1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/heapRegion.hpp"
  39 #include "gc_interface/collectedHeap.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/callnode.hpp"
  50 #include "opto/cfgnode.hpp"
  51 #include "opto/connode.hpp"
  52 #include "opto/graphKit.hpp"
  53 #include "opto/machnode.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/runtime.hpp"
  58 #include "opto/subnode.hpp"
  59 #include "runtime/fprofiler.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vframe_hp.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/preserveException.hpp"
  71 #ifdef TARGET_ARCH_MODEL_x86_32
  72 # include "adfiles/ad_x86_32.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_MODEL_arm
  84 # include "adfiles/ad_arm.hpp"
  85 #endif
  86 #ifdef TARGET_ARCH_MODEL_ppc
  87 # include "adfiles/ad_ppc.hpp"
  88 #endif
  89 
  90 
  91 // For debugging purposes:
  92 //  To force FullGCALot inside a runtime function, add the following two lines
  93 //
  94 //  Universe::release_fullgc_alot_dummy();
  95 //  MarkSweep::invoke(0, "Debugging");
  96 //
  97 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  98 
  99 
 100 
 101 
 102 // Compiled code entry points
 103 address OptoRuntime::_new_instance_Java                           = NULL;
 104 address OptoRuntime::_new_array_Java                              = NULL;
 105 address OptoRuntime::_new_array_nozero_Java                       = NULL;
 106 address OptoRuntime::_multianewarray2_Java                        = NULL;
 107 address OptoRuntime::_multianewarray3_Java                        = NULL;
 108 address OptoRuntime::_multianewarray4_Java                        = NULL;
 109 address OptoRuntime::_multianewarray5_Java                        = NULL;
 110 address OptoRuntime::_multianewarrayN_Java                        = NULL;
 111 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
 112 address OptoRuntime::_g1_wb_post_Java                             = NULL;
 113 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 114 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 115 address OptoRuntime::_rethrow_Java                                = NULL;
 116 
 117 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 118 address OptoRuntime::_register_finalizer_Java                     = NULL;
 119 
 120 # ifdef ENABLE_ZAP_DEAD_LOCALS
 121 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 122 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 123 # endif
 124 
 125 ExceptionBlob* OptoRuntime::_exception_blob;
 126 
 127 // This should be called in an assertion at the start of OptoRuntime routines
 128 // which are entered from compiled code (all of them)
 129 #ifdef ASSERT
 130 static bool check_compiled_frame(JavaThread* thread) {
 131   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 132   RegisterMap map(thread, false);
 133   frame caller = thread->last_frame().sender(&map);
 134   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 135   return true;
 136 }
 137 #endif // ASSERT
 138 
 139 
 140 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 141   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 142   if (var == NULL) { return false; }
 143 
 144 bool OptoRuntime::generate(ciEnv* env) {
 145 
 146   generate_exception_blob();
 147 
 148   // Note: tls: Means fetching the return oop out of the thread-local storage
 149   //
 150   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 151   // -------------------------------------------------------------------------------------------------------------------------------
 152   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 153   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 154   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 155   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 156   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 157   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 158   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 159   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 160   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 161   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 162   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 163   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 164 
 165   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 166   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 167 
 168 # ifdef ENABLE_ZAP_DEAD_LOCALS
 169   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 170   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 171 # endif
 172   return true;
 173 }
 174 
 175 #undef gen
 176 
 177 
 178 // Helper method to do generation of RunTimeStub's
 179 address OptoRuntime::generate_stub( ciEnv* env,
 180                                     TypeFunc_generator gen, address C_function,
 181                                     const char *name, int is_fancy_jump,
 182                                     bool pass_tls,
 183                                     bool save_argument_registers,
 184                                     bool return_pc ) {
 185   ResourceMark rm;
 186   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 187   return  C.stub_entry_point();
 188 }
 189 
 190 const char* OptoRuntime::stub_name(address entry) {
 191 #ifndef PRODUCT
 192   CodeBlob* cb = CodeCache::find_blob(entry);
 193   RuntimeStub* rs =(RuntimeStub *)cb;
 194   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 195   return rs->name();
 196 #else
 197   // Fast implementation for product mode (maybe it should be inlined too)
 198   return "runtime stub";
 199 #endif
 200 }
 201 
 202 
 203 //=============================================================================
 204 // Opto compiler runtime routines
 205 //=============================================================================
 206 
 207 
 208 //=============================allocation======================================
 209 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 210 // and try allocation again.
 211 
 212 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 213   // After any safepoint, just before going back to compiled code,
 214   // we inform the GC that we will be doing initializing writes to
 215   // this object in the future without emitting card-marks, so
 216   // GC may take any compensating steps.
 217   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 218 
 219   oop new_obj = thread->vm_result();
 220   if (new_obj == NULL)  return;
 221 
 222   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 223          "compiler must check this first");
 224   // GC may decide to give back a safer copy of new_obj.
 225   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 226   thread->set_vm_result(new_obj);
 227 }
 228 
 229 // object allocation
 230 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 231   JRT_BLOCK;
 232 #ifndef PRODUCT
 233   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 234 #endif
 235   assert(check_compiled_frame(thread), "incorrect caller");
 236 
 237   // These checks are cheap to make and support reflective allocation.
 238   int lh = klass->layout_helper();
 239   if (Klass::layout_helper_needs_slow_path(lh)
 240       || !InstanceKlass::cast(klass)->is_initialized()) {
 241     KlassHandle kh(THREAD, klass);
 242     kh->check_valid_for_instantiation(false, THREAD);
 243     if (!HAS_PENDING_EXCEPTION) {
 244       InstanceKlass::cast(kh())->initialize(THREAD);
 245     }
 246     if (!HAS_PENDING_EXCEPTION) {
 247       klass = kh();
 248     } else {
 249       klass = NULL;
 250     }
 251   }
 252 
 253   if (klass != NULL) {
 254     // Scavenge and allocate an instance.
 255     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 256     thread->set_vm_result(result);
 257 
 258     // Pass oops back through thread local storage.  Our apparent type to Java
 259     // is that we return an oop, but we can block on exit from this routine and
 260     // a GC can trash the oop in C's return register.  The generated stub will
 261     // fetch the oop from TLS after any possible GC.
 262   }
 263 
 264   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 265   JRT_BLOCK_END;
 266 
 267   if (GraphKit::use_ReduceInitialCardMarks()) {
 268     // inform GC that we won't do card marks for initializing writes.
 269     new_store_pre_barrier(thread);
 270   }
 271 JRT_END
 272 
 273 
 274 // array allocation
 275 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 276   JRT_BLOCK;
 277 #ifndef PRODUCT
 278   SharedRuntime::_new_array_ctr++;            // new array requires GC
 279 #endif
 280   assert(check_compiled_frame(thread), "incorrect caller");
 281 
 282   // Scavenge and allocate an instance.
 283   oop result;
 284 
 285   if (array_type->oop_is_typeArray()) {
 286     // The oopFactory likes to work with the element type.
 287     // (We could bypass the oopFactory, since it doesn't add much value.)
 288     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 289     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 290   } else {
 291     // Although the oopFactory likes to work with the elem_type,
 292     // the compiler prefers the array_type, since it must already have
 293     // that latter value in hand for the fast path.
 294     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 295     result = oopFactory::new_objArray(elem_type, len, THREAD);
 296   }
 297 
 298   // Pass oops back through thread local storage.  Our apparent type to Java
 299   // is that we return an oop, but we can block on exit from this routine and
 300   // a GC can trash the oop in C's return register.  The generated stub will
 301   // fetch the oop from TLS after any possible GC.
 302   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 303   thread->set_vm_result(result);
 304   JRT_BLOCK_END;
 305 
 306   if (GraphKit::use_ReduceInitialCardMarks()) {
 307     // inform GC that we won't do card marks for initializing writes.
 308     new_store_pre_barrier(thread);
 309   }
 310 JRT_END
 311 
 312 // array allocation without zeroing
 313 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 314   JRT_BLOCK;
 315 #ifndef PRODUCT
 316   SharedRuntime::_new_array_ctr++;            // new array requires GC
 317 #endif
 318   assert(check_compiled_frame(thread), "incorrect caller");
 319 
 320   // Scavenge and allocate an instance.
 321   oop result;
 322 
 323   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 324   // The oopFactory likes to work with the element type.
 325   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 326   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 327 
 328   // Pass oops back through thread local storage.  Our apparent type to Java
 329   // is that we return an oop, but we can block on exit from this routine and
 330   // a GC can trash the oop in C's return register.  The generated stub will
 331   // fetch the oop from TLS after any possible GC.
 332   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 333   thread->set_vm_result(result);
 334   JRT_BLOCK_END;
 335 
 336   if (GraphKit::use_ReduceInitialCardMarks()) {
 337     // inform GC that we won't do card marks for initializing writes.
 338     new_store_pre_barrier(thread);
 339   }
 340 
 341   oop result = thread->vm_result();
 342   if ((len > 0) && (result != NULL) &&
 343       is_deoptimized_caller_frame(thread)) {
 344     // Zero array here if the caller is deoptimized.
 345     int size = ((typeArrayOop)result)->object_size();
 346     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 347     const size_t hs = arrayOopDesc::header_size(elem_type);
 348     // Align to next 8 bytes to avoid trashing arrays's length.
 349     const size_t aligned_hs = align_object_offset(hs);
 350     HeapWord* obj = (HeapWord*)result;
 351     if (aligned_hs > hs) {
 352       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 353     }
 354     // Optimized zeroing.
 355     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 356   }
 357 
 358 JRT_END
 359 
 360 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 361 
 362 // multianewarray for 2 dimensions
 363 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 364 #ifndef PRODUCT
 365   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 366 #endif
 367   assert(check_compiled_frame(thread), "incorrect caller");
 368   assert(elem_type->is_klass(), "not a class");
 369   jint dims[2];
 370   dims[0] = len1;
 371   dims[1] = len2;
 372   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 373   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 374   thread->set_vm_result(obj);
 375 JRT_END
 376 
 377 // multianewarray for 3 dimensions
 378 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 379 #ifndef PRODUCT
 380   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 381 #endif
 382   assert(check_compiled_frame(thread), "incorrect caller");
 383   assert(elem_type->is_klass(), "not a class");
 384   jint dims[3];
 385   dims[0] = len1;
 386   dims[1] = len2;
 387   dims[2] = len3;
 388   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 389   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 390   thread->set_vm_result(obj);
 391 JRT_END
 392 
 393 // multianewarray for 4 dimensions
 394 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 395 #ifndef PRODUCT
 396   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 397 #endif
 398   assert(check_compiled_frame(thread), "incorrect caller");
 399   assert(elem_type->is_klass(), "not a class");
 400   jint dims[4];
 401   dims[0] = len1;
 402   dims[1] = len2;
 403   dims[2] = len3;
 404   dims[3] = len4;
 405   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 406   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 407   thread->set_vm_result(obj);
 408 JRT_END
 409 
 410 // multianewarray for 5 dimensions
 411 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 412 #ifndef PRODUCT
 413   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 414 #endif
 415   assert(check_compiled_frame(thread), "incorrect caller");
 416   assert(elem_type->is_klass(), "not a class");
 417   jint dims[5];
 418   dims[0] = len1;
 419   dims[1] = len2;
 420   dims[2] = len3;
 421   dims[3] = len4;
 422   dims[4] = len5;
 423   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 424   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 425   thread->set_vm_result(obj);
 426 JRT_END
 427 
 428 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 429   assert(check_compiled_frame(thread), "incorrect caller");
 430   assert(elem_type->is_klass(), "not a class");
 431   assert(oop(dims)->is_typeArray(), "not an array");
 432 
 433   ResourceMark rm;
 434   jint len = dims->length();
 435   assert(len > 0, "Dimensions array should contain data");
 436   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 437   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 438   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 439 
 440   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 441   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 442   thread->set_vm_result(obj);
 443 JRT_END
 444 
 445 
 446 const TypeFunc *OptoRuntime::new_instance_Type() {
 447   // create input type (domain)
 448   const Type **fields = TypeTuple::fields(1);
 449   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 450   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 451 
 452   // create result type (range)
 453   fields = TypeTuple::fields(1);
 454   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 455 
 456   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 457 
 458   return TypeFunc::make(domain, range);
 459 }
 460 
 461 
 462 const TypeFunc *OptoRuntime::athrow_Type() {
 463   // create input type (domain)
 464   const Type **fields = TypeTuple::fields(1);
 465   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 466   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 467 
 468   // create result type (range)
 469   fields = TypeTuple::fields(0);
 470 
 471   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 472 
 473   return TypeFunc::make(domain, range);
 474 }
 475 
 476 
 477 const TypeFunc *OptoRuntime::new_array_Type() {
 478   // create input type (domain)
 479   const Type **fields = TypeTuple::fields(2);
 480   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 481   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 482   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 483 
 484   // create result type (range)
 485   fields = TypeTuple::fields(1);
 486   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 487 
 488   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 489 
 490   return TypeFunc::make(domain, range);
 491 }
 492 
 493 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 494   // create input type (domain)
 495   const int nargs = ndim + 1;
 496   const Type **fields = TypeTuple::fields(nargs);
 497   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 498   for( int i = 1; i < nargs; i++ )
 499     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 500   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 501 
 502   // create result type (range)
 503   fields = TypeTuple::fields(1);
 504   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 505   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 506 
 507   return TypeFunc::make(domain, range);
 508 }
 509 
 510 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 511   return multianewarray_Type(2);
 512 }
 513 
 514 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 515   return multianewarray_Type(3);
 516 }
 517 
 518 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 519   return multianewarray_Type(4);
 520 }
 521 
 522 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 523   return multianewarray_Type(5);
 524 }
 525 
 526 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 527   // create input type (domain)
 528   const Type **fields = TypeTuple::fields(2);
 529   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 530   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 531   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 532 
 533   // create result type (range)
 534   fields = TypeTuple::fields(1);
 535   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 536   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 537 
 538   return TypeFunc::make(domain, range);
 539 }
 540 
 541 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 542   const Type **fields = TypeTuple::fields(2);
 543   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 544   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 545   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 546 
 547   // create result type (range)
 548   fields = TypeTuple::fields(0);
 549   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 550 
 551   return TypeFunc::make(domain, range);
 552 }
 553 
 554 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 555 
 556   const Type **fields = TypeTuple::fields(2);
 557   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 558   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 559   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 560 
 561   // create result type (range)
 562   fields = TypeTuple::fields(0);
 563   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 564 
 565   return TypeFunc::make(domain, range);
 566 }
 567 
 568 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 569   // create input type (domain)
 570   const Type **fields = TypeTuple::fields(1);
 571   // Symbol* name of class to be loaded
 572   fields[TypeFunc::Parms+0] = TypeInt::INT;
 573   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 574 
 575   // create result type (range)
 576   fields = TypeTuple::fields(0);
 577   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 578 
 579   return TypeFunc::make(domain, range);
 580 }
 581 
 582 # ifdef ENABLE_ZAP_DEAD_LOCALS
 583 // Type used for stub generation for zap_dead_locals.
 584 // No inputs or outputs
 585 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 586   // create input type (domain)
 587   const Type **fields = TypeTuple::fields(0);
 588   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 589 
 590   // create result type (range)
 591   fields = TypeTuple::fields(0);
 592   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 593 
 594   return TypeFunc::make(domain,range);
 595 }
 596 # endif
 597 
 598 
 599 //-----------------------------------------------------------------------------
 600 // Monitor Handling
 601 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 602   // create input type (domain)
 603   const Type **fields = TypeTuple::fields(2);
 604   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 605   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 606   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 607 
 608   // create result type (range)
 609   fields = TypeTuple::fields(0);
 610 
 611   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 612 
 613   return TypeFunc::make(domain,range);
 614 }
 615 
 616 
 617 //-----------------------------------------------------------------------------
 618 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 619   // create input type (domain)
 620   const Type **fields = TypeTuple::fields(2);
 621   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 622   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 623   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 624 
 625   // create result type (range)
 626   fields = TypeTuple::fields(0);
 627 
 628   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 629 
 630   return TypeFunc::make(domain,range);
 631 }
 632 
 633 const TypeFunc* OptoRuntime::flush_windows_Type() {
 634   // create input type (domain)
 635   const Type** fields = TypeTuple::fields(1);
 636   fields[TypeFunc::Parms+0] = NULL; // void
 637   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 638 
 639   // create result type
 640   fields = TypeTuple::fields(1);
 641   fields[TypeFunc::Parms+0] = NULL; // void
 642   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 643 
 644   return TypeFunc::make(domain, range);
 645 }
 646 
 647 const TypeFunc* OptoRuntime::l2f_Type() {
 648   // create input type (domain)
 649   const Type **fields = TypeTuple::fields(2);
 650   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 651   fields[TypeFunc::Parms+1] = Type::HALF;
 652   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 653 
 654   // create result type (range)
 655   fields = TypeTuple::fields(1);
 656   fields[TypeFunc::Parms+0] = Type::FLOAT;
 657   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 658 
 659   return TypeFunc::make(domain, range);
 660 }
 661 
 662 const TypeFunc* OptoRuntime::modf_Type() {
 663   const Type **fields = TypeTuple::fields(2);
 664   fields[TypeFunc::Parms+0] = Type::FLOAT;
 665   fields[TypeFunc::Parms+1] = Type::FLOAT;
 666   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 667 
 668   // create result type (range)
 669   fields = TypeTuple::fields(1);
 670   fields[TypeFunc::Parms+0] = Type::FLOAT;
 671 
 672   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 673 
 674   return TypeFunc::make(domain, range);
 675 }
 676 
 677 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 678   // create input type (domain)
 679   const Type **fields = TypeTuple::fields(2);
 680   // Symbol* name of class to be loaded
 681   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 682   fields[TypeFunc::Parms+1] = Type::HALF;
 683   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 684 
 685   // create result type (range)
 686   fields = TypeTuple::fields(2);
 687   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 688   fields[TypeFunc::Parms+1] = Type::HALF;
 689   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 690 
 691   return TypeFunc::make(domain, range);
 692 }
 693 
 694 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 695   const Type **fields = TypeTuple::fields(4);
 696   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 697   fields[TypeFunc::Parms+1] = Type::HALF;
 698   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 699   fields[TypeFunc::Parms+3] = Type::HALF;
 700   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 701 
 702   // create result type (range)
 703   fields = TypeTuple::fields(2);
 704   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 705   fields[TypeFunc::Parms+1] = Type::HALF;
 706   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 707 
 708   return TypeFunc::make(domain, range);
 709 }
 710 
 711 //-------------- currentTimeMillis, currentTimeNanos, etc
 712 
 713 const TypeFunc* OptoRuntime::void_long_Type() {
 714   // create input type (domain)
 715   const Type **fields = TypeTuple::fields(0);
 716   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 717 
 718   // create result type (range)
 719   fields = TypeTuple::fields(2);
 720   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 721   fields[TypeFunc::Parms+1] = Type::HALF;
 722   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 723 
 724   return TypeFunc::make(domain, range);
 725 }
 726 
 727 // arraycopy stub variations:
 728 enum ArrayCopyType {
 729   ac_fast,                      // void(ptr, ptr, size_t)
 730   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 731   ac_slow,                      // void(ptr, int, ptr, int, int)
 732   ac_generic                    //  int(ptr, int, ptr, int, int)
 733 };
 734 
 735 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 736   // create input type (domain)
 737   int num_args      = (act == ac_fast ? 3 : 5);
 738   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 739   int argcnt = num_args;
 740   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 741   const Type** fields = TypeTuple::fields(argcnt);
 742   int argp = TypeFunc::Parms;
 743   fields[argp++] = TypePtr::NOTNULL;    // src
 744   if (num_size_args == 0) {
 745     fields[argp++] = TypeInt::INT;      // src_pos
 746   }
 747   fields[argp++] = TypePtr::NOTNULL;    // dest
 748   if (num_size_args == 0) {
 749     fields[argp++] = TypeInt::INT;      // dest_pos
 750     fields[argp++] = TypeInt::INT;      // length
 751   }
 752   while (num_size_args-- > 0) {
 753     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 754     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 755   }
 756   if (act == ac_checkcast) {
 757     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 758   }
 759   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 760   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 761 
 762   // create result type if needed
 763   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 764   fields = TypeTuple::fields(1);
 765   if (retcnt == 0)
 766     fields[TypeFunc::Parms+0] = NULL; // void
 767   else
 768     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 769   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 770   return TypeFunc::make(domain, range);
 771 }
 772 
 773 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 774   // This signature is simple:  Two base pointers and a size_t.
 775   return make_arraycopy_Type(ac_fast);
 776 }
 777 
 778 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 779   // An extension of fast_arraycopy_Type which adds type checking.
 780   return make_arraycopy_Type(ac_checkcast);
 781 }
 782 
 783 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 784   // This signature is exactly the same as System.arraycopy.
 785   // There are no intptr_t (int/long) arguments.
 786   return make_arraycopy_Type(ac_slow);
 787 }
 788 
 789 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 790   // This signature is like System.arraycopy, except that it returns status.
 791   return make_arraycopy_Type(ac_generic);
 792 }
 793 
 794 
 795 const TypeFunc* OptoRuntime::array_fill_Type() {
 796   // create input type (domain): pointer, int, size_t
 797   const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 798   int argp = TypeFunc::Parms;
 799   fields[argp++] = TypePtr::NOTNULL;
 800   fields[argp++] = TypeInt::INT;
 801   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 802   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 803   const TypeTuple *domain = TypeTuple::make(argp, fields);
 804 
 805   // create result type
 806   fields = TypeTuple::fields(1);
 807   fields[TypeFunc::Parms+0] = NULL; // void
 808   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 809 
 810   return TypeFunc::make(domain, range);
 811 }
 812 
 813 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 814 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 815   // create input type (domain)
 816   int num_args      = 3;
 817   int argcnt = num_args;
 818   const Type** fields = TypeTuple::fields(argcnt);
 819   int argp = TypeFunc::Parms;
 820   fields[argp++] = TypePtr::NOTNULL;    // src
 821   fields[argp++] = TypePtr::NOTNULL;    // dest
 822   fields[argp++] = TypePtr::NOTNULL;    // k array
 823   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 824   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 825 
 826   // no result type needed
 827   fields = TypeTuple::fields(1);
 828   fields[TypeFunc::Parms+0] = NULL; // void
 829   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 830   return TypeFunc::make(domain, range);
 831 }
 832 
 833 /**
 834  * int updateBytesCRC32(int crc, byte* b, int len)
 835  */
 836 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 837   // create input type (domain)
 838   int num_args      = 3;
 839   int argcnt = num_args;
 840   const Type** fields = TypeTuple::fields(argcnt);
 841   int argp = TypeFunc::Parms;
 842   fields[argp++] = TypeInt::INT;        // crc
 843   fields[argp++] = TypePtr::NOTNULL;    // src
 844   fields[argp++] = TypeInt::INT;        // len
 845   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 846   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 847 
 848   // result type needed
 849   fields = TypeTuple::fields(1);
 850   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 851   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 852   return TypeFunc::make(domain, range);
 853 }
 854 
 855 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning void
 856 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 857   // create input type (domain)
 858   int num_args      = 5;
 859   int argcnt = num_args;
 860   const Type** fields = TypeTuple::fields(argcnt);
 861   int argp = TypeFunc::Parms;
 862   fields[argp++] = TypePtr::NOTNULL;    // src
 863   fields[argp++] = TypePtr::NOTNULL;    // dest
 864   fields[argp++] = TypePtr::NOTNULL;    // k array
 865   fields[argp++] = TypePtr::NOTNULL;    // r array
 866   fields[argp++] = TypeInt::INT;        // src len
 867   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 868   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 869 
 870   // no result type needed
 871   fields = TypeTuple::fields(1);
 872   fields[TypeFunc::Parms+0] = NULL; // void
 873   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 874   return TypeFunc::make(domain, range);
 875 }
 876 
 877 //------------- Interpreter state access for on stack replacement
 878 const TypeFunc* OptoRuntime::osr_end_Type() {
 879   // create input type (domain)
 880   const Type **fields = TypeTuple::fields(1);
 881   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
 882   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 883 
 884   // create result type
 885   fields = TypeTuple::fields(1);
 886   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
 887   fields[TypeFunc::Parms+0] = NULL; // void
 888   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 889   return TypeFunc::make(domain, range);
 890 }
 891 
 892 //-------------- methodData update helpers
 893 
 894 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
 895   // create input type (domain)
 896   const Type **fields = TypeTuple::fields(2);
 897   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
 898   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
 899   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 900 
 901   // create result type
 902   fields = TypeTuple::fields(1);
 903   fields[TypeFunc::Parms+0] = NULL; // void
 904   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 905   return TypeFunc::make(domain,range);
 906 }
 907 
 908 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
 909   if (receiver == NULL) return;
 910   Klass* receiver_klass = receiver->klass();
 911 
 912   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
 913   int empty_row = -1;           // free row, if any is encountered
 914 
 915   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
 916   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
 917     // if (vc->receiver(row) == receiver_klass)
 918     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
 919     intptr_t row_recv = *(mdp + receiver_off);
 920     if (row_recv == (intptr_t) receiver_klass) {
 921       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
 922       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
 923       *(mdp + count_off) += DataLayout::counter_increment;
 924       return;
 925     } else if (row_recv == 0) {
 926       // else if (vc->receiver(row) == NULL)
 927       empty_row = (int) row;
 928     }
 929   }
 930 
 931   if (empty_row != -1) {
 932     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
 933     // vc->set_receiver(empty_row, receiver_klass);
 934     *(mdp + receiver_off) = (intptr_t) receiver_klass;
 935     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
 936     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
 937     *(mdp + count_off) = DataLayout::counter_increment;
 938   } else {
 939     // Receiver did not match any saved receiver and there is no empty row for it.
 940     // Increment total counter to indicate polymorphic case.
 941     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
 942     *count_p += DataLayout::counter_increment;
 943   }
 944 JRT_END
 945 
 946 //-------------------------------------------------------------------------------------
 947 // register policy
 948 
 949 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
 950   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
 951   switch (register_save_policy[reg]) {
 952     case 'C': return false; //SOC
 953     case 'E': return true ; //SOE
 954     case 'N': return false; //NS
 955     case 'A': return false; //AS
 956   }
 957   ShouldNotReachHere();
 958   return false;
 959 }
 960 
 961 //-----------------------------------------------------------------------
 962 // Exceptions
 963 //
 964 
 965 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
 966 
 967 // The method is an entry that is always called by a C++ method not
 968 // directly from compiled code. Compiled code will call the C++ method following.
 969 // We can't allow async exception to be installed during  exception processing.
 970 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
 971 
 972   // Do not confuse exception_oop with pending_exception. The exception_oop
 973   // is only used to pass arguments into the method. Not for general
 974   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
 975   // the runtime stubs checks this on exit.
 976   assert(thread->exception_oop() != NULL, "exception oop is found");
 977   address handler_address = NULL;
 978 
 979   Handle exception(thread, thread->exception_oop());
 980 
 981   if (TraceExceptions) {
 982     trace_exception(exception(), thread->exception_pc(), "");
 983   }
 984   // for AbortVMOnException flag
 985   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
 986 
 987   #ifdef ASSERT
 988     if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 989       // should throw an exception here
 990       ShouldNotReachHere();
 991     }
 992   #endif
 993 
 994 
 995   // new exception handling: this method is entered only from adapters
 996   // exceptions from compiled java methods are handled in compiled code
 997   // using rethrow node
 998 
 999   address pc = thread->exception_pc();
1000   nm = CodeCache::find_nmethod(pc);
1001   assert(nm != NULL, "No NMethod found");
1002   if (nm->is_native_method()) {
1003     fatal("Native mathod should not have path to exception handling");
1004   } else {
1005     // we are switching to old paradigm: search for exception handler in caller_frame
1006     // instead in exception handler of caller_frame.sender()
1007 
1008     if (JvmtiExport::can_post_on_exceptions()) {
1009       // "Full-speed catching" is not necessary here,
1010       // since we're notifying the VM on every catch.
1011       // Force deoptimization and the rest of the lookup
1012       // will be fine.
1013       deoptimize_caller_frame(thread);
1014     }
1015 
1016     // Check the stack guard pages.  If enabled, look for handler in this frame;
1017     // otherwise, forcibly unwind the frame.
1018     //
1019     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1020     bool force_unwind = !thread->reguard_stack();
1021     bool deopting = false;
1022     if (nm->is_deopt_pc(pc)) {
1023       deopting = true;
1024       RegisterMap map(thread, false);
1025       frame deoptee = thread->last_frame().sender(&map);
1026       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1027       // Adjust the pc back to the original throwing pc
1028       pc = deoptee.pc();
1029     }
1030 
1031     // If we are forcing an unwind because of stack overflow then deopt is
1032     // irrelevant sice we are throwing the frame away anyway.
1033 
1034     if (deopting && !force_unwind) {
1035       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1036     } else {
1037 
1038       handler_address =
1039         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1040 
1041       if (handler_address == NULL) {
1042         Handle original_exception(thread, exception());
1043         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1044         assert (handler_address != NULL, "must have compiled handler");
1045         // Update the exception cache only when the unwind was not forced
1046         // and there didn't happen another exception during the computation of the
1047         // compiled exception handler.
1048         if (!force_unwind && original_exception() == exception()) {
1049           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1050         }
1051       } else {
1052         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1053       }
1054     }
1055 
1056     thread->set_exception_pc(pc);
1057     thread->set_exception_handler_pc(handler_address);
1058 
1059     // Check if the exception PC is a MethodHandle call site.
1060     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1061   }
1062 
1063   // Restore correct return pc.  Was saved above.
1064   thread->set_exception_oop(exception());
1065   return handler_address;
1066 
1067 JRT_END
1068 
1069 // We are entering here from exception_blob
1070 // If there is a compiled exception handler in this method, we will continue there;
1071 // otherwise we will unwind the stack and continue at the caller of top frame method
1072 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1073 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1074 // we looked up the handler for has been deoptimized in the meantime. If it has been
1075 // we must not use the handler and instread return the deopt blob.
1076 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1077 //
1078 // We are in Java not VM and in debug mode we have a NoHandleMark
1079 //
1080 #ifndef PRODUCT
1081   SharedRuntime::_find_handler_ctr++;          // find exception handler
1082 #endif
1083   debug_only(NoHandleMark __hm;)
1084   nmethod* nm = NULL;
1085   address handler_address = NULL;
1086   {
1087     // Enter the VM
1088 
1089     ResetNoHandleMark rnhm;
1090     handler_address = handle_exception_C_helper(thread, nm);
1091   }
1092 
1093   // Back in java: Use no oops, DON'T safepoint
1094 
1095   // Now check to see if the handler we are returning is in a now
1096   // deoptimized frame
1097 
1098   if (nm != NULL) {
1099     RegisterMap map(thread, false);
1100     frame caller = thread->last_frame().sender(&map);
1101 #ifdef ASSERT
1102     assert(caller.is_compiled_frame(), "must be");
1103 #endif // ASSERT
1104     if (caller.is_deoptimized_frame()) {
1105       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1106     }
1107   }
1108   return handler_address;
1109 }
1110 
1111 //------------------------------rethrow----------------------------------------
1112 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1113 // is either throwing or rethrowing an exception.  The callee-save registers
1114 // have been restored, synchronized objects have been unlocked and the callee
1115 // stack frame has been removed.  The return address was passed in.
1116 // Exception oop is passed as the 1st argument.  This routine is then called
1117 // from the stub.  On exit, we know where to jump in the caller's code.
1118 // After this C code exits, the stub will pop his frame and end in a jump
1119 // (instead of a return).  We enter the caller's default handler.
1120 //
1121 // This must be JRT_LEAF:
1122 //     - caller will not change its state as we cannot block on exit,
1123 //       therefore raw_exception_handler_for_return_address is all it takes
1124 //       to handle deoptimized blobs
1125 //
1126 // However, there needs to be a safepoint check in the middle!  So compiled
1127 // safepoints are completely watertight.
1128 //
1129 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1130 //
1131 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1132 //
1133 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1134 #ifndef PRODUCT
1135   SharedRuntime::_rethrow_ctr++;               // count rethrows
1136 #endif
1137   assert (exception != NULL, "should have thrown a NULLPointerException");
1138 #ifdef ASSERT
1139   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1140     // should throw an exception here
1141     ShouldNotReachHere();
1142   }
1143 #endif
1144 
1145   thread->set_vm_result(exception);
1146   // Frame not compiled (handles deoptimization blob)
1147   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1148 }
1149 
1150 
1151 const TypeFunc *OptoRuntime::rethrow_Type() {
1152   // create input type (domain)
1153   const Type **fields = TypeTuple::fields(1);
1154   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1155   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1156 
1157   // create result type (range)
1158   fields = TypeTuple::fields(1);
1159   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1160   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1161 
1162   return TypeFunc::make(domain, range);
1163 }
1164 
1165 
1166 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1167   // Deoptimize the caller before continuing, as the compiled
1168   // exception handler table may not be valid.
1169   if (!StressCompiledExceptionHandlers && doit) {
1170     deoptimize_caller_frame(thread);
1171   }
1172 }
1173 
1174 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1175   // Called from within the owner thread, so no need for safepoint
1176   RegisterMap reg_map(thread);
1177   frame stub_frame = thread->last_frame();
1178   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1179   frame caller_frame = stub_frame.sender(&reg_map);
1180 
1181   // Deoptimize the caller frame.
1182   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1183 }
1184 
1185 
1186 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1187   // Called from within the owner thread, so no need for safepoint
1188   RegisterMap reg_map(thread);
1189   frame stub_frame = thread->last_frame();
1190   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1191   frame caller_frame = stub_frame.sender(&reg_map);
1192   return caller_frame.is_deoptimized_frame();
1193 }
1194 
1195 
1196 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1197   // create input type (domain)
1198   const Type **fields = TypeTuple::fields(1);
1199   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1200   // // The JavaThread* is passed to each routine as the last argument
1201   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1202   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1203 
1204   // create result type (range)
1205   fields = TypeTuple::fields(0);
1206 
1207   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1208 
1209   return TypeFunc::make(domain,range);
1210 }
1211 
1212 
1213 //-----------------------------------------------------------------------------
1214 // Dtrace support.  entry and exit probes have the same signature
1215 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1216   // create input type (domain)
1217   const Type **fields = TypeTuple::fields(2);
1218   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1219   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1220   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1221 
1222   // create result type (range)
1223   fields = TypeTuple::fields(0);
1224 
1225   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1226 
1227   return TypeFunc::make(domain,range);
1228 }
1229 
1230 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1231   // create input type (domain)
1232   const Type **fields = TypeTuple::fields(2);
1233   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1234   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1235 
1236   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1237 
1238   // create result type (range)
1239   fields = TypeTuple::fields(0);
1240 
1241   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1242 
1243   return TypeFunc::make(domain,range);
1244 }
1245 
1246 
1247 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1248   assert(obj->is_oop(), "must be a valid oop");
1249   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1250   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1251 JRT_END
1252 
1253 //-----------------------------------------------------------------------------
1254 
1255 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1256 
1257 //
1258 // dump the collected NamedCounters.
1259 //
1260 void OptoRuntime::print_named_counters() {
1261   int total_lock_count = 0;
1262   int eliminated_lock_count = 0;
1263 
1264   NamedCounter* c = _named_counters;
1265   while (c) {
1266     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1267       int count = c->count();
1268       if (count > 0) {
1269         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1270         if (Verbose) {
1271           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1272         }
1273         total_lock_count += count;
1274         if (eliminated) {
1275           eliminated_lock_count += count;
1276         }
1277       }
1278     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1279       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1280       if (blc->nonzero()) {
1281         tty->print_cr("%s", c->name());
1282         blc->print_on(tty);
1283       }
1284     }
1285     c = c->next();
1286   }
1287   if (total_lock_count > 0) {
1288     tty->print_cr("dynamic locks: %d", total_lock_count);
1289     if (eliminated_lock_count) {
1290       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1291                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1292     }
1293   }
1294 }
1295 
1296 //
1297 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1298 //  name which consists of method@line for the inlining tree.
1299 //
1300 
1301 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1302   int max_depth = youngest_jvms->depth();
1303 
1304   // Visit scopes from youngest to oldest.
1305   bool first = true;
1306   stringStream st;
1307   for (int depth = max_depth; depth >= 1; depth--) {
1308     JVMState* jvms = youngest_jvms->of_depth(depth);
1309     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1310     if (!first) {
1311       st.print(" ");
1312     } else {
1313       first = false;
1314     }
1315     int bci = jvms->bci();
1316     if (bci < 0) bci = 0;
1317     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1318     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1319   }
1320   NamedCounter* c;
1321   if (tag == NamedCounter::BiasedLockingCounter) {
1322     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1323   } else {
1324     c = new NamedCounter(strdup(st.as_string()), tag);
1325   }
1326 
1327   // atomically add the new counter to the head of the list.  We only
1328   // add counters so this is safe.
1329   NamedCounter* head;
1330   do {
1331     head = _named_counters;
1332     c->set_next(head);
1333   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1334   return c;
1335 }
1336 
1337 //-----------------------------------------------------------------------------
1338 // Non-product code
1339 #ifndef PRODUCT
1340 
1341 int trace_exception_counter = 0;
1342 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1343   ttyLocker ttyl;
1344   trace_exception_counter++;
1345   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1346   exception_oop->print_value();
1347   tty->print(" in ");
1348   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1349   if (blob->is_nmethod()) {
1350     ((nmethod*)blob)->method()->print_value();
1351   } else if (blob->is_runtime_stub()) {
1352     tty->print("<runtime-stub>");
1353   } else {
1354     tty->print("<unknown>");
1355   }
1356   tty->print(" at " INTPTR_FORMAT,  exception_pc);
1357   tty->print_cr("]");
1358 }
1359 
1360 #endif  // PRODUCT
1361 
1362 
1363 # ifdef ENABLE_ZAP_DEAD_LOCALS
1364 // Called from call sites in compiled code with oop maps (actually safepoints)
1365 // Zaps dead locals in first java frame.
1366 // Is entry because may need to lock to generate oop maps
1367 // Currently, only used for compiler frames, but someday may be used
1368 // for interpreter frames, too.
1369 
1370 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1371 
1372 // avoid pointers to member funcs with these helpers
1373 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1374 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1375 
1376 
1377 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1378                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1379   assert(JavaThread::current() == thread, "is this needed?");
1380 
1381   if ( !ZapDeadCompiledLocals )  return;
1382 
1383   bool skip = false;
1384 
1385        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1386   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1387   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1388     warning("starting zapping after skipping");
1389 
1390        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1391   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1392   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1393     warning("about to zap last zap");
1394 
1395   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1396 
1397   if ( skip )  return;
1398 
1399   // find java frame and zap it
1400 
1401   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1402     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1403       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1404       return;
1405     }
1406   }
1407   warning("no frame found to zap in zap_dead_Java_locals_C");
1408 }
1409 
1410 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1411   zap_dead_java_or_native_locals(thread, is_java_frame);
1412 JRT_END
1413 
1414 // The following does not work because for one thing, the
1415 // thread state is wrong; it expects java, but it is native.
1416 // Also, the invariants in a native stub are different and
1417 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1418 // in there.
1419 // So for now, we do not zap in native stubs.
1420 
1421 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1422   zap_dead_java_or_native_locals(thread, is_native_frame);
1423 JRT_END
1424 
1425 # endif