966     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 967 
 968     osthread->set_expanding_stack();
 969     os::Linux::manually_expand_stack(jt, addr);
 970     osthread->clear_expanding_stack();
 971   }
 972 
 973   // initialize signal mask for this thread
 974   // and save the caller's signal mask
 975   os::Linux::hotspot_sigmask(thread);
 976 
 977   return true;
 978 }
 979 
 980 void os::pd_start_thread(Thread* thread) {
 981   OSThread * osthread = thread->osthread();
 982   assert(osthread->get_state() != INITIALIZED, "just checking");
 983   Monitor* sync_with_child = osthread->startThread_lock();
 984   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 985   sync_with_child->notify();
 986 }
 987 
 988 // Free Linux resources related to the OSThread
 989 void os::free_thread(OSThread* osthread) {
 990   assert(osthread != NULL, "osthread not set");
 991 
 992   if (Thread::current()->osthread() == osthread) {
 993     // Restore caller's signal mask
 994     sigset_t sigmask = osthread->caller_sigmask();
 995     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 996    }
 997 
 998   delete osthread;
 999 }
1000 
1001 //////////////////////////////////////////////////////////////////////////////
1002 // thread local storage
1003 
1004 // Restore the thread pointer if the destructor is called. This is in case
1005 // someone from JNI code sets up a destructor with pthread_key_create to run
1006 // detachCurrentThread on thread death. Unless we restore the thread pointer we
1007 // will hang or crash. When detachCurrentThread is called the key will be set
1008 // to null and we will not be called again. If detachCurrentThread is never
1009 // called we could loop forever depending on the pthread implementation.
1010 static void restore_thread_pointer(void* p) {
1011   Thread* thread = (Thread*) p;
1012   os::thread_local_storage_at_put(ThreadLocalStorage::thread_index(), thread);
1013 }
1014 
1015 int os::allocate_thread_local_storage() {
1016   pthread_key_t key;
1017   int rslt = pthread_key_create(&key, restore_thread_pointer);
1018   assert(rslt == 0, "cannot allocate thread local storage");
1019   return (int)key;
1020 }
1021 
1022 // Note: This is currently not used by VM, as we don't destroy TLS key
1023 // on VM exit.
1024 void os::free_thread_local_storage(int index) {
1025   int rslt = pthread_key_delete((pthread_key_t)index);
1026   assert(rslt == 0, "invalid index");
1027 }
1028 
1029 void os::thread_local_storage_at_put(int index, void* value) {
1030   int rslt = pthread_setspecific((pthread_key_t)index, value);
1031   assert(rslt == 0, "pthread_setspecific failed");
1032 }
1033 
1034 extern "C" Thread* get_thread() {
1035   return ThreadLocalStorage::thread();
1036 }
1037 
1038 //////////////////////////////////////////////////////////////////////////////
1039 // primordial thread
1040 
1041 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1042 bool os::is_primordial_thread(void) {
1043   char dummy;
1044   // If called before init complete, thread stack bottom will be null.
1045   // Can be called if fatal error occurs before initialization.
1046   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1047   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1048          os::Linux::initial_thread_stack_size()   != 0,
1049          "os::init did not locate primordial thread's stack region");
1050   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1051       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1052                         os::Linux::initial_thread_stack_size()) {
1053        return true;
1054   } else {
1055        return false;
1056   }
1057 }
1058 
1059 // Find the virtual memory area that contains addr
1060 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1061   FILE *fp = fopen("/proc/self/maps", "r");
1062   if (fp) {
1063     address low, high;
1064     while (!feof(fp)) {
1065       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1066         if (low <= addr && addr < high) {
1067            if (vma_low)  *vma_low  = low;
1068            if (vma_high) *vma_high = high;
1069            fclose (fp);
1070            return true;
1071         }
1072       }
1073       for (;;) {
1074         int ch = fgetc(fp);
1075         if (ch == EOF || ch == (int)'\n') break;
1076       }
1077     }
1078     fclose(fp);
1079   }
1080   return false;
1081 }
1082 
1083 // Locate primordial thread stack. This special handling of primordial thread stack
1084 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1085 // bogus value for the primordial process thread. While the launcher has created
1086 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1087 // JNI invocation API from a primordial thread.
1088 void os::Linux::capture_initial_stack(size_t max_size) {
1089 
1090   // max_size is either 0 (which means accept OS default for thread stacks) or
1091   // a user-specified value known to be at least the minimum needed. If we
1092   // are actually on the primordial thread we can make it appear that we have a
1093   // smaller max_size stack by inserting the guard pages at that location. But we
1094   // cannot do anything to emulate a larger stack than what has been provided by
1095   // the OS or threading library. In fact if we try to use a stack greater than
1096   // what is set by rlimit then we will crash the hosting process.
1097 
1098   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1099   // If this is "unlimited" then it will be a huge value.
1100   struct rlimit rlim;
1101   getrlimit(RLIMIT_STACK, &rlim);
1102   size_t stack_size = rlim.rlim_cur;
1103 
1104   // 6308388: a bug in ld.so will relocate its own .data section to the
1105   //   lower end of primordial stack; reduce ulimit -s value a little bit
1106   //   so we won't install guard page on ld.so's data section.
1107   //   But ensure we don't underflow the stack size - allow 1 page spare
1108   if (stack_size >= (size_t)(3 * page_size())) {
1109     stack_size -= 2 * page_size();
1110   }
1111 
1112   // Try to figure out where the stack base (top) is. This is harder.
1113   //
1114   // When an application is started, glibc saves the initial stack pointer in
1115   // a global variable "__libc_stack_end", which is then used by system
1116   // libraries. __libc_stack_end should be pretty close to stack top. The
1117   // variable is available since the very early days. However, because it is
1118   // a private interface, it could disappear in the future.
1119   //
1120   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1121   // to __libc_stack_end, it is very close to stack top, but isn't the real
1122   // stack top. Note that /proc may not exist if VM is running as a chroot
1123   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1124   // /proc/<pid>/stat could change in the future (though unlikely).
1125   //
1126   // We try __libc_stack_end first. If that doesn't work, look for
1127   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1128   // as a hint, which should work well in most cases.
1129 
1130   uintptr_t stack_start;
1131 
1132   // try __libc_stack_end first
1133   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1134   if (p && *p) {
1135     stack_start = *p;
1136   } else {
1137     // see if we can get the start_stack field from /proc/self/stat
1138     FILE *fp;
1139     int pid;
1140     char state;
1141     int ppid;
1142     int pgrp;
1143     int session;
1144     int nr;
1145     int tpgrp;
1146     unsigned long flags;
1147     unsigned long minflt;
1148     unsigned long cminflt;
1149     unsigned long majflt;
1150     unsigned long cmajflt;
1151     unsigned long utime;
1152     unsigned long stime;
1153     long cutime;
1154     long cstime;
1155     long prio;
1156     long nice;
1157     long junk;
1158     long it_real;
1159     uintptr_t start;
1160     uintptr_t vsize;
1161     intptr_t rss;
1162     uintptr_t rsslim;
1163     uintptr_t scodes;
1164     uintptr_t ecode;
1165     int i;
1166 
1167     // Figure what the primordial thread stack base is. Code is inspired
1168     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1169     // followed by command name surrounded by parentheses, state, etc.
1170     char stat[2048];
1171     int statlen;
1172 
1173     fp = fopen("/proc/self/stat", "r");
1174     if (fp) {
1175       statlen = fread(stat, 1, 2047, fp);
1176       stat[statlen] = '\0';
1177       fclose(fp);
1178 
1179       // Skip pid and the command string. Note that we could be dealing with
1180       // weird command names, e.g. user could decide to rename java launcher
1181       // to "java 1.4.2 :)", then the stat file would look like
1182       //                1234 (java 1.4.2 :)) R ... ...
1183       // We don't really need to know the command string, just find the last
1184       // occurrence of ")" and then start parsing from there. See bug 4726580.
1185       char * s = strrchr(stat, ')');
1186 
1187       i = 0;
1188       if (s) {
1189         // Skip blank chars
1190         do s++; while (isspace(*s));
1191 
1192 #define _UFM UINTX_FORMAT
1193 #define _DFM INTX_FORMAT
1194 
1195         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1196         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1197         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1198              &state,          /* 3  %c  */
1199              &ppid,           /* 4  %d  */
1200              &pgrp,           /* 5  %d  */
1201              &session,        /* 6  %d  */
1202              &nr,             /* 7  %d  */
1203              &tpgrp,          /* 8  %d  */
1204              &flags,          /* 9  %lu  */
1205              &minflt,         /* 10 %lu  */
1206              &cminflt,        /* 11 %lu  */
1207              &majflt,         /* 12 %lu  */
1208              &cmajflt,        /* 13 %lu  */
1209              &utime,          /* 14 %lu  */
1210              &stime,          /* 15 %lu  */
1211              &cutime,         /* 16 %ld  */
1212              &cstime,         /* 17 %ld  */
1213              &prio,           /* 18 %ld  */
1214              &nice,           /* 19 %ld  */
1215              &junk,           /* 20 %ld  */
1216              &it_real,        /* 21 %ld  */
1217              &start,          /* 22 UINTX_FORMAT */
1218              &vsize,          /* 23 UINTX_FORMAT */
1219              &rss,            /* 24 INTX_FORMAT  */
1220              &rsslim,         /* 25 UINTX_FORMAT */
1221              &scodes,         /* 26 UINTX_FORMAT */
1222              &ecode,          /* 27 UINTX_FORMAT */
1223              &stack_start);   /* 28 UINTX_FORMAT */
1224       }
1225 
1226 #undef _UFM
1227 #undef _DFM
1228 
1229       if (i != 28 - 2) {
1230          assert(false, "Bad conversion from /proc/self/stat");
1231          // product mode - assume we are the primordial thread, good luck in the
1232          // embedded case.
1233          warning("Can't detect primordial thread stack location - bad conversion");
1234          stack_start = (uintptr_t) &rlim;
1235       }
1236     } else {
1237       // For some reason we can't open /proc/self/stat (for example, running on
1238       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1239       // most cases, so don't abort:
1240       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1241       stack_start = (uintptr_t) &rlim;
1242     }
1243   }
1244 
1245   // Now we have a pointer (stack_start) very close to the stack top, the
1246   // next thing to do is to figure out the exact location of stack top. We
1247   // can find out the virtual memory area that contains stack_start by
1248   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1249   // and its upper limit is the real stack top. (again, this would fail if
1250   // running inside chroot, because /proc may not exist.)
1251 
1252   uintptr_t stack_top;
1253   address low, high;
1254   if (find_vma((address)stack_start, &low, &high)) {
1255     // success, "high" is the true stack top. (ignore "low", because initial
1256     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1257     stack_top = (uintptr_t)high;
1258   } else {
1259     // failed, likely because /proc/self/maps does not exist
1260     warning("Can't detect primordial thread stack location - find_vma failed");
1261     // best effort: stack_start is normally within a few pages below the real
1262     // stack top, use it as stack top, and reduce stack size so we won't put
1263     // guard page outside stack.
1264     stack_top = stack_start;
1265     stack_size -= 16 * page_size();
1266   }
1267 
1268   // stack_top could be partially down the page so align it
1269   stack_top = align_size_up(stack_top, page_size());
1270 
1271   // Allowed stack value is minimum of max_size and what we derived from rlimit
1272   if (max_size > 0) {
1273     _initial_thread_stack_size = MIN2(max_size, stack_size);
1274   } else {
1275     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1276     // clamp it at 8MB as we do on Solaris
1277     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1278   }
1279 
1280   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1281   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1282   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1283 }
1284 
1285 ////////////////////////////////////////////////////////////////////////////////
1286 // time support
1287 
1288 // Time since start-up in seconds to a fine granularity.
1289 // Used by VMSelfDestructTimer and the MemProfiler.
1290 double os::elapsedTime() {
1291 
1292   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1293 }
1294 
1295 jlong os::elapsed_counter() {
1296   return javaTimeNanos() - initial_time_count;
1297 }
1298 
1299 jlong os::elapsed_frequency() {
1300   return NANOSECS_PER_SEC; // nanosecond resolution
1301 }
1302 
1303 bool os::supports_vtime() { return true; }
1304 bool os::enable_vtime()   { return false; }
1305 bool os::vtime_enabled()  { return false; }
1306 
1307 double os::elapsedVTime() {
1308   struct rusage usage;
1309   int retval = getrusage(RUSAGE_THREAD, &usage);
1310   if (retval == 0) {
1311     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1312   } else {
1313     // better than nothing, but not much
1314     return elapsedTime();
1315   }
1316 }
1317 
1318 jlong os::javaTimeMillis() {
1319   timeval time;
1320   int status = gettimeofday(&time, NULL);
1321   assert(status != -1, "linux error");
1322   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1323 }
1324 
1325 #ifndef CLOCK_MONOTONIC
1326 #define CLOCK_MONOTONIC (1)
1327 #endif
1328 
1329 void os::Linux::clock_init() {
1330   // we do dlopen's in this particular order due to bug in linux
1331   // dynamical loader (see 6348968) leading to crash on exit
1332   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1333   if (handle == NULL) {
1334     handle = dlopen("librt.so", RTLD_LAZY);
1335   }
1336 
1337   if (handle) {
1338     int (*clock_getres_func)(clockid_t, struct timespec*) =
1339            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1340     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1341            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1342     if (clock_getres_func && clock_gettime_func) {
1343       // See if monotonic clock is supported by the kernel. Note that some
1344       // early implementations simply return kernel jiffies (updated every
1345       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1346       // for nano time (though the monotonic property is still nice to have).
1347       // It's fixed in newer kernels, however clock_getres() still returns
1348       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1349       // resolution for now. Hopefully as people move to new kernels, this
1350       // won't be a problem.
1351       struct timespec res;
1352       struct timespec tp;
1353       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1354           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1355         // yes, monotonic clock is supported
1356         _clock_gettime = clock_gettime_func;
1357         return;
1358       } else {
1359         // close librt if there is no monotonic clock
1360         dlclose(handle);
1361       }
1362     }
1363   }
1364   warning("No monotonic clock was available - timed services may " \
1365           "be adversely affected if the time-of-day clock changes");
1366 }
1367 
1368 #ifndef SYS_clock_getres
1369 
1370 #if defined(IA32) || defined(AMD64)
1371 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1372 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1373 #else
1374 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1375 #define sys_clock_getres(x,y)  -1
1376 #endif
1377 
1378 #else
1379 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1380 #endif
1381 
1382 void os::Linux::fast_thread_clock_init() {
1383   if (!UseLinuxPosixThreadCPUClocks) {
1384     return;
1385   }
1386   clockid_t clockid;
1387   struct timespec tp;
1388   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1389       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1390 
1391   // Switch to using fast clocks for thread cpu time if
1392   // the sys_clock_getres() returns 0 error code.
1393   // Note, that some kernels may support the current thread
1394   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1395   // returned by the pthread_getcpuclockid().
1396   // If the fast Posix clocks are supported then the sys_clock_getres()
1397   // must return at least tp.tv_sec == 0 which means a resolution
1398   // better than 1 sec. This is extra check for reliability.
1399 
1400   if(pthread_getcpuclockid_func &&
1401      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1402      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1403 
1404     _supports_fast_thread_cpu_time = true;
1405     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1406   }
1407 }
1408 
1409 jlong os::javaTimeNanos() {
1410   if (Linux::supports_monotonic_clock()) {
1411     struct timespec tp;
1412     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1413     assert(status == 0, "gettime error");
1414     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1415     return result;
1416   } else {
1417     timeval time;
1418     int status = gettimeofday(&time, NULL);
1419     assert(status != -1, "linux error");
1420     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1421     return 1000 * usecs;
1422   }
1423 }
1424 
1425 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1426   if (Linux::supports_monotonic_clock()) {
1427     info_ptr->max_value = ALL_64_BITS;
1428 
1429     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1430     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1431     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1432   } else {
1433     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1434     info_ptr->max_value = ALL_64_BITS;
1435 
1436     // gettimeofday is a real time clock so it skips
1437     info_ptr->may_skip_backward = true;
1438     info_ptr->may_skip_forward = true;
1439   }
1440 
1441   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1442 }
1443 
1444 // Return the real, user, and system times in seconds from an
1445 // arbitrary fixed point in the past.
1446 bool os::getTimesSecs(double* process_real_time,
1447                       double* process_user_time,
1448                       double* process_system_time) {
1449   struct tms ticks;
1450   clock_t real_ticks = times(&ticks);
1451 
1452   if (real_ticks == (clock_t) (-1)) {
1453     return false;
1454   } else {
1455     double ticks_per_second = (double) clock_tics_per_sec;
1456     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1457     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1458     *process_real_time = ((double) real_ticks) / ticks_per_second;
1459 
1460     return true;
1461   }
1462 }
1463 
1464 
1465 char * os::local_time_string(char *buf, size_t buflen) {
1466   struct tm t;
1467   time_t long_time;
1468   time(&long_time);
1469   localtime_r(&long_time, &t);
1470   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1471                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1472                t.tm_hour, t.tm_min, t.tm_sec);
1473   return buf;
1474 }
1475 
1476 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1477   return localtime_r(clock, res);
1478 }
1479 
1480 ////////////////////////////////////////////////////////////////////////////////
1481 // runtime exit support
1482 
1483 // Note: os::shutdown() might be called very early during initialization, or
1484 // called from signal handler. Before adding something to os::shutdown(), make
1485 // sure it is async-safe and can handle partially initialized VM.
1486 void os::shutdown() {
1487 
1488   // allow PerfMemory to attempt cleanup of any persistent resources
1489   perfMemory_exit();
1490 
1491   // needs to remove object in file system
1492   AttachListener::abort();
1493 
1494   // flush buffered output, finish log files
1495   ostream_abort();
1496 
1497   // Check for abort hook
1498   abort_hook_t abort_hook = Arguments::abort_hook();
1499   if (abort_hook != NULL) {
1500     abort_hook();
1501   }
1502 
1503 }
1504 
1505 // Note: os::abort() might be called very early during initialization, or
1506 // called from signal handler. Before adding something to os::abort(), make
1507 // sure it is async-safe and can handle partially initialized VM.
1508 void os::abort(bool dump_core) {
1509   os::shutdown();
1510   if (dump_core) {
1511 #ifndef PRODUCT
1512     fdStream out(defaultStream::output_fd());
1513     out.print_raw("Current thread is ");
1514     char buf[16];
1515     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1516     out.print_raw_cr(buf);
1517     out.print_raw_cr("Dumping core ...");
1518 #endif
1519     ::abort(); // dump core
1520   }
1521 
1522   ::exit(1);
1523 }
1524 
1525 // Die immediately, no exit hook, no abort hook, no cleanup.
1526 void os::die() {
1527   // _exit() on LinuxThreads only kills current thread
1528   ::abort();
1529 }
1530 
1531 
1532 // This method is a copy of JDK's sysGetLastErrorString
1533 // from src/solaris/hpi/src/system_md.c
1534 
1535 size_t os::lasterror(char *buf, size_t len) {
1536 
1537   if (errno == 0)  return 0;
1538 
1539   const char *s = ::strerror(errno);
1540   size_t n = ::strlen(s);
1541   if (n >= len) {
1542     n = len - 1;
1543   }
1544   ::strncpy(buf, s, n);
1545   buf[n] = '\0';
1546   return n;
1547 }
1548 
1549 intx os::current_thread_id() { return (intx)pthread_self(); }
1550 int os::current_process_id() {
1551 
1552   // Under the old linux thread library, linux gives each thread
1553   // its own process id. Because of this each thread will return
1554   // a different pid if this method were to return the result
1555   // of getpid(2). Linux provides no api that returns the pid
1556   // of the launcher thread for the vm. This implementation
1557   // returns a unique pid, the pid of the launcher thread
1558   // that starts the vm 'process'.
1559 
1560   // Under the NPTL, getpid() returns the same pid as the
1561   // launcher thread rather than a unique pid per thread.
1562   // Use gettid() if you want the old pre NPTL behaviour.
1563 
1564   // if you are looking for the result of a call to getpid() that
1565   // returns a unique pid for the calling thread, then look at the
1566   // OSThread::thread_id() method in osThread_linux.hpp file
1567 
1568   return (int)(_initial_pid ? _initial_pid : getpid());
1569 }
1570 
1571 // DLL functions
1572 
1573 const char* os::dll_file_extension() { return ".so"; }
1574 
1575 // This must be hard coded because it's the system's temporary
1576 // directory not the java application's temp directory, ala java.io.tmpdir.
1577 const char* os::get_temp_directory() { return "/tmp"; }
1578 
1579 static bool file_exists(const char* filename) {
1580   struct stat statbuf;
1581   if (filename == NULL || strlen(filename) == 0) {
1582     return false;
1583   }
1584   return os::stat(filename, &statbuf) == 0;
1585 }
1586 
1587 bool os::dll_build_name(char* buffer, size_t buflen,
1588                         const char* pname, const char* fname) {
1589   bool retval = false;
1590   // Copied from libhpi
1591   const size_t pnamelen = pname ? strlen(pname) : 0;
1592 
1593   // Return error on buffer overflow.
1594   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1595     return retval;
1596   }
1597 
1598   if (pnamelen == 0) {
1599     snprintf(buffer, buflen, "lib%s.so", fname);
1600     retval = true;
1601   } else if (strchr(pname, *os::path_separator()) != NULL) {
1602     int n;
1603     char** pelements = split_path(pname, &n);
1604     if (pelements == NULL) {
1605       return false;
1606     }
1607     for (int i = 0 ; i < n ; i++) {
1608       // Really shouldn't be NULL, but check can't hurt
1609       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1610         continue; // skip the empty path values
1611       }
1612       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1613       if (file_exists(buffer)) {
1614         retval = true;
1615         break;
1616       }
1617     }
1618     // release the storage
1619     for (int i = 0 ; i < n ; i++) {
1620       if (pelements[i] != NULL) {
1621         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1622       }
1623     }
1624     if (pelements != NULL) {
1625       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1626     }
1627   } else {
1628     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1629     retval = true;
1630   }
1631   return retval;
1632 }
1633 
1634 // check if addr is inside libjvm.so
1635 bool os::address_is_in_vm(address addr) {
1636   static address libjvm_base_addr;
1637   Dl_info dlinfo;
1638 
1639   if (libjvm_base_addr == NULL) {
1640     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1641       libjvm_base_addr = (address)dlinfo.dli_fbase;
1642     }
1643     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1644   }
1645 
1646   if (dladdr((void *)addr, &dlinfo) != 0) {
1647     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1648   }
1649 
1650   return false;
1651 }
1652 
1653 bool os::dll_address_to_function_name(address addr, char *buf,
1654                                       int buflen, int *offset) {
1655   // buf is not optional, but offset is optional
1656   assert(buf != NULL, "sanity check");
1657 
1658   Dl_info dlinfo;
1659 
1660   if (dladdr((void*)addr, &dlinfo) != 0) {
1661     // see if we have a matching symbol
1662     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1663       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1664         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1665       }
1666       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1667       return true;
1668     }
1669     // no matching symbol so try for just file info
1670     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1671       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1672                           buf, buflen, offset, dlinfo.dli_fname)) {
1673         return true;
1674       }
1675     }
1676   }
1677 
1678   buf[0] = '\0';
1679   if (offset != NULL) *offset = -1;
1680   return false;
1681 }
1682 
1683 struct _address_to_library_name {
1684   address addr;          // input : memory address
1685   size_t  buflen;        //         size of fname
1686   char*   fname;         // output: library name
1687   address base;          //         library base addr
1688 };
1689 
1690 static int address_to_library_name_callback(struct dl_phdr_info *info,
1691                                             size_t size, void *data) {
1692   int i;
1693   bool found = false;
1694   address libbase = NULL;
1695   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1696 
1697   // iterate through all loadable segments
1698   for (i = 0; i < info->dlpi_phnum; i++) {
1699     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1700     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1701       // base address of a library is the lowest address of its loaded
1702       // segments.
1703       if (libbase == NULL || libbase > segbase) {
1704         libbase = segbase;
1705       }
1706       // see if 'addr' is within current segment
1707       if (segbase <= d->addr &&
1708           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1709         found = true;
1710       }
1711     }
1712   }
1713 
1714   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1715   // so dll_address_to_library_name() can fall through to use dladdr() which
1716   // can figure out executable name from argv[0].
1717   if (found && info->dlpi_name && info->dlpi_name[0]) {
1718     d->base = libbase;
1719     if (d->fname) {
1720       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1721     }
1722     return 1;
1723   }
1724   return 0;
1725 }
1726 
1727 bool os::dll_address_to_library_name(address addr, char* buf,
1728                                      int buflen, int* offset) {
1729   // buf is not optional, but offset is optional
1730   assert(buf != NULL, "sanity check");
1731 
1732   Dl_info dlinfo;
1733   struct _address_to_library_name data;
1734 
1735   // There is a bug in old glibc dladdr() implementation that it could resolve
1736   // to wrong library name if the .so file has a base address != NULL. Here
1737   // we iterate through the program headers of all loaded libraries to find
1738   // out which library 'addr' really belongs to. This workaround can be
1739   // removed once the minimum requirement for glibc is moved to 2.3.x.
1740   data.addr = addr;
1741   data.fname = buf;
1742   data.buflen = buflen;
1743   data.base = NULL;
1744   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1745 
1746   if (rslt) {
1747      // buf already contains library name
1748      if (offset) *offset = addr - data.base;
1749      return true;
1750   }
1751   if (dladdr((void*)addr, &dlinfo) != 0) {
1752     if (dlinfo.dli_fname != NULL) {
1753       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1754     }
1755     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1756       *offset = addr - (address)dlinfo.dli_fbase;
1757     }
1758     return true;
1759   }
1760 
1761   buf[0] = '\0';
1762   if (offset) *offset = -1;
1763   return false;
1764 }
1765 
1766   // Loads .dll/.so and
1767   // in case of error it checks if .dll/.so was built for the
1768   // same architecture as Hotspot is running on
1769 
1770 
1771 // Remember the stack's state. The Linux dynamic linker will change
1772 // the stack to 'executable' at most once, so we must safepoint only once.
1773 bool os::Linux::_stack_is_executable = false;
1774 
1775 // VM operation that loads a library.  This is necessary if stack protection
1776 // of the Java stacks can be lost during loading the library.  If we
1777 // do not stop the Java threads, they can stack overflow before the stacks
1778 // are protected again.
1779 class VM_LinuxDllLoad: public VM_Operation {
1780  private:
1781   const char *_filename;
1782   char *_ebuf;
1783   int _ebuflen;
1784   void *_lib;
1785  public:
1786   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1787     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1788   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1789   void doit() {
1790     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1791     os::Linux::_stack_is_executable = true;
1792   }
1793   void* loaded_library() { return _lib; }
1794 };
1795 
1796 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1797 {
1798   void * result = NULL;
1799   bool load_attempted = false;
1800 
1801   // Check whether the library to load might change execution rights
1802   // of the stack. If they are changed, the protection of the stack
1803   // guard pages will be lost. We need a safepoint to fix this.
1804   //
1805   // See Linux man page execstack(8) for more info.
1806   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1807     ElfFile ef(filename);
1808     if (!ef.specifies_noexecstack()) {
1809       if (!is_init_completed()) {
1810         os::Linux::_stack_is_executable = true;
1811         // This is OK - No Java threads have been created yet, and hence no
1812         // stack guard pages to fix.
1813         //
1814         // This should happen only when you are building JDK7 using a very
1815         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1816         //
1817         // Dynamic loader will make all stacks executable after
1818         // this function returns, and will not do that again.
1819         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1820       } else {
1821         warning("You have loaded library %s which might have disabled stack guard. "
1822                 "The VM will try to fix the stack guard now.\n"
1823                 "It's highly recommended that you fix the library with "
1824                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1825                 filename);
1826 
1827         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1828         JavaThread *jt = JavaThread::current();
1829         if (jt->thread_state() != _thread_in_native) {
1830           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1831           // that requires ExecStack. Cannot enter safe point. Let's give up.
1832           warning("Unable to fix stack guard. Giving up.");
1833         } else {
1834           if (!LoadExecStackDllInVMThread) {
1835             // This is for the case where the DLL has an static
1836             // constructor function that executes JNI code. We cannot
1837             // load such DLLs in the VMThread.
1838             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1839           }
1840 
1841           ThreadInVMfromNative tiv(jt);
1842           debug_only(VMNativeEntryWrapper vew;)
1843 
1844           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1845           VMThread::execute(&op);
1846           if (LoadExecStackDllInVMThread) {
1847             result = op.loaded_library();
1848           }
1849           load_attempted = true;
1850         }
1851       }
1852     }
1853   }
1854 
1855   if (!load_attempted) {
1856     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1857   }
1858 
1859   if (result != NULL) {
1860     // Successful loading
1861     return result;
1862   }
1863 
1864   Elf32_Ehdr elf_head;
1865   int diag_msg_max_length=ebuflen-strlen(ebuf);
1866   char* diag_msg_buf=ebuf+strlen(ebuf);
1867 
1868   if (diag_msg_max_length==0) {
1869     // No more space in ebuf for additional diagnostics message
1870     return NULL;
1871   }
1872 
1873 
1874   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1875 
1876   if (file_descriptor < 0) {
1877     // Can't open library, report dlerror() message
1878     return NULL;
1879   }
1880 
1881   bool failed_to_read_elf_head=
1882     (sizeof(elf_head)!=
1883         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1884 
1885   ::close(file_descriptor);
1886   if (failed_to_read_elf_head) {
1887     // file i/o error - report dlerror() msg
1888     return NULL;
1889   }
1890 
1891   typedef struct {
1892     Elf32_Half  code;         // Actual value as defined in elf.h
1893     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1894     char        elf_class;    // 32 or 64 bit
1895     char        endianess;    // MSB or LSB
1896     char*       name;         // String representation
1897   } arch_t;
1898 
1899   #ifndef EM_486
1900   #define EM_486          6               /* Intel 80486 */
1901   #endif
1902 
1903   static const arch_t arch_array[]={
1904     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1905     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1906     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1907     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1908     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1909     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1910     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1911     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1912 #if defined(VM_LITTLE_ENDIAN)
1913     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64"},
1914 #else
1915     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1916 #endif
1917     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1918     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1919     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1920     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1921     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1922     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1923     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1924   };
1925 
1926   #if  (defined IA32)
1927     static  Elf32_Half running_arch_code=EM_386;
1928   #elif   (defined AMD64)
1929     static  Elf32_Half running_arch_code=EM_X86_64;
1930   #elif  (defined IA64)
1931     static  Elf32_Half running_arch_code=EM_IA_64;
1932   #elif  (defined __sparc) && (defined _LP64)
1933     static  Elf32_Half running_arch_code=EM_SPARCV9;
1934   #elif  (defined __sparc) && (!defined _LP64)
1935     static  Elf32_Half running_arch_code=EM_SPARC;
1936   #elif  (defined __powerpc64__)
1937     static  Elf32_Half running_arch_code=EM_PPC64;
1938   #elif  (defined __powerpc__)
1939     static  Elf32_Half running_arch_code=EM_PPC;
1940   #elif  (defined ARM)
1941     static  Elf32_Half running_arch_code=EM_ARM;
1942   #elif  (defined S390)
1943     static  Elf32_Half running_arch_code=EM_S390;
1944   #elif  (defined ALPHA)
1945     static  Elf32_Half running_arch_code=EM_ALPHA;
1946   #elif  (defined MIPSEL)
1947     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1948   #elif  (defined PARISC)
1949     static  Elf32_Half running_arch_code=EM_PARISC;
1950   #elif  (defined MIPS)
1951     static  Elf32_Half running_arch_code=EM_MIPS;
1952   #elif  (defined M68K)
1953     static  Elf32_Half running_arch_code=EM_68K;
1954   #else
1955     #error Method os::dll_load requires that one of following is defined:\
1956          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1957   #endif
1958 
1959   // Identify compatability class for VM's architecture and library's architecture
1960   // Obtain string descriptions for architectures
1961 
1962   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1963   int running_arch_index=-1;
1964 
1965   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1966     if (running_arch_code == arch_array[i].code) {
1967       running_arch_index    = i;
1968     }
1969     if (lib_arch.code == arch_array[i].code) {
1970       lib_arch.compat_class = arch_array[i].compat_class;
1971       lib_arch.name         = arch_array[i].name;
1972     }
1973   }
1974 
1975   assert(running_arch_index != -1,
1976     "Didn't find running architecture code (running_arch_code) in arch_array");
1977   if (running_arch_index == -1) {
1978     // Even though running architecture detection failed
1979     // we may still continue with reporting dlerror() message
1980     return NULL;
1981   }
1982 
1983   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1984     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1985     return NULL;
1986   }
1987 
1988 #ifndef S390
1989   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1990     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1991     return NULL;
1992   }
1993 #endif // !S390
1994 
1995   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1996     if ( lib_arch.name!=NULL ) {
1997       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1998         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1999         lib_arch.name, arch_array[running_arch_index].name);
2000     } else {
2001       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2002       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2003         lib_arch.code,
2004         arch_array[running_arch_index].name);
2005     }
2006   }
2007 
2008   return NULL;
2009 }
2010 
2011 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2012   void * result = ::dlopen(filename, RTLD_LAZY);
2013   if (result == NULL) {
2014     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2015     ebuf[ebuflen-1] = '\0';
2016   }
2017   return result;
2018 }
2019 
2020 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2021   void * result = NULL;
2022   if (LoadExecStackDllInVMThread) {
2023     result = dlopen_helper(filename, ebuf, ebuflen);
2024   }
2025 
2026   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2027   // library that requires an executable stack, or which does not have this
2028   // stack attribute set, dlopen changes the stack attribute to executable. The
2029   // read protection of the guard pages gets lost.
2030   //
2031   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2032   // may have been queued at the same time.
2033 
2034   if (!_stack_is_executable) {
2035     JavaThread *jt = Threads::first();
2036 
2037     while (jt) {
2038       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2039           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2040         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2041                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2042           warning("Attempt to reguard stack yellow zone failed.");
2043         }
2044       }
2045       jt = jt->next();
2046     }
2047   }
2048 
2049   return result;
2050 }
2051 
2052 /*
2053  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2054  * chances are you might want to run the generated bits against glibc-2.0
2055  * libdl.so, so always use locking for any version of glibc.
2056  */
2057 void* os::dll_lookup(void* handle, const char* name) {
2058   pthread_mutex_lock(&dl_mutex);
2059   void* res = dlsym(handle, name);
2060   pthread_mutex_unlock(&dl_mutex);
2061   return res;
2062 }
2063 
2064 void* os::get_default_process_handle() {
2065   return (void*)::dlopen(NULL, RTLD_LAZY);
2066 }
2067 
2068 static bool _print_ascii_file(const char* filename, outputStream* st) {
2069   int fd = ::open(filename, O_RDONLY);
2070   if (fd == -1) {
2071      return false;
2072   }
2073 
2074   char buf[32];
2075   int bytes;
2076   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2077     st->print_raw(buf, bytes);
2078   }
2079 
2080   ::close(fd);
2081 
2082   return true;
2083 }
2084 
2085 void os::print_dll_info(outputStream *st) {
2086    st->print_cr("Dynamic libraries:");
2087 
2088    char fname[32];
2089    pid_t pid = os::Linux::gettid();
2090 
2091    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2092 
2093    if (!_print_ascii_file(fname, st)) {
2094      st->print("Can not get library information for pid = %d\n", pid);
2095    }
2096 }
2097 
2098 void os::print_os_info_brief(outputStream* st) {
2099   os::Linux::print_distro_info(st);
2100 
2101   os::Posix::print_uname_info(st);
2102 
2103   os::Linux::print_libversion_info(st);
2104 
2105 }
2106 
2107 void os::print_os_info(outputStream* st) {
2108   st->print("OS:");
2109 
2110   os::Linux::print_distro_info(st);
2111 
2112   os::Posix::print_uname_info(st);
2113 
2114   // Print warning if unsafe chroot environment detected
2115   if (unsafe_chroot_detected) {
2116     st->print("WARNING!! ");
2117     st->print_cr("%s", unstable_chroot_error);
2118   }
2119 
2120   os::Linux::print_libversion_info(st);
2121 
2122   os::Posix::print_rlimit_info(st);
2123 
2124   os::Posix::print_load_average(st);
2125 
2126   os::Linux::print_full_memory_info(st);
2127 }
2128 
2129 // Try to identify popular distros.
2130 // Most Linux distributions have a /etc/XXX-release file, which contains
2131 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2132 // file that also contains the OS version string. Some have more than one
2133 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2134 // /etc/redhat-release.), so the order is important.
2135 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2136 // their own specific XXX-release file as well as a redhat-release file.
2137 // Because of this the XXX-release file needs to be searched for before the
2138 // redhat-release file.
2139 // Since Red Hat has a lsb-release file that is not very descriptive the
2140 // search for redhat-release needs to be before lsb-release.
2141 // Since the lsb-release file is the new standard it needs to be searched
2142 // before the older style release files.
2143 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2144 // next to last resort.  The os-release file is a new standard that contains
2145 // distribution information and the system-release file seems to be an old
2146 // standard that has been replaced by the lsb-release and os-release files.
2147 // Searching for the debian_version file is the last resort.  It contains
2148 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2149 // "Debian " is printed before the contents of the debian_version file.
2150 void os::Linux::print_distro_info(outputStream* st) {
2151    if (!_print_ascii_file("/etc/oracle-release", st) &&
2152        !_print_ascii_file("/etc/mandriva-release", st) &&
2153        !_print_ascii_file("/etc/mandrake-release", st) &&
2154        !_print_ascii_file("/etc/sun-release", st) &&
2155        !_print_ascii_file("/etc/redhat-release", st) &&
2156        !_print_ascii_file("/etc/lsb-release", st) &&
2157        !_print_ascii_file("/etc/SuSE-release", st) &&
2158        !_print_ascii_file("/etc/turbolinux-release", st) &&
2159        !_print_ascii_file("/etc/gentoo-release", st) &&
2160        !_print_ascii_file("/etc/ltib-release", st) &&
2161        !_print_ascii_file("/etc/angstrom-version", st) &&
2162        !_print_ascii_file("/etc/system-release", st) &&
2163        !_print_ascii_file("/etc/os-release", st)) {
2164 
2165        if (file_exists("/etc/debian_version")) {
2166          st->print("Debian ");
2167          _print_ascii_file("/etc/debian_version", st);
2168        } else {
2169          st->print("Linux");
2170        }
2171    }
2172    st->cr();
2173 }
2174 
2175 void os::Linux::print_libversion_info(outputStream* st) {
2176   // libc, pthread
2177   st->print("libc:");
2178   st->print("%s ", os::Linux::glibc_version());
2179   st->print("%s ", os::Linux::libpthread_version());
2180   if (os::Linux::is_LinuxThreads()) {
2181      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2182   }
2183   st->cr();
2184 }
2185 
2186 void os::Linux::print_full_memory_info(outputStream* st) {
2187    st->print("\n/proc/meminfo:\n");
2188    _print_ascii_file("/proc/meminfo", st);
2189    st->cr();
2190 }
2191 
2192 void os::print_memory_info(outputStream* st) {
2193 
2194   st->print("Memory:");
2195   st->print(" %dk page", os::vm_page_size()>>10);
2196 
2197   // values in struct sysinfo are "unsigned long"
2198   struct sysinfo si;
2199   sysinfo(&si);
2200 
2201   st->print(", physical " UINT64_FORMAT "k",
2202             os::physical_memory() >> 10);
2203   st->print("(" UINT64_FORMAT "k free)",
2204             os::available_memory() >> 10);
2205   st->print(", swap " UINT64_FORMAT "k",
2206             ((jlong)si.totalswap * si.mem_unit) >> 10);
2207   st->print("(" UINT64_FORMAT "k free)",
2208             ((jlong)si.freeswap * si.mem_unit) >> 10);
2209   st->cr();
2210 }
2211 
2212 void os::pd_print_cpu_info(outputStream* st) {
2213   st->print("\n/proc/cpuinfo:\n");
2214   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2215     st->print("  <Not Available>");
2216   }
2217   st->cr();
2218 }
2219 
2220 void os::print_siginfo(outputStream* st, void* siginfo) {
2221   const siginfo_t* si = (const siginfo_t*)siginfo;
2222 
2223   os::Posix::print_siginfo_brief(st, si);
2224 #if INCLUDE_CDS
2225   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2226       UseSharedSpaces) {
2227     FileMapInfo* mapinfo = FileMapInfo::current_info();
2228     if (mapinfo->is_in_shared_space(si->si_addr)) {
2229       st->print("\n\nError accessing class data sharing archive."   \
2230                 " Mapped file inaccessible during execution, "      \
2231                 " possible disk/network problem.");
2232     }
2233   }
2234 #endif
2235   st->cr();
2236 }
2237 
2238 
2239 static void print_signal_handler(outputStream* st, int sig,
2240                                  char* buf, size_t buflen);
2241 
2242 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2243   st->print_cr("Signal Handlers:");
2244   print_signal_handler(st, SIGSEGV, buf, buflen);
2245   print_signal_handler(st, SIGBUS , buf, buflen);
2246   print_signal_handler(st, SIGFPE , buf, buflen);
2247   print_signal_handler(st, SIGPIPE, buf, buflen);
2248   print_signal_handler(st, SIGXFSZ, buf, buflen);
2249   print_signal_handler(st, SIGILL , buf, buflen);
2250   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2251   print_signal_handler(st, SR_signum, buf, buflen);
2252   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2253   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2254   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2255   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2256 #if defined(PPC64)
2257   print_signal_handler(st, SIGTRAP, buf, buflen);
2258 #endif
2259 }
2260 
2261 static char saved_jvm_path[MAXPATHLEN] = {0};
2262 
2263 // Find the full path to the current module, libjvm.so
2264 void os::jvm_path(char *buf, jint buflen) {
2265   // Error checking.
2266   if (buflen < MAXPATHLEN) {
2267     assert(false, "must use a large-enough buffer");
2268     buf[0] = '\0';
2269     return;
2270   }
2271   // Lazy resolve the path to current module.
2272   if (saved_jvm_path[0] != 0) {
2273     strcpy(buf, saved_jvm_path);
2274     return;
2275   }
2276 
2277   char dli_fname[MAXPATHLEN];
2278   bool ret = dll_address_to_library_name(
2279                 CAST_FROM_FN_PTR(address, os::jvm_path),
2280                 dli_fname, sizeof(dli_fname), NULL);
2281   assert(ret, "cannot locate libjvm");
2282   char *rp = NULL;
2283   if (ret && dli_fname[0] != '\0') {
2284     rp = realpath(dli_fname, buf);
2285   }
2286   if (rp == NULL)
2287     return;
2288 
2289   if (Arguments::created_by_gamma_launcher()) {
2290     // Support for the gamma launcher.  Typical value for buf is
2291     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2292     // the right place in the string, then assume we are installed in a JDK and
2293     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2294     // up the path so it looks like libjvm.so is installed there (append a
2295     // fake suffix hotspot/libjvm.so).
2296     const char *p = buf + strlen(buf) - 1;
2297     for (int count = 0; p > buf && count < 5; ++count) {
2298       for (--p; p > buf && *p != '/'; --p)
2299         /* empty */ ;
2300     }
2301 
2302     if (strncmp(p, "/jre/lib/", 9) != 0) {
2303       // Look for JAVA_HOME in the environment.
2304       char* java_home_var = ::getenv("JAVA_HOME");
2305       if (java_home_var != NULL && java_home_var[0] != 0) {
2306         char* jrelib_p;
2307         int len;
2308 
2309         // Check the current module name "libjvm.so".
2310         p = strrchr(buf, '/');
2311         assert(strstr(p, "/libjvm") == p, "invalid library name");
2312 
2313         rp = realpath(java_home_var, buf);
2314         if (rp == NULL)
2315           return;
2316 
2317         // determine if this is a legacy image or modules image
2318         // modules image doesn't have "jre" subdirectory
2319         len = strlen(buf);
2320         assert(len < buflen, "Ran out of buffer room");
2321         jrelib_p = buf + len;
2322         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2323         if (0 != access(buf, F_OK)) {
2324           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2325         }
2326 
2327         if (0 == access(buf, F_OK)) {
2328           // Use current module name "libjvm.so"
2329           len = strlen(buf);
2330           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2331         } else {
2332           // Go back to path of .so
2333           rp = realpath(dli_fname, buf);
2334           if (rp == NULL)
2335             return;
2336         }
2337       }
2338     }
2339   }
2340 
2341   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2342 }
2343 
2344 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2345   // no prefix required, not even "_"
2346 }
2347 
2348 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2349   // no suffix required
2350 }
2351 
2352 ////////////////////////////////////////////////////////////////////////////////
2353 // sun.misc.Signal support
2354 
2355 static volatile jint sigint_count = 0;
2356 
2357 static void
2358 UserHandler(int sig, void *siginfo, void *context) {
2359   // 4511530 - sem_post is serialized and handled by the manager thread. When
2360   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2361   // don't want to flood the manager thread with sem_post requests.
2362   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2363       return;
2364 
2365   // Ctrl-C is pressed during error reporting, likely because the error
2366   // handler fails to abort. Let VM die immediately.
2367   if (sig == SIGINT && is_error_reported()) {
2368      os::die();
2369   }
2370 
2371   os::signal_notify(sig);
2372 }
2373 
2374 void* os::user_handler() {
2375   return CAST_FROM_FN_PTR(void*, UserHandler);
2376 }
2377 
2378 class Semaphore : public StackObj {
2379   public:
2380     Semaphore();
2381     ~Semaphore();
2382     void signal();
2383     void wait();
2384     bool trywait();
2385     bool timedwait(unsigned int sec, int nsec);
2386   private:
2387     sem_t _semaphore;
2388 };
2389 
2390 Semaphore::Semaphore() {
2391   sem_init(&_semaphore, 0, 0);
2392 }
2393 
2394 Semaphore::~Semaphore() {
2395   sem_destroy(&_semaphore);
2396 }
2397 
2398 void Semaphore::signal() {
2399   sem_post(&_semaphore);
2400 }
2401 
2402 void Semaphore::wait() {
2403   sem_wait(&_semaphore);
2404 }
2405 
2406 bool Semaphore::trywait() {
2407   return sem_trywait(&_semaphore) == 0;
2408 }
2409 
2410 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2411 
2412   struct timespec ts;
2413   // Semaphore's are always associated with CLOCK_REALTIME
2414   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2415   // see unpackTime for discussion on overflow checking
2416   if (sec >= MAX_SECS) {
2417     ts.tv_sec += MAX_SECS;
2418     ts.tv_nsec = 0;
2419   } else {
2420     ts.tv_sec += sec;
2421     ts.tv_nsec += nsec;
2422     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2423       ts.tv_nsec -= NANOSECS_PER_SEC;
2424       ++ts.tv_sec; // note: this must be <= max_secs
2425     }
2426   }
2427 
2428   while (1) {
2429     int result = sem_timedwait(&_semaphore, &ts);
2430     if (result == 0) {
2431       return true;
2432     } else if (errno == EINTR) {
2433       continue;
2434     } else if (errno == ETIMEDOUT) {
2435       return false;
2436     } else {
2437       return false;
2438     }
2439   }
2440 }
2441 
2442 extern "C" {
2443   typedef void (*sa_handler_t)(int);
2444   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2445 }
2446 
2447 void* os::signal(int signal_number, void* handler) {
2448   struct sigaction sigAct, oldSigAct;
2449 
2450   sigfillset(&(sigAct.sa_mask));
2451   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2452   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2453 
2454   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2455     // -1 means registration failed
2456     return (void *)-1;
2457   }
2458 
2459   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2460 }
2461 
2462 void os::signal_raise(int signal_number) {
2463   ::raise(signal_number);
2464 }
2465 
2466 /*
2467  * The following code is moved from os.cpp for making this
2468  * code platform specific, which it is by its very nature.
2469  */
2470 
2471 // Will be modified when max signal is changed to be dynamic
2472 int os::sigexitnum_pd() {
2473   return NSIG;
2474 }
2475 
2476 // a counter for each possible signal value
2477 static volatile jint pending_signals[NSIG+1] = { 0 };
2478 
2479 // Linux(POSIX) specific hand shaking semaphore.
2480 static sem_t sig_sem;
2481 static Semaphore sr_semaphore;
2482 
2483 void os::signal_init_pd() {
2484   // Initialize signal structures
2485   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2486 
2487   // Initialize signal semaphore
2488   ::sem_init(&sig_sem, 0, 0);
2489 }
2490 
2491 void os::signal_notify(int sig) {
2492   Atomic::inc(&pending_signals[sig]);
2493   ::sem_post(&sig_sem);
2494 }
2495 
2496 static int check_pending_signals(bool wait) {
2497   Atomic::store(0, &sigint_count);
2498   for (;;) {
2499     for (int i = 0; i < NSIG + 1; i++) {
2500       jint n = pending_signals[i];
2501       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2502         return i;
2503       }
2504     }
2505     if (!wait) {
2506       return -1;
2507     }
2508     JavaThread *thread = JavaThread::current();
2509     ThreadBlockInVM tbivm(thread);
2510 
2511     bool threadIsSuspended;
2512     do {
2513       thread->set_suspend_equivalent();
2514       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2515       ::sem_wait(&sig_sem);
2516 
2517       // were we externally suspended while we were waiting?
2518       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2519       if (threadIsSuspended) {
2520         //
2521         // The semaphore has been incremented, but while we were waiting
2522         // another thread suspended us. We don't want to continue running
2523         // while suspended because that would surprise the thread that
2524         // suspended us.
2525         //
2526         ::sem_post(&sig_sem);
2527 
2528         thread->java_suspend_self();
2529       }
2530     } while (threadIsSuspended);
2531   }
2532 }
2533 
2534 int os::signal_lookup() {
2535   return check_pending_signals(false);
2536 }
2537 
2538 int os::signal_wait() {
2539   return check_pending_signals(true);
2540 }
2541 
2542 ////////////////////////////////////////////////////////////////////////////////
2543 // Virtual Memory
2544 
2545 int os::vm_page_size() {
2546   // Seems redundant as all get out
2547   assert(os::Linux::page_size() != -1, "must call os::init");
2548   return os::Linux::page_size();
2549 }
2550 
2551 // Solaris allocates memory by pages.
2552 int os::vm_allocation_granularity() {
2553   assert(os::Linux::page_size() != -1, "must call os::init");
2554   return os::Linux::page_size();
2555 }
2556 
2557 // Rationale behind this function:
2558 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2559 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2560 //  samples for JITted code. Here we create private executable mapping over the code cache
2561 //  and then we can use standard (well, almost, as mapping can change) way to provide
2562 //  info for the reporting script by storing timestamp and location of symbol
2563 void linux_wrap_code(char* base, size_t size) {
2564   static volatile jint cnt = 0;
2565 
2566   if (!UseOprofile) {
2567     return;
2568   }
2569 
2570   char buf[PATH_MAX+1];
2571   int num = Atomic::add(1, &cnt);
2572 
2573   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2574            os::get_temp_directory(), os::current_process_id(), num);
2575   unlink(buf);
2576 
2577   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2578 
2579   if (fd != -1) {
2580     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2581     if (rv != (off_t)-1) {
2582       if (::write(fd, "", 1) == 1) {
2583         mmap(base, size,
2584              PROT_READ|PROT_WRITE|PROT_EXEC,
2585              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2586       }
2587     }
2588     ::close(fd);
2589     unlink(buf);
2590   }
2591 }
2592 
2593 static bool recoverable_mmap_error(int err) {
2594   // See if the error is one we can let the caller handle. This
2595   // list of errno values comes from JBS-6843484. I can't find a
2596   // Linux man page that documents this specific set of errno
2597   // values so while this list currently matches Solaris, it may
2598   // change as we gain experience with this failure mode.
2599   switch (err) {
2600   case EBADF:
2601   case EINVAL:
2602   case ENOTSUP:
2603     // let the caller deal with these errors
2604     return true;
2605 
2606   default:
2607     // Any remaining errors on this OS can cause our reserved mapping
2608     // to be lost. That can cause confusion where different data
2609     // structures think they have the same memory mapped. The worst
2610     // scenario is if both the VM and a library think they have the
2611     // same memory mapped.
2612     return false;
2613   }
2614 }
2615 
2616 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2617                                     int err) {
2618   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2619           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2620           strerror(err), err);
2621 }
2622 
2623 static void warn_fail_commit_memory(char* addr, size_t size,
2624                                     size_t alignment_hint, bool exec,
2625                                     int err) {
2626   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2627           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2628           alignment_hint, exec, strerror(err), err);
2629 }
2630 
2631 // NOTE: Linux kernel does not really reserve the pages for us.
2632 //       All it does is to check if there are enough free pages
2633 //       left at the time of mmap(). This could be a potential
2634 //       problem.
2635 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2636   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2637   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2638                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2639   if (res != (uintptr_t) MAP_FAILED) {
2640     if (UseNUMAInterleaving) {
2641       numa_make_global(addr, size);
2642     }
2643     return 0;
2644   }
2645 
2646   int err = errno;  // save errno from mmap() call above
2647 
2648   if (!recoverable_mmap_error(err)) {
2649     warn_fail_commit_memory(addr, size, exec, err);
2650     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2651   }
2652 
2653   return err;
2654 }
2655 
2656 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2657   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2658 }
2659 
2660 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2661                                   const char* mesg) {
2662   assert(mesg != NULL, "mesg must be specified");
2663   int err = os::Linux::commit_memory_impl(addr, size, exec);
2664   if (err != 0) {
2665     // the caller wants all commit errors to exit with the specified mesg:
2666     warn_fail_commit_memory(addr, size, exec, err);
2667     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2668   }
2669 }
2670 
2671 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2672 #ifndef MAP_HUGETLB
2673 #define MAP_HUGETLB 0x40000
2674 #endif
2675 
2676 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2677 #ifndef MADV_HUGEPAGE
2678 #define MADV_HUGEPAGE 14
2679 #endif
2680 
2681 int os::Linux::commit_memory_impl(char* addr, size_t size,
2682                                   size_t alignment_hint, bool exec) {
2683   int err = os::Linux::commit_memory_impl(addr, size, exec);
2684   if (err == 0) {
2685     realign_memory(addr, size, alignment_hint);
2686   }
2687   return err;
2688 }
2689 
2690 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2691                           bool exec) {
2692   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2693 }
2694 
2695 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2696                                   size_t alignment_hint, bool exec,
2697                                   const char* mesg) {
2698   assert(mesg != NULL, "mesg must be specified");
2699   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2700   if (err != 0) {
2701     // the caller wants all commit errors to exit with the specified mesg:
2702     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2703     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2704   }
2705 }
2706 
2707 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2708   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2709     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2710     // be supported or the memory may already be backed by huge pages.
2711     ::madvise(addr, bytes, MADV_HUGEPAGE);
2712   }
2713 }
2714 
2715 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2716   // This method works by doing an mmap over an existing mmaping and effectively discarding
2717   // the existing pages. However it won't work for SHM-based large pages that cannot be
2718   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2719   // small pages on top of the SHM segment. This method always works for small pages, so we
2720   // allow that in any case.
2721   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2722     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2723   }
2724 }
2725 
2726 void os::numa_make_global(char *addr, size_t bytes) {
2727   Linux::numa_interleave_memory(addr, bytes);
2728 }
2729 
2730 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2731 // bind policy to MPOL_PREFERRED for the current thread.
2732 #define USE_MPOL_PREFERRED 0
2733 
2734 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2735   // To make NUMA and large pages more robust when both enabled, we need to ease
2736   // the requirements on where the memory should be allocated. MPOL_BIND is the
2737   // default policy and it will force memory to be allocated on the specified
2738   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2739   // the specified node, but will not force it. Using this policy will prevent
2740   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2741   // free large pages.
2742   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2743   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2744 }
2745 
2746 bool os::numa_topology_changed()   { return false; }
2747 
2748 size_t os::numa_get_groups_num() {
2749   // Return just the number of nodes in which it's possible to allocate memory
2750   // (in numa terminology, configured nodes).
2751   return Linux::numa_num_configured_nodes();
2752 }
2753 
2754 int os::numa_get_group_id() {
2755   int cpu_id = Linux::sched_getcpu();
2756   if (cpu_id != -1) {
2757     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2758     if (lgrp_id != -1) {
2759       return lgrp_id;
2760     }
2761   }
2762   return 0;
2763 }
2764 
2765 int os::Linux::get_existing_num_nodes() {
2766   size_t node;
2767   size_t highest_node_number = Linux::numa_max_node();
2768   int num_nodes = 0;
2769 
2770   // Get the total number of nodes in the system including nodes without memory.
2771   for (node = 0; node <= highest_node_number; node++) {
2772     if (isnode_in_existing_nodes(node)) {
2773       num_nodes++;
2774     }
2775   }
2776   return num_nodes;
2777 }
2778 
2779 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2780   size_t highest_node_number = Linux::numa_max_node();
2781   size_t i = 0;
2782 
2783   // Map all node ids in which is possible to allocate memory. Also nodes are
2784   // not always consecutively available, i.e. available from 0 to the highest
2785   // node number.
2786   for (size_t node = 0; node <= highest_node_number; node++) {
2787     if (Linux::isnode_in_configured_nodes(node)) {
2788       ids[i++] = node;
2789     }
2790   }
2791   return i;
2792 }
2793 
2794 bool os::get_page_info(char *start, page_info* info) {
2795   return false;
2796 }
2797 
2798 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2799   return end;
2800 }
2801 
2802 
2803 int os::Linux::sched_getcpu_syscall(void) {
2804   unsigned int cpu = 0;
2805   int retval = -1;
2806 
2807 #if defined(IA32)
2808 # ifndef SYS_getcpu
2809 # define SYS_getcpu 318
2810 # endif
2811   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2812 #elif defined(AMD64)
2813 // Unfortunately we have to bring all these macros here from vsyscall.h
2814 // to be able to compile on old linuxes.
2815 # define __NR_vgetcpu 2
2816 # define VSYSCALL_START (-10UL << 20)
2817 # define VSYSCALL_SIZE 1024
2818 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2819   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2820   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2821   retval = vgetcpu(&cpu, NULL, NULL);
2822 #endif
2823 
2824   return (retval == -1) ? retval : cpu;
2825 }
2826 
2827 // Something to do with the numa-aware allocator needs these symbols
2828 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2829 extern "C" JNIEXPORT void numa_error(char *where) { }
2830 extern "C" JNIEXPORT int fork1() { return fork(); }
2831 
2832 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
2833 // load symbol from base version instead.
2834 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2835   void *f = dlvsym(handle, name, "libnuma_1.1");
2836   if (f == NULL) {
2837     f = dlsym(handle, name);
2838   }
2839   return f;
2840 }
2841 
2842 // Handle request to load libnuma symbol version 1.2 (API v2) only.
2843 // Return NULL if the symbol is not defined in this particular version.
2844 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
2845   return dlvsym(handle, name, "libnuma_1.2");
2846 }
2847 
2848 bool os::Linux::libnuma_init() {
2849   // sched_getcpu() should be in libc.
2850   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2851                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2852 
2853   // If it's not, try a direct syscall.
2854   if (sched_getcpu() == -1)
2855     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2856 
2857   if (sched_getcpu() != -1) { // Does it work?
2858     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2859     if (handle != NULL) {
2860       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2861                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2862       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2863                                        libnuma_dlsym(handle, "numa_max_node")));
2864       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
2865                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
2866       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2867                                         libnuma_dlsym(handle, "numa_available")));
2868       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2869                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2870       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2871                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
2872       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
2873                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
2874       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2875                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
2876       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
2877                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
2878       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
2879                                        libnuma_dlsym(handle, "numa_distance")));
2880 
2881       if (numa_available() != -1) {
2882         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2883         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
2884         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
2885         // Create an index -> node mapping, since nodes are not always consecutive
2886         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2887         rebuild_nindex_to_node_map();
2888         // Create a cpu -> node mapping
2889         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2890         rebuild_cpu_to_node_map();
2891         return true;
2892       }
2893     }
2894   }
2895   return false;
2896 }
2897 
2898 void os::Linux::rebuild_nindex_to_node_map() {
2899   int highest_node_number = Linux::numa_max_node();
2900 
2901   nindex_to_node()->clear();
2902   for (int node = 0; node <= highest_node_number; node++) {
2903     if (Linux::isnode_in_existing_nodes(node)) {
2904       nindex_to_node()->append(node);
2905     }
2906   }
2907 }
2908 
2909 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2910 // The table is later used in get_node_by_cpu().
2911 void os::Linux::rebuild_cpu_to_node_map() {
2912   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2913                               // in libnuma (possible values are starting from 16,
2914                               // and continuing up with every other power of 2, but less
2915                               // than the maximum number of CPUs supported by kernel), and
2916                               // is a subject to change (in libnuma version 2 the requirements
2917                               // are more reasonable) we'll just hardcode the number they use
2918                               // in the library.
2919   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2920 
2921   size_t cpu_num = processor_count();
2922   size_t cpu_map_size = NCPUS / BitsPerCLong;
2923   size_t cpu_map_valid_size =
2924     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2925 
2926   cpu_to_node()->clear();
2927   cpu_to_node()->at_grow(cpu_num - 1);
2928 
2929   size_t node_num = get_existing_num_nodes();
2930 
2931   int distance = 0;
2932   int closest_distance = INT_MAX;
2933   int closest_node = 0;
2934   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2935   for (size_t i = 0; i < node_num; i++) {
2936     // Check if node is configured (not a memory-less node). If it is not, find
2937     // the closest configured node.
2938     if (!isnode_in_configured_nodes(nindex_to_node()->at(i))) {
2939       closest_distance = INT_MAX;
2940       // Check distance from all remaining nodes in the system. Ignore distance
2941       // from itself and from another non-configured node.
2942       for (size_t m = 0; m < node_num; m++) {
2943         if (m != i && isnode_in_configured_nodes(nindex_to_node()->at(m))) {
2944           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
2945           // If a closest node is found, update. There is always at least one
2946           // configured node in the system so there is always at least one node
2947           // close.
2948           if (distance != 0 && distance < closest_distance) {
2949             closest_distance = distance;
2950             closest_node = nindex_to_node()->at(m);
2951           }
2952         }
2953       }
2954      } else {
2955        // Current node is already a configured node.
2956        closest_node = nindex_to_node()->at(i);
2957      }
2958 
2959     // Get cpus from the original node and map them to the closest node. If node
2960     // is a configured node (not a memory-less node), then original node and
2961     // closest node are the same.
2962     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2963       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2964         if (cpu_map[j] != 0) {
2965           for (size_t k = 0; k < BitsPerCLong; k++) {
2966             if (cpu_map[j] & (1UL << k)) {
2967               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
2968             }
2969           }
2970         }
2971       }
2972     }
2973   }
2974   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2975 }
2976 
2977 int os::Linux::get_node_by_cpu(int cpu_id) {
2978   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2979     return cpu_to_node()->at(cpu_id);
2980   }
2981   return -1;
2982 }
2983 
2984 GrowableArray<int>* os::Linux::_cpu_to_node;
2985 GrowableArray<int>* os::Linux::_nindex_to_node;
2986 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2987 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2988 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2989 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
2990 os::Linux::numa_available_func_t os::Linux::_numa_available;
2991 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2992 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2993 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
2994 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2995 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
2996 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
2997 unsigned long* os::Linux::_numa_all_nodes;
2998 struct bitmask* os::Linux::_numa_all_nodes_ptr;
2999 struct bitmask* os::Linux::_numa_nodes_ptr;
3000 
3001 bool os::pd_uncommit_memory(char* addr, size_t size) {
3002   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3003                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3004   return res  != (uintptr_t) MAP_FAILED;
3005 }
3006 
3007 static
3008 address get_stack_commited_bottom(address bottom, size_t size) {
3009   address nbot = bottom;
3010   address ntop = bottom + size;
3011 
3012   size_t page_sz = os::vm_page_size();
3013   unsigned pages = size / page_sz;
3014 
3015   unsigned char vec[1];
3016   unsigned imin = 1, imax = pages + 1, imid;
3017   int mincore_return_value = 0;
3018 
3019   assert(imin <= imax, "Unexpected page size");
3020 
3021   while (imin < imax) {
3022     imid = (imax + imin) / 2;
3023     nbot = ntop - (imid * page_sz);
3024 
3025     // Use a trick with mincore to check whether the page is mapped or not.
3026     // mincore sets vec to 1 if page resides in memory and to 0 if page
3027     // is swapped output but if page we are asking for is unmapped
3028     // it returns -1,ENOMEM
3029     mincore_return_value = mincore(nbot, page_sz, vec);
3030 
3031     if (mincore_return_value == -1) {
3032       // Page is not mapped go up
3033       // to find first mapped page
3034       if (errno != EAGAIN) {
3035         assert(errno == ENOMEM, "Unexpected mincore errno");
3036         imax = imid;
3037       }
3038     } else {
3039       // Page is mapped go down
3040       // to find first not mapped page
3041       imin = imid + 1;
3042     }
3043   }
3044 
3045   nbot = nbot + page_sz;
3046 
3047   // Adjust stack bottom one page up if last checked page is not mapped
3048   if (mincore_return_value == -1) {
3049     nbot = nbot + page_sz;
3050   }
3051 
3052   return nbot;
3053 }
3054 
3055 
3056 // Linux uses a growable mapping for the stack, and if the mapping for
3057 // the stack guard pages is not removed when we detach a thread the
3058 // stack cannot grow beyond the pages where the stack guard was
3059 // mapped.  If at some point later in the process the stack expands to
3060 // that point, the Linux kernel cannot expand the stack any further
3061 // because the guard pages are in the way, and a segfault occurs.
3062 //
3063 // However, it's essential not to split the stack region by unmapping
3064 // a region (leaving a hole) that's already part of the stack mapping,
3065 // so if the stack mapping has already grown beyond the guard pages at
3066 // the time we create them, we have to truncate the stack mapping.
3067 // So, we need to know the extent of the stack mapping when
3068 // create_stack_guard_pages() is called.
3069 
3070 // We only need this for stacks that are growable: at the time of
3071 // writing thread stacks don't use growable mappings (i.e. those
3072 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3073 // only applies to the main thread.
3074 
3075 // If the (growable) stack mapping already extends beyond the point
3076 // where we're going to put our guard pages, truncate the mapping at
3077 // that point by munmap()ping it.  This ensures that when we later
3078 // munmap() the guard pages we don't leave a hole in the stack
3079 // mapping. This only affects the main/primordial thread
3080 
3081 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3082 
3083   if (os::is_primordial_thread()) {
3084     // As we manually grow stack up to bottom inside create_attached_thread(),
3085     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3086     // we don't need to do anything special.
3087     // Check it first, before calling heavy function.
3088     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3089     unsigned char vec[1];
3090 
3091     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3092       // Fallback to slow path on all errors, including EAGAIN
3093       stack_extent = (uintptr_t) get_stack_commited_bottom(
3094                                     os::Linux::initial_thread_stack_bottom(),
3095                                     (size_t)addr - stack_extent);
3096     }
3097 
3098     if (stack_extent < (uintptr_t)addr) {
3099       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3100     }
3101   }
3102 
3103   return os::commit_memory(addr, size, !ExecMem);
3104 }
3105 
3106 // If this is a growable mapping, remove the guard pages entirely by
3107 // munmap()ping them.  If not, just call uncommit_memory(). This only
3108 // affects the main/primordial thread, but guard against future OS changes.
3109 // It's safe to always unmap guard pages for primordial thread because we
3110 // always place it right after end of the mapped region.
3111 
3112 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3113   uintptr_t stack_extent, stack_base;
3114 
3115   if (os::is_primordial_thread()) {
3116     return ::munmap(addr, size) == 0;
3117   }
3118 
3119   return os::uncommit_memory(addr, size);
3120 }
3121 
3122 static address _highest_vm_reserved_address = NULL;
3123 
3124 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3125 // at 'requested_addr'. If there are existing memory mappings at the same
3126 // location, however, they will be overwritten. If 'fixed' is false,
3127 // 'requested_addr' is only treated as a hint, the return value may or
3128 // may not start from the requested address. Unlike Linux mmap(), this
3129 // function returns NULL to indicate failure.
3130 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3131   char * addr;
3132   int flags;
3133 
3134   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3135   if (fixed) {
3136     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3137     flags |= MAP_FIXED;
3138   }
3139 
3140   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3141   // touch an uncommitted page. Otherwise, the read/write might
3142   // succeed if we have enough swap space to back the physical page.
3143   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3144                        flags, -1, 0);
3145 
3146   if (addr != MAP_FAILED) {
3147     // anon_mmap() should only get called during VM initialization,
3148     // don't need lock (actually we can skip locking even it can be called
3149     // from multiple threads, because _highest_vm_reserved_address is just a
3150     // hint about the upper limit of non-stack memory regions.)
3151     if ((address)addr + bytes > _highest_vm_reserved_address) {
3152       _highest_vm_reserved_address = (address)addr + bytes;
3153     }
3154   }
3155 
3156   return addr == MAP_FAILED ? NULL : addr;
3157 }
3158 
3159 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3160 //   (req_addr != NULL) or with a given alignment.
3161 //  - bytes shall be a multiple of alignment.
3162 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3163 //  - alignment sets the alignment at which memory shall be allocated.
3164 //     It must be a multiple of allocation granularity.
3165 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3166 //  req_addr or NULL.
3167 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3168 
3169   size_t extra_size = bytes;
3170   if (req_addr == NULL && alignment > 0) {
3171     extra_size += alignment;
3172   }
3173 
3174   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3175     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3176     -1, 0);
3177   if (start == MAP_FAILED) {
3178     start = NULL;
3179   } else {
3180     if (req_addr != NULL) {
3181       if (start != req_addr) {
3182         ::munmap(start, extra_size);
3183         start = NULL;
3184       }
3185     } else {
3186       char* const start_aligned = (char*) align_ptr_up(start, alignment);
3187       char* const end_aligned = start_aligned + bytes;
3188       char* const end = start + extra_size;
3189       if (start_aligned > start) {
3190         ::munmap(start, start_aligned - start);
3191       }
3192       if (end_aligned < end) {
3193         ::munmap(end_aligned, end - end_aligned);
3194       }
3195       start = start_aligned;
3196     }
3197   }
3198   return start;
3199 }
3200 
3201 // Don't update _highest_vm_reserved_address, because there might be memory
3202 // regions above addr + size. If so, releasing a memory region only creates
3203 // a hole in the address space, it doesn't help prevent heap-stack collision.
3204 //
3205 static int anon_munmap(char * addr, size_t size) {
3206   return ::munmap(addr, size) == 0;
3207 }
3208 
3209 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3210                          size_t alignment_hint) {
3211   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3212 }
3213 
3214 bool os::pd_release_memory(char* addr, size_t size) {
3215   return anon_munmap(addr, size);
3216 }
3217 
3218 static address highest_vm_reserved_address() {
3219   return _highest_vm_reserved_address;
3220 }
3221 
3222 static bool linux_mprotect(char* addr, size_t size, int prot) {
3223   // Linux wants the mprotect address argument to be page aligned.
3224   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3225 
3226   // According to SUSv3, mprotect() should only be used with mappings
3227   // established by mmap(), and mmap() always maps whole pages. Unaligned
3228   // 'addr' likely indicates problem in the VM (e.g. trying to change
3229   // protection of malloc'ed or statically allocated memory). Check the
3230   // caller if you hit this assert.
3231   assert(addr == bottom, "sanity check");
3232 
3233   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3234   return ::mprotect(bottom, size, prot) == 0;
3235 }
3236 
3237 // Set protections specified
3238 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3239                         bool is_committed) {
3240   unsigned int p = 0;
3241   switch (prot) {
3242   case MEM_PROT_NONE: p = PROT_NONE; break;
3243   case MEM_PROT_READ: p = PROT_READ; break;
3244   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3245   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3246   default:
3247     ShouldNotReachHere();
3248   }
3249   // is_committed is unused.
3250   return linux_mprotect(addr, bytes, p);
3251 }
3252 
3253 bool os::guard_memory(char* addr, size_t size) {
3254   return linux_mprotect(addr, size, PROT_NONE);
3255 }
3256 
3257 bool os::unguard_memory(char* addr, size_t size) {
3258   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3259 }
3260 
3261 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3262   bool result = false;
3263   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3264                  MAP_ANONYMOUS|MAP_PRIVATE,
3265                  -1, 0);
3266   if (p != MAP_FAILED) {
3267     void *aligned_p = align_ptr_up(p, page_size);
3268 
3269     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3270 
3271     munmap(p, page_size * 2);
3272   }
3273 
3274   if (warn && !result) {
3275     warning("TransparentHugePages is not supported by the operating system.");
3276   }
3277 
3278   return result;
3279 }
3280 
3281 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3282   bool result = false;
3283   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3284                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3285                  -1, 0);
3286 
3287   if (p != MAP_FAILED) {
3288     // We don't know if this really is a huge page or not.
3289     FILE *fp = fopen("/proc/self/maps", "r");
3290     if (fp) {
3291       while (!feof(fp)) {
3292         char chars[257];
3293         long x = 0;
3294         if (fgets(chars, sizeof(chars), fp)) {
3295           if (sscanf(chars, "%lx-%*x", &x) == 1
3296               && x == (long)p) {
3297             if (strstr (chars, "hugepage")) {
3298               result = true;
3299               break;
3300             }
3301           }
3302         }
3303       }
3304       fclose(fp);
3305     }
3306     munmap(p, page_size);
3307   }
3308 
3309   if (warn && !result) {
3310     warning("HugeTLBFS is not supported by the operating system.");
3311   }
3312 
3313   return result;
3314 }
3315 
3316 /*
3317 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3318 *
3319 * From the coredump_filter documentation:
3320 *
3321 * - (bit 0) anonymous private memory
3322 * - (bit 1) anonymous shared memory
3323 * - (bit 2) file-backed private memory
3324 * - (bit 3) file-backed shared memory
3325 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3326 *           effective only if the bit 2 is cleared)
3327 * - (bit 5) hugetlb private memory
3328 * - (bit 6) hugetlb shared memory
3329 */
3330 static void set_coredump_filter(void) {
3331   FILE *f;
3332   long cdm;
3333 
3334   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3335     return;
3336   }
3337 
3338   if (fscanf(f, "%lx", &cdm) != 1) {
3339     fclose(f);
3340     return;
3341   }
3342 
3343   rewind(f);
3344 
3345   if ((cdm & LARGEPAGES_BIT) == 0) {
3346     cdm |= LARGEPAGES_BIT;
3347     fprintf(f, "%#lx", cdm);
3348   }
3349 
3350   fclose(f);
3351 }
3352 
3353 // Large page support
3354 
3355 static size_t _large_page_size = 0;
3356 
3357 size_t os::Linux::find_large_page_size() {
3358   size_t large_page_size = 0;
3359 
3360   // large_page_size on Linux is used to round up heap size. x86 uses either
3361   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3362   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3363   // page as large as 256M.
3364   //
3365   // Here we try to figure out page size by parsing /proc/meminfo and looking
3366   // for a line with the following format:
3367   //    Hugepagesize:     2048 kB
3368   //
3369   // If we can't determine the value (e.g. /proc is not mounted, or the text
3370   // format has been changed), we'll use the largest page size supported by
3371   // the processor.
3372 
3373 #ifndef ZERO
3374   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3375                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3376 #endif // ZERO
3377 
3378   FILE *fp = fopen("/proc/meminfo", "r");
3379   if (fp) {
3380     while (!feof(fp)) {
3381       int x = 0;
3382       char buf[16];
3383       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3384         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3385           large_page_size = x * K;
3386           break;
3387         }
3388       } else {
3389         // skip to next line
3390         for (;;) {
3391           int ch = fgetc(fp);
3392           if (ch == EOF || ch == (int)'\n') break;
3393         }
3394       }
3395     }
3396     fclose(fp);
3397   }
3398 
3399   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3400     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3401         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3402         proper_unit_for_byte_size(large_page_size));
3403   }
3404 
3405   return large_page_size;
3406 }
3407 
3408 size_t os::Linux::setup_large_page_size() {
3409   _large_page_size = Linux::find_large_page_size();
3410   const size_t default_page_size = (size_t)Linux::page_size();
3411   if (_large_page_size > default_page_size) {
3412     _page_sizes[0] = _large_page_size;
3413     _page_sizes[1] = default_page_size;
3414     _page_sizes[2] = 0;
3415   }
3416 
3417   return _large_page_size;
3418 }
3419 
3420 bool os::Linux::setup_large_page_type(size_t page_size) {
3421   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3422       FLAG_IS_DEFAULT(UseSHM) &&
3423       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3424 
3425     // The type of large pages has not been specified by the user.
3426 
3427     // Try UseHugeTLBFS and then UseSHM.
3428     UseHugeTLBFS = UseSHM = true;
3429 
3430     // Don't try UseTransparentHugePages since there are known
3431     // performance issues with it turned on. This might change in the future.
3432     UseTransparentHugePages = false;
3433   }
3434 
3435   if (UseTransparentHugePages) {
3436     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3437     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3438       UseHugeTLBFS = false;
3439       UseSHM = false;
3440       return true;
3441     }
3442     UseTransparentHugePages = false;
3443   }
3444 
3445   if (UseHugeTLBFS) {
3446     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3447     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3448       UseSHM = false;
3449       return true;
3450     }
3451     UseHugeTLBFS = false;
3452   }
3453 
3454   return UseSHM;
3455 }
3456 
3457 void os::large_page_init() {
3458   if (!UseLargePages &&
3459       !UseTransparentHugePages &&
3460       !UseHugeTLBFS &&
3461       !UseSHM) {
3462     // Not using large pages.
3463     return;
3464   }
3465 
3466   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3467     // The user explicitly turned off large pages.
3468     // Ignore the rest of the large pages flags.
3469     UseTransparentHugePages = false;
3470     UseHugeTLBFS = false;
3471     UseSHM = false;
3472     return;
3473   }
3474 
3475   size_t large_page_size = Linux::setup_large_page_size();
3476   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3477 
3478   set_coredump_filter();
3479 }
3480 
3481 #ifndef SHM_HUGETLB
3482 #define SHM_HUGETLB 04000
3483 #endif
3484 
3485 #define shm_warning_format(format, ...)              \
3486   do {                                               \
3487     if (UseLargePages &&                             \
3488         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3489          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3490          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3491       warning(format, __VA_ARGS__);                  \
3492     }                                                \
3493   } while (0)
3494 
3495 #define shm_warning(str) shm_warning_format("%s", str)
3496 
3497 #define shm_warning_with_errno(str)                \
3498   do {                                             \
3499     int err = errno;                               \
3500     shm_warning_format(str " (error = %d)", err);  \
3501   } while (0)
3502 
3503 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3504   assert(is_size_aligned(bytes, alignment), "Must be divisible by the alignment");
3505 
3506   if (!is_size_aligned(alignment, SHMLBA)) {
3507     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3508     return NULL;
3509   }
3510 
3511   // To ensure that we get 'alignment' aligned memory from shmat,
3512   // we pre-reserve aligned virtual memory and then attach to that.
3513 
3514   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3515   if (pre_reserved_addr == NULL) {
3516     // Couldn't pre-reserve aligned memory.
3517     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3518     return NULL;
3519   }
3520 
3521   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3522   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3523 
3524   if ((intptr_t)addr == -1) {
3525     int err = errno;
3526     shm_warning_with_errno("Failed to attach shared memory.");
3527 
3528     assert(err != EACCES, "Unexpected error");
3529     assert(err != EIDRM,  "Unexpected error");
3530     assert(err != EINVAL, "Unexpected error");
3531 
3532     // Since we don't know if the kernel unmapped the pre-reserved memory area
3533     // we can't unmap it, since that would potentially unmap memory that was
3534     // mapped from other threads.
3535     return NULL;
3536   }
3537 
3538   return addr;
3539 }
3540 
3541 static char* shmat_at_address(int shmid, char* req_addr) {
3542   if (!is_ptr_aligned(req_addr, SHMLBA)) {
3543     assert(false, "Requested address needs to be SHMLBA aligned");
3544     return NULL;
3545   }
3546 
3547   char* addr = (char*)shmat(shmid, req_addr, 0);
3548 
3549   if ((intptr_t)addr == -1) {
3550     shm_warning_with_errno("Failed to attach shared memory.");
3551     return NULL;
3552   }
3553 
3554   return addr;
3555 }
3556 
3557 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3558   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3559   if (req_addr != NULL) {
3560     assert(is_ptr_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3561     assert(is_ptr_aligned(req_addr, alignment), "Must be divisible by given alignment");
3562     return shmat_at_address(shmid, req_addr);
3563   }
3564 
3565   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3566   // return large page size aligned memory addresses when req_addr == NULL.
3567   // However, if the alignment is larger than the large page size, we have
3568   // to manually ensure that the memory returned is 'alignment' aligned.
3569   if (alignment > os::large_page_size()) {
3570     assert(is_size_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3571     return shmat_with_alignment(shmid, bytes, alignment);
3572   } else {
3573     return shmat_at_address(shmid, NULL);
3574   }
3575 }
3576 
3577 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3578   // "exec" is passed in but not used.  Creating the shared image for
3579   // the code cache doesn't have an SHM_X executable permission to check.
3580   assert(UseLargePages && UseSHM, "only for SHM large pages");
3581   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3582   assert(is_ptr_aligned(req_addr, alignment), "Unaligned address");
3583 
3584   if (!is_size_aligned(bytes, os::large_page_size())) {
3585     return NULL; // Fallback to small pages.
3586   }
3587 
3588   // Create a large shared memory region to attach to based on size.
3589   // Currently, size is the total size of the heap.
3590   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3591   if (shmid == -1) {
3592     // Possible reasons for shmget failure:
3593     // 1. shmmax is too small for Java heap.
3594     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3595     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3596     // 2. not enough large page memory.
3597     //    > check available large pages: cat /proc/meminfo
3598     //    > increase amount of large pages:
3599     //          echo new_value > /proc/sys/vm/nr_hugepages
3600     //      Note 1: different Linux may use different name for this property,
3601     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3602     //      Note 2: it's possible there's enough physical memory available but
3603     //            they are so fragmented after a long run that they can't
3604     //            coalesce into large pages. Try to reserve large pages when
3605     //            the system is still "fresh".
3606     shm_warning_with_errno("Failed to reserve shared memory.");
3607     return NULL;
3608   }
3609 
3610   // Attach to the region.
3611   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3612 
3613   // Remove shmid. If shmat() is successful, the actual shared memory segment
3614   // will be deleted when it's detached by shmdt() or when the process
3615   // terminates. If shmat() is not successful this will remove the shared
3616   // segment immediately.
3617   shmctl(shmid, IPC_RMID, NULL);
3618 
3619   return addr;
3620 }
3621 
3622 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3623   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3624 
3625   bool warn_on_failure = UseLargePages &&
3626       (!FLAG_IS_DEFAULT(UseLargePages) ||
3627        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3628        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3629 
3630   if (warn_on_failure) {
3631     char msg[128];
3632     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3633         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3634     warning("%s", msg);
3635   }
3636 }
3637 
3638 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3639   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3640   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3641   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3642 
3643   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3644   char* addr = (char*)::mmap(req_addr, bytes, prot,
3645                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3646                              -1, 0);
3647 
3648   if (addr == MAP_FAILED) {
3649     warn_on_large_pages_failure(req_addr, bytes, errno);
3650     return NULL;
3651   }
3652 
3653   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3654 
3655   return addr;
3656 }
3657 
3658 // Reserve memory using mmap(MAP_HUGETLB).
3659 //  - bytes shall be a multiple of alignment.
3660 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3661 //  - alignment sets the alignment at which memory shall be allocated.
3662 //     It must be a multiple of allocation granularity.
3663 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3664 //  req_addr or NULL.
3665 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3666   size_t large_page_size = os::large_page_size();
3667   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3668 
3669   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3670   assert(is_size_aligned(bytes, alignment), "Must be");
3671 
3672   // First reserve - but not commit - the address range in small pages.
3673   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3674 
3675   if (start == NULL) {
3676     return NULL;
3677   }
3678 
3679   assert(is_ptr_aligned(start, alignment), "Must be");
3680 
3681   char* end = start + bytes;
3682 
3683   // Find the regions of the allocated chunk that can be promoted to large pages.
3684   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3685   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3686 
3687   size_t lp_bytes = lp_end - lp_start;
3688 
3689   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3690 
3691   if (lp_bytes == 0) {
3692     // The mapped region doesn't even span the start and the end of a large page.
3693     // Fall back to allocate a non-special area.
3694     ::munmap(start, end - start);
3695     return NULL;
3696   }
3697 
3698   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3699 
3700   void* result;
3701 
3702   // Commit small-paged leading area.
3703   if (start != lp_start) {
3704     result = ::mmap(start, lp_start - start, prot,
3705                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3706                     -1, 0);
3707     if (result == MAP_FAILED) {
3708       ::munmap(lp_start, end - lp_start);
3709       return NULL;
3710     }
3711   }
3712 
3713   // Commit large-paged area.
3714   result = ::mmap(lp_start, lp_bytes, prot,
3715                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3716                   -1, 0);
3717   if (result == MAP_FAILED) {
3718     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3719     // If the mmap above fails, the large pages region will be unmapped and we
3720     // have regions before and after with small pages. Release these regions.
3721     //
3722     // |  mapped  |  unmapped  |  mapped  |
3723     // ^          ^            ^          ^
3724     // start      lp_start     lp_end     end
3725     //
3726     ::munmap(start, lp_start - start);
3727     ::munmap(lp_end, end - lp_end);
3728     return NULL;
3729   }
3730 
3731   // Commit small-paged trailing area.
3732   if (lp_end != end) {
3733       result = ::mmap(lp_end, end - lp_end, prot,
3734                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3735                       -1, 0);
3736     if (result == MAP_FAILED) {
3737       ::munmap(start, lp_end - start);
3738       return NULL;
3739     }
3740   }
3741 
3742   return start;
3743 }
3744 
3745 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3746   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3747   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3748   assert(is_size_aligned(alignment, os::vm_allocation_granularity()), "Must be");
3749   assert(is_power_of_2(os::large_page_size()), "Must be");
3750   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3751 
3752   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3753     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3754   } else {
3755     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3756   }
3757 }
3758 
3759 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3760   assert(UseLargePages, "only for large pages");
3761 
3762   char* addr;
3763   if (UseSHM) {
3764     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3765   } else {
3766     assert(UseHugeTLBFS, "must be");
3767     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3768   }
3769 
3770   if (addr != NULL) {
3771     if (UseNUMAInterleaving) {
3772       numa_make_global(addr, bytes);
3773     }
3774 
3775     // The memory is committed
3776     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
3777   }
3778 
3779   return addr;
3780 }
3781 
3782 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3783   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3784   return shmdt(base) == 0;
3785 }
3786 
3787 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3788   return pd_release_memory(base, bytes);
3789 }
3790 
3791 bool os::release_memory_special(char* base, size_t bytes) {
3792   bool res;
3793   if (MemTracker::tracking_level() > NMT_minimal) {
3794     Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3795     res = os::Linux::release_memory_special_impl(base, bytes);
3796     if (res) {
3797       tkr.record((address)base, bytes);
3798     }
3799 
3800   } else {
3801     res = os::Linux::release_memory_special_impl(base, bytes);
3802   }
3803   return res;
3804 }
3805 
3806 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
3807   assert(UseLargePages, "only for large pages");
3808   bool res;
3809 
3810   if (UseSHM) {
3811     res = os::Linux::release_memory_special_shm(base, bytes);
3812   } else {
3813     assert(UseHugeTLBFS, "must be");
3814     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3815   }
3816   return res;
3817 }
3818 
3819 size_t os::large_page_size() {
3820   return _large_page_size;
3821 }
3822 
3823 // With SysV SHM the entire memory region must be allocated as shared
3824 // memory.
3825 // HugeTLBFS allows application to commit large page memory on demand.
3826 // However, when committing memory with HugeTLBFS fails, the region
3827 // that was supposed to be committed will lose the old reservation
3828 // and allow other threads to steal that memory region. Because of this
3829 // behavior we can't commit HugeTLBFS memory.
3830 bool os::can_commit_large_page_memory() {
3831   return UseTransparentHugePages;
3832 }
3833 
3834 bool os::can_execute_large_page_memory() {
3835   return UseTransparentHugePages || UseHugeTLBFS;
3836 }
3837 
3838 // Reserve memory at an arbitrary address, only if that area is
3839 // available (and not reserved for something else).
3840 
3841 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3842   const int max_tries = 10;
3843   char* base[max_tries];
3844   size_t size[max_tries];
3845   const size_t gap = 0x000000;
3846 
3847   // Assert only that the size is a multiple of the page size, since
3848   // that's all that mmap requires, and since that's all we really know
3849   // about at this low abstraction level.  If we need higher alignment,
3850   // we can either pass an alignment to this method or verify alignment
3851   // in one of the methods further up the call chain.  See bug 5044738.
3852   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3853 
3854   // Repeatedly allocate blocks until the block is allocated at the
3855   // right spot. Give up after max_tries. Note that reserve_memory() will
3856   // automatically update _highest_vm_reserved_address if the call is
3857   // successful. The variable tracks the highest memory address every reserved
3858   // by JVM. It is used to detect heap-stack collision if running with
3859   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3860   // space than needed, it could confuse the collision detecting code. To
3861   // solve the problem, save current _highest_vm_reserved_address and
3862   // calculate the correct value before return.
3863   address old_highest = _highest_vm_reserved_address;
3864 
3865   // Linux mmap allows caller to pass an address as hint; give it a try first,
3866   // if kernel honors the hint then we can return immediately.
3867   char * addr = anon_mmap(requested_addr, bytes, false);
3868   if (addr == requested_addr) {
3869      return requested_addr;
3870   }
3871 
3872   if (addr != NULL) {
3873      // mmap() is successful but it fails to reserve at the requested address
3874      anon_munmap(addr, bytes);
3875   }
3876 
3877   int i;
3878   for (i = 0; i < max_tries; ++i) {
3879     base[i] = reserve_memory(bytes);
3880 
3881     if (base[i] != NULL) {
3882       // Is this the block we wanted?
3883       if (base[i] == requested_addr) {
3884         size[i] = bytes;
3885         break;
3886       }
3887 
3888       // Does this overlap the block we wanted? Give back the overlapped
3889       // parts and try again.
3890 
3891       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3892       if (top_overlap >= 0 && top_overlap < bytes) {
3893         unmap_memory(base[i], top_overlap);
3894         base[i] += top_overlap;
3895         size[i] = bytes - top_overlap;
3896       } else {
3897         size_t bottom_overlap = base[i] + bytes - requested_addr;
3898         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3899           unmap_memory(requested_addr, bottom_overlap);
3900           size[i] = bytes - bottom_overlap;
3901         } else {
3902           size[i] = bytes;
3903         }
3904       }
3905     }
3906   }
3907 
3908   // Give back the unused reserved pieces.
3909 
3910   for (int j = 0; j < i; ++j) {
3911     if (base[j] != NULL) {
3912       unmap_memory(base[j], size[j]);
3913     }
3914   }
3915 
3916   if (i < max_tries) {
3917     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3918     return requested_addr;
3919   } else {
3920     _highest_vm_reserved_address = old_highest;
3921     return NULL;
3922   }
3923 }
3924 
3925 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3926   return ::read(fd, buf, nBytes);
3927 }
3928 
3929 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3930 // Solaris uses poll(), linux uses park().
3931 // Poll() is likely a better choice, assuming that Thread.interrupt()
3932 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3933 // SIGSEGV, see 4355769.
3934 
3935 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3936   assert(thread == Thread::current(),  "thread consistency check");
3937 
3938   ParkEvent * const slp = thread->_SleepEvent ;
3939   slp->reset() ;
3940   OrderAccess::fence() ;
3941 
3942   if (interruptible) {
3943     jlong prevtime = javaTimeNanos();
3944 
3945     for (;;) {
3946       if (os::is_interrupted(thread, true)) {
3947         return OS_INTRPT;
3948       }
3949 
3950       jlong newtime = javaTimeNanos();
3951 
3952       if (newtime - prevtime < 0) {
3953         // time moving backwards, should only happen if no monotonic clock
3954         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3955         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3956       } else {
3957         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3958       }
3959 
3960       if(millis <= 0) {
3961         return OS_OK;
3962       }
3963 
3964       prevtime = newtime;
3965 
3966       {
3967         assert(thread->is_Java_thread(), "sanity check");
3968         JavaThread *jt = (JavaThread *) thread;
3969         ThreadBlockInVM tbivm(jt);
3970         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3971 
3972         jt->set_suspend_equivalent();
3973         // cleared by handle_special_suspend_equivalent_condition() or
3974         // java_suspend_self() via check_and_wait_while_suspended()
3975 
3976         slp->park(millis);
3977 
3978         // were we externally suspended while we were waiting?
3979         jt->check_and_wait_while_suspended();
3980       }
3981     }
3982   } else {
3983     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3984     jlong prevtime = javaTimeNanos();
3985 
3986     for (;;) {
3987       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3988       // the 1st iteration ...
3989       jlong newtime = javaTimeNanos();
3990 
3991       if (newtime - prevtime < 0) {
3992         // time moving backwards, should only happen if no monotonic clock
3993         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3994         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3995       } else {
3996         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3997       }
3998 
3999       if(millis <= 0) break ;
4000 
4001       prevtime = newtime;
4002       slp->park(millis);
4003     }
4004     return OS_OK ;
4005   }
4006 }
4007 
4008 //
4009 // Short sleep, direct OS call.
4010 //
4011 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4012 // sched_yield(2) will actually give up the CPU:
4013 //
4014 //   * Alone on this pariticular CPU, keeps running.
4015 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4016 //     (pre 2.6.39).
4017 //
4018 // So calling this with 0 is an alternative.
4019 //
4020 void os::naked_short_sleep(jlong ms) {
4021   struct timespec req;
4022 
4023   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4024   req.tv_sec = 0;
4025   if (ms > 0) {
4026     req.tv_nsec = (ms % 1000) * 1000000;
4027   }
4028   else {
4029     req.tv_nsec = 1;
4030   }
4031 
4032   nanosleep(&req, NULL);
4033 
4034   return;
4035 }
4036 
4037 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4038 void os::infinite_sleep() {
4039   while (true) {    // sleep forever ...
4040     ::sleep(100);   // ... 100 seconds at a time
4041   }
4042 }
4043 
4044 // Used to convert frequent JVM_Yield() to nops
4045 bool os::dont_yield() {
4046   return DontYieldALot;
4047 }
4048 
4049 void os::yield() {
4050   sched_yield();
4051 }
4052 
4053 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
4054 
4055 void os::yield_all(int attempts) {
4056   // Yields to all threads, including threads with lower priorities
4057   // Threads on Linux are all with same priority. The Solaris style
4058   // os::yield_all() with nanosleep(1ms) is not necessary.
4059   sched_yield();
4060 }
4061 
4062 // Called from the tight loops to possibly influence time-sharing heuristics
4063 void os::loop_breaker(int attempts) {
4064   os::yield_all(attempts);
4065 }
4066 
4067 ////////////////////////////////////////////////////////////////////////////////
4068 // thread priority support
4069 
4070 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4071 // only supports dynamic priority, static priority must be zero. For real-time
4072 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4073 // However, for large multi-threaded applications, SCHED_RR is not only slower
4074 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4075 // of 5 runs - Sep 2005).
4076 //
4077 // The following code actually changes the niceness of kernel-thread/LWP. It
4078 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4079 // not the entire user process, and user level threads are 1:1 mapped to kernel
4080 // threads. It has always been the case, but could change in the future. For
4081 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4082 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
4083 
4084 int os::java_to_os_priority[CriticalPriority + 1] = {
4085   19,              // 0 Entry should never be used
4086 
4087    4,              // 1 MinPriority
4088    3,              // 2
4089    2,              // 3
4090 
4091    1,              // 4
4092    0,              // 5 NormPriority
4093   -1,              // 6
4094 
4095   -2,              // 7
4096   -3,              // 8
4097   -4,              // 9 NearMaxPriority
4098 
4099   -5,              // 10 MaxPriority
4100 
4101   -5               // 11 CriticalPriority
4102 };
4103 
4104 static int prio_init() {
4105   if (ThreadPriorityPolicy == 1) {
4106     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
4107     // if effective uid is not root. Perhaps, a more elegant way of doing
4108     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
4109     if (geteuid() != 0) {
4110       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4111         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
4112       }
4113       ThreadPriorityPolicy = 0;
4114     }
4115   }
4116   if (UseCriticalJavaThreadPriority) {
4117     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4118   }
4119   return 0;
4120 }
4121 
4122 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4123   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
4124 
4125   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4126   return (ret == 0) ? OS_OK : OS_ERR;
4127 }
4128 
4129 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
4130   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
4131     *priority_ptr = java_to_os_priority[NormPriority];
4132     return OS_OK;
4133   }
4134 
4135   errno = 0;
4136   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4137   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4138 }
4139 
4140 // Hint to the underlying OS that a task switch would not be good.
4141 // Void return because it's a hint and can fail.
4142 void os::hint_no_preempt() {}
4143 
4144 ////////////////////////////////////////////////////////////////////////////////
4145 // suspend/resume support
4146 
4147 //  the low-level signal-based suspend/resume support is a remnant from the
4148 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4149 //  within hotspot. Now there is a single use-case for this:
4150 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
4151 //      that runs in the watcher thread.
4152 //  The remaining code is greatly simplified from the more general suspension
4153 //  code that used to be used.
4154 //
4155 //  The protocol is quite simple:
4156 //  - suspend:
4157 //      - sends a signal to the target thread
4158 //      - polls the suspend state of the osthread using a yield loop
4159 //      - target thread signal handler (SR_handler) sets suspend state
4160 //        and blocks in sigsuspend until continued
4161 //  - resume:
4162 //      - sets target osthread state to continue
4163 //      - sends signal to end the sigsuspend loop in the SR_handler
4164 //
4165 //  Note that the SR_lock plays no role in this suspend/resume protocol.
4166 //
4167 
4168 static void resume_clear_context(OSThread *osthread) {
4169   osthread->set_ucontext(NULL);
4170   osthread->set_siginfo(NULL);
4171 }
4172 
4173 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
4174   osthread->set_ucontext(context);
4175   osthread->set_siginfo(siginfo);
4176 }
4177 
4178 //
4179 // Handler function invoked when a thread's execution is suspended or
4180 // resumed. We have to be careful that only async-safe functions are
4181 // called here (Note: most pthread functions are not async safe and
4182 // should be avoided.)
4183 //
4184 // Note: sigwait() is a more natural fit than sigsuspend() from an
4185 // interface point of view, but sigwait() prevents the signal hander
4186 // from being run. libpthread would get very confused by not having
4187 // its signal handlers run and prevents sigwait()'s use with the
4188 // mutex granting granting signal.
4189 //
4190 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4191 //
4192 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4193   // Save and restore errno to avoid confusing native code with EINTR
4194   // after sigsuspend.
4195   int old_errno = errno;
4196 
4197   Thread* thread = Thread::current();
4198   OSThread* osthread = thread->osthread();
4199   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4200 
4201   os::SuspendResume::State current = osthread->sr.state();
4202   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4203     suspend_save_context(osthread, siginfo, context);
4204 
4205     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4206     os::SuspendResume::State state = osthread->sr.suspended();
4207     if (state == os::SuspendResume::SR_SUSPENDED) {
4208       sigset_t suspend_set;  // signals for sigsuspend()
4209 
4210       // get current set of blocked signals and unblock resume signal
4211       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4212       sigdelset(&suspend_set, SR_signum);
4213 
4214       sr_semaphore.signal();
4215       // wait here until we are resumed
4216       while (1) {
4217         sigsuspend(&suspend_set);
4218 
4219         os::SuspendResume::State result = osthread->sr.running();
4220         if (result == os::SuspendResume::SR_RUNNING) {
4221           sr_semaphore.signal();
4222           break;
4223         }
4224       }
4225 
4226     } else if (state == os::SuspendResume::SR_RUNNING) {
4227       // request was cancelled, continue
4228     } else {
4229       ShouldNotReachHere();
4230     }
4231 
4232     resume_clear_context(osthread);
4233   } else if (current == os::SuspendResume::SR_RUNNING) {
4234     // request was cancelled, continue
4235   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4236     // ignore
4237   } else {
4238     // ignore
4239   }
4240 
4241   errno = old_errno;
4242 }
4243 
4244 
4245 static int SR_initialize() {
4246   struct sigaction act;
4247   char *s;
4248   /* Get signal number to use for suspend/resume */
4249   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4250     int sig = ::strtol(s, 0, 10);
4251     if (sig > 0 || sig < _NSIG) {
4252         SR_signum = sig;
4253     }
4254   }
4255 
4256   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4257         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4258 
4259   sigemptyset(&SR_sigset);
4260   sigaddset(&SR_sigset, SR_signum);
4261 
4262   /* Set up signal handler for suspend/resume */
4263   act.sa_flags = SA_RESTART|SA_SIGINFO;
4264   act.sa_handler = (void (*)(int)) SR_handler;
4265 
4266   // SR_signum is blocked by default.
4267   // 4528190 - We also need to block pthread restart signal (32 on all
4268   // supported Linux platforms). Note that LinuxThreads need to block
4269   // this signal for all threads to work properly. So we don't have
4270   // to use hard-coded signal number when setting up the mask.
4271   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4272 
4273   if (sigaction(SR_signum, &act, 0) == -1) {
4274     return -1;
4275   }
4276 
4277   // Save signal flag
4278   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4279   return 0;
4280 }
4281 
4282 static int sr_notify(OSThread* osthread) {
4283   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4284   assert_status(status == 0, status, "pthread_kill");
4285   return status;
4286 }
4287 
4288 // "Randomly" selected value for how long we want to spin
4289 // before bailing out on suspending a thread, also how often
4290 // we send a signal to a thread we want to resume
4291 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4292 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4293 
4294 // returns true on success and false on error - really an error is fatal
4295 // but this seems the normal response to library errors
4296 static bool do_suspend(OSThread* osthread) {
4297   assert(osthread->sr.is_running(), "thread should be running");
4298   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4299 
4300   // mark as suspended and send signal
4301   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4302     // failed to switch, state wasn't running?
4303     ShouldNotReachHere();
4304     return false;
4305   }
4306 
4307   if (sr_notify(osthread) != 0) {
4308     ShouldNotReachHere();
4309   }
4310 
4311   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4312   while (true) {
4313     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4314       break;
4315     } else {
4316       // timeout
4317       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4318       if (cancelled == os::SuspendResume::SR_RUNNING) {
4319         return false;
4320       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4321         // make sure that we consume the signal on the semaphore as well
4322         sr_semaphore.wait();
4323         break;
4324       } else {
4325         ShouldNotReachHere();
4326         return false;
4327       }
4328     }
4329   }
4330 
4331   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4332   return true;
4333 }
4334 
4335 static void do_resume(OSThread* osthread) {
4336   assert(osthread->sr.is_suspended(), "thread should be suspended");
4337   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4338 
4339   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4340     // failed to switch to WAKEUP_REQUEST
4341     ShouldNotReachHere();
4342     return;
4343   }
4344 
4345   while (true) {
4346     if (sr_notify(osthread) == 0) {
4347       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4348         if (osthread->sr.is_running()) {
4349           return;
4350         }
4351       }
4352     } else {
4353       ShouldNotReachHere();
4354     }
4355   }
4356 
4357   guarantee(osthread->sr.is_running(), "Must be running!");
4358 }
4359 
4360 ////////////////////////////////////////////////////////////////////////////////
4361 // interrupt support
4362 
4363 void os::interrupt(Thread* thread) {
4364   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4365     "possibility of dangling Thread pointer");
4366 
4367   OSThread* osthread = thread->osthread();
4368 
4369   if (!osthread->interrupted()) {
4370     osthread->set_interrupted(true);
4371     // More than one thread can get here with the same value of osthread,
4372     // resulting in multiple notifications.  We do, however, want the store
4373     // to interrupted() to be visible to other threads before we execute unpark().
4374     OrderAccess::fence();
4375     ParkEvent * const slp = thread->_SleepEvent ;
4376     if (slp != NULL) slp->unpark() ;
4377   }
4378 
4379   // For JSR166. Unpark even if interrupt status already was set
4380   if (thread->is_Java_thread())
4381     ((JavaThread*)thread)->parker()->unpark();
4382 
4383   ParkEvent * ev = thread->_ParkEvent ;
4384   if (ev != NULL) ev->unpark() ;
4385 
4386 }
4387 
4388 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
4389   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
4390     "possibility of dangling Thread pointer");
4391 
4392   OSThread* osthread = thread->osthread();
4393 
4394   bool interrupted = osthread->interrupted();
4395 
4396   if (interrupted && clear_interrupted) {
4397     osthread->set_interrupted(false);
4398     // consider thread->_SleepEvent->reset() ... optional optimization
4399   }
4400 
4401   return interrupted;
4402 }
4403 
4404 ///////////////////////////////////////////////////////////////////////////////////
4405 // signal handling (except suspend/resume)
4406 
4407 // This routine may be used by user applications as a "hook" to catch signals.
4408 // The user-defined signal handler must pass unrecognized signals to this
4409 // routine, and if it returns true (non-zero), then the signal handler must
4410 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4411 // routine will never retun false (zero), but instead will execute a VM panic
4412 // routine kill the process.
4413 //
4414 // If this routine returns false, it is OK to call it again.  This allows
4415 // the user-defined signal handler to perform checks either before or after
4416 // the VM performs its own checks.  Naturally, the user code would be making
4417 // a serious error if it tried to handle an exception (such as a null check
4418 // or breakpoint) that the VM was generating for its own correct operation.
4419 //
4420 // This routine may recognize any of the following kinds of signals:
4421 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4422 // It should be consulted by handlers for any of those signals.
4423 //
4424 // The caller of this routine must pass in the three arguments supplied
4425 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4426 // field of the structure passed to sigaction().  This routine assumes that
4427 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4428 //
4429 // Note that the VM will print warnings if it detects conflicting signal
4430 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4431 //
4432 extern "C" JNIEXPORT int
4433 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4434                         void* ucontext, int abort_if_unrecognized);
4435 
4436 void signalHandler(int sig, siginfo_t* info, void* uc) {
4437   assert(info != NULL && uc != NULL, "it must be old kernel");
4438   int orig_errno = errno;  // Preserve errno value over signal handler.
4439   JVM_handle_linux_signal(sig, info, uc, true);
4440   errno = orig_errno;
4441 }
4442 
4443 
4444 // This boolean allows users to forward their own non-matching signals
4445 // to JVM_handle_linux_signal, harmlessly.
4446 bool os::Linux::signal_handlers_are_installed = false;
4447 
4448 // For signal-chaining
4449 struct sigaction os::Linux::sigact[MAXSIGNUM];
4450 unsigned int os::Linux::sigs = 0;
4451 bool os::Linux::libjsig_is_loaded = false;
4452 typedef struct sigaction *(*get_signal_t)(int);
4453 get_signal_t os::Linux::get_signal_action = NULL;
4454 
4455 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4456   struct sigaction *actp = NULL;
4457 
4458   if (libjsig_is_loaded) {
4459     // Retrieve the old signal handler from libjsig
4460     actp = (*get_signal_action)(sig);
4461   }
4462   if (actp == NULL) {
4463     // Retrieve the preinstalled signal handler from jvm
4464     actp = get_preinstalled_handler(sig);
4465   }
4466 
4467   return actp;
4468 }
4469 
4470 static bool call_chained_handler(struct sigaction *actp, int sig,
4471                                  siginfo_t *siginfo, void *context) {
4472   // Call the old signal handler
4473   if (actp->sa_handler == SIG_DFL) {
4474     // It's more reasonable to let jvm treat it as an unexpected exception
4475     // instead of taking the default action.
4476     return false;
4477   } else if (actp->sa_handler != SIG_IGN) {
4478     if ((actp->sa_flags & SA_NODEFER) == 0) {
4479       // automaticlly block the signal
4480       sigaddset(&(actp->sa_mask), sig);
4481     }
4482 
4483     sa_handler_t hand = NULL;
4484     sa_sigaction_t sa = NULL;
4485     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4486     // retrieve the chained handler
4487     if (siginfo_flag_set) {
4488       sa = actp->sa_sigaction;
4489     } else {
4490       hand = actp->sa_handler;
4491     }
4492 
4493     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4494       actp->sa_handler = SIG_DFL;
4495     }
4496 
4497     // try to honor the signal mask
4498     sigset_t oset;
4499     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4500 
4501     // call into the chained handler
4502     if (siginfo_flag_set) {
4503       (*sa)(sig, siginfo, context);
4504     } else {
4505       (*hand)(sig);
4506     }
4507 
4508     // restore the signal mask
4509     pthread_sigmask(SIG_SETMASK, &oset, 0);
4510   }
4511   // Tell jvm's signal handler the signal is taken care of.
4512   return true;
4513 }
4514 
4515 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4516   bool chained = false;
4517   // signal-chaining
4518   if (UseSignalChaining) {
4519     struct sigaction *actp = get_chained_signal_action(sig);
4520     if (actp != NULL) {
4521       chained = call_chained_handler(actp, sig, siginfo, context);
4522     }
4523   }
4524   return chained;
4525 }
4526 
4527 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4528   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4529     return &sigact[sig];
4530   }
4531   return NULL;
4532 }
4533 
4534 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4535   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4536   sigact[sig] = oldAct;
4537   sigs |= (unsigned int)1 << sig;
4538 }
4539 
4540 // for diagnostic
4541 int os::Linux::sigflags[MAXSIGNUM];
4542 
4543 int os::Linux::get_our_sigflags(int sig) {
4544   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4545   return sigflags[sig];
4546 }
4547 
4548 void os::Linux::set_our_sigflags(int sig, int flags) {
4549   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4550   sigflags[sig] = flags;
4551 }
4552 
4553 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4554   // Check for overwrite.
4555   struct sigaction oldAct;
4556   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4557 
4558   void* oldhand = oldAct.sa_sigaction
4559                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4560                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4561   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4562       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4563       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4564     if (AllowUserSignalHandlers || !set_installed) {
4565       // Do not overwrite; user takes responsibility to forward to us.
4566       return;
4567     } else if (UseSignalChaining) {
4568       // save the old handler in jvm
4569       save_preinstalled_handler(sig, oldAct);
4570       // libjsig also interposes the sigaction() call below and saves the
4571       // old sigaction on it own.
4572     } else {
4573       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4574                     "%#lx for signal %d.", (long)oldhand, sig));
4575     }
4576   }
4577 
4578   struct sigaction sigAct;
4579   sigfillset(&(sigAct.sa_mask));
4580   sigAct.sa_handler = SIG_DFL;
4581   if (!set_installed) {
4582     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4583   } else {
4584     sigAct.sa_sigaction = signalHandler;
4585     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4586   }
4587   // Save flags, which are set by ours
4588   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4589   sigflags[sig] = sigAct.sa_flags;
4590 
4591   int ret = sigaction(sig, &sigAct, &oldAct);
4592   assert(ret == 0, "check");
4593 
4594   void* oldhand2  = oldAct.sa_sigaction
4595                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4596                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4597   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4598 }
4599 
4600 // install signal handlers for signals that HotSpot needs to
4601 // handle in order to support Java-level exception handling.
4602 
4603 void os::Linux::install_signal_handlers() {
4604   if (!signal_handlers_are_installed) {
4605     signal_handlers_are_installed = true;
4606 
4607     // signal-chaining
4608     typedef void (*signal_setting_t)();
4609     signal_setting_t begin_signal_setting = NULL;
4610     signal_setting_t end_signal_setting = NULL;
4611     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4612                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4613     if (begin_signal_setting != NULL) {
4614       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4615                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4616       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4617                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4618       libjsig_is_loaded = true;
4619       assert(UseSignalChaining, "should enable signal-chaining");
4620     }
4621     if (libjsig_is_loaded) {
4622       // Tell libjsig jvm is setting signal handlers
4623       (*begin_signal_setting)();
4624     }
4625 
4626     set_signal_handler(SIGSEGV, true);
4627     set_signal_handler(SIGPIPE, true);
4628     set_signal_handler(SIGBUS, true);
4629     set_signal_handler(SIGILL, true);
4630     set_signal_handler(SIGFPE, true);
4631 #if defined(PPC64)
4632     set_signal_handler(SIGTRAP, true);
4633 #endif
4634     set_signal_handler(SIGXFSZ, true);
4635 
4636     if (libjsig_is_loaded) {
4637       // Tell libjsig jvm finishes setting signal handlers
4638       (*end_signal_setting)();
4639     }
4640 
4641     // We don't activate signal checker if libjsig is in place, we trust ourselves
4642     // and if UserSignalHandler is installed all bets are off.
4643     // Log that signal checking is off only if -verbose:jni is specified.
4644     if (CheckJNICalls) {
4645       if (libjsig_is_loaded) {
4646         if (PrintJNIResolving) {
4647           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4648         }
4649         check_signals = false;
4650       }
4651       if (AllowUserSignalHandlers) {
4652         if (PrintJNIResolving) {
4653           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4654         }
4655         check_signals = false;
4656       }
4657     }
4658   }
4659 }
4660 
4661 // This is the fastest way to get thread cpu time on Linux.
4662 // Returns cpu time (user+sys) for any thread, not only for current.
4663 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4664 // It might work on 2.6.10+ with a special kernel/glibc patch.
4665 // For reference, please, see IEEE Std 1003.1-2004:
4666 //   http://www.unix.org/single_unix_specification
4667 
4668 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4669   struct timespec tp;
4670   int rc = os::Linux::clock_gettime(clockid, &tp);
4671   assert(rc == 0, "clock_gettime is expected to return 0 code");
4672 
4673   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4674 }
4675 
4676 /////
4677 // glibc on Linux platform uses non-documented flag
4678 // to indicate, that some special sort of signal
4679 // trampoline is used.
4680 // We will never set this flag, and we should
4681 // ignore this flag in our diagnostic
4682 #ifdef SIGNIFICANT_SIGNAL_MASK
4683 #undef SIGNIFICANT_SIGNAL_MASK
4684 #endif
4685 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4686 
4687 static const char* get_signal_handler_name(address handler,
4688                                            char* buf, int buflen) {
4689   int offset = 0;
4690   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4691   if (found) {
4692     // skip directory names
4693     const char *p1, *p2;
4694     p1 = buf;
4695     size_t len = strlen(os::file_separator());
4696     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4697     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4698   } else {
4699     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4700   }
4701   return buf;
4702 }
4703 
4704 static void print_signal_handler(outputStream* st, int sig,
4705                                  char* buf, size_t buflen) {
4706   struct sigaction sa;
4707 
4708   sigaction(sig, NULL, &sa);
4709 
4710   // See comment for SIGNIFICANT_SIGNAL_MASK define
4711   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4712 
4713   st->print("%s: ", os::exception_name(sig, buf, buflen));
4714 
4715   address handler = (sa.sa_flags & SA_SIGINFO)
4716     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4717     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4718 
4719   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4720     st->print("SIG_DFL");
4721   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4722     st->print("SIG_IGN");
4723   } else {
4724     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4725   }
4726 
4727   st->print(", sa_mask[0]=");
4728   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4729 
4730   address rh = VMError::get_resetted_sighandler(sig);
4731   // May be, handler was resetted by VMError?
4732   if(rh != NULL) {
4733     handler = rh;
4734     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4735   }
4736 
4737   st->print(", sa_flags=");
4738   os::Posix::print_sa_flags(st, sa.sa_flags);
4739 
4740   // Check: is it our handler?
4741   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4742      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4743     // It is our signal handler
4744     // check for flags, reset system-used one!
4745     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4746       st->print(
4747                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4748                 os::Linux::get_our_sigflags(sig));
4749     }
4750   }
4751   st->cr();
4752 }
4753 
4754 
4755 #define DO_SIGNAL_CHECK(sig) \
4756   if (!sigismember(&check_signal_done, sig)) \
4757     os::Linux::check_signal_handler(sig)
4758 
4759 // This method is a periodic task to check for misbehaving JNI applications
4760 // under CheckJNI, we can add any periodic checks here
4761 
4762 void os::run_periodic_checks() {
4763 
4764   if (check_signals == false) return;
4765 
4766   // SEGV and BUS if overridden could potentially prevent
4767   // generation of hs*.log in the event of a crash, debugging
4768   // such a case can be very challenging, so we absolutely
4769   // check the following for a good measure:
4770   DO_SIGNAL_CHECK(SIGSEGV);
4771   DO_SIGNAL_CHECK(SIGILL);
4772   DO_SIGNAL_CHECK(SIGFPE);
4773   DO_SIGNAL_CHECK(SIGBUS);
4774   DO_SIGNAL_CHECK(SIGPIPE);
4775   DO_SIGNAL_CHECK(SIGXFSZ);
4776 #if defined(PPC64)
4777   DO_SIGNAL_CHECK(SIGTRAP);
4778 #endif
4779 
4780   // ReduceSignalUsage allows the user to override these handlers
4781   // see comments at the very top and jvm_solaris.h
4782   if (!ReduceSignalUsage) {
4783     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4784     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4785     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4786     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4787   }
4788 
4789   DO_SIGNAL_CHECK(SR_signum);
4790   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4791 }
4792 
4793 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4794 
4795 static os_sigaction_t os_sigaction = NULL;
4796 
4797 void os::Linux::check_signal_handler(int sig) {
4798   char buf[O_BUFLEN];
4799   address jvmHandler = NULL;
4800 
4801 
4802   struct sigaction act;
4803   if (os_sigaction == NULL) {
4804     // only trust the default sigaction, in case it has been interposed
4805     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4806     if (os_sigaction == NULL) return;
4807   }
4808 
4809   os_sigaction(sig, (struct sigaction*)NULL, &act);
4810 
4811 
4812   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4813 
4814   address thisHandler = (act.sa_flags & SA_SIGINFO)
4815     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4816     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4817 
4818 
4819   switch(sig) {
4820   case SIGSEGV:
4821   case SIGBUS:
4822   case SIGFPE:
4823   case SIGPIPE:
4824   case SIGILL:
4825   case SIGXFSZ:
4826     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4827     break;
4828 
4829   case SHUTDOWN1_SIGNAL:
4830   case SHUTDOWN2_SIGNAL:
4831   case SHUTDOWN3_SIGNAL:
4832   case BREAK_SIGNAL:
4833     jvmHandler = (address)user_handler();
4834     break;
4835 
4836   case INTERRUPT_SIGNAL:
4837     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4838     break;
4839 
4840   default:
4841     if (sig == SR_signum) {
4842       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4843     } else {
4844       return;
4845     }
4846     break;
4847   }
4848 
4849   if (thisHandler != jvmHandler) {
4850     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4851     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4852     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4853     // No need to check this sig any longer
4854     sigaddset(&check_signal_done, sig);
4855     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
4856     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
4857       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
4858                     exception_name(sig, buf, O_BUFLEN));
4859     }
4860   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4861     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4862     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4863     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4864     // No need to check this sig any longer
4865     sigaddset(&check_signal_done, sig);
4866   }
4867 
4868   // Dump all the signal
4869   if (sigismember(&check_signal_done, sig)) {
4870     print_signal_handlers(tty, buf, O_BUFLEN);
4871   }
4872 }
4873 
4874 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4875 
4876 extern bool signal_name(int signo, char* buf, size_t len);
4877 
4878 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4879   if (0 < exception_code && exception_code <= SIGRTMAX) {
4880     // signal
4881     if (!signal_name(exception_code, buf, size)) {
4882       jio_snprintf(buf, size, "SIG%d", exception_code);
4883     }
4884     return buf;
4885   } else {
4886     return NULL;
4887   }
4888 }
4889 
4890 // this is called _before_ most of the global arguments have been parsed
4891 void os::init(void) {
4892   char dummy;   /* used to get a guess on initial stack address */
4893 
4894   // With LinuxThreads the JavaMain thread pid (primordial thread)
4895   // is different than the pid of the java launcher thread.
4896   // So, on Linux, the launcher thread pid is passed to the VM
4897   // via the sun.java.launcher.pid property.
4898   // Use this property instead of getpid() if it was correctly passed.
4899   // See bug 6351349.
4900   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4901 
4902   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4903 
4904   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4905 
4906   init_random(1234567);
4907 
4908   ThreadCritical::initialize();
4909 
4910   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4911   if (Linux::page_size() == -1) {
4912     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4913                   strerror(errno)));
4914   }
4915   init_page_sizes((size_t) Linux::page_size());
4916 
4917   Linux::initialize_system_info();
4918 
4919   // _main_thread points to the thread that created/loaded the JVM.
4920   Linux::_main_thread = pthread_self();
4921 
4922   Linux::clock_init();
4923   initial_time_count = javaTimeNanos();
4924 
4925   // pthread_condattr initialization for monotonic clock
4926   int status;
4927   pthread_condattr_t* _condattr = os::Linux::condAttr();
4928   if ((status = pthread_condattr_init(_condattr)) != 0) {
4929     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4930   }
4931   // Only set the clock if CLOCK_MONOTONIC is available
4932   if (Linux::supports_monotonic_clock()) {
4933     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4934       if (status == EINVAL) {
4935         warning("Unable to use monotonic clock with relative timed-waits" \
4936                 " - changes to the time-of-day clock may have adverse affects");
4937       } else {
4938         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4939       }
4940     }
4941   }
4942   // else it defaults to CLOCK_REALTIME
4943 
4944   pthread_mutex_init(&dl_mutex, NULL);
4945 
4946   // If the pagesize of the VM is greater than 8K determine the appropriate
4947   // number of initial guard pages.  The user can change this with the
4948   // command line arguments, if needed.
4949   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4950     StackYellowPages = 1;
4951     StackRedPages = 1;
4952     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4953   }
4954 }
4955 
4956 // To install functions for atexit system call
4957 extern "C" {
4958   static void perfMemory_exit_helper() {
4959     perfMemory_exit();
4960   }
4961 }
4962 
4963 // this is called _after_ the global arguments have been parsed
4964 jint os::init_2(void)
4965 {
4966   Linux::fast_thread_clock_init();
4967 
4968   // Allocate a single page and mark it as readable for safepoint polling
4969   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4970   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4971 
4972   os::set_polling_page( polling_page );
4973 
4974 #ifndef PRODUCT
4975   if(Verbose && PrintMiscellaneous)
4976     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4977 #endif
4978 
4979   if (!UseMembar) {
4980     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4981     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4982     os::set_memory_serialize_page( mem_serialize_page );
4983 
4984 #ifndef PRODUCT
4985     if(Verbose && PrintMiscellaneous)
4986       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4987 #endif
4988   }
4989 
4990   // initialize suspend/resume support - must do this before signal_sets_init()
4991   if (SR_initialize() != 0) {
4992     perror("SR_initialize failed");
4993     return JNI_ERR;
4994   }
4995 
4996   Linux::signal_sets_init();
4997   Linux::install_signal_handlers();
4998 
4999   // Check minimum allowable stack size for thread creation and to initialize
5000   // the java system classes, including StackOverflowError - depends on page
5001   // size.  Add a page for compiler2 recursion in main thread.
5002   // Add in 2*BytesPerWord times page size to account for VM stack during
5003   // class initialization depending on 32 or 64 bit VM.
5004   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
5005             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
5006                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
5007 
5008   size_t threadStackSizeInBytes = ThreadStackSize * K;
5009   if (threadStackSizeInBytes != 0 &&
5010       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
5011         tty->print_cr("\nThe stack size specified is too small, "
5012                       "Specify at least %dk",
5013                       os::Linux::min_stack_allowed/ K);
5014         return JNI_ERR;
5015   }
5016 
5017   // Make the stack size a multiple of the page size so that
5018   // the yellow/red zones can be guarded.
5019   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
5020         vm_page_size()));
5021 
5022   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5023 
5024 #if defined(IA32)
5025   workaround_expand_exec_shield_cs_limit();
5026 #endif
5027 
5028   Linux::libpthread_init();
5029   if (PrintMiscellaneous && (Verbose || WizardMode)) {
5030      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
5031           Linux::glibc_version(), Linux::libpthread_version(),
5032           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
5033   }
5034 
5035   if (UseNUMA) {
5036     if (!Linux::libnuma_init()) {
5037       UseNUMA = false;
5038     } else {
5039       if ((Linux::numa_max_node() < 1)) {
5040         // There's only one node(they start from 0), disable NUMA.
5041         UseNUMA = false;
5042       }
5043     }
5044     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5045     // we can make the adaptive lgrp chunk resizing work. If the user specified
5046     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
5047     // disable adaptive resizing.
5048     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5049       if (FLAG_IS_DEFAULT(UseNUMA)) {
5050         UseNUMA = false;
5051       } else {
5052         if (FLAG_IS_DEFAULT(UseLargePages) &&
5053             FLAG_IS_DEFAULT(UseSHM) &&
5054             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
5055           UseLargePages = false;
5056         } else {
5057           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
5058           UseAdaptiveSizePolicy = false;
5059           UseAdaptiveNUMAChunkSizing = false;
5060         }
5061       }
5062     }
5063     if (!UseNUMA && ForceNUMA) {
5064       UseNUMA = true;
5065     }
5066   }
5067 
5068   if (MaxFDLimit) {
5069     // set the number of file descriptors to max. print out error
5070     // if getrlimit/setrlimit fails but continue regardless.
5071     struct rlimit nbr_files;
5072     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5073     if (status != 0) {
5074       if (PrintMiscellaneous && (Verbose || WizardMode))
5075         perror("os::init_2 getrlimit failed");
5076     } else {
5077       nbr_files.rlim_cur = nbr_files.rlim_max;
5078       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5079       if (status != 0) {
5080         if (PrintMiscellaneous && (Verbose || WizardMode))
5081           perror("os::init_2 setrlimit failed");
5082       }
5083     }
5084   }
5085 
5086   // Initialize lock used to serialize thread creation (see os::create_thread)
5087   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5088 
5089   // at-exit methods are called in the reverse order of their registration.
5090   // atexit functions are called on return from main or as a result of a
5091   // call to exit(3C). There can be only 32 of these functions registered
5092   // and atexit() does not set errno.
5093 
5094   if (PerfAllowAtExitRegistration) {
5095     // only register atexit functions if PerfAllowAtExitRegistration is set.
5096     // atexit functions can be delayed until process exit time, which
5097     // can be problematic for embedded VM situations. Embedded VMs should
5098     // call DestroyJavaVM() to assure that VM resources are released.
5099 
5100     // note: perfMemory_exit_helper atexit function may be removed in
5101     // the future if the appropriate cleanup code can be added to the
5102     // VM_Exit VMOperation's doit method.
5103     if (atexit(perfMemory_exit_helper) != 0) {
5104       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5105     }
5106   }
5107 
5108   // initialize thread priority policy
5109   prio_init();
5110 
5111   return JNI_OK;
5112 }
5113 
5114 // Mark the polling page as unreadable
5115 void os::make_polling_page_unreadable(void) {
5116   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
5117     fatal("Could not disable polling page");
5118 };
5119 
5120 // Mark the polling page as readable
5121 void os::make_polling_page_readable(void) {
5122   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5123     fatal("Could not enable polling page");
5124   }
5125 };
5126 
5127 static int os_cpu_count(const cpu_set_t* cpus) {
5128   int count = 0;
5129   // only look up to the number of configured processors
5130   for (int i = 0; i < os::processor_count(); i++) {
5131     if (CPU_ISSET(i, cpus)) {
5132       count++;
5133     }
5134   }
5135   return count;
5136 }
5137 
5138 // Get the current number of available processors for this process.
5139 // This value can change at any time during a process's lifetime.
5140 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5141 // If anything goes wrong we fallback to returning the number of online
5142 // processors - which can be greater than the number available to the process.
5143 int os::active_processor_count() {
5144   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5145   int cpus_size = sizeof(cpu_set_t);
5146   int cpu_count = 0;
5147 
5148   // pid 0 means the current thread - which we have to assume represents the process
5149   if (sched_getaffinity(0, cpus_size, &cpus) == 0) {
5150     cpu_count = os_cpu_count(&cpus);
5151     if (PrintActiveCpus) {
5152       tty->print_cr("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5153     }
5154   }
5155   else {
5156     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5157     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5158             "which may exceed available processors", strerror(errno), cpu_count);
5159   }
5160 
5161   assert(cpu_count > 0 && cpu_count <= processor_count(), "sanity check");
5162   return cpu_count;
5163 }
5164 
5165 void os::set_native_thread_name(const char *name) {
5166   // Not yet implemented.
5167   return;
5168 }
5169 
5170 bool os::distribute_processes(uint length, uint* distribution) {
5171   // Not yet implemented.
5172   return false;
5173 }
5174 
5175 bool os::bind_to_processor(uint processor_id) {
5176   // Not yet implemented.
5177   return false;
5178 }
5179 
5180 ///
5181 
5182 void os::SuspendedThreadTask::internal_do_task() {
5183   if (do_suspend(_thread->osthread())) {
5184     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5185     do_task(context);
5186     do_resume(_thread->osthread());
5187   }
5188 }
5189 
5190 class PcFetcher : public os::SuspendedThreadTask {
5191 public:
5192   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
5193   ExtendedPC result();
5194 protected:
5195   void do_task(const os::SuspendedThreadTaskContext& context);
5196 private:
5197   ExtendedPC _epc;
5198 };
5199 
5200 ExtendedPC PcFetcher::result() {
5201   guarantee(is_done(), "task is not done yet.");
5202   return _epc;
5203 }
5204 
5205 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
5206   Thread* thread = context.thread();
5207   OSThread* osthread = thread->osthread();
5208   if (osthread->ucontext() != NULL) {
5209     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
5210   } else {
5211     // NULL context is unexpected, double-check this is the VMThread
5212     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
5213   }
5214 }
5215 
5216 // Suspends the target using the signal mechanism and then grabs the PC before
5217 // resuming the target. Used by the flat-profiler only
5218 ExtendedPC os::get_thread_pc(Thread* thread) {
5219   // Make sure that it is called by the watcher for the VMThread
5220   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
5221   assert(thread->is_VM_thread(), "Can only be called for VMThread");
5222 
5223   PcFetcher fetcher(thread);
5224   fetcher.run();
5225   return fetcher.result();
5226 }
5227 
5228 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
5229 {
5230    if (is_NPTL()) {
5231       return pthread_cond_timedwait(_cond, _mutex, _abstime);
5232    } else {
5233       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
5234       // word back to default 64bit precision if condvar is signaled. Java
5235       // wants 53bit precision.  Save and restore current value.
5236       int fpu = get_fpu_control_word();
5237       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
5238       set_fpu_control_word(fpu);
5239       return status;
5240    }
5241 }
5242 
5243 ////////////////////////////////////////////////////////////////////////////////
5244 // debug support
5245 
5246 bool os::find(address addr, outputStream* st) {
5247   Dl_info dlinfo;
5248   memset(&dlinfo, 0, sizeof(dlinfo));
5249   if (dladdr(addr, &dlinfo) != 0) {
5250     st->print(PTR_FORMAT ": ", addr);
5251     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5252       st->print("%s+%#x", dlinfo.dli_sname,
5253                  addr - (intptr_t)dlinfo.dli_saddr);
5254     } else if (dlinfo.dli_fbase != NULL) {
5255       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
5256     } else {
5257       st->print("<absolute address>");
5258     }
5259     if (dlinfo.dli_fname != NULL) {
5260       st->print(" in %s", dlinfo.dli_fname);
5261     }
5262     if (dlinfo.dli_fbase != NULL) {
5263       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
5264     }
5265     st->cr();
5266 
5267     if (Verbose) {
5268       // decode some bytes around the PC
5269       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5270       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5271       address       lowest = (address) dlinfo.dli_sname;
5272       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5273       if (begin < lowest)  begin = lowest;
5274       Dl_info dlinfo2;
5275       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5276           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
5277         end = (address) dlinfo2.dli_saddr;
5278       Disassembler::decode(begin, end, st);
5279     }
5280     return true;
5281   }
5282   return false;
5283 }
5284 
5285 ////////////////////////////////////////////////////////////////////////////////
5286 // misc
5287 
5288 // This does not do anything on Linux. This is basically a hook for being
5289 // able to use structured exception handling (thread-local exception filters)
5290 // on, e.g., Win32.
5291 void
5292 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
5293                          JavaCallArguments* args, Thread* thread) {
5294   f(value, method, args, thread);
5295 }
5296 
5297 void os::print_statistics() {
5298 }
5299 
5300 int os::message_box(const char* title, const char* message) {
5301   int i;
5302   fdStream err(defaultStream::error_fd());
5303   for (i = 0; i < 78; i++) err.print_raw("=");
5304   err.cr();
5305   err.print_raw_cr(title);
5306   for (i = 0; i < 78; i++) err.print_raw("-");
5307   err.cr();
5308   err.print_raw_cr(message);
5309   for (i = 0; i < 78; i++) err.print_raw("=");
5310   err.cr();
5311 
5312   char buf[16];
5313   // Prevent process from exiting upon "read error" without consuming all CPU
5314   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5315 
5316   return buf[0] == 'y' || buf[0] == 'Y';
5317 }
5318 
5319 int os::stat(const char *path, struct stat *sbuf) {
5320   char pathbuf[MAX_PATH];
5321   if (strlen(path) > MAX_PATH - 1) {
5322     errno = ENAMETOOLONG;
5323     return -1;
5324   }
5325   os::native_path(strcpy(pathbuf, path));
5326   return ::stat(pathbuf, sbuf);
5327 }
5328 
5329 bool os::check_heap(bool force) {
5330   return true;
5331 }
5332 
5333 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5334   return ::vsnprintf(buf, count, format, args);
5335 }
5336 
5337 // Is a (classpath) directory empty?
5338 bool os::dir_is_empty(const char* path) {
5339   DIR *dir = NULL;
5340   struct dirent *ptr;
5341 
5342   dir = opendir(path);
5343   if (dir == NULL) return true;
5344 
5345   /* Scan the directory */
5346   bool result = true;
5347   char buf[sizeof(struct dirent) + MAX_PATH];
5348   while (result && (ptr = ::readdir(dir)) != NULL) {
5349     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5350       result = false;
5351     }
5352   }
5353   closedir(dir);
5354   return result;
5355 }
5356 
5357 // This code originates from JDK's sysOpen and open64_w
5358 // from src/solaris/hpi/src/system_md.c
5359 
5360 #ifndef O_DELETE
5361 #define O_DELETE 0x10000
5362 #endif
5363 
5364 // Open a file. Unlink the file immediately after open returns
5365 // if the specified oflag has the O_DELETE flag set.
5366 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5367 
5368 int os::open(const char *path, int oflag, int mode) {
5369 
5370   if (strlen(path) > MAX_PATH - 1) {
5371     errno = ENAMETOOLONG;
5372     return -1;
5373   }
5374   int fd;
5375   int o_delete = (oflag & O_DELETE);
5376   oflag = oflag & ~O_DELETE;
5377 
5378   fd = ::open64(path, oflag, mode);
5379   if (fd == -1) return -1;
5380 
5381   //If the open succeeded, the file might still be a directory
5382   {
5383     struct stat64 buf64;
5384     int ret = ::fstat64(fd, &buf64);
5385     int st_mode = buf64.st_mode;
5386 
5387     if (ret != -1) {
5388       if ((st_mode & S_IFMT) == S_IFDIR) {
5389         errno = EISDIR;
5390         ::close(fd);
5391         return -1;
5392       }
5393     } else {
5394       ::close(fd);
5395       return -1;
5396     }
5397   }
5398 
5399     /*
5400      * All file descriptors that are opened in the JVM and not
5401      * specifically destined for a subprocess should have the
5402      * close-on-exec flag set.  If we don't set it, then careless 3rd
5403      * party native code might fork and exec without closing all
5404      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5405      * UNIXProcess.c), and this in turn might:
5406      *
5407      * - cause end-of-file to fail to be detected on some file
5408      *   descriptors, resulting in mysterious hangs, or
5409      *
5410      * - might cause an fopen in the subprocess to fail on a system
5411      *   suffering from bug 1085341.
5412      *
5413      * (Yes, the default setting of the close-on-exec flag is a Unix
5414      * design flaw)
5415      *
5416      * See:
5417      * 1085341: 32-bit stdio routines should support file descriptors >255
5418      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5419      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5420      */
5421 #ifdef FD_CLOEXEC
5422     {
5423         int flags = ::fcntl(fd, F_GETFD);
5424         if (flags != -1)
5425             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5426     }
5427 #endif
5428 
5429   if (o_delete != 0) {
5430     ::unlink(path);
5431   }
5432   return fd;
5433 }
5434 
5435 
5436 // create binary file, rewriting existing file if required
5437 int os::create_binary_file(const char* path, bool rewrite_existing) {
5438   int oflags = O_WRONLY | O_CREAT;
5439   if (!rewrite_existing) {
5440     oflags |= O_EXCL;
5441   }
5442   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5443 }
5444 
5445 // return current position of file pointer
5446 jlong os::current_file_offset(int fd) {
5447   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5448 }
5449 
5450 // move file pointer to the specified offset
5451 jlong os::seek_to_file_offset(int fd, jlong offset) {
5452   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5453 }
5454 
5455 // This code originates from JDK's sysAvailable
5456 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5457 
5458 int os::available(int fd, jlong *bytes) {
5459   jlong cur, end;
5460   int mode;
5461   struct stat64 buf64;
5462 
5463   if (::fstat64(fd, &buf64) >= 0) {
5464     mode = buf64.st_mode;
5465     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5466       /*
5467       * XXX: is the following call interruptible? If so, this might
5468       * need to go through the INTERRUPT_IO() wrapper as for other
5469       * blocking, interruptible calls in this file.
5470       */
5471       int n;
5472       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5473         *bytes = n;
5474         return 1;
5475       }
5476     }
5477   }
5478   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5479     return 0;
5480   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5481     return 0;
5482   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5483     return 0;
5484   }
5485   *bytes = end - cur;
5486   return 1;
5487 }
5488 
5489 int os::socket_available(int fd, jint *pbytes) {
5490   // Linux doc says EINTR not returned, unlike Solaris
5491   int ret = ::ioctl(fd, FIONREAD, pbytes);
5492 
5493   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5494   // is expected to return 0 on failure and 1 on success to the jdk.
5495   return (ret < 0) ? 0 : 1;
5496 }
5497 
5498 // Map a block of memory.
5499 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5500                      char *addr, size_t bytes, bool read_only,
5501                      bool allow_exec) {
5502   int prot;
5503   int flags = MAP_PRIVATE;
5504 
5505   if (read_only) {
5506     prot = PROT_READ;
5507   } else {
5508     prot = PROT_READ | PROT_WRITE;
5509   }
5510 
5511   if (allow_exec) {
5512     prot |= PROT_EXEC;
5513   }
5514 
5515   if (addr != NULL) {
5516     flags |= MAP_FIXED;
5517   }
5518 
5519   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5520                                      fd, file_offset);
5521   if (mapped_address == MAP_FAILED) {
5522     return NULL;
5523   }
5524   return mapped_address;
5525 }
5526 
5527 
5528 // Remap a block of memory.
5529 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5530                        char *addr, size_t bytes, bool read_only,
5531                        bool allow_exec) {
5532   // same as map_memory() on this OS
5533   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5534                         allow_exec);
5535 }
5536 
5537 
5538 // Unmap a block of memory.
5539 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5540   return munmap(addr, bytes) == 0;
5541 }
5542 
5543 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5544 
5545 static clockid_t thread_cpu_clockid(Thread* thread) {
5546   pthread_t tid = thread->osthread()->pthread_id();
5547   clockid_t clockid;
5548 
5549   // Get thread clockid
5550   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5551   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5552   return clockid;
5553 }
5554 
5555 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5556 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5557 // of a thread.
5558 //
5559 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5560 // the fast estimate available on the platform.
5561 
5562 jlong os::current_thread_cpu_time() {
5563   if (os::Linux::supports_fast_thread_cpu_time()) {
5564     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5565   } else {
5566     // return user + sys since the cost is the same
5567     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5568   }
5569 }
5570 
5571 jlong os::thread_cpu_time(Thread* thread) {
5572   // consistent with what current_thread_cpu_time() returns
5573   if (os::Linux::supports_fast_thread_cpu_time()) {
5574     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5575   } else {
5576     return slow_thread_cpu_time(thread, true /* user + sys */);
5577   }
5578 }
5579 
5580 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5581   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5582     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5583   } else {
5584     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5585   }
5586 }
5587 
5588 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5589   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5590     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5591   } else {
5592     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5593   }
5594 }
5595 
5596 //
5597 //  -1 on error.
5598 //
5599 
5600 PRAGMA_DIAG_PUSH
5601 PRAGMA_FORMAT_NONLITERAL_IGNORED
5602 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5603   static bool proc_task_unchecked = true;
5604   static const char *proc_stat_path = "/proc/%d/stat";
5605   pid_t  tid = thread->osthread()->thread_id();
5606   char *s;
5607   char stat[2048];
5608   int statlen;
5609   char proc_name[64];
5610   int count;
5611   long sys_time, user_time;
5612   char cdummy;
5613   int idummy;
5614   long ldummy;
5615   FILE *fp;
5616 
5617   // The /proc/<tid>/stat aggregates per-process usage on
5618   // new Linux kernels 2.6+ where NPTL is supported.
5619   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5620   // See bug 6328462.
5621   // There possibly can be cases where there is no directory
5622   // /proc/self/task, so we check its availability.
5623   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5624     // This is executed only once
5625     proc_task_unchecked = false;
5626     fp = fopen("/proc/self/task", "r");
5627     if (fp != NULL) {
5628       proc_stat_path = "/proc/self/task/%d/stat";
5629       fclose(fp);
5630     }
5631   }
5632 
5633   sprintf(proc_name, proc_stat_path, tid);
5634   fp = fopen(proc_name, "r");
5635   if ( fp == NULL ) return -1;
5636   statlen = fread(stat, 1, 2047, fp);
5637   stat[statlen] = '\0';
5638   fclose(fp);
5639 
5640   // Skip pid and the command string. Note that we could be dealing with
5641   // weird command names, e.g. user could decide to rename java launcher
5642   // to "java 1.4.2 :)", then the stat file would look like
5643   //                1234 (java 1.4.2 :)) R ... ...
5644   // We don't really need to know the command string, just find the last
5645   // occurrence of ")" and then start parsing from there. See bug 4726580.
5646   s = strrchr(stat, ')');
5647   if (s == NULL ) return -1;
5648 
5649   // Skip blank chars
5650   do s++; while (isspace(*s));
5651 
5652   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5653                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5654                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5655                  &user_time, &sys_time);
5656   if ( count != 13 ) return -1;
5657   if (user_sys_cpu_time) {
5658     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5659   } else {
5660     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5661   }
5662 }
5663 PRAGMA_DIAG_POP
5664 
5665 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5666   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5667   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5668   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5669   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5670 }
5671 
5672 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5673   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5674   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5675   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5676   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5677 }
5678 
5679 bool os::is_thread_cpu_time_supported() {
5680   return true;
5681 }
5682 
5683 // System loadavg support.  Returns -1 if load average cannot be obtained.
5684 // Linux doesn't yet have a (official) notion of processor sets,
5685 // so just return the system wide load average.
5686 int os::loadavg(double loadavg[], int nelem) {
5687   return ::getloadavg(loadavg, nelem);
5688 }
5689 
5690 void os::pause() {
5691   char filename[MAX_PATH];
5692   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5693     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5694   } else {
5695     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5696   }
5697 
5698   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5699   if (fd != -1) {
5700     struct stat buf;
5701     ::close(fd);
5702     while (::stat(filename, &buf) == 0) {
5703       (void)::poll(NULL, 0, 100);
5704     }
5705   } else {
5706     jio_fprintf(stderr,
5707       "Could not open pause file '%s', continuing immediately.\n", filename);
5708   }
5709 }
5710 
5711 
5712 // Refer to the comments in os_solaris.cpp park-unpark.
5713 //
5714 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5715 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5716 // For specifics regarding the bug see GLIBC BUGID 261237 :
5717 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5718 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5719 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5720 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5721 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5722 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5723 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5724 // of libpthread avoids the problem, but isn't practical.
5725 //
5726 // Possible remedies:
5727 //
5728 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5729 //      This is palliative and probabilistic, however.  If the thread is preempted
5730 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5731 //      than the minimum period may have passed, and the abstime may be stale (in the
5732 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5733 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5734 //
5735 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5736 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5737 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5738 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5739 //      thread.
5740 //
5741 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5742 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5743 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5744 //      This also works well.  In fact it avoids kernel-level scalability impediments
5745 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5746 //      timers in a graceful fashion.
5747 //
5748 // 4.   When the abstime value is in the past it appears that control returns
5749 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5750 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5751 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5752 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5753 //      It may be possible to avoid reinitialization by checking the return
5754 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5755 //      condvar we must establish the invariant that cond_signal() is only called
5756 //      within critical sections protected by the adjunct mutex.  This prevents
5757 //      cond_signal() from "seeing" a condvar that's in the midst of being
5758 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5759 //      desirable signal-after-unlock optimization that avoids futile context switching.
5760 //
5761 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5762 //      structure when a condvar is used or initialized.  cond_destroy()  would
5763 //      release the helper structure.  Our reinitialize-after-timedwait fix
5764 //      put excessive stress on malloc/free and locks protecting the c-heap.
5765 //
5766 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5767 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5768 // and only enabling the work-around for vulnerable environments.
5769 
5770 // utility to compute the abstime argument to timedwait:
5771 // millis is the relative timeout time
5772 // abstime will be the absolute timeout time
5773 // TODO: replace compute_abstime() with unpackTime()
5774 
5775 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5776   if (millis < 0)  millis = 0;
5777 
5778   jlong seconds = millis / 1000;
5779   millis %= 1000;
5780   if (seconds > 50000000) { // see man cond_timedwait(3T)
5781     seconds = 50000000;
5782   }
5783 
5784   if (os::Linux::supports_monotonic_clock()) {
5785     struct timespec now;
5786     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5787     assert_status(status == 0, status, "clock_gettime");
5788     abstime->tv_sec = now.tv_sec  + seconds;
5789     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5790     if (nanos >= NANOSECS_PER_SEC) {
5791       abstime->tv_sec += 1;
5792       nanos -= NANOSECS_PER_SEC;
5793     }
5794     abstime->tv_nsec = nanos;
5795   } else {
5796     struct timeval now;
5797     int status = gettimeofday(&now, NULL);
5798     assert(status == 0, "gettimeofday");
5799     abstime->tv_sec = now.tv_sec  + seconds;
5800     long usec = now.tv_usec + millis * 1000;
5801     if (usec >= 1000000) {
5802       abstime->tv_sec += 1;
5803       usec -= 1000000;
5804     }
5805     abstime->tv_nsec = usec * 1000;
5806   }
5807   return abstime;
5808 }
5809 
5810 
5811 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5812 // Conceptually TryPark() should be equivalent to park(0).
5813 
5814 int os::PlatformEvent::TryPark() {
5815   for (;;) {
5816     const int v = _Event ;
5817     guarantee ((v == 0) || (v == 1), "invariant") ;
5818     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5819   }
5820 }
5821 
5822 void os::PlatformEvent::park() {       // AKA "down()"
5823   // Invariant: Only the thread associated with the Event/PlatformEvent
5824   // may call park().
5825   // TODO: assert that _Assoc != NULL or _Assoc == Self
5826   int v ;
5827   for (;;) {
5828       v = _Event ;
5829       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5830   }
5831   guarantee (v >= 0, "invariant") ;
5832   if (v == 0) {
5833      // Do this the hard way by blocking ...
5834      int status = pthread_mutex_lock(_mutex);
5835      assert_status(status == 0, status, "mutex_lock");
5836      guarantee (_nParked == 0, "invariant") ;
5837      ++ _nParked ;
5838      while (_Event < 0) {
5839         status = pthread_cond_wait(_cond, _mutex);
5840         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5841         // Treat this the same as if the wait was interrupted
5842         if (status == ETIME) { status = EINTR; }
5843         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5844      }
5845      -- _nParked ;
5846 
5847     _Event = 0 ;
5848      status = pthread_mutex_unlock(_mutex);
5849      assert_status(status == 0, status, "mutex_unlock");
5850     // Paranoia to ensure our locked and lock-free paths interact
5851     // correctly with each other.
5852     OrderAccess::fence();
5853   }
5854   guarantee (_Event >= 0, "invariant") ;
5855 }
5856 
5857 int os::PlatformEvent::park(jlong millis) {
5858   guarantee (_nParked == 0, "invariant") ;
5859 
5860   int v ;
5861   for (;;) {
5862       v = _Event ;
5863       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5864   }
5865   guarantee (v >= 0, "invariant") ;
5866   if (v != 0) return OS_OK ;
5867 
5868   // We do this the hard way, by blocking the thread.
5869   // Consider enforcing a minimum timeout value.
5870   struct timespec abst;
5871   compute_abstime(&abst, millis);
5872 
5873   int ret = OS_TIMEOUT;
5874   int status = pthread_mutex_lock(_mutex);
5875   assert_status(status == 0, status, "mutex_lock");
5876   guarantee (_nParked == 0, "invariant") ;
5877   ++_nParked ;
5878 
5879   // Object.wait(timo) will return because of
5880   // (a) notification
5881   // (b) timeout
5882   // (c) thread.interrupt
5883   //
5884   // Thread.interrupt and object.notify{All} both call Event::set.
5885   // That is, we treat thread.interrupt as a special case of notification.
5886   // The underlying Solaris implementation, cond_timedwait, admits
5887   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5888   // JVM from making those visible to Java code.  As such, we must
5889   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5890   //
5891   // TODO: properly differentiate simultaneous notify+interrupt.
5892   // In that case, we should propagate the notify to another waiter.
5893 
5894   while (_Event < 0) {
5895     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5896     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5897       pthread_cond_destroy (_cond);
5898       pthread_cond_init (_cond, os::Linux::condAttr()) ;
5899     }
5900     assert_status(status == 0 || status == EINTR ||
5901                   status == ETIME || status == ETIMEDOUT,
5902                   status, "cond_timedwait");
5903     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5904     if (status == ETIME || status == ETIMEDOUT) break ;
5905     // We consume and ignore EINTR and spurious wakeups.
5906   }
5907   --_nParked ;
5908   if (_Event >= 0) {
5909      ret = OS_OK;
5910   }
5911   _Event = 0 ;
5912   status = pthread_mutex_unlock(_mutex);
5913   assert_status(status == 0, status, "mutex_unlock");
5914   assert (_nParked == 0, "invariant") ;
5915   // Paranoia to ensure our locked and lock-free paths interact
5916   // correctly with each other.
5917   OrderAccess::fence();
5918   return ret;
5919 }
5920 
5921 void os::PlatformEvent::unpark() {
5922   // Transitions for _Event:
5923   //    0 :=> 1
5924   //    1 :=> 1
5925   //   -1 :=> either 0 or 1; must signal target thread
5926   //          That is, we can safely transition _Event from -1 to either
5927   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5928   //          unpark() calls.
5929   // See also: "Semaphores in Plan 9" by Mullender & Cox
5930   //
5931   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5932   // that it will take two back-to-back park() calls for the owning
5933   // thread to block. This has the benefit of forcing a spurious return
5934   // from the first park() call after an unpark() call which will help
5935   // shake out uses of park() and unpark() without condition variables.
5936 
5937   if (Atomic::xchg(1, &_Event) >= 0) return;
5938 
5939   // Wait for the thread associated with the event to vacate
5940   int status = pthread_mutex_lock(_mutex);
5941   assert_status(status == 0, status, "mutex_lock");
5942   int AnyWaiters = _nParked;
5943   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5944   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5945     AnyWaiters = 0;
5946     pthread_cond_signal(_cond);
5947   }
5948   status = pthread_mutex_unlock(_mutex);
5949   assert_status(status == 0, status, "mutex_unlock");
5950   if (AnyWaiters != 0) {
5951     status = pthread_cond_signal(_cond);
5952     assert_status(status == 0, status, "cond_signal");
5953   }
5954 
5955   // Note that we signal() _after dropping the lock for "immortal" Events.
5956   // This is safe and avoids a common class of  futile wakeups.  In rare
5957   // circumstances this can cause a thread to return prematurely from
5958   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5959   // simply re-test the condition and re-park itself.
5960 }
5961 
5962 
5963 // JSR166
5964 // -------------------------------------------------------
5965 
5966 /*
5967  * The solaris and linux implementations of park/unpark are fairly
5968  * conservative for now, but can be improved. They currently use a
5969  * mutex/condvar pair, plus a a count.
5970  * Park decrements count if > 0, else does a condvar wait.  Unpark
5971  * sets count to 1 and signals condvar.  Only one thread ever waits
5972  * on the condvar. Contention seen when trying to park implies that someone
5973  * is unparking you, so don't wait. And spurious returns are fine, so there
5974  * is no need to track notifications.
5975  */
5976 
5977 /*
5978  * This code is common to linux and solaris and will be moved to a
5979  * common place in dolphin.
5980  *
5981  * The passed in time value is either a relative time in nanoseconds
5982  * or an absolute time in milliseconds. Either way it has to be unpacked
5983  * into suitable seconds and nanoseconds components and stored in the
5984  * given timespec structure.
5985  * Given time is a 64-bit value and the time_t used in the timespec is only
5986  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5987  * overflow if times way in the future are given. Further on Solaris versions
5988  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5989  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5990  * As it will be 28 years before "now + 100000000" will overflow we can
5991  * ignore overflow and just impose a hard-limit on seconds using the value
5992  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5993  * years from "now".
5994  */
5995 
5996 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5997   assert (time > 0, "convertTime");
5998   time_t max_secs = 0;
5999 
6000   if (!os::Linux::supports_monotonic_clock() || isAbsolute) {
6001     struct timeval now;
6002     int status = gettimeofday(&now, NULL);
6003     assert(status == 0, "gettimeofday");
6004 
6005     max_secs = now.tv_sec + MAX_SECS;
6006 
6007     if (isAbsolute) {
6008       jlong secs = time / 1000;
6009       if (secs > max_secs) {
6010         absTime->tv_sec = max_secs;
6011       } else {
6012         absTime->tv_sec = secs;
6013       }
6014       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
6015     } else {
6016       jlong secs = time / NANOSECS_PER_SEC;
6017       if (secs >= MAX_SECS) {
6018         absTime->tv_sec = max_secs;
6019         absTime->tv_nsec = 0;
6020       } else {
6021         absTime->tv_sec = now.tv_sec + secs;
6022         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
6023         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6024           absTime->tv_nsec -= NANOSECS_PER_SEC;
6025           ++absTime->tv_sec; // note: this must be <= max_secs
6026         }
6027       }
6028     }
6029   } else {
6030     // must be relative using monotonic clock
6031     struct timespec now;
6032     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
6033     assert_status(status == 0, status, "clock_gettime");
6034     max_secs = now.tv_sec + MAX_SECS;
6035     jlong secs = time / NANOSECS_PER_SEC;
6036     if (secs >= MAX_SECS) {
6037       absTime->tv_sec = max_secs;
6038       absTime->tv_nsec = 0;
6039     } else {
6040       absTime->tv_sec = now.tv_sec + secs;
6041       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
6042       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
6043         absTime->tv_nsec -= NANOSECS_PER_SEC;
6044         ++absTime->tv_sec; // note: this must be <= max_secs
6045       }
6046     }
6047   }
6048   assert(absTime->tv_sec >= 0, "tv_sec < 0");
6049   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
6050   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
6051   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
6052 }
6053 
6054 void Parker::park(bool isAbsolute, jlong time) {
6055   // Ideally we'd do something useful while spinning, such
6056   // as calling unpackTime().
6057 
6058   // Optional fast-path check:
6059   // Return immediately if a permit is available.
6060   // We depend on Atomic::xchg() having full barrier semantics
6061   // since we are doing a lock-free update to _counter.
6062   if (Atomic::xchg(0, &_counter) > 0) return;
6063 
6064   Thread* thread = Thread::current();
6065   assert(thread->is_Java_thread(), "Must be JavaThread");
6066   JavaThread *jt = (JavaThread *)thread;
6067 
6068   // Optional optimization -- avoid state transitions if there's an interrupt pending.
6069   // Check interrupt before trying to wait
6070   if (Thread::is_interrupted(thread, false)) {
6071     return;
6072   }
6073 
6074   // Next, demultiplex/decode time arguments
6075   timespec absTime;
6076   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
6077     return;
6078   }
6079   if (time > 0) {
6080     unpackTime(&absTime, isAbsolute, time);
6081   }
6082 
6083 
6084   // Enter safepoint region
6085   // Beware of deadlocks such as 6317397.
6086   // The per-thread Parker:: mutex is a classic leaf-lock.
6087   // In particular a thread must never block on the Threads_lock while
6088   // holding the Parker:: mutex.  If safepoints are pending both the
6089   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
6090   ThreadBlockInVM tbivm(jt);
6091 
6092   // Don't wait if cannot get lock since interference arises from
6093   // unblocking.  Also. check interrupt before trying wait
6094   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
6095     return;
6096   }
6097 
6098   int status ;
6099   if (_counter > 0)  { // no wait needed
6100     _counter = 0;
6101     status = pthread_mutex_unlock(_mutex);
6102     assert (status == 0, "invariant") ;
6103     // Paranoia to ensure our locked and lock-free paths interact
6104     // correctly with each other and Java-level accesses.
6105     OrderAccess::fence();
6106     return;
6107   }
6108 
6109 #ifdef ASSERT
6110   // Don't catch signals while blocked; let the running threads have the signals.
6111   // (This allows a debugger to break into the running thread.)
6112   sigset_t oldsigs;
6113   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
6114   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
6115 #endif
6116 
6117   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
6118   jt->set_suspend_equivalent();
6119   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
6120 
6121   assert(_cur_index == -1, "invariant");
6122   if (time == 0) {
6123     _cur_index = REL_INDEX; // arbitrary choice when not timed
6124     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
6125   } else {
6126     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
6127     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
6128     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
6129       pthread_cond_destroy (&_cond[_cur_index]) ;
6130       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
6131     }
6132   }
6133   _cur_index = -1;
6134   assert_status(status == 0 || status == EINTR ||
6135                 status == ETIME || status == ETIMEDOUT,
6136                 status, "cond_timedwait");
6137 
6138 #ifdef ASSERT
6139   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
6140 #endif
6141 
6142   _counter = 0 ;
6143   status = pthread_mutex_unlock(_mutex) ;
6144   assert_status(status == 0, status, "invariant") ;
6145   // Paranoia to ensure our locked and lock-free paths interact
6146   // correctly with each other and Java-level accesses.
6147   OrderAccess::fence();
6148 
6149   // If externally suspended while waiting, re-suspend
6150   if (jt->handle_special_suspend_equivalent_condition()) {
6151     jt->java_suspend_self();
6152   }
6153 }
6154 
6155 void Parker::unpark() {
6156   int s, status ;
6157   status = pthread_mutex_lock(_mutex);
6158   assert (status == 0, "invariant") ;
6159   s = _counter;
6160   _counter = 1;
6161   if (s < 1) {
6162     // thread might be parked
6163     if (_cur_index != -1) {
6164       // thread is definitely parked
6165       if (WorkAroundNPTLTimedWaitHang) {
6166         status = pthread_cond_signal (&_cond[_cur_index]);
6167         assert (status == 0, "invariant");
6168         status = pthread_mutex_unlock(_mutex);
6169         assert (status == 0, "invariant");
6170       } else {
6171         // must capture correct index before unlocking
6172         int index = _cur_index;
6173         status = pthread_mutex_unlock(_mutex);
6174         assert (status == 0, "invariant");
6175         status = pthread_cond_signal (&_cond[index]);
6176         assert (status == 0, "invariant");
6177       }
6178     } else {
6179       pthread_mutex_unlock(_mutex);
6180       assert (status == 0, "invariant") ;
6181     }
6182   } else {
6183     pthread_mutex_unlock(_mutex);
6184     assert (status == 0, "invariant") ;
6185   }
6186 }
6187 
6188 
6189 extern char** environ;
6190 
6191 // Run the specified command in a separate process. Return its exit value,
6192 // or -1 on failure (e.g. can't fork a new process).
6193 // Unlike system(), this function can be called from signal handler. It
6194 // doesn't block SIGINT et al.
6195 int os::fork_and_exec(char* cmd) {
6196   const char * argv[4] = {"sh", "-c", cmd, NULL};
6197 
6198   pid_t pid = fork();
6199 
6200   if (pid < 0) {
6201     // fork failed
6202     return -1;
6203 
6204   } else if (pid == 0) {
6205     // child process
6206 
6207     execve("/bin/sh", (char* const*)argv, environ);
6208 
6209     // execve failed
6210     _exit(-1);
6211 
6212   } else  {
6213     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
6214     // care about the actual exit code, for now.
6215 
6216     int status;
6217 
6218     // Wait for the child process to exit.  This returns immediately if
6219     // the child has already exited. */
6220     while (waitpid(pid, &status, 0) < 0) {
6221         switch (errno) {
6222         case ECHILD: return 0;
6223         case EINTR: break;
6224         default: return -1;
6225         }
6226     }
6227 
6228     if (WIFEXITED(status)) {
6229        // The child exited normally; get its exit code.
6230        return WEXITSTATUS(status);
6231     } else if (WIFSIGNALED(status)) {
6232        // The child exited because of a signal
6233        // The best value to return is 0x80 + signal number,
6234        // because that is what all Unix shells do, and because
6235        // it allows callers to distinguish between process exit and
6236        // process death by signal.
6237        return 0x80 + WTERMSIG(status);
6238     } else {
6239        // Unknown exit code; pass it through
6240        return status;
6241     }
6242   }
6243 }
6244 
6245 // is_headless_jre()
6246 //
6247 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6248 // in order to report if we are running in a headless jre
6249 //
6250 // Since JDK8 xawt/libmawt.so was moved into the same directory
6251 // as libawt.so, and renamed libawt_xawt.so
6252 //
6253 bool os::is_headless_jre() {
6254     struct stat statbuf;
6255     char buf[MAXPATHLEN];
6256     char libmawtpath[MAXPATHLEN];
6257     const char *xawtstr  = "/xawt/libmawt.so";
6258     const char *new_xawtstr = "/libawt_xawt.so";
6259     char *p;
6260 
6261     // Get path to libjvm.so
6262     os::jvm_path(buf, sizeof(buf));
6263 
6264     // Get rid of libjvm.so
6265     p = strrchr(buf, '/');
6266     if (p == NULL) return false;
6267     else *p = '\0';
6268 
6269     // Get rid of client or server
6270     p = strrchr(buf, '/');
6271     if (p == NULL) return false;
6272     else *p = '\0';
6273 
6274     // check xawt/libmawt.so
6275     strcpy(libmawtpath, buf);
6276     strcat(libmawtpath, xawtstr);
6277     if (::stat(libmawtpath, &statbuf) == 0) return false;
6278 
6279     // check libawt_xawt.so
6280     strcpy(libmawtpath, buf);
6281     strcat(libmawtpath, new_xawtstr);
6282     if (::stat(libmawtpath, &statbuf) == 0) return false;
6283 
6284     return true;
6285 }
6286 
6287 // Get the default path to the core file
6288 // Returns the length of the string
6289 int os::get_core_path(char* buffer, size_t bufferSize) {
6290   const char* p = get_current_directory(buffer, bufferSize);
6291 
6292   if (p == NULL) {
6293     assert(p != NULL, "failed to get current directory");
6294     return 0;
6295   }
6296 
6297   return strlen(buffer);
6298 }
6299 
6300 /////////////// Unit tests ///////////////
6301 
6302 #ifndef PRODUCT
6303 
6304 #define test_log(...) \
6305   do {\
6306     if (VerboseInternalVMTests) { \
6307       tty->print_cr(__VA_ARGS__); \
6308       tty->flush(); \
6309     }\
6310   } while (false)
6311 
6312 class TestReserveMemorySpecial : AllStatic {
6313  public:
6314   static void small_page_write(void* addr, size_t size) {
6315     size_t page_size = os::vm_page_size();
6316 
6317     char* end = (char*)addr + size;
6318     for (char* p = (char*)addr; p < end; p += page_size) {
6319       *p = 1;
6320     }
6321   }
6322 
6323   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6324     if (!UseHugeTLBFS) {
6325       return;
6326     }
6327 
6328     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6329 
6330     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6331 
6332     if (addr != NULL) {
6333       small_page_write(addr, size);
6334 
6335       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6336     }
6337   }
6338 
6339   static void test_reserve_memory_special_huge_tlbfs_only() {
6340     if (!UseHugeTLBFS) {
6341       return;
6342     }
6343 
6344     size_t lp = os::large_page_size();
6345 
6346     for (size_t size = lp; size <= lp * 10; size += lp) {
6347       test_reserve_memory_special_huge_tlbfs_only(size);
6348     }
6349   }
6350 
6351   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6352     size_t lp = os::large_page_size();
6353     size_t ag = os::vm_allocation_granularity();
6354 
6355     // sizes to test
6356     const size_t sizes[] = {
6357       lp, lp + ag, lp + lp / 2, lp * 2,
6358       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6359       lp * 10, lp * 10 + lp / 2
6360     };
6361     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6362 
6363     // For each size/alignment combination, we test three scenarios:
6364     // 1) with req_addr == NULL
6365     // 2) with a non-null req_addr at which we expect to successfully allocate
6366     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6367     //    expect the allocation to either fail or to ignore req_addr
6368 
6369     // Pre-allocate two areas; they shall be as large as the largest allocation
6370     //  and aligned to the largest alignment we will be testing.
6371     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6372     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6373       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6374       -1, 0);
6375     assert(mapping1 != MAP_FAILED, "should work");
6376 
6377     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6378       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6379       -1, 0);
6380     assert(mapping2 != MAP_FAILED, "should work");
6381 
6382     // Unmap the first mapping, but leave the second mapping intact: the first
6383     // mapping will serve as a value for a "good" req_addr (case 2). The second
6384     // mapping, still intact, as "bad" req_addr (case 3).
6385     ::munmap(mapping1, mapping_size);
6386 
6387     // Case 1
6388     test_log("%s, req_addr NULL:", __FUNCTION__);
6389     test_log("size            align           result");
6390 
6391     for (int i = 0; i < num_sizes; i++) {
6392       const size_t size = sizes[i];
6393       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6394         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6395         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6396             size, alignment, p, (p != NULL ? "" : "(failed)"));
6397         if (p != NULL) {
6398           assert(is_ptr_aligned(p, alignment), "must be");
6399           small_page_write(p, size);
6400           os::Linux::release_memory_special_huge_tlbfs(p, size);
6401         }
6402       }
6403     }
6404 
6405     // Case 2
6406     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6407     test_log("size            align           req_addr         result");
6408 
6409     for (int i = 0; i < num_sizes; i++) {
6410       const size_t size = sizes[i];
6411       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6412         char* const req_addr = (char*) align_ptr_up(mapping1, alignment);
6413         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6414         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6415             size, alignment, req_addr, p,
6416             ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6417         if (p != NULL) {
6418           assert(p == req_addr, "must be");
6419           small_page_write(p, size);
6420           os::Linux::release_memory_special_huge_tlbfs(p, size);
6421         }
6422       }
6423     }
6424 
6425     // Case 3
6426     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6427     test_log("size            align           req_addr         result");
6428 
6429     for (int i = 0; i < num_sizes; i++) {
6430       const size_t size = sizes[i];
6431       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6432         char* const req_addr = (char*) align_ptr_up(mapping2, alignment);
6433         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6434         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6435             size, alignment, req_addr, p,
6436             ((p != NULL ? "" : "(failed)")));
6437         // as the area around req_addr contains already existing mappings, the API should always
6438         // return NULL (as per contract, it cannot return another address)
6439         assert(p == NULL, "must be");
6440       }
6441     }
6442 
6443     ::munmap(mapping2, mapping_size);
6444 
6445   }
6446 
6447   static void test_reserve_memory_special_huge_tlbfs() {
6448     if (!UseHugeTLBFS) {
6449       return;
6450     }
6451 
6452     test_reserve_memory_special_huge_tlbfs_only();
6453     test_reserve_memory_special_huge_tlbfs_mixed();
6454   }
6455 
6456   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6457     if (!UseSHM) {
6458       return;
6459     }
6460 
6461     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6462 
6463     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6464 
6465     if (addr != NULL) {
6466       assert(is_ptr_aligned(addr, alignment), "Check");
6467       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6468 
6469       small_page_write(addr, size);
6470 
6471       os::Linux::release_memory_special_shm(addr, size);
6472     }
6473   }
6474 
6475   static void test_reserve_memory_special_shm() {
6476     size_t lp = os::large_page_size();
6477     size_t ag = os::vm_allocation_granularity();
6478 
6479     for (size_t size = ag; size < lp * 3; size += ag) {
6480       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6481         test_reserve_memory_special_shm(size, alignment);
6482       }
6483     }
6484   }
6485 
6486   static void test() {
6487     test_reserve_memory_special_huge_tlbfs();
6488     test_reserve_memory_special_shm();
6489   }
6490 };
6491 
6492 void TestReserveMemorySpecial_test() {
6493   TestReserveMemorySpecial::test();
6494 }
6495 
6496 #endif