1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/idealKit.hpp"
  35 #include "opto/mathexactnode.hpp"
  36 #include "opto/mulnode.hpp"
  37 #include "opto/parse.hpp"
  38 #include "opto/runtime.hpp"
  39 #include "opto/subnode.hpp"
  40 #include "prims/nativeLookup.hpp"
  41 #include "runtime/sharedRuntime.hpp"
  42 #include "trace/traceMacros.hpp"
  43 
  44 class LibraryIntrinsic : public InlineCallGenerator {
  45   // Extend the set of intrinsics known to the runtime:
  46  public:
  47  private:
  48   bool             _is_virtual;
  49   bool             _is_predicted;
  50   bool             _does_virtual_dispatch;
  51   vmIntrinsics::ID _intrinsic_id;
  52 
  53  public:
  54   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
  55     : InlineCallGenerator(m),
  56       _is_virtual(is_virtual),
  57       _is_predicted(is_predicted),
  58       _does_virtual_dispatch(does_virtual_dispatch),
  59       _intrinsic_id(id)
  60   {
  61   }
  62   virtual bool is_intrinsic() const { return true; }
  63   virtual bool is_virtual()   const { return _is_virtual; }
  64   virtual bool is_predicted()   const { return _is_predicted; }
  65   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  66   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
  67   virtual Node* generate_predicate(JVMState* jvms);
  68   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  69 };
  70 
  71 
  72 // Local helper class for LibraryIntrinsic:
  73 class LibraryCallKit : public GraphKit {
  74  private:
  75   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  76   Node*             _result;        // the result node, if any
  77   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  78 
  79   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  80 
  81  public:
  82   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  83     : GraphKit(jvms),
  84       _intrinsic(intrinsic),
  85       _result(NULL)
  86   {
  87     // Check if this is a root compile.  In that case we don't have a caller.
  88     if (!jvms->has_method()) {
  89       _reexecute_sp = sp();
  90     } else {
  91       // Find out how many arguments the interpreter needs when deoptimizing
  92       // and save the stack pointer value so it can used by uncommon_trap.
  93       // We find the argument count by looking at the declared signature.
  94       bool ignored_will_link;
  95       ciSignature* declared_signature = NULL;
  96       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
  97       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
  98       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
  99     }
 100   }
 101 
 102   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 103 
 104   ciMethod*         caller()    const    { return jvms()->method(); }
 105   int               bci()       const    { return jvms()->bci(); }
 106   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 107   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 108   ciMethod*         callee()    const    { return _intrinsic->method(); }
 109 
 110   bool try_to_inline();
 111   Node* try_to_predicate();
 112 
 113   void push_result() {
 114     // Push the result onto the stack.
 115     if (!stopped() && result() != NULL) {
 116       BasicType bt = result()->bottom_type()->basic_type();
 117       push_node(bt, result());
 118     }
 119   }
 120 
 121  private:
 122   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 123     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 124   }
 125 
 126   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 127   void  set_result(RegionNode* region, PhiNode* value);
 128   Node*     result() { return _result; }
 129 
 130   virtual int reexecute_sp() { return _reexecute_sp; }
 131 
 132   // Helper functions to inline natives
 133   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 134   Node* generate_slow_guard(Node* test, RegionNode* region);
 135   Node* generate_fair_guard(Node* test, RegionNode* region);
 136   Node* generate_negative_guard(Node* index, RegionNode* region,
 137                                 // resulting CastII of index:
 138                                 Node* *pos_index = NULL);
 139   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 140                                    // resulting CastII of index:
 141                                    Node* *pos_index = NULL);
 142   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 143                              Node* array_length,
 144                              RegionNode* region);
 145   Node* generate_current_thread(Node* &tls_output);
 146   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 147                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 148   Node* load_mirror_from_klass(Node* klass);
 149   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 150                                       RegionNode* region, int null_path,
 151                                       int offset);
 152   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 153                                RegionNode* region, int null_path) {
 154     int offset = java_lang_Class::klass_offset_in_bytes();
 155     return load_klass_from_mirror_common(mirror, never_see_null,
 156                                          region, null_path,
 157                                          offset);
 158   }
 159   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 160                                      RegionNode* region, int null_path) {
 161     int offset = java_lang_Class::array_klass_offset_in_bytes();
 162     return load_klass_from_mirror_common(mirror, never_see_null,
 163                                          region, null_path,
 164                                          offset);
 165   }
 166   Node* generate_access_flags_guard(Node* kls,
 167                                     int modifier_mask, int modifier_bits,
 168                                     RegionNode* region);
 169   Node* generate_interface_guard(Node* kls, RegionNode* region);
 170   Node* generate_array_guard(Node* kls, RegionNode* region) {
 171     return generate_array_guard_common(kls, region, false, false);
 172   }
 173   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 174     return generate_array_guard_common(kls, region, false, true);
 175   }
 176   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, true, false);
 178   }
 179   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, true, true);
 181   }
 182   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 183                                     bool obj_array, bool not_array);
 184   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 185   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 186                                      bool is_virtual = false, bool is_static = false);
 187   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 188     return generate_method_call(method_id, false, true);
 189   }
 190   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 191     return generate_method_call(method_id, true, false);
 192   }
 193   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 194 
 195   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 196   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 197   bool inline_string_compareTo();
 198   bool inline_string_indexOf();
 199   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 200   bool inline_string_equals();
 201   Node* round_double_node(Node* n);
 202   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 203   bool inline_math_native(vmIntrinsics::ID id);
 204   bool inline_trig(vmIntrinsics::ID id);
 205   bool inline_math(vmIntrinsics::ID id);
 206   template <typename OverflowOp>
 207   bool inline_math_overflow(Node* arg1, Node* arg2);
 208   void inline_math_mathExact(Node* math, Node* test);
 209   bool inline_math_addExactI(bool is_increment);
 210   bool inline_math_addExactL(bool is_increment);
 211   bool inline_math_multiplyExactI();
 212   bool inline_math_multiplyExactL();
 213   bool inline_math_negateExactI();
 214   bool inline_math_negateExactL();
 215   bool inline_math_subtractExactI(bool is_decrement);
 216   bool inline_math_subtractExactL(bool is_decrement);
 217   bool inline_exp();
 218   bool inline_pow();
 219   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 220   bool inline_min_max(vmIntrinsics::ID id);
 221   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 222   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 223   int classify_unsafe_addr(Node* &base, Node* &offset);
 224   Node* make_unsafe_address(Node* base, Node* offset);
 225   // Helper for inline_unsafe_access.
 226   // Generates the guards that check whether the result of
 227   // Unsafe.getObject should be recorded in an SATB log buffer.
 228   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 229   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 230   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 231   static bool klass_needs_init_guard(Node* kls);
 232   bool inline_unsafe_allocate();
 233   bool inline_unsafe_copyMemory();
 234   bool inline_native_currentThread();
 235 #ifdef TRACE_HAVE_INTRINSICS
 236   bool inline_native_classID();
 237   bool inline_native_threadID();
 238 #endif
 239   bool inline_native_time_funcs(address method, const char* funcName);
 240   bool inline_native_isInterrupted();
 241   bool inline_native_Class_query(vmIntrinsics::ID id);
 242   bool inline_native_subtype_check();
 243 
 244   bool inline_native_newArray();
 245   bool inline_native_getLength();
 246   bool inline_array_copyOf(bool is_copyOfRange);
 247   bool inline_array_equals();
 248   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 249   bool inline_native_clone(bool is_virtual);
 250   bool inline_native_Reflection_getCallerClass();
 251   // Helper function for inlining native object hash method
 252   bool inline_native_hashcode(bool is_virtual, bool is_static);
 253   bool inline_native_getClass();
 254 
 255   // Helper functions for inlining arraycopy
 256   bool inline_arraycopy();
 257   void generate_arraycopy(const TypePtr* adr_type,
 258                           BasicType basic_elem_type,
 259                           Node* src,  Node* src_offset,
 260                           Node* dest, Node* dest_offset,
 261                           Node* copy_length,
 262                           bool disjoint_bases = false,
 263                           bool length_never_negative = false,
 264                           RegionNode* slow_region = NULL);
 265   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 266                                                 RegionNode* slow_region);
 267   void generate_clear_array(const TypePtr* adr_type,
 268                             Node* dest,
 269                             BasicType basic_elem_type,
 270                             Node* slice_off,
 271                             Node* slice_len,
 272                             Node* slice_end);
 273   bool generate_block_arraycopy(const TypePtr* adr_type,
 274                                 BasicType basic_elem_type,
 275                                 AllocateNode* alloc,
 276                                 Node* src,  Node* src_offset,
 277                                 Node* dest, Node* dest_offset,
 278                                 Node* dest_size, bool dest_uninitialized);
 279   void generate_slow_arraycopy(const TypePtr* adr_type,
 280                                Node* src,  Node* src_offset,
 281                                Node* dest, Node* dest_offset,
 282                                Node* copy_length, bool dest_uninitialized);
 283   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 284                                      Node* dest_elem_klass,
 285                                      Node* src,  Node* src_offset,
 286                                      Node* dest, Node* dest_offset,
 287                                      Node* copy_length, bool dest_uninitialized);
 288   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 289                                    Node* src,  Node* src_offset,
 290                                    Node* dest, Node* dest_offset,
 291                                    Node* copy_length, bool dest_uninitialized);
 292   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 293                                     BasicType basic_elem_type,
 294                                     bool disjoint_bases,
 295                                     Node* src,  Node* src_offset,
 296                                     Node* dest, Node* dest_offset,
 297                                     Node* copy_length, bool dest_uninitialized);
 298   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 299   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 300   bool inline_unsafe_ordered_store(BasicType type);
 301   bool inline_unsafe_fence(vmIntrinsics::ID id);
 302   bool inline_fp_conversions(vmIntrinsics::ID id);
 303   bool inline_number_methods(vmIntrinsics::ID id);
 304   bool inline_reference_get();
 305   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 306   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 307   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 308   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 309   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 310   bool inline_encodeISOArray();
 311   bool inline_updateCRC32();
 312   bool inline_updateBytesCRC32();
 313   bool inline_updateByteBufferCRC32();
 314 };
 315 
 316 
 317 //---------------------------make_vm_intrinsic----------------------------
 318 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 319   vmIntrinsics::ID id = m->intrinsic_id();
 320   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 321 
 322   if (DisableIntrinsic[0] != '\0'
 323       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 324     // disabled by a user request on the command line:
 325     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 326     return NULL;
 327   }
 328 
 329   if (!m->is_loaded()) {
 330     // do not attempt to inline unloaded methods
 331     return NULL;
 332   }
 333 
 334   // Only a few intrinsics implement a virtual dispatch.
 335   // They are expensive calls which are also frequently overridden.
 336   if (is_virtual) {
 337     switch (id) {
 338     case vmIntrinsics::_hashCode:
 339     case vmIntrinsics::_clone:
 340       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 341       break;
 342     default:
 343       return NULL;
 344     }
 345   }
 346 
 347   // -XX:-InlineNatives disables nearly all intrinsics:
 348   if (!InlineNatives) {
 349     switch (id) {
 350     case vmIntrinsics::_indexOf:
 351     case vmIntrinsics::_compareTo:
 352     case vmIntrinsics::_equals:
 353     case vmIntrinsics::_equalsC:
 354     case vmIntrinsics::_getAndAddInt:
 355     case vmIntrinsics::_getAndAddLong:
 356     case vmIntrinsics::_getAndSetInt:
 357     case vmIntrinsics::_getAndSetLong:
 358     case vmIntrinsics::_getAndSetObject:
 359     case vmIntrinsics::_loadFence:
 360     case vmIntrinsics::_storeFence:
 361     case vmIntrinsics::_fullFence:
 362       break;  // InlineNatives does not control String.compareTo
 363     case vmIntrinsics::_Reference_get:
 364       break;  // InlineNatives does not control Reference.get
 365     default:
 366       return NULL;
 367     }
 368   }
 369 
 370   bool is_predicted = false;
 371   bool does_virtual_dispatch = false;
 372 
 373   switch (id) {
 374   case vmIntrinsics::_compareTo:
 375     if (!SpecialStringCompareTo)  return NULL;
 376     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 377     break;
 378   case vmIntrinsics::_indexOf:
 379     if (!SpecialStringIndexOf)  return NULL;
 380     break;
 381   case vmIntrinsics::_equals:
 382     if (!SpecialStringEquals)  return NULL;
 383     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 384     break;
 385   case vmIntrinsics::_equalsC:
 386     if (!SpecialArraysEquals)  return NULL;
 387     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 388     break;
 389   case vmIntrinsics::_arraycopy:
 390     if (!InlineArrayCopy)  return NULL;
 391     break;
 392   case vmIntrinsics::_copyMemory:
 393     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 394     if (!InlineArrayCopy)  return NULL;
 395     break;
 396   case vmIntrinsics::_hashCode:
 397     if (!InlineObjectHash)  return NULL;
 398     does_virtual_dispatch = true;
 399     break;
 400   case vmIntrinsics::_clone:
 401     does_virtual_dispatch = true;
 402   case vmIntrinsics::_copyOf:
 403   case vmIntrinsics::_copyOfRange:
 404     if (!InlineObjectCopy)  return NULL;
 405     // These also use the arraycopy intrinsic mechanism:
 406     if (!InlineArrayCopy)  return NULL;
 407     break;
 408   case vmIntrinsics::_encodeISOArray:
 409     if (!SpecialEncodeISOArray)  return NULL;
 410     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 411     break;
 412   case vmIntrinsics::_checkIndex:
 413     // We do not intrinsify this.  The optimizer does fine with it.
 414     return NULL;
 415 
 416   case vmIntrinsics::_getCallerClass:
 417     if (!UseNewReflection)  return NULL;
 418     if (!InlineReflectionGetCallerClass)  return NULL;
 419     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 420     break;
 421 
 422   case vmIntrinsics::_bitCount_i:
 423     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 424     break;
 425 
 426   case vmIntrinsics::_bitCount_l:
 427     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 428     break;
 429 
 430   case vmIntrinsics::_numberOfLeadingZeros_i:
 431     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 432     break;
 433 
 434   case vmIntrinsics::_numberOfLeadingZeros_l:
 435     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 436     break;
 437 
 438   case vmIntrinsics::_numberOfTrailingZeros_i:
 439     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 440     break;
 441 
 442   case vmIntrinsics::_numberOfTrailingZeros_l:
 443     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 444     break;
 445 
 446   case vmIntrinsics::_reverseBytes_c:
 447     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 448     break;
 449   case vmIntrinsics::_reverseBytes_s:
 450     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 451     break;
 452   case vmIntrinsics::_reverseBytes_i:
 453     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 454     break;
 455   case vmIntrinsics::_reverseBytes_l:
 456     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 457     break;
 458 
 459   case vmIntrinsics::_Reference_get:
 460     // Use the intrinsic version of Reference.get() so that the value in
 461     // the referent field can be registered by the G1 pre-barrier code.
 462     // Also add memory barrier to prevent commoning reads from this field
 463     // across safepoint since GC can change it value.
 464     break;
 465 
 466   case vmIntrinsics::_compareAndSwapObject:
 467 #ifdef _LP64
 468     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 469 #endif
 470     break;
 471 
 472   case vmIntrinsics::_compareAndSwapLong:
 473     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 474     break;
 475 
 476   case vmIntrinsics::_getAndAddInt:
 477     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 478     break;
 479 
 480   case vmIntrinsics::_getAndAddLong:
 481     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 482     break;
 483 
 484   case vmIntrinsics::_getAndSetInt:
 485     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 486     break;
 487 
 488   case vmIntrinsics::_getAndSetLong:
 489     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 490     break;
 491 
 492   case vmIntrinsics::_getAndSetObject:
 493 #ifdef _LP64
 494     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 495     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 496     break;
 497 #else
 498     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 499     break;
 500 #endif
 501 
 502   case vmIntrinsics::_aescrypt_encryptBlock:
 503   case vmIntrinsics::_aescrypt_decryptBlock:
 504     if (!UseAESIntrinsics) return NULL;
 505     break;
 506 
 507   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 508   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 509     if (!UseAESIntrinsics) return NULL;
 510     // these two require the predicated logic
 511     is_predicted = true;
 512     break;
 513 
 514   case vmIntrinsics::_updateCRC32:
 515   case vmIntrinsics::_updateBytesCRC32:
 516   case vmIntrinsics::_updateByteBufferCRC32:
 517     if (!UseCRC32Intrinsics) return NULL;
 518     break;
 519 
 520   case vmIntrinsics::_incrementExactI:
 521   case vmIntrinsics::_addExactI:
 522     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 523     break;
 524   case vmIntrinsics::_incrementExactL:
 525   case vmIntrinsics::_addExactL:
 526     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 527     break;
 528   case vmIntrinsics::_decrementExactI:
 529   case vmIntrinsics::_subtractExactI:
 530     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 531     break;
 532   case vmIntrinsics::_decrementExactL:
 533   case vmIntrinsics::_subtractExactL:
 534     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 535     break;
 536   case vmIntrinsics::_negateExactI:
 537     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 538     break;
 539   case vmIntrinsics::_negateExactL:
 540     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 541     break;
 542   case vmIntrinsics::_multiplyExactI:
 543     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 544     break;
 545   case vmIntrinsics::_multiplyExactL:
 546     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 547     break;
 548 
 549  default:
 550     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 551     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 552     break;
 553   }
 554 
 555   // -XX:-InlineClassNatives disables natives from the Class class.
 556   // The flag applies to all reflective calls, notably Array.newArray
 557   // (visible to Java programmers as Array.newInstance).
 558   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 559       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 560     if (!InlineClassNatives)  return NULL;
 561   }
 562 
 563   // -XX:-InlineThreadNatives disables natives from the Thread class.
 564   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 565     if (!InlineThreadNatives)  return NULL;
 566   }
 567 
 568   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 569   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 570       m->holder()->name() == ciSymbol::java_lang_Float() ||
 571       m->holder()->name() == ciSymbol::java_lang_Double()) {
 572     if (!InlineMathNatives)  return NULL;
 573   }
 574 
 575   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 576   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 577     if (!InlineUnsafeOps)  return NULL;
 578   }
 579 
 580   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
 581 }
 582 
 583 //----------------------register_library_intrinsics-----------------------
 584 // Initialize this file's data structures, for each Compile instance.
 585 void Compile::register_library_intrinsics() {
 586   // Nothing to do here.
 587 }
 588 
 589 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
 590   LibraryCallKit kit(jvms, this);
 591   Compile* C = kit.C;
 592   int nodes = C->unique();
 593 #ifndef PRODUCT
 594   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 595     char buf[1000];
 596     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 597     tty->print_cr("Intrinsic %s", str);
 598   }
 599 #endif
 600   ciMethod* callee = kit.callee();
 601   const int bci    = kit.bci();
 602 
 603   // Try to inline the intrinsic.
 604   if (kit.try_to_inline()) {
 605     if (C->print_intrinsics() || C->print_inlining()) {
 606       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 607     }
 608     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 609     if (C->log()) {
 610       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 611                      vmIntrinsics::name_at(intrinsic_id()),
 612                      (is_virtual() ? " virtual='1'" : ""),
 613                      C->unique() - nodes);
 614     }
 615     // Push the result from the inlined method onto the stack.
 616     kit.push_result();
 617     return kit.transfer_exceptions_into_jvms();
 618   }
 619 
 620   // The intrinsic bailed out
 621   if (C->print_intrinsics() || C->print_inlining()) {
 622     if (jvms->has_method()) {
 623       // Not a root compile.
 624       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 625       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 626     } else {
 627       // Root compile
 628       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 629                vmIntrinsics::name_at(intrinsic_id()),
 630                (is_virtual() ? " (virtual)" : ""), bci);
 631     }
 632   }
 633   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 634   return NULL;
 635 }
 636 
 637 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 638   LibraryCallKit kit(jvms, this);
 639   Compile* C = kit.C;
 640   int nodes = C->unique();
 641 #ifndef PRODUCT
 642   assert(is_predicted(), "sanity");
 643   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 644     char buf[1000];
 645     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 646     tty->print_cr("Predicate for intrinsic %s", str);
 647   }
 648 #endif
 649   ciMethod* callee = kit.callee();
 650   const int bci    = kit.bci();
 651 
 652   Node* slow_ctl = kit.try_to_predicate();
 653   if (!kit.failing()) {
 654     if (C->print_intrinsics() || C->print_inlining()) {
 655       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 656     }
 657     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 658     if (C->log()) {
 659       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 660                      vmIntrinsics::name_at(intrinsic_id()),
 661                      (is_virtual() ? " virtual='1'" : ""),
 662                      C->unique() - nodes);
 663     }
 664     return slow_ctl; // Could be NULL if the check folds.
 665   }
 666 
 667   // The intrinsic bailed out
 668   if (C->print_intrinsics() || C->print_inlining()) {
 669     if (jvms->has_method()) {
 670       // Not a root compile.
 671       const char* msg = "failed to generate predicate for intrinsic";
 672       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 673     } else {
 674       // Root compile
 675       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 676                                         vmIntrinsics::name_at(intrinsic_id()),
 677                                         (is_virtual() ? " (virtual)" : ""), bci);
 678     }
 679   }
 680   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 681   return NULL;
 682 }
 683 
 684 bool LibraryCallKit::try_to_inline() {
 685   // Handle symbolic names for otherwise undistinguished boolean switches:
 686   const bool is_store       = true;
 687   const bool is_native_ptr  = true;
 688   const bool is_static      = true;
 689   const bool is_volatile    = true;
 690 
 691   if (!jvms()->has_method()) {
 692     // Root JVMState has a null method.
 693     assert(map()->memory()->Opcode() == Op_Parm, "");
 694     // Insert the memory aliasing node
 695     set_all_memory(reset_memory());
 696   }
 697   assert(merged_memory(), "");
 698 
 699 
 700   switch (intrinsic_id()) {
 701   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 702   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 703   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 704 
 705   case vmIntrinsics::_dsin:
 706   case vmIntrinsics::_dcos:
 707   case vmIntrinsics::_dtan:
 708   case vmIntrinsics::_dabs:
 709   case vmIntrinsics::_datan2:
 710   case vmIntrinsics::_dsqrt:
 711   case vmIntrinsics::_dexp:
 712   case vmIntrinsics::_dlog:
 713   case vmIntrinsics::_dlog10:
 714   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 715 
 716   case vmIntrinsics::_min:
 717   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 718 
 719   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 720   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 721   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 722   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 723   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 724   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 725   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 726   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 727   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 728   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 729   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 730   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 731 
 732   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 733 
 734   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 735   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 736   case vmIntrinsics::_equals:                   return inline_string_equals();
 737 
 738   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 739   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 740   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 741   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 742   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 743   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 744   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 745   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 746   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 747 
 748   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 749   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 750   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 751   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 752   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 753   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 754   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 755   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 756   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 757 
 758   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 759   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 760   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 761   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 762   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 763   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 764   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 765   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 766 
 767   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 768   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 769   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 770   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 771   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 772   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 773   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 774   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 775 
 776   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 777   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 778   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 779   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 780   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 781   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 782   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 783   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 784   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 785 
 786   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 787   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 788   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 789   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 790   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 791   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 792   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 793   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 794   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 795 
 796   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 797   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 798   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 799   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 800 
 801   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 802   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 803   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 804 
 805   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 806   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 807   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 808 
 809   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 810   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 811   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 812   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 813   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 814 
 815   case vmIntrinsics::_loadFence:
 816   case vmIntrinsics::_storeFence:
 817   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 818 
 819   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 820   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 821 
 822 #ifdef TRACE_HAVE_INTRINSICS
 823   case vmIntrinsics::_classID:                  return inline_native_classID();
 824   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 825   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 826 #endif
 827   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 828   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 829   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 830   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 831   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 832   case vmIntrinsics::_getLength:                return inline_native_getLength();
 833   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 834   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 835   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 836   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 837 
 838   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 839 
 840   case vmIntrinsics::_isInstance:
 841   case vmIntrinsics::_getModifiers:
 842   case vmIntrinsics::_isInterface:
 843   case vmIntrinsics::_isArray:
 844   case vmIntrinsics::_isPrimitive:
 845   case vmIntrinsics::_getSuperclass:
 846   case vmIntrinsics::_getComponentType:
 847   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 848 
 849   case vmIntrinsics::_floatToRawIntBits:
 850   case vmIntrinsics::_floatToIntBits:
 851   case vmIntrinsics::_intBitsToFloat:
 852   case vmIntrinsics::_doubleToRawLongBits:
 853   case vmIntrinsics::_doubleToLongBits:
 854   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 855 
 856   case vmIntrinsics::_numberOfLeadingZeros_i:
 857   case vmIntrinsics::_numberOfLeadingZeros_l:
 858   case vmIntrinsics::_numberOfTrailingZeros_i:
 859   case vmIntrinsics::_numberOfTrailingZeros_l:
 860   case vmIntrinsics::_bitCount_i:
 861   case vmIntrinsics::_bitCount_l:
 862   case vmIntrinsics::_reverseBytes_i:
 863   case vmIntrinsics::_reverseBytes_l:
 864   case vmIntrinsics::_reverseBytes_s:
 865   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 866 
 867   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 868 
 869   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 870 
 871   case vmIntrinsics::_aescrypt_encryptBlock:
 872   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 873 
 874   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 875   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 876     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 877 
 878   case vmIntrinsics::_encodeISOArray:
 879     return inline_encodeISOArray();
 880 
 881   case vmIntrinsics::_updateCRC32:
 882     return inline_updateCRC32();
 883   case vmIntrinsics::_updateBytesCRC32:
 884     return inline_updateBytesCRC32();
 885   case vmIntrinsics::_updateByteBufferCRC32:
 886     return inline_updateByteBufferCRC32();
 887 
 888   default:
 889     // If you get here, it may be that someone has added a new intrinsic
 890     // to the list in vmSymbols.hpp without implementing it here.
 891 #ifndef PRODUCT
 892     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 893       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 894                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 895     }
 896 #endif
 897     return false;
 898   }
 899 }
 900 
 901 Node* LibraryCallKit::try_to_predicate() {
 902   if (!jvms()->has_method()) {
 903     // Root JVMState has a null method.
 904     assert(map()->memory()->Opcode() == Op_Parm, "");
 905     // Insert the memory aliasing node
 906     set_all_memory(reset_memory());
 907   }
 908   assert(merged_memory(), "");
 909 
 910   switch (intrinsic_id()) {
 911   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 912     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 913   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 914     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 915 
 916   default:
 917     // If you get here, it may be that someone has added a new intrinsic
 918     // to the list in vmSymbols.hpp without implementing it here.
 919 #ifndef PRODUCT
 920     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 921       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 922                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 923     }
 924 #endif
 925     Node* slow_ctl = control();
 926     set_control(top()); // No fast path instrinsic
 927     return slow_ctl;
 928   }
 929 }
 930 
 931 //------------------------------set_result-------------------------------
 932 // Helper function for finishing intrinsics.
 933 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 934   record_for_igvn(region);
 935   set_control(_gvn.transform(region));
 936   set_result( _gvn.transform(value));
 937   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 938 }
 939 
 940 //------------------------------generate_guard---------------------------
 941 // Helper function for generating guarded fast-slow graph structures.
 942 // The given 'test', if true, guards a slow path.  If the test fails
 943 // then a fast path can be taken.  (We generally hope it fails.)
 944 // In all cases, GraphKit::control() is updated to the fast path.
 945 // The returned value represents the control for the slow path.
 946 // The return value is never 'top'; it is either a valid control
 947 // or NULL if it is obvious that the slow path can never be taken.
 948 // Also, if region and the slow control are not NULL, the slow edge
 949 // is appended to the region.
 950 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 951   if (stopped()) {
 952     // Already short circuited.
 953     return NULL;
 954   }
 955 
 956   // Build an if node and its projections.
 957   // If test is true we take the slow path, which we assume is uncommon.
 958   if (_gvn.type(test) == TypeInt::ZERO) {
 959     // The slow branch is never taken.  No need to build this guard.
 960     return NULL;
 961   }
 962 
 963   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 964 
 965   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
 966   if (if_slow == top()) {
 967     // The slow branch is never taken.  No need to build this guard.
 968     return NULL;
 969   }
 970 
 971   if (region != NULL)
 972     region->add_req(if_slow);
 973 
 974   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
 975   set_control(if_fast);
 976 
 977   return if_slow;
 978 }
 979 
 980 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 981   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 982 }
 983 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 984   return generate_guard(test, region, PROB_FAIR);
 985 }
 986 
 987 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 988                                                      Node* *pos_index) {
 989   if (stopped())
 990     return NULL;                // already stopped
 991   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
 992     return NULL;                // index is already adequately typed
 993   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
 994   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
 995   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
 996   if (is_neg != NULL && pos_index != NULL) {
 997     // Emulate effect of Parse::adjust_map_after_if.
 998     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
 999     ccast->set_req(0, control());
1000     (*pos_index) = _gvn.transform(ccast);
1001   }
1002   return is_neg;
1003 }
1004 
1005 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1006                                                         Node* *pos_index) {
1007   if (stopped())
1008     return NULL;                // already stopped
1009   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1010     return NULL;                // index is already adequately typed
1011   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1012   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1013   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1014   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1015   if (is_notp != NULL && pos_index != NULL) {
1016     // Emulate effect of Parse::adjust_map_after_if.
1017     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1018     ccast->set_req(0, control());
1019     (*pos_index) = _gvn.transform(ccast);
1020   }
1021   return is_notp;
1022 }
1023 
1024 // Make sure that 'position' is a valid limit index, in [0..length].
1025 // There are two equivalent plans for checking this:
1026 //   A. (offset + copyLength)  unsigned<=  arrayLength
1027 //   B. offset  <=  (arrayLength - copyLength)
1028 // We require that all of the values above, except for the sum and
1029 // difference, are already known to be non-negative.
1030 // Plan A is robust in the face of overflow, if offset and copyLength
1031 // are both hugely positive.
1032 //
1033 // Plan B is less direct and intuitive, but it does not overflow at
1034 // all, since the difference of two non-negatives is always
1035 // representable.  Whenever Java methods must perform the equivalent
1036 // check they generally use Plan B instead of Plan A.
1037 // For the moment we use Plan A.
1038 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1039                                                   Node* subseq_length,
1040                                                   Node* array_length,
1041                                                   RegionNode* region) {
1042   if (stopped())
1043     return NULL;                // already stopped
1044   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1045   if (zero_offset && subseq_length->eqv_uncast(array_length))
1046     return NULL;                // common case of whole-array copy
1047   Node* last = subseq_length;
1048   if (!zero_offset)             // last += offset
1049     last = _gvn.transform(new (C) AddINode(last, offset));
1050   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1051   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1052   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1053   return is_over;
1054 }
1055 
1056 
1057 //--------------------------generate_current_thread--------------------
1058 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1059   ciKlass*    thread_klass = env()->Thread_klass();
1060   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1061   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1062   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1063   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1064   tls_output = thread;
1065   return threadObj;
1066 }
1067 
1068 
1069 //------------------------------make_string_method_node------------------------
1070 // Helper method for String intrinsic functions. This version is called
1071 // with str1 and str2 pointing to String object nodes.
1072 //
1073 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1074   Node* no_ctrl = NULL;
1075 
1076   // Get start addr of string
1077   Node* str1_value   = load_String_value(no_ctrl, str1);
1078   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1079   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1080 
1081   // Get length of string 1
1082   Node* str1_len  = load_String_length(no_ctrl, str1);
1083 
1084   Node* str2_value   = load_String_value(no_ctrl, str2);
1085   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1086   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1087 
1088   Node* str2_len = NULL;
1089   Node* result = NULL;
1090 
1091   switch (opcode) {
1092   case Op_StrIndexOf:
1093     // Get length of string 2
1094     str2_len = load_String_length(no_ctrl, str2);
1095 
1096     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1097                                  str1_start, str1_len, str2_start, str2_len);
1098     break;
1099   case Op_StrComp:
1100     // Get length of string 2
1101     str2_len = load_String_length(no_ctrl, str2);
1102 
1103     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1104                                  str1_start, str1_len, str2_start, str2_len);
1105     break;
1106   case Op_StrEquals:
1107     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1108                                str1_start, str2_start, str1_len);
1109     break;
1110   default:
1111     ShouldNotReachHere();
1112     return NULL;
1113   }
1114 
1115   // All these intrinsics have checks.
1116   C->set_has_split_ifs(true); // Has chance for split-if optimization
1117 
1118   return _gvn.transform(result);
1119 }
1120 
1121 // Helper method for String intrinsic functions. This version is called
1122 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1123 // to Int nodes containing the lenghts of str1 and str2.
1124 //
1125 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1126   Node* result = NULL;
1127   switch (opcode) {
1128   case Op_StrIndexOf:
1129     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1130                                  str1_start, cnt1, str2_start, cnt2);
1131     break;
1132   case Op_StrComp:
1133     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1134                                  str1_start, cnt1, str2_start, cnt2);
1135     break;
1136   case Op_StrEquals:
1137     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1138                                  str1_start, str2_start, cnt1);
1139     break;
1140   default:
1141     ShouldNotReachHere();
1142     return NULL;
1143   }
1144 
1145   // All these intrinsics have checks.
1146   C->set_has_split_ifs(true); // Has chance for split-if optimization
1147 
1148   return _gvn.transform(result);
1149 }
1150 
1151 //------------------------------inline_string_compareTo------------------------
1152 // public int java.lang.String.compareTo(String anotherString);
1153 bool LibraryCallKit::inline_string_compareTo() {
1154   Node* receiver = null_check(argument(0));
1155   Node* arg      = null_check(argument(1));
1156   if (stopped()) {
1157     return true;
1158   }
1159   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1160   return true;
1161 }
1162 
1163 //------------------------------inline_string_equals------------------------
1164 bool LibraryCallKit::inline_string_equals() {
1165   Node* receiver = null_check_receiver();
1166   // NOTE: Do not null check argument for String.equals() because spec
1167   // allows to specify NULL as argument.
1168   Node* argument = this->argument(1);
1169   if (stopped()) {
1170     return true;
1171   }
1172 
1173   // paths (plus control) merge
1174   RegionNode* region = new (C) RegionNode(5);
1175   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1176 
1177   // does source == target string?
1178   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1179   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1180 
1181   Node* if_eq = generate_slow_guard(bol, NULL);
1182   if (if_eq != NULL) {
1183     // receiver == argument
1184     phi->init_req(2, intcon(1));
1185     region->init_req(2, if_eq);
1186   }
1187 
1188   // get String klass for instanceOf
1189   ciInstanceKlass* klass = env()->String_klass();
1190 
1191   if (!stopped()) {
1192     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1193     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1194     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1195 
1196     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1197     //instanceOf == true, fallthrough
1198 
1199     if (inst_false != NULL) {
1200       phi->init_req(3, intcon(0));
1201       region->init_req(3, inst_false);
1202     }
1203   }
1204 
1205   if (!stopped()) {
1206     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1207 
1208     // Properly cast the argument to String
1209     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1210     // This path is taken only when argument's type is String:NotNull.
1211     argument = cast_not_null(argument, false);
1212 
1213     Node* no_ctrl = NULL;
1214 
1215     // Get start addr of receiver
1216     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1217     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1218     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1219 
1220     // Get length of receiver
1221     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1222 
1223     // Get start addr of argument
1224     Node* argument_val    = load_String_value(no_ctrl, argument);
1225     Node* argument_offset = load_String_offset(no_ctrl, argument);
1226     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1227 
1228     // Get length of argument
1229     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1230 
1231     // Check for receiver count != argument count
1232     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1233     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1234     Node* if_ne = generate_slow_guard(bol, NULL);
1235     if (if_ne != NULL) {
1236       phi->init_req(4, intcon(0));
1237       region->init_req(4, if_ne);
1238     }
1239 
1240     // Check for count == 0 is done by assembler code for StrEquals.
1241 
1242     if (!stopped()) {
1243       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1244       phi->init_req(1, equals);
1245       region->init_req(1, control());
1246     }
1247   }
1248 
1249   // post merge
1250   set_control(_gvn.transform(region));
1251   record_for_igvn(region);
1252 
1253   set_result(_gvn.transform(phi));
1254   return true;
1255 }
1256 
1257 //------------------------------inline_array_equals----------------------------
1258 bool LibraryCallKit::inline_array_equals() {
1259   Node* arg1 = argument(0);
1260   Node* arg2 = argument(1);
1261   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1262   return true;
1263 }
1264 
1265 // Java version of String.indexOf(constant string)
1266 // class StringDecl {
1267 //   StringDecl(char[] ca) {
1268 //     offset = 0;
1269 //     count = ca.length;
1270 //     value = ca;
1271 //   }
1272 //   int offset;
1273 //   int count;
1274 //   char[] value;
1275 // }
1276 //
1277 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1278 //                             int targetOffset, int cache_i, int md2) {
1279 //   int cache = cache_i;
1280 //   int sourceOffset = string_object.offset;
1281 //   int sourceCount = string_object.count;
1282 //   int targetCount = target_object.length;
1283 //
1284 //   int targetCountLess1 = targetCount - 1;
1285 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1286 //
1287 //   char[] source = string_object.value;
1288 //   char[] target = target_object;
1289 //   int lastChar = target[targetCountLess1];
1290 //
1291 //  outer_loop:
1292 //   for (int i = sourceOffset; i < sourceEnd; ) {
1293 //     int src = source[i + targetCountLess1];
1294 //     if (src == lastChar) {
1295 //       // With random strings and a 4-character alphabet,
1296 //       // reverse matching at this point sets up 0.8% fewer
1297 //       // frames, but (paradoxically) makes 0.3% more probes.
1298 //       // Since those probes are nearer the lastChar probe,
1299 //       // there is may be a net D$ win with reverse matching.
1300 //       // But, reversing loop inhibits unroll of inner loop
1301 //       // for unknown reason.  So, does running outer loop from
1302 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1303 //       for (int j = 0; j < targetCountLess1; j++) {
1304 //         if (target[targetOffset + j] != source[i+j]) {
1305 //           if ((cache & (1 << source[i+j])) == 0) {
1306 //             if (md2 < j+1) {
1307 //               i += j+1;
1308 //               continue outer_loop;
1309 //             }
1310 //           }
1311 //           i += md2;
1312 //           continue outer_loop;
1313 //         }
1314 //       }
1315 //       return i - sourceOffset;
1316 //     }
1317 //     if ((cache & (1 << src)) == 0) {
1318 //       i += targetCountLess1;
1319 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1320 //     i++;
1321 //   }
1322 //   return -1;
1323 // }
1324 
1325 //------------------------------string_indexOf------------------------
1326 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1327                                      jint cache_i, jint md2_i) {
1328 
1329   Node* no_ctrl  = NULL;
1330   float likely   = PROB_LIKELY(0.9);
1331   float unlikely = PROB_UNLIKELY(0.9);
1332 
1333   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1334 
1335   Node* source        = load_String_value(no_ctrl, string_object);
1336   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1337   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1338 
1339   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1340   jint target_length = target_array->length();
1341   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1342   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1343 
1344   // String.value field is known to be @Stable.
1345   if (UseImplicitStableValues) {
1346     target = cast_array_to_stable(target, target_type);
1347   }
1348 
1349   IdealKit kit(this, false, true);
1350 #define __ kit.
1351   Node* zero             = __ ConI(0);
1352   Node* one              = __ ConI(1);
1353   Node* cache            = __ ConI(cache_i);
1354   Node* md2              = __ ConI(md2_i);
1355   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1356   Node* targetCount      = __ ConI(target_length);
1357   Node* targetCountLess1 = __ ConI(target_length - 1);
1358   Node* targetOffset     = __ ConI(targetOffset_i);
1359   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1360 
1361   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1362   Node* outer_loop = __ make_label(2 /* goto */);
1363   Node* return_    = __ make_label(1);
1364 
1365   __ set(rtn,__ ConI(-1));
1366   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1367        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1368        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1369        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1370        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1371          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1372               Node* tpj = __ AddI(targetOffset, __ value(j));
1373               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1374               Node* ipj  = __ AddI(__ value(i), __ value(j));
1375               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1376               __ if_then(targ, BoolTest::ne, src2); {
1377                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1378                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1379                     __ increment(i, __ AddI(__ value(j), one));
1380                     __ goto_(outer_loop);
1381                   } __ end_if(); __ dead(j);
1382                 }__ end_if(); __ dead(j);
1383                 __ increment(i, md2);
1384                 __ goto_(outer_loop);
1385               }__ end_if();
1386               __ increment(j, one);
1387          }__ end_loop(); __ dead(j);
1388          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1389          __ goto_(return_);
1390        }__ end_if();
1391        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1392          __ increment(i, targetCountLess1);
1393        }__ end_if();
1394        __ increment(i, one);
1395        __ bind(outer_loop);
1396   }__ end_loop(); __ dead(i);
1397   __ bind(return_);
1398 
1399   // Final sync IdealKit and GraphKit.
1400   final_sync(kit);
1401   Node* result = __ value(rtn);
1402 #undef __
1403   C->set_has_loops(true);
1404   return result;
1405 }
1406 
1407 //------------------------------inline_string_indexOf------------------------
1408 bool LibraryCallKit::inline_string_indexOf() {
1409   Node* receiver = argument(0);
1410   Node* arg      = argument(1);
1411 
1412   Node* result;
1413   // Disable the use of pcmpestri until it can be guaranteed that
1414   // the load doesn't cross into the uncommited space.
1415   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1416       UseSSE42Intrinsics) {
1417     // Generate SSE4.2 version of indexOf
1418     // We currently only have match rules that use SSE4.2
1419 
1420     receiver = null_check(receiver);
1421     arg      = null_check(arg);
1422     if (stopped()) {
1423       return true;
1424     }
1425 
1426     ciInstanceKlass* str_klass = env()->String_klass();
1427     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1428 
1429     // Make the merge point
1430     RegionNode* result_rgn = new (C) RegionNode(4);
1431     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1432     Node* no_ctrl  = NULL;
1433 
1434     // Get start addr of source string
1435     Node* source = load_String_value(no_ctrl, receiver);
1436     Node* source_offset = load_String_offset(no_ctrl, receiver);
1437     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1438 
1439     // Get length of source string
1440     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1441 
1442     // Get start addr of substring
1443     Node* substr = load_String_value(no_ctrl, arg);
1444     Node* substr_offset = load_String_offset(no_ctrl, arg);
1445     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1446 
1447     // Get length of source string
1448     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1449 
1450     // Check for substr count > string count
1451     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1452     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1453     Node* if_gt = generate_slow_guard(bol, NULL);
1454     if (if_gt != NULL) {
1455       result_phi->init_req(2, intcon(-1));
1456       result_rgn->init_req(2, if_gt);
1457     }
1458 
1459     if (!stopped()) {
1460       // Check for substr count == 0
1461       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1462       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1463       Node* if_zero = generate_slow_guard(bol, NULL);
1464       if (if_zero != NULL) {
1465         result_phi->init_req(3, intcon(0));
1466         result_rgn->init_req(3, if_zero);
1467       }
1468     }
1469 
1470     if (!stopped()) {
1471       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1472       result_phi->init_req(1, result);
1473       result_rgn->init_req(1, control());
1474     }
1475     set_control(_gvn.transform(result_rgn));
1476     record_for_igvn(result_rgn);
1477     result = _gvn.transform(result_phi);
1478 
1479   } else { // Use LibraryCallKit::string_indexOf
1480     // don't intrinsify if argument isn't a constant string.
1481     if (!arg->is_Con()) {
1482      return false;
1483     }
1484     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1485     if (str_type == NULL) {
1486       return false;
1487     }
1488     ciInstanceKlass* klass = env()->String_klass();
1489     ciObject* str_const = str_type->const_oop();
1490     if (str_const == NULL || str_const->klass() != klass) {
1491       return false;
1492     }
1493     ciInstance* str = str_const->as_instance();
1494     assert(str != NULL, "must be instance");
1495 
1496     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1497     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1498 
1499     int o;
1500     int c;
1501     if (java_lang_String::has_offset_field()) {
1502       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1503       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1504     } else {
1505       o = 0;
1506       c = pat->length();
1507     }
1508 
1509     // constant strings have no offset and count == length which
1510     // simplifies the resulting code somewhat so lets optimize for that.
1511     if (o != 0 || c != pat->length()) {
1512      return false;
1513     }
1514 
1515     receiver = null_check(receiver, T_OBJECT);
1516     // NOTE: No null check on the argument is needed since it's a constant String oop.
1517     if (stopped()) {
1518       return true;
1519     }
1520 
1521     // The null string as a pattern always returns 0 (match at beginning of string)
1522     if (c == 0) {
1523       set_result(intcon(0));
1524       return true;
1525     }
1526 
1527     // Generate default indexOf
1528     jchar lastChar = pat->char_at(o + (c - 1));
1529     int cache = 0;
1530     int i;
1531     for (i = 0; i < c - 1; i++) {
1532       assert(i < pat->length(), "out of range");
1533       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1534     }
1535 
1536     int md2 = c;
1537     for (i = 0; i < c - 1; i++) {
1538       assert(i < pat->length(), "out of range");
1539       if (pat->char_at(o + i) == lastChar) {
1540         md2 = (c - 1) - i;
1541       }
1542     }
1543 
1544     result = string_indexOf(receiver, pat, o, cache, md2);
1545   }
1546   set_result(result);
1547   return true;
1548 }
1549 
1550 //--------------------------round_double_node--------------------------------
1551 // Round a double node if necessary.
1552 Node* LibraryCallKit::round_double_node(Node* n) {
1553   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1554     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1555   return n;
1556 }
1557 
1558 //------------------------------inline_math-----------------------------------
1559 // public static double Math.abs(double)
1560 // public static double Math.sqrt(double)
1561 // public static double Math.log(double)
1562 // public static double Math.log10(double)
1563 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1564   Node* arg = round_double_node(argument(0));
1565   Node* n;
1566   switch (id) {
1567   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1568   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1569   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1570   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1571   default:  fatal_unexpected_iid(id);  break;
1572   }
1573   set_result(_gvn.transform(n));
1574   return true;
1575 }
1576 
1577 //------------------------------inline_trig----------------------------------
1578 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1579 // argument reduction which will turn into a fast/slow diamond.
1580 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1581   Node* arg = round_double_node(argument(0));
1582   Node* n = NULL;
1583 
1584   switch (id) {
1585   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1586   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1587   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1588   default:  fatal_unexpected_iid(id);  break;
1589   }
1590   n = _gvn.transform(n);
1591 
1592   // Rounding required?  Check for argument reduction!
1593   if (Matcher::strict_fp_requires_explicit_rounding) {
1594     static const double     pi_4 =  0.7853981633974483;
1595     static const double neg_pi_4 = -0.7853981633974483;
1596     // pi/2 in 80-bit extended precision
1597     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1598     // -pi/2 in 80-bit extended precision
1599     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1600     // Cutoff value for using this argument reduction technique
1601     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1602     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1603 
1604     // Pseudocode for sin:
1605     // if (x <= Math.PI / 4.0) {
1606     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1607     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1608     // } else {
1609     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1610     // }
1611     // return StrictMath.sin(x);
1612 
1613     // Pseudocode for cos:
1614     // if (x <= Math.PI / 4.0) {
1615     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1616     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1617     // } else {
1618     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1619     // }
1620     // return StrictMath.cos(x);
1621 
1622     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1623     // requires a special machine instruction to load it.  Instead we'll try
1624     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1625     // probably do the math inside the SIN encoding.
1626 
1627     // Make the merge point
1628     RegionNode* r = new (C) RegionNode(3);
1629     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1630 
1631     // Flatten arg so we need only 1 test
1632     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1633     // Node for PI/4 constant
1634     Node *pi4 = makecon(TypeD::make(pi_4));
1635     // Check PI/4 : abs(arg)
1636     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1637     // Check: If PI/4 < abs(arg) then go slow
1638     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1639     // Branch either way
1640     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1641     set_control(opt_iff(r,iff));
1642 
1643     // Set fast path result
1644     phi->init_req(2, n);
1645 
1646     // Slow path - non-blocking leaf call
1647     Node* call = NULL;
1648     switch (id) {
1649     case vmIntrinsics::_dsin:
1650       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1651                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1652                                "Sin", NULL, arg, top());
1653       break;
1654     case vmIntrinsics::_dcos:
1655       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1656                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1657                                "Cos", NULL, arg, top());
1658       break;
1659     case vmIntrinsics::_dtan:
1660       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1661                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1662                                "Tan", NULL, arg, top());
1663       break;
1664     }
1665     assert(control()->in(0) == call, "");
1666     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1667     r->init_req(1, control());
1668     phi->init_req(1, slow_result);
1669 
1670     // Post-merge
1671     set_control(_gvn.transform(r));
1672     record_for_igvn(r);
1673     n = _gvn.transform(phi);
1674 
1675     C->set_has_split_ifs(true); // Has chance for split-if optimization
1676   }
1677   set_result(n);
1678   return true;
1679 }
1680 
1681 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1682   //-------------------
1683   //result=(result.isNaN())? funcAddr():result;
1684   // Check: If isNaN() by checking result!=result? then either trap
1685   // or go to runtime
1686   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1687   // Build the boolean node
1688   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1689 
1690   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1691     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1692       // The pow or exp intrinsic returned a NaN, which requires a call
1693       // to the runtime.  Recompile with the runtime call.
1694       uncommon_trap(Deoptimization::Reason_intrinsic,
1695                     Deoptimization::Action_make_not_entrant);
1696     }
1697     return result;
1698   } else {
1699     // If this inlining ever returned NaN in the past, we compile a call
1700     // to the runtime to properly handle corner cases
1701 
1702     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1703     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1704     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1705 
1706     if (!if_slow->is_top()) {
1707       RegionNode* result_region = new (C) RegionNode(3);
1708       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1709 
1710       result_region->init_req(1, if_fast);
1711       result_val->init_req(1, result);
1712 
1713       set_control(if_slow);
1714 
1715       const TypePtr* no_memory_effects = NULL;
1716       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1717                                    no_memory_effects,
1718                                    x, top(), y, y ? top() : NULL);
1719       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1720 #ifdef ASSERT
1721       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1722       assert(value_top == top(), "second value must be top");
1723 #endif
1724 
1725       result_region->init_req(2, control());
1726       result_val->init_req(2, value);
1727       set_control(_gvn.transform(result_region));
1728       return _gvn.transform(result_val);
1729     } else {
1730       return result;
1731     }
1732   }
1733 }
1734 
1735 //------------------------------inline_exp-------------------------------------
1736 // Inline exp instructions, if possible.  The Intel hardware only misses
1737 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1738 bool LibraryCallKit::inline_exp() {
1739   Node* arg = round_double_node(argument(0));
1740   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1741 
1742   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1743   set_result(n);
1744 
1745   C->set_has_split_ifs(true); // Has chance for split-if optimization
1746   return true;
1747 }
1748 
1749 //------------------------------inline_pow-------------------------------------
1750 // Inline power instructions, if possible.
1751 bool LibraryCallKit::inline_pow() {
1752   // Pseudocode for pow
1753   // if (y == 2) {
1754   //   return x * x;
1755   // } else {
1756   //   if (x <= 0.0) {
1757   //     long longy = (long)y;
1758   //     if ((double)longy == y) { // if y is long
1759   //       if (y + 1 == y) longy = 0; // huge number: even
1760   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1761   //     } else {
1762   //       result = NaN;
1763   //     }
1764   //   } else {
1765   //     result = DPow(x,y);
1766   //   }
1767   //   if (result != result)?  {
1768   //     result = uncommon_trap() or runtime_call();
1769   //   }
1770   //   return result;
1771   // }
1772 
1773   Node* x = round_double_node(argument(0));
1774   Node* y = round_double_node(argument(2));
1775 
1776   Node* result = NULL;
1777 
1778   Node*   const_two_node = makecon(TypeD::make(2.0));
1779   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
1780   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
1781   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1782   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
1783   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
1784 
1785   RegionNode* region_node = new (C) RegionNode(3);
1786   region_node->init_req(1, if_true);
1787 
1788   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
1789   // special case for x^y where y == 2, we can convert it to x * x
1790   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
1791 
1792   // set control to if_false since we will now process the false branch
1793   set_control(if_false);
1794 
1795   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1796     // Short form: skip the fancy tests and just check for NaN result.
1797     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1798   } else {
1799     // If this inlining ever returned NaN in the past, include all
1800     // checks + call to the runtime.
1801 
1802     // Set the merge point for If node with condition of (x <= 0.0)
1803     // There are four possible paths to region node and phi node
1804     RegionNode *r = new (C) RegionNode(4);
1805     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1806 
1807     // Build the first if node: if (x <= 0.0)
1808     // Node for 0 constant
1809     Node *zeronode = makecon(TypeD::ZERO);
1810     // Check x:0
1811     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1812     // Check: If (x<=0) then go complex path
1813     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1814     // Branch either way
1815     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1816     // Fast path taken; set region slot 3
1817     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1818     r->init_req(3,fast_taken); // Capture fast-control
1819 
1820     // Fast path not-taken, i.e. slow path
1821     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1822 
1823     // Set fast path result
1824     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1825     phi->init_req(3, fast_result);
1826 
1827     // Complex path
1828     // Build the second if node (if y is long)
1829     // Node for (long)y
1830     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1831     // Node for (double)((long) y)
1832     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1833     // Check (double)((long) y) : y
1834     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1835     // Check if (y isn't long) then go to slow path
1836 
1837     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1838     // Branch either way
1839     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1840     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1841 
1842     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1843 
1844     // Calculate DPow(abs(x), y)*(1 & (long)y)
1845     // Node for constant 1
1846     Node *conone = longcon(1);
1847     // 1& (long)y
1848     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1849 
1850     // A huge number is always even. Detect a huge number by checking
1851     // if y + 1 == y and set integer to be tested for parity to 0.
1852     // Required for corner case:
1853     // (long)9.223372036854776E18 = max_jlong
1854     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1855     // max_jlong is odd but 9.223372036854776E18 is even
1856     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1857     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1858     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1859     Node* correctedsign = NULL;
1860     if (ConditionalMoveLimit != 0) {
1861       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1862     } else {
1863       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1864       RegionNode *r = new (C) RegionNode(3);
1865       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1866       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1867       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1868       phi->init_req(1, signnode);
1869       phi->init_req(2, longcon(0));
1870       correctedsign = _gvn.transform(phi);
1871       ylong_path = _gvn.transform(r);
1872       record_for_igvn(r);
1873     }
1874 
1875     // zero node
1876     Node *conzero = longcon(0);
1877     // Check (1&(long)y)==0?
1878     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1879     // Check if (1&(long)y)!=0?, if so the result is negative
1880     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1881     // abs(x)
1882     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1883     // abs(x)^y
1884     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1885     // -abs(x)^y
1886     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1887     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1888     Node *signresult = NULL;
1889     if (ConditionalMoveLimit != 0) {
1890       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1891     } else {
1892       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1893       RegionNode *r = new (C) RegionNode(3);
1894       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1895       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1896       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1897       phi->init_req(1, absxpowy);
1898       phi->init_req(2, negabsxpowy);
1899       signresult = _gvn.transform(phi);
1900       ylong_path = _gvn.transform(r);
1901       record_for_igvn(r);
1902     }
1903     // Set complex path fast result
1904     r->init_req(2, ylong_path);
1905     phi->init_req(2, signresult);
1906 
1907     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1908     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1909     r->init_req(1,slow_path);
1910     phi->init_req(1,slow_result);
1911 
1912     // Post merge
1913     set_control(_gvn.transform(r));
1914     record_for_igvn(r);
1915     result = _gvn.transform(phi);
1916   }
1917 
1918   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1919 
1920   // control from finish_pow_exp is now input to the region node
1921   region_node->set_req(2, control());
1922   // the result from finish_pow_exp is now input to the phi node
1923   phi_node->init_req(2, result);
1924   set_control(_gvn.transform(region_node));
1925   record_for_igvn(region_node);
1926   set_result(_gvn.transform(phi_node));
1927 
1928   C->set_has_split_ifs(true); // Has chance for split-if optimization
1929   return true;
1930 }
1931 
1932 //------------------------------runtime_math-----------------------------
1933 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1934   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1935          "must be (DD)D or (D)D type");
1936 
1937   // Inputs
1938   Node* a = round_double_node(argument(0));
1939   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1940 
1941   const TypePtr* no_memory_effects = NULL;
1942   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1943                                  no_memory_effects,
1944                                  a, top(), b, b ? top() : NULL);
1945   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1946 #ifdef ASSERT
1947   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1948   assert(value_top == top(), "second value must be top");
1949 #endif
1950 
1951   set_result(value);
1952   return true;
1953 }
1954 
1955 //------------------------------inline_math_native-----------------------------
1956 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1957 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1958   switch (id) {
1959     // These intrinsics are not properly supported on all hardware
1960   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1961     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1962   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1963     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1964   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1965     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1966 
1967   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1968     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1969   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1970     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1971 
1972     // These intrinsics are supported on all hardware
1973   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1974   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1975 
1976   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1977     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1978   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1979     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1980 #undef FN_PTR
1981 
1982    // These intrinsics are not yet correctly implemented
1983   case vmIntrinsics::_datan2:
1984     return false;
1985 
1986   default:
1987     fatal_unexpected_iid(id);
1988     return false;
1989   }
1990 }
1991 
1992 static bool is_simple_name(Node* n) {
1993   return (n->req() == 1         // constant
1994           || (n->is_Type() && n->as_Type()->type()->singleton())
1995           || n->is_Proj()       // parameter or return value
1996           || n->is_Phi()        // local of some sort
1997           );
1998 }
1999 
2000 //----------------------------inline_min_max-----------------------------------
2001 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2002   set_result(generate_min_max(id, argument(0), argument(1)));
2003   return true;
2004 }
2005 
2006 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2007   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
2008   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2009   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
2010   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
2011 
2012   {
2013     PreserveJVMState pjvms(this);
2014     PreserveReexecuteState preexecs(this);
2015     jvms()->set_should_reexecute(true);
2016 
2017     set_control(slow_path);
2018     set_i_o(i_o());
2019 
2020     uncommon_trap(Deoptimization::Reason_intrinsic,
2021                   Deoptimization::Action_none);
2022   }
2023 
2024   set_control(fast_path);
2025   set_result(math);
2026 }
2027 
2028 template <typename OverflowOp>
2029 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2030   typedef typename OverflowOp::MathOp MathOp;
2031 
2032   MathOp* mathOp = new(C) MathOp(arg1, arg2);
2033   Node* operation = _gvn.transform( mathOp );
2034   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
2035   inline_math_mathExact(operation, ofcheck);
2036   return true;
2037 }
2038 
2039 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2040   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2041 }
2042 
2043 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2044   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2045 }
2046 
2047 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2048   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2049 }
2050 
2051 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2052   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2053 }
2054 
2055 bool LibraryCallKit::inline_math_negateExactI() {
2056   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2057 }
2058 
2059 bool LibraryCallKit::inline_math_negateExactL() {
2060   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2061 }
2062 
2063 bool LibraryCallKit::inline_math_multiplyExactI() {
2064   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2065 }
2066 
2067 bool LibraryCallKit::inline_math_multiplyExactL() {
2068   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2069 }
2070 
2071 Node*
2072 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2073   // These are the candidate return value:
2074   Node* xvalue = x0;
2075   Node* yvalue = y0;
2076 
2077   if (xvalue == yvalue) {
2078     return xvalue;
2079   }
2080 
2081   bool want_max = (id == vmIntrinsics::_max);
2082 
2083   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2084   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2085   if (txvalue == NULL || tyvalue == NULL)  return top();
2086   // This is not really necessary, but it is consistent with a
2087   // hypothetical MaxINode::Value method:
2088   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2089 
2090   // %%% This folding logic should (ideally) be in a different place.
2091   // Some should be inside IfNode, and there to be a more reliable
2092   // transformation of ?: style patterns into cmoves.  We also want
2093   // more powerful optimizations around cmove and min/max.
2094 
2095   // Try to find a dominating comparison of these guys.
2096   // It can simplify the index computation for Arrays.copyOf
2097   // and similar uses of System.arraycopy.
2098   // First, compute the normalized version of CmpI(x, y).
2099   int   cmp_op = Op_CmpI;
2100   Node* xkey = xvalue;
2101   Node* ykey = yvalue;
2102   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2103   if (ideal_cmpxy->is_Cmp()) {
2104     // E.g., if we have CmpI(length - offset, count),
2105     // it might idealize to CmpI(length, count + offset)
2106     cmp_op = ideal_cmpxy->Opcode();
2107     xkey = ideal_cmpxy->in(1);
2108     ykey = ideal_cmpxy->in(2);
2109   }
2110 
2111   // Start by locating any relevant comparisons.
2112   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2113   Node* cmpxy = NULL;
2114   Node* cmpyx = NULL;
2115   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2116     Node* cmp = start_from->fast_out(k);
2117     if (cmp->outcnt() > 0 &&            // must have prior uses
2118         cmp->in(0) == NULL &&           // must be context-independent
2119         cmp->Opcode() == cmp_op) {      // right kind of compare
2120       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2121       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2122     }
2123   }
2124 
2125   const int NCMPS = 2;
2126   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2127   int cmpn;
2128   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2129     if (cmps[cmpn] != NULL)  break;     // find a result
2130   }
2131   if (cmpn < NCMPS) {
2132     // Look for a dominating test that tells us the min and max.
2133     int depth = 0;                // Limit search depth for speed
2134     Node* dom = control();
2135     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2136       if (++depth >= 100)  break;
2137       Node* ifproj = dom;
2138       if (!ifproj->is_Proj())  continue;
2139       Node* iff = ifproj->in(0);
2140       if (!iff->is_If())  continue;
2141       Node* bol = iff->in(1);
2142       if (!bol->is_Bool())  continue;
2143       Node* cmp = bol->in(1);
2144       if (cmp == NULL)  continue;
2145       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2146         if (cmps[cmpn] == cmp)  break;
2147       if (cmpn == NCMPS)  continue;
2148       BoolTest::mask btest = bol->as_Bool()->_test._test;
2149       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2150       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2151       // At this point, we know that 'x btest y' is true.
2152       switch (btest) {
2153       case BoolTest::eq:
2154         // They are proven equal, so we can collapse the min/max.
2155         // Either value is the answer.  Choose the simpler.
2156         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2157           return yvalue;
2158         return xvalue;
2159       case BoolTest::lt:          // x < y
2160       case BoolTest::le:          // x <= y
2161         return (want_max ? yvalue : xvalue);
2162       case BoolTest::gt:          // x > y
2163       case BoolTest::ge:          // x >= y
2164         return (want_max ? xvalue : yvalue);
2165       }
2166     }
2167   }
2168 
2169   // We failed to find a dominating test.
2170   // Let's pick a test that might GVN with prior tests.
2171   Node*          best_bol   = NULL;
2172   BoolTest::mask best_btest = BoolTest::illegal;
2173   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2174     Node* cmp = cmps[cmpn];
2175     if (cmp == NULL)  continue;
2176     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2177       Node* bol = cmp->fast_out(j);
2178       if (!bol->is_Bool())  continue;
2179       BoolTest::mask btest = bol->as_Bool()->_test._test;
2180       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2181       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2182       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2183         best_bol   = bol->as_Bool();
2184         best_btest = btest;
2185       }
2186     }
2187   }
2188 
2189   Node* answer_if_true  = NULL;
2190   Node* answer_if_false = NULL;
2191   switch (best_btest) {
2192   default:
2193     if (cmpxy == NULL)
2194       cmpxy = ideal_cmpxy;
2195     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2196     // and fall through:
2197   case BoolTest::lt:          // x < y
2198   case BoolTest::le:          // x <= y
2199     answer_if_true  = (want_max ? yvalue : xvalue);
2200     answer_if_false = (want_max ? xvalue : yvalue);
2201     break;
2202   case BoolTest::gt:          // x > y
2203   case BoolTest::ge:          // x >= y
2204     answer_if_true  = (want_max ? xvalue : yvalue);
2205     answer_if_false = (want_max ? yvalue : xvalue);
2206     break;
2207   }
2208 
2209   jint hi, lo;
2210   if (want_max) {
2211     // We can sharpen the minimum.
2212     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2213     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2214   } else {
2215     // We can sharpen the maximum.
2216     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2217     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2218   }
2219 
2220   // Use a flow-free graph structure, to avoid creating excess control edges
2221   // which could hinder other optimizations.
2222   // Since Math.min/max is often used with arraycopy, we want
2223   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2224   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2225                                answer_if_false, answer_if_true,
2226                                TypeInt::make(lo, hi, widen));
2227 
2228   return _gvn.transform(cmov);
2229 
2230   /*
2231   // This is not as desirable as it may seem, since Min and Max
2232   // nodes do not have a full set of optimizations.
2233   // And they would interfere, anyway, with 'if' optimizations
2234   // and with CMoveI canonical forms.
2235   switch (id) {
2236   case vmIntrinsics::_min:
2237     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2238   case vmIntrinsics::_max:
2239     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2240   default:
2241     ShouldNotReachHere();
2242   }
2243   */
2244 }
2245 
2246 inline int
2247 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2248   const TypePtr* base_type = TypePtr::NULL_PTR;
2249   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2250   if (base_type == NULL) {
2251     // Unknown type.
2252     return Type::AnyPtr;
2253   } else if (base_type == TypePtr::NULL_PTR) {
2254     // Since this is a NULL+long form, we have to switch to a rawptr.
2255     base   = _gvn.transform(new (C) CastX2PNode(offset));
2256     offset = MakeConX(0);
2257     return Type::RawPtr;
2258   } else if (base_type->base() == Type::RawPtr) {
2259     return Type::RawPtr;
2260   } else if (base_type->isa_oopptr()) {
2261     // Base is never null => always a heap address.
2262     if (base_type->ptr() == TypePtr::NotNull) {
2263       return Type::OopPtr;
2264     }
2265     // Offset is small => always a heap address.
2266     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2267     if (offset_type != NULL &&
2268         base_type->offset() == 0 &&     // (should always be?)
2269         offset_type->_lo >= 0 &&
2270         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2271       return Type::OopPtr;
2272     }
2273     // Otherwise, it might either be oop+off or NULL+addr.
2274     return Type::AnyPtr;
2275   } else {
2276     // No information:
2277     return Type::AnyPtr;
2278   }
2279 }
2280 
2281 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2282   int kind = classify_unsafe_addr(base, offset);
2283   if (kind == Type::RawPtr) {
2284     return basic_plus_adr(top(), base, offset);
2285   } else {
2286     return basic_plus_adr(base, offset);
2287   }
2288 }
2289 
2290 //--------------------------inline_number_methods-----------------------------
2291 // inline int     Integer.numberOfLeadingZeros(int)
2292 // inline int        Long.numberOfLeadingZeros(long)
2293 //
2294 // inline int     Integer.numberOfTrailingZeros(int)
2295 // inline int        Long.numberOfTrailingZeros(long)
2296 //
2297 // inline int     Integer.bitCount(int)
2298 // inline int        Long.bitCount(long)
2299 //
2300 // inline char  Character.reverseBytes(char)
2301 // inline short     Short.reverseBytes(short)
2302 // inline int     Integer.reverseBytes(int)
2303 // inline long       Long.reverseBytes(long)
2304 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2305   Node* arg = argument(0);
2306   Node* n;
2307   switch (id) {
2308   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2309   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2310   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2311   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2312   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2313   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2314   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2315   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2316   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2317   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2318   default:  fatal_unexpected_iid(id);  break;
2319   }
2320   set_result(_gvn.transform(n));
2321   return true;
2322 }
2323 
2324 //----------------------------inline_unsafe_access----------------------------
2325 
2326 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2327 
2328 // Helper that guards and inserts a pre-barrier.
2329 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2330                                         Node* pre_val, bool need_mem_bar) {
2331   // We could be accessing the referent field of a reference object. If so, when G1
2332   // is enabled, we need to log the value in the referent field in an SATB buffer.
2333   // This routine performs some compile time filters and generates suitable
2334   // runtime filters that guard the pre-barrier code.
2335   // Also add memory barrier for non volatile load from the referent field
2336   // to prevent commoning of loads across safepoint.
2337   if (!UseG1GC && !need_mem_bar)
2338     return;
2339 
2340   // Some compile time checks.
2341 
2342   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2343   const TypeX* otype = offset->find_intptr_t_type();
2344   if (otype != NULL && otype->is_con() &&
2345       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2346     // Constant offset but not the reference_offset so just return
2347     return;
2348   }
2349 
2350   // We only need to generate the runtime guards for instances.
2351   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2352   if (btype != NULL) {
2353     if (btype->isa_aryptr()) {
2354       // Array type so nothing to do
2355       return;
2356     }
2357 
2358     const TypeInstPtr* itype = btype->isa_instptr();
2359     if (itype != NULL) {
2360       // Can the klass of base_oop be statically determined to be
2361       // _not_ a sub-class of Reference and _not_ Object?
2362       ciKlass* klass = itype->klass();
2363       if ( klass->is_loaded() &&
2364           !klass->is_subtype_of(env()->Reference_klass()) &&
2365           !env()->Object_klass()->is_subtype_of(klass)) {
2366         return;
2367       }
2368     }
2369   }
2370 
2371   // The compile time filters did not reject base_oop/offset so
2372   // we need to generate the following runtime filters
2373   //
2374   // if (offset == java_lang_ref_Reference::_reference_offset) {
2375   //   if (instance_of(base, java.lang.ref.Reference)) {
2376   //     pre_barrier(_, pre_val, ...);
2377   //   }
2378   // }
2379 
2380   float likely   = PROB_LIKELY(  0.999);
2381   float unlikely = PROB_UNLIKELY(0.999);
2382 
2383   IdealKit ideal(this);
2384 #define __ ideal.
2385 
2386   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2387 
2388   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2389       // Update graphKit memory and control from IdealKit.
2390       sync_kit(ideal);
2391 
2392       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2393       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2394 
2395       // Update IdealKit memory and control from graphKit.
2396       __ sync_kit(this);
2397 
2398       Node* one = __ ConI(1);
2399       // is_instof == 0 if base_oop == NULL
2400       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2401 
2402         // Update graphKit from IdeakKit.
2403         sync_kit(ideal);
2404 
2405         // Use the pre-barrier to record the value in the referent field
2406         pre_barrier(false /* do_load */,
2407                     __ ctrl(),
2408                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2409                     pre_val /* pre_val */,
2410                     T_OBJECT);
2411         if (need_mem_bar) {
2412           // Add memory barrier to prevent commoning reads from this field
2413           // across safepoint since GC can change its value.
2414           insert_mem_bar(Op_MemBarCPUOrder);
2415         }
2416         // Update IdealKit from graphKit.
2417         __ sync_kit(this);
2418 
2419       } __ end_if(); // _ref_type != ref_none
2420   } __ end_if(); // offset == referent_offset
2421 
2422   // Final sync IdealKit and GraphKit.
2423   final_sync(ideal);
2424 #undef __
2425 }
2426 
2427 
2428 // Interpret Unsafe.fieldOffset cookies correctly:
2429 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2430 
2431 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2432   // Attempt to infer a sharper value type from the offset and base type.
2433   ciKlass* sharpened_klass = NULL;
2434 
2435   // See if it is an instance field, with an object type.
2436   if (alias_type->field() != NULL) {
2437     assert(!is_native_ptr, "native pointer op cannot use a java address");
2438     if (alias_type->field()->type()->is_klass()) {
2439       sharpened_klass = alias_type->field()->type()->as_klass();
2440     }
2441   }
2442 
2443   // See if it is a narrow oop array.
2444   if (adr_type->isa_aryptr()) {
2445     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2446       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2447       if (elem_type != NULL) {
2448         sharpened_klass = elem_type->klass();
2449       }
2450     }
2451   }
2452 
2453   // The sharpened class might be unloaded if there is no class loader
2454   // contraint in place.
2455   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2456     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2457 
2458 #ifndef PRODUCT
2459     if (C->print_intrinsics() || C->print_inlining()) {
2460       tty->print("  from base type: ");  adr_type->dump();
2461       tty->print("  sharpened value: ");  tjp->dump();
2462     }
2463 #endif
2464     // Sharpen the value type.
2465     return tjp;
2466   }
2467   return NULL;
2468 }
2469 
2470 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2471   if (callee()->is_static())  return false;  // caller must have the capability!
2472 
2473 #ifndef PRODUCT
2474   {
2475     ResourceMark rm;
2476     // Check the signatures.
2477     ciSignature* sig = callee()->signature();
2478 #ifdef ASSERT
2479     if (!is_store) {
2480       // Object getObject(Object base, int/long offset), etc.
2481       BasicType rtype = sig->return_type()->basic_type();
2482       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2483           rtype = T_ADDRESS;  // it is really a C void*
2484       assert(rtype == type, "getter must return the expected value");
2485       if (!is_native_ptr) {
2486         assert(sig->count() == 2, "oop getter has 2 arguments");
2487         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2488         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2489       } else {
2490         assert(sig->count() == 1, "native getter has 1 argument");
2491         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2492       }
2493     } else {
2494       // void putObject(Object base, int/long offset, Object x), etc.
2495       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2496       if (!is_native_ptr) {
2497         assert(sig->count() == 3, "oop putter has 3 arguments");
2498         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2499         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2500       } else {
2501         assert(sig->count() == 2, "native putter has 2 arguments");
2502         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2503       }
2504       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2505       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2506         vtype = T_ADDRESS;  // it is really a C void*
2507       assert(vtype == type, "putter must accept the expected value");
2508     }
2509 #endif // ASSERT
2510  }
2511 #endif //PRODUCT
2512 
2513   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2514 
2515   Node* receiver = argument(0);  // type: oop
2516 
2517   // Build address expression.  See the code in inline_unsafe_prefetch.
2518   Node* adr;
2519   Node* heap_base_oop = top();
2520   Node* offset = top();
2521   Node* val;
2522 
2523   if (!is_native_ptr) {
2524     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2525     Node* base = argument(1);  // type: oop
2526     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2527     offset = argument(2);  // type: long
2528     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2529     // to be plain byte offsets, which are also the same as those accepted
2530     // by oopDesc::field_base.
2531     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2532            "fieldOffset must be byte-scaled");
2533     // 32-bit machines ignore the high half!
2534     offset = ConvL2X(offset);
2535     adr = make_unsafe_address(base, offset);
2536     heap_base_oop = base;
2537     val = is_store ? argument(4) : NULL;
2538   } else {
2539     Node* ptr = argument(1);  // type: long
2540     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2541     adr = make_unsafe_address(NULL, ptr);
2542     val = is_store ? argument(3) : NULL;
2543   }
2544 
2545   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2546 
2547   // First guess at the value type.
2548   const Type *value_type = Type::get_const_basic_type(type);
2549 
2550   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2551   // there was not enough information to nail it down.
2552   Compile::AliasType* alias_type = C->alias_type(adr_type);
2553   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2554 
2555   // We will need memory barriers unless we can determine a unique
2556   // alias category for this reference.  (Note:  If for some reason
2557   // the barriers get omitted and the unsafe reference begins to "pollute"
2558   // the alias analysis of the rest of the graph, either Compile::can_alias
2559   // or Compile::must_alias will throw a diagnostic assert.)
2560   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2561 
2562   // If we are reading the value of the referent field of a Reference
2563   // object (either by using Unsafe directly or through reflection)
2564   // then, if G1 is enabled, we need to record the referent in an
2565   // SATB log buffer using the pre-barrier mechanism.
2566   // Also we need to add memory barrier to prevent commoning reads
2567   // from this field across safepoint since GC can change its value.
2568   bool need_read_barrier = !is_native_ptr && !is_store &&
2569                            offset != top() && heap_base_oop != top();
2570 
2571   if (!is_store && type == T_OBJECT) {
2572     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2573     if (tjp != NULL) {
2574       value_type = tjp;
2575     }
2576   }
2577 
2578   receiver = null_check(receiver);
2579   if (stopped()) {
2580     return true;
2581   }
2582   // Heap pointers get a null-check from the interpreter,
2583   // as a courtesy.  However, this is not guaranteed by Unsafe,
2584   // and it is not possible to fully distinguish unintended nulls
2585   // from intended ones in this API.
2586 
2587   if (is_volatile) {
2588     // We need to emit leading and trailing CPU membars (see below) in
2589     // addition to memory membars when is_volatile. This is a little
2590     // too strong, but avoids the need to insert per-alias-type
2591     // volatile membars (for stores; compare Parse::do_put_xxx), which
2592     // we cannot do effectively here because we probably only have a
2593     // rough approximation of type.
2594     need_mem_bar = true;
2595     // For Stores, place a memory ordering barrier now.
2596     if (is_store) {
2597       insert_mem_bar(Op_MemBarRelease);
2598     } else {
2599       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2600         insert_mem_bar(Op_MemBarVolatile);
2601       }
2602     }
2603   }
2604 
2605   // Memory barrier to prevent normal and 'unsafe' accesses from
2606   // bypassing each other.  Happens after null checks, so the
2607   // exception paths do not take memory state from the memory barrier,
2608   // so there's no problems making a strong assert about mixing users
2609   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2610   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2611   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2612 
2613   if (!is_store) {
2614     Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
2615     // load value
2616     switch (type) {
2617     case T_BOOLEAN:
2618     case T_CHAR:
2619     case T_BYTE:
2620     case T_SHORT:
2621     case T_INT:
2622     case T_LONG:
2623     case T_FLOAT:
2624     case T_DOUBLE:
2625       break;
2626     case T_OBJECT:
2627       if (need_read_barrier) {
2628         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2629       }
2630       break;
2631     case T_ADDRESS:
2632       // Cast to an int type.
2633       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2634       p = ConvX2UL(p);
2635       break;
2636     default:
2637       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2638       break;
2639     }
2640     // The load node has the control of the preceding MemBarCPUOrder.  All
2641     // following nodes will have the control of the MemBarCPUOrder inserted at
2642     // the end of this method.  So, pushing the load onto the stack at a later
2643     // point is fine.
2644     set_result(p);
2645   } else {
2646     // place effect of store into memory
2647     switch (type) {
2648     case T_DOUBLE:
2649       val = dstore_rounding(val);
2650       break;
2651     case T_ADDRESS:
2652       // Repackage the long as a pointer.
2653       val = ConvL2X(val);
2654       val = _gvn.transform(new (C) CastX2PNode(val));
2655       break;
2656     }
2657 
2658     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2659     if (type != T_OBJECT ) {
2660       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2661     } else {
2662       // Possibly an oop being stored to Java heap or native memory
2663       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2664         // oop to Java heap.
2665         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2666       } else {
2667         // We can't tell at compile time if we are storing in the Java heap or outside
2668         // of it. So we need to emit code to conditionally do the proper type of
2669         // store.
2670 
2671         IdealKit ideal(this);
2672 #define __ ideal.
2673         // QQQ who knows what probability is here??
2674         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2675           // Sync IdealKit and graphKit.
2676           sync_kit(ideal);
2677           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2678           // Update IdealKit memory.
2679           __ sync_kit(this);
2680         } __ else_(); {
2681           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2682         } __ end_if();
2683         // Final sync IdealKit and GraphKit.
2684         final_sync(ideal);
2685 #undef __
2686       }
2687     }
2688   }
2689 
2690   if (is_volatile) {
2691     if (!is_store) {
2692       insert_mem_bar(Op_MemBarAcquire);
2693     } else {
2694       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2695         insert_mem_bar(Op_MemBarVolatile);
2696       }
2697     }
2698   }
2699 
2700   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2701 
2702   return true;
2703 }
2704 
2705 //----------------------------inline_unsafe_prefetch----------------------------
2706 
2707 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2708 #ifndef PRODUCT
2709   {
2710     ResourceMark rm;
2711     // Check the signatures.
2712     ciSignature* sig = callee()->signature();
2713 #ifdef ASSERT
2714     // Object getObject(Object base, int/long offset), etc.
2715     BasicType rtype = sig->return_type()->basic_type();
2716     if (!is_native_ptr) {
2717       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2718       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2719       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2720     } else {
2721       assert(sig->count() == 1, "native prefetch has 1 argument");
2722       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2723     }
2724 #endif // ASSERT
2725   }
2726 #endif // !PRODUCT
2727 
2728   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2729 
2730   const int idx = is_static ? 0 : 1;
2731   if (!is_static) {
2732     null_check_receiver();
2733     if (stopped()) {
2734       return true;
2735     }
2736   }
2737 
2738   // Build address expression.  See the code in inline_unsafe_access.
2739   Node *adr;
2740   if (!is_native_ptr) {
2741     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2742     Node* base   = argument(idx + 0);  // type: oop
2743     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2744     Node* offset = argument(idx + 1);  // type: long
2745     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2746     // to be plain byte offsets, which are also the same as those accepted
2747     // by oopDesc::field_base.
2748     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2749            "fieldOffset must be byte-scaled");
2750     // 32-bit machines ignore the high half!
2751     offset = ConvL2X(offset);
2752     adr = make_unsafe_address(base, offset);
2753   } else {
2754     Node* ptr = argument(idx + 0);  // type: long
2755     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2756     adr = make_unsafe_address(NULL, ptr);
2757   }
2758 
2759   // Generate the read or write prefetch
2760   Node *prefetch;
2761   if (is_store) {
2762     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2763   } else {
2764     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2765   }
2766   prefetch->init_req(0, control());
2767   set_i_o(_gvn.transform(prefetch));
2768 
2769   return true;
2770 }
2771 
2772 //----------------------------inline_unsafe_load_store----------------------------
2773 // This method serves a couple of different customers (depending on LoadStoreKind):
2774 //
2775 // LS_cmpxchg:
2776 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2777 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2778 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2779 //
2780 // LS_xadd:
2781 //   public int  getAndAddInt( Object o, long offset, int  delta)
2782 //   public long getAndAddLong(Object o, long offset, long delta)
2783 //
2784 // LS_xchg:
2785 //   int    getAndSet(Object o, long offset, int    newValue)
2786 //   long   getAndSet(Object o, long offset, long   newValue)
2787 //   Object getAndSet(Object o, long offset, Object newValue)
2788 //
2789 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2790   // This basic scheme here is the same as inline_unsafe_access, but
2791   // differs in enough details that combining them would make the code
2792   // overly confusing.  (This is a true fact! I originally combined
2793   // them, but even I was confused by it!) As much code/comments as
2794   // possible are retained from inline_unsafe_access though to make
2795   // the correspondences clearer. - dl
2796 
2797   if (callee()->is_static())  return false;  // caller must have the capability!
2798 
2799 #ifndef PRODUCT
2800   BasicType rtype;
2801   {
2802     ResourceMark rm;
2803     // Check the signatures.
2804     ciSignature* sig = callee()->signature();
2805     rtype = sig->return_type()->basic_type();
2806     if (kind == LS_xadd || kind == LS_xchg) {
2807       // Check the signatures.
2808 #ifdef ASSERT
2809       assert(rtype == type, "get and set must return the expected type");
2810       assert(sig->count() == 3, "get and set has 3 arguments");
2811       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2812       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2813       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2814 #endif // ASSERT
2815     } else if (kind == LS_cmpxchg) {
2816       // Check the signatures.
2817 #ifdef ASSERT
2818       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2819       assert(sig->count() == 4, "CAS has 4 arguments");
2820       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2821       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2822 #endif // ASSERT
2823     } else {
2824       ShouldNotReachHere();
2825     }
2826   }
2827 #endif //PRODUCT
2828 
2829   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2830 
2831   // Get arguments:
2832   Node* receiver = NULL;
2833   Node* base     = NULL;
2834   Node* offset   = NULL;
2835   Node* oldval   = NULL;
2836   Node* newval   = NULL;
2837   if (kind == LS_cmpxchg) {
2838     const bool two_slot_type = type2size[type] == 2;
2839     receiver = argument(0);  // type: oop
2840     base     = argument(1);  // type: oop
2841     offset   = argument(2);  // type: long
2842     oldval   = argument(4);  // type: oop, int, or long
2843     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2844   } else if (kind == LS_xadd || kind == LS_xchg){
2845     receiver = argument(0);  // type: oop
2846     base     = argument(1);  // type: oop
2847     offset   = argument(2);  // type: long
2848     oldval   = NULL;
2849     newval   = argument(4);  // type: oop, int, or long
2850   }
2851 
2852   // Null check receiver.
2853   receiver = null_check(receiver);
2854   if (stopped()) {
2855     return true;
2856   }
2857 
2858   // Build field offset expression.
2859   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2860   // to be plain byte offsets, which are also the same as those accepted
2861   // by oopDesc::field_base.
2862   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2863   // 32-bit machines ignore the high half of long offsets
2864   offset = ConvL2X(offset);
2865   Node* adr = make_unsafe_address(base, offset);
2866   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2867 
2868   // For CAS, unlike inline_unsafe_access, there seems no point in
2869   // trying to refine types. Just use the coarse types here.
2870   const Type *value_type = Type::get_const_basic_type(type);
2871   Compile::AliasType* alias_type = C->alias_type(adr_type);
2872   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2873 
2874   if (kind == LS_xchg && type == T_OBJECT) {
2875     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2876     if (tjp != NULL) {
2877       value_type = tjp;
2878     }
2879   }
2880 
2881   int alias_idx = C->get_alias_index(adr_type);
2882 
2883   // Memory-model-wise, a LoadStore acts like a little synchronized
2884   // block, so needs barriers on each side.  These don't translate
2885   // into actual barriers on most machines, but we still need rest of
2886   // compiler to respect ordering.
2887 
2888   insert_mem_bar(Op_MemBarRelease);
2889   insert_mem_bar(Op_MemBarCPUOrder);
2890 
2891   // 4984716: MemBars must be inserted before this
2892   //          memory node in order to avoid a false
2893   //          dependency which will confuse the scheduler.
2894   Node *mem = memory(alias_idx);
2895 
2896   // For now, we handle only those cases that actually exist: ints,
2897   // longs, and Object. Adding others should be straightforward.
2898   Node* load_store;
2899   switch(type) {
2900   case T_INT:
2901     if (kind == LS_xadd) {
2902       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2903     } else if (kind == LS_xchg) {
2904       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2905     } else if (kind == LS_cmpxchg) {
2906       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2907     } else {
2908       ShouldNotReachHere();
2909     }
2910     break;
2911   case T_LONG:
2912     if (kind == LS_xadd) {
2913       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2914     } else if (kind == LS_xchg) {
2915       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2916     } else if (kind == LS_cmpxchg) {
2917       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2918     } else {
2919       ShouldNotReachHere();
2920     }
2921     break;
2922   case T_OBJECT:
2923     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2924     // could be delayed during Parse (for example, in adjust_map_after_if()).
2925     // Execute transformation here to avoid barrier generation in such case.
2926     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2927       newval = _gvn.makecon(TypePtr::NULL_PTR);
2928 
2929     // Reference stores need a store barrier.
2930     if (kind == LS_xchg) {
2931       // If pre-barrier must execute before the oop store, old value will require do_load here.
2932       if (!can_move_pre_barrier()) {
2933         pre_barrier(true /* do_load*/,
2934                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2935                     NULL /* pre_val*/,
2936                     T_OBJECT);
2937       } // Else move pre_barrier to use load_store value, see below.
2938     } else if (kind == LS_cmpxchg) {
2939       // Same as for newval above:
2940       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2941         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2942       }
2943       // The only known value which might get overwritten is oldval.
2944       pre_barrier(false /* do_load */,
2945                   control(), NULL, NULL, max_juint, NULL, NULL,
2946                   oldval /* pre_val */,
2947                   T_OBJECT);
2948     } else {
2949       ShouldNotReachHere();
2950     }
2951 
2952 #ifdef _LP64
2953     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2954       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2955       if (kind == LS_xchg) {
2956         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2957                                                            newval_enc, adr_type, value_type->make_narrowoop()));
2958       } else {
2959         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2960         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2961         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2962                                                                 newval_enc, oldval_enc));
2963       }
2964     } else
2965 #endif
2966     {
2967       if (kind == LS_xchg) {
2968         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2969       } else {
2970         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2971         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2972       }
2973     }
2974     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2975     break;
2976   default:
2977     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2978     break;
2979   }
2980 
2981   // SCMemProjNodes represent the memory state of a LoadStore. Their
2982   // main role is to prevent LoadStore nodes from being optimized away
2983   // when their results aren't used.
2984   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
2985   set_memory(proj, alias_idx);
2986 
2987   if (type == T_OBJECT && kind == LS_xchg) {
2988 #ifdef _LP64
2989     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2990       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
2991     }
2992 #endif
2993     if (can_move_pre_barrier()) {
2994       // Don't need to load pre_val. The old value is returned by load_store.
2995       // The pre_barrier can execute after the xchg as long as no safepoint
2996       // gets inserted between them.
2997       pre_barrier(false /* do_load */,
2998                   control(), NULL, NULL, max_juint, NULL, NULL,
2999                   load_store /* pre_val */,
3000                   T_OBJECT);
3001     }
3002   }
3003 
3004   // Add the trailing membar surrounding the access
3005   insert_mem_bar(Op_MemBarCPUOrder);
3006   insert_mem_bar(Op_MemBarAcquire);
3007 
3008   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3009   set_result(load_store);
3010   return true;
3011 }
3012 
3013 //----------------------------inline_unsafe_ordered_store----------------------
3014 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3015 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3016 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3017 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3018   // This is another variant of inline_unsafe_access, differing in
3019   // that it always issues store-store ("release") barrier and ensures
3020   // store-atomicity (which only matters for "long").
3021 
3022   if (callee()->is_static())  return false;  // caller must have the capability!
3023 
3024 #ifndef PRODUCT
3025   {
3026     ResourceMark rm;
3027     // Check the signatures.
3028     ciSignature* sig = callee()->signature();
3029 #ifdef ASSERT
3030     BasicType rtype = sig->return_type()->basic_type();
3031     assert(rtype == T_VOID, "must return void");
3032     assert(sig->count() == 3, "has 3 arguments");
3033     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3034     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3035 #endif // ASSERT
3036   }
3037 #endif //PRODUCT
3038 
3039   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3040 
3041   // Get arguments:
3042   Node* receiver = argument(0);  // type: oop
3043   Node* base     = argument(1);  // type: oop
3044   Node* offset   = argument(2);  // type: long
3045   Node* val      = argument(4);  // type: oop, int, or long
3046 
3047   // Null check receiver.
3048   receiver = null_check(receiver);
3049   if (stopped()) {
3050     return true;
3051   }
3052 
3053   // Build field offset expression.
3054   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3055   // 32-bit machines ignore the high half of long offsets
3056   offset = ConvL2X(offset);
3057   Node* adr = make_unsafe_address(base, offset);
3058   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3059   const Type *value_type = Type::get_const_basic_type(type);
3060   Compile::AliasType* alias_type = C->alias_type(adr_type);
3061 
3062   insert_mem_bar(Op_MemBarRelease);
3063   insert_mem_bar(Op_MemBarCPUOrder);
3064   // Ensure that the store is atomic for longs:
3065   const bool require_atomic_access = true;
3066   Node* store;
3067   if (type == T_OBJECT) // reference stores need a store barrier.
3068     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3069   else {
3070     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3071   }
3072   insert_mem_bar(Op_MemBarCPUOrder);
3073   return true;
3074 }
3075 
3076 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3077   // Regardless of form, don't allow previous ld/st to move down,
3078   // then issue acquire, release, or volatile mem_bar.
3079   insert_mem_bar(Op_MemBarCPUOrder);
3080   switch(id) {
3081     case vmIntrinsics::_loadFence:
3082       insert_mem_bar(Op_LoadFence);
3083       return true;
3084     case vmIntrinsics::_storeFence:
3085       insert_mem_bar(Op_StoreFence);
3086       return true;
3087     case vmIntrinsics::_fullFence:
3088       insert_mem_bar(Op_MemBarVolatile);
3089       return true;
3090     default:
3091       fatal_unexpected_iid(id);
3092       return false;
3093   }
3094 }
3095 
3096 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3097   if (!kls->is_Con()) {
3098     return true;
3099   }
3100   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3101   if (klsptr == NULL) {
3102     return true;
3103   }
3104   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3105   // don't need a guard for a klass that is already initialized
3106   return !ik->is_initialized();
3107 }
3108 
3109 //----------------------------inline_unsafe_allocate---------------------------
3110 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3111 bool LibraryCallKit::inline_unsafe_allocate() {
3112   if (callee()->is_static())  return false;  // caller must have the capability!
3113 
3114   null_check_receiver();  // null-check, then ignore
3115   Node* cls = null_check(argument(1));
3116   if (stopped())  return true;
3117 
3118   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3119   kls = null_check(kls);
3120   if (stopped())  return true;  // argument was like int.class
3121 
3122   Node* test = NULL;
3123   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3124     // Note:  The argument might still be an illegal value like
3125     // Serializable.class or Object[].class.   The runtime will handle it.
3126     // But we must make an explicit check for initialization.
3127     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3128     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3129     // can generate code to load it as unsigned byte.
3130     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3131     Node* bits = intcon(InstanceKlass::fully_initialized);
3132     test = _gvn.transform(new (C) SubINode(inst, bits));
3133     // The 'test' is non-zero if we need to take a slow path.
3134   }
3135 
3136   Node* obj = new_instance(kls, test);
3137   set_result(obj);
3138   return true;
3139 }
3140 
3141 #ifdef TRACE_HAVE_INTRINSICS
3142 /*
3143  * oop -> myklass
3144  * myklass->trace_id |= USED
3145  * return myklass->trace_id & ~0x3
3146  */
3147 bool LibraryCallKit::inline_native_classID() {
3148   null_check_receiver();  // null-check, then ignore
3149   Node* cls = null_check(argument(1), T_OBJECT);
3150   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3151   kls = null_check(kls, T_OBJECT);
3152   ByteSize offset = TRACE_ID_OFFSET;
3153   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3154   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3155   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3156   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3157   Node* clsused = longcon(0x01l); // set the class bit
3158   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3159 
3160   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3161   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3162   set_result(andl);
3163   return true;
3164 }
3165 
3166 bool LibraryCallKit::inline_native_threadID() {
3167   Node* tls_ptr = NULL;
3168   Node* cur_thr = generate_current_thread(tls_ptr);
3169   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3170   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3171   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3172 
3173   Node* threadid = NULL;
3174   size_t thread_id_size = OSThread::thread_id_size();
3175   if (thread_id_size == (size_t) BytesPerLong) {
3176     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3177   } else if (thread_id_size == (size_t) BytesPerInt) {
3178     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3179   } else {
3180     ShouldNotReachHere();
3181   }
3182   set_result(threadid);
3183   return true;
3184 }
3185 #endif
3186 
3187 //------------------------inline_native_time_funcs--------------
3188 // inline code for System.currentTimeMillis() and System.nanoTime()
3189 // these have the same type and signature
3190 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3191   const TypeFunc* tf = OptoRuntime::void_long_Type();
3192   const TypePtr* no_memory_effects = NULL;
3193   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3194   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3195 #ifdef ASSERT
3196   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3197   assert(value_top == top(), "second value must be top");
3198 #endif
3199   set_result(value);
3200   return true;
3201 }
3202 
3203 //------------------------inline_native_currentThread------------------
3204 bool LibraryCallKit::inline_native_currentThread() {
3205   Node* junk = NULL;
3206   set_result(generate_current_thread(junk));
3207   return true;
3208 }
3209 
3210 //------------------------inline_native_isInterrupted------------------
3211 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3212 bool LibraryCallKit::inline_native_isInterrupted() {
3213   // Add a fast path to t.isInterrupted(clear_int):
3214   //   (t == Thread.current() &&
3215   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3216   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3217   // So, in the common case that the interrupt bit is false,
3218   // we avoid making a call into the VM.  Even if the interrupt bit
3219   // is true, if the clear_int argument is false, we avoid the VM call.
3220   // However, if the receiver is not currentThread, we must call the VM,
3221   // because there must be some locking done around the operation.
3222 
3223   // We only go to the fast case code if we pass two guards.
3224   // Paths which do not pass are accumulated in the slow_region.
3225 
3226   enum {
3227     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3228     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3229     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3230     PATH_LIMIT
3231   };
3232 
3233   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3234   // out of the function.
3235   insert_mem_bar(Op_MemBarCPUOrder);
3236 
3237   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3238   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3239 
3240   RegionNode* slow_region = new (C) RegionNode(1);
3241   record_for_igvn(slow_region);
3242 
3243   // (a) Receiving thread must be the current thread.
3244   Node* rec_thr = argument(0);
3245   Node* tls_ptr = NULL;
3246   Node* cur_thr = generate_current_thread(tls_ptr);
3247   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3248   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3249 
3250   generate_slow_guard(bol_thr, slow_region);
3251 
3252   // (b) Interrupt bit on TLS must be false.
3253   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3254   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3255   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3256 
3257   // Set the control input on the field _interrupted read to prevent it floating up.
3258   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3259   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3260   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3261 
3262   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3263 
3264   // First fast path:  if (!TLS._interrupted) return false;
3265   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3266   result_rgn->init_req(no_int_result_path, false_bit);
3267   result_val->init_req(no_int_result_path, intcon(0));
3268 
3269   // drop through to next case
3270   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3271 
3272 #ifndef TARGET_OS_FAMILY_windows
3273   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3274   Node* clr_arg = argument(1);
3275   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3276   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3277   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3278 
3279   // Second fast path:  ... else if (!clear_int) return true;
3280   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3281   result_rgn->init_req(no_clear_result_path, false_arg);
3282   result_val->init_req(no_clear_result_path, intcon(1));
3283 
3284   // drop through to next case
3285   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3286 #else
3287   // To return true on Windows you must read the _interrupted field
3288   // and check the the event state i.e. take the slow path.
3289 #endif // TARGET_OS_FAMILY_windows
3290 
3291   // (d) Otherwise, go to the slow path.
3292   slow_region->add_req(control());
3293   set_control( _gvn.transform(slow_region));
3294 
3295   if (stopped()) {
3296     // There is no slow path.
3297     result_rgn->init_req(slow_result_path, top());
3298     result_val->init_req(slow_result_path, top());
3299   } else {
3300     // non-virtual because it is a private non-static
3301     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3302 
3303     Node* slow_val = set_results_for_java_call(slow_call);
3304     // this->control() comes from set_results_for_java_call
3305 
3306     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3307     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3308 
3309     // These two phis are pre-filled with copies of of the fast IO and Memory
3310     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3311     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3312 
3313     result_rgn->init_req(slow_result_path, control());
3314     result_io ->init_req(slow_result_path, i_o());
3315     result_mem->init_req(slow_result_path, reset_memory());
3316     result_val->init_req(slow_result_path, slow_val);
3317 
3318     set_all_memory(_gvn.transform(result_mem));
3319     set_i_o(       _gvn.transform(result_io));
3320   }
3321 
3322   C->set_has_split_ifs(true); // Has chance for split-if optimization
3323   set_result(result_rgn, result_val);
3324   return true;
3325 }
3326 
3327 //---------------------------load_mirror_from_klass----------------------------
3328 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3329 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3330   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3331   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3332 }
3333 
3334 //-----------------------load_klass_from_mirror_common-------------------------
3335 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3336 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3337 // and branch to the given path on the region.
3338 // If never_see_null, take an uncommon trap on null, so we can optimistically
3339 // compile for the non-null case.
3340 // If the region is NULL, force never_see_null = true.
3341 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3342                                                     bool never_see_null,
3343                                                     RegionNode* region,
3344                                                     int null_path,
3345                                                     int offset) {
3346   if (region == NULL)  never_see_null = true;
3347   Node* p = basic_plus_adr(mirror, offset);
3348   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3349   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3350   Node* null_ctl = top();
3351   kls = null_check_oop(kls, &null_ctl, never_see_null);
3352   if (region != NULL) {
3353     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3354     region->init_req(null_path, null_ctl);
3355   } else {
3356     assert(null_ctl == top(), "no loose ends");
3357   }
3358   return kls;
3359 }
3360 
3361 //--------------------(inline_native_Class_query helpers)---------------------
3362 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3363 // Fall through if (mods & mask) == bits, take the guard otherwise.
3364 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3365   // Branch around if the given klass has the given modifier bit set.
3366   // Like generate_guard, adds a new path onto the region.
3367   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3368   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3369   Node* mask = intcon(modifier_mask);
3370   Node* bits = intcon(modifier_bits);
3371   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3372   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3373   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3374   return generate_fair_guard(bol, region);
3375 }
3376 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3377   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3378 }
3379 
3380 //-------------------------inline_native_Class_query-------------------
3381 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3382   const Type* return_type = TypeInt::BOOL;
3383   Node* prim_return_value = top();  // what happens if it's a primitive class?
3384   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3385   bool expect_prim = false;     // most of these guys expect to work on refs
3386 
3387   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3388 
3389   Node* mirror = argument(0);
3390   Node* obj    = top();
3391 
3392   switch (id) {
3393   case vmIntrinsics::_isInstance:
3394     // nothing is an instance of a primitive type
3395     prim_return_value = intcon(0);
3396     obj = argument(1);
3397     break;
3398   case vmIntrinsics::_getModifiers:
3399     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3400     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3401     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3402     break;
3403   case vmIntrinsics::_isInterface:
3404     prim_return_value = intcon(0);
3405     break;
3406   case vmIntrinsics::_isArray:
3407     prim_return_value = intcon(0);
3408     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3409     break;
3410   case vmIntrinsics::_isPrimitive:
3411     prim_return_value = intcon(1);
3412     expect_prim = true;  // obviously
3413     break;
3414   case vmIntrinsics::_getSuperclass:
3415     prim_return_value = null();
3416     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3417     break;
3418   case vmIntrinsics::_getComponentType:
3419     prim_return_value = null();
3420     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3421     break;
3422   case vmIntrinsics::_getClassAccessFlags:
3423     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3424     return_type = TypeInt::INT;  // not bool!  6297094
3425     break;
3426   default:
3427     fatal_unexpected_iid(id);
3428     break;
3429   }
3430 
3431   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3432   if (mirror_con == NULL)  return false;  // cannot happen?
3433 
3434 #ifndef PRODUCT
3435   if (C->print_intrinsics() || C->print_inlining()) {
3436     ciType* k = mirror_con->java_mirror_type();
3437     if (k) {
3438       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3439       k->print_name();
3440       tty->cr();
3441     }
3442   }
3443 #endif
3444 
3445   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3446   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3447   record_for_igvn(region);
3448   PhiNode* phi = new (C) PhiNode(region, return_type);
3449 
3450   // The mirror will never be null of Reflection.getClassAccessFlags, however
3451   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3452   // if it is. See bug 4774291.
3453 
3454   // For Reflection.getClassAccessFlags(), the null check occurs in
3455   // the wrong place; see inline_unsafe_access(), above, for a similar
3456   // situation.
3457   mirror = null_check(mirror);
3458   // If mirror or obj is dead, only null-path is taken.
3459   if (stopped())  return true;
3460 
3461   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3462 
3463   // Now load the mirror's klass metaobject, and null-check it.
3464   // Side-effects region with the control path if the klass is null.
3465   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3466   // If kls is null, we have a primitive mirror.
3467   phi->init_req(_prim_path, prim_return_value);
3468   if (stopped()) { set_result(region, phi); return true; }
3469   bool safe_for_replace = (region->in(_prim_path) == top());
3470 
3471   Node* p;  // handy temp
3472   Node* null_ctl;
3473 
3474   // Now that we have the non-null klass, we can perform the real query.
3475   // For constant classes, the query will constant-fold in LoadNode::Value.
3476   Node* query_value = top();
3477   switch (id) {
3478   case vmIntrinsics::_isInstance:
3479     // nothing is an instance of a primitive type
3480     query_value = gen_instanceof(obj, kls, safe_for_replace);
3481     break;
3482 
3483   case vmIntrinsics::_getModifiers:
3484     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3485     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3486     break;
3487 
3488   case vmIntrinsics::_isInterface:
3489     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3490     if (generate_interface_guard(kls, region) != NULL)
3491       // A guard was added.  If the guard is taken, it was an interface.
3492       phi->add_req(intcon(1));
3493     // If we fall through, it's a plain class.
3494     query_value = intcon(0);
3495     break;
3496 
3497   case vmIntrinsics::_isArray:
3498     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3499     if (generate_array_guard(kls, region) != NULL)
3500       // A guard was added.  If the guard is taken, it was an array.
3501       phi->add_req(intcon(1));
3502     // If we fall through, it's a plain class.
3503     query_value = intcon(0);
3504     break;
3505 
3506   case vmIntrinsics::_isPrimitive:
3507     query_value = intcon(0); // "normal" path produces false
3508     break;
3509 
3510   case vmIntrinsics::_getSuperclass:
3511     // The rules here are somewhat unfortunate, but we can still do better
3512     // with random logic than with a JNI call.
3513     // Interfaces store null or Object as _super, but must report null.
3514     // Arrays store an intermediate super as _super, but must report Object.
3515     // Other types can report the actual _super.
3516     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3517     if (generate_interface_guard(kls, region) != NULL)
3518       // A guard was added.  If the guard is taken, it was an interface.
3519       phi->add_req(null());
3520     if (generate_array_guard(kls, region) != NULL)
3521       // A guard was added.  If the guard is taken, it was an array.
3522       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3523     // If we fall through, it's a plain class.  Get its _super.
3524     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3525     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3526     null_ctl = top();
3527     kls = null_check_oop(kls, &null_ctl);
3528     if (null_ctl != top()) {
3529       // If the guard is taken, Object.superClass is null (both klass and mirror).
3530       region->add_req(null_ctl);
3531       phi   ->add_req(null());
3532     }
3533     if (!stopped()) {
3534       query_value = load_mirror_from_klass(kls);
3535     }
3536     break;
3537 
3538   case vmIntrinsics::_getComponentType:
3539     if (generate_array_guard(kls, region) != NULL) {
3540       // Be sure to pin the oop load to the guard edge just created:
3541       Node* is_array_ctrl = region->in(region->req()-1);
3542       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3543       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3544       phi->add_req(cmo);
3545     }
3546     query_value = null();  // non-array case is null
3547     break;
3548 
3549   case vmIntrinsics::_getClassAccessFlags:
3550     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3551     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3552     break;
3553 
3554   default:
3555     fatal_unexpected_iid(id);
3556     break;
3557   }
3558 
3559   // Fall-through is the normal case of a query to a real class.
3560   phi->init_req(1, query_value);
3561   region->init_req(1, control());
3562 
3563   C->set_has_split_ifs(true); // Has chance for split-if optimization
3564   set_result(region, phi);
3565   return true;
3566 }
3567 
3568 //--------------------------inline_native_subtype_check------------------------
3569 // This intrinsic takes the JNI calls out of the heart of
3570 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3571 bool LibraryCallKit::inline_native_subtype_check() {
3572   // Pull both arguments off the stack.
3573   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3574   args[0] = argument(0);
3575   args[1] = argument(1);
3576   Node* klasses[2];             // corresponding Klasses: superk, subk
3577   klasses[0] = klasses[1] = top();
3578 
3579   enum {
3580     // A full decision tree on {superc is prim, subc is prim}:
3581     _prim_0_path = 1,           // {P,N} => false
3582                                 // {P,P} & superc!=subc => false
3583     _prim_same_path,            // {P,P} & superc==subc => true
3584     _prim_1_path,               // {N,P} => false
3585     _ref_subtype_path,          // {N,N} & subtype check wins => true
3586     _both_ref_path,             // {N,N} & subtype check loses => false
3587     PATH_LIMIT
3588   };
3589 
3590   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3591   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3592   record_for_igvn(region);
3593 
3594   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3595   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3596   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3597 
3598   // First null-check both mirrors and load each mirror's klass metaobject.
3599   int which_arg;
3600   for (which_arg = 0; which_arg <= 1; which_arg++) {
3601     Node* arg = args[which_arg];
3602     arg = null_check(arg);
3603     if (stopped())  break;
3604     args[which_arg] = arg;
3605 
3606     Node* p = basic_plus_adr(arg, class_klass_offset);
3607     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3608     klasses[which_arg] = _gvn.transform(kls);
3609   }
3610 
3611   // Having loaded both klasses, test each for null.
3612   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3613   for (which_arg = 0; which_arg <= 1; which_arg++) {
3614     Node* kls = klasses[which_arg];
3615     Node* null_ctl = top();
3616     kls = null_check_oop(kls, &null_ctl, never_see_null);
3617     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3618     region->init_req(prim_path, null_ctl);
3619     if (stopped())  break;
3620     klasses[which_arg] = kls;
3621   }
3622 
3623   if (!stopped()) {
3624     // now we have two reference types, in klasses[0..1]
3625     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3626     Node* superk = klasses[0];  // the receiver
3627     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3628     // now we have a successful reference subtype check
3629     region->set_req(_ref_subtype_path, control());
3630   }
3631 
3632   // If both operands are primitive (both klasses null), then
3633   // we must return true when they are identical primitives.
3634   // It is convenient to test this after the first null klass check.
3635   set_control(region->in(_prim_0_path)); // go back to first null check
3636   if (!stopped()) {
3637     // Since superc is primitive, make a guard for the superc==subc case.
3638     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3639     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3640     generate_guard(bol_eq, region, PROB_FAIR);
3641     if (region->req() == PATH_LIMIT+1) {
3642       // A guard was added.  If the added guard is taken, superc==subc.
3643       region->swap_edges(PATH_LIMIT, _prim_same_path);
3644       region->del_req(PATH_LIMIT);
3645     }
3646     region->set_req(_prim_0_path, control()); // Not equal after all.
3647   }
3648 
3649   // these are the only paths that produce 'true':
3650   phi->set_req(_prim_same_path,   intcon(1));
3651   phi->set_req(_ref_subtype_path, intcon(1));
3652 
3653   // pull together the cases:
3654   assert(region->req() == PATH_LIMIT, "sane region");
3655   for (uint i = 1; i < region->req(); i++) {
3656     Node* ctl = region->in(i);
3657     if (ctl == NULL || ctl == top()) {
3658       region->set_req(i, top());
3659       phi   ->set_req(i, top());
3660     } else if (phi->in(i) == NULL) {
3661       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3662     }
3663   }
3664 
3665   set_control(_gvn.transform(region));
3666   set_result(_gvn.transform(phi));
3667   return true;
3668 }
3669 
3670 //---------------------generate_array_guard_common------------------------
3671 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3672                                                   bool obj_array, bool not_array) {
3673   // If obj_array/non_array==false/false:
3674   // Branch around if the given klass is in fact an array (either obj or prim).
3675   // If obj_array/non_array==false/true:
3676   // Branch around if the given klass is not an array klass of any kind.
3677   // If obj_array/non_array==true/true:
3678   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3679   // If obj_array/non_array==true/false:
3680   // Branch around if the kls is an oop array (Object[] or subtype)
3681   //
3682   // Like generate_guard, adds a new path onto the region.
3683   jint  layout_con = 0;
3684   Node* layout_val = get_layout_helper(kls, layout_con);
3685   if (layout_val == NULL) {
3686     bool query = (obj_array
3687                   ? Klass::layout_helper_is_objArray(layout_con)
3688                   : Klass::layout_helper_is_array(layout_con));
3689     if (query == not_array) {
3690       return NULL;                       // never a branch
3691     } else {                             // always a branch
3692       Node* always_branch = control();
3693       if (region != NULL)
3694         region->add_req(always_branch);
3695       set_control(top());
3696       return always_branch;
3697     }
3698   }
3699   // Now test the correct condition.
3700   jint  nval = (obj_array
3701                 ? ((jint)Klass::_lh_array_tag_type_value
3702                    <<    Klass::_lh_array_tag_shift)
3703                 : Klass::_lh_neutral_value);
3704   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3705   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3706   // invert the test if we are looking for a non-array
3707   if (not_array)  btest = BoolTest(btest).negate();
3708   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3709   return generate_fair_guard(bol, region);
3710 }
3711 
3712 
3713 //-----------------------inline_native_newArray--------------------------
3714 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3715 bool LibraryCallKit::inline_native_newArray() {
3716   Node* mirror    = argument(0);
3717   Node* count_val = argument(1);
3718 
3719   mirror = null_check(mirror);
3720   // If mirror or obj is dead, only null-path is taken.
3721   if (stopped())  return true;
3722 
3723   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3724   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3725   PhiNode*    result_val = new(C) PhiNode(result_reg,
3726                                           TypeInstPtr::NOTNULL);
3727   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3728   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3729                                           TypePtr::BOTTOM);
3730 
3731   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3732   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3733                                                   result_reg, _slow_path);
3734   Node* normal_ctl   = control();
3735   Node* no_array_ctl = result_reg->in(_slow_path);
3736 
3737   // Generate code for the slow case.  We make a call to newArray().
3738   set_control(no_array_ctl);
3739   if (!stopped()) {
3740     // Either the input type is void.class, or else the
3741     // array klass has not yet been cached.  Either the
3742     // ensuing call will throw an exception, or else it
3743     // will cache the array klass for next time.
3744     PreserveJVMState pjvms(this);
3745     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3746     Node* slow_result = set_results_for_java_call(slow_call);
3747     // this->control() comes from set_results_for_java_call
3748     result_reg->set_req(_slow_path, control());
3749     result_val->set_req(_slow_path, slow_result);
3750     result_io ->set_req(_slow_path, i_o());
3751     result_mem->set_req(_slow_path, reset_memory());
3752   }
3753 
3754   set_control(normal_ctl);
3755   if (!stopped()) {
3756     // Normal case:  The array type has been cached in the java.lang.Class.
3757     // The following call works fine even if the array type is polymorphic.
3758     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3759     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3760     result_reg->init_req(_normal_path, control());
3761     result_val->init_req(_normal_path, obj);
3762     result_io ->init_req(_normal_path, i_o());
3763     result_mem->init_req(_normal_path, reset_memory());
3764   }
3765 
3766   // Return the combined state.
3767   set_i_o(        _gvn.transform(result_io)  );
3768   set_all_memory( _gvn.transform(result_mem));
3769 
3770   C->set_has_split_ifs(true); // Has chance for split-if optimization
3771   set_result(result_reg, result_val);
3772   return true;
3773 }
3774 
3775 //----------------------inline_native_getLength--------------------------
3776 // public static native int java.lang.reflect.Array.getLength(Object array);
3777 bool LibraryCallKit::inline_native_getLength() {
3778   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3779 
3780   Node* array = null_check(argument(0));
3781   // If array is dead, only null-path is taken.
3782   if (stopped())  return true;
3783 
3784   // Deoptimize if it is a non-array.
3785   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3786 
3787   if (non_array != NULL) {
3788     PreserveJVMState pjvms(this);
3789     set_control(non_array);
3790     uncommon_trap(Deoptimization::Reason_intrinsic,
3791                   Deoptimization::Action_maybe_recompile);
3792   }
3793 
3794   // If control is dead, only non-array-path is taken.
3795   if (stopped())  return true;
3796 
3797   // The works fine even if the array type is polymorphic.
3798   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3799   Node* result = load_array_length(array);
3800 
3801   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3802   set_result(result);
3803   return true;
3804 }
3805 
3806 //------------------------inline_array_copyOf----------------------------
3807 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3808 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3809 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3810   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3811 
3812   // Get the arguments.
3813   Node* original          = argument(0);
3814   Node* start             = is_copyOfRange? argument(1): intcon(0);
3815   Node* end               = is_copyOfRange? argument(2): argument(1);
3816   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3817 
3818   Node* newcopy;
3819 
3820   // Set the original stack and the reexecute bit for the interpreter to reexecute
3821   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3822   { PreserveReexecuteState preexecs(this);
3823     jvms()->set_should_reexecute(true);
3824 
3825     array_type_mirror = null_check(array_type_mirror);
3826     original          = null_check(original);
3827 
3828     // Check if a null path was taken unconditionally.
3829     if (stopped())  return true;
3830 
3831     Node* orig_length = load_array_length(original);
3832 
3833     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3834     klass_node = null_check(klass_node);
3835 
3836     RegionNode* bailout = new (C) RegionNode(1);
3837     record_for_igvn(bailout);
3838 
3839     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3840     // Bail out if that is so.
3841     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3842     if (not_objArray != NULL) {
3843       // Improve the klass node's type from the new optimistic assumption:
3844       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3845       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3846       Node* cast = new (C) CastPPNode(klass_node, akls);
3847       cast->init_req(0, control());
3848       klass_node = _gvn.transform(cast);
3849     }
3850 
3851     // Bail out if either start or end is negative.
3852     generate_negative_guard(start, bailout, &start);
3853     generate_negative_guard(end,   bailout, &end);
3854 
3855     Node* length = end;
3856     if (_gvn.type(start) != TypeInt::ZERO) {
3857       length = _gvn.transform(new (C) SubINode(end, start));
3858     }
3859 
3860     // Bail out if length is negative.
3861     // Without this the new_array would throw
3862     // NegativeArraySizeException but IllegalArgumentException is what
3863     // should be thrown
3864     generate_negative_guard(length, bailout, &length);
3865 
3866     if (bailout->req() > 1) {
3867       PreserveJVMState pjvms(this);
3868       set_control(_gvn.transform(bailout));
3869       uncommon_trap(Deoptimization::Reason_intrinsic,
3870                     Deoptimization::Action_maybe_recompile);
3871     }
3872 
3873     if (!stopped()) {
3874       // How many elements will we copy from the original?
3875       // The answer is MinI(orig_length - start, length).
3876       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3877       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3878 
3879       newcopy = new_array(klass_node, length, 0);  // no argments to push
3880 
3881       // Generate a direct call to the right arraycopy function(s).
3882       // We know the copy is disjoint but we might not know if the
3883       // oop stores need checking.
3884       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3885       // This will fail a store-check if x contains any non-nulls.
3886       bool disjoint_bases = true;
3887       // if start > orig_length then the length of the copy may be
3888       // negative.
3889       bool length_never_negative = !is_copyOfRange;
3890       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3891                          original, start, newcopy, intcon(0), moved,
3892                          disjoint_bases, length_never_negative);
3893     }
3894   } // original reexecute is set back here
3895 
3896   C->set_has_split_ifs(true); // Has chance for split-if optimization
3897   if (!stopped()) {
3898     set_result(newcopy);
3899   }
3900   return true;
3901 }
3902 
3903 
3904 //----------------------generate_virtual_guard---------------------------
3905 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3906 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3907                                              RegionNode* slow_region) {
3908   ciMethod* method = callee();
3909   int vtable_index = method->vtable_index();
3910   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3911          err_msg_res("bad index %d", vtable_index));
3912   // Get the Method* out of the appropriate vtable entry.
3913   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3914                      vtable_index*vtableEntry::size()) * wordSize +
3915                      vtableEntry::method_offset_in_bytes();
3916   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3917   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3918 
3919   // Compare the target method with the expected method (e.g., Object.hashCode).
3920   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3921 
3922   Node* native_call = makecon(native_call_addr);
3923   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3924   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3925 
3926   return generate_slow_guard(test_native, slow_region);
3927 }
3928 
3929 //-----------------------generate_method_call----------------------------
3930 // Use generate_method_call to make a slow-call to the real
3931 // method if the fast path fails.  An alternative would be to
3932 // use a stub like OptoRuntime::slow_arraycopy_Java.
3933 // This only works for expanding the current library call,
3934 // not another intrinsic.  (E.g., don't use this for making an
3935 // arraycopy call inside of the copyOf intrinsic.)
3936 CallJavaNode*
3937 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3938   // When compiling the intrinsic method itself, do not use this technique.
3939   guarantee(callee() != C->method(), "cannot make slow-call to self");
3940 
3941   ciMethod* method = callee();
3942   // ensure the JVMS we have will be correct for this call
3943   guarantee(method_id == method->intrinsic_id(), "must match");
3944 
3945   const TypeFunc* tf = TypeFunc::make(method);
3946   CallJavaNode* slow_call;
3947   if (is_static) {
3948     assert(!is_virtual, "");
3949     slow_call = new(C) CallStaticJavaNode(C, tf,
3950                            SharedRuntime::get_resolve_static_call_stub(),
3951                            method, bci());
3952   } else if (is_virtual) {
3953     null_check_receiver();
3954     int vtable_index = Method::invalid_vtable_index;
3955     if (UseInlineCaches) {
3956       // Suppress the vtable call
3957     } else {
3958       // hashCode and clone are not a miranda methods,
3959       // so the vtable index is fixed.
3960       // No need to use the linkResolver to get it.
3961        vtable_index = method->vtable_index();
3962        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3963               err_msg_res("bad index %d", vtable_index));
3964     }
3965     slow_call = new(C) CallDynamicJavaNode(tf,
3966                           SharedRuntime::get_resolve_virtual_call_stub(),
3967                           method, vtable_index, bci());
3968   } else {  // neither virtual nor static:  opt_virtual
3969     null_check_receiver();
3970     slow_call = new(C) CallStaticJavaNode(C, tf,
3971                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3972                                 method, bci());
3973     slow_call->set_optimized_virtual(true);
3974   }
3975   set_arguments_for_java_call(slow_call);
3976   set_edges_for_java_call(slow_call);
3977   return slow_call;
3978 }
3979 
3980 
3981 //------------------------------inline_native_hashcode--------------------
3982 // Build special case code for calls to hashCode on an object.
3983 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3984   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3985   assert(!(is_virtual && is_static), "either virtual, special, or static");
3986 
3987   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3988 
3989   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3990   PhiNode*    result_val = new(C) PhiNode(result_reg,
3991                                           TypeInt::INT);
3992   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3993   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3994                                           TypePtr::BOTTOM);
3995   Node* obj = NULL;
3996   if (!is_static) {
3997     // Check for hashing null object
3998     obj = null_check_receiver();
3999     if (stopped())  return true;        // unconditionally null
4000     result_reg->init_req(_null_path, top());
4001     result_val->init_req(_null_path, top());
4002   } else {
4003     // Do a null check, and return zero if null.
4004     // System.identityHashCode(null) == 0
4005     obj = argument(0);
4006     Node* null_ctl = top();
4007     obj = null_check_oop(obj, &null_ctl);
4008     result_reg->init_req(_null_path, null_ctl);
4009     result_val->init_req(_null_path, _gvn.intcon(0));
4010   }
4011 
4012   // Unconditionally null?  Then return right away.
4013   if (stopped()) {
4014     set_control( result_reg->in(_null_path));
4015     if (!stopped())
4016       set_result(result_val->in(_null_path));
4017     return true;
4018   }
4019 
4020   // After null check, get the object's klass.
4021   Node* obj_klass = load_object_klass(obj);
4022 
4023   // This call may be virtual (invokevirtual) or bound (invokespecial).
4024   // For each case we generate slightly different code.
4025 
4026   // We only go to the fast case code if we pass a number of guards.  The
4027   // paths which do not pass are accumulated in the slow_region.
4028   RegionNode* slow_region = new (C) RegionNode(1);
4029   record_for_igvn(slow_region);
4030 
4031   // If this is a virtual call, we generate a funny guard.  We pull out
4032   // the vtable entry corresponding to hashCode() from the target object.
4033   // If the target method which we are calling happens to be the native
4034   // Object hashCode() method, we pass the guard.  We do not need this
4035   // guard for non-virtual calls -- the caller is known to be the native
4036   // Object hashCode().
4037   if (is_virtual) {
4038     generate_virtual_guard(obj_klass, slow_region);
4039   }
4040 
4041   // Get the header out of the object, use LoadMarkNode when available
4042   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4043   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4044 
4045   // Test the header to see if it is unlocked.
4046   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4047   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4048   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4049   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4050   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4051 
4052   generate_slow_guard(test_unlocked, slow_region);
4053 
4054   // Get the hash value and check to see that it has been properly assigned.
4055   // We depend on hash_mask being at most 32 bits and avoid the use of
4056   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4057   // vm: see markOop.hpp.
4058   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4059   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4060   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4061   // This hack lets the hash bits live anywhere in the mark object now, as long
4062   // as the shift drops the relevant bits into the low 32 bits.  Note that
4063   // Java spec says that HashCode is an int so there's no point in capturing
4064   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4065   hshifted_header      = ConvX2I(hshifted_header);
4066   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4067 
4068   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4069   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4070   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4071 
4072   generate_slow_guard(test_assigned, slow_region);
4073 
4074   Node* init_mem = reset_memory();
4075   // fill in the rest of the null path:
4076   result_io ->init_req(_null_path, i_o());
4077   result_mem->init_req(_null_path, init_mem);
4078 
4079   result_val->init_req(_fast_path, hash_val);
4080   result_reg->init_req(_fast_path, control());
4081   result_io ->init_req(_fast_path, i_o());
4082   result_mem->init_req(_fast_path, init_mem);
4083 
4084   // Generate code for the slow case.  We make a call to hashCode().
4085   set_control(_gvn.transform(slow_region));
4086   if (!stopped()) {
4087     // No need for PreserveJVMState, because we're using up the present state.
4088     set_all_memory(init_mem);
4089     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4090     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4091     Node* slow_result = set_results_for_java_call(slow_call);
4092     // this->control() comes from set_results_for_java_call
4093     result_reg->init_req(_slow_path, control());
4094     result_val->init_req(_slow_path, slow_result);
4095     result_io  ->set_req(_slow_path, i_o());
4096     result_mem ->set_req(_slow_path, reset_memory());
4097   }
4098 
4099   // Return the combined state.
4100   set_i_o(        _gvn.transform(result_io)  );
4101   set_all_memory( _gvn.transform(result_mem));
4102 
4103   set_result(result_reg, result_val);
4104   return true;
4105 }
4106 
4107 //---------------------------inline_native_getClass----------------------------
4108 // public final native Class<?> java.lang.Object.getClass();
4109 //
4110 // Build special case code for calls to getClass on an object.
4111 bool LibraryCallKit::inline_native_getClass() {
4112   Node* obj = null_check_receiver();
4113   if (stopped())  return true;
4114   set_result(load_mirror_from_klass(load_object_klass(obj)));
4115   return true;
4116 }
4117 
4118 //-----------------inline_native_Reflection_getCallerClass---------------------
4119 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4120 //
4121 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4122 //
4123 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4124 // in that it must skip particular security frames and checks for
4125 // caller sensitive methods.
4126 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4127 #ifndef PRODUCT
4128   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4129     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4130   }
4131 #endif
4132 
4133   if (!jvms()->has_method()) {
4134 #ifndef PRODUCT
4135     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4136       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4137     }
4138 #endif
4139     return false;
4140   }
4141 
4142   // Walk back up the JVM state to find the caller at the required
4143   // depth.
4144   JVMState* caller_jvms = jvms();
4145 
4146   // Cf. JVM_GetCallerClass
4147   // NOTE: Start the loop at depth 1 because the current JVM state does
4148   // not include the Reflection.getCallerClass() frame.
4149   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4150     ciMethod* m = caller_jvms->method();
4151     switch (n) {
4152     case 0:
4153       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4154       break;
4155     case 1:
4156       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4157       if (!m->caller_sensitive()) {
4158 #ifndef PRODUCT
4159         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4160           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4161         }
4162 #endif
4163         return false;  // bail-out; let JVM_GetCallerClass do the work
4164       }
4165       break;
4166     default:
4167       if (!m->is_ignored_by_security_stack_walk()) {
4168         // We have reached the desired frame; return the holder class.
4169         // Acquire method holder as java.lang.Class and push as constant.
4170         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4171         ciInstance* caller_mirror = caller_klass->java_mirror();
4172         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4173 
4174 #ifndef PRODUCT
4175         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4176           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4177           tty->print_cr("  JVM state at this point:");
4178           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4179             ciMethod* m = jvms()->of_depth(i)->method();
4180             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4181           }
4182         }
4183 #endif
4184         return true;
4185       }
4186       break;
4187     }
4188   }
4189 
4190 #ifndef PRODUCT
4191   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4192     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4193     tty->print_cr("  JVM state at this point:");
4194     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4195       ciMethod* m = jvms()->of_depth(i)->method();
4196       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4197     }
4198   }
4199 #endif
4200 
4201   return false;  // bail-out; let JVM_GetCallerClass do the work
4202 }
4203 
4204 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4205   Node* arg = argument(0);
4206   Node* result;
4207 
4208   switch (id) {
4209   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4210   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4211   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4212   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4213 
4214   case vmIntrinsics::_doubleToLongBits: {
4215     // two paths (plus control) merge in a wood
4216     RegionNode *r = new (C) RegionNode(3);
4217     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4218 
4219     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4220     // Build the boolean node
4221     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4222 
4223     // Branch either way.
4224     // NaN case is less traveled, which makes all the difference.
4225     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4226     Node *opt_isnan = _gvn.transform(ifisnan);
4227     assert( opt_isnan->is_If(), "Expect an IfNode");
4228     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4229     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4230 
4231     set_control(iftrue);
4232 
4233     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4234     Node *slow_result = longcon(nan_bits); // return NaN
4235     phi->init_req(1, _gvn.transform( slow_result ));
4236     r->init_req(1, iftrue);
4237 
4238     // Else fall through
4239     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4240     set_control(iffalse);
4241 
4242     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4243     r->init_req(2, iffalse);
4244 
4245     // Post merge
4246     set_control(_gvn.transform(r));
4247     record_for_igvn(r);
4248 
4249     C->set_has_split_ifs(true); // Has chance for split-if optimization
4250     result = phi;
4251     assert(result->bottom_type()->isa_long(), "must be");
4252     break;
4253   }
4254 
4255   case vmIntrinsics::_floatToIntBits: {
4256     // two paths (plus control) merge in a wood
4257     RegionNode *r = new (C) RegionNode(3);
4258     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4259 
4260     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4261     // Build the boolean node
4262     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4263 
4264     // Branch either way.
4265     // NaN case is less traveled, which makes all the difference.
4266     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4267     Node *opt_isnan = _gvn.transform(ifisnan);
4268     assert( opt_isnan->is_If(), "Expect an IfNode");
4269     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4270     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4271 
4272     set_control(iftrue);
4273 
4274     static const jint nan_bits = 0x7fc00000;
4275     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4276     phi->init_req(1, _gvn.transform( slow_result ));
4277     r->init_req(1, iftrue);
4278 
4279     // Else fall through
4280     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4281     set_control(iffalse);
4282 
4283     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4284     r->init_req(2, iffalse);
4285 
4286     // Post merge
4287     set_control(_gvn.transform(r));
4288     record_for_igvn(r);
4289 
4290     C->set_has_split_ifs(true); // Has chance for split-if optimization
4291     result = phi;
4292     assert(result->bottom_type()->isa_int(), "must be");
4293     break;
4294   }
4295 
4296   default:
4297     fatal_unexpected_iid(id);
4298     break;
4299   }
4300   set_result(_gvn.transform(result));
4301   return true;
4302 }
4303 
4304 #ifdef _LP64
4305 #define XTOP ,top() /*additional argument*/
4306 #else  //_LP64
4307 #define XTOP        /*no additional argument*/
4308 #endif //_LP64
4309 
4310 //----------------------inline_unsafe_copyMemory-------------------------
4311 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4312 bool LibraryCallKit::inline_unsafe_copyMemory() {
4313   if (callee()->is_static())  return false;  // caller must have the capability!
4314   null_check_receiver();  // null-check receiver
4315   if (stopped())  return true;
4316 
4317   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4318 
4319   Node* src_ptr =         argument(1);   // type: oop
4320   Node* src_off = ConvL2X(argument(2));  // type: long
4321   Node* dst_ptr =         argument(4);   // type: oop
4322   Node* dst_off = ConvL2X(argument(5));  // type: long
4323   Node* size    = ConvL2X(argument(7));  // type: long
4324 
4325   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4326          "fieldOffset must be byte-scaled");
4327 
4328   Node* src = make_unsafe_address(src_ptr, src_off);
4329   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4330 
4331   // Conservatively insert a memory barrier on all memory slices.
4332   // Do not let writes of the copy source or destination float below the copy.
4333   insert_mem_bar(Op_MemBarCPUOrder);
4334 
4335   // Call it.  Note that the length argument is not scaled.
4336   make_runtime_call(RC_LEAF|RC_NO_FP,
4337                     OptoRuntime::fast_arraycopy_Type(),
4338                     StubRoutines::unsafe_arraycopy(),
4339                     "unsafe_arraycopy",
4340                     TypeRawPtr::BOTTOM,
4341                     src, dst, size XTOP);
4342 
4343   // Do not let reads of the copy destination float above the copy.
4344   insert_mem_bar(Op_MemBarCPUOrder);
4345 
4346   return true;
4347 }
4348 
4349 //------------------------clone_coping-----------------------------------
4350 // Helper function for inline_native_clone.
4351 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4352   assert(obj_size != NULL, "");
4353   Node* raw_obj = alloc_obj->in(1);
4354   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4355 
4356   AllocateNode* alloc = NULL;
4357   if (ReduceBulkZeroing) {
4358     // We will be completely responsible for initializing this object -
4359     // mark Initialize node as complete.
4360     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4361     // The object was just allocated - there should be no any stores!
4362     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4363     // Mark as complete_with_arraycopy so that on AllocateNode
4364     // expansion, we know this AllocateNode is initialized by an array
4365     // copy and a StoreStore barrier exists after the array copy.
4366     alloc->initialization()->set_complete_with_arraycopy();
4367   }
4368 
4369   // Copy the fastest available way.
4370   // TODO: generate fields copies for small objects instead.
4371   Node* src  = obj;
4372   Node* dest = alloc_obj;
4373   Node* size = _gvn.transform(obj_size);
4374 
4375   // Exclude the header but include array length to copy by 8 bytes words.
4376   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4377   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4378                             instanceOopDesc::base_offset_in_bytes();
4379   // base_off:
4380   // 8  - 32-bit VM
4381   // 12 - 64-bit VM, compressed klass
4382   // 16 - 64-bit VM, normal klass
4383   if (base_off % BytesPerLong != 0) {
4384     assert(UseCompressedClassPointers, "");
4385     if (is_array) {
4386       // Exclude length to copy by 8 bytes words.
4387       base_off += sizeof(int);
4388     } else {
4389       // Include klass to copy by 8 bytes words.
4390       base_off = instanceOopDesc::klass_offset_in_bytes();
4391     }
4392     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4393   }
4394   src  = basic_plus_adr(src,  base_off);
4395   dest = basic_plus_adr(dest, base_off);
4396 
4397   // Compute the length also, if needed:
4398   Node* countx = size;
4399   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4400   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4401 
4402   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4403   bool disjoint_bases = true;
4404   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4405                                src, NULL, dest, NULL, countx,
4406                                /*dest_uninitialized*/true);
4407 
4408   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4409   if (card_mark) {
4410     assert(!is_array, "");
4411     // Put in store barrier for any and all oops we are sticking
4412     // into this object.  (We could avoid this if we could prove
4413     // that the object type contains no oop fields at all.)
4414     Node* no_particular_value = NULL;
4415     Node* no_particular_field = NULL;
4416     int raw_adr_idx = Compile::AliasIdxRaw;
4417     post_barrier(control(),
4418                  memory(raw_adr_type),
4419                  alloc_obj,
4420                  no_particular_field,
4421                  raw_adr_idx,
4422                  no_particular_value,
4423                  T_OBJECT,
4424                  false);
4425   }
4426 
4427   // Do not let reads from the cloned object float above the arraycopy.
4428   if (alloc != NULL) {
4429     // Do not let stores that initialize this object be reordered with
4430     // a subsequent store that would make this object accessible by
4431     // other threads.
4432     // Record what AllocateNode this StoreStore protects so that
4433     // escape analysis can go from the MemBarStoreStoreNode to the
4434     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4435     // based on the escape status of the AllocateNode.
4436     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4437   } else {
4438     insert_mem_bar(Op_MemBarCPUOrder);
4439   }
4440 }
4441 
4442 //------------------------inline_native_clone----------------------------
4443 // protected native Object java.lang.Object.clone();
4444 //
4445 // Here are the simple edge cases:
4446 //  null receiver => normal trap
4447 //  virtual and clone was overridden => slow path to out-of-line clone
4448 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4449 //
4450 // The general case has two steps, allocation and copying.
4451 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4452 //
4453 // Copying also has two cases, oop arrays and everything else.
4454 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4455 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4456 //
4457 // These steps fold up nicely if and when the cloned object's klass
4458 // can be sharply typed as an object array, a type array, or an instance.
4459 //
4460 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4461   PhiNode* result_val;
4462 
4463   // Set the reexecute bit for the interpreter to reexecute
4464   // the bytecode that invokes Object.clone if deoptimization happens.
4465   { PreserveReexecuteState preexecs(this);
4466     jvms()->set_should_reexecute(true);
4467 
4468     Node* obj = null_check_receiver();
4469     if (stopped())  return true;
4470 
4471     Node* obj_klass = load_object_klass(obj);
4472     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4473     const TypeOopPtr*   toop   = ((tklass != NULL)
4474                                 ? tklass->as_instance_type()
4475                                 : TypeInstPtr::NOTNULL);
4476 
4477     // Conservatively insert a memory barrier on all memory slices.
4478     // Do not let writes into the original float below the clone.
4479     insert_mem_bar(Op_MemBarCPUOrder);
4480 
4481     // paths into result_reg:
4482     enum {
4483       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4484       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4485       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4486       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4487       PATH_LIMIT
4488     };
4489     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4490     result_val             = new(C) PhiNode(result_reg,
4491                                             TypeInstPtr::NOTNULL);
4492     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4493     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4494                                             TypePtr::BOTTOM);
4495     record_for_igvn(result_reg);
4496 
4497     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4498     int raw_adr_idx = Compile::AliasIdxRaw;
4499 
4500     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4501     if (array_ctl != NULL) {
4502       // It's an array.
4503       PreserveJVMState pjvms(this);
4504       set_control(array_ctl);
4505       Node* obj_length = load_array_length(obj);
4506       Node* obj_size  = NULL;
4507       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4508 
4509       if (!use_ReduceInitialCardMarks()) {
4510         // If it is an oop array, it requires very special treatment,
4511         // because card marking is required on each card of the array.
4512         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4513         if (is_obja != NULL) {
4514           PreserveJVMState pjvms2(this);
4515           set_control(is_obja);
4516           // Generate a direct call to the right arraycopy function(s).
4517           bool disjoint_bases = true;
4518           bool length_never_negative = true;
4519           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4520                              obj, intcon(0), alloc_obj, intcon(0),
4521                              obj_length,
4522                              disjoint_bases, length_never_negative);
4523           result_reg->init_req(_objArray_path, control());
4524           result_val->init_req(_objArray_path, alloc_obj);
4525           result_i_o ->set_req(_objArray_path, i_o());
4526           result_mem ->set_req(_objArray_path, reset_memory());
4527         }
4528       }
4529       // Otherwise, there are no card marks to worry about.
4530       // (We can dispense with card marks if we know the allocation
4531       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4532       //  causes the non-eden paths to take compensating steps to
4533       //  simulate a fresh allocation, so that no further
4534       //  card marks are required in compiled code to initialize
4535       //  the object.)
4536 
4537       if (!stopped()) {
4538         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4539 
4540         // Present the results of the copy.
4541         result_reg->init_req(_array_path, control());
4542         result_val->init_req(_array_path, alloc_obj);
4543         result_i_o ->set_req(_array_path, i_o());
4544         result_mem ->set_req(_array_path, reset_memory());
4545       }
4546     }
4547 
4548     // We only go to the instance fast case code if we pass a number of guards.
4549     // The paths which do not pass are accumulated in the slow_region.
4550     RegionNode* slow_region = new (C) RegionNode(1);
4551     record_for_igvn(slow_region);
4552     if (!stopped()) {
4553       // It's an instance (we did array above).  Make the slow-path tests.
4554       // If this is a virtual call, we generate a funny guard.  We grab
4555       // the vtable entry corresponding to clone() from the target object.
4556       // If the target method which we are calling happens to be the
4557       // Object clone() method, we pass the guard.  We do not need this
4558       // guard for non-virtual calls; the caller is known to be the native
4559       // Object clone().
4560       if (is_virtual) {
4561         generate_virtual_guard(obj_klass, slow_region);
4562       }
4563 
4564       // The object must be cloneable and must not have a finalizer.
4565       // Both of these conditions may be checked in a single test.
4566       // We could optimize the cloneable test further, but we don't care.
4567       generate_access_flags_guard(obj_klass,
4568                                   // Test both conditions:
4569                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4570                                   // Must be cloneable but not finalizer:
4571                                   JVM_ACC_IS_CLONEABLE,
4572                                   slow_region);
4573     }
4574 
4575     if (!stopped()) {
4576       // It's an instance, and it passed the slow-path tests.
4577       PreserveJVMState pjvms(this);
4578       Node* obj_size  = NULL;
4579       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4580 
4581       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4582 
4583       // Present the results of the slow call.
4584       result_reg->init_req(_instance_path, control());
4585       result_val->init_req(_instance_path, alloc_obj);
4586       result_i_o ->set_req(_instance_path, i_o());
4587       result_mem ->set_req(_instance_path, reset_memory());
4588     }
4589 
4590     // Generate code for the slow case.  We make a call to clone().
4591     set_control(_gvn.transform(slow_region));
4592     if (!stopped()) {
4593       PreserveJVMState pjvms(this);
4594       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4595       Node* slow_result = set_results_for_java_call(slow_call);
4596       // this->control() comes from set_results_for_java_call
4597       result_reg->init_req(_slow_path, control());
4598       result_val->init_req(_slow_path, slow_result);
4599       result_i_o ->set_req(_slow_path, i_o());
4600       result_mem ->set_req(_slow_path, reset_memory());
4601     }
4602 
4603     // Return the combined state.
4604     set_control(    _gvn.transform(result_reg));
4605     set_i_o(        _gvn.transform(result_i_o));
4606     set_all_memory( _gvn.transform(result_mem));
4607   } // original reexecute is set back here
4608 
4609   set_result(_gvn.transform(result_val));
4610   return true;
4611 }
4612 
4613 //------------------------------basictype2arraycopy----------------------------
4614 address LibraryCallKit::basictype2arraycopy(BasicType t,
4615                                             Node* src_offset,
4616                                             Node* dest_offset,
4617                                             bool disjoint_bases,
4618                                             const char* &name,
4619                                             bool dest_uninitialized) {
4620   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4621   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4622 
4623   bool aligned = false;
4624   bool disjoint = disjoint_bases;
4625 
4626   // if the offsets are the same, we can treat the memory regions as
4627   // disjoint, because either the memory regions are in different arrays,
4628   // or they are identical (which we can treat as disjoint.)  We can also
4629   // treat a copy with a destination index  less that the source index
4630   // as disjoint since a low->high copy will work correctly in this case.
4631   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4632       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4633     // both indices are constants
4634     int s_offs = src_offset_inttype->get_con();
4635     int d_offs = dest_offset_inttype->get_con();
4636     int element_size = type2aelembytes(t);
4637     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4638               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4639     if (s_offs >= d_offs)  disjoint = true;
4640   } else if (src_offset == dest_offset && src_offset != NULL) {
4641     // This can occur if the offsets are identical non-constants.
4642     disjoint = true;
4643   }
4644 
4645   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4646 }
4647 
4648 
4649 //------------------------------inline_arraycopy-----------------------
4650 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4651 //                                                      Object dest, int destPos,
4652 //                                                      int length);
4653 bool LibraryCallKit::inline_arraycopy() {
4654   // Get the arguments.
4655   Node* src         = argument(0);  // type: oop
4656   Node* src_offset  = argument(1);  // type: int
4657   Node* dest        = argument(2);  // type: oop
4658   Node* dest_offset = argument(3);  // type: int
4659   Node* length      = argument(4);  // type: int
4660 
4661   // Compile time checks.  If any of these checks cannot be verified at compile time,
4662   // we do not make a fast path for this call.  Instead, we let the call remain as it
4663   // is.  The checks we choose to mandate at compile time are:
4664   //
4665   // (1) src and dest are arrays.
4666   const Type* src_type  = src->Value(&_gvn);
4667   const Type* dest_type = dest->Value(&_gvn);
4668   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4669   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4670 
4671   // Do we have the type of src?
4672   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4673   // Do we have the type of dest?
4674   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4675   // Is the type for src from speculation?
4676   bool src_spec = false;
4677   // Is the type for dest from speculation?
4678   bool dest_spec = false;
4679 
4680   if (!has_src || !has_dest) {
4681     // We don't have sufficient type information, let's see if
4682     // speculative types can help. We need to have types for both src
4683     // and dest so that it pays off.
4684 
4685     // Do we already have or could we have type information for src
4686     bool could_have_src = has_src;
4687     // Do we already have or could we have type information for dest
4688     bool could_have_dest = has_dest;
4689 
4690     ciKlass* src_k = NULL;
4691     if (!has_src) {
4692       src_k = src_type->speculative_type();
4693       if (src_k != NULL && src_k->is_array_klass()) {
4694         could_have_src = true;
4695       }
4696     }
4697 
4698     ciKlass* dest_k = NULL;
4699     if (!has_dest) {
4700       dest_k = dest_type->speculative_type();
4701       if (dest_k != NULL && dest_k->is_array_klass()) {
4702         could_have_dest = true;
4703       }
4704     }
4705 
4706     if (could_have_src && could_have_dest) {
4707       // This is going to pay off so emit the required guards
4708       if (!has_src) {
4709         src = maybe_cast_profiled_obj(src, src_k);
4710         src_type  = _gvn.type(src);
4711         top_src  = src_type->isa_aryptr();
4712         has_src = (top_src != NULL && top_src->klass() != NULL);
4713         src_spec = true;
4714       }
4715       if (!has_dest) {
4716         dest = maybe_cast_profiled_obj(dest, dest_k);
4717         dest_type  = _gvn.type(dest);
4718         top_dest  = dest_type->isa_aryptr();
4719         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4720         dest_spec = true;
4721       }
4722     }
4723   }
4724 
4725   if (!has_src || !has_dest) {
4726     // Conservatively insert a memory barrier on all memory slices.
4727     // Do not let writes into the source float below the arraycopy.
4728     insert_mem_bar(Op_MemBarCPUOrder);
4729 
4730     // Call StubRoutines::generic_arraycopy stub.
4731     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4732                        src, src_offset, dest, dest_offset, length);
4733 
4734     // Do not let reads from the destination float above the arraycopy.
4735     // Since we cannot type the arrays, we don't know which slices
4736     // might be affected.  We could restrict this barrier only to those
4737     // memory slices which pertain to array elements--but don't bother.
4738     if (!InsertMemBarAfterArraycopy)
4739       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4740       insert_mem_bar(Op_MemBarCPUOrder);
4741     return true;
4742   }
4743 
4744   // (2) src and dest arrays must have elements of the same BasicType
4745   // Figure out the size and type of the elements we will be copying.
4746   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4747   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4748   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4749   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4750 
4751   if (src_elem != dest_elem || dest_elem == T_VOID) {
4752     // The component types are not the same or are not recognized.  Punt.
4753     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4754     generate_slow_arraycopy(TypePtr::BOTTOM,
4755                             src, src_offset, dest, dest_offset, length,
4756                             /*dest_uninitialized*/false);
4757     return true;
4758   }
4759 
4760   if (src_elem == T_OBJECT) {
4761     // If both arrays are object arrays then having the exact types
4762     // for both will remove the need for a subtype check at runtime
4763     // before the call and may make it possible to pick a faster copy
4764     // routine (without a subtype check on every element)
4765     // Do we have the exact type of src?
4766     bool could_have_src = src_spec;
4767     // Do we have the exact type of dest?
4768     bool could_have_dest = dest_spec;
4769     ciKlass* src_k = top_src->klass();
4770     ciKlass* dest_k = top_dest->klass();
4771     if (!src_spec) {
4772       src_k = src_type->speculative_type();
4773       if (src_k != NULL && src_k->is_array_klass()) {
4774           could_have_src = true;
4775       }
4776     }
4777     if (!dest_spec) {
4778       dest_k = dest_type->speculative_type();
4779       if (dest_k != NULL && dest_k->is_array_klass()) {
4780         could_have_dest = true;
4781       }
4782     }
4783     if (could_have_src && could_have_dest) {
4784       // If we can have both exact types, emit the missing guards
4785       if (could_have_src && !src_spec) {
4786         src = maybe_cast_profiled_obj(src, src_k);
4787       }
4788       if (could_have_dest && !dest_spec) {
4789         dest = maybe_cast_profiled_obj(dest, dest_k);
4790       }
4791     }
4792   }
4793 
4794   //---------------------------------------------------------------------------
4795   // We will make a fast path for this call to arraycopy.
4796 
4797   // We have the following tests left to perform:
4798   //
4799   // (3) src and dest must not be null.
4800   // (4) src_offset must not be negative.
4801   // (5) dest_offset must not be negative.
4802   // (6) length must not be negative.
4803   // (7) src_offset + length must not exceed length of src.
4804   // (8) dest_offset + length must not exceed length of dest.
4805   // (9) each element of an oop array must be assignable
4806 
4807   RegionNode* slow_region = new (C) RegionNode(1);
4808   record_for_igvn(slow_region);
4809 
4810   // (3) operands must not be null
4811   // We currently perform our null checks with the null_check routine.
4812   // This means that the null exceptions will be reported in the caller
4813   // rather than (correctly) reported inside of the native arraycopy call.
4814   // This should be corrected, given time.  We do our null check with the
4815   // stack pointer restored.
4816   src  = null_check(src,  T_ARRAY);
4817   dest = null_check(dest, T_ARRAY);
4818 
4819   // (4) src_offset must not be negative.
4820   generate_negative_guard(src_offset, slow_region);
4821 
4822   // (5) dest_offset must not be negative.
4823   generate_negative_guard(dest_offset, slow_region);
4824 
4825   // (6) length must not be negative (moved to generate_arraycopy()).
4826   // generate_negative_guard(length, slow_region);
4827 
4828   // (7) src_offset + length must not exceed length of src.
4829   generate_limit_guard(src_offset, length,
4830                        load_array_length(src),
4831                        slow_region);
4832 
4833   // (8) dest_offset + length must not exceed length of dest.
4834   generate_limit_guard(dest_offset, length,
4835                        load_array_length(dest),
4836                        slow_region);
4837 
4838   // (9) each element of an oop array must be assignable
4839   // The generate_arraycopy subroutine checks this.
4840 
4841   // This is where the memory effects are placed:
4842   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4843   generate_arraycopy(adr_type, dest_elem,
4844                      src, src_offset, dest, dest_offset, length,
4845                      false, false, slow_region);
4846 
4847   return true;
4848 }
4849 
4850 //-----------------------------generate_arraycopy----------------------
4851 // Generate an optimized call to arraycopy.
4852 // Caller must guard against non-arrays.
4853 // Caller must determine a common array basic-type for both arrays.
4854 // Caller must validate offsets against array bounds.
4855 // The slow_region has already collected guard failure paths
4856 // (such as out of bounds length or non-conformable array types).
4857 // The generated code has this shape, in general:
4858 //
4859 //     if (length == 0)  return   // via zero_path
4860 //     slowval = -1
4861 //     if (types unknown) {
4862 //       slowval = call generic copy loop
4863 //       if (slowval == 0)  return  // via checked_path
4864 //     } else if (indexes in bounds) {
4865 //       if ((is object array) && !(array type check)) {
4866 //         slowval = call checked copy loop
4867 //         if (slowval == 0)  return  // via checked_path
4868 //       } else {
4869 //         call bulk copy loop
4870 //         return  // via fast_path
4871 //       }
4872 //     }
4873 //     // adjust params for remaining work:
4874 //     if (slowval != -1) {
4875 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4876 //     }
4877 //   slow_region:
4878 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4879 //     return  // via slow_call_path
4880 //
4881 // This routine is used from several intrinsics:  System.arraycopy,
4882 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4883 //
4884 void
4885 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4886                                    BasicType basic_elem_type,
4887                                    Node* src,  Node* src_offset,
4888                                    Node* dest, Node* dest_offset,
4889                                    Node* copy_length,
4890                                    bool disjoint_bases,
4891                                    bool length_never_negative,
4892                                    RegionNode* slow_region) {
4893 
4894   if (slow_region == NULL) {
4895     slow_region = new(C) RegionNode(1);
4896     record_for_igvn(slow_region);
4897   }
4898 
4899   Node* original_dest      = dest;
4900   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4901   bool  dest_uninitialized = false;
4902 
4903   // See if this is the initialization of a newly-allocated array.
4904   // If so, we will take responsibility here for initializing it to zero.
4905   // (Note:  Because tightly_coupled_allocation performs checks on the
4906   // out-edges of the dest, we need to avoid making derived pointers
4907   // from it until we have checked its uses.)
4908   if (ReduceBulkZeroing
4909       && !ZeroTLAB              // pointless if already zeroed
4910       && basic_elem_type != T_CONFLICT // avoid corner case
4911       && !src->eqv_uncast(dest)
4912       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4913           != NULL)
4914       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4915       && alloc->maybe_set_complete(&_gvn)) {
4916     // "You break it, you buy it."
4917     InitializeNode* init = alloc->initialization();
4918     assert(init->is_complete(), "we just did this");
4919     init->set_complete_with_arraycopy();
4920     assert(dest->is_CheckCastPP(), "sanity");
4921     assert(dest->in(0)->in(0) == init, "dest pinned");
4922     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4923     // From this point on, every exit path is responsible for
4924     // initializing any non-copied parts of the object to zero.
4925     // Also, if this flag is set we make sure that arraycopy interacts properly
4926     // with G1, eliding pre-barriers. See CR 6627983.
4927     dest_uninitialized = true;
4928   } else {
4929     // No zeroing elimination here.
4930     alloc             = NULL;
4931     //original_dest   = dest;
4932     //dest_uninitialized = false;
4933   }
4934 
4935   // Results are placed here:
4936   enum { fast_path        = 1,  // normal void-returning assembly stub
4937          checked_path     = 2,  // special assembly stub with cleanup
4938          slow_call_path   = 3,  // something went wrong; call the VM
4939          zero_path        = 4,  // bypass when length of copy is zero
4940          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4941          PATH_LIMIT       = 6
4942   };
4943   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4944   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4945   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4946   record_for_igvn(result_region);
4947   _gvn.set_type_bottom(result_i_o);
4948   _gvn.set_type_bottom(result_memory);
4949   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4950 
4951   // The slow_control path:
4952   Node* slow_control;
4953   Node* slow_i_o = i_o();
4954   Node* slow_mem = memory(adr_type);
4955   debug_only(slow_control = (Node*) badAddress);
4956 
4957   // Checked control path:
4958   Node* checked_control = top();
4959   Node* checked_mem     = NULL;
4960   Node* checked_i_o     = NULL;
4961   Node* checked_value   = NULL;
4962 
4963   if (basic_elem_type == T_CONFLICT) {
4964     assert(!dest_uninitialized, "");
4965     Node* cv = generate_generic_arraycopy(adr_type,
4966                                           src, src_offset, dest, dest_offset,
4967                                           copy_length, dest_uninitialized);
4968     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4969     checked_control = control();
4970     checked_i_o     = i_o();
4971     checked_mem     = memory(adr_type);
4972     checked_value   = cv;
4973     set_control(top());         // no fast path
4974   }
4975 
4976   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4977   if (not_pos != NULL) {
4978     PreserveJVMState pjvms(this);
4979     set_control(not_pos);
4980 
4981     // (6) length must not be negative.
4982     if (!length_never_negative) {
4983       generate_negative_guard(copy_length, slow_region);
4984     }
4985 
4986     // copy_length is 0.
4987     if (!stopped() && dest_uninitialized) {
4988       Node* dest_length = alloc->in(AllocateNode::ALength);
4989       if (copy_length->eqv_uncast(dest_length)
4990           || _gvn.find_int_con(dest_length, 1) <= 0) {
4991         // There is no zeroing to do. No need for a secondary raw memory barrier.
4992       } else {
4993         // Clear the whole thing since there are no source elements to copy.
4994         generate_clear_array(adr_type, dest, basic_elem_type,
4995                              intcon(0), NULL,
4996                              alloc->in(AllocateNode::AllocSize));
4997         // Use a secondary InitializeNode as raw memory barrier.
4998         // Currently it is needed only on this path since other
4999         // paths have stub or runtime calls as raw memory barriers.
5000         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
5001                                                        Compile::AliasIdxRaw,
5002                                                        top())->as_Initialize();
5003         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
5004       }
5005     }
5006 
5007     // Present the results of the fast call.
5008     result_region->init_req(zero_path, control());
5009     result_i_o   ->init_req(zero_path, i_o());
5010     result_memory->init_req(zero_path, memory(adr_type));
5011   }
5012 
5013   if (!stopped() && dest_uninitialized) {
5014     // We have to initialize the *uncopied* part of the array to zero.
5015     // The copy destination is the slice dest[off..off+len].  The other slices
5016     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
5017     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
5018     Node* dest_length = alloc->in(AllocateNode::ALength);
5019     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
5020                                                           copy_length));
5021 
5022     // If there is a head section that needs zeroing, do it now.
5023     if (find_int_con(dest_offset, -1) != 0) {
5024       generate_clear_array(adr_type, dest, basic_elem_type,
5025                            intcon(0), dest_offset,
5026                            NULL);
5027     }
5028 
5029     // Next, perform a dynamic check on the tail length.
5030     // It is often zero, and we can win big if we prove this.
5031     // There are two wins:  Avoid generating the ClearArray
5032     // with its attendant messy index arithmetic, and upgrade
5033     // the copy to a more hardware-friendly word size of 64 bits.
5034     Node* tail_ctl = NULL;
5035     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5036       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5037       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5038       tail_ctl = generate_slow_guard(bol_lt, NULL);
5039       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5040     }
5041 
5042     // At this point, let's assume there is no tail.
5043     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5044       // There is no tail.  Try an upgrade to a 64-bit copy.
5045       bool didit = false;
5046       { PreserveJVMState pjvms(this);
5047         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5048                                          src, src_offset, dest, dest_offset,
5049                                          dest_size, dest_uninitialized);
5050         if (didit) {
5051           // Present the results of the block-copying fast call.
5052           result_region->init_req(bcopy_path, control());
5053           result_i_o   ->init_req(bcopy_path, i_o());
5054           result_memory->init_req(bcopy_path, memory(adr_type));
5055         }
5056       }
5057       if (didit)
5058         set_control(top());     // no regular fast path
5059     }
5060 
5061     // Clear the tail, if any.
5062     if (tail_ctl != NULL) {
5063       Node* notail_ctl = stopped() ? NULL : control();
5064       set_control(tail_ctl);
5065       if (notail_ctl == NULL) {
5066         generate_clear_array(adr_type, dest, basic_elem_type,
5067                              dest_tail, NULL,
5068                              dest_size);
5069       } else {
5070         // Make a local merge.
5071         Node* done_ctl = new(C) RegionNode(3);
5072         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5073         done_ctl->init_req(1, notail_ctl);
5074         done_mem->init_req(1, memory(adr_type));
5075         generate_clear_array(adr_type, dest, basic_elem_type,
5076                              dest_tail, NULL,
5077                              dest_size);
5078         done_ctl->init_req(2, control());
5079         done_mem->init_req(2, memory(adr_type));
5080         set_control( _gvn.transform(done_ctl));
5081         set_memory(  _gvn.transform(done_mem), adr_type );
5082       }
5083     }
5084   }
5085 
5086   BasicType copy_type = basic_elem_type;
5087   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5088   if (!stopped() && copy_type == T_OBJECT) {
5089     // If src and dest have compatible element types, we can copy bits.
5090     // Types S[] and D[] are compatible if D is a supertype of S.
5091     //
5092     // If they are not, we will use checked_oop_disjoint_arraycopy,
5093     // which performs a fast optimistic per-oop check, and backs off
5094     // further to JVM_ArrayCopy on the first per-oop check that fails.
5095     // (Actually, we don't move raw bits only; the GC requires card marks.)
5096 
5097     // Get the Klass* for both src and dest
5098     Node* src_klass  = load_object_klass(src);
5099     Node* dest_klass = load_object_klass(dest);
5100 
5101     // Generate the subtype check.
5102     // This might fold up statically, or then again it might not.
5103     //
5104     // Non-static example:  Copying List<String>.elements to a new String[].
5105     // The backing store for a List<String> is always an Object[],
5106     // but its elements are always type String, if the generic types
5107     // are correct at the source level.
5108     //
5109     // Test S[] against D[], not S against D, because (probably)
5110     // the secondary supertype cache is less busy for S[] than S.
5111     // This usually only matters when D is an interface.
5112     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5113     // Plug failing path into checked_oop_disjoint_arraycopy
5114     if (not_subtype_ctrl != top()) {
5115       PreserveJVMState pjvms(this);
5116       set_control(not_subtype_ctrl);
5117       // (At this point we can assume disjoint_bases, since types differ.)
5118       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5119       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5120       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5121       Node* dest_elem_klass = _gvn.transform(n1);
5122       Node* cv = generate_checkcast_arraycopy(adr_type,
5123                                               dest_elem_klass,
5124                                               src, src_offset, dest, dest_offset,
5125                                               ConvI2X(copy_length), dest_uninitialized);
5126       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5127       checked_control = control();
5128       checked_i_o     = i_o();
5129       checked_mem     = memory(adr_type);
5130       checked_value   = cv;
5131     }
5132     // At this point we know we do not need type checks on oop stores.
5133 
5134     // Let's see if we need card marks:
5135     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5136       // If we do not need card marks, copy using the jint or jlong stub.
5137       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5138       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5139              "sizes agree");
5140     }
5141   }
5142 
5143   if (!stopped()) {
5144     // Generate the fast path, if possible.
5145     PreserveJVMState pjvms(this);
5146     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5147                                  src, src_offset, dest, dest_offset,
5148                                  ConvI2X(copy_length), dest_uninitialized);
5149 
5150     // Present the results of the fast call.
5151     result_region->init_req(fast_path, control());
5152     result_i_o   ->init_req(fast_path, i_o());
5153     result_memory->init_req(fast_path, memory(adr_type));
5154   }
5155 
5156   // Here are all the slow paths up to this point, in one bundle:
5157   slow_control = top();
5158   if (slow_region != NULL)
5159     slow_control = _gvn.transform(slow_region);
5160   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5161 
5162   set_control(checked_control);
5163   if (!stopped()) {
5164     // Clean up after the checked call.
5165     // The returned value is either 0 or -1^K,
5166     // where K = number of partially transferred array elements.
5167     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5168     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5169     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5170 
5171     // If it is 0, we are done, so transfer to the end.
5172     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5173     result_region->init_req(checked_path, checks_done);
5174     result_i_o   ->init_req(checked_path, checked_i_o);
5175     result_memory->init_req(checked_path, checked_mem);
5176 
5177     // If it is not zero, merge into the slow call.
5178     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5179     RegionNode* slow_reg2 = new(C) RegionNode(3);
5180     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5181     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5182     record_for_igvn(slow_reg2);
5183     slow_reg2  ->init_req(1, slow_control);
5184     slow_i_o2  ->init_req(1, slow_i_o);
5185     slow_mem2  ->init_req(1, slow_mem);
5186     slow_reg2  ->init_req(2, control());
5187     slow_i_o2  ->init_req(2, checked_i_o);
5188     slow_mem2  ->init_req(2, checked_mem);
5189 
5190     slow_control = _gvn.transform(slow_reg2);
5191     slow_i_o     = _gvn.transform(slow_i_o2);
5192     slow_mem     = _gvn.transform(slow_mem2);
5193 
5194     if (alloc != NULL) {
5195       // We'll restart from the very beginning, after zeroing the whole thing.
5196       // This can cause double writes, but that's OK since dest is brand new.
5197       // So we ignore the low 31 bits of the value returned from the stub.
5198     } else {
5199       // We must continue the copy exactly where it failed, or else
5200       // another thread might see the wrong number of writes to dest.
5201       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5202       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5203       slow_offset->init_req(1, intcon(0));
5204       slow_offset->init_req(2, checked_offset);
5205       slow_offset  = _gvn.transform(slow_offset);
5206 
5207       // Adjust the arguments by the conditionally incoming offset.
5208       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5209       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5210       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5211 
5212       // Tweak the node variables to adjust the code produced below:
5213       src_offset  = src_off_plus;
5214       dest_offset = dest_off_plus;
5215       copy_length = length_minus;
5216     }
5217   }
5218 
5219   set_control(slow_control);
5220   if (!stopped()) {
5221     // Generate the slow path, if needed.
5222     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5223 
5224     set_memory(slow_mem, adr_type);
5225     set_i_o(slow_i_o);
5226 
5227     if (dest_uninitialized) {
5228       generate_clear_array(adr_type, dest, basic_elem_type,
5229                            intcon(0), NULL,
5230                            alloc->in(AllocateNode::AllocSize));
5231     }
5232 
5233     generate_slow_arraycopy(adr_type,
5234                             src, src_offset, dest, dest_offset,
5235                             copy_length, /*dest_uninitialized*/false);
5236 
5237     result_region->init_req(slow_call_path, control());
5238     result_i_o   ->init_req(slow_call_path, i_o());
5239     result_memory->init_req(slow_call_path, memory(adr_type));
5240   }
5241 
5242   // Remove unused edges.
5243   for (uint i = 1; i < result_region->req(); i++) {
5244     if (result_region->in(i) == NULL)
5245       result_region->init_req(i, top());
5246   }
5247 
5248   // Finished; return the combined state.
5249   set_control( _gvn.transform(result_region));
5250   set_i_o(     _gvn.transform(result_i_o)    );
5251   set_memory(  _gvn.transform(result_memory), adr_type );
5252 
5253   // The memory edges above are precise in order to model effects around
5254   // array copies accurately to allow value numbering of field loads around
5255   // arraycopy.  Such field loads, both before and after, are common in Java
5256   // collections and similar classes involving header/array data structures.
5257   //
5258   // But with low number of register or when some registers are used or killed
5259   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5260   // The next memory barrier is added to avoid it. If the arraycopy can be
5261   // optimized away (which it can, sometimes) then we can manually remove
5262   // the membar also.
5263   //
5264   // Do not let reads from the cloned object float above the arraycopy.
5265   if (alloc != NULL) {
5266     // Do not let stores that initialize this object be reordered with
5267     // a subsequent store that would make this object accessible by
5268     // other threads.
5269     // Record what AllocateNode this StoreStore protects so that
5270     // escape analysis can go from the MemBarStoreStoreNode to the
5271     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5272     // based on the escape status of the AllocateNode.
5273     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5274   } else if (InsertMemBarAfterArraycopy)
5275     insert_mem_bar(Op_MemBarCPUOrder);
5276 }
5277 
5278 
5279 // Helper function which determines if an arraycopy immediately follows
5280 // an allocation, with no intervening tests or other escapes for the object.
5281 AllocateArrayNode*
5282 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5283                                            RegionNode* slow_region) {
5284   if (stopped())             return NULL;  // no fast path
5285   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5286 
5287   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5288   if (alloc == NULL)  return NULL;
5289 
5290   Node* rawmem = memory(Compile::AliasIdxRaw);
5291   // Is the allocation's memory state untouched?
5292   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5293     // Bail out if there have been raw-memory effects since the allocation.
5294     // (Example:  There might have been a call or safepoint.)
5295     return NULL;
5296   }
5297   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5298   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5299     return NULL;
5300   }
5301 
5302   // There must be no unexpected observers of this allocation.
5303   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5304     Node* obs = ptr->fast_out(i);
5305     if (obs != this->map()) {
5306       return NULL;
5307     }
5308   }
5309 
5310   // This arraycopy must unconditionally follow the allocation of the ptr.
5311   Node* alloc_ctl = ptr->in(0);
5312   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5313 
5314   Node* ctl = control();
5315   while (ctl != alloc_ctl) {
5316     // There may be guards which feed into the slow_region.
5317     // Any other control flow means that we might not get a chance
5318     // to finish initializing the allocated object.
5319     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5320       IfNode* iff = ctl->in(0)->as_If();
5321       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5322       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5323       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5324         ctl = iff->in(0);       // This test feeds the known slow_region.
5325         continue;
5326       }
5327       // One more try:  Various low-level checks bottom out in
5328       // uncommon traps.  If the debug-info of the trap omits
5329       // any reference to the allocation, as we've already
5330       // observed, then there can be no objection to the trap.
5331       bool found_trap = false;
5332       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5333         Node* obs = not_ctl->fast_out(j);
5334         if (obs->in(0) == not_ctl && obs->is_Call() &&
5335             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5336           found_trap = true; break;
5337         }
5338       }
5339       if (found_trap) {
5340         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5341         continue;
5342       }
5343     }
5344     return NULL;
5345   }
5346 
5347   // If we get this far, we have an allocation which immediately
5348   // precedes the arraycopy, and we can take over zeroing the new object.
5349   // The arraycopy will finish the initialization, and provide
5350   // a new control state to which we will anchor the destination pointer.
5351 
5352   return alloc;
5353 }
5354 
5355 // Helper for initialization of arrays, creating a ClearArray.
5356 // It writes zero bits in [start..end), within the body of an array object.
5357 // The memory effects are all chained onto the 'adr_type' alias category.
5358 //
5359 // Since the object is otherwise uninitialized, we are free
5360 // to put a little "slop" around the edges of the cleared area,
5361 // as long as it does not go back into the array's header,
5362 // or beyond the array end within the heap.
5363 //
5364 // The lower edge can be rounded down to the nearest jint and the
5365 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5366 //
5367 // Arguments:
5368 //   adr_type           memory slice where writes are generated
5369 //   dest               oop of the destination array
5370 //   basic_elem_type    element type of the destination
5371 //   slice_idx          array index of first element to store
5372 //   slice_len          number of elements to store (or NULL)
5373 //   dest_size          total size in bytes of the array object
5374 //
5375 // Exactly one of slice_len or dest_size must be non-NULL.
5376 // If dest_size is non-NULL, zeroing extends to the end of the object.
5377 // If slice_len is non-NULL, the slice_idx value must be a constant.
5378 void
5379 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5380                                      Node* dest,
5381                                      BasicType basic_elem_type,
5382                                      Node* slice_idx,
5383                                      Node* slice_len,
5384                                      Node* dest_size) {
5385   // one or the other but not both of slice_len and dest_size:
5386   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5387   if (slice_len == NULL)  slice_len = top();
5388   if (dest_size == NULL)  dest_size = top();
5389 
5390   // operate on this memory slice:
5391   Node* mem = memory(adr_type); // memory slice to operate on
5392 
5393   // scaling and rounding of indexes:
5394   int scale = exact_log2(type2aelembytes(basic_elem_type));
5395   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5396   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5397   int bump_bit  = (-1 << scale) & BytesPerInt;
5398 
5399   // determine constant starts and ends
5400   const intptr_t BIG_NEG = -128;
5401   assert(BIG_NEG + 2*abase < 0, "neg enough");
5402   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5403   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5404   if (slice_len_con == 0) {
5405     return;                     // nothing to do here
5406   }
5407   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5408   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5409   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5410     assert(end_con < 0, "not two cons");
5411     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5412                        BytesPerLong);
5413   }
5414 
5415   if (start_con >= 0 && end_con >= 0) {
5416     // Constant start and end.  Simple.
5417     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5418                                        start_con, end_con, &_gvn);
5419   } else if (start_con >= 0 && dest_size != top()) {
5420     // Constant start, pre-rounded end after the tail of the array.
5421     Node* end = dest_size;
5422     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5423                                        start_con, end, &_gvn);
5424   } else if (start_con >= 0 && slice_len != top()) {
5425     // Constant start, non-constant end.  End needs rounding up.
5426     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5427     intptr_t end_base  = abase + (slice_idx_con << scale);
5428     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5429     Node*    end       = ConvI2X(slice_len);
5430     if (scale != 0)
5431       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5432     end_base += end_round;
5433     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5434     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5435     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5436                                        start_con, end, &_gvn);
5437   } else if (start_con < 0 && dest_size != top()) {
5438     // Non-constant start, pre-rounded end after the tail of the array.
5439     // This is almost certainly a "round-to-end" operation.
5440     Node* start = slice_idx;
5441     start = ConvI2X(start);
5442     if (scale != 0)
5443       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5444     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5445     if ((bump_bit | clear_low) != 0) {
5446       int to_clear = (bump_bit | clear_low);
5447       // Align up mod 8, then store a jint zero unconditionally
5448       // just before the mod-8 boundary.
5449       if (((abase + bump_bit) & ~to_clear) - bump_bit
5450           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5451         bump_bit = 0;
5452         assert((abase & to_clear) == 0, "array base must be long-aligned");
5453       } else {
5454         // Bump 'start' up to (or past) the next jint boundary:
5455         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5456         assert((abase & clear_low) == 0, "array base must be int-aligned");
5457       }
5458       // Round bumped 'start' down to jlong boundary in body of array.
5459       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5460       if (bump_bit != 0) {
5461         // Store a zero to the immediately preceding jint:
5462         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5463         Node* p1 = basic_plus_adr(dest, x1);
5464         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5465         mem = _gvn.transform(mem);
5466       }
5467     }
5468     Node* end = dest_size; // pre-rounded
5469     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5470                                        start, end, &_gvn);
5471   } else {
5472     // Non-constant start, unrounded non-constant end.
5473     // (Nobody zeroes a random midsection of an array using this routine.)
5474     ShouldNotReachHere();       // fix caller
5475   }
5476 
5477   // Done.
5478   set_memory(mem, adr_type);
5479 }
5480 
5481 
5482 bool
5483 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5484                                          BasicType basic_elem_type,
5485                                          AllocateNode* alloc,
5486                                          Node* src,  Node* src_offset,
5487                                          Node* dest, Node* dest_offset,
5488                                          Node* dest_size, bool dest_uninitialized) {
5489   // See if there is an advantage from block transfer.
5490   int scale = exact_log2(type2aelembytes(basic_elem_type));
5491   if (scale >= LogBytesPerLong)
5492     return false;               // it is already a block transfer
5493 
5494   // Look at the alignment of the starting offsets.
5495   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5496 
5497   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5498   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5499   if (src_off_con < 0 || dest_off_con < 0)
5500     // At present, we can only understand constants.
5501     return false;
5502 
5503   intptr_t src_off  = abase + (src_off_con  << scale);
5504   intptr_t dest_off = abase + (dest_off_con << scale);
5505 
5506   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5507     // Non-aligned; too bad.
5508     // One more chance:  Pick off an initial 32-bit word.
5509     // This is a common case, since abase can be odd mod 8.
5510     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5511         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5512       Node* sptr = basic_plus_adr(src,  src_off);
5513       Node* dptr = basic_plus_adr(dest, dest_off);
5514       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5515       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5516       src_off += BytesPerInt;
5517       dest_off += BytesPerInt;
5518     } else {
5519       return false;
5520     }
5521   }
5522   assert(src_off % BytesPerLong == 0, "");
5523   assert(dest_off % BytesPerLong == 0, "");
5524 
5525   // Do this copy by giant steps.
5526   Node* sptr  = basic_plus_adr(src,  src_off);
5527   Node* dptr  = basic_plus_adr(dest, dest_off);
5528   Node* countx = dest_size;
5529   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5530   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5531 
5532   bool disjoint_bases = true;   // since alloc != NULL
5533   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5534                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5535 
5536   return true;
5537 }
5538 
5539 
5540 // Helper function; generates code for the slow case.
5541 // We make a call to a runtime method which emulates the native method,
5542 // but without the native wrapper overhead.
5543 void
5544 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5545                                         Node* src,  Node* src_offset,
5546                                         Node* dest, Node* dest_offset,
5547                                         Node* copy_length, bool dest_uninitialized) {
5548   assert(!dest_uninitialized, "Invariant");
5549   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5550                                  OptoRuntime::slow_arraycopy_Type(),
5551                                  OptoRuntime::slow_arraycopy_Java(),
5552                                  "slow_arraycopy", adr_type,
5553                                  src, src_offset, dest, dest_offset,
5554                                  copy_length);
5555 
5556   // Handle exceptions thrown by this fellow:
5557   make_slow_call_ex(call, env()->Throwable_klass(), false);
5558 }
5559 
5560 // Helper function; generates code for cases requiring runtime checks.
5561 Node*
5562 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5563                                              Node* dest_elem_klass,
5564                                              Node* src,  Node* src_offset,
5565                                              Node* dest, Node* dest_offset,
5566                                              Node* copy_length, bool dest_uninitialized) {
5567   if (stopped())  return NULL;
5568 
5569   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5570   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5571     return NULL;
5572   }
5573 
5574   // Pick out the parameters required to perform a store-check
5575   // for the target array.  This is an optimistic check.  It will
5576   // look in each non-null element's class, at the desired klass's
5577   // super_check_offset, for the desired klass.
5578   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5579   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5580   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5581   Node* check_offset = ConvI2X(_gvn.transform(n3));
5582   Node* check_value  = dest_elem_klass;
5583 
5584   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5585   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5586 
5587   // (We know the arrays are never conjoint, because their types differ.)
5588   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5589                                  OptoRuntime::checkcast_arraycopy_Type(),
5590                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5591                                  // five arguments, of which two are
5592                                  // intptr_t (jlong in LP64)
5593                                  src_start, dest_start,
5594                                  copy_length XTOP,
5595                                  check_offset XTOP,
5596                                  check_value);
5597 
5598   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5599 }
5600 
5601 
5602 // Helper function; generates code for cases requiring runtime checks.
5603 Node*
5604 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5605                                            Node* src,  Node* src_offset,
5606                                            Node* dest, Node* dest_offset,
5607                                            Node* copy_length, bool dest_uninitialized) {
5608   assert(!dest_uninitialized, "Invariant");
5609   if (stopped())  return NULL;
5610   address copyfunc_addr = StubRoutines::generic_arraycopy();
5611   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5612     return NULL;
5613   }
5614 
5615   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5616                     OptoRuntime::generic_arraycopy_Type(),
5617                     copyfunc_addr, "generic_arraycopy", adr_type,
5618                     src, src_offset, dest, dest_offset, copy_length);
5619 
5620   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5621 }
5622 
5623 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5624 void
5625 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5626                                              BasicType basic_elem_type,
5627                                              bool disjoint_bases,
5628                                              Node* src,  Node* src_offset,
5629                                              Node* dest, Node* dest_offset,
5630                                              Node* copy_length, bool dest_uninitialized) {
5631   if (stopped())  return;               // nothing to do
5632 
5633   Node* src_start  = src;
5634   Node* dest_start = dest;
5635   if (src_offset != NULL || dest_offset != NULL) {
5636     assert(src_offset != NULL && dest_offset != NULL, "");
5637     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5638     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5639   }
5640 
5641   // Figure out which arraycopy runtime method to call.
5642   const char* copyfunc_name = "arraycopy";
5643   address     copyfunc_addr =
5644       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5645                           disjoint_bases, copyfunc_name, dest_uninitialized);
5646 
5647   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5648   make_runtime_call(RC_LEAF|RC_NO_FP,
5649                     OptoRuntime::fast_arraycopy_Type(),
5650                     copyfunc_addr, copyfunc_name, adr_type,
5651                     src_start, dest_start, copy_length XTOP);
5652 }
5653 
5654 //-------------inline_encodeISOArray-----------------------------------
5655 // encode char[] to byte[] in ISO_8859_1
5656 bool LibraryCallKit::inline_encodeISOArray() {
5657   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5658   // no receiver since it is static method
5659   Node *src         = argument(0);
5660   Node *src_offset  = argument(1);
5661   Node *dst         = argument(2);
5662   Node *dst_offset  = argument(3);
5663   Node *length      = argument(4);
5664 
5665   const Type* src_type = src->Value(&_gvn);
5666   const Type* dst_type = dst->Value(&_gvn);
5667   const TypeAryPtr* top_src = src_type->isa_aryptr();
5668   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5669   if (top_src  == NULL || top_src->klass()  == NULL ||
5670       top_dest == NULL || top_dest->klass() == NULL) {
5671     // failed array check
5672     return false;
5673   }
5674 
5675   // Figure out the size and type of the elements we will be copying.
5676   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5677   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5678   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5679     return false;
5680   }
5681   Node* src_start = array_element_address(src, src_offset, src_elem);
5682   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5683   // 'src_start' points to src array + scaled offset
5684   // 'dst_start' points to dst array + scaled offset
5685 
5686   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5687   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5688   enc = _gvn.transform(enc);
5689   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5690   set_memory(res_mem, mtype);
5691   set_result(enc);
5692   return true;
5693 }
5694 
5695 /**
5696  * Calculate CRC32 for byte.
5697  * int java.util.zip.CRC32.update(int crc, int b)
5698  */
5699 bool LibraryCallKit::inline_updateCRC32() {
5700   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5701   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5702   // no receiver since it is static method
5703   Node* crc  = argument(0); // type: int
5704   Node* b    = argument(1); // type: int
5705 
5706   /*
5707    *    int c = ~ crc;
5708    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5709    *    b = b ^ (c >>> 8);
5710    *    crc = ~b;
5711    */
5712 
5713   Node* M1 = intcon(-1);
5714   crc = _gvn.transform(new (C) XorINode(crc, M1));
5715   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5716   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5717 
5718   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5719   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5720   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5721   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5722 
5723   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5724   result = _gvn.transform(new (C) XorINode(crc, result));
5725   result = _gvn.transform(new (C) XorINode(result, M1));
5726   set_result(result);
5727   return true;
5728 }
5729 
5730 /**
5731  * Calculate CRC32 for byte[] array.
5732  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5733  */
5734 bool LibraryCallKit::inline_updateBytesCRC32() {
5735   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5736   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5737   // no receiver since it is static method
5738   Node* crc     = argument(0); // type: int
5739   Node* src     = argument(1); // type: oop
5740   Node* offset  = argument(2); // type: int
5741   Node* length  = argument(3); // type: int
5742 
5743   const Type* src_type = src->Value(&_gvn);
5744   const TypeAryPtr* top_src = src_type->isa_aryptr();
5745   if (top_src  == NULL || top_src->klass()  == NULL) {
5746     // failed array check
5747     return false;
5748   }
5749 
5750   // Figure out the size and type of the elements we will be copying.
5751   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5752   if (src_elem != T_BYTE) {
5753     return false;
5754   }
5755 
5756   // 'src_start' points to src array + scaled offset
5757   Node* src_start = array_element_address(src, offset, src_elem);
5758 
5759   // We assume that range check is done by caller.
5760   // TODO: generate range check (offset+length < src.length) in debug VM.
5761 
5762   // Call the stub.
5763   address stubAddr = StubRoutines::updateBytesCRC32();
5764   const char *stubName = "updateBytesCRC32";
5765 
5766   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5767                                  stubAddr, stubName, TypePtr::BOTTOM,
5768                                  crc, src_start, length);
5769   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5770   set_result(result);
5771   return true;
5772 }
5773 
5774 /**
5775  * Calculate CRC32 for ByteBuffer.
5776  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5777  */
5778 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5779   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5780   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5781   // no receiver since it is static method
5782   Node* crc     = argument(0); // type: int
5783   Node* src     = argument(1); // type: long
5784   Node* offset  = argument(3); // type: int
5785   Node* length  = argument(4); // type: int
5786 
5787   src = ConvL2X(src);  // adjust Java long to machine word
5788   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5789   offset = ConvI2X(offset);
5790 
5791   // 'src_start' points to src array + scaled offset
5792   Node* src_start = basic_plus_adr(top(), base, offset);
5793 
5794   // Call the stub.
5795   address stubAddr = StubRoutines::updateBytesCRC32();
5796   const char *stubName = "updateBytesCRC32";
5797 
5798   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5799                                  stubAddr, stubName, TypePtr::BOTTOM,
5800                                  crc, src_start, length);
5801   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5802   set_result(result);
5803   return true;
5804 }
5805 
5806 //----------------------------inline_reference_get----------------------------
5807 // public T java.lang.ref.Reference.get();
5808 bool LibraryCallKit::inline_reference_get() {
5809   const int referent_offset = java_lang_ref_Reference::referent_offset;
5810   guarantee(referent_offset > 0, "should have already been set");
5811 
5812   // Get the argument:
5813   Node* reference_obj = null_check_receiver();
5814   if (stopped()) return true;
5815 
5816   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5817 
5818   ciInstanceKlass* klass = env()->Object_klass();
5819   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5820 
5821   Node* no_ctrl = NULL;
5822   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5823 
5824   // Use the pre-barrier to record the value in the referent field
5825   pre_barrier(false /* do_load */,
5826               control(),
5827               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5828               result /* pre_val */,
5829               T_OBJECT);
5830 
5831   // Add memory barrier to prevent commoning reads from this field
5832   // across safepoint since GC can change its value.
5833   insert_mem_bar(Op_MemBarCPUOrder);
5834 
5835   set_result(result);
5836   return true;
5837 }
5838 
5839 
5840 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5841                                               bool is_exact=true, bool is_static=false) {
5842 
5843   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5844   assert(tinst != NULL, "obj is null");
5845   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5846   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5847 
5848   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5849                                                                           ciSymbol::make(fieldTypeString),
5850                                                                           is_static);
5851   if (field == NULL) return (Node *) NULL;
5852   assert (field != NULL, "undefined field");
5853 
5854   // Next code  copied from Parse::do_get_xxx():
5855 
5856   // Compute address and memory type.
5857   int offset  = field->offset_in_bytes();
5858   bool is_vol = field->is_volatile();
5859   ciType* field_klass = field->type();
5860   assert(field_klass->is_loaded(), "should be loaded");
5861   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5862   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5863   BasicType bt = field->layout_type();
5864 
5865   // Build the resultant type of the load
5866   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5867 
5868   // Build the load.
5869   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
5870   return loadedField;
5871 }
5872 
5873 
5874 //------------------------------inline_aescrypt_Block-----------------------
5875 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5876   address stubAddr;
5877   const char *stubName;
5878   assert(UseAES, "need AES instruction support");
5879 
5880   switch(id) {
5881   case vmIntrinsics::_aescrypt_encryptBlock:
5882     stubAddr = StubRoutines::aescrypt_encryptBlock();
5883     stubName = "aescrypt_encryptBlock";
5884     break;
5885   case vmIntrinsics::_aescrypt_decryptBlock:
5886     stubAddr = StubRoutines::aescrypt_decryptBlock();
5887     stubName = "aescrypt_decryptBlock";
5888     break;
5889   }
5890   if (stubAddr == NULL) return false;
5891 
5892   Node* aescrypt_object = argument(0);
5893   Node* src             = argument(1);
5894   Node* src_offset      = argument(2);
5895   Node* dest            = argument(3);
5896   Node* dest_offset     = argument(4);
5897 
5898   // (1) src and dest are arrays.
5899   const Type* src_type = src->Value(&_gvn);
5900   const Type* dest_type = dest->Value(&_gvn);
5901   const TypeAryPtr* top_src = src_type->isa_aryptr();
5902   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5903   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5904 
5905   // for the quick and dirty code we will skip all the checks.
5906   // we are just trying to get the call to be generated.
5907   Node* src_start  = src;
5908   Node* dest_start = dest;
5909   if (src_offset != NULL || dest_offset != NULL) {
5910     assert(src_offset != NULL && dest_offset != NULL, "");
5911     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5912     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5913   }
5914 
5915   // now need to get the start of its expanded key array
5916   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5917   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5918   if (k_start == NULL) return false;
5919 
5920   if (Matcher::pass_original_key_for_aes()) {
5921     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5922     // compatibility issues between Java key expansion and SPARC crypto instructions
5923     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5924     if (original_k_start == NULL) return false;
5925 
5926     // Call the stub.
5927     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5928                       stubAddr, stubName, TypePtr::BOTTOM,
5929                       src_start, dest_start, k_start, original_k_start);
5930   } else {
5931     // Call the stub.
5932     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5933                       stubAddr, stubName, TypePtr::BOTTOM,
5934                       src_start, dest_start, k_start);
5935   }
5936 
5937   return true;
5938 }
5939 
5940 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5941 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5942   address stubAddr;
5943   const char *stubName;
5944 
5945   assert(UseAES, "need AES instruction support");
5946 
5947   switch(id) {
5948   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5949     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5950     stubName = "cipherBlockChaining_encryptAESCrypt";
5951     break;
5952   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5953     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5954     stubName = "cipherBlockChaining_decryptAESCrypt";
5955     break;
5956   }
5957   if (stubAddr == NULL) return false;
5958 
5959   Node* cipherBlockChaining_object = argument(0);
5960   Node* src                        = argument(1);
5961   Node* src_offset                 = argument(2);
5962   Node* len                        = argument(3);
5963   Node* dest                       = argument(4);
5964   Node* dest_offset                = argument(5);
5965 
5966   // (1) src and dest are arrays.
5967   const Type* src_type = src->Value(&_gvn);
5968   const Type* dest_type = dest->Value(&_gvn);
5969   const TypeAryPtr* top_src = src_type->isa_aryptr();
5970   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5971   assert (top_src  != NULL && top_src->klass()  != NULL
5972           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5973 
5974   // checks are the responsibility of the caller
5975   Node* src_start  = src;
5976   Node* dest_start = dest;
5977   if (src_offset != NULL || dest_offset != NULL) {
5978     assert(src_offset != NULL && dest_offset != NULL, "");
5979     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5980     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5981   }
5982 
5983   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5984   // (because of the predicated logic executed earlier).
5985   // so we cast it here safely.
5986   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5987 
5988   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5989   if (embeddedCipherObj == NULL) return false;
5990 
5991   // cast it to what we know it will be at runtime
5992   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
5993   assert(tinst != NULL, "CBC obj is null");
5994   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
5995   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
5996   if (!klass_AESCrypt->is_loaded()) return false;
5997 
5998   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
5999   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6000   const TypeOopPtr* xtype = aklass->as_instance_type();
6001   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
6002   aescrypt_object = _gvn.transform(aescrypt_object);
6003 
6004   // we need to get the start of the aescrypt_object's expanded key array
6005   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6006   if (k_start == NULL) return false;
6007 
6008   // similarly, get the start address of the r vector
6009   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6010   if (objRvec == NULL) return false;
6011   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6012 
6013   Node* cbcCrypt;
6014   if (Matcher::pass_original_key_for_aes()) {
6015     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6016     // compatibility issues between Java key expansion and SPARC crypto instructions
6017     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6018     if (original_k_start == NULL) return false;
6019 
6020     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6021     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6022                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6023                                  stubAddr, stubName, TypePtr::BOTTOM,
6024                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6025   } else {
6026     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6027     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6028                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6029                                  stubAddr, stubName, TypePtr::BOTTOM,
6030                                  src_start, dest_start, k_start, r_start, len);
6031   }
6032 
6033   // return cipher length (int)
6034   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
6035   set_result(retvalue);
6036   return true;
6037 }
6038 
6039 //------------------------------get_key_start_from_aescrypt_object-----------------------
6040 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6041   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6042   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6043   if (objAESCryptKey == NULL) return (Node *) NULL;
6044 
6045   // now have the array, need to get the start address of the K array
6046   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6047   return k_start;
6048 }
6049 
6050 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6051 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6052   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6053   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6054   if (objAESCryptKey == NULL) return (Node *) NULL;
6055 
6056   // now have the array, need to get the start address of the lastKey array
6057   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6058   return original_k_start;
6059 }
6060 
6061 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6062 // Return node representing slow path of predicate check.
6063 // the pseudo code we want to emulate with this predicate is:
6064 // for encryption:
6065 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6066 // for decryption:
6067 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6068 //    note cipher==plain is more conservative than the original java code but that's OK
6069 //
6070 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6071   // First, check receiver for NULL since it is virtual method.
6072   Node* objCBC = argument(0);
6073   objCBC = null_check(objCBC);
6074 
6075   if (stopped()) return NULL; // Always NULL
6076 
6077   // Load embeddedCipher field of CipherBlockChaining object.
6078   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6079 
6080   // get AESCrypt klass for instanceOf check
6081   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6082   // will have same classloader as CipherBlockChaining object
6083   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6084   assert(tinst != NULL, "CBCobj is null");
6085   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6086 
6087   // we want to do an instanceof comparison against the AESCrypt class
6088   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6089   if (!klass_AESCrypt->is_loaded()) {
6090     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6091     Node* ctrl = control();
6092     set_control(top()); // no regular fast path
6093     return ctrl;
6094   }
6095   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6096 
6097   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6098   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6099   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6100 
6101   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6102 
6103   // for encryption, we are done
6104   if (!decrypting)
6105     return instof_false;  // even if it is NULL
6106 
6107   // for decryption, we need to add a further check to avoid
6108   // taking the intrinsic path when cipher and plain are the same
6109   // see the original java code for why.
6110   RegionNode* region = new(C) RegionNode(3);
6111   region->init_req(1, instof_false);
6112   Node* src = argument(1);
6113   Node* dest = argument(4);
6114   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6115   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6116   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6117   region->init_req(2, src_dest_conjoint);
6118 
6119   record_for_igvn(region);
6120   return _gvn.transform(region);
6121 }