1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc_implementation/g1/heapRegion.hpp"
  39 #include "gc_interface/collectedHeap.hpp"
  40 #include "interpreter/bytecode.hpp"
  41 #include "interpreter/interpreter.hpp"
  42 #include "interpreter/linkResolver.hpp"
  43 #include "memory/barrierSet.hpp"
  44 #include "memory/gcLocker.inline.hpp"
  45 #include "memory/oopFactory.hpp"
  46 #include "oops/objArrayKlass.hpp"
  47 #include "oops/oop.inline.hpp"
  48 #include "opto/addnode.hpp"
  49 #include "opto/callnode.hpp"
  50 #include "opto/cfgnode.hpp"
  51 #include "opto/connode.hpp"
  52 #include "opto/graphKit.hpp"
  53 #include "opto/machnode.hpp"
  54 #include "opto/matcher.hpp"
  55 #include "opto/memnode.hpp"
  56 #include "opto/mulnode.hpp"
  57 #include "opto/runtime.hpp"
  58 #include "opto/subnode.hpp"
  59 #include "runtime/fprofiler.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/interfaceSupport.hpp"
  62 #include "runtime/javaCalls.hpp"
  63 #include "runtime/sharedRuntime.hpp"
  64 #include "runtime/signature.hpp"
  65 #include "runtime/threadCritical.hpp"
  66 #include "runtime/vframe.hpp"
  67 #include "runtime/vframeArray.hpp"
  68 #include "runtime/vframe_hp.hpp"
  69 #include "utilities/copy.hpp"
  70 #include "utilities/preserveException.hpp"
  71 #ifdef TARGET_ARCH_MODEL_x86_32
  72 # include "adfiles/ad_x86_32.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_MODEL_arm
  84 # include "adfiles/ad_arm.hpp"
  85 #endif
  86 #ifdef TARGET_ARCH_MODEL_ppc
  87 # include "adfiles/ad_ppc.hpp"
  88 #endif
  89 
  90 
  91 // For debugging purposes:
  92 //  To force FullGCALot inside a runtime function, add the following two lines
  93 //
  94 //  Universe::release_fullgc_alot_dummy();
  95 //  MarkSweep::invoke(0, "Debugging");
  96 //
  97 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  98 
  99 
 100 
 101 
 102 // Compiled code entry points
 103 address OptoRuntime::_new_instance_Java                           = NULL;
 104 address OptoRuntime::_new_array_Java                              = NULL;
 105 address OptoRuntime::_new_array_nozero_Java                       = NULL;
 106 address OptoRuntime::_multianewarray2_Java                        = NULL;
 107 address OptoRuntime::_multianewarray3_Java                        = NULL;
 108 address OptoRuntime::_multianewarray4_Java                        = NULL;
 109 address OptoRuntime::_multianewarray5_Java                        = NULL;
 110 address OptoRuntime::_multianewarrayN_Java                        = NULL;
 111 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
 112 address OptoRuntime::_g1_wb_post_Java                             = NULL;
 113 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 114 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 115 address OptoRuntime::_rethrow_Java                                = NULL;
 116 
 117 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 118 address OptoRuntime::_register_finalizer_Java                     = NULL;
 119 
 120 # ifdef ENABLE_ZAP_DEAD_LOCALS
 121 address OptoRuntime::_zap_dead_Java_locals_Java                   = NULL;
 122 address OptoRuntime::_zap_dead_native_locals_Java                 = NULL;
 123 # endif
 124 
 125 ExceptionBlob* OptoRuntime::_exception_blob;
 126 
 127 // This should be called in an assertion at the start of OptoRuntime routines
 128 // which are entered from compiled code (all of them)
 129 #ifdef ASSERT
 130 static bool check_compiled_frame(JavaThread* thread) {
 131   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 132   RegisterMap map(thread, false);
 133   frame caller = thread->last_frame().sender(&map);
 134   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 135   return true;
 136 }
 137 #endif // ASSERT
 138 
 139 
 140 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 141   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc)
 142 
 143 void OptoRuntime::generate(ciEnv* env) {
 144 
 145   generate_exception_blob();
 146 
 147   // Note: tls: Means fetching the return oop out of the thread-local storage
 148   //
 149   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 150   // -------------------------------------------------------------------------------------------------------------------------------
 151   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 152   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 153   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 154   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 155   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 156   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 157   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 158   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 159   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 160   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 161   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C      ,    0 , false, false, false);
 162   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 163 
 164   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 165   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 166 
 167 # ifdef ENABLE_ZAP_DEAD_LOCALS
 168   gen(env, _zap_dead_Java_locals_Java      , zap_dead_locals_Type         , zap_dead_Java_locals_C          ,    0 , false, true , false );
 169   gen(env, _zap_dead_native_locals_Java    , zap_dead_locals_Type         , zap_dead_native_locals_C        ,    0 , false, true , false );
 170 # endif
 171 
 172 }
 173 
 174 #undef gen
 175 
 176 
 177 // Helper method to do generation of RunTimeStub's
 178 address OptoRuntime::generate_stub( ciEnv* env,
 179                                     TypeFunc_generator gen, address C_function,
 180                                     const char *name, int is_fancy_jump,
 181                                     bool pass_tls,
 182                                     bool save_argument_registers,
 183                                     bool return_pc ) {
 184   ResourceMark rm;
 185   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc );
 186   return  C.stub_entry_point();
 187 }
 188 
 189 const char* OptoRuntime::stub_name(address entry) {
 190 #ifndef PRODUCT
 191   CodeBlob* cb = CodeCache::find_blob(entry);
 192   RuntimeStub* rs =(RuntimeStub *)cb;
 193   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 194   return rs->name();
 195 #else
 196   // Fast implementation for product mode (maybe it should be inlined too)
 197   return "runtime stub";
 198 #endif
 199 }
 200 
 201 
 202 //=============================================================================
 203 // Opto compiler runtime routines
 204 //=============================================================================
 205 
 206 
 207 //=============================allocation======================================
 208 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 209 // and try allocation again.
 210 
 211 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 212   // After any safepoint, just before going back to compiled code,
 213   // we inform the GC that we will be doing initializing writes to
 214   // this object in the future without emitting card-marks, so
 215   // GC may take any compensating steps.
 216   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 217 
 218   oop new_obj = thread->vm_result();
 219   if (new_obj == NULL)  return;
 220 
 221   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 222          "compiler must check this first");
 223   // GC may decide to give back a safer copy of new_obj.
 224   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 225   thread->set_vm_result(new_obj);
 226 }
 227 
 228 // object allocation
 229 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 230   JRT_BLOCK;
 231 #ifndef PRODUCT
 232   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 233 #endif
 234   assert(check_compiled_frame(thread), "incorrect caller");
 235 
 236   // These checks are cheap to make and support reflective allocation.
 237   int lh = klass->layout_helper();
 238   if (Klass::layout_helper_needs_slow_path(lh)
 239       || !InstanceKlass::cast(klass)->is_initialized()) {
 240     KlassHandle kh(THREAD, klass);
 241     kh->check_valid_for_instantiation(false, THREAD);
 242     if (!HAS_PENDING_EXCEPTION) {
 243       InstanceKlass::cast(kh())->initialize(THREAD);
 244     }
 245     if (!HAS_PENDING_EXCEPTION) {
 246       klass = kh();
 247     } else {
 248       klass = NULL;
 249     }
 250   }
 251 
 252   if (klass != NULL) {
 253     // Scavenge and allocate an instance.
 254     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 255     thread->set_vm_result(result);
 256 
 257     // Pass oops back through thread local storage.  Our apparent type to Java
 258     // is that we return an oop, but we can block on exit from this routine and
 259     // a GC can trash the oop in C's return register.  The generated stub will
 260     // fetch the oop from TLS after any possible GC.
 261   }
 262 
 263   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 264   JRT_BLOCK_END;
 265 
 266   if (GraphKit::use_ReduceInitialCardMarks()) {
 267     // inform GC that we won't do card marks for initializing writes.
 268     new_store_pre_barrier(thread);
 269   }
 270 JRT_END
 271 
 272 
 273 // array allocation
 274 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 275   JRT_BLOCK;
 276 #ifndef PRODUCT
 277   SharedRuntime::_new_array_ctr++;            // new array requires GC
 278 #endif
 279   assert(check_compiled_frame(thread), "incorrect caller");
 280 
 281   // Scavenge and allocate an instance.
 282   oop result;
 283 
 284   if (array_type->oop_is_typeArray()) {
 285     // The oopFactory likes to work with the element type.
 286     // (We could bypass the oopFactory, since it doesn't add much value.)
 287     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 288     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 289   } else {
 290     // Although the oopFactory likes to work with the elem_type,
 291     // the compiler prefers the array_type, since it must already have
 292     // that latter value in hand for the fast path.
 293     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 294     result = oopFactory::new_objArray(elem_type, len, THREAD);
 295   }
 296 
 297   // Pass oops back through thread local storage.  Our apparent type to Java
 298   // is that we return an oop, but we can block on exit from this routine and
 299   // a GC can trash the oop in C's return register.  The generated stub will
 300   // fetch the oop from TLS after any possible GC.
 301   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 302   thread->set_vm_result(result);
 303   JRT_BLOCK_END;
 304 
 305   if (GraphKit::use_ReduceInitialCardMarks()) {
 306     // inform GC that we won't do card marks for initializing writes.
 307     new_store_pre_barrier(thread);
 308   }
 309 JRT_END
 310 
 311 // array allocation without zeroing
 312 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 313   JRT_BLOCK;
 314 #ifndef PRODUCT
 315   SharedRuntime::_new_array_ctr++;            // new array requires GC
 316 #endif
 317   assert(check_compiled_frame(thread), "incorrect caller");
 318 
 319   // Scavenge and allocate an instance.
 320   oop result;
 321 
 322   assert(array_type->oop_is_typeArray(), "should be called only for type array");
 323   // The oopFactory likes to work with the element type.
 324   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 325   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 326 
 327   // Pass oops back through thread local storage.  Our apparent type to Java
 328   // is that we return an oop, but we can block on exit from this routine and
 329   // a GC can trash the oop in C's return register.  The generated stub will
 330   // fetch the oop from TLS after any possible GC.
 331   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 332   thread->set_vm_result(result);
 333   JRT_BLOCK_END;
 334 
 335   if (GraphKit::use_ReduceInitialCardMarks()) {
 336     // inform GC that we won't do card marks for initializing writes.
 337     new_store_pre_barrier(thread);
 338   }
 339 
 340   oop result = thread->vm_result();
 341   if ((len > 0) && (result != NULL) &&
 342       is_deoptimized_caller_frame(thread)) {
 343     // Zero array here if the caller is deoptimized.
 344     int size = ((typeArrayOop)result)->object_size();
 345     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 346     const size_t hs = arrayOopDesc::header_size(elem_type);
 347     // Align to next 8 bytes to avoid trashing arrays's length.
 348     const size_t aligned_hs = align_object_offset(hs);
 349     HeapWord* obj = (HeapWord*)result;
 350     if (aligned_hs > hs) {
 351       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 352     }
 353     // Optimized zeroing.
 354     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 355   }
 356 
 357 JRT_END
 358 
 359 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 360 
 361 // multianewarray for 2 dimensions
 362 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 363 #ifndef PRODUCT
 364   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 365 #endif
 366   assert(check_compiled_frame(thread), "incorrect caller");
 367   assert(elem_type->is_klass(), "not a class");
 368   jint dims[2];
 369   dims[0] = len1;
 370   dims[1] = len2;
 371   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 372   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 373   thread->set_vm_result(obj);
 374 JRT_END
 375 
 376 // multianewarray for 3 dimensions
 377 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 378 #ifndef PRODUCT
 379   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 380 #endif
 381   assert(check_compiled_frame(thread), "incorrect caller");
 382   assert(elem_type->is_klass(), "not a class");
 383   jint dims[3];
 384   dims[0] = len1;
 385   dims[1] = len2;
 386   dims[2] = len3;
 387   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 388   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 389   thread->set_vm_result(obj);
 390 JRT_END
 391 
 392 // multianewarray for 4 dimensions
 393 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 394 #ifndef PRODUCT
 395   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 396 #endif
 397   assert(check_compiled_frame(thread), "incorrect caller");
 398   assert(elem_type->is_klass(), "not a class");
 399   jint dims[4];
 400   dims[0] = len1;
 401   dims[1] = len2;
 402   dims[2] = len3;
 403   dims[3] = len4;
 404   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 405   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 406   thread->set_vm_result(obj);
 407 JRT_END
 408 
 409 // multianewarray for 5 dimensions
 410 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 411 #ifndef PRODUCT
 412   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 413 #endif
 414   assert(check_compiled_frame(thread), "incorrect caller");
 415   assert(elem_type->is_klass(), "not a class");
 416   jint dims[5];
 417   dims[0] = len1;
 418   dims[1] = len2;
 419   dims[2] = len3;
 420   dims[3] = len4;
 421   dims[4] = len5;
 422   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 423   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 424   thread->set_vm_result(obj);
 425 JRT_END
 426 
 427 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 428   assert(check_compiled_frame(thread), "incorrect caller");
 429   assert(elem_type->is_klass(), "not a class");
 430   assert(oop(dims)->is_typeArray(), "not an array");
 431 
 432   ResourceMark rm;
 433   jint len = dims->length();
 434   assert(len > 0, "Dimensions array should contain data");
 435   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 436   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 437   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 438 
 439   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 440   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 441   thread->set_vm_result(obj);
 442 JRT_END
 443 
 444 
 445 const TypeFunc *OptoRuntime::new_instance_Type() {
 446   // create input type (domain)
 447   const Type **fields = TypeTuple::fields(1);
 448   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 449   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 450 
 451   // create result type (range)
 452   fields = TypeTuple::fields(1);
 453   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 454 
 455   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 456 
 457   return TypeFunc::make(domain, range);
 458 }
 459 
 460 
 461 const TypeFunc *OptoRuntime::athrow_Type() {
 462   // create input type (domain)
 463   const Type **fields = TypeTuple::fields(1);
 464   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 465   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 466 
 467   // create result type (range)
 468   fields = TypeTuple::fields(0);
 469 
 470   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 471 
 472   return TypeFunc::make(domain, range);
 473 }
 474 
 475 
 476 const TypeFunc *OptoRuntime::new_array_Type() {
 477   // create input type (domain)
 478   const Type **fields = TypeTuple::fields(2);
 479   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 480   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 481   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 482 
 483   // create result type (range)
 484   fields = TypeTuple::fields(1);
 485   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 486 
 487   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 488 
 489   return TypeFunc::make(domain, range);
 490 }
 491 
 492 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 493   // create input type (domain)
 494   const int nargs = ndim + 1;
 495   const Type **fields = TypeTuple::fields(nargs);
 496   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 497   for( int i = 1; i < nargs; i++ )
 498     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 499   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 500 
 501   // create result type (range)
 502   fields = TypeTuple::fields(1);
 503   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 504   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 505 
 506   return TypeFunc::make(domain, range);
 507 }
 508 
 509 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 510   return multianewarray_Type(2);
 511 }
 512 
 513 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 514   return multianewarray_Type(3);
 515 }
 516 
 517 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 518   return multianewarray_Type(4);
 519 }
 520 
 521 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 522   return multianewarray_Type(5);
 523 }
 524 
 525 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 526   // create input type (domain)
 527   const Type **fields = TypeTuple::fields(2);
 528   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 529   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 530   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 531 
 532   // create result type (range)
 533   fields = TypeTuple::fields(1);
 534   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 535   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 536 
 537   return TypeFunc::make(domain, range);
 538 }
 539 
 540 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 541   const Type **fields = TypeTuple::fields(2);
 542   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 543   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 544   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 545 
 546   // create result type (range)
 547   fields = TypeTuple::fields(0);
 548   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 549 
 550   return TypeFunc::make(domain, range);
 551 }
 552 
 553 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 554 
 555   const Type **fields = TypeTuple::fields(2);
 556   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 557   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 558   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 559 
 560   // create result type (range)
 561   fields = TypeTuple::fields(0);
 562   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 563 
 564   return TypeFunc::make(domain, range);
 565 }
 566 
 567 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 568   // create input type (domain)
 569   const Type **fields = TypeTuple::fields(1);
 570   // Symbol* name of class to be loaded
 571   fields[TypeFunc::Parms+0] = TypeInt::INT;
 572   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 573 
 574   // create result type (range)
 575   fields = TypeTuple::fields(0);
 576   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 577 
 578   return TypeFunc::make(domain, range);
 579 }
 580 
 581 # ifdef ENABLE_ZAP_DEAD_LOCALS
 582 // Type used for stub generation for zap_dead_locals.
 583 // No inputs or outputs
 584 const TypeFunc *OptoRuntime::zap_dead_locals_Type() {
 585   // create input type (domain)
 586   const Type **fields = TypeTuple::fields(0);
 587   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms,fields);
 588 
 589   // create result type (range)
 590   fields = TypeTuple::fields(0);
 591   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms,fields);
 592 
 593   return TypeFunc::make(domain,range);
 594 }
 595 # endif
 596 
 597 
 598 //-----------------------------------------------------------------------------
 599 // Monitor Handling
 600 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 601   // create input type (domain)
 602   const Type **fields = TypeTuple::fields(2);
 603   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 604   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 605   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 606 
 607   // create result type (range)
 608   fields = TypeTuple::fields(0);
 609 
 610   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 611 
 612   return TypeFunc::make(domain,range);
 613 }
 614 
 615 
 616 //-----------------------------------------------------------------------------
 617 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 618   // create input type (domain)
 619   const Type **fields = TypeTuple::fields(2);
 620   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 621   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 622   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 623 
 624   // create result type (range)
 625   fields = TypeTuple::fields(0);
 626 
 627   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 628 
 629   return TypeFunc::make(domain,range);
 630 }
 631 
 632 const TypeFunc* OptoRuntime::flush_windows_Type() {
 633   // create input type (domain)
 634   const Type** fields = TypeTuple::fields(1);
 635   fields[TypeFunc::Parms+0] = NULL; // void
 636   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 637 
 638   // create result type
 639   fields = TypeTuple::fields(1);
 640   fields[TypeFunc::Parms+0] = NULL; // void
 641   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 642 
 643   return TypeFunc::make(domain, range);
 644 }
 645 
 646 const TypeFunc* OptoRuntime::l2f_Type() {
 647   // create input type (domain)
 648   const Type **fields = TypeTuple::fields(2);
 649   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 650   fields[TypeFunc::Parms+1] = Type::HALF;
 651   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 652 
 653   // create result type (range)
 654   fields = TypeTuple::fields(1);
 655   fields[TypeFunc::Parms+0] = Type::FLOAT;
 656   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 657 
 658   return TypeFunc::make(domain, range);
 659 }
 660 
 661 const TypeFunc* OptoRuntime::modf_Type() {
 662   const Type **fields = TypeTuple::fields(2);
 663   fields[TypeFunc::Parms+0] = Type::FLOAT;
 664   fields[TypeFunc::Parms+1] = Type::FLOAT;
 665   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 666 
 667   // create result type (range)
 668   fields = TypeTuple::fields(1);
 669   fields[TypeFunc::Parms+0] = Type::FLOAT;
 670 
 671   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 672 
 673   return TypeFunc::make(domain, range);
 674 }
 675 
 676 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 677   // create input type (domain)
 678   const Type **fields = TypeTuple::fields(2);
 679   // Symbol* name of class to be loaded
 680   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 681   fields[TypeFunc::Parms+1] = Type::HALF;
 682   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 683 
 684   // create result type (range)
 685   fields = TypeTuple::fields(2);
 686   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 687   fields[TypeFunc::Parms+1] = Type::HALF;
 688   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 689 
 690   return TypeFunc::make(domain, range);
 691 }
 692 
 693 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 694   const Type **fields = TypeTuple::fields(4);
 695   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 696   fields[TypeFunc::Parms+1] = Type::HALF;
 697   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 698   fields[TypeFunc::Parms+3] = Type::HALF;
 699   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 700 
 701   // create result type (range)
 702   fields = TypeTuple::fields(2);
 703   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 704   fields[TypeFunc::Parms+1] = Type::HALF;
 705   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 706 
 707   return TypeFunc::make(domain, range);
 708 }
 709 
 710 //-------------- currentTimeMillis, currentTimeNanos, etc
 711 
 712 const TypeFunc* OptoRuntime::void_long_Type() {
 713   // create input type (domain)
 714   const Type **fields = TypeTuple::fields(0);
 715   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 716 
 717   // create result type (range)
 718   fields = TypeTuple::fields(2);
 719   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 720   fields[TypeFunc::Parms+1] = Type::HALF;
 721   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 722 
 723   return TypeFunc::make(domain, range);
 724 }
 725 
 726 // arraycopy stub variations:
 727 enum ArrayCopyType {
 728   ac_fast,                      // void(ptr, ptr, size_t)
 729   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 730   ac_slow,                      // void(ptr, int, ptr, int, int)
 731   ac_generic                    //  int(ptr, int, ptr, int, int)
 732 };
 733 
 734 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 735   // create input type (domain)
 736   int num_args      = (act == ac_fast ? 3 : 5);
 737   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 738   int argcnt = num_args;
 739   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 740   const Type** fields = TypeTuple::fields(argcnt);
 741   int argp = TypeFunc::Parms;
 742   fields[argp++] = TypePtr::NOTNULL;    // src
 743   if (num_size_args == 0) {
 744     fields[argp++] = TypeInt::INT;      // src_pos
 745   }
 746   fields[argp++] = TypePtr::NOTNULL;    // dest
 747   if (num_size_args == 0) {
 748     fields[argp++] = TypeInt::INT;      // dest_pos
 749     fields[argp++] = TypeInt::INT;      // length
 750   }
 751   while (num_size_args-- > 0) {
 752     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 753     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 754   }
 755   if (act == ac_checkcast) {
 756     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 757   }
 758   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 759   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 760 
 761   // create result type if needed
 762   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 763   fields = TypeTuple::fields(1);
 764   if (retcnt == 0)
 765     fields[TypeFunc::Parms+0] = NULL; // void
 766   else
 767     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 768   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 769   return TypeFunc::make(domain, range);
 770 }
 771 
 772 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 773   // This signature is simple:  Two base pointers and a size_t.
 774   return make_arraycopy_Type(ac_fast);
 775 }
 776 
 777 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 778   // An extension of fast_arraycopy_Type which adds type checking.
 779   return make_arraycopy_Type(ac_checkcast);
 780 }
 781 
 782 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 783   // This signature is exactly the same as System.arraycopy.
 784   // There are no intptr_t (int/long) arguments.
 785   return make_arraycopy_Type(ac_slow);
 786 }
 787 
 788 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 789   // This signature is like System.arraycopy, except that it returns status.
 790   return make_arraycopy_Type(ac_generic);
 791 }
 792 
 793 
 794 const TypeFunc* OptoRuntime::array_fill_Type() {
 795   // create input type (domain): pointer, int, size_t
 796   const Type** fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 797   int argp = TypeFunc::Parms;
 798   fields[argp++] = TypePtr::NOTNULL;
 799   fields[argp++] = TypeInt::INT;
 800   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 801   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 802   const TypeTuple *domain = TypeTuple::make(argp, fields);
 803 
 804   // create result type
 805   fields = TypeTuple::fields(1);
 806   fields[TypeFunc::Parms+0] = NULL; // void
 807   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 808 
 809   return TypeFunc::make(domain, range);
 810 }
 811 
 812 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 813 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 814   // create input type (domain)
 815   int num_args      = 3;
 816   int argcnt = num_args;
 817   const Type** fields = TypeTuple::fields(argcnt);
 818   int argp = TypeFunc::Parms;
 819   fields[argp++] = TypePtr::NOTNULL;    // src
 820   fields[argp++] = TypePtr::NOTNULL;    // dest
 821   fields[argp++] = TypePtr::NOTNULL;    // k array
 822   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 823   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 824 
 825   // no result type needed
 826   fields = TypeTuple::fields(1);
 827   fields[TypeFunc::Parms+0] = NULL; // void
 828   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 829   return TypeFunc::make(domain, range);
 830 }
 831 
 832 /**
 833  * int updateBytesCRC32(int crc, byte* b, int len)
 834  */
 835 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 836   // create input type (domain)
 837   int num_args      = 3;
 838   int argcnt = num_args;
 839   const Type** fields = TypeTuple::fields(argcnt);
 840   int argp = TypeFunc::Parms;
 841   fields[argp++] = TypeInt::INT;        // crc
 842   fields[argp++] = TypePtr::NOTNULL;    // src
 843   fields[argp++] = TypeInt::INT;        // len
 844   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 845   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 846 
 847   // result type needed
 848   fields = TypeTuple::fields(1);
 849   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 850   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 851   return TypeFunc::make(domain, range);
 852 }
 853 
 854 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning void
 855 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 856   // create input type (domain)
 857   int num_args      = 5;
 858   int argcnt = num_args;
 859   const Type** fields = TypeTuple::fields(argcnt);
 860   int argp = TypeFunc::Parms;
 861   fields[argp++] = TypePtr::NOTNULL;    // src
 862   fields[argp++] = TypePtr::NOTNULL;    // dest
 863   fields[argp++] = TypePtr::NOTNULL;    // k array
 864   fields[argp++] = TypePtr::NOTNULL;    // r array
 865   fields[argp++] = TypeInt::INT;        // src len
 866   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 867   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 868 
 869   // no result type needed
 870   fields = TypeTuple::fields(1);
 871   fields[TypeFunc::Parms+0] = NULL; // void
 872   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 873   return TypeFunc::make(domain, range);
 874 }
 875 
 876 //------------- Interpreter state access for on stack replacement
 877 const TypeFunc* OptoRuntime::osr_end_Type() {
 878   // create input type (domain)
 879   const Type **fields = TypeTuple::fields(1);
 880   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
 881   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 882 
 883   // create result type
 884   fields = TypeTuple::fields(1);
 885   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
 886   fields[TypeFunc::Parms+0] = NULL; // void
 887   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 888   return TypeFunc::make(domain, range);
 889 }
 890 
 891 //-------------- methodData update helpers
 892 
 893 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
 894   // create input type (domain)
 895   const Type **fields = TypeTuple::fields(2);
 896   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
 897   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
 898   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 899 
 900   // create result type
 901   fields = TypeTuple::fields(1);
 902   fields[TypeFunc::Parms+0] = NULL; // void
 903   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 904   return TypeFunc::make(domain,range);
 905 }
 906 
 907 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
 908   if (receiver == NULL) return;
 909   Klass* receiver_klass = receiver->klass();
 910 
 911   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
 912   int empty_row = -1;           // free row, if any is encountered
 913 
 914   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
 915   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
 916     // if (vc->receiver(row) == receiver_klass)
 917     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
 918     intptr_t row_recv = *(mdp + receiver_off);
 919     if (row_recv == (intptr_t) receiver_klass) {
 920       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
 921       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
 922       *(mdp + count_off) += DataLayout::counter_increment;
 923       return;
 924     } else if (row_recv == 0) {
 925       // else if (vc->receiver(row) == NULL)
 926       empty_row = (int) row;
 927     }
 928   }
 929 
 930   if (empty_row != -1) {
 931     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
 932     // vc->set_receiver(empty_row, receiver_klass);
 933     *(mdp + receiver_off) = (intptr_t) receiver_klass;
 934     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
 935     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
 936     *(mdp + count_off) = DataLayout::counter_increment;
 937   } else {
 938     // Receiver did not match any saved receiver and there is no empty row for it.
 939     // Increment total counter to indicate polymorphic case.
 940     intptr_t* count_p = (intptr_t*)(((byte*)(data)) + in_bytes(CounterData::count_offset()));
 941     *count_p += DataLayout::counter_increment;
 942   }
 943 JRT_END
 944 
 945 //-------------------------------------------------------------------------------------
 946 // register policy
 947 
 948 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
 949   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
 950   switch (register_save_policy[reg]) {
 951     case 'C': return false; //SOC
 952     case 'E': return true ; //SOE
 953     case 'N': return false; //NS
 954     case 'A': return false; //AS
 955   }
 956   ShouldNotReachHere();
 957   return false;
 958 }
 959 
 960 //-----------------------------------------------------------------------
 961 // Exceptions
 962 //
 963 
 964 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) PRODUCT_RETURN;
 965 
 966 // The method is an entry that is always called by a C++ method not
 967 // directly from compiled code. Compiled code will call the C++ method following.
 968 // We can't allow async exception to be installed during  exception processing.
 969 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
 970 
 971   // Do not confuse exception_oop with pending_exception. The exception_oop
 972   // is only used to pass arguments into the method. Not for general
 973   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
 974   // the runtime stubs checks this on exit.
 975   assert(thread->exception_oop() != NULL, "exception oop is found");
 976   address handler_address = NULL;
 977 
 978   Handle exception(thread, thread->exception_oop());
 979 
 980   if (TraceExceptions) {
 981     trace_exception(exception(), thread->exception_pc(), "");
 982   }
 983   // for AbortVMOnException flag
 984   NOT_PRODUCT(Exceptions::debug_check_abort(exception));
 985 
 986   #ifdef ASSERT
 987     if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
 988       // should throw an exception here
 989       ShouldNotReachHere();
 990     }
 991   #endif
 992 
 993 
 994   // new exception handling: this method is entered only from adapters
 995   // exceptions from compiled java methods are handled in compiled code
 996   // using rethrow node
 997 
 998   address pc = thread->exception_pc();
 999   nm = CodeCache::find_nmethod(pc);
1000   assert(nm != NULL, "No NMethod found");
1001   if (nm->is_native_method()) {
1002     fatal("Native mathod should not have path to exception handling");
1003   } else {
1004     // we are switching to old paradigm: search for exception handler in caller_frame
1005     // instead in exception handler of caller_frame.sender()
1006 
1007     if (JvmtiExport::can_post_on_exceptions()) {
1008       // "Full-speed catching" is not necessary here,
1009       // since we're notifying the VM on every catch.
1010       // Force deoptimization and the rest of the lookup
1011       // will be fine.
1012       deoptimize_caller_frame(thread);
1013     }
1014 
1015     // Check the stack guard pages.  If enabled, look for handler in this frame;
1016     // otherwise, forcibly unwind the frame.
1017     //
1018     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1019     bool force_unwind = !thread->reguard_stack();
1020     bool deopting = false;
1021     if (nm->is_deopt_pc(pc)) {
1022       deopting = true;
1023       RegisterMap map(thread, false);
1024       frame deoptee = thread->last_frame().sender(&map);
1025       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1026       // Adjust the pc back to the original throwing pc
1027       pc = deoptee.pc();
1028     }
1029 
1030     // If we are forcing an unwind because of stack overflow then deopt is
1031     // irrelevant sice we are throwing the frame away anyway.
1032 
1033     if (deopting && !force_unwind) {
1034       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1035     } else {
1036 
1037       handler_address =
1038         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1039 
1040       if (handler_address == NULL) {
1041         Handle original_exception(thread, exception());
1042         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1043         assert (handler_address != NULL, "must have compiled handler");
1044         // Update the exception cache only when the unwind was not forced
1045         // and there didn't happen another exception during the computation of the
1046         // compiled exception handler.
1047         if (!force_unwind && original_exception() == exception()) {
1048           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1049         }
1050       } else {
1051         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1052       }
1053     }
1054 
1055     thread->set_exception_pc(pc);
1056     thread->set_exception_handler_pc(handler_address);
1057 
1058     // Check if the exception PC is a MethodHandle call site.
1059     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1060   }
1061 
1062   // Restore correct return pc.  Was saved above.
1063   thread->set_exception_oop(exception());
1064   return handler_address;
1065 
1066 JRT_END
1067 
1068 // We are entering here from exception_blob
1069 // If there is a compiled exception handler in this method, we will continue there;
1070 // otherwise we will unwind the stack and continue at the caller of top frame method
1071 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1072 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1073 // we looked up the handler for has been deoptimized in the meantime. If it has been
1074 // we must not use the handler and instread return the deopt blob.
1075 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1076 //
1077 // We are in Java not VM and in debug mode we have a NoHandleMark
1078 //
1079 #ifndef PRODUCT
1080   SharedRuntime::_find_handler_ctr++;          // find exception handler
1081 #endif
1082   debug_only(NoHandleMark __hm;)
1083   nmethod* nm = NULL;
1084   address handler_address = NULL;
1085   {
1086     // Enter the VM
1087 
1088     ResetNoHandleMark rnhm;
1089     handler_address = handle_exception_C_helper(thread, nm);
1090   }
1091 
1092   // Back in java: Use no oops, DON'T safepoint
1093 
1094   // Now check to see if the handler we are returning is in a now
1095   // deoptimized frame
1096 
1097   if (nm != NULL) {
1098     RegisterMap map(thread, false);
1099     frame caller = thread->last_frame().sender(&map);
1100 #ifdef ASSERT
1101     assert(caller.is_compiled_frame(), "must be");
1102 #endif // ASSERT
1103     if (caller.is_deoptimized_frame()) {
1104       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1105     }
1106   }
1107   return handler_address;
1108 }
1109 
1110 //------------------------------rethrow----------------------------------------
1111 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1112 // is either throwing or rethrowing an exception.  The callee-save registers
1113 // have been restored, synchronized objects have been unlocked and the callee
1114 // stack frame has been removed.  The return address was passed in.
1115 // Exception oop is passed as the 1st argument.  This routine is then called
1116 // from the stub.  On exit, we know where to jump in the caller's code.
1117 // After this C code exits, the stub will pop his frame and end in a jump
1118 // (instead of a return).  We enter the caller's default handler.
1119 //
1120 // This must be JRT_LEAF:
1121 //     - caller will not change its state as we cannot block on exit,
1122 //       therefore raw_exception_handler_for_return_address is all it takes
1123 //       to handle deoptimized blobs
1124 //
1125 // However, there needs to be a safepoint check in the middle!  So compiled
1126 // safepoints are completely watertight.
1127 //
1128 // Thus, it cannot be a leaf since it contains the No_GC_Verifier.
1129 //
1130 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1131 //
1132 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1133 #ifndef PRODUCT
1134   SharedRuntime::_rethrow_ctr++;               // count rethrows
1135 #endif
1136   assert (exception != NULL, "should have thrown a NULLPointerException");
1137 #ifdef ASSERT
1138   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1139     // should throw an exception here
1140     ShouldNotReachHere();
1141   }
1142 #endif
1143 
1144   thread->set_vm_result(exception);
1145   // Frame not compiled (handles deoptimization blob)
1146   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1147 }
1148 
1149 
1150 const TypeFunc *OptoRuntime::rethrow_Type() {
1151   // create input type (domain)
1152   const Type **fields = TypeTuple::fields(1);
1153   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1154   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1155 
1156   // create result type (range)
1157   fields = TypeTuple::fields(1);
1158   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1159   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1160 
1161   return TypeFunc::make(domain, range);
1162 }
1163 
1164 
1165 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1166   // Deoptimize the caller before continuing, as the compiled
1167   // exception handler table may not be valid.
1168   if (!StressCompiledExceptionHandlers && doit) {
1169     deoptimize_caller_frame(thread);
1170   }
1171 }
1172 
1173 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1174   // Called from within the owner thread, so no need for safepoint
1175   RegisterMap reg_map(thread);
1176   frame stub_frame = thread->last_frame();
1177   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1178   frame caller_frame = stub_frame.sender(&reg_map);
1179 
1180   // Deoptimize the caller frame.
1181   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1182 }
1183 
1184 
1185 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1186   // Called from within the owner thread, so no need for safepoint
1187   RegisterMap reg_map(thread);
1188   frame stub_frame = thread->last_frame();
1189   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1190   frame caller_frame = stub_frame.sender(&reg_map);
1191   return caller_frame.is_deoptimized_frame();
1192 }
1193 
1194 
1195 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1196   // create input type (domain)
1197   const Type **fields = TypeTuple::fields(1);
1198   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1199   // // The JavaThread* is passed to each routine as the last argument
1200   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1201   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1202 
1203   // create result type (range)
1204   fields = TypeTuple::fields(0);
1205 
1206   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1207 
1208   return TypeFunc::make(domain,range);
1209 }
1210 
1211 
1212 //-----------------------------------------------------------------------------
1213 // Dtrace support.  entry and exit probes have the same signature
1214 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1215   // create input type (domain)
1216   const Type **fields = TypeTuple::fields(2);
1217   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1218   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1219   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1220 
1221   // create result type (range)
1222   fields = TypeTuple::fields(0);
1223 
1224   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1225 
1226   return TypeFunc::make(domain,range);
1227 }
1228 
1229 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1230   // create input type (domain)
1231   const Type **fields = TypeTuple::fields(2);
1232   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1233   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1234 
1235   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1236 
1237   // create result type (range)
1238   fields = TypeTuple::fields(0);
1239 
1240   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1241 
1242   return TypeFunc::make(domain,range);
1243 }
1244 
1245 
1246 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1247   assert(obj->is_oop(), "must be a valid oop");
1248   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1249   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1250 JRT_END
1251 
1252 //-----------------------------------------------------------------------------
1253 
1254 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1255 
1256 //
1257 // dump the collected NamedCounters.
1258 //
1259 void OptoRuntime::print_named_counters() {
1260   int total_lock_count = 0;
1261   int eliminated_lock_count = 0;
1262 
1263   NamedCounter* c = _named_counters;
1264   while (c) {
1265     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1266       int count = c->count();
1267       if (count > 0) {
1268         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1269         if (Verbose) {
1270           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1271         }
1272         total_lock_count += count;
1273         if (eliminated) {
1274           eliminated_lock_count += count;
1275         }
1276       }
1277     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1278       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1279       if (blc->nonzero()) {
1280         tty->print_cr("%s", c->name());
1281         blc->print_on(tty);
1282       }
1283     }
1284     c = c->next();
1285   }
1286   if (total_lock_count > 0) {
1287     tty->print_cr("dynamic locks: %d", total_lock_count);
1288     if (eliminated_lock_count) {
1289       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1290                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1291     }
1292   }
1293 }
1294 
1295 //
1296 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1297 //  name which consists of method@line for the inlining tree.
1298 //
1299 
1300 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1301   int max_depth = youngest_jvms->depth();
1302 
1303   // Visit scopes from youngest to oldest.
1304   bool first = true;
1305   stringStream st;
1306   for (int depth = max_depth; depth >= 1; depth--) {
1307     JVMState* jvms = youngest_jvms->of_depth(depth);
1308     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1309     if (!first) {
1310       st.print(" ");
1311     } else {
1312       first = false;
1313     }
1314     int bci = jvms->bci();
1315     if (bci < 0) bci = 0;
1316     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1317     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1318   }
1319   NamedCounter* c;
1320   if (tag == NamedCounter::BiasedLockingCounter) {
1321     c = new BiasedLockingNamedCounter(strdup(st.as_string()));
1322   } else {
1323     c = new NamedCounter(strdup(st.as_string()), tag);
1324   }
1325 
1326   // atomically add the new counter to the head of the list.  We only
1327   // add counters so this is safe.
1328   NamedCounter* head;
1329   do {
1330     head = _named_counters;
1331     c->set_next(head);
1332   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1333   return c;
1334 }
1335 
1336 //-----------------------------------------------------------------------------
1337 // Non-product code
1338 #ifndef PRODUCT
1339 
1340 int trace_exception_counter = 0;
1341 static void trace_exception(oop exception_oop, address exception_pc, const char* msg) {
1342   ttyLocker ttyl;
1343   trace_exception_counter++;
1344   tty->print("%d [Exception (%s): ", trace_exception_counter, msg);
1345   exception_oop->print_value();
1346   tty->print(" in ");
1347   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1348   if (blob->is_nmethod()) {
1349     ((nmethod*)blob)->method()->print_value();
1350   } else if (blob->is_runtime_stub()) {
1351     tty->print("<runtime-stub>");
1352   } else {
1353     tty->print("<unknown>");
1354   }
1355   tty->print(" at " INTPTR_FORMAT,  exception_pc);
1356   tty->print_cr("]");
1357 }
1358 
1359 #endif  // PRODUCT
1360 
1361 
1362 # ifdef ENABLE_ZAP_DEAD_LOCALS
1363 // Called from call sites in compiled code with oop maps (actually safepoints)
1364 // Zaps dead locals in first java frame.
1365 // Is entry because may need to lock to generate oop maps
1366 // Currently, only used for compiler frames, but someday may be used
1367 // for interpreter frames, too.
1368 
1369 int OptoRuntime::ZapDeadCompiledLocals_count = 0;
1370 
1371 // avoid pointers to member funcs with these helpers
1372 static bool is_java_frame(  frame* f) { return f->is_java_frame();   }
1373 static bool is_native_frame(frame* f) { return f->is_native_frame(); }
1374 
1375 
1376 void OptoRuntime::zap_dead_java_or_native_locals(JavaThread* thread,
1377                                                 bool (*is_this_the_right_frame_to_zap)(frame*)) {
1378   assert(JavaThread::current() == thread, "is this needed?");
1379 
1380   if ( !ZapDeadCompiledLocals )  return;
1381 
1382   bool skip = false;
1383 
1384        if ( ZapDeadCompiledLocalsFirst  ==  0  ) ; // nothing special
1385   else if ( ZapDeadCompiledLocalsFirst  >  ZapDeadCompiledLocals_count )  skip = true;
1386   else if ( ZapDeadCompiledLocalsFirst  == ZapDeadCompiledLocals_count )
1387     warning("starting zapping after skipping");
1388 
1389        if ( ZapDeadCompiledLocalsLast  ==  -1  ) ; // nothing special
1390   else if ( ZapDeadCompiledLocalsLast  <   ZapDeadCompiledLocals_count )  skip = true;
1391   else if ( ZapDeadCompiledLocalsLast  ==  ZapDeadCompiledLocals_count )
1392     warning("about to zap last zap");
1393 
1394   ++ZapDeadCompiledLocals_count; // counts skipped zaps, too
1395 
1396   if ( skip )  return;
1397 
1398   // find java frame and zap it
1399 
1400   for (StackFrameStream sfs(thread);  !sfs.is_done();  sfs.next()) {
1401     if (is_this_the_right_frame_to_zap(sfs.current()) ) {
1402       sfs.current()->zap_dead_locals(thread, sfs.register_map());
1403       return;
1404     }
1405   }
1406   warning("no frame found to zap in zap_dead_Java_locals_C");
1407 }
1408 
1409 JRT_LEAF(void, OptoRuntime::zap_dead_Java_locals_C(JavaThread* thread))
1410   zap_dead_java_or_native_locals(thread, is_java_frame);
1411 JRT_END
1412 
1413 // The following does not work because for one thing, the
1414 // thread state is wrong; it expects java, but it is native.
1415 // Also, the invariants in a native stub are different and
1416 // I'm not sure it is safe to have a MachCalRuntimeDirectNode
1417 // in there.
1418 // So for now, we do not zap in native stubs.
1419 
1420 JRT_LEAF(void, OptoRuntime::zap_dead_native_locals_C(JavaThread* thread))
1421   zap_dead_java_or_native_locals(thread, is_native_frame);
1422 JRT_END
1423 
1424 # endif