1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "interpreter/linkResolver.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "jvmtifiles/jvmtiEnv.hpp"
  36 #include "memory/gcLocker.inline.hpp"
  37 #include "memory/metaspaceShared.hpp"
  38 #include "memory/oopFactory.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/instanceKlass.hpp"
  41 #include "oops/objArrayOop.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/symbol.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "prims/jvmtiExport.hpp"
  46 #include "prims/jvmtiThreadState.hpp"
  47 #include "prims/privilegedStack.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/biasedLocking.hpp"
  50 #include "runtime/deoptimization.hpp"
  51 #include "runtime/fprofiler.hpp"
  52 #include "runtime/frame.inline.hpp"
  53 #include "runtime/init.hpp"
  54 #include "runtime/interfaceSupport.hpp"
  55 #include "runtime/java.hpp"
  56 #include "runtime/javaCalls.hpp"
  57 #include "runtime/jniPeriodicChecker.hpp"
  58 #include "runtime/memprofiler.hpp"
  59 #include "runtime/mutexLocker.hpp"
  60 #include "runtime/objectMonitor.hpp"
  61 #include "runtime/osThread.hpp"
  62 #include "runtime/safepoint.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/statSampler.hpp"
  65 #include "runtime/stubRoutines.hpp"
  66 #include "runtime/task.hpp"
  67 #include "runtime/thread.inline.hpp"
  68 #include "runtime/threadCritical.hpp"
  69 #include "runtime/threadLocalStorage.hpp"
  70 #include "runtime/vframe.hpp"
  71 #include "runtime/vframeArray.hpp"
  72 #include "runtime/vframe_hp.hpp"
  73 #include "runtime/vmThread.hpp"
  74 #include "runtime/vm_operations.hpp"
  75 #include "services/attachListener.hpp"
  76 #include "services/management.hpp"
  77 #include "services/memTracker.hpp"
  78 #include "services/threadService.hpp"
  79 #include "trace/tracing.hpp"
  80 #include "trace/traceMacros.hpp"
  81 #include "utilities/defaultStream.hpp"
  82 #include "utilities/dtrace.hpp"
  83 #include "utilities/events.hpp"
  84 #include "utilities/preserveException.hpp"
  85 #include "utilities/macros.hpp"
  86 #ifdef TARGET_OS_FAMILY_linux
  87 # include "os_linux.inline.hpp"
  88 #endif
  89 #ifdef TARGET_OS_FAMILY_solaris
  90 # include "os_solaris.inline.hpp"
  91 #endif
  92 #ifdef TARGET_OS_FAMILY_windows
  93 # include "os_windows.inline.hpp"
  94 #endif
  95 #ifdef TARGET_OS_FAMILY_bsd
  96 # include "os_bsd.inline.hpp"
  97 #endif
  98 #if INCLUDE_ALL_GCS
  99 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
 100 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
 101 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
 102 #endif // INCLUDE_ALL_GCS
 103 #ifdef COMPILER1
 104 #include "c1/c1_Compiler.hpp"
 105 #endif
 106 #ifdef COMPILER2
 107 #include "opto/c2compiler.hpp"
 108 #include "opto/idealGraphPrinter.hpp"
 109 #endif
 110 
 111 #ifdef DTRACE_ENABLED
 112 
 113 // Only bother with this argument setup if dtrace is available
 114 
 115 #ifndef USDT2
 116 HS_DTRACE_PROBE_DECL(hotspot, vm__init__begin);
 117 HS_DTRACE_PROBE_DECL(hotspot, vm__init__end);
 118 HS_DTRACE_PROBE_DECL5(hotspot, thread__start, char*, intptr_t,
 119   intptr_t, intptr_t, bool);
 120 HS_DTRACE_PROBE_DECL5(hotspot, thread__stop, char*, intptr_t,
 121   intptr_t, intptr_t, bool);
 122 
 123 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 124   {                                                                        \
 125     ResourceMark rm(this);                                                 \
 126     int len = 0;                                                           \
 127     const char* name = (javathread)->get_thread_name();                    \
 128     len = strlen(name);                                                    \
 129     HS_DTRACE_PROBE5(hotspot, thread__##probe,                             \
 130       name, len,                                                           \
 131       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 132       (javathread)->osthread()->thread_id(),                               \
 133       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 134   }
 135 
 136 #else /* USDT2 */
 137 
 138 #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_PROBE_START
 139 #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_PROBE_STOP
 140 
 141 #define DTRACE_THREAD_PROBE(probe, javathread)                             \
 142   {                                                                        \
 143     ResourceMark rm(this);                                                 \
 144     int len = 0;                                                           \
 145     const char* name = (javathread)->get_thread_name();                    \
 146     len = strlen(name);                                                    \
 147     HOTSPOT_THREAD_PROBE_##probe(  /* probe = start, stop */               \
 148       (char *) name, len,                                                           \
 149       java_lang_Thread::thread_id((javathread)->threadObj()),              \
 150       (uintptr_t) (javathread)->osthread()->thread_id(),                               \
 151       java_lang_Thread::is_daemon((javathread)->threadObj()));             \
 152   }
 153 
 154 #endif /* USDT2 */
 155 
 156 #else //  ndef DTRACE_ENABLED
 157 
 158 #define DTRACE_THREAD_PROBE(probe, javathread)
 159 
 160 #endif // ndef DTRACE_ENABLED
 161 
 162 
 163 // Class hierarchy
 164 // - Thread
 165 //   - VMThread
 166 //   - WatcherThread
 167 //   - ConcurrentMarkSweepThread
 168 //   - JavaThread
 169 //     - CompilerThread
 170 
 171 // ======= Thread ========
 172 // Support for forcing alignment of thread objects for biased locking
 173 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 174   if (UseBiasedLocking) {
 175     const int alignment = markOopDesc::biased_lock_alignment;
 176     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 177     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 178                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 179                                               AllocFailStrategy::RETURN_NULL);
 180     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 181     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 182            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 183            "JavaThread alignment code overflowed allocated storage");
 184     if (TraceBiasedLocking) {
 185       if (aligned_addr != real_malloc_addr)
 186         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 187                       real_malloc_addr, aligned_addr);
 188     }
 189     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 190     return aligned_addr;
 191   } else {
 192     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 193                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 194   }
 195 }
 196 
 197 void Thread::operator delete(void* p) {
 198   if (UseBiasedLocking) {
 199     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 200     FreeHeap(real_malloc_addr, mtThread);
 201   } else {
 202     FreeHeap(p, mtThread);
 203   }
 204 }
 205 
 206 
 207 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 208 // JavaThread
 209 
 210 
 211 Thread::Thread() {
 212   // stack and get_thread
 213   set_stack_base(NULL);
 214   set_stack_size(0);
 215   set_self_raw_id(0);
 216   set_lgrp_id(-1);
 217 
 218   // allocated data structures
 219   set_osthread(NULL);
 220   set_resource_area(new (mtThread)ResourceArea());
 221   DEBUG_ONLY(_current_resource_mark = NULL;)
 222   set_handle_area(new (mtThread) HandleArea(NULL));
 223   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 224   set_active_handles(NULL);
 225   set_free_handle_block(NULL);
 226   set_last_handle_mark(NULL);
 227 
 228   // This initial value ==> never claimed.
 229   _oops_do_parity = 0;
 230 
 231   // the handle mark links itself to last_handle_mark
 232   new HandleMark(this);
 233 
 234   // plain initialization
 235   debug_only(_owned_locks = NULL;)
 236   debug_only(_allow_allocation_count = 0;)
 237   NOT_PRODUCT(_allow_safepoint_count = 0;)
 238   NOT_PRODUCT(_skip_gcalot = false;)
 239   CHECK_UNHANDLED_OOPS_ONLY(_gc_locked_out_count = 0;)
 240   _jvmti_env_iteration_count = 0;
 241   set_allocated_bytes(0);
 242   _vm_operation_started_count = 0;
 243   _vm_operation_completed_count = 0;
 244   _current_pending_monitor = NULL;
 245   _current_pending_monitor_is_from_java = true;
 246   _current_waiting_monitor = NULL;
 247   _num_nested_signal = 0;
 248   omFreeList = NULL ;
 249   omFreeCount = 0 ;
 250   omFreeProvision = 32 ;
 251   omInUseList = NULL ;
 252   omInUseCount = 0 ;
 253 
 254 #ifdef ASSERT
 255   _visited_for_critical_count = false;
 256 #endif
 257 
 258   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 259   _suspend_flags = 0;
 260 
 261   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 262   _hashStateX = os::random() ;
 263   _hashStateY = 842502087 ;
 264   _hashStateZ = 0x8767 ;    // (int)(3579807591LL & 0xffff) ;
 265   _hashStateW = 273326509 ;
 266 
 267   _OnTrap   = 0 ;
 268   _schedctl = NULL ;
 269   _Stalled  = 0 ;
 270   _TypeTag  = 0x2BAD ;
 271 
 272   // Many of the following fields are effectively final - immutable
 273   // Note that nascent threads can't use the Native Monitor-Mutex
 274   // construct until the _MutexEvent is initialized ...
 275   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 276   // we might instead use a stack of ParkEvents that we could provision on-demand.
 277   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 278   // and ::Release()
 279   _ParkEvent   = ParkEvent::Allocate (this) ;
 280   _SleepEvent  = ParkEvent::Allocate (this) ;
 281   _MutexEvent  = ParkEvent::Allocate (this) ;
 282   _MuxEvent    = ParkEvent::Allocate (this) ;
 283 
 284 #ifdef CHECK_UNHANDLED_OOPS
 285   if (CheckUnhandledOops) {
 286     _unhandled_oops = new UnhandledOops(this);
 287   }
 288 #endif // CHECK_UNHANDLED_OOPS
 289 #ifdef ASSERT
 290   if (UseBiasedLocking) {
 291     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 292     assert(this == _real_malloc_address ||
 293            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 294            "bug in forced alignment of thread objects");
 295   }
 296 #endif /* ASSERT */
 297 }
 298 
 299 void Thread::initialize_thread_local_storage() {
 300   // Note: Make sure this method only calls
 301   // non-blocking operations. Otherwise, it might not work
 302   // with the thread-startup/safepoint interaction.
 303 
 304   // During Java thread startup, safepoint code should allow this
 305   // method to complete because it may need to allocate memory to
 306   // store information for the new thread.
 307 
 308   // initialize structure dependent on thread local storage
 309   ThreadLocalStorage::set_thread(this);
 310 }
 311 
 312 void Thread::record_stack_base_and_size() {
 313   set_stack_base(os::current_stack_base());
 314   set_stack_size(os::current_stack_size());
 315   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 316   // in initialize_thread(). Without the adjustment, stack size is
 317   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 318   // So far, only Solaris has real implementation of initialize_thread().
 319   //
 320   // set up any platform-specific state.
 321   os::initialize_thread(this);
 322 
 323 #if INCLUDE_NMT
 324   // record thread's native stack, stack grows downward
 325   address stack_low_addr = stack_base() - stack_size();
 326   MemTracker::record_thread_stack(stack_low_addr, stack_size(), this,
 327       CURRENT_PC);
 328 #endif // INCLUDE_NMT
 329 }
 330 
 331 
 332 Thread::~Thread() {
 333   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 334   ObjectSynchronizer::omFlush (this) ;
 335 
 336   // stack_base can be NULL if the thread is never started or exited before
 337   // record_stack_base_and_size called. Although, we would like to ensure
 338   // that all started threads do call record_stack_base_and_size(), there is
 339   // not proper way to enforce that.
 340 #if INCLUDE_NMT
 341   if (_stack_base != NULL) {
 342     address low_stack_addr = stack_base() - stack_size();
 343     MemTracker::release_thread_stack(low_stack_addr, stack_size(), this);
 344 #ifdef ASSERT
 345     set_stack_base(NULL);
 346 #endif
 347   }
 348 #endif // INCLUDE_NMT
 349 
 350   // deallocate data structures
 351   delete resource_area();
 352   // since the handle marks are using the handle area, we have to deallocated the root
 353   // handle mark before deallocating the thread's handle area,
 354   assert(last_handle_mark() != NULL, "check we have an element");
 355   delete last_handle_mark();
 356   assert(last_handle_mark() == NULL, "check we have reached the end");
 357 
 358   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 359   // We NULL out the fields for good hygiene.
 360   ParkEvent::Release (_ParkEvent)   ; _ParkEvent   = NULL ;
 361   ParkEvent::Release (_SleepEvent)  ; _SleepEvent  = NULL ;
 362   ParkEvent::Release (_MutexEvent)  ; _MutexEvent  = NULL ;
 363   ParkEvent::Release (_MuxEvent)    ; _MuxEvent    = NULL ;
 364 
 365   delete handle_area();
 366   delete metadata_handles();
 367 
 368   // osthread() can be NULL, if creation of thread failed.
 369   if (osthread() != NULL) os::free_thread(osthread());
 370 
 371   delete _SR_lock;
 372 
 373   // clear thread local storage if the Thread is deleting itself
 374   if (this == Thread::current()) {
 375     ThreadLocalStorage::set_thread(NULL);
 376   } else {
 377     // In the case where we're not the current thread, invalidate all the
 378     // caches in case some code tries to get the current thread or the
 379     // thread that was destroyed, and gets stale information.
 380     ThreadLocalStorage::invalidate_all();
 381   }
 382   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 383 }
 384 
 385 // NOTE: dummy function for assertion purpose.
 386 void Thread::run() {
 387   ShouldNotReachHere();
 388 }
 389 
 390 #ifdef ASSERT
 391 // Private method to check for dangling thread pointer
 392 void check_for_dangling_thread_pointer(Thread *thread) {
 393  assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 394          "possibility of dangling Thread pointer");
 395 }
 396 #endif
 397 
 398 
 399 #ifndef PRODUCT
 400 // Tracing method for basic thread operations
 401 void Thread::trace(const char* msg, const Thread* const thread) {
 402   if (!TraceThreadEvents) return;
 403   ResourceMark rm;
 404   ThreadCritical tc;
 405   const char *name = "non-Java thread";
 406   int prio = -1;
 407   if (thread->is_Java_thread()
 408       && !thread->is_Compiler_thread()) {
 409     // The Threads_lock must be held to get information about
 410     // this thread but may not be in some situations when
 411     // tracing  thread events.
 412     bool release_Threads_lock = false;
 413     if (!Threads_lock->owned_by_self()) {
 414       Threads_lock->lock();
 415       release_Threads_lock = true;
 416     }
 417     JavaThread* jt = (JavaThread *)thread;
 418     name = (char *)jt->get_thread_name();
 419     oop thread_oop = jt->threadObj();
 420     if (thread_oop != NULL) {
 421       prio = java_lang_Thread::priority(thread_oop);
 422     }
 423     if (release_Threads_lock) {
 424       Threads_lock->unlock();
 425     }
 426   }
 427   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 428 }
 429 #endif
 430 
 431 
 432 ThreadPriority Thread::get_priority(const Thread* const thread) {
 433   trace("get priority", thread);
 434   ThreadPriority priority;
 435   // Can return an error!
 436   (void)os::get_priority(thread, priority);
 437   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 438   return priority;
 439 }
 440 
 441 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 442   trace("set priority", thread);
 443   debug_only(check_for_dangling_thread_pointer(thread);)
 444   // Can return an error!
 445   (void)os::set_priority(thread, priority);
 446 }
 447 
 448 
 449 void Thread::start(Thread* thread) {
 450   trace("start", thread);
 451   // Start is different from resume in that its safety is guaranteed by context or
 452   // being called from a Java method synchronized on the Thread object.
 453   if (!DisableStartThread) {
 454     if (thread->is_Java_thread()) {
 455       // Initialize the thread state to RUNNABLE before starting this thread.
 456       // Can not set it after the thread started because we do not know the
 457       // exact thread state at that time. It could be in MONITOR_WAIT or
 458       // in SLEEPING or some other state.
 459       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 460                                           java_lang_Thread::RUNNABLE);
 461     }
 462     os::start_thread(thread);
 463   }
 464 }
 465 
 466 // Enqueue a VM_Operation to do the job for us - sometime later
 467 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 468   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 469   VMThread::execute(vm_stop);
 470 }
 471 
 472 
 473 //
 474 // Check if an external suspend request has completed (or has been
 475 // cancelled). Returns true if the thread is externally suspended and
 476 // false otherwise.
 477 //
 478 // The bits parameter returns information about the code path through
 479 // the routine. Useful for debugging:
 480 //
 481 // set in is_ext_suspend_completed():
 482 // 0x00000001 - routine was entered
 483 // 0x00000010 - routine return false at end
 484 // 0x00000100 - thread exited (return false)
 485 // 0x00000200 - suspend request cancelled (return false)
 486 // 0x00000400 - thread suspended (return true)
 487 // 0x00001000 - thread is in a suspend equivalent state (return true)
 488 // 0x00002000 - thread is native and walkable (return true)
 489 // 0x00004000 - thread is native_trans and walkable (needed retry)
 490 //
 491 // set in wait_for_ext_suspend_completion():
 492 // 0x00010000 - routine was entered
 493 // 0x00020000 - suspend request cancelled before loop (return false)
 494 // 0x00040000 - thread suspended before loop (return true)
 495 // 0x00080000 - suspend request cancelled in loop (return false)
 496 // 0x00100000 - thread suspended in loop (return true)
 497 // 0x00200000 - suspend not completed during retry loop (return false)
 498 //
 499 
 500 // Helper class for tracing suspend wait debug bits.
 501 //
 502 // 0x00000100 indicates that the target thread exited before it could
 503 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 504 // 0x00080000 each indicate a cancelled suspend request so they don't
 505 // count as wait failures either.
 506 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 507 
 508 class TraceSuspendDebugBits : public StackObj {
 509  private:
 510   JavaThread * jt;
 511   bool         is_wait;
 512   bool         called_by_wait;  // meaningful when !is_wait
 513   uint32_t *   bits;
 514 
 515  public:
 516   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 517                         uint32_t *_bits) {
 518     jt             = _jt;
 519     is_wait        = _is_wait;
 520     called_by_wait = _called_by_wait;
 521     bits           = _bits;
 522   }
 523 
 524   ~TraceSuspendDebugBits() {
 525     if (!is_wait) {
 526 #if 1
 527       // By default, don't trace bits for is_ext_suspend_completed() calls.
 528       // That trace is very chatty.
 529       return;
 530 #else
 531       if (!called_by_wait) {
 532         // If tracing for is_ext_suspend_completed() is enabled, then only
 533         // trace calls to it from wait_for_ext_suspend_completion()
 534         return;
 535       }
 536 #endif
 537     }
 538 
 539     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 540       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 541         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 542         ResourceMark rm;
 543 
 544         tty->print_cr(
 545             "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 546             jt->get_thread_name(), *bits);
 547 
 548         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 549       }
 550     }
 551   }
 552 };
 553 #undef DEBUG_FALSE_BITS
 554 
 555 
 556 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay, uint32_t *bits) {
 557   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 558 
 559   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 560   bool do_trans_retry;           // flag to force the retry
 561 
 562   *bits |= 0x00000001;
 563 
 564   do {
 565     do_trans_retry = false;
 566 
 567     if (is_exiting()) {
 568       // Thread is in the process of exiting. This is always checked
 569       // first to reduce the risk of dereferencing a freed JavaThread.
 570       *bits |= 0x00000100;
 571       return false;
 572     }
 573 
 574     if (!is_external_suspend()) {
 575       // Suspend request is cancelled. This is always checked before
 576       // is_ext_suspended() to reduce the risk of a rogue resume
 577       // confusing the thread that made the suspend request.
 578       *bits |= 0x00000200;
 579       return false;
 580     }
 581 
 582     if (is_ext_suspended()) {
 583       // thread is suspended
 584       *bits |= 0x00000400;
 585       return true;
 586     }
 587 
 588     // Now that we no longer do hard suspends of threads running
 589     // native code, the target thread can be changing thread state
 590     // while we are in this routine:
 591     //
 592     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 593     //
 594     // We save a copy of the thread state as observed at this moment
 595     // and make our decision about suspend completeness based on the
 596     // copy. This closes the race where the thread state is seen as
 597     // _thread_in_native_trans in the if-thread_blocked check, but is
 598     // seen as _thread_blocked in if-thread_in_native_trans check.
 599     JavaThreadState save_state = thread_state();
 600 
 601     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 602       // If the thread's state is _thread_blocked and this blocking
 603       // condition is known to be equivalent to a suspend, then we can
 604       // consider the thread to be externally suspended. This means that
 605       // the code that sets _thread_blocked has been modified to do
 606       // self-suspension if the blocking condition releases. We also
 607       // used to check for CONDVAR_WAIT here, but that is now covered by
 608       // the _thread_blocked with self-suspension check.
 609       //
 610       // Return true since we wouldn't be here unless there was still an
 611       // external suspend request.
 612       *bits |= 0x00001000;
 613       return true;
 614     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 615       // Threads running native code will self-suspend on native==>VM/Java
 616       // transitions. If its stack is walkable (should always be the case
 617       // unless this function is called before the actual java_suspend()
 618       // call), then the wait is done.
 619       *bits |= 0x00002000;
 620       return true;
 621     } else if (!called_by_wait && !did_trans_retry &&
 622                save_state == _thread_in_native_trans &&
 623                frame_anchor()->walkable()) {
 624       // The thread is transitioning from thread_in_native to another
 625       // thread state. check_safepoint_and_suspend_for_native_trans()
 626       // will force the thread to self-suspend. If it hasn't gotten
 627       // there yet we may have caught the thread in-between the native
 628       // code check above and the self-suspend. Lucky us. If we were
 629       // called by wait_for_ext_suspend_completion(), then it
 630       // will be doing the retries so we don't have to.
 631       //
 632       // Since we use the saved thread state in the if-statement above,
 633       // there is a chance that the thread has already transitioned to
 634       // _thread_blocked by the time we get here. In that case, we will
 635       // make a single unnecessary pass through the logic below. This
 636       // doesn't hurt anything since we still do the trans retry.
 637 
 638       *bits |= 0x00004000;
 639 
 640       // Once the thread leaves thread_in_native_trans for another
 641       // thread state, we break out of this retry loop. We shouldn't
 642       // need this flag to prevent us from getting back here, but
 643       // sometimes paranoia is good.
 644       did_trans_retry = true;
 645 
 646       // We wait for the thread to transition to a more usable state.
 647       for (int i = 1; i <= SuspendRetryCount; i++) {
 648         // We used to do an "os::yield_all(i)" call here with the intention
 649         // that yielding would increase on each retry. However, the parameter
 650         // is ignored on Linux which means the yield didn't scale up. Waiting
 651         // on the SR_lock below provides a much more predictable scale up for
 652         // the delay. It also provides a simple/direct point to check for any
 653         // safepoint requests from the VMThread
 654 
 655         // temporarily drops SR_lock while doing wait with safepoint check
 656         // (if we're a JavaThread - the WatcherThread can also call this)
 657         // and increase delay with each retry
 658         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 659 
 660         // check the actual thread state instead of what we saved above
 661         if (thread_state() != _thread_in_native_trans) {
 662           // the thread has transitioned to another thread state so
 663           // try all the checks (except this one) one more time.
 664           do_trans_retry = true;
 665           break;
 666         }
 667       } // end retry loop
 668 
 669 
 670     }
 671   } while (do_trans_retry);
 672 
 673   *bits |= 0x00000010;
 674   return false;
 675 }
 676 
 677 //
 678 // Wait for an external suspend request to complete (or be cancelled).
 679 // Returns true if the thread is externally suspended and false otherwise.
 680 //
 681 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 682        uint32_t *bits) {
 683   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 684                              false /* !called_by_wait */, bits);
 685 
 686   // local flag copies to minimize SR_lock hold time
 687   bool is_suspended;
 688   bool pending;
 689   uint32_t reset_bits;
 690 
 691   // set a marker so is_ext_suspend_completed() knows we are the caller
 692   *bits |= 0x00010000;
 693 
 694   // We use reset_bits to reinitialize the bits value at the top of
 695   // each retry loop. This allows the caller to make use of any
 696   // unused bits for their own marking purposes.
 697   reset_bits = *bits;
 698 
 699   {
 700     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 701     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 702                                             delay, bits);
 703     pending = is_external_suspend();
 704   }
 705   // must release SR_lock to allow suspension to complete
 706 
 707   if (!pending) {
 708     // A cancelled suspend request is the only false return from
 709     // is_ext_suspend_completed() that keeps us from entering the
 710     // retry loop.
 711     *bits |= 0x00020000;
 712     return false;
 713   }
 714 
 715   if (is_suspended) {
 716     *bits |= 0x00040000;
 717     return true;
 718   }
 719 
 720   for (int i = 1; i <= retries; i++) {
 721     *bits = reset_bits;  // reinit to only track last retry
 722 
 723     // We used to do an "os::yield_all(i)" call here with the intention
 724     // that yielding would increase on each retry. However, the parameter
 725     // is ignored on Linux which means the yield didn't scale up. Waiting
 726     // on the SR_lock below provides a much more predictable scale up for
 727     // the delay. It also provides a simple/direct point to check for any
 728     // safepoint requests from the VMThread
 729 
 730     {
 731       MutexLocker ml(SR_lock());
 732       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 733       // can also call this)  and increase delay with each retry
 734       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 735 
 736       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 737                                               delay, bits);
 738 
 739       // It is possible for the external suspend request to be cancelled
 740       // (by a resume) before the actual suspend operation is completed.
 741       // Refresh our local copy to see if we still need to wait.
 742       pending = is_external_suspend();
 743     }
 744 
 745     if (!pending) {
 746       // A cancelled suspend request is the only false return from
 747       // is_ext_suspend_completed() that keeps us from staying in the
 748       // retry loop.
 749       *bits |= 0x00080000;
 750       return false;
 751     }
 752 
 753     if (is_suspended) {
 754       *bits |= 0x00100000;
 755       return true;
 756     }
 757   } // end retry loop
 758 
 759   // thread did not suspend after all our retries
 760   *bits |= 0x00200000;
 761   return false;
 762 }
 763 
 764 #ifndef PRODUCT
 765 void JavaThread::record_jump(address target, address instr, const char* file, int line) {
 766 
 767   // This should not need to be atomic as the only way for simultaneous
 768   // updates is via interrupts. Even then this should be rare or non-existant
 769   // and we don't care that much anyway.
 770 
 771   int index = _jmp_ring_index;
 772   _jmp_ring_index = (index + 1 ) & (jump_ring_buffer_size - 1);
 773   _jmp_ring[index]._target = (intptr_t) target;
 774   _jmp_ring[index]._instruction = (intptr_t) instr;
 775   _jmp_ring[index]._file = file;
 776   _jmp_ring[index]._line = line;
 777 }
 778 #endif /* PRODUCT */
 779 
 780 // Called by flat profiler
 781 // Callers have already called wait_for_ext_suspend_completion
 782 // The assertion for that is currently too complex to put here:
 783 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 784   bool gotframe = false;
 785   // self suspension saves needed state.
 786   if (has_last_Java_frame() && _anchor.walkable()) {
 787      *_fr = pd_last_frame();
 788      gotframe = true;
 789   }
 790   return gotframe;
 791 }
 792 
 793 void Thread::interrupt(Thread* thread) {
 794   trace("interrupt", thread);
 795   debug_only(check_for_dangling_thread_pointer(thread);)
 796   os::interrupt(thread);
 797 }
 798 
 799 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 800   trace("is_interrupted", thread);
 801   debug_only(check_for_dangling_thread_pointer(thread);)
 802   // Note:  If clear_interrupted==false, this simply fetches and
 803   // returns the value of the field osthread()->interrupted().
 804   return os::is_interrupted(thread, clear_interrupted);
 805 }
 806 
 807 
 808 // GC Support
 809 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 810   jint thread_parity = _oops_do_parity;
 811   if (thread_parity != strong_roots_parity) {
 812     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 813     if (res == thread_parity) {
 814       return true;
 815     } else {
 816       guarantee(res == strong_roots_parity, "Or else what?");
 817       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 818          "Should only fail when parallel.");
 819       return false;
 820     }
 821   }
 822   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 823          "Should only fail when parallel.");
 824   return false;
 825 }
 826 
 827 void Thread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
 828   active_handles()->oops_do(f);
 829   // Do oop for ThreadShadow
 830   f->do_oop((oop*)&_pending_exception);
 831   handle_area()->oops_do(f);
 832 }
 833 
 834 void Thread::nmethods_do(CodeBlobClosure* cf) {
 835   // no nmethods in a generic thread...
 836 }
 837 
 838 void Thread::metadata_do(void f(Metadata*)) {
 839   if (metadata_handles() != NULL) {
 840     for (int i = 0; i< metadata_handles()->length(); i++) {
 841       f(metadata_handles()->at(i));
 842     }
 843   }
 844 }
 845 
 846 void Thread::print_on(outputStream* st) const {
 847   // get_priority assumes osthread initialized
 848   if (osthread() != NULL) {
 849     int os_prio;
 850     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 851       st->print("os_prio=%d ", os_prio);
 852     }
 853     st->print("tid=" INTPTR_FORMAT " ", this);
 854     osthread()->print_on(st);
 855   }
 856   debug_only(if (WizardMode) print_owned_locks_on(st);)
 857 }
 858 
 859 // Thread::print_on_error() is called by fatal error handler. Don't use
 860 // any lock or allocate memory.
 861 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 862   if      (is_VM_thread())                  st->print("VMThread");
 863   else if (is_Compiler_thread())            st->print("CompilerThread");
 864   else if (is_Java_thread())                st->print("JavaThread");
 865   else if (is_GC_task_thread())             st->print("GCTaskThread");
 866   else if (is_Watcher_thread())             st->print("WatcherThread");
 867   else if (is_ConcurrentGC_thread())        st->print("ConcurrentGCThread");
 868   else st->print("Thread");
 869 
 870   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 871             _stack_base - _stack_size, _stack_base);
 872 
 873   if (osthread()) {
 874     st->print(" [id=%d]", osthread()->thread_id());
 875   }
 876 }
 877 
 878 #ifdef ASSERT
 879 void Thread::print_owned_locks_on(outputStream* st) const {
 880   Monitor *cur = _owned_locks;
 881   if (cur == NULL) {
 882     st->print(" (no locks) ");
 883   } else {
 884     st->print_cr(" Locks owned:");
 885     while(cur) {
 886       cur->print_on(st);
 887       cur = cur->next();
 888     }
 889   }
 890 }
 891 
 892 static int ref_use_count  = 0;
 893 
 894 bool Thread::owns_locks_but_compiled_lock() const {
 895   for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 896     if (cur != Compile_lock) return true;
 897   }
 898   return false;
 899 }
 900 
 901 
 902 #endif
 903 
 904 #ifndef PRODUCT
 905 
 906 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 907 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 908 // no threads which allow_vm_block's are held
 909 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 910     // Check if current thread is allowed to block at a safepoint
 911     if (!(_allow_safepoint_count == 0))
 912       fatal("Possible safepoint reached by thread that does not allow it");
 913     if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 914       fatal("LEAF method calling lock?");
 915     }
 916 
 917 #ifdef ASSERT
 918     if (potential_vm_operation && is_Java_thread()
 919         && !Universe::is_bootstrapping()) {
 920       // Make sure we do not hold any locks that the VM thread also uses.
 921       // This could potentially lead to deadlocks
 922       for(Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 923         // Threads_lock is special, since the safepoint synchronization will not start before this is
 924         // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 925         // since it is used to transfer control between JavaThreads and the VMThread
 926         // Do not *exclude* any locks unless you are absolutly sure it is correct. Ask someone else first!
 927         if ( (cur->allow_vm_block() &&
 928               cur != Threads_lock &&
 929               cur != Compile_lock &&               // Temporary: should not be necessary when we get spearate compilation
 930               cur != VMOperationRequest_lock &&
 931               cur != VMOperationQueue_lock) ||
 932               cur->rank() == Mutex::special) {
 933           warning("Thread holding lock at safepoint that vm can block on: %s", cur->name());
 934         }
 935       }
 936     }
 937 
 938     if (GCALotAtAllSafepoints) {
 939       // We could enter a safepoint here and thus have a gc
 940       InterfaceSupport::check_gc_alot();
 941     }
 942 #endif
 943 }
 944 #endif
 945 
 946 bool Thread::is_in_stack(address adr) const {
 947   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 948   address end = os::current_stack_pointer();
 949   // Allow non Java threads to call this without stack_base
 950   if (_stack_base == NULL) return true;
 951   if (stack_base() >= adr && adr >= end) return true;
 952 
 953   return false;
 954 }
 955 
 956 
 957 bool Thread::is_in_usable_stack(address adr) const {
 958   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 959   size_t usable_stack_size = _stack_size - stack_guard_size;
 960 
 961   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 962 }
 963 
 964 
 965 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 966 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 967 // used for compilation in the future. If that change is made, the need for these methods
 968 // should be revisited, and they should be removed if possible.
 969 
 970 bool Thread::is_lock_owned(address adr) const {
 971   return on_local_stack(adr);
 972 }
 973 
 974 bool Thread::set_as_starting_thread() {
 975  // NOTE: this must be called inside the main thread.
 976   return os::create_main_thread((JavaThread*)this);
 977 }
 978 
 979 static void initialize_class(Symbol* class_name, TRAPS) {
 980   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 981   InstanceKlass::cast(klass)->initialize(CHECK);
 982 }
 983 
 984 
 985 // Creates the initial ThreadGroup
 986 static Handle create_initial_thread_group(TRAPS) {
 987   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 988   instanceKlassHandle klass (THREAD, k);
 989 
 990   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 991   {
 992     JavaValue result(T_VOID);
 993     JavaCalls::call_special(&result,
 994                             system_instance,
 995                             klass,
 996                             vmSymbols::object_initializer_name(),
 997                             vmSymbols::void_method_signature(),
 998                             CHECK_NH);
 999   }
1000   Universe::set_system_thread_group(system_instance());
1001 
1002   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
1003   {
1004     JavaValue result(T_VOID);
1005     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
1006     JavaCalls::call_special(&result,
1007                             main_instance,
1008                             klass,
1009                             vmSymbols::object_initializer_name(),
1010                             vmSymbols::threadgroup_string_void_signature(),
1011                             system_instance,
1012                             string,
1013                             CHECK_NH);
1014   }
1015   return main_instance;
1016 }
1017 
1018 // Creates the initial Thread
1019 static oop create_initial_thread(Handle thread_group, JavaThread* thread, TRAPS) {
1020   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1021   instanceKlassHandle klass (THREAD, k);
1022   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1023 
1024   java_lang_Thread::set_thread(thread_oop(), thread);
1025   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1026   thread->set_threadObj(thread_oop());
1027 
1028   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1029 
1030   JavaValue result(T_VOID);
1031   JavaCalls::call_special(&result, thread_oop,
1032                                    klass,
1033                                    vmSymbols::object_initializer_name(),
1034                                    vmSymbols::threadgroup_string_void_signature(),
1035                                    thread_group,
1036                                    string,
1037                                    CHECK_NULL);
1038   return thread_oop();
1039 }
1040 
1041 static void call_initializeSystemClass(TRAPS) {
1042   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1043   instanceKlassHandle klass (THREAD, k);
1044 
1045   JavaValue result(T_VOID);
1046   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1047                                          vmSymbols::void_method_signature(), CHECK);
1048 }
1049 
1050 char java_runtime_name[128] = "";
1051 char java_runtime_version[128] = "";
1052 
1053 // extract the JRE name from sun.misc.Version.java_runtime_name
1054 static const char* get_java_runtime_name(TRAPS) {
1055   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1056                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1057   fieldDescriptor fd;
1058   bool found = k != NULL &&
1059                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1060                                                         vmSymbols::string_signature(), &fd);
1061   if (found) {
1062     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1063     if (name_oop == NULL)
1064       return NULL;
1065     const char* name = java_lang_String::as_utf8_string(name_oop,
1066                                                         java_runtime_name,
1067                                                         sizeof(java_runtime_name));
1068     return name;
1069   } else {
1070     return NULL;
1071   }
1072 }
1073 
1074 // extract the JRE version from sun.misc.Version.java_runtime_version
1075 static const char* get_java_runtime_version(TRAPS) {
1076   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1077                                       Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1078   fieldDescriptor fd;
1079   bool found = k != NULL &&
1080                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1081                                                         vmSymbols::string_signature(), &fd);
1082   if (found) {
1083     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1084     if (name_oop == NULL)
1085       return NULL;
1086     const char* name = java_lang_String::as_utf8_string(name_oop,
1087                                                         java_runtime_version,
1088                                                         sizeof(java_runtime_version));
1089     return name;
1090   } else {
1091     return NULL;
1092   }
1093 }
1094 
1095 // General purpose hook into Java code, run once when the VM is initialized.
1096 // The Java library method itself may be changed independently from the VM.
1097 static void call_postVMInitHook(TRAPS) {
1098   Klass* k = SystemDictionary::PostVMInitHook_klass();
1099   instanceKlassHandle klass (THREAD, k);
1100   if (klass.not_null()) {
1101     JavaValue result(T_VOID);
1102     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1103                                            vmSymbols::void_method_signature(),
1104                                            CHECK);
1105   }
1106 }
1107 
1108 static void reset_vm_info_property(TRAPS) {
1109   // the vm info string
1110   ResourceMark rm(THREAD);
1111   const char *vm_info = VM_Version::vm_info_string();
1112 
1113   // java.lang.System class
1114   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1115   instanceKlassHandle klass (THREAD, k);
1116 
1117   // setProperty arguments
1118   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1119   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1120 
1121   // return value
1122   JavaValue r(T_OBJECT);
1123 
1124   // public static String setProperty(String key, String value);
1125   JavaCalls::call_static(&r,
1126                          klass,
1127                          vmSymbols::setProperty_name(),
1128                          vmSymbols::string_string_string_signature(),
1129                          key_str,
1130                          value_str,
1131                          CHECK);
1132 }
1133 
1134 
1135 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name, bool daemon, TRAPS) {
1136   assert(thread_group.not_null(), "thread group should be specified");
1137   assert(threadObj() == NULL, "should only create Java thread object once");
1138 
1139   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1140   instanceKlassHandle klass (THREAD, k);
1141   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1142 
1143   java_lang_Thread::set_thread(thread_oop(), this);
1144   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1145   set_threadObj(thread_oop());
1146 
1147   JavaValue result(T_VOID);
1148   if (thread_name != NULL) {
1149     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1150     // Thread gets assigned specified name and null target
1151     JavaCalls::call_special(&result,
1152                             thread_oop,
1153                             klass,
1154                             vmSymbols::object_initializer_name(),
1155                             vmSymbols::threadgroup_string_void_signature(),
1156                             thread_group, // Argument 1
1157                             name,         // Argument 2
1158                             THREAD);
1159   } else {
1160     // Thread gets assigned name "Thread-nnn" and null target
1161     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1162     JavaCalls::call_special(&result,
1163                             thread_oop,
1164                             klass,
1165                             vmSymbols::object_initializer_name(),
1166                             vmSymbols::threadgroup_runnable_void_signature(),
1167                             thread_group, // Argument 1
1168                             Handle(),     // Argument 2
1169                             THREAD);
1170   }
1171 
1172 
1173   if (daemon) {
1174       java_lang_Thread::set_daemon(thread_oop());
1175   }
1176 
1177   if (HAS_PENDING_EXCEPTION) {
1178     return;
1179   }
1180 
1181   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1182   Handle threadObj(this, this->threadObj());
1183 
1184   JavaCalls::call_special(&result,
1185                          thread_group,
1186                          group,
1187                          vmSymbols::add_method_name(),
1188                          vmSymbols::thread_void_signature(),
1189                          threadObj,          // Arg 1
1190                          THREAD);
1191 
1192 
1193 }
1194 
1195 // NamedThread --  non-JavaThread subclasses with multiple
1196 // uniquely named instances should derive from this.
1197 NamedThread::NamedThread() : Thread() {
1198   _name = NULL;
1199   _processed_thread = NULL;
1200 }
1201 
1202 NamedThread::~NamedThread() {
1203   if (_name != NULL) {
1204     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1205     _name = NULL;
1206   }
1207 }
1208 
1209 void NamedThread::set_name(const char* format, ...) {
1210   guarantee(_name == NULL, "Only get to set name once.");
1211   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1212   guarantee(_name != NULL, "alloc failure");
1213   va_list ap;
1214   va_start(ap, format);
1215   jio_vsnprintf(_name, max_name_len, format, ap);
1216   va_end(ap);
1217 }
1218 
1219 // ======= WatcherThread ========
1220 
1221 // The watcher thread exists to simulate timer interrupts.  It should
1222 // be replaced by an abstraction over whatever native support for
1223 // timer interrupts exists on the platform.
1224 
1225 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1226 bool WatcherThread::_startable = false;
1227 volatile bool  WatcherThread::_should_terminate = false;
1228 
1229 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1230   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1231   if (os::create_thread(this, os::watcher_thread)) {
1232     _watcher_thread = this;
1233 
1234     // Set the watcher thread to the highest OS priority which should not be
1235     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1236     // is created. The only normal thread using this priority is the reference
1237     // handler thread, which runs for very short intervals only.
1238     // If the VMThread's priority is not lower than the WatcherThread profiling
1239     // will be inaccurate.
1240     os::set_priority(this, MaxPriority);
1241     if (!DisableStartThread) {
1242       os::start_thread(this);
1243     }
1244   }
1245 }
1246 
1247 int WatcherThread::sleep() const {
1248   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1249 
1250   // remaining will be zero if there are no tasks,
1251   // causing the WatcherThread to sleep until a task is
1252   // enrolled
1253   int remaining = PeriodicTask::time_to_wait();
1254   int time_slept = 0;
1255 
1256   // we expect this to timeout - we only ever get unparked when
1257   // we should terminate or when a new task has been enrolled
1258   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1259 
1260   jlong time_before_loop = os::javaTimeNanos();
1261 
1262   for (;;) {
1263     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1264     jlong now = os::javaTimeNanos();
1265 
1266     if (remaining == 0) {
1267         // if we didn't have any tasks we could have waited for a long time
1268         // consider the time_slept zero and reset time_before_loop
1269         time_slept = 0;
1270         time_before_loop = now;
1271     } else {
1272         // need to recalulate since we might have new tasks in _tasks
1273         time_slept = (int) ((now - time_before_loop) / 1000000);
1274     }
1275 
1276     // Change to task list or spurious wakeup of some kind
1277     if (timedout || _should_terminate) {
1278         break;
1279     }
1280 
1281     remaining = PeriodicTask::time_to_wait();
1282     if (remaining == 0) {
1283         // Last task was just disenrolled so loop around and wait until
1284         // another task gets enrolled
1285         continue;
1286     }
1287 
1288     remaining -= time_slept;
1289     if (remaining <= 0)
1290       break;
1291   }
1292 
1293   return time_slept;
1294 }
1295 
1296 void WatcherThread::run() {
1297   assert(this == watcher_thread(), "just checking");
1298 
1299   this->record_stack_base_and_size();
1300   this->initialize_thread_local_storage();
1301   this->set_active_handles(JNIHandleBlock::allocate_block());
1302   while(!_should_terminate) {
1303     assert(watcher_thread() == Thread::current(),  "thread consistency check");
1304     assert(watcher_thread() == this,  "thread consistency check");
1305 
1306     // Calculate how long it'll be until the next PeriodicTask work
1307     // should be done, and sleep that amount of time.
1308     int time_waited = sleep();
1309 
1310     if (is_error_reported()) {
1311       // A fatal error has happened, the error handler(VMError::report_and_die)
1312       // should abort JVM after creating an error log file. However in some
1313       // rare cases, the error handler itself might deadlock. Here we try to
1314       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1315       //
1316       // This code is in WatcherThread because WatcherThread wakes up
1317       // periodically so the fatal error handler doesn't need to do anything;
1318       // also because the WatcherThread is less likely to crash than other
1319       // threads.
1320 
1321       for (;;) {
1322         if (!ShowMessageBoxOnError
1323          && (OnError == NULL || OnError[0] == '\0')
1324          && Arguments::abort_hook() == NULL) {
1325              os::sleep(this, 2 * 60 * 1000, false);
1326              fdStream err(defaultStream::output_fd());
1327              err.print_raw_cr("# [ timer expired, abort... ]");
1328              // skip atexit/vm_exit/vm_abort hooks
1329              os::die();
1330         }
1331 
1332         // Wake up 5 seconds later, the fatal handler may reset OnError or
1333         // ShowMessageBoxOnError when it is ready to abort.
1334         os::sleep(this, 5 * 1000, false);
1335       }
1336     }
1337 
1338     PeriodicTask::real_time_tick(time_waited);
1339   }
1340 
1341   // Signal that it is terminated
1342   {
1343     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1344     _watcher_thread = NULL;
1345     Terminator_lock->notify();
1346   }
1347 
1348   // Thread destructor usually does this..
1349   ThreadLocalStorage::set_thread(NULL);
1350 }
1351 
1352 void WatcherThread::start() {
1353   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1354 
1355   if (watcher_thread() == NULL && _startable) {
1356     _should_terminate = false;
1357     // Create the single instance of WatcherThread
1358     new WatcherThread();
1359   }
1360 }
1361 
1362 void WatcherThread::make_startable() {
1363   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1364   _startable = true;
1365 }
1366 
1367 void WatcherThread::stop() {
1368   {
1369     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1370     _should_terminate = true;
1371     OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1372 
1373     WatcherThread* watcher = watcher_thread();
1374     if (watcher != NULL)
1375       watcher->unpark();
1376   }
1377 
1378   // it is ok to take late safepoints here, if needed
1379   MutexLocker mu(Terminator_lock);
1380 
1381   while(watcher_thread() != NULL) {
1382     // This wait should make safepoint checks, wait without a timeout,
1383     // and wait as a suspend-equivalent condition.
1384     //
1385     // Note: If the FlatProfiler is running, then this thread is waiting
1386     // for the WatcherThread to terminate and the WatcherThread, via the
1387     // FlatProfiler task, is waiting for the external suspend request on
1388     // this thread to complete. wait_for_ext_suspend_completion() will
1389     // eventually timeout, but that takes time. Making this wait a
1390     // suspend-equivalent condition solves that timeout problem.
1391     //
1392     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1393                           Mutex::_as_suspend_equivalent_flag);
1394   }
1395 }
1396 
1397 void WatcherThread::unpark() {
1398   MutexLockerEx ml(PeriodicTask_lock->owned_by_self() ? NULL : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1399   PeriodicTask_lock->notify();
1400 }
1401 
1402 void WatcherThread::print_on(outputStream* st) const {
1403   st->print("\"%s\" ", name());
1404   Thread::print_on(st);
1405   st->cr();
1406 }
1407 
1408 // ======= JavaThread ========
1409 
1410 // A JavaThread is a normal Java thread
1411 
1412 void JavaThread::initialize() {
1413   // Initialize fields
1414 
1415   // Set the claimed par_id to -1 (ie not claiming any par_ids)
1416   set_claimed_par_id(-1);
1417 
1418   set_saved_exception_pc(NULL);
1419   set_threadObj(NULL);
1420   _anchor.clear();
1421   set_entry_point(NULL);
1422   set_jni_functions(jni_functions());
1423   set_callee_target(NULL);
1424   set_vm_result(NULL);
1425   set_vm_result_2(NULL);
1426   set_vframe_array_head(NULL);
1427   set_vframe_array_last(NULL);
1428   set_deferred_locals(NULL);
1429   set_deopt_mark(NULL);
1430   set_deopt_nmethod(NULL);
1431   clear_must_deopt_id();
1432   set_monitor_chunks(NULL);
1433   set_next(NULL);
1434   set_thread_state(_thread_new);
1435 #if INCLUDE_NMT
1436   set_recorder(NULL);
1437 #endif
1438   _terminated = _not_terminated;
1439   _privileged_stack_top = NULL;
1440   _array_for_gc = NULL;
1441   _suspend_equivalent = false;
1442   _in_deopt_handler = 0;
1443   _doing_unsafe_access = false;
1444   _stack_guard_state = stack_guard_unused;
1445   _exception_oop = NULL;
1446   _exception_pc  = 0;
1447   _exception_handler_pc = 0;
1448   _is_method_handle_return = 0;
1449   _jvmti_thread_state= NULL;
1450   _should_post_on_exceptions_flag = JNI_FALSE;
1451   _jvmti_get_loaded_classes_closure = NULL;
1452   _interp_only_mode    = 0;
1453   _special_runtime_exit_condition = _no_async_condition;
1454   _pending_async_exception = NULL;
1455   _thread_stat = NULL;
1456   _thread_stat = new ThreadStatistics();
1457   _blocked_on_compilation = false;
1458   _jni_active_critical = 0;
1459   _do_not_unlock_if_synchronized = false;
1460   _cached_monitor_info = NULL;
1461   _parker = Parker::Allocate(this) ;
1462 
1463 #ifndef PRODUCT
1464   _jmp_ring_index = 0;
1465   for (int ji = 0 ; ji < jump_ring_buffer_size ; ji++ ) {
1466     record_jump(NULL, NULL, NULL, 0);
1467   }
1468 #endif /* PRODUCT */
1469 
1470   set_thread_profiler(NULL);
1471   if (FlatProfiler::is_active()) {
1472     // This is where we would decide to either give each thread it's own profiler
1473     // or use one global one from FlatProfiler,
1474     // or up to some count of the number of profiled threads, etc.
1475     ThreadProfiler* pp = new ThreadProfiler();
1476     pp->engage();
1477     set_thread_profiler(pp);
1478   }
1479 
1480   // Setup safepoint state info for this thread
1481   ThreadSafepointState::create(this);
1482 
1483   debug_only(_java_call_counter = 0);
1484 
1485   // JVMTI PopFrame support
1486   _popframe_condition = popframe_inactive;
1487   _popframe_preserved_args = NULL;
1488   _popframe_preserved_args_size = 0;
1489 
1490   pd_initialize();
1491 }
1492 
1493 #if INCLUDE_ALL_GCS
1494 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1495 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1496 #endif // INCLUDE_ALL_GCS
1497 
1498 JavaThread::JavaThread(bool is_attaching_via_jni) :
1499   Thread()
1500 #if INCLUDE_ALL_GCS
1501   , _satb_mark_queue(&_satb_mark_queue_set),
1502   _dirty_card_queue(&_dirty_card_queue_set)
1503 #endif // INCLUDE_ALL_GCS
1504 {
1505   initialize();
1506   if (is_attaching_via_jni) {
1507     _jni_attach_state = _attaching_via_jni;
1508   } else {
1509     _jni_attach_state = _not_attaching_via_jni;
1510   }
1511   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1512   _safepoint_visible = false;
1513 }
1514 
1515 bool JavaThread::reguard_stack(address cur_sp) {
1516   if (_stack_guard_state != stack_guard_yellow_disabled) {
1517     return true; // Stack already guarded or guard pages not needed.
1518   }
1519 
1520   if (register_stack_overflow()) {
1521     // For those architectures which have separate register and
1522     // memory stacks, we must check the register stack to see if
1523     // it has overflowed.
1524     return false;
1525   }
1526 
1527   // Java code never executes within the yellow zone: the latter is only
1528   // there to provoke an exception during stack banging.  If java code
1529   // is executing there, either StackShadowPages should be larger, or
1530   // some exception code in c1, c2 or the interpreter isn't unwinding
1531   // when it should.
1532   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1533 
1534   enable_stack_yellow_zone();
1535   return true;
1536 }
1537 
1538 bool JavaThread::reguard_stack(void) {
1539   return reguard_stack(os::current_stack_pointer());
1540 }
1541 
1542 
1543 void JavaThread::block_if_vm_exited() {
1544   if (_terminated == _vm_exited) {
1545     // _vm_exited is set at safepoint, and Threads_lock is never released
1546     // we will block here forever
1547     Threads_lock->lock_without_safepoint_check();
1548     ShouldNotReachHere();
1549   }
1550 }
1551 
1552 
1553 // Remove this ifdef when C1 is ported to the compiler interface.
1554 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1555 
1556 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1557   Thread()
1558 #if INCLUDE_ALL_GCS
1559   , _satb_mark_queue(&_satb_mark_queue_set),
1560   _dirty_card_queue(&_dirty_card_queue_set)
1561 #endif // INCLUDE_ALL_GCS
1562 {
1563   if (TraceThreadEvents) {
1564     tty->print_cr("creating thread %p", this);
1565   }
1566   initialize();
1567   _jni_attach_state = _not_attaching_via_jni;
1568   set_entry_point(entry_point);
1569   // Create the native thread itself.
1570   // %note runtime_23
1571   os::ThreadType thr_type = os::java_thread;
1572   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1573                                                      os::java_thread;
1574   os::create_thread(this, thr_type, stack_sz);
1575   _safepoint_visible = false;
1576   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1577   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1578   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1579   // the exception consists of creating the exception object & initializing it, initialization
1580   // will leave the VM via a JavaCall and then all locks must be unlocked).
1581   //
1582   // The thread is still suspended when we reach here. Thread must be explicit started
1583   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1584   // by calling Threads:add. The reason why this is not done here, is because the thread
1585   // object must be fully initialized (take a look at JVM_Start)
1586 }
1587 
1588 JavaThread::~JavaThread() {
1589   if (TraceThreadEvents) {
1590       tty->print_cr("terminate thread %p", this);
1591   }
1592 
1593   // By now, this thread should already be invisible to safepoint,
1594   // and its per-thread recorder also collected.
1595   assert(!is_safepoint_visible(), "wrong state");
1596 #if INCLUDE_NMT
1597   assert(get_recorder() == NULL, "Already collected");
1598 #endif // INCLUDE_NMT
1599 
1600   // JSR166 -- return the parker to the free list
1601   Parker::Release(_parker);
1602   _parker = NULL ;
1603 
1604   // Free any remaining  previous UnrollBlock
1605   vframeArray* old_array = vframe_array_last();
1606 
1607   if (old_array != NULL) {
1608     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1609     old_array->set_unroll_block(NULL);
1610     delete old_info;
1611     delete old_array;
1612   }
1613 
1614   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1615   if (deferred != NULL) {
1616     // This can only happen if thread is destroyed before deoptimization occurs.
1617     assert(deferred->length() != 0, "empty array!");
1618     do {
1619       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1620       deferred->remove_at(0);
1621       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1622       delete dlv;
1623     } while (deferred->length() != 0);
1624     delete deferred;
1625   }
1626 
1627   // All Java related clean up happens in exit
1628   ThreadSafepointState::destroy(this);
1629   if (_thread_profiler != NULL) delete _thread_profiler;
1630   if (_thread_stat != NULL) delete _thread_stat;
1631 }
1632 
1633 
1634 // The first routine called by a new Java thread
1635 void JavaThread::run() {
1636   // initialize thread-local alloc buffer related fields
1637   this->initialize_tlab();
1638 
1639   // used to test validitity of stack trace backs
1640   this->record_base_of_stack_pointer();
1641 
1642   // Record real stack base and size.
1643   this->record_stack_base_and_size();
1644 
1645   // Initialize thread local storage; set before calling MutexLocker
1646   this->initialize_thread_local_storage();
1647 
1648   this->create_stack_guard_pages();
1649 
1650   this->cache_global_variables();
1651 
1652   // Thread is now sufficient initialized to be handled by the safepoint code as being
1653   // in the VM. Change thread state from _thread_new to _thread_in_vm
1654   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1655 
1656   assert(JavaThread::current() == this, "sanity check");
1657   assert(!Thread::current()->owns_locks(), "sanity check");
1658 
1659   DTRACE_THREAD_PROBE(start, this);
1660 
1661   // This operation might block. We call that after all safepoint checks for a new thread has
1662   // been completed.
1663   this->set_active_handles(JNIHandleBlock::allocate_block());
1664 
1665   if (JvmtiExport::should_post_thread_life()) {
1666     JvmtiExport::post_thread_start(this);
1667   }
1668 
1669   EventThreadStart event;
1670   if (event.should_commit()) {
1671      event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1672      event.commit();
1673   }
1674 
1675   // We call another function to do the rest so we are sure that the stack addresses used
1676   // from there will be lower than the stack base just computed
1677   thread_main_inner();
1678 
1679   // Note, thread is no longer valid at this point!
1680 }
1681 
1682 
1683 void JavaThread::thread_main_inner() {
1684   assert(JavaThread::current() == this, "sanity check");
1685   assert(this->threadObj() != NULL, "just checking");
1686 
1687   // Execute thread entry point unless this thread has a pending exception
1688   // or has been stopped before starting.
1689   // Note: Due to JVM_StopThread we can have pending exceptions already!
1690   if (!this->has_pending_exception() &&
1691       !java_lang_Thread::is_stillborn(this->threadObj())) {
1692     {
1693       ResourceMark rm(this);
1694       this->set_native_thread_name(this->get_thread_name());
1695     }
1696     HandleMark hm(this);
1697     this->entry_point()(this, this);
1698   }
1699 
1700   DTRACE_THREAD_PROBE(stop, this);
1701 
1702   this->exit(false);
1703   delete this;
1704 }
1705 
1706 
1707 static void ensure_join(JavaThread* thread) {
1708   // We do not need to grap the Threads_lock, since we are operating on ourself.
1709   Handle threadObj(thread, thread->threadObj());
1710   assert(threadObj.not_null(), "java thread object must exist");
1711   ObjectLocker lock(threadObj, thread);
1712   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1713   thread->clear_pending_exception();
1714   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1715   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1716   // Clear the native thread instance - this makes isAlive return false and allows the join()
1717   // to complete once we've done the notify_all below
1718   java_lang_Thread::set_thread(threadObj(), NULL);
1719   lock.notify_all(thread);
1720   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1721   thread->clear_pending_exception();
1722 }
1723 
1724 
1725 // For any new cleanup additions, please check to see if they need to be applied to
1726 // cleanup_failed_attach_current_thread as well.
1727 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1728   assert(this == JavaThread::current(),  "thread consistency check");
1729 
1730   HandleMark hm(this);
1731   Handle uncaught_exception(this, this->pending_exception());
1732   this->clear_pending_exception();
1733   Handle threadObj(this, this->threadObj());
1734   assert(threadObj.not_null(), "Java thread object should be created");
1735 
1736   if (get_thread_profiler() != NULL) {
1737     get_thread_profiler()->disengage();
1738     ResourceMark rm;
1739     get_thread_profiler()->print(get_thread_name());
1740   }
1741 
1742 
1743   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1744   {
1745     EXCEPTION_MARK;
1746 
1747     CLEAR_PENDING_EXCEPTION;
1748   }
1749   // FIXIT: The is_null check is only so it works better on JDK1.2 VM's. This
1750   // has to be fixed by a runtime query method
1751   if (!destroy_vm || JDK_Version::is_jdk12x_version()) {
1752     // JSR-166: change call from from ThreadGroup.uncaughtException to
1753     // java.lang.Thread.dispatchUncaughtException
1754     if (uncaught_exception.not_null()) {
1755       Handle group(this, java_lang_Thread::threadGroup(threadObj()));
1756       {
1757         EXCEPTION_MARK;
1758         // Check if the method Thread.dispatchUncaughtException() exists. If so
1759         // call it.  Otherwise we have an older library without the JSR-166 changes,
1760         // so call ThreadGroup.uncaughtException()
1761         KlassHandle recvrKlass(THREAD, threadObj->klass());
1762         CallInfo callinfo;
1763         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1764         LinkResolver::resolve_virtual_call(callinfo, threadObj, recvrKlass, thread_klass,
1765                                            vmSymbols::dispatchUncaughtException_name(),
1766                                            vmSymbols::throwable_void_signature(),
1767                                            KlassHandle(), false, false, THREAD);
1768         CLEAR_PENDING_EXCEPTION;
1769         methodHandle method = callinfo.selected_method();
1770         if (method.not_null()) {
1771           JavaValue result(T_VOID);
1772           JavaCalls::call_virtual(&result,
1773                                   threadObj, thread_klass,
1774                                   vmSymbols::dispatchUncaughtException_name(),
1775                                   vmSymbols::throwable_void_signature(),
1776                                   uncaught_exception,
1777                                   THREAD);
1778         } else {
1779           KlassHandle thread_group(THREAD, SystemDictionary::ThreadGroup_klass());
1780           JavaValue result(T_VOID);
1781           JavaCalls::call_virtual(&result,
1782                                   group, thread_group,
1783                                   vmSymbols::uncaughtException_name(),
1784                                   vmSymbols::thread_throwable_void_signature(),
1785                                   threadObj,           // Arg 1
1786                                   uncaught_exception,  // Arg 2
1787                                   THREAD);
1788         }
1789         if (HAS_PENDING_EXCEPTION) {
1790           ResourceMark rm(this);
1791           jio_fprintf(defaultStream::error_stream(),
1792                 "\nException: %s thrown from the UncaughtExceptionHandler"
1793                 " in thread \"%s\"\n",
1794                 pending_exception()->klass()->external_name(),
1795                 get_thread_name());
1796           CLEAR_PENDING_EXCEPTION;
1797         }
1798       }
1799     }
1800 
1801     // Called before the java thread exit since we want to read info
1802     // from java_lang_Thread object
1803     EventThreadEnd event;
1804     if (event.should_commit()) {
1805         event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1806         event.commit();
1807     }
1808 
1809     // Call after last event on thread
1810     EVENT_THREAD_EXIT(this);
1811 
1812     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1813     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1814     // is deprecated anyhow.
1815     { int count = 3;
1816       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1817         EXCEPTION_MARK;
1818         JavaValue result(T_VOID);
1819         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1820         JavaCalls::call_virtual(&result,
1821                               threadObj, thread_klass,
1822                               vmSymbols::exit_method_name(),
1823                               vmSymbols::void_method_signature(),
1824                               THREAD);
1825         CLEAR_PENDING_EXCEPTION;
1826       }
1827     }
1828 
1829     // notify JVMTI
1830     if (JvmtiExport::should_post_thread_life()) {
1831       JvmtiExport::post_thread_end(this);
1832     }
1833 
1834     // We have notified the agents that we are exiting, before we go on,
1835     // we must check for a pending external suspend request and honor it
1836     // in order to not surprise the thread that made the suspend request.
1837     while (true) {
1838       {
1839         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1840         if (!is_external_suspend()) {
1841           set_terminated(_thread_exiting);
1842           ThreadService::current_thread_exiting(this);
1843           break;
1844         }
1845         // Implied else:
1846         // Things get a little tricky here. We have a pending external
1847         // suspend request, but we are holding the SR_lock so we
1848         // can't just self-suspend. So we temporarily drop the lock
1849         // and then self-suspend.
1850       }
1851 
1852       ThreadBlockInVM tbivm(this);
1853       java_suspend_self();
1854 
1855       // We're done with this suspend request, but we have to loop around
1856       // and check again. Eventually we will get SR_lock without a pending
1857       // external suspend request and will be able to mark ourselves as
1858       // exiting.
1859     }
1860     // no more external suspends are allowed at this point
1861   } else {
1862     // before_exit() has already posted JVMTI THREAD_END events
1863   }
1864 
1865   // Notify waiters on thread object. This has to be done after exit() is called
1866   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1867   // group should have the destroyed bit set before waiters are notified).
1868   ensure_join(this);
1869   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1870 
1871   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1872   // held by this thread must be released.  A detach operation must only
1873   // get here if there are no Java frames on the stack.  Therefore, any
1874   // owned monitors at this point MUST be JNI-acquired monitors which are
1875   // pre-inflated and in the monitor cache.
1876   //
1877   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1878   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1879     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1880     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1881     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1882   }
1883 
1884   // These things needs to be done while we are still a Java Thread. Make sure that thread
1885   // is in a consistent state, in case GC happens
1886   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1887 
1888   if (active_handles() != NULL) {
1889     JNIHandleBlock* block = active_handles();
1890     set_active_handles(NULL);
1891     JNIHandleBlock::release_block(block);
1892   }
1893 
1894   if (free_handle_block() != NULL) {
1895     JNIHandleBlock* block = free_handle_block();
1896     set_free_handle_block(NULL);
1897     JNIHandleBlock::release_block(block);
1898   }
1899 
1900   // These have to be removed while this is still a valid thread.
1901   remove_stack_guard_pages();
1902 
1903   if (UseTLAB) {
1904     tlab().make_parsable(true);  // retire TLAB
1905   }
1906 
1907   if (JvmtiEnv::environments_might_exist()) {
1908     JvmtiExport::cleanup_thread(this);
1909   }
1910 
1911   // We must flush any deferred card marks before removing a thread from
1912   // the list of active threads.
1913   Universe::heap()->flush_deferred_store_barrier(this);
1914   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1915 
1916 #if INCLUDE_ALL_GCS
1917   // We must flush the G1-related buffers before removing a thread
1918   // from the list of active threads. We must do this after any deferred
1919   // card marks have been flushed (above) so that any entries that are
1920   // added to the thread's dirty card queue as a result are not lost.
1921   if (UseG1GC) {
1922     flush_barrier_queues();
1923   }
1924 #endif // INCLUDE_ALL_GCS
1925 
1926   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1927   Threads::remove(this);
1928 }
1929 
1930 #if INCLUDE_ALL_GCS
1931 // Flush G1-related queues.
1932 void JavaThread::flush_barrier_queues() {
1933   satb_mark_queue().flush();
1934   dirty_card_queue().flush();
1935 }
1936 
1937 void JavaThread::initialize_queues() {
1938   assert(!SafepointSynchronize::is_at_safepoint(),
1939          "we should not be at a safepoint");
1940 
1941   ObjPtrQueue& satb_queue = satb_mark_queue();
1942   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1943   // The SATB queue should have been constructed with its active
1944   // field set to false.
1945   assert(!satb_queue.is_active(), "SATB queue should not be active");
1946   assert(satb_queue.is_empty(), "SATB queue should be empty");
1947   // If we are creating the thread during a marking cycle, we should
1948   // set the active field of the SATB queue to true.
1949   if (satb_queue_set.is_active()) {
1950     satb_queue.set_active(true);
1951   }
1952 
1953   DirtyCardQueue& dirty_queue = dirty_card_queue();
1954   // The dirty card queue should have been constructed with its
1955   // active field set to true.
1956   assert(dirty_queue.is_active(), "dirty card queue should be active");
1957 }
1958 #endif // INCLUDE_ALL_GCS
1959 
1960 void JavaThread::cleanup_failed_attach_current_thread() {
1961   if (get_thread_profiler() != NULL) {
1962     get_thread_profiler()->disengage();
1963     ResourceMark rm;
1964     get_thread_profiler()->print(get_thread_name());
1965   }
1966 
1967   if (active_handles() != NULL) {
1968     JNIHandleBlock* block = active_handles();
1969     set_active_handles(NULL);
1970     JNIHandleBlock::release_block(block);
1971   }
1972 
1973   if (free_handle_block() != NULL) {
1974     JNIHandleBlock* block = free_handle_block();
1975     set_free_handle_block(NULL);
1976     JNIHandleBlock::release_block(block);
1977   }
1978 
1979   // These have to be removed while this is still a valid thread.
1980   remove_stack_guard_pages();
1981 
1982   if (UseTLAB) {
1983     tlab().make_parsable(true);  // retire TLAB, if any
1984   }
1985 
1986 #if INCLUDE_ALL_GCS
1987   if (UseG1GC) {
1988     flush_barrier_queues();
1989   }
1990 #endif // INCLUDE_ALL_GCS
1991 
1992   Threads::remove(this);
1993   delete this;
1994 }
1995 
1996 
1997 
1998 
1999 JavaThread* JavaThread::active() {
2000   Thread* thread = ThreadLocalStorage::thread();
2001   assert(thread != NULL, "just checking");
2002   if (thread->is_Java_thread()) {
2003     return (JavaThread*) thread;
2004   } else {
2005     assert(thread->is_VM_thread(), "this must be a vm thread");
2006     VM_Operation* op = ((VMThread*) thread)->vm_operation();
2007     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
2008     assert(ret->is_Java_thread(), "must be a Java thread");
2009     return ret;
2010   }
2011 }
2012 
2013 bool JavaThread::is_lock_owned(address adr) const {
2014   if (Thread::is_lock_owned(adr)) return true;
2015 
2016   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2017     if (chunk->contains(adr)) return true;
2018   }
2019 
2020   return false;
2021 }
2022 
2023 
2024 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
2025   chunk->set_next(monitor_chunks());
2026   set_monitor_chunks(chunk);
2027 }
2028 
2029 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
2030   guarantee(monitor_chunks() != NULL, "must be non empty");
2031   if (monitor_chunks() == chunk) {
2032     set_monitor_chunks(chunk->next());
2033   } else {
2034     MonitorChunk* prev = monitor_chunks();
2035     while (prev->next() != chunk) prev = prev->next();
2036     prev->set_next(chunk->next());
2037   }
2038 }
2039 
2040 // JVM support.
2041 
2042 // Note: this function shouldn't block if it's called in
2043 // _thread_in_native_trans state (such as from
2044 // check_special_condition_for_native_trans()).
2045 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2046 
2047   if (has_last_Java_frame() && has_async_condition()) {
2048     // If we are at a polling page safepoint (not a poll return)
2049     // then we must defer async exception because live registers
2050     // will be clobbered by the exception path. Poll return is
2051     // ok because the call we a returning from already collides
2052     // with exception handling registers and so there is no issue.
2053     // (The exception handling path kills call result registers but
2054     //  this is ok since the exception kills the result anyway).
2055 
2056     if (is_at_poll_safepoint()) {
2057       // if the code we are returning to has deoptimized we must defer
2058       // the exception otherwise live registers get clobbered on the
2059       // exception path before deoptimization is able to retrieve them.
2060       //
2061       RegisterMap map(this, false);
2062       frame caller_fr = last_frame().sender(&map);
2063       assert(caller_fr.is_compiled_frame(), "what?");
2064       if (caller_fr.is_deoptimized_frame()) {
2065         if (TraceExceptions) {
2066           ResourceMark rm;
2067           tty->print_cr("deferred async exception at compiled safepoint");
2068         }
2069         return;
2070       }
2071     }
2072   }
2073 
2074   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2075   if (condition == _no_async_condition) {
2076     // Conditions have changed since has_special_runtime_exit_condition()
2077     // was called:
2078     // - if we were here only because of an external suspend request,
2079     //   then that was taken care of above (or cancelled) so we are done
2080     // - if we were here because of another async request, then it has
2081     //   been cleared between the has_special_runtime_exit_condition()
2082     //   and now so again we are done
2083     return;
2084   }
2085 
2086   // Check for pending async. exception
2087   if (_pending_async_exception != NULL) {
2088     // Only overwrite an already pending exception, if it is not a threadDeath.
2089     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2090 
2091       // We cannot call Exceptions::_throw(...) here because we cannot block
2092       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2093 
2094       if (TraceExceptions) {
2095         ResourceMark rm;
2096         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2097         if (has_last_Java_frame() ) {
2098           frame f = last_frame();
2099           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2100         }
2101         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2102       }
2103       _pending_async_exception = NULL;
2104       clear_has_async_exception();
2105     }
2106   }
2107 
2108   if (check_unsafe_error &&
2109       condition == _async_unsafe_access_error && !has_pending_exception()) {
2110     condition = _no_async_condition;  // done
2111     switch (thread_state()) {
2112     case _thread_in_vm:
2113       {
2114         JavaThread* THREAD = this;
2115         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2116       }
2117     case _thread_in_native:
2118       {
2119         ThreadInVMfromNative tiv(this);
2120         JavaThread* THREAD = this;
2121         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2122       }
2123     case _thread_in_Java:
2124       {
2125         ThreadInVMfromJava tiv(this);
2126         JavaThread* THREAD = this;
2127         THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2128       }
2129     default:
2130       ShouldNotReachHere();
2131     }
2132   }
2133 
2134   assert(condition == _no_async_condition || has_pending_exception() ||
2135          (!check_unsafe_error && condition == _async_unsafe_access_error),
2136          "must have handled the async condition, if no exception");
2137 }
2138 
2139 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2140   //
2141   // Check for pending external suspend. Internal suspend requests do
2142   // not use handle_special_runtime_exit_condition().
2143   // If JNIEnv proxies are allowed, don't self-suspend if the target
2144   // thread is not the current thread. In older versions of jdbx, jdbx
2145   // threads could call into the VM with another thread's JNIEnv so we
2146   // can be here operating on behalf of a suspended thread (4432884).
2147   bool do_self_suspend = is_external_suspend_with_lock();
2148   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2149     //
2150     // Because thread is external suspended the safepoint code will count
2151     // thread as at a safepoint. This can be odd because we can be here
2152     // as _thread_in_Java which would normally transition to _thread_blocked
2153     // at a safepoint. We would like to mark the thread as _thread_blocked
2154     // before calling java_suspend_self like all other callers of it but
2155     // we must then observe proper safepoint protocol. (We can't leave
2156     // _thread_blocked with a safepoint in progress). However we can be
2157     // here as _thread_in_native_trans so we can't use a normal transition
2158     // constructor/destructor pair because they assert on that type of
2159     // transition. We could do something like:
2160     //
2161     // JavaThreadState state = thread_state();
2162     // set_thread_state(_thread_in_vm);
2163     // {
2164     //   ThreadBlockInVM tbivm(this);
2165     //   java_suspend_self()
2166     // }
2167     // set_thread_state(_thread_in_vm_trans);
2168     // if (safepoint) block;
2169     // set_thread_state(state);
2170     //
2171     // but that is pretty messy. Instead we just go with the way the
2172     // code has worked before and note that this is the only path to
2173     // java_suspend_self that doesn't put the thread in _thread_blocked
2174     // mode.
2175 
2176     frame_anchor()->make_walkable(this);
2177     java_suspend_self();
2178 
2179     // We might be here for reasons in addition to the self-suspend request
2180     // so check for other async requests.
2181   }
2182 
2183   if (check_asyncs) {
2184     check_and_handle_async_exceptions();
2185   }
2186 }
2187 
2188 void JavaThread::send_thread_stop(oop java_throwable)  {
2189   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2190   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2191   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2192 
2193   // Do not throw asynchronous exceptions against the compiler thread
2194   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2195   if (is_Compiler_thread()) return;
2196 
2197   {
2198     // Actually throw the Throwable against the target Thread - however
2199     // only if there is no thread death exception installed already.
2200     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2201       // If the topmost frame is a runtime stub, then we are calling into
2202       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2203       // must deoptimize the caller before continuing, as the compiled  exception handler table
2204       // may not be valid
2205       if (has_last_Java_frame()) {
2206         frame f = last_frame();
2207         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2208           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2209           RegisterMap reg_map(this, UseBiasedLocking);
2210           frame compiled_frame = f.sender(&reg_map);
2211           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2212             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2213           }
2214         }
2215       }
2216 
2217       // Set async. pending exception in thread.
2218       set_pending_async_exception(java_throwable);
2219 
2220       if (TraceExceptions) {
2221        ResourceMark rm;
2222        tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2223       }
2224       // for AbortVMOnException flag
2225       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2226     }
2227   }
2228 
2229 
2230   // Interrupt thread so it will wake up from a potential wait()
2231   Thread::interrupt(this);
2232 }
2233 
2234 // External suspension mechanism.
2235 //
2236 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2237 // to any VM_locks and it is at a transition
2238 // Self-suspension will happen on the transition out of the vm.
2239 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2240 //
2241 // Guarantees on return:
2242 //   + Target thread will not execute any new bytecode (that's why we need to
2243 //     force a safepoint)
2244 //   + Target thread will not enter any new monitors
2245 //
2246 void JavaThread::java_suspend() {
2247   { MutexLocker mu(Threads_lock);
2248     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2249        return;
2250     }
2251   }
2252 
2253   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2254     if (!is_external_suspend()) {
2255       // a racing resume has cancelled us; bail out now
2256       return;
2257     }
2258 
2259     // suspend is done
2260     uint32_t debug_bits = 0;
2261     // Warning: is_ext_suspend_completed() may temporarily drop the
2262     // SR_lock to allow the thread to reach a stable thread state if
2263     // it is currently in a transient thread state.
2264     if (is_ext_suspend_completed(false /* !called_by_wait */,
2265                                  SuspendRetryDelay, &debug_bits) ) {
2266       return;
2267     }
2268   }
2269 
2270   VM_ForceSafepoint vm_suspend;
2271   VMThread::execute(&vm_suspend);
2272 }
2273 
2274 // Part II of external suspension.
2275 // A JavaThread self suspends when it detects a pending external suspend
2276 // request. This is usually on transitions. It is also done in places
2277 // where continuing to the next transition would surprise the caller,
2278 // e.g., monitor entry.
2279 //
2280 // Returns the number of times that the thread self-suspended.
2281 //
2282 // Note: DO NOT call java_suspend_self() when you just want to block current
2283 //       thread. java_suspend_self() is the second stage of cooperative
2284 //       suspension for external suspend requests and should only be used
2285 //       to complete an external suspend request.
2286 //
2287 int JavaThread::java_suspend_self() {
2288   int ret = 0;
2289 
2290   // we are in the process of exiting so don't suspend
2291   if (is_exiting()) {
2292      clear_external_suspend();
2293      return ret;
2294   }
2295 
2296   assert(_anchor.walkable() ||
2297     (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2298     "must have walkable stack");
2299 
2300   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2301 
2302   assert(!this->is_ext_suspended(),
2303     "a thread trying to self-suspend should not already be suspended");
2304 
2305   if (this->is_suspend_equivalent()) {
2306     // If we are self-suspending as a result of the lifting of a
2307     // suspend equivalent condition, then the suspend_equivalent
2308     // flag is not cleared until we set the ext_suspended flag so
2309     // that wait_for_ext_suspend_completion() returns consistent
2310     // results.
2311     this->clear_suspend_equivalent();
2312   }
2313 
2314   // A racing resume may have cancelled us before we grabbed SR_lock
2315   // above. Or another external suspend request could be waiting for us
2316   // by the time we return from SR_lock()->wait(). The thread
2317   // that requested the suspension may already be trying to walk our
2318   // stack and if we return now, we can change the stack out from under
2319   // it. This would be a "bad thing (TM)" and cause the stack walker
2320   // to crash. We stay self-suspended until there are no more pending
2321   // external suspend requests.
2322   while (is_external_suspend()) {
2323     ret++;
2324     this->set_ext_suspended();
2325 
2326     // _ext_suspended flag is cleared by java_resume()
2327     while (is_ext_suspended()) {
2328       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2329     }
2330   }
2331 
2332   return ret;
2333 }
2334 
2335 #ifdef ASSERT
2336 // verify the JavaThread has not yet been published in the Threads::list, and
2337 // hence doesn't need protection from concurrent access at this stage
2338 void JavaThread::verify_not_published() {
2339   if (!Threads_lock->owned_by_self()) {
2340    MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2341    assert( !Threads::includes(this),
2342            "java thread shouldn't have been published yet!");
2343   }
2344   else {
2345    assert( !Threads::includes(this),
2346            "java thread shouldn't have been published yet!");
2347   }
2348 }
2349 #endif
2350 
2351 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2352 // progress or when _suspend_flags is non-zero.
2353 // Current thread needs to self-suspend if there is a suspend request and/or
2354 // block if a safepoint is in progress.
2355 // Async exception ISN'T checked.
2356 // Note only the ThreadInVMfromNative transition can call this function
2357 // directly and when thread state is _thread_in_native_trans
2358 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2359   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2360 
2361   JavaThread *curJT = JavaThread::current();
2362   bool do_self_suspend = thread->is_external_suspend();
2363 
2364   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2365 
2366   // If JNIEnv proxies are allowed, don't self-suspend if the target
2367   // thread is not the current thread. In older versions of jdbx, jdbx
2368   // threads could call into the VM with another thread's JNIEnv so we
2369   // can be here operating on behalf of a suspended thread (4432884).
2370   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2371     JavaThreadState state = thread->thread_state();
2372 
2373     // We mark this thread_blocked state as a suspend-equivalent so
2374     // that a caller to is_ext_suspend_completed() won't be confused.
2375     // The suspend-equivalent state is cleared by java_suspend_self().
2376     thread->set_suspend_equivalent();
2377 
2378     // If the safepoint code sees the _thread_in_native_trans state, it will
2379     // wait until the thread changes to other thread state. There is no
2380     // guarantee on how soon we can obtain the SR_lock and complete the
2381     // self-suspend request. It would be a bad idea to let safepoint wait for
2382     // too long. Temporarily change the state to _thread_blocked to
2383     // let the VM thread know that this thread is ready for GC. The problem
2384     // of changing thread state is that safepoint could happen just after
2385     // java_suspend_self() returns after being resumed, and VM thread will
2386     // see the _thread_blocked state. We must check for safepoint
2387     // after restoring the state and make sure we won't leave while a safepoint
2388     // is in progress.
2389     thread->set_thread_state(_thread_blocked);
2390     thread->java_suspend_self();
2391     thread->set_thread_state(state);
2392     // Make sure new state is seen by VM thread
2393     if (os::is_MP()) {
2394       if (UseMembar) {
2395         // Force a fence between the write above and read below
2396         OrderAccess::fence();
2397       } else {
2398         // Must use this rather than serialization page in particular on Windows
2399         InterfaceSupport::serialize_memory(thread);
2400       }
2401     }
2402   }
2403 
2404   if (SafepointSynchronize::do_call_back()) {
2405     // If we are safepointing, then block the caller which may not be
2406     // the same as the target thread (see above).
2407     SafepointSynchronize::block(curJT);
2408   }
2409 
2410   if (thread->is_deopt_suspend()) {
2411     thread->clear_deopt_suspend();
2412     RegisterMap map(thread, false);
2413     frame f = thread->last_frame();
2414     while ( f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2415       f = f.sender(&map);
2416     }
2417     if (f.id() == thread->must_deopt_id()) {
2418       thread->clear_must_deopt_id();
2419       f.deoptimize(thread);
2420     } else {
2421       fatal("missed deoptimization!");
2422     }
2423   }
2424 }
2425 
2426 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2427 // progress or when _suspend_flags is non-zero.
2428 // Current thread needs to self-suspend if there is a suspend request and/or
2429 // block if a safepoint is in progress.
2430 // Also check for pending async exception (not including unsafe access error).
2431 // Note only the native==>VM/Java barriers can call this function and when
2432 // thread state is _thread_in_native_trans.
2433 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2434   check_safepoint_and_suspend_for_native_trans(thread);
2435 
2436   if (thread->has_async_exception()) {
2437     // We are in _thread_in_native_trans state, don't handle unsafe
2438     // access error since that may block.
2439     thread->check_and_handle_async_exceptions(false);
2440   }
2441 }
2442 
2443 // This is a variant of the normal
2444 // check_special_condition_for_native_trans with slightly different
2445 // semantics for use by critical native wrappers.  It does all the
2446 // normal checks but also performs the transition back into
2447 // thread_in_Java state.  This is required so that critical natives
2448 // can potentially block and perform a GC if they are the last thread
2449 // exiting the GC_locker.
2450 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2451   check_special_condition_for_native_trans(thread);
2452 
2453   // Finish the transition
2454   thread->set_thread_state(_thread_in_Java);
2455 
2456   if (thread->do_critical_native_unlock()) {
2457     ThreadInVMfromJavaNoAsyncException tiv(thread);
2458     GC_locker::unlock_critical(thread);
2459     thread->clear_critical_native_unlock();
2460   }
2461 }
2462 
2463 // We need to guarantee the Threads_lock here, since resumes are not
2464 // allowed during safepoint synchronization
2465 // Can only resume from an external suspension
2466 void JavaThread::java_resume() {
2467   assert_locked_or_safepoint(Threads_lock);
2468 
2469   // Sanity check: thread is gone, has started exiting or the thread
2470   // was not externally suspended.
2471   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2472     return;
2473   }
2474 
2475   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2476 
2477   clear_external_suspend();
2478 
2479   if (is_ext_suspended()) {
2480     clear_ext_suspended();
2481     SR_lock()->notify_all();
2482   }
2483 }
2484 
2485 void JavaThread::create_stack_guard_pages() {
2486   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2487   address low_addr = stack_base() - stack_size();
2488   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2489 
2490   int allocate = os::allocate_stack_guard_pages();
2491   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2492 
2493   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2494     warning("Attempt to allocate stack guard pages failed.");
2495     return;
2496   }
2497 
2498   if (os::guard_memory((char *) low_addr, len)) {
2499     _stack_guard_state = stack_guard_enabled;
2500   } else {
2501     warning("Attempt to protect stack guard pages failed.");
2502     if (os::uncommit_memory((char *) low_addr, len)) {
2503       warning("Attempt to deallocate stack guard pages failed.");
2504     }
2505   }
2506 }
2507 
2508 void JavaThread::remove_stack_guard_pages() {
2509   assert(Thread::current() == this, "from different thread");
2510   if (_stack_guard_state == stack_guard_unused) return;
2511   address low_addr = stack_base() - stack_size();
2512   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2513 
2514   if (os::allocate_stack_guard_pages()) {
2515     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2516       _stack_guard_state = stack_guard_unused;
2517     } else {
2518       warning("Attempt to deallocate stack guard pages failed.");
2519     }
2520   } else {
2521     if (_stack_guard_state == stack_guard_unused) return;
2522     if (os::unguard_memory((char *) low_addr, len)) {
2523       _stack_guard_state = stack_guard_unused;
2524     } else {
2525         warning("Attempt to unprotect stack guard pages failed.");
2526     }
2527   }
2528 }
2529 
2530 void JavaThread::enable_stack_yellow_zone() {
2531   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2532   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2533 
2534   // The base notation is from the stacks point of view, growing downward.
2535   // We need to adjust it to work correctly with guard_memory()
2536   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2537 
2538   guarantee(base < stack_base(),"Error calculating stack yellow zone");
2539   guarantee(base < os::current_stack_pointer(),"Error calculating stack yellow zone");
2540 
2541   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2542     _stack_guard_state = stack_guard_enabled;
2543   } else {
2544     warning("Attempt to guard stack yellow zone failed.");
2545   }
2546   enable_register_stack_guard();
2547 }
2548 
2549 void JavaThread::disable_stack_yellow_zone() {
2550   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2551   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2552 
2553   // Simply return if called for a thread that does not use guard pages.
2554   if (_stack_guard_state == stack_guard_unused) return;
2555 
2556   // The base notation is from the stacks point of view, growing downward.
2557   // We need to adjust it to work correctly with guard_memory()
2558   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2559 
2560   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2561     _stack_guard_state = stack_guard_yellow_disabled;
2562   } else {
2563     warning("Attempt to unguard stack yellow zone failed.");
2564   }
2565   disable_register_stack_guard();
2566 }
2567 
2568 void JavaThread::enable_stack_red_zone() {
2569   // The base notation is from the stacks point of view, growing downward.
2570   // We need to adjust it to work correctly with guard_memory()
2571   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2572   address base = stack_red_zone_base() - stack_red_zone_size();
2573 
2574   guarantee(base < stack_base(),"Error calculating stack red zone");
2575   guarantee(base < os::current_stack_pointer(),"Error calculating stack red zone");
2576 
2577   if(!os::guard_memory((char *) base, stack_red_zone_size())) {
2578     warning("Attempt to guard stack red zone failed.");
2579   }
2580 }
2581 
2582 void JavaThread::disable_stack_red_zone() {
2583   // The base notation is from the stacks point of view, growing downward.
2584   // We need to adjust it to work correctly with guard_memory()
2585   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2586   address base = stack_red_zone_base() - stack_red_zone_size();
2587   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2588     warning("Attempt to unguard stack red zone failed.");
2589   }
2590 }
2591 
2592 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2593   // ignore is there is no stack
2594   if (!has_last_Java_frame()) return;
2595   // traverse the stack frames. Starts from top frame.
2596   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2597     frame* fr = fst.current();
2598     f(fr, fst.register_map());
2599   }
2600 }
2601 
2602 
2603 #ifndef PRODUCT
2604 // Deoptimization
2605 // Function for testing deoptimization
2606 void JavaThread::deoptimize() {
2607   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2608   StackFrameStream fst(this, UseBiasedLocking);
2609   bool deopt = false;           // Dump stack only if a deopt actually happens.
2610   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2611   // Iterate over all frames in the thread and deoptimize
2612   for(; !fst.is_done(); fst.next()) {
2613     if(fst.current()->can_be_deoptimized()) {
2614 
2615       if (only_at) {
2616         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2617         // consists of comma or carriage return separated numbers so
2618         // search for the current bci in that string.
2619         address pc = fst.current()->pc();
2620         nmethod* nm =  (nmethod*) fst.current()->cb();
2621         ScopeDesc* sd = nm->scope_desc_at( pc);
2622         char buffer[8];
2623         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2624         size_t len = strlen(buffer);
2625         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2626         while (found != NULL) {
2627           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2628               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2629             // Check that the bci found is bracketed by terminators.
2630             break;
2631           }
2632           found = strstr(found + 1, buffer);
2633         }
2634         if (!found) {
2635           continue;
2636         }
2637       }
2638 
2639       if (DebugDeoptimization && !deopt) {
2640         deopt = true; // One-time only print before deopt
2641         tty->print_cr("[BEFORE Deoptimization]");
2642         trace_frames();
2643         trace_stack();
2644       }
2645       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2646     }
2647   }
2648 
2649   if (DebugDeoptimization && deopt) {
2650     tty->print_cr("[AFTER Deoptimization]");
2651     trace_frames();
2652   }
2653 }
2654 
2655 
2656 // Make zombies
2657 void JavaThread::make_zombies() {
2658   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2659     if (fst.current()->can_be_deoptimized()) {
2660       // it is a Java nmethod
2661       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2662       nm->make_not_entrant();
2663     }
2664   }
2665 }
2666 #endif // PRODUCT
2667 
2668 
2669 void JavaThread::deoptimized_wrt_marked_nmethods() {
2670   if (!has_last_Java_frame()) return;
2671   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2672   StackFrameStream fst(this, UseBiasedLocking);
2673   for(; !fst.is_done(); fst.next()) {
2674     if (fst.current()->should_be_deoptimized()) {
2675       if (LogCompilation && xtty != NULL) {
2676         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2677         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2678                    this->name(), nm != NULL ? nm->compile_id() : -1);
2679       }
2680 
2681       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2682     }
2683   }
2684 }
2685 
2686 
2687 // GC support
2688 static void frame_gc_epilogue(frame* f, const RegisterMap* map) { f->gc_epilogue(); }
2689 
2690 void JavaThread::gc_epilogue() {
2691   frames_do(frame_gc_epilogue);
2692 }
2693 
2694 
2695 static void frame_gc_prologue(frame* f, const RegisterMap* map) { f->gc_prologue(); }
2696 
2697 void JavaThread::gc_prologue() {
2698   frames_do(frame_gc_prologue);
2699 }
2700 
2701 // If the caller is a NamedThread, then remember, in the current scope,
2702 // the given JavaThread in its _processed_thread field.
2703 class RememberProcessedThread: public StackObj {
2704   NamedThread* _cur_thr;
2705 public:
2706   RememberProcessedThread(JavaThread* jthr) {
2707     Thread* thread = Thread::current();
2708     if (thread->is_Named_thread()) {
2709       _cur_thr = (NamedThread *)thread;
2710       _cur_thr->set_processed_thread(jthr);
2711     } else {
2712       _cur_thr = NULL;
2713     }
2714   }
2715 
2716   ~RememberProcessedThread() {
2717     if (_cur_thr) {
2718       _cur_thr->set_processed_thread(NULL);
2719     }
2720   }
2721 };
2722 
2723 void JavaThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
2724   // Verify that the deferred card marks have been flushed.
2725   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2726 
2727   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2728   // since there may be more than one thread using each ThreadProfiler.
2729 
2730   // Traverse the GCHandles
2731   Thread::oops_do(f, cld_f, cf);
2732 
2733   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2734           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2735 
2736   if (has_last_Java_frame()) {
2737     // Record JavaThread to GC thread
2738     RememberProcessedThread rpt(this);
2739 
2740     // Traverse the privileged stack
2741     if (_privileged_stack_top != NULL) {
2742       _privileged_stack_top->oops_do(f);
2743     }
2744 
2745     // traverse the registered growable array
2746     if (_array_for_gc != NULL) {
2747       for (int index = 0; index < _array_for_gc->length(); index++) {
2748         f->do_oop(_array_for_gc->adr_at(index));
2749       }
2750     }
2751 
2752     // Traverse the monitor chunks
2753     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2754       chunk->oops_do(f);
2755     }
2756 
2757     // Traverse the execution stack
2758     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2759       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2760     }
2761   }
2762 
2763   // callee_target is never live across a gc point so NULL it here should
2764   // it still contain a methdOop.
2765 
2766   set_callee_target(NULL);
2767 
2768   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2769   // If we have deferred set_locals there might be oops waiting to be
2770   // written
2771   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2772   if (list != NULL) {
2773     for (int i = 0; i < list->length(); i++) {
2774       list->at(i)->oops_do(f);
2775     }
2776   }
2777 
2778   // Traverse instance variables at the end since the GC may be moving things
2779   // around using this function
2780   f->do_oop((oop*) &_threadObj);
2781   f->do_oop((oop*) &_vm_result);
2782   f->do_oop((oop*) &_exception_oop);
2783   f->do_oop((oop*) &_pending_async_exception);
2784 
2785   if (jvmti_thread_state() != NULL) {
2786     jvmti_thread_state()->oops_do(f);
2787   }
2788 }
2789 
2790 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2791   Thread::nmethods_do(cf);  // (super method is a no-op)
2792 
2793   assert( (!has_last_Java_frame() && java_call_counter() == 0) ||
2794           (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2795 
2796   if (has_last_Java_frame()) {
2797     // Traverse the execution stack
2798     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2799       fst.current()->nmethods_do(cf);
2800     }
2801   }
2802 }
2803 
2804 void JavaThread::metadata_do(void f(Metadata*)) {
2805   Thread::metadata_do(f);
2806   if (has_last_Java_frame()) {
2807     // Traverse the execution stack to call f() on the methods in the stack
2808     for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2809       fst.current()->metadata_do(f);
2810     }
2811   } else if (is_Compiler_thread()) {
2812     // need to walk ciMetadata in current compile tasks to keep alive.
2813     CompilerThread* ct = (CompilerThread*)this;
2814     if (ct->env() != NULL) {
2815       ct->env()->metadata_do(f);
2816     }
2817   }
2818 }
2819 
2820 // Printing
2821 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2822   switch (_thread_state) {
2823   case _thread_uninitialized:     return "_thread_uninitialized";
2824   case _thread_new:               return "_thread_new";
2825   case _thread_new_trans:         return "_thread_new_trans";
2826   case _thread_in_native:         return "_thread_in_native";
2827   case _thread_in_native_trans:   return "_thread_in_native_trans";
2828   case _thread_in_vm:             return "_thread_in_vm";
2829   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2830   case _thread_in_Java:           return "_thread_in_Java";
2831   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2832   case _thread_blocked:           return "_thread_blocked";
2833   case _thread_blocked_trans:     return "_thread_blocked_trans";
2834   default:                        return "unknown thread state";
2835   }
2836 }
2837 
2838 #ifndef PRODUCT
2839 void JavaThread::print_thread_state_on(outputStream *st) const {
2840   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2841 };
2842 void JavaThread::print_thread_state() const {
2843   print_thread_state_on(tty);
2844 };
2845 #endif // PRODUCT
2846 
2847 // Called by Threads::print() for VM_PrintThreads operation
2848 void JavaThread::print_on(outputStream *st) const {
2849   st->print("\"%s\" ", get_thread_name());
2850   oop thread_oop = threadObj();
2851   if (thread_oop != NULL) {
2852     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2853     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2854     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2855   }
2856   Thread::print_on(st);
2857   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2858   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2859   if (thread_oop != NULL && JDK_Version::is_gte_jdk15x_version()) {
2860     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2861   }
2862 #ifndef PRODUCT
2863   print_thread_state_on(st);
2864   _safepoint_state->print_on(st);
2865 #endif // PRODUCT
2866 }
2867 
2868 // Called by fatal error handler. The difference between this and
2869 // JavaThread::print() is that we can't grab lock or allocate memory.
2870 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2871   st->print("JavaThread \"%s\"",  get_thread_name_string(buf, buflen));
2872   oop thread_obj = threadObj();
2873   if (thread_obj != NULL) {
2874      if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2875   }
2876   st->print(" [");
2877   st->print("%s", _get_thread_state_name(_thread_state));
2878   if (osthread()) {
2879     st->print(", id=%d", osthread()->thread_id());
2880   }
2881   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2882             _stack_base - _stack_size, _stack_base);
2883   st->print("]");
2884   return;
2885 }
2886 
2887 // Verification
2888 
2889 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2890 
2891 void JavaThread::verify() {
2892   // Verify oops in the thread.
2893   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2894 
2895   // Verify the stack frames.
2896   frames_do(frame_verify);
2897 }
2898 
2899 // CR 6300358 (sub-CR 2137150)
2900 // Most callers of this method assume that it can't return NULL but a
2901 // thread may not have a name whilst it is in the process of attaching to
2902 // the VM - see CR 6412693, and there are places where a JavaThread can be
2903 // seen prior to having it's threadObj set (eg JNI attaching threads and
2904 // if vm exit occurs during initialization). These cases can all be accounted
2905 // for such that this method never returns NULL.
2906 const char* JavaThread::get_thread_name() const {
2907 #ifdef ASSERT
2908   // early safepoints can hit while current thread does not yet have TLS
2909   if (!SafepointSynchronize::is_at_safepoint()) {
2910     Thread *cur = Thread::current();
2911     if (!(cur->is_Java_thread() && cur == this)) {
2912       // Current JavaThreads are allowed to get their own name without
2913       // the Threads_lock.
2914       assert_locked_or_safepoint(Threads_lock);
2915     }
2916   }
2917 #endif // ASSERT
2918     return get_thread_name_string();
2919 }
2920 
2921 // Returns a non-NULL representation of this thread's name, or a suitable
2922 // descriptive string if there is no set name
2923 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2924   const char* name_str;
2925   oop thread_obj = threadObj();
2926   if (thread_obj != NULL) {
2927     typeArrayOop name = java_lang_Thread::name(thread_obj);
2928     if (name != NULL) {
2929       if (buf == NULL) {
2930         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2931       }
2932       else {
2933         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length(), buf, buflen);
2934       }
2935     }
2936     else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2937       name_str = "<no-name - thread is attaching>";
2938     }
2939     else {
2940       name_str = Thread::name();
2941     }
2942   }
2943   else {
2944     name_str = Thread::name();
2945   }
2946   assert(name_str != NULL, "unexpected NULL thread name");
2947   return name_str;
2948 }
2949 
2950 
2951 const char* JavaThread::get_threadgroup_name() const {
2952   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2953   oop thread_obj = threadObj();
2954   if (thread_obj != NULL) {
2955     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2956     if (thread_group != NULL) {
2957       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2958       // ThreadGroup.name can be null
2959       if (name != NULL) {
2960         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2961         return str;
2962       }
2963     }
2964   }
2965   return NULL;
2966 }
2967 
2968 const char* JavaThread::get_parent_name() const {
2969   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2970   oop thread_obj = threadObj();
2971   if (thread_obj != NULL) {
2972     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2973     if (thread_group != NULL) {
2974       oop parent = java_lang_ThreadGroup::parent(thread_group);
2975       if (parent != NULL) {
2976         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2977         // ThreadGroup.name can be null
2978         if (name != NULL) {
2979           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2980           return str;
2981         }
2982       }
2983     }
2984   }
2985   return NULL;
2986 }
2987 
2988 ThreadPriority JavaThread::java_priority() const {
2989   oop thr_oop = threadObj();
2990   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2991   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2992   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2993   return priority;
2994 }
2995 
2996 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2997 
2998   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2999   // Link Java Thread object <-> C++ Thread
3000 
3001   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
3002   // and put it into a new Handle.  The Handle "thread_oop" can then
3003   // be used to pass the C++ thread object to other methods.
3004 
3005   // Set the Java level thread object (jthread) field of the
3006   // new thread (a JavaThread *) to C++ thread object using the
3007   // "thread_oop" handle.
3008 
3009   // Set the thread field (a JavaThread *) of the
3010   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
3011 
3012   Handle thread_oop(Thread::current(),
3013                     JNIHandles::resolve_non_null(jni_thread));
3014   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
3015     "must be initialized");
3016   set_threadObj(thread_oop());
3017   java_lang_Thread::set_thread(thread_oop(), this);
3018 
3019   if (prio == NoPriority) {
3020     prio = java_lang_Thread::priority(thread_oop());
3021     assert(prio != NoPriority, "A valid priority should be present");
3022   }
3023 
3024   // Push the Java priority down to the native thread; needs Threads_lock
3025   Thread::set_priority(this, prio);
3026 
3027   // Add the new thread to the Threads list and set it in motion.
3028   // We must have threads lock in order to call Threads::add.
3029   // It is crucial that we do not block before the thread is
3030   // added to the Threads list for if a GC happens, then the java_thread oop
3031   // will not be visited by GC.
3032   Threads::add(this);
3033 }
3034 
3035 oop JavaThread::current_park_blocker() {
3036   // Support for JSR-166 locks
3037   oop thread_oop = threadObj();
3038   if (thread_oop != NULL &&
3039       JDK_Version::current().supports_thread_park_blocker()) {
3040     return java_lang_Thread::park_blocker(thread_oop);
3041   }
3042   return NULL;
3043 }
3044 
3045 
3046 void JavaThread::print_stack_on(outputStream* st) {
3047   if (!has_last_Java_frame()) return;
3048   ResourceMark rm;
3049   HandleMark   hm;
3050 
3051   RegisterMap reg_map(this);
3052   vframe* start_vf = last_java_vframe(&reg_map);
3053   int count = 0;
3054   for (vframe* f = start_vf; f; f = f->sender() ) {
3055     if (f->is_java_frame()) {
3056       javaVFrame* jvf = javaVFrame::cast(f);
3057       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3058 
3059       // Print out lock information
3060       if (JavaMonitorsInStackTrace) {
3061         jvf->print_lock_info_on(st, count);
3062       }
3063     } else {
3064       // Ignore non-Java frames
3065     }
3066 
3067     // Bail-out case for too deep stacks
3068     count++;
3069     if (MaxJavaStackTraceDepth == count) return;
3070   }
3071 }
3072 
3073 
3074 // JVMTI PopFrame support
3075 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3076   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3077   if (in_bytes(size_in_bytes) != 0) {
3078     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3079     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3080     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3081   }
3082 }
3083 
3084 void* JavaThread::popframe_preserved_args() {
3085   return _popframe_preserved_args;
3086 }
3087 
3088 ByteSize JavaThread::popframe_preserved_args_size() {
3089   return in_ByteSize(_popframe_preserved_args_size);
3090 }
3091 
3092 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3093   int sz = in_bytes(popframe_preserved_args_size());
3094   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3095   return in_WordSize(sz / wordSize);
3096 }
3097 
3098 void JavaThread::popframe_free_preserved_args() {
3099   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3100   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3101   _popframe_preserved_args = NULL;
3102   _popframe_preserved_args_size = 0;
3103 }
3104 
3105 #ifndef PRODUCT
3106 
3107 void JavaThread::trace_frames() {
3108   tty->print_cr("[Describe stack]");
3109   int frame_no = 1;
3110   for(StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3111     tty->print("  %d. ", frame_no++);
3112     fst.current()->print_value_on(tty,this);
3113     tty->cr();
3114   }
3115 }
3116 
3117 class PrintAndVerifyOopClosure: public OopClosure {
3118  protected:
3119   template <class T> inline void do_oop_work(T* p) {
3120     oop obj = oopDesc::load_decode_heap_oop(p);
3121     if (obj == NULL) return;
3122     tty->print(INTPTR_FORMAT ": ", p);
3123     if (obj->is_oop_or_null()) {
3124       if (obj->is_objArray()) {
3125         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3126       } else {
3127         obj->print();
3128       }
3129     } else {
3130       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3131     }
3132     tty->cr();
3133   }
3134  public:
3135   virtual void do_oop(oop* p) { do_oop_work(p); }
3136   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3137 };
3138 
3139 
3140 static void oops_print(frame* f, const RegisterMap *map) {
3141   PrintAndVerifyOopClosure print;
3142   f->print_value();
3143   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3144 }
3145 
3146 // Print our all the locations that contain oops and whether they are
3147 // valid or not.  This useful when trying to find the oldest frame
3148 // where an oop has gone bad since the frame walk is from youngest to
3149 // oldest.
3150 void JavaThread::trace_oops() {
3151   tty->print_cr("[Trace oops]");
3152   frames_do(oops_print);
3153 }
3154 
3155 
3156 #ifdef ASSERT
3157 // Print or validate the layout of stack frames
3158 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3159   ResourceMark rm;
3160   PRESERVE_EXCEPTION_MARK;
3161   FrameValues values;
3162   int frame_no = 0;
3163   for(StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3164     fst.current()->describe(values, ++frame_no);
3165     if (depth == frame_no) break;
3166   }
3167   if (validate_only) {
3168     values.validate();
3169   } else {
3170     tty->print_cr("[Describe stack layout]");
3171     values.print(this);
3172   }
3173 }
3174 #endif
3175 
3176 void JavaThread::trace_stack_from(vframe* start_vf) {
3177   ResourceMark rm;
3178   int vframe_no = 1;
3179   for (vframe* f = start_vf; f; f = f->sender() ) {
3180     if (f->is_java_frame()) {
3181       javaVFrame::cast(f)->print_activation(vframe_no++);
3182     } else {
3183       f->print();
3184     }
3185     if (vframe_no > StackPrintLimit) {
3186       tty->print_cr("...<more frames>...");
3187       return;
3188     }
3189   }
3190 }
3191 
3192 
3193 void JavaThread::trace_stack() {
3194   if (!has_last_Java_frame()) return;
3195   ResourceMark rm;
3196   HandleMark   hm;
3197   RegisterMap reg_map(this);
3198   trace_stack_from(last_java_vframe(&reg_map));
3199 }
3200 
3201 
3202 #endif // PRODUCT
3203 
3204 
3205 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3206   assert(reg_map != NULL, "a map must be given");
3207   frame f = last_frame();
3208   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender() ) {
3209     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3210   }
3211   return NULL;
3212 }
3213 
3214 
3215 Klass* JavaThread::security_get_caller_class(int depth) {
3216   vframeStream vfst(this);
3217   vfst.security_get_caller_frame(depth);
3218   if (!vfst.at_end()) {
3219     return vfst.method()->method_holder();
3220   }
3221   return NULL;
3222 }
3223 
3224 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3225   assert(thread->is_Compiler_thread(), "must be compiler thread");
3226   CompileBroker::compiler_thread_loop();
3227 }
3228 
3229 // Create a CompilerThread
3230 CompilerThread::CompilerThread(CompileQueue* queue, CompilerCounters* counters)
3231 : JavaThread(&compiler_thread_entry) {
3232   _env   = NULL;
3233   _log   = NULL;
3234   _task  = NULL;
3235   _queue = queue;
3236   _counters = counters;
3237   _buffer_blob = NULL;
3238   _scanned_nmethod = NULL;
3239   _compiler = NULL;
3240 
3241 #ifndef PRODUCT
3242   _ideal_graph_printer = NULL;
3243 #endif
3244 }
3245 
3246 void CompilerThread::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
3247   JavaThread::oops_do(f, cld_f, cf);
3248   if (_scanned_nmethod != NULL && cf != NULL) {
3249     // Safepoints can occur when the sweeper is scanning an nmethod so
3250     // process it here to make sure it isn't unloaded in the middle of
3251     // a scan.
3252     cf->do_code_blob(_scanned_nmethod);
3253   }
3254 }
3255 
3256 // ======= Threads ========
3257 
3258 // The Threads class links together all active threads, and provides
3259 // operations over all threads.  It is protected by its own Mutex
3260 // lock, which is also used in other contexts to protect thread
3261 // operations from having the thread being operated on from exiting
3262 // and going away unexpectedly (e.g., safepoint synchronization)
3263 
3264 JavaThread* Threads::_thread_list = NULL;
3265 int         Threads::_number_of_threads = 0;
3266 int         Threads::_number_of_non_daemon_threads = 0;
3267 int         Threads::_return_code = 0;
3268 size_t      JavaThread::_stack_size_at_create = 0;
3269 #ifdef ASSERT
3270 bool        Threads::_vm_complete = false;
3271 #endif
3272 
3273 // All JavaThreads
3274 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3275 
3276 void os_stream();
3277 
3278 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3279 void Threads::threads_do(ThreadClosure* tc) {
3280   assert_locked_or_safepoint(Threads_lock);
3281   // ALL_JAVA_THREADS iterates through all JavaThreads
3282   ALL_JAVA_THREADS(p) {
3283     tc->do_thread(p);
3284   }
3285   // Someday we could have a table or list of all non-JavaThreads.
3286   // For now, just manually iterate through them.
3287   tc->do_thread(VMThread::vm_thread());
3288   Universe::heap()->gc_threads_do(tc);
3289   WatcherThread *wt = WatcherThread::watcher_thread();
3290   // Strictly speaking, the following NULL check isn't sufficient to make sure
3291   // the data for WatcherThread is still valid upon being examined. However,
3292   // considering that WatchThread terminates when the VM is on the way to
3293   // exit at safepoint, the chance of the above is extremely small. The right
3294   // way to prevent termination of WatcherThread would be to acquire
3295   // Terminator_lock, but we can't do that without violating the lock rank
3296   // checking in some cases.
3297   if (wt != NULL)
3298     tc->do_thread(wt);
3299 
3300   // If CompilerThreads ever become non-JavaThreads, add them here
3301 }
3302 
3303 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3304 
3305   extern void JDK_Version_init();
3306 
3307   // Check version
3308   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3309 
3310   // Initialize the output stream module
3311   ostream_init();
3312 
3313   // Process java launcher properties.
3314   Arguments::process_sun_java_launcher_properties(args);
3315 
3316   // Initialize the os module before using TLS
3317   os::init();
3318 
3319   // Initialize system properties.
3320   Arguments::init_system_properties();
3321 
3322   // So that JDK version can be used as a discrimintor when parsing arguments
3323   JDK_Version_init();
3324 
3325   // Update/Initialize System properties after JDK version number is known
3326   Arguments::init_version_specific_system_properties();
3327 
3328   // Parse arguments
3329   jint parse_result = Arguments::parse(args);
3330   if (parse_result != JNI_OK) return parse_result;
3331 
3332   if (PauseAtStartup) {
3333     os::pause();
3334   }
3335 
3336 #ifndef USDT2
3337   HS_DTRACE_PROBE(hotspot, vm__init__begin);
3338 #else /* USDT2 */
3339   HOTSPOT_VM_INIT_BEGIN();
3340 #endif /* USDT2 */
3341 
3342   // Record VM creation timing statistics
3343   TraceVmCreationTime create_vm_timer;
3344   create_vm_timer.start();
3345 
3346   // Timing (must come after argument parsing)
3347   TraceTime timer("Create VM", TraceStartupTime);
3348 
3349   // Initialize the os module after parsing the args
3350   jint os_init_2_result = os::init_2();
3351   if (os_init_2_result != JNI_OK) return os_init_2_result;
3352 
3353   jint adjust_after_os_result = Arguments::adjust_after_os();
3354   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3355 
3356   // intialize TLS
3357   ThreadLocalStorage::init();
3358 
3359   // Bootstrap native memory tracking, so it can start recording memory
3360   // activities before worker thread is started. This is the first phase
3361   // of bootstrapping, VM is currently running in single-thread mode.
3362   MemTracker::bootstrap_single_thread();
3363 
3364   // Initialize output stream logging
3365   ostream_init_log();
3366 
3367   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3368   // Must be before create_vm_init_agents()
3369   if (Arguments::init_libraries_at_startup()) {
3370     convert_vm_init_libraries_to_agents();
3371   }
3372 
3373   // Launch -agentlib/-agentpath and converted -Xrun agents
3374   if (Arguments::init_agents_at_startup()) {
3375     create_vm_init_agents();
3376   }
3377 
3378   // Initialize Threads state
3379   _thread_list = NULL;
3380   _number_of_threads = 0;
3381   _number_of_non_daemon_threads = 0;
3382 
3383   // Initialize global data structures and create system classes in heap
3384   vm_init_globals();
3385 
3386   // Attach the main thread to this os thread
3387   JavaThread* main_thread = new JavaThread();
3388   main_thread->set_thread_state(_thread_in_vm);
3389   // must do this before set_active_handles and initialize_thread_local_storage
3390   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3391   // change the stack size recorded here to one based on the java thread
3392   // stacksize. This adjusted size is what is used to figure the placement
3393   // of the guard pages.
3394   main_thread->record_stack_base_and_size();
3395   main_thread->initialize_thread_local_storage();
3396 
3397   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3398 
3399   if (!main_thread->set_as_starting_thread()) {
3400     vm_shutdown_during_initialization(
3401       "Failed necessary internal allocation. Out of swap space");
3402     delete main_thread;
3403     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3404     return JNI_ENOMEM;
3405   }
3406 
3407   // Enable guard page *after* os::create_main_thread(), otherwise it would
3408   // crash Linux VM, see notes in os_linux.cpp.
3409   main_thread->create_stack_guard_pages();
3410 
3411   // Initialize Java-Level synchronization subsystem
3412   ObjectMonitor::Initialize() ;
3413 
3414   // Second phase of bootstrapping, VM is about entering multi-thread mode
3415   MemTracker::bootstrap_multi_thread();
3416 
3417   // Initialize global modules
3418   jint status = init_globals();
3419   if (status != JNI_OK) {
3420     delete main_thread;
3421     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3422     return status;
3423   }
3424 
3425   // Should be done after the heap is fully created
3426   main_thread->cache_global_variables();
3427 
3428   HandleMark hm;
3429 
3430   { MutexLocker mu(Threads_lock);
3431     Threads::add(main_thread);
3432   }
3433 
3434   // Any JVMTI raw monitors entered in onload will transition into
3435   // real raw monitor. VM is setup enough here for raw monitor enter.
3436   JvmtiExport::transition_pending_onload_raw_monitors();
3437 
3438   // Fully start NMT
3439   MemTracker::start();
3440 
3441   // Create the VMThread
3442   { TraceTime timer("Start VMThread", TraceStartupTime);
3443     VMThread::create();
3444     Thread* vmthread = VMThread::vm_thread();
3445 
3446     if (!os::create_thread(vmthread, os::vm_thread))
3447       vm_exit_during_initialization("Cannot create VM thread. Out of system resources.");
3448 
3449     // Wait for the VM thread to become ready, and VMThread::run to initialize
3450     // Monitors can have spurious returns, must always check another state flag
3451     {
3452       MutexLocker ml(Notify_lock);
3453       os::start_thread(vmthread);
3454       while (vmthread->active_handles() == NULL) {
3455         Notify_lock->wait();
3456       }
3457     }
3458   }
3459 
3460   assert (Universe::is_fully_initialized(), "not initialized");
3461   if (VerifyDuringStartup) {
3462     // Make sure we're starting with a clean slate.
3463     VM_Verify verify_op;
3464     VMThread::execute(&verify_op);
3465   }
3466 
3467   EXCEPTION_MARK;
3468 
3469   // At this point, the Universe is initialized, but we have not executed
3470   // any byte code.  Now is a good time (the only time) to dump out the
3471   // internal state of the JVM for sharing.
3472   if (DumpSharedSpaces) {
3473     MetaspaceShared::preload_and_dump(CHECK_0);
3474     ShouldNotReachHere();
3475   }
3476 
3477   // Always call even when there are not JVMTI environments yet, since environments
3478   // may be attached late and JVMTI must track phases of VM execution
3479   JvmtiExport::enter_start_phase();
3480 
3481   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3482   JvmtiExport::post_vm_start();
3483 
3484   {
3485     TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3486 
3487     if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3488       create_vm_init_libraries();
3489     }
3490 
3491     initialize_class(vmSymbols::java_lang_String(), CHECK_0);
3492 
3493     // Initialize java_lang.System (needed before creating the thread)
3494     initialize_class(vmSymbols::java_lang_System(), CHECK_0);
3495     initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK_0);
3496     Handle thread_group = create_initial_thread_group(CHECK_0);
3497     Universe::set_main_thread_group(thread_group());
3498     initialize_class(vmSymbols::java_lang_Thread(), CHECK_0);
3499     oop thread_object = create_initial_thread(thread_group, main_thread, CHECK_0);
3500     main_thread->set_threadObj(thread_object);
3501     // Set thread status to running since main thread has
3502     // been started and running.
3503     java_lang_Thread::set_thread_status(thread_object,
3504                                         java_lang_Thread::RUNNABLE);
3505 
3506     // The VM creates & returns objects of this class. Make sure it's initialized.
3507     initialize_class(vmSymbols::java_lang_Class(), CHECK_0);
3508 
3509     // The VM preresolves methods to these classes. Make sure that they get initialized
3510     initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK_0);
3511     initialize_class(vmSymbols::java_lang_ref_Finalizer(),  CHECK_0);
3512     call_initializeSystemClass(CHECK_0);
3513 
3514     // get the Java runtime name after java.lang.System is initialized
3515     JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3516     JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3517 
3518     // an instance of OutOfMemory exception has been allocated earlier
3519     initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK_0);
3520     initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK_0);
3521     initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK_0);
3522     initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK_0);
3523     initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK_0);
3524     initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK_0);
3525     initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK_0);
3526     initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK_0);
3527   }
3528 
3529   // See        : bugid 4211085.
3530   // Background : the static initializer of java.lang.Compiler tries to read
3531   //              property"java.compiler" and read & write property "java.vm.info".
3532   //              When a security manager is installed through the command line
3533   //              option "-Djava.security.manager", the above properties are not
3534   //              readable and the static initializer for java.lang.Compiler fails
3535   //              resulting in a NoClassDefFoundError.  This can happen in any
3536   //              user code which calls methods in java.lang.Compiler.
3537   // Hack :       the hack is to pre-load and initialize this class, so that only
3538   //              system domains are on the stack when the properties are read.
3539   //              Currently even the AWT code has calls to methods in java.lang.Compiler.
3540   //              On the classic VM, java.lang.Compiler is loaded very early to load the JIT.
3541   // Future Fix : the best fix is to grant everyone permissions to read "java.compiler" and
3542   //              read and write"java.vm.info" in the default policy file. See bugid 4211383
3543   //              Once that is done, we should remove this hack.
3544   initialize_class(vmSymbols::java_lang_Compiler(), CHECK_0);
3545 
3546   // More hackery - the static initializer of java.lang.Compiler adds the string "nojit" to
3547   // the java.vm.info property if no jit gets loaded through java.lang.Compiler (the hotspot
3548   // compiler does not get loaded through java.lang.Compiler).  "java -version" with the
3549   // hotspot vm says "nojit" all the time which is confusing.  So, we reset it here.
3550   // This should also be taken out as soon as 4211383 gets fixed.
3551   reset_vm_info_property(CHECK_0);
3552 
3553   quicken_jni_functions();
3554 
3555   // Must be run after init_ft which initializes ft_enabled
3556   if (TRACE_INITIALIZE() != JNI_OK) {
3557     vm_exit_during_initialization("Failed to initialize tracing backend");
3558   }
3559 
3560   // Set flag that basic initialization has completed. Used by exceptions and various
3561   // debug stuff, that does not work until all basic classes have been initialized.
3562   set_init_completed();
3563 
3564 #ifndef USDT2
3565   HS_DTRACE_PROBE(hotspot, vm__init__end);
3566 #else /* USDT2 */
3567   HOTSPOT_VM_INIT_END();
3568 #endif /* USDT2 */
3569 
3570   // record VM initialization completion time
3571 #if INCLUDE_MANAGEMENT
3572   Management::record_vm_init_completed();
3573 #endif // INCLUDE_MANAGEMENT
3574 
3575   // Compute system loader. Note that this has to occur after set_init_completed, since
3576   // valid exceptions may be thrown in the process.
3577   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3578   // set_init_completed has just been called, causing exceptions not to be shortcut
3579   // anymore. We call vm_exit_during_initialization directly instead.
3580   SystemDictionary::compute_java_system_loader(THREAD);
3581   if (HAS_PENDING_EXCEPTION) {
3582     vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3583   }
3584 
3585 #if INCLUDE_ALL_GCS
3586   // Support for ConcurrentMarkSweep. This should be cleaned up
3587   // and better encapsulated. The ugly nested if test would go away
3588   // once things are properly refactored. XXX YSR
3589   if (UseConcMarkSweepGC || UseG1GC) {
3590     if (UseConcMarkSweepGC) {
3591       ConcurrentMarkSweepThread::makeSurrogateLockerThread(THREAD);
3592     } else {
3593       ConcurrentMarkThread::makeSurrogateLockerThread(THREAD);
3594     }
3595     if (HAS_PENDING_EXCEPTION) {
3596       vm_exit_during_initialization(Handle(THREAD, PENDING_EXCEPTION));
3597     }
3598   }
3599 #endif // INCLUDE_ALL_GCS
3600 
3601   // Always call even when there are not JVMTI environments yet, since environments
3602   // may be attached late and JVMTI must track phases of VM execution
3603   JvmtiExport::enter_live_phase();
3604 
3605   // Signal Dispatcher needs to be started before VMInit event is posted
3606   os::signal_init();
3607 
3608   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3609   if (!DisableAttachMechanism) {
3610     AttachListener::vm_start();
3611     if (StartAttachListener || AttachListener::init_at_startup()) {
3612       AttachListener::init();
3613     }
3614   }
3615 
3616   // Launch -Xrun agents
3617   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3618   // back-end can launch with -Xdebug -Xrunjdwp.
3619   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3620     create_vm_init_libraries();
3621   }
3622 
3623   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3624   JvmtiExport::post_vm_initialized();
3625 
3626   if (TRACE_START() != JNI_OK) {
3627     vm_exit_during_initialization("Failed to start tracing backend.");
3628   }
3629 
3630   if (CleanChunkPoolAsync) {
3631     Chunk::start_chunk_pool_cleaner_task();
3632   }
3633 
3634   // initialize compiler(s)
3635 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3636   CompileBroker::compilation_init();
3637 #endif
3638 
3639   if (EnableInvokeDynamic) {
3640     // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3641     // It is done after compilers are initialized, because otherwise compilations of
3642     // signature polymorphic MH intrinsics can be missed
3643     // (see SystemDictionary::find_method_handle_intrinsic).
3644     initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK_0);
3645     initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK_0);
3646     initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK_0);
3647   }
3648 
3649 #if INCLUDE_MANAGEMENT
3650   Management::initialize(THREAD);
3651 #endif // INCLUDE_MANAGEMENT
3652 
3653   if (HAS_PENDING_EXCEPTION) {
3654     // management agent fails to start possibly due to
3655     // configuration problem and is responsible for printing
3656     // stack trace if appropriate. Simply exit VM.
3657     vm_exit(1);
3658   }
3659 
3660   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3661   if (MemProfiling)                   MemProfiler::engage();
3662   StatSampler::engage();
3663   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3664 
3665   BiasedLocking::init();
3666 
3667   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3668     call_postVMInitHook(THREAD);
3669     // The Java side of PostVMInitHook.run must deal with all
3670     // exceptions and provide means of diagnosis.
3671     if (HAS_PENDING_EXCEPTION) {
3672       CLEAR_PENDING_EXCEPTION;
3673     }
3674   }
3675 
3676   {
3677       MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3678       // Make sure the watcher thread can be started by WatcherThread::start()
3679       // or by dynamic enrollment.
3680       WatcherThread::make_startable();
3681       // Start up the WatcherThread if there are any periodic tasks
3682       // NOTE:  All PeriodicTasks should be registered by now. If they
3683       //   aren't, late joiners might appear to start slowly (we might
3684       //   take a while to process their first tick).
3685       if (PeriodicTask::num_tasks() > 0) {
3686           WatcherThread::start();
3687       }
3688   }
3689 
3690   // Give os specific code one last chance to start
3691   os::init_3();
3692 
3693   create_vm_timer.end();
3694 #ifdef ASSERT
3695   _vm_complete = true;
3696 #endif
3697   return JNI_OK;
3698 }
3699 
3700 // type for the Agent_OnLoad and JVM_OnLoad entry points
3701 extern "C" {
3702   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3703 }
3704 // Find a command line agent library and return its entry point for
3705 //         -agentlib:  -agentpath:   -Xrun
3706 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3707 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent, const char *on_load_symbols[], size_t num_symbol_entries) {
3708   OnLoadEntry_t on_load_entry = NULL;
3709   void *library = NULL;
3710 
3711   if (!agent->valid()) {
3712     char buffer[JVM_MAXPATHLEN];
3713     char ebuf[1024];
3714     const char *name = agent->name();
3715     const char *msg = "Could not find agent library ";
3716 
3717     // First check to see if agent is statcally linked into executable
3718     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3719       library = agent->os_lib();
3720     } else if (agent->is_absolute_path()) {
3721       library = os::dll_load(name, ebuf, sizeof ebuf);
3722       if (library == NULL) {
3723         const char *sub_msg = " in absolute path, with error: ";
3724         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3725         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3726         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3727         // If we can't find the agent, exit.
3728         vm_exit_during_initialization(buf, NULL);
3729         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3730       }
3731     } else {
3732       // Try to load the agent from the standard dll directory
3733       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3734                              name)) {
3735         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3736       }
3737       if (library == NULL) { // Try the local directory
3738         char ns[1] = {0};
3739         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3740           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3741         }
3742         if (library == NULL) {
3743           const char *sub_msg = " on the library path, with error: ";
3744           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3745           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3746           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3747           // If we can't find the agent, exit.
3748           vm_exit_during_initialization(buf, NULL);
3749           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3750         }
3751       }
3752     }
3753     agent->set_os_lib(library);
3754     agent->set_valid();
3755   }
3756 
3757   // Find the OnLoad function.
3758   on_load_entry =
3759     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3760                                                           false,
3761                                                           on_load_symbols,
3762                                                           num_symbol_entries));
3763   return on_load_entry;
3764 }
3765 
3766 // Find the JVM_OnLoad entry point
3767 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3768   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3769   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3770 }
3771 
3772 // Find the Agent_OnLoad entry point
3773 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3774   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3775   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3776 }
3777 
3778 // For backwards compatibility with -Xrun
3779 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3780 // treated like -agentpath:
3781 // Must be called before agent libraries are created
3782 void Threads::convert_vm_init_libraries_to_agents() {
3783   AgentLibrary* agent;
3784   AgentLibrary* next;
3785 
3786   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3787     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3788     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3789 
3790     // If there is an JVM_OnLoad function it will get called later,
3791     // otherwise see if there is an Agent_OnLoad
3792     if (on_load_entry == NULL) {
3793       on_load_entry = lookup_agent_on_load(agent);
3794       if (on_load_entry != NULL) {
3795         // switch it to the agent list -- so that Agent_OnLoad will be called,
3796         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3797         Arguments::convert_library_to_agent(agent);
3798       } else {
3799         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3800       }
3801     }
3802   }
3803 }
3804 
3805 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3806 // Invokes Agent_OnLoad
3807 // Called very early -- before JavaThreads exist
3808 void Threads::create_vm_init_agents() {
3809   extern struct JavaVM_ main_vm;
3810   AgentLibrary* agent;
3811 
3812   JvmtiExport::enter_onload_phase();
3813 
3814   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3815     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3816 
3817     if (on_load_entry != NULL) {
3818       // Invoke the Agent_OnLoad function
3819       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3820       if (err != JNI_OK) {
3821         vm_exit_during_initialization("agent library failed to init", agent->name());
3822       }
3823     } else {
3824       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3825     }
3826   }
3827   JvmtiExport::enter_primordial_phase();
3828 }
3829 
3830 extern "C" {
3831   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3832 }
3833 
3834 void Threads::shutdown_vm_agents() {
3835   // Send any Agent_OnUnload notifications
3836   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3837   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3838   extern struct JavaVM_ main_vm;
3839   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3840 
3841     // Find the Agent_OnUnload function.
3842     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3843       os::find_agent_function(agent,
3844       false,
3845       on_unload_symbols,
3846       num_symbol_entries));
3847 
3848     // Invoke the Agent_OnUnload function
3849     if (unload_entry != NULL) {
3850       JavaThread* thread = JavaThread::current();
3851       ThreadToNativeFromVM ttn(thread);
3852       HandleMark hm(thread);
3853       (*unload_entry)(&main_vm);
3854     }
3855   }
3856 }
3857 
3858 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3859 // Invokes JVM_OnLoad
3860 void Threads::create_vm_init_libraries() {
3861   extern struct JavaVM_ main_vm;
3862   AgentLibrary* agent;
3863 
3864   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3865     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3866 
3867     if (on_load_entry != NULL) {
3868       // Invoke the JVM_OnLoad function
3869       JavaThread* thread = JavaThread::current();
3870       ThreadToNativeFromVM ttn(thread);
3871       HandleMark hm(thread);
3872       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3873       if (err != JNI_OK) {
3874         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3875       }
3876     } else {
3877       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3878     }
3879   }
3880 }
3881 
3882 // Last thread running calls java.lang.Shutdown.shutdown()
3883 void JavaThread::invoke_shutdown_hooks() {
3884   HandleMark hm(this);
3885 
3886   // We could get here with a pending exception, if so clear it now.
3887   if (this->has_pending_exception()) {
3888     this->clear_pending_exception();
3889   }
3890 
3891   EXCEPTION_MARK;
3892   Klass* k =
3893     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3894                                       THREAD);
3895   if (k != NULL) {
3896     // SystemDictionary::resolve_or_null will return null if there was
3897     // an exception.  If we cannot load the Shutdown class, just don't
3898     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3899     // and finalizers (if runFinalizersOnExit is set) won't be run.
3900     // Note that if a shutdown hook was registered or runFinalizersOnExit
3901     // was called, the Shutdown class would have already been loaded
3902     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3903     instanceKlassHandle shutdown_klass (THREAD, k);
3904     JavaValue result(T_VOID);
3905     JavaCalls::call_static(&result,
3906                            shutdown_klass,
3907                            vmSymbols::shutdown_method_name(),
3908                            vmSymbols::void_method_signature(),
3909                            THREAD);
3910   }
3911   CLEAR_PENDING_EXCEPTION;
3912 }
3913 
3914 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3915 // the program falls off the end of main(). Another VM exit path is through
3916 // vm_exit() when the program calls System.exit() to return a value or when
3917 // there is a serious error in VM. The two shutdown paths are not exactly
3918 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3919 // and VM_Exit op at VM level.
3920 //
3921 // Shutdown sequence:
3922 //   + Shutdown native memory tracking if it is on
3923 //   + Wait until we are the last non-daemon thread to execute
3924 //     <-- every thing is still working at this moment -->
3925 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3926 //        shutdown hooks, run finalizers if finalization-on-exit
3927 //   + Call before_exit(), prepare for VM exit
3928 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3929 //        currently the only user of this mechanism is File.deleteOnExit())
3930 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3931 //        post thread end and vm death events to JVMTI,
3932 //        stop signal thread
3933 //   + Call JavaThread::exit(), it will:
3934 //      > release JNI handle blocks, remove stack guard pages
3935 //      > remove this thread from Threads list
3936 //     <-- no more Java code from this thread after this point -->
3937 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3938 //     the compiler threads at safepoint
3939 //     <-- do not use anything that could get blocked by Safepoint -->
3940 //   + Disable tracing at JNI/JVM barriers
3941 //   + Set _vm_exited flag for threads that are still running native code
3942 //   + Delete this thread
3943 //   + Call exit_globals()
3944 //      > deletes tty
3945 //      > deletes PerfMemory resources
3946 //   + Return to caller
3947 
3948 bool Threads::destroy_vm() {
3949   JavaThread* thread = JavaThread::current();
3950 
3951 #ifdef ASSERT
3952   _vm_complete = false;
3953 #endif
3954   // Wait until we are the last non-daemon thread to execute
3955   { MutexLocker nu(Threads_lock);
3956     while (Threads::number_of_non_daemon_threads() > 1 )
3957       // This wait should make safepoint checks, wait without a timeout,
3958       // and wait as a suspend-equivalent condition.
3959       //
3960       // Note: If the FlatProfiler is running and this thread is waiting
3961       // for another non-daemon thread to finish, then the FlatProfiler
3962       // is waiting for the external suspend request on this thread to
3963       // complete. wait_for_ext_suspend_completion() will eventually
3964       // timeout, but that takes time. Making this wait a suspend-
3965       // equivalent condition solves that timeout problem.
3966       //
3967       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3968                          Mutex::_as_suspend_equivalent_flag);
3969   }
3970 
3971   // Hang forever on exit if we are reporting an error.
3972   if (ShowMessageBoxOnError && is_error_reported()) {
3973     os::infinite_sleep();
3974   }
3975   os::wait_for_keypress_at_exit();
3976 
3977   if (JDK_Version::is_jdk12x_version()) {
3978     // We are the last thread running, so check if finalizers should be run.
3979     // For 1.3 or later this is done in thread->invoke_shutdown_hooks()
3980     HandleMark rm(thread);
3981     Universe::run_finalizers_on_exit();
3982   } else {
3983     // run Java level shutdown hooks
3984     thread->invoke_shutdown_hooks();
3985   }
3986 
3987   before_exit(thread);
3988 
3989   thread->exit(true);
3990 
3991   // Stop VM thread.
3992   {
3993     // 4945125 The vm thread comes to a safepoint during exit.
3994     // GC vm_operations can get caught at the safepoint, and the
3995     // heap is unparseable if they are caught. Grab the Heap_lock
3996     // to prevent this. The GC vm_operations will not be able to
3997     // queue until after the vm thread is dead.
3998     // After this point, we'll never emerge out of the safepoint before
3999     // the VM exits, so concurrent GC threads do not need to be explicitly
4000     // stopped; they remain inactive until the process exits.
4001     // Note: some concurrent G1 threads may be running during a safepoint,
4002     // but these will not be accessing the heap, just some G1-specific side
4003     // data structures that are not accessed by any other threads but them
4004     // after this point in a terminal safepoint.
4005 
4006     MutexLocker ml(Heap_lock);
4007 
4008     VMThread::wait_for_vm_thread_exit();
4009     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
4010     VMThread::destroy();
4011   }
4012 
4013   // clean up ideal graph printers
4014 #if defined(COMPILER2) && !defined(PRODUCT)
4015   IdealGraphPrinter::clean_up();
4016 #endif
4017 
4018   // Now, all Java threads are gone except daemon threads. Daemon threads
4019   // running Java code or in VM are stopped by the Safepoint. However,
4020   // daemon threads executing native code are still running.  But they
4021   // will be stopped at native=>Java/VM barriers. Note that we can't
4022   // simply kill or suspend them, as it is inherently deadlock-prone.
4023 
4024 #ifndef PRODUCT
4025   // disable function tracing at JNI/JVM barriers
4026   TraceJNICalls = false;
4027   TraceJVMCalls = false;
4028   TraceRuntimeCalls = false;
4029 #endif
4030 
4031   VM_Exit::set_vm_exited();
4032 
4033   notify_vm_shutdown();
4034 
4035   delete thread;
4036 
4037   // exit_globals() will delete tty
4038   exit_globals();
4039 
4040   return true;
4041 }
4042 
4043 
4044 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
4045   if (version == JNI_VERSION_1_1) return JNI_TRUE;
4046   return is_supported_jni_version(version);
4047 }
4048 
4049 
4050 jboolean Threads::is_supported_jni_version(jint version) {
4051   if (version == JNI_VERSION_1_2) return JNI_TRUE;
4052   if (version == JNI_VERSION_1_4) return JNI_TRUE;
4053   if (version == JNI_VERSION_1_6) return JNI_TRUE;
4054   if (version == JNI_VERSION_1_8) return JNI_TRUE;
4055   return JNI_FALSE;
4056 }
4057 
4058 
4059 void Threads::add(JavaThread* p, bool force_daemon) {
4060   // The threads lock must be owned at this point
4061   assert_locked_or_safepoint(Threads_lock);
4062 
4063   // See the comment for this method in thread.hpp for its purpose and
4064   // why it is called here.
4065   p->initialize_queues();
4066   p->set_next(_thread_list);
4067   _thread_list = p;
4068   _number_of_threads++;
4069   oop threadObj = p->threadObj();
4070   bool daemon = true;
4071   // Bootstrapping problem: threadObj can be null for initial
4072   // JavaThread (or for threads attached via JNI)
4073   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4074     _number_of_non_daemon_threads++;
4075     daemon = false;
4076   }
4077 
4078   p->set_safepoint_visible(true);
4079 
4080   ThreadService::add_thread(p, daemon);
4081 
4082   // Possible GC point.
4083   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4084 }
4085 
4086 void Threads::remove(JavaThread* p) {
4087   // Extra scope needed for Thread_lock, so we can check
4088   // that we do not remove thread without safepoint code notice
4089   { MutexLocker ml(Threads_lock);
4090 
4091     assert(includes(p), "p must be present");
4092 
4093     JavaThread* current = _thread_list;
4094     JavaThread* prev    = NULL;
4095 
4096     while (current != p) {
4097       prev    = current;
4098       current = current->next();
4099     }
4100 
4101     if (prev) {
4102       prev->set_next(current->next());
4103     } else {
4104       _thread_list = p->next();
4105     }
4106     _number_of_threads--;
4107     oop threadObj = p->threadObj();
4108     bool daemon = true;
4109     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4110       _number_of_non_daemon_threads--;
4111       daemon = false;
4112 
4113       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4114       // on destroy_vm will wake up.
4115       if (number_of_non_daemon_threads() == 1)
4116         Threads_lock->notify_all();
4117     }
4118     ThreadService::remove_thread(p, daemon);
4119 
4120     // Make sure that safepoint code disregard this thread. This is needed since
4121     // the thread might mess around with locks after this point. This can cause it
4122     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4123     // of this thread since it is removed from the queue.
4124     p->set_terminated_value();
4125 
4126     // Now, this thread is not visible to safepoint
4127     p->set_safepoint_visible(false);
4128     // once the thread becomes safepoint invisible, we can not use its per-thread
4129     // recorder. And Threads::do_threads() no longer walks this thread, so we have
4130     // to release its per-thread recorder here.
4131     MemTracker::thread_exiting(p);
4132   } // unlock Threads_lock
4133 
4134   // Since Events::log uses a lock, we grab it outside the Threads_lock
4135   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4136 }
4137 
4138 // Threads_lock must be held when this is called (or must be called during a safepoint)
4139 bool Threads::includes(JavaThread* p) {
4140   assert(Threads_lock->is_locked(), "sanity check");
4141   ALL_JAVA_THREADS(q) {
4142     if (q == p ) {
4143       return true;
4144     }
4145   }
4146   return false;
4147 }
4148 
4149 // Operations on the Threads list for GC.  These are not explicitly locked,
4150 // but the garbage collector must provide a safe context for them to run.
4151 // In particular, these things should never be called when the Threads_lock
4152 // is held by some other thread. (Note: the Safepoint abstraction also
4153 // uses the Threads_lock to gurantee this property. It also makes sure that
4154 // all threads gets blocked when exiting or starting).
4155 
4156 void Threads::oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4157   ALL_JAVA_THREADS(p) {
4158     p->oops_do(f, cld_f, cf);
4159   }
4160   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4161 }
4162 
4163 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDToOopClosure* cld_f, CodeBlobClosure* cf) {
4164   // Introduce a mechanism allowing parallel threads to claim threads as
4165   // root groups.  Overhead should be small enough to use all the time,
4166   // even in sequential code.
4167   SharedHeap* sh = SharedHeap::heap();
4168   // Cannot yet substitute active_workers for n_par_threads
4169   // because of G1CollectedHeap::verify() use of
4170   // SharedHeap::process_strong_roots().  n_par_threads == 0 will
4171   // turn off parallelism in process_strong_roots while active_workers
4172   // is being used for parallelism elsewhere.
4173   bool is_par = sh->n_par_threads() > 0;
4174   assert(!is_par ||
4175          (SharedHeap::heap()->n_par_threads() ==
4176           SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4177   int cp = SharedHeap::heap()->strong_roots_parity();
4178   ALL_JAVA_THREADS(p) {
4179     if (p->claim_oops_do(is_par, cp)) {
4180       p->oops_do(f, cld_f, cf);
4181     }
4182   }
4183   VMThread* vmt = VMThread::vm_thread();
4184   if (vmt->claim_oops_do(is_par, cp)) {
4185     vmt->oops_do(f, cld_f, cf);
4186   }
4187 }
4188 
4189 #if INCLUDE_ALL_GCS
4190 // Used by ParallelScavenge
4191 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4192   ALL_JAVA_THREADS(p) {
4193     q->enqueue(new ThreadRootsTask(p));
4194   }
4195   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4196 }
4197 
4198 // Used by Parallel Old
4199 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4200   ALL_JAVA_THREADS(p) {
4201     q->enqueue(new ThreadRootsMarkingTask(p));
4202   }
4203   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4204 }
4205 #endif // INCLUDE_ALL_GCS
4206 
4207 void Threads::nmethods_do(CodeBlobClosure* cf) {
4208   ALL_JAVA_THREADS(p) {
4209     p->nmethods_do(cf);
4210   }
4211   VMThread::vm_thread()->nmethods_do(cf);
4212 }
4213 
4214 void Threads::metadata_do(void f(Metadata*)) {
4215   ALL_JAVA_THREADS(p) {
4216     p->metadata_do(f);
4217   }
4218 }
4219 
4220 void Threads::gc_epilogue() {
4221   ALL_JAVA_THREADS(p) {
4222     p->gc_epilogue();
4223   }
4224 }
4225 
4226 void Threads::gc_prologue() {
4227   ALL_JAVA_THREADS(p) {
4228     p->gc_prologue();
4229   }
4230 }
4231 
4232 void Threads::deoptimized_wrt_marked_nmethods() {
4233   ALL_JAVA_THREADS(p) {
4234     p->deoptimized_wrt_marked_nmethods();
4235   }
4236 }
4237 
4238 
4239 // Get count Java threads that are waiting to enter the specified monitor.
4240 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4241   address monitor, bool doLock) {
4242   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4243     "must grab Threads_lock or be at safepoint");
4244   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4245 
4246   int i = 0;
4247   {
4248     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4249     ALL_JAVA_THREADS(p) {
4250       if (p->is_Compiler_thread()) continue;
4251 
4252       address pending = (address)p->current_pending_monitor();
4253       if (pending == monitor) {             // found a match
4254         if (i < count) result->append(p);   // save the first count matches
4255         i++;
4256       }
4257     }
4258   }
4259   return result;
4260 }
4261 
4262 
4263 JavaThread *Threads::owning_thread_from_monitor_owner(address owner, bool doLock) {
4264   assert(doLock ||
4265          Threads_lock->owned_by_self() ||
4266          SafepointSynchronize::is_at_safepoint(),
4267          "must grab Threads_lock or be at safepoint");
4268 
4269   // NULL owner means not locked so we can skip the search
4270   if (owner == NULL) return NULL;
4271 
4272   {
4273     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4274     ALL_JAVA_THREADS(p) {
4275       // first, see if owner is the address of a Java thread
4276       if (owner == (address)p) return p;
4277     }
4278   }
4279   // Cannot assert on lack of success here since this function may be
4280   // used by code that is trying to report useful problem information
4281   // like deadlock detection.
4282   if (UseHeavyMonitors) return NULL;
4283 
4284   //
4285   // If we didn't find a matching Java thread and we didn't force use of
4286   // heavyweight monitors, then the owner is the stack address of the
4287   // Lock Word in the owning Java thread's stack.
4288   //
4289   JavaThread* the_owner = NULL;
4290   {
4291     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4292     ALL_JAVA_THREADS(q) {
4293       if (q->is_lock_owned(owner)) {
4294         the_owner = q;
4295         break;
4296       }
4297     }
4298   }
4299   // cannot assert on lack of success here; see above comment
4300   return the_owner;
4301 }
4302 
4303 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4304 void Threads::print_on(outputStream* st, bool print_stacks, bool internal_format, bool print_concurrent_locks) {
4305   char buf[32];
4306   st->print_cr(os::local_time_string(buf, sizeof(buf)));
4307 
4308   st->print_cr("Full thread dump %s (%s %s):",
4309                 Abstract_VM_Version::vm_name(),
4310                 Abstract_VM_Version::vm_release(),
4311                 Abstract_VM_Version::vm_info_string()
4312                );
4313   st->cr();
4314 
4315 #if INCLUDE_ALL_GCS
4316   // Dump concurrent locks
4317   ConcurrentLocksDump concurrent_locks;
4318   if (print_concurrent_locks) {
4319     concurrent_locks.dump_at_safepoint();
4320   }
4321 #endif // INCLUDE_ALL_GCS
4322 
4323   ALL_JAVA_THREADS(p) {
4324     ResourceMark rm;
4325     p->print_on(st);
4326     if (print_stacks) {
4327       if (internal_format) {
4328         p->trace_stack();
4329       } else {
4330         p->print_stack_on(st);
4331       }
4332     }
4333     st->cr();
4334 #if INCLUDE_ALL_GCS
4335     if (print_concurrent_locks) {
4336       concurrent_locks.print_locks_on(p, st);
4337     }
4338 #endif // INCLUDE_ALL_GCS
4339   }
4340 
4341   VMThread::vm_thread()->print_on(st);
4342   st->cr();
4343   Universe::heap()->print_gc_threads_on(st);
4344   WatcherThread* wt = WatcherThread::watcher_thread();
4345   if (wt != NULL) {
4346     wt->print_on(st);
4347     st->cr();
4348   }
4349   CompileBroker::print_compiler_threads_on(st);
4350   st->flush();
4351 }
4352 
4353 // Threads::print_on_error() is called by fatal error handler. It's possible
4354 // that VM is not at safepoint and/or current thread is inside signal handler.
4355 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4356 // memory (even in resource area), it might deadlock the error handler.
4357 void Threads::print_on_error(outputStream* st, Thread* current, char* buf, int buflen) {
4358   bool found_current = false;
4359   st->print_cr("Java Threads: ( => current thread )");
4360   ALL_JAVA_THREADS(thread) {
4361     bool is_current = (current == thread);
4362     found_current = found_current || is_current;
4363 
4364     st->print("%s", is_current ? "=>" : "  ");
4365 
4366     st->print(PTR_FORMAT, thread);
4367     st->print(" ");
4368     thread->print_on_error(st, buf, buflen);
4369     st->cr();
4370   }
4371   st->cr();
4372 
4373   st->print_cr("Other Threads:");
4374   if (VMThread::vm_thread()) {
4375     bool is_current = (current == VMThread::vm_thread());
4376     found_current = found_current || is_current;
4377     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4378 
4379     st->print(PTR_FORMAT, VMThread::vm_thread());
4380     st->print(" ");
4381     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4382     st->cr();
4383   }
4384   WatcherThread* wt = WatcherThread::watcher_thread();
4385   if (wt != NULL) {
4386     bool is_current = (current == wt);
4387     found_current = found_current || is_current;
4388     st->print("%s", is_current ? "=>" : "  ");
4389 
4390     st->print(PTR_FORMAT, wt);
4391     st->print(" ");
4392     wt->print_on_error(st, buf, buflen);
4393     st->cr();
4394   }
4395   if (!found_current) {
4396     st->cr();
4397     st->print("=>" PTR_FORMAT " (exited) ", current);
4398     current->print_on_error(st, buf, buflen);
4399     st->cr();
4400   }
4401 }
4402 
4403 // Internal SpinLock and Mutex
4404 // Based on ParkEvent
4405 
4406 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4407 //
4408 // We employ SpinLocks _only for low-contention, fixed-length
4409 // short-duration critical sections where we're concerned
4410 // about native mutex_t or HotSpot Mutex:: latency.
4411 // The mux construct provides a spin-then-block mutual exclusion
4412 // mechanism.
4413 //
4414 // Testing has shown that contention on the ListLock guarding gFreeList
4415 // is common.  If we implement ListLock as a simple SpinLock it's common
4416 // for the JVM to devolve to yielding with little progress.  This is true
4417 // despite the fact that the critical sections protected by ListLock are
4418 // extremely short.
4419 //
4420 // TODO-FIXME: ListLock should be of type SpinLock.
4421 // We should make this a 1st-class type, integrated into the lock
4422 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4423 // should have sufficient padding to avoid false-sharing and excessive
4424 // cache-coherency traffic.
4425 
4426 
4427 typedef volatile int SpinLockT ;
4428 
4429 void Thread::SpinAcquire (volatile int * adr, const char * LockName) {
4430   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4431      return ;   // normal fast-path return
4432   }
4433 
4434   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4435   TEVENT (SpinAcquire - ctx) ;
4436   int ctr = 0 ;
4437   int Yields = 0 ;
4438   for (;;) {
4439      while (*adr != 0) {
4440         ++ctr ;
4441         if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4442            if (Yields > 5) {
4443              // Consider using a simple NakedSleep() instead.
4444              // Then SpinAcquire could be called by non-JVM threads
4445              Thread::current()->_ParkEvent->park(1) ;
4446            } else {
4447              os::NakedYield() ;
4448              ++Yields ;
4449            }
4450         } else {
4451            SpinPause() ;
4452         }
4453      }
4454      if (Atomic::cmpxchg (1, adr, 0) == 0) return ;
4455   }
4456 }
4457 
4458 void Thread::SpinRelease (volatile int * adr) {
4459   assert (*adr != 0, "invariant") ;
4460   OrderAccess::fence() ;      // guarantee at least release consistency.
4461   // Roach-motel semantics.
4462   // It's safe if subsequent LDs and STs float "up" into the critical section,
4463   // but prior LDs and STs within the critical section can't be allowed
4464   // to reorder or float past the ST that releases the lock.
4465   *adr = 0 ;
4466 }
4467 
4468 // muxAcquire and muxRelease:
4469 //
4470 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4471 //    The LSB of the word is set IFF the lock is held.
4472 //    The remainder of the word points to the head of a singly-linked list
4473 //    of threads blocked on the lock.
4474 //
4475 // *  The current implementation of muxAcquire-muxRelease uses its own
4476 //    dedicated Thread._MuxEvent instance.  If we're interested in
4477 //    minimizing the peak number of extant ParkEvent instances then
4478 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4479 //    as certain invariants were satisfied.  Specifically, care would need
4480 //    to be taken with regards to consuming unpark() "permits".
4481 //    A safe rule of thumb is that a thread would never call muxAcquire()
4482 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4483 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4484 //    consume an unpark() permit intended for monitorenter, for instance.
4485 //    One way around this would be to widen the restricted-range semaphore
4486 //    implemented in park().  Another alternative would be to provide
4487 //    multiple instances of the PlatformEvent() for each thread.  One
4488 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4489 //
4490 // *  Usage:
4491 //    -- Only as leaf locks
4492 //    -- for short-term locking only as muxAcquire does not perform
4493 //       thread state transitions.
4494 //
4495 // Alternatives:
4496 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4497 //    but with parking or spin-then-park instead of pure spinning.
4498 // *  Use Taura-Oyama-Yonenzawa locks.
4499 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4500 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4501 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4502 //    acquiring threads use timers (ParkTimed) to detect and recover from
4503 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4504 //    boundaries by using placement-new.
4505 // *  Augment MCS with advisory back-link fields maintained with CAS().
4506 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4507 //    The validity of the backlinks must be ratified before we trust the value.
4508 //    If the backlinks are invalid the exiting thread must back-track through the
4509 //    the forward links, which are always trustworthy.
4510 // *  Add a successor indication.  The LockWord is currently encoded as
4511 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4512 //    to provide the usual futile-wakeup optimization.
4513 //    See RTStt for details.
4514 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4515 //
4516 
4517 
4518 typedef volatile intptr_t MutexT ;      // Mux Lock-word
4519 enum MuxBits { LOCKBIT = 1 } ;
4520 
4521 void Thread::muxAcquire (volatile intptr_t * Lock, const char * LockName) {
4522   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4523   if (w == 0) return ;
4524   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4525      return ;
4526   }
4527 
4528   TEVENT (muxAcquire - Contention) ;
4529   ParkEvent * const Self = Thread::current()->_MuxEvent ;
4530   assert ((intptr_t(Self) & LOCKBIT) == 0, "invariant") ;
4531   for (;;) {
4532      int its = (os::is_MP() ? 100 : 0) + 1 ;
4533 
4534      // Optional spin phase: spin-then-park strategy
4535      while (--its >= 0) {
4536        w = *Lock ;
4537        if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4538           return ;
4539        }
4540      }
4541 
4542      Self->reset() ;
4543      Self->OnList = intptr_t(Lock) ;
4544      // The following fence() isn't _strictly necessary as the subsequent
4545      // CAS() both serializes execution and ratifies the fetched *Lock value.
4546      OrderAccess::fence();
4547      for (;;) {
4548         w = *Lock ;
4549         if ((w & LOCKBIT) == 0) {
4550             if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4551                 Self->OnList = 0 ;   // hygiene - allows stronger asserts
4552                 return ;
4553             }
4554             continue ;      // Interference -- *Lock changed -- Just retry
4555         }
4556         assert (w & LOCKBIT, "invariant") ;
4557         Self->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4558         if (Atomic::cmpxchg_ptr (intptr_t(Self)|LOCKBIT, Lock, w) == w) break ;
4559      }
4560 
4561      while (Self->OnList != 0) {
4562         Self->park() ;
4563      }
4564   }
4565 }
4566 
4567 void Thread::muxAcquireW (volatile intptr_t * Lock, ParkEvent * ev) {
4568   intptr_t w = Atomic::cmpxchg_ptr (LOCKBIT, Lock, 0) ;
4569   if (w == 0) return ;
4570   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4571     return ;
4572   }
4573 
4574   TEVENT (muxAcquire - Contention) ;
4575   ParkEvent * ReleaseAfter = NULL ;
4576   if (ev == NULL) {
4577     ev = ReleaseAfter = ParkEvent::Allocate (NULL) ;
4578   }
4579   assert ((intptr_t(ev) & LOCKBIT) == 0, "invariant") ;
4580   for (;;) {
4581     guarantee (ev->OnList == 0, "invariant") ;
4582     int its = (os::is_MP() ? 100 : 0) + 1 ;
4583 
4584     // Optional spin phase: spin-then-park strategy
4585     while (--its >= 0) {
4586       w = *Lock ;
4587       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4588         if (ReleaseAfter != NULL) {
4589           ParkEvent::Release (ReleaseAfter) ;
4590         }
4591         return ;
4592       }
4593     }
4594 
4595     ev->reset() ;
4596     ev->OnList = intptr_t(Lock) ;
4597     // The following fence() isn't _strictly necessary as the subsequent
4598     // CAS() both serializes execution and ratifies the fetched *Lock value.
4599     OrderAccess::fence();
4600     for (;;) {
4601       w = *Lock ;
4602       if ((w & LOCKBIT) == 0) {
4603         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4604           ev->OnList = 0 ;
4605           // We call ::Release while holding the outer lock, thus
4606           // artificially lengthening the critical section.
4607           // Consider deferring the ::Release() until the subsequent unlock(),
4608           // after we've dropped the outer lock.
4609           if (ReleaseAfter != NULL) {
4610             ParkEvent::Release (ReleaseAfter) ;
4611           }
4612           return ;
4613         }
4614         continue ;      // Interference -- *Lock changed -- Just retry
4615       }
4616       assert (w & LOCKBIT, "invariant") ;
4617       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT );
4618       if (Atomic::cmpxchg_ptr (intptr_t(ev)|LOCKBIT, Lock, w) == w) break ;
4619     }
4620 
4621     while (ev->OnList != 0) {
4622       ev->park() ;
4623     }
4624   }
4625 }
4626 
4627 // Release() must extract a successor from the list and then wake that thread.
4628 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4629 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4630 // Release() would :
4631 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4632 // (B) Extract a successor from the private list "in-hand"
4633 // (C) attempt to CAS() the residual back into *Lock over null.
4634 //     If there were any newly arrived threads and the CAS() would fail.
4635 //     In that case Release() would detach the RATs, re-merge the list in-hand
4636 //     with the RATs and repeat as needed.  Alternately, Release() might
4637 //     detach and extract a successor, but then pass the residual list to the wakee.
4638 //     The wakee would be responsible for reattaching and remerging before it
4639 //     competed for the lock.
4640 //
4641 // Both "pop" and DMR are immune from ABA corruption -- there can be
4642 // multiple concurrent pushers, but only one popper or detacher.
4643 // This implementation pops from the head of the list.  This is unfair,
4644 // but tends to provide excellent throughput as hot threads remain hot.
4645 // (We wake recently run threads first).
4646 
4647 void Thread::muxRelease (volatile intptr_t * Lock)  {
4648   for (;;) {
4649     const intptr_t w = Atomic::cmpxchg_ptr (0, Lock, LOCKBIT) ;
4650     assert (w & LOCKBIT, "invariant") ;
4651     if (w == LOCKBIT) return ;
4652     ParkEvent * List = (ParkEvent *) (w & ~LOCKBIT) ;
4653     assert (List != NULL, "invariant") ;
4654     assert (List->OnList == intptr_t(Lock), "invariant") ;
4655     ParkEvent * nxt = List->ListNext ;
4656 
4657     // The following CAS() releases the lock and pops the head element.
4658     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4659       continue ;
4660     }
4661     List->OnList = 0 ;
4662     OrderAccess::fence() ;
4663     List->unpark () ;
4664     return ;
4665   }
4666 }
4667 
4668 
4669 void Threads::verify() {
4670   ALL_JAVA_THREADS(p) {
4671     p->verify();
4672   }
4673   VMThread* thread = VMThread::vm_thread();
4674   if (thread != NULL) thread->verify();
4675 }