1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/compiledIC.hpp"
  29 #include "code/scopeDesc.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/abstractCompiler.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compilerOracle.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "interpreter/interpreter.hpp"
  36 #include "interpreter/interpreterRuntime.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/universe.inline.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "prims/forte.hpp"
  41 #include "prims/jvmtiExport.hpp"
  42 #include "prims/jvmtiRedefineClassesTrace.hpp"
  43 #include "prims/methodHandles.hpp"
  44 #include "prims/nativeLookup.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/biasedLocking.hpp"
  47 #include "runtime/handles.inline.hpp"
  48 #include "runtime/init.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/javaCalls.hpp"
  51 #include "runtime/sharedRuntime.hpp"
  52 #include "runtime/stubRoutines.hpp"
  53 #include "runtime/vframe.hpp"
  54 #include "runtime/vframeArray.hpp"
  55 #include "utilities/copy.hpp"
  56 #include "utilities/dtrace.hpp"
  57 #include "utilities/events.hpp"
  58 #include "utilities/hashtable.inline.hpp"
  59 #include "utilities/macros.hpp"
  60 #include "utilities/xmlstream.hpp"
  61 #ifdef TARGET_ARCH_x86
  62 # include "nativeInst_x86.hpp"
  63 # include "vmreg_x86.inline.hpp"
  64 #endif
  65 #ifdef TARGET_ARCH_sparc
  66 # include "nativeInst_sparc.hpp"
  67 # include "vmreg_sparc.inline.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_zero
  70 # include "nativeInst_zero.hpp"
  71 # include "vmreg_zero.inline.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_arm
  74 # include "nativeInst_arm.hpp"
  75 # include "vmreg_arm.inline.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_ppc
  78 # include "nativeInst_ppc.hpp"
  79 # include "vmreg_ppc.inline.hpp"
  80 #endif
  81 #ifdef COMPILER1
  82 #include "c1/c1_Runtime1.hpp"
  83 #endif
  84 
  85 // Shared stub locations
  86 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  87 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  88 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  89 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  90 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  91 
  92 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  93 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  94 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  95 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  96 
  97 #ifdef COMPILER2
  98 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  99 #endif // COMPILER2
 100 
 101 
 102 //----------------------------generate_stubs-----------------------------------
 103 void SharedRuntime::generate_stubs() {
 104   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),         "wrong_method_stub");
 105   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss), "ic_miss_stub");
 106   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),  "resolve_opt_virtual_call");
 107   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),      "resolve_virtual_call");
 108   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),       "resolve_static_call");
 109 
 110 #ifdef COMPILER2
 111   // Vectors are generated only by C2.
 112   if (is_wide_vector(MaxVectorSize)) {
 113     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 114   }
 115 #endif // COMPILER2
 116   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 117   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 118 
 119   generate_deopt_blob();
 120 
 121 #ifdef COMPILER2
 122   generate_uncommon_trap_blob();
 123 #endif // COMPILER2
 124 }
 125 
 126 #include <math.h>
 127 
 128 #ifndef USDT2
 129 HS_DTRACE_PROBE_DECL4(hotspot, object__alloc, Thread*, char*, int, size_t);
 130 HS_DTRACE_PROBE_DECL7(hotspot, method__entry, int,
 131                       char*, int, char*, int, char*, int);
 132 HS_DTRACE_PROBE_DECL7(hotspot, method__return, int,
 133                       char*, int, char*, int, char*, int);
 134 #endif /* !USDT2 */
 135 
 136 // Implementation of SharedRuntime
 137 
 138 #ifndef PRODUCT
 139 // For statistics
 140 int SharedRuntime::_ic_miss_ctr = 0;
 141 int SharedRuntime::_wrong_method_ctr = 0;
 142 int SharedRuntime::_resolve_static_ctr = 0;
 143 int SharedRuntime::_resolve_virtual_ctr = 0;
 144 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 145 int SharedRuntime::_implicit_null_throws = 0;
 146 int SharedRuntime::_implicit_div0_throws = 0;
 147 int SharedRuntime::_throw_null_ctr = 0;
 148 
 149 int SharedRuntime::_nof_normal_calls = 0;
 150 int SharedRuntime::_nof_optimized_calls = 0;
 151 int SharedRuntime::_nof_inlined_calls = 0;
 152 int SharedRuntime::_nof_megamorphic_calls = 0;
 153 int SharedRuntime::_nof_static_calls = 0;
 154 int SharedRuntime::_nof_inlined_static_calls = 0;
 155 int SharedRuntime::_nof_interface_calls = 0;
 156 int SharedRuntime::_nof_optimized_interface_calls = 0;
 157 int SharedRuntime::_nof_inlined_interface_calls = 0;
 158 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 159 int SharedRuntime::_nof_removable_exceptions = 0;
 160 
 161 int SharedRuntime::_new_instance_ctr=0;
 162 int SharedRuntime::_new_array_ctr=0;
 163 int SharedRuntime::_multi1_ctr=0;
 164 int SharedRuntime::_multi2_ctr=0;
 165 int SharedRuntime::_multi3_ctr=0;
 166 int SharedRuntime::_multi4_ctr=0;
 167 int SharedRuntime::_multi5_ctr=0;
 168 int SharedRuntime::_mon_enter_stub_ctr=0;
 169 int SharedRuntime::_mon_exit_stub_ctr=0;
 170 int SharedRuntime::_mon_enter_ctr=0;
 171 int SharedRuntime::_mon_exit_ctr=0;
 172 int SharedRuntime::_partial_subtype_ctr=0;
 173 int SharedRuntime::_jbyte_array_copy_ctr=0;
 174 int SharedRuntime::_jshort_array_copy_ctr=0;
 175 int SharedRuntime::_jint_array_copy_ctr=0;
 176 int SharedRuntime::_jlong_array_copy_ctr=0;
 177 int SharedRuntime::_oop_array_copy_ctr=0;
 178 int SharedRuntime::_checkcast_array_copy_ctr=0;
 179 int SharedRuntime::_unsafe_array_copy_ctr=0;
 180 int SharedRuntime::_generic_array_copy_ctr=0;
 181 int SharedRuntime::_slow_array_copy_ctr=0;
 182 int SharedRuntime::_find_handler_ctr=0;
 183 int SharedRuntime::_rethrow_ctr=0;
 184 
 185 int     SharedRuntime::_ICmiss_index                    = 0;
 186 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 187 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 188 
 189 
 190 void SharedRuntime::trace_ic_miss(address at) {
 191   for (int i = 0; i < _ICmiss_index; i++) {
 192     if (_ICmiss_at[i] == at) {
 193       _ICmiss_count[i]++;
 194       return;
 195     }
 196   }
 197   int index = _ICmiss_index++;
 198   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 199   _ICmiss_at[index] = at;
 200   _ICmiss_count[index] = 1;
 201 }
 202 
 203 void SharedRuntime::print_ic_miss_histogram() {
 204   if (ICMissHistogram) {
 205     tty->print_cr ("IC Miss Histogram:");
 206     int tot_misses = 0;
 207     for (int i = 0; i < _ICmiss_index; i++) {
 208       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 209       tot_misses += _ICmiss_count[i];
 210     }
 211     tty->print_cr ("Total IC misses: %7d", tot_misses);
 212   }
 213 }
 214 #endif // PRODUCT
 215 
 216 #if INCLUDE_ALL_GCS
 217 
 218 // G1 write-barrier pre: executed before a pointer store.
 219 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 220   if (orig == NULL) {
 221     assert(false, "should be optimized out");
 222     return;
 223   }
 224   assert(orig->is_oop(true /* ignore mark word */), "Error");
 225   // store the original value that was in the field reference
 226   thread->satb_mark_queue().enqueue(orig);
 227 JRT_END
 228 
 229 // G1 write-barrier post: executed after a pointer store.
 230 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 231   thread->dirty_card_queue().enqueue(card_addr);
 232 JRT_END
 233 
 234 #endif // INCLUDE_ALL_GCS
 235 
 236 
 237 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 238   return x * y;
 239 JRT_END
 240 
 241 
 242 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 243   if (x == min_jlong && y == CONST64(-1)) {
 244     return x;
 245   } else {
 246     return x / y;
 247   }
 248 JRT_END
 249 
 250 
 251 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 252   if (x == min_jlong && y == CONST64(-1)) {
 253     return 0;
 254   } else {
 255     return x % y;
 256   }
 257 JRT_END
 258 
 259 
 260 const juint  float_sign_mask  = 0x7FFFFFFF;
 261 const juint  float_infinity   = 0x7F800000;
 262 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 263 const julong double_infinity  = CONST64(0x7FF0000000000000);
 264 
 265 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 266 #ifdef _WIN64
 267   // 64-bit Windows on amd64 returns the wrong values for
 268   // infinity operands.
 269   union { jfloat f; juint i; } xbits, ybits;
 270   xbits.f = x;
 271   ybits.f = y;
 272   // x Mod Infinity == x unless x is infinity
 273   if ( ((xbits.i & float_sign_mask) != float_infinity) &&
 274        ((ybits.i & float_sign_mask) == float_infinity) ) {
 275     return x;
 276   }
 277 #endif
 278   return ((jfloat)fmod((double)x,(double)y));
 279 JRT_END
 280 
 281 
 282 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 283 #ifdef _WIN64
 284   union { jdouble d; julong l; } xbits, ybits;
 285   xbits.d = x;
 286   ybits.d = y;
 287   // x Mod Infinity == x unless x is infinity
 288   if ( ((xbits.l & double_sign_mask) != double_infinity) &&
 289        ((ybits.l & double_sign_mask) == double_infinity) ) {
 290     return x;
 291   }
 292 #endif
 293   return ((jdouble)fmod((double)x,(double)y));
 294 JRT_END
 295 
 296 #ifdef __SOFTFP__
 297 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 298   return x + y;
 299 JRT_END
 300 
 301 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 302   return x - y;
 303 JRT_END
 304 
 305 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 306   return x * y;
 307 JRT_END
 308 
 309 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 310   return x / y;
 311 JRT_END
 312 
 313 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 314   return x + y;
 315 JRT_END
 316 
 317 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 318   return x - y;
 319 JRT_END
 320 
 321 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 322   return x * y;
 323 JRT_END
 324 
 325 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 326   return x / y;
 327 JRT_END
 328 
 329 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 330   return (jfloat)x;
 331 JRT_END
 332 
 333 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 334   return (jdouble)x;
 335 JRT_END
 336 
 337 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 338   return (jdouble)x;
 339 JRT_END
 340 
 341 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 342   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 343 JRT_END
 344 
 345 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 346   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 347 JRT_END
 348 
 349 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 350   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 351 JRT_END
 352 
 353 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 354   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 355 JRT_END
 356 
 357 // Functions to return the opposite of the aeabi functions for nan.
 358 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 359   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 360 JRT_END
 361 
 362 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 363   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 364 JRT_END
 365 
 366 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 367   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 368 JRT_END
 369 
 370 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 371   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 372 JRT_END
 373 
 374 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 375   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 376 JRT_END
 377 
 378 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 379   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 380 JRT_END
 381 
 382 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 383   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 384 JRT_END
 385 
 386 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 387   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 388 JRT_END
 389 
 390 // Intrinsics make gcc generate code for these.
 391 float  SharedRuntime::fneg(float f)   {
 392   return -f;
 393 }
 394 
 395 double SharedRuntime::dneg(double f)  {
 396   return -f;
 397 }
 398 
 399 #endif // __SOFTFP__
 400 
 401 #if defined(__SOFTFP__) || defined(E500V2)
 402 // Intrinsics make gcc generate code for these.
 403 double SharedRuntime::dabs(double f)  {
 404   return (f <= (double)0.0) ? (double)0.0 - f : f;
 405 }
 406 
 407 #endif
 408 
 409 #if defined(__SOFTFP__) || defined(PPC)
 410 double SharedRuntime::dsqrt(double f) {
 411   return sqrt(f);
 412 }
 413 #endif
 414 
 415 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 416   if (g_isnan(x))
 417     return 0;
 418   if (x >= (jfloat) max_jint)
 419     return max_jint;
 420   if (x <= (jfloat) min_jint)
 421     return min_jint;
 422   return (jint) x;
 423 JRT_END
 424 
 425 
 426 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 427   if (g_isnan(x))
 428     return 0;
 429   if (x >= (jfloat) max_jlong)
 430     return max_jlong;
 431   if (x <= (jfloat) min_jlong)
 432     return min_jlong;
 433   return (jlong) x;
 434 JRT_END
 435 
 436 
 437 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 438   if (g_isnan(x))
 439     return 0;
 440   if (x >= (jdouble) max_jint)
 441     return max_jint;
 442   if (x <= (jdouble) min_jint)
 443     return min_jint;
 444   return (jint) x;
 445 JRT_END
 446 
 447 
 448 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 449   if (g_isnan(x))
 450     return 0;
 451   if (x >= (jdouble) max_jlong)
 452     return max_jlong;
 453   if (x <= (jdouble) min_jlong)
 454     return min_jlong;
 455   return (jlong) x;
 456 JRT_END
 457 
 458 
 459 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 460   return (jfloat)x;
 461 JRT_END
 462 
 463 
 464 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 465   return (jfloat)x;
 466 JRT_END
 467 
 468 
 469 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 470   return (jdouble)x;
 471 JRT_END
 472 
 473 // Exception handling accross interpreter/compiler boundaries
 474 //
 475 // exception_handler_for_return_address(...) returns the continuation address.
 476 // The continuation address is the entry point of the exception handler of the
 477 // previous frame depending on the return address.
 478 
 479 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 480   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 481 
 482   // Reset method handle flag.
 483   thread->set_is_method_handle_return(false);
 484 
 485   // The fastest case first
 486   CodeBlob* blob = CodeCache::find_blob(return_address);
 487   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 488   if (nm != NULL) {
 489     // Set flag if return address is a method handle call site.
 490     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 491     // native nmethods don't have exception handlers
 492     assert(!nm->is_native_method(), "no exception handler");
 493     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 494     if (nm->is_deopt_pc(return_address)) {
 495       return SharedRuntime::deopt_blob()->unpack_with_exception();
 496     } else {
 497       return nm->exception_begin();
 498     }
 499   }
 500 
 501   // Entry code
 502   if (StubRoutines::returns_to_call_stub(return_address)) {
 503     return StubRoutines::catch_exception_entry();
 504   }
 505   // Interpreted code
 506   if (Interpreter::contains(return_address)) {
 507     return Interpreter::rethrow_exception_entry();
 508   }
 509 
 510   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 511   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 512 
 513 #ifndef PRODUCT
 514   { ResourceMark rm;
 515     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 516     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 517     tty->print_cr("b) other problem");
 518   }
 519 #endif // PRODUCT
 520 
 521   ShouldNotReachHere();
 522   return NULL;
 523 }
 524 
 525 
 526 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 527   return raw_exception_handler_for_return_address(thread, return_address);
 528 JRT_END
 529 
 530 
 531 address SharedRuntime::get_poll_stub(address pc) {
 532   address stub;
 533   // Look up the code blob
 534   CodeBlob *cb = CodeCache::find_blob(pc);
 535 
 536   // Should be an nmethod
 537   assert( cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod" );
 538 
 539   // Look up the relocation information
 540   assert( ((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 541     "safepoint polling: type must be poll" );
 542 
 543   assert( ((NativeInstruction*)pc)->is_safepoint_poll(),
 544     "Only polling locations are used for safepoint");
 545 
 546   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 547   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 548   if (at_poll_return) {
 549     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 550            "polling page return stub not created yet");
 551     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 552   } else if (has_wide_vectors) {
 553     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 554            "polling page vectors safepoint stub not created yet");
 555     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 556   } else {
 557     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 558            "polling page safepoint stub not created yet");
 559     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 560   }
 561 #ifndef PRODUCT
 562   if( TraceSafepoint ) {
 563     char buf[256];
 564     jio_snprintf(buf, sizeof(buf),
 565                  "... found polling page %s exception at pc = "
 566                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 567                  at_poll_return ? "return" : "loop",
 568                  (intptr_t)pc, (intptr_t)stub);
 569     tty->print_raw_cr(buf);
 570   }
 571 #endif // PRODUCT
 572   return stub;
 573 }
 574 
 575 
 576 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 577   assert(caller.is_interpreted_frame(), "");
 578   int args_size = ArgumentSizeComputer(sig).size() + 1;
 579   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 580   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 581   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 582   return result;
 583 }
 584 
 585 
 586 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 587   if (JvmtiExport::can_post_on_exceptions()) {
 588     vframeStream vfst(thread, true);
 589     methodHandle method = methodHandle(thread, vfst.method());
 590     address bcp = method()->bcp_from(vfst.bci());
 591     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 592   }
 593   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 594 }
 595 
 596 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 597   Handle h_exception = Exceptions::new_exception(thread, name, message);
 598   throw_and_post_jvmti_exception(thread, h_exception);
 599 }
 600 
 601 // The interpreter code to call this tracing function is only
 602 // called/generated when TraceRedefineClasses has the right bits
 603 // set. Since obsolete methods are never compiled, we don't have
 604 // to modify the compilers to generate calls to this function.
 605 //
 606 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 607     JavaThread* thread, Method* method))
 608   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 609 
 610   if (method->is_obsolete()) {
 611     // We are calling an obsolete method, but this is not necessarily
 612     // an error. Our method could have been redefined just after we
 613     // fetched the Method* from the constant pool.
 614 
 615     // RC_TRACE macro has an embedded ResourceMark
 616     RC_TRACE_WITH_THREAD(0x00001000, thread,
 617                          ("calling obsolete method '%s'",
 618                           method->name_and_sig_as_C_string()));
 619     if (RC_TRACE_ENABLED(0x00002000)) {
 620       // this option is provided to debug calls to obsolete methods
 621       guarantee(false, "faulting at call to an obsolete method.");
 622     }
 623   }
 624   return 0;
 625 JRT_END
 626 
 627 // ret_pc points into caller; we are returning caller's exception handler
 628 // for given exception
 629 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 630                                                     bool force_unwind, bool top_frame_only) {
 631   assert(nm != NULL, "must exist");
 632   ResourceMark rm;
 633 
 634   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 635   // determine handler bci, if any
 636   EXCEPTION_MARK;
 637 
 638   int handler_bci = -1;
 639   int scope_depth = 0;
 640   if (!force_unwind) {
 641     int bci = sd->bci();
 642     bool recursive_exception = false;
 643     do {
 644       bool skip_scope_increment = false;
 645       // exception handler lookup
 646       KlassHandle ek (THREAD, exception->klass());
 647       methodHandle mh(THREAD, sd->method());
 648       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 649       if (HAS_PENDING_EXCEPTION) {
 650         recursive_exception = true;
 651         // We threw an exception while trying to find the exception handler.
 652         // Transfer the new exception to the exception handle which will
 653         // be set into thread local storage, and do another lookup for an
 654         // exception handler for this exception, this time starting at the
 655         // BCI of the exception handler which caused the exception to be
 656         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 657         // argument to ensure that the correct exception is thrown (4870175).
 658         exception = Handle(THREAD, PENDING_EXCEPTION);
 659         CLEAR_PENDING_EXCEPTION;
 660         if (handler_bci >= 0) {
 661           bci = handler_bci;
 662           handler_bci = -1;
 663           skip_scope_increment = true;
 664         }
 665       }
 666       else {
 667         recursive_exception = false;
 668       }
 669       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 670         sd = sd->sender();
 671         if (sd != NULL) {
 672           bci = sd->bci();
 673         }
 674         ++scope_depth;
 675       }
 676     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 677   }
 678 
 679   // found handling method => lookup exception handler
 680   int catch_pco = ret_pc - nm->code_begin();
 681 
 682   ExceptionHandlerTable table(nm);
 683   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 684   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 685     // Allow abbreviated catch tables.  The idea is to allow a method
 686     // to materialize its exceptions without committing to the exact
 687     // routing of exceptions.  In particular this is needed for adding
 688     // a synthethic handler to unlock monitors when inlining
 689     // synchonized methods since the unlock path isn't represented in
 690     // the bytecodes.
 691     t = table.entry_for(catch_pco, -1, 0);
 692   }
 693 
 694 #ifdef COMPILER1
 695   if (t == NULL && nm->is_compiled_by_c1()) {
 696     assert(nm->unwind_handler_begin() != NULL, "");
 697     return nm->unwind_handler_begin();
 698   }
 699 #endif
 700 
 701   if (t == NULL) {
 702     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 703     tty->print_cr("   Exception:");
 704     exception->print();
 705     tty->cr();
 706     tty->print_cr(" Compiled exception table :");
 707     table.print();
 708     nm->print_code();
 709     guarantee(false, "missing exception handler");
 710     return NULL;
 711   }
 712 
 713   return nm->code_begin() + t->pco();
 714 }
 715 
 716 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 717   // These errors occur only at call sites
 718   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 719 JRT_END
 720 
 721 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 722   // These errors occur only at call sites
 723   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 724 JRT_END
 725 
 726 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 727   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 728 JRT_END
 729 
 730 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 731   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 732 JRT_END
 733 
 734 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 735   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 736   // cache sites (when the callee activation is not yet set up) so we are at a call site
 737   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 738 JRT_END
 739 
 740 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 741   // We avoid using the normal exception construction in this case because
 742   // it performs an upcall to Java, and we're already out of stack space.
 743   Klass* k = SystemDictionary::StackOverflowError_klass();
 744   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 745   Handle exception (thread, exception_oop);
 746   if (StackTraceInThrowable) {
 747     java_lang_Throwable::fill_in_stack_trace(exception);
 748   }
 749   throw_and_post_jvmti_exception(thread, exception);
 750 JRT_END
 751 
 752 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 753                                                            address pc,
 754                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 755 {
 756   address target_pc = NULL;
 757 
 758   if (Interpreter::contains(pc)) {
 759 #ifdef CC_INTERP
 760     // C++ interpreter doesn't throw implicit exceptions
 761     ShouldNotReachHere();
 762 #else
 763     switch (exception_kind) {
 764       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 765       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 766       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 767       default:                      ShouldNotReachHere();
 768     }
 769 #endif // !CC_INTERP
 770   } else {
 771     switch (exception_kind) {
 772       case STACK_OVERFLOW: {
 773         // Stack overflow only occurs upon frame setup; the callee is
 774         // going to be unwound. Dispatch to a shared runtime stub
 775         // which will cause the StackOverflowError to be fabricated
 776         // and processed.
 777         // For stack overflow in deoptimization blob, cleanup thread.
 778         if (thread->deopt_mark() != NULL) {
 779           Deoptimization::cleanup_deopt_info(thread, NULL);
 780         }
 781         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 782         return StubRoutines::throw_StackOverflowError_entry();
 783       }
 784 
 785       case IMPLICIT_NULL: {
 786         if (VtableStubs::contains(pc)) {
 787           // We haven't yet entered the callee frame. Fabricate an
 788           // exception and begin dispatching it in the caller. Since
 789           // the caller was at a call site, it's safe to destroy all
 790           // caller-saved registers, as these entry points do.
 791           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 792 
 793           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 794           if (vt_stub == NULL) return NULL;
 795 
 796           if (vt_stub->is_abstract_method_error(pc)) {
 797             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 798             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 799             return StubRoutines::throw_AbstractMethodError_entry();
 800           } else {
 801             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 802             return StubRoutines::throw_NullPointerException_at_call_entry();
 803           }
 804         } else {
 805           CodeBlob* cb = CodeCache::find_blob(pc);
 806 
 807           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 808           if (cb == NULL) return NULL;
 809 
 810           // Exception happened in CodeCache. Must be either:
 811           // 1. Inline-cache check in C2I handler blob,
 812           // 2. Inline-cache check in nmethod, or
 813           // 3. Implict null exception in nmethod
 814 
 815           if (!cb->is_nmethod()) {
 816             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 817             if (!is_in_blob) {
 818               cb->print();
 819               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 820             }
 821             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 822             // There is no handler here, so we will simply unwind.
 823             return StubRoutines::throw_NullPointerException_at_call_entry();
 824           }
 825 
 826           // Otherwise, it's an nmethod.  Consult its exception handlers.
 827           nmethod* nm = (nmethod*)cb;
 828           if (nm->inlinecache_check_contains(pc)) {
 829             // exception happened inside inline-cache check code
 830             // => the nmethod is not yet active (i.e., the frame
 831             // is not set up yet) => use return address pushed by
 832             // caller => don't push another return address
 833             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 834             return StubRoutines::throw_NullPointerException_at_call_entry();
 835           }
 836 
 837           if (nm->method()->is_method_handle_intrinsic()) {
 838             // exception happened inside MH dispatch code, similar to a vtable stub
 839             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 840             return StubRoutines::throw_NullPointerException_at_call_entry();
 841           }
 842 
 843 #ifndef PRODUCT
 844           _implicit_null_throws++;
 845 #endif
 846           target_pc = nm->continuation_for_implicit_exception(pc);
 847           // If there's an unexpected fault, target_pc might be NULL,
 848           // in which case we want to fall through into the normal
 849           // error handling code.
 850         }
 851 
 852         break; // fall through
 853       }
 854 
 855 
 856       case IMPLICIT_DIVIDE_BY_ZERO: {
 857         nmethod* nm = CodeCache::find_nmethod(pc);
 858         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 859 #ifndef PRODUCT
 860         _implicit_div0_throws++;
 861 #endif
 862         target_pc = nm->continuation_for_implicit_exception(pc);
 863         // If there's an unexpected fault, target_pc might be NULL,
 864         // in which case we want to fall through into the normal
 865         // error handling code.
 866         break; // fall through
 867       }
 868 
 869       default: ShouldNotReachHere();
 870     }
 871 
 872     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 873 
 874     // for AbortVMOnException flag
 875     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 876     if (exception_kind == IMPLICIT_NULL) {
 877       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 878     } else {
 879       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 880     }
 881     return target_pc;
 882   }
 883 
 884   ShouldNotReachHere();
 885   return NULL;
 886 }
 887 
 888 
 889 /**
 890  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 891  * installed in the native function entry of all native Java methods before
 892  * they get linked to their actual native methods.
 893  *
 894  * \note
 895  * This method actually never gets called!  The reason is because
 896  * the interpreter's native entries call NativeLookup::lookup() which
 897  * throws the exception when the lookup fails.  The exception is then
 898  * caught and forwarded on the return from NativeLookup::lookup() call
 899  * before the call to the native function.  This might change in the future.
 900  */
 901 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 902 {
 903   // We return a bad value here to make sure that the exception is
 904   // forwarded before we look at the return value.
 905   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 906 }
 907 JNI_END
 908 
 909 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 910   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 911 }
 912 
 913 
 914 #ifndef PRODUCT
 915 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 916   const frame f = thread->last_frame();
 917   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 918 #ifndef PRODUCT
 919   methodHandle mh(THREAD, f.interpreter_frame_method());
 920   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 921 #endif // !PRODUCT
 922   return preserve_this_value;
 923 JRT_END
 924 #endif // !PRODUCT
 925 
 926 
 927 JRT_ENTRY(void, SharedRuntime::yield_all(JavaThread* thread, int attempts))
 928   os::yield_all(attempts);
 929 JRT_END
 930 
 931 
 932 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 933   assert(obj->is_oop(), "must be a valid oop");
 934   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 935   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 936 JRT_END
 937 
 938 
 939 jlong SharedRuntime::get_java_tid(Thread* thread) {
 940   if (thread != NULL) {
 941     if (thread->is_Java_thread()) {
 942       oop obj = ((JavaThread*)thread)->threadObj();
 943       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 944     }
 945   }
 946   return 0;
 947 }
 948 
 949 /**
 950  * This function ought to be a void function, but cannot be because
 951  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 952  * 6254741.  Once that is fixed we can remove the dummy return value.
 953  */
 954 int SharedRuntime::dtrace_object_alloc(oopDesc* o) {
 955   return dtrace_object_alloc_base(Thread::current(), o);
 956 }
 957 
 958 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o) {
 959   assert(DTraceAllocProbes, "wrong call");
 960   Klass* klass = o->klass();
 961   int size = o->size();
 962   Symbol* name = klass->name();
 963 #ifndef USDT2
 964   HS_DTRACE_PROBE4(hotspot, object__alloc, get_java_tid(thread),
 965                    name->bytes(), name->utf8_length(), size * HeapWordSize);
 966 #else /* USDT2 */
 967   HOTSPOT_OBJECT_ALLOC(
 968                    get_java_tid(thread),
 969                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 970 #endif /* USDT2 */
 971   return 0;
 972 }
 973 
 974 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 975     JavaThread* thread, Method* method))
 976   assert(DTraceMethodProbes, "wrong call");
 977   Symbol* kname = method->klass_name();
 978   Symbol* name = method->name();
 979   Symbol* sig = method->signature();
 980 #ifndef USDT2
 981   HS_DTRACE_PROBE7(hotspot, method__entry, get_java_tid(thread),
 982       kname->bytes(), kname->utf8_length(),
 983       name->bytes(), name->utf8_length(),
 984       sig->bytes(), sig->utf8_length());
 985 #else /* USDT2 */
 986   HOTSPOT_METHOD_ENTRY(
 987       get_java_tid(thread),
 988       (char *) kname->bytes(), kname->utf8_length(),
 989       (char *) name->bytes(), name->utf8_length(),
 990       (char *) sig->bytes(), sig->utf8_length());
 991 #endif /* USDT2 */
 992   return 0;
 993 JRT_END
 994 
 995 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 996     JavaThread* thread, Method* method))
 997   assert(DTraceMethodProbes, "wrong call");
 998   Symbol* kname = method->klass_name();
 999   Symbol* name = method->name();
1000   Symbol* sig = method->signature();
1001 #ifndef USDT2
1002   HS_DTRACE_PROBE7(hotspot, method__return, get_java_tid(thread),
1003       kname->bytes(), kname->utf8_length(),
1004       name->bytes(), name->utf8_length(),
1005       sig->bytes(), sig->utf8_length());
1006 #else /* USDT2 */
1007   HOTSPOT_METHOD_RETURN(
1008       get_java_tid(thread),
1009       (char *) kname->bytes(), kname->utf8_length(),
1010       (char *) name->bytes(), name->utf8_length(),
1011       (char *) sig->bytes(), sig->utf8_length());
1012 #endif /* USDT2 */
1013   return 0;
1014 JRT_END
1015 
1016 
1017 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1018 // for a call current in progress, i.e., arguments has been pushed on stack
1019 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1020 // vtable updates, etc.  Caller frame must be compiled.
1021 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1022   ResourceMark rm(THREAD);
1023 
1024   // last java frame on stack (which includes native call frames)
1025   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1026 
1027   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
1028 }
1029 
1030 
1031 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1032 // for a call current in progress, i.e., arguments has been pushed on stack
1033 // but callee has not been invoked yet.  Caller frame must be compiled.
1034 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1035                                               vframeStream& vfst,
1036                                               Bytecodes::Code& bc,
1037                                               CallInfo& callinfo, TRAPS) {
1038   Handle receiver;
1039   Handle nullHandle;  //create a handy null handle for exception returns
1040 
1041   assert(!vfst.at_end(), "Java frame must exist");
1042 
1043   // Find caller and bci from vframe
1044   methodHandle caller(THREAD, vfst.method());
1045   int          bci   = vfst.bci();
1046 
1047   // Find bytecode
1048   Bytecode_invoke bytecode(caller, bci);
1049   bc = bytecode.invoke_code();
1050   int bytecode_index = bytecode.index();
1051 
1052   // Find receiver for non-static call
1053   if (bc != Bytecodes::_invokestatic &&
1054       bc != Bytecodes::_invokedynamic &&
1055       bc != Bytecodes::_invokehandle) {
1056     // This register map must be update since we need to find the receiver for
1057     // compiled frames. The receiver might be in a register.
1058     RegisterMap reg_map2(thread);
1059     frame stubFrame   = thread->last_frame();
1060     // Caller-frame is a compiled frame
1061     frame callerFrame = stubFrame.sender(&reg_map2);
1062 
1063     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1064     if (callee.is_null()) {
1065       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1066     }
1067     // Retrieve from a compiled argument list
1068     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1069 
1070     if (receiver.is_null()) {
1071       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1072     }
1073   }
1074 
1075   // Resolve method. This is parameterized by bytecode.
1076   constantPoolHandle constants(THREAD, caller->constants());
1077   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1078   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1079 
1080 #ifdef ASSERT
1081   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1082   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1083     assert(receiver.not_null(), "should have thrown exception");
1084     KlassHandle receiver_klass(THREAD, receiver->klass());
1085     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1086                             // klass is already loaded
1087     KlassHandle static_receiver_klass(THREAD, rk);
1088     // Method handle invokes might have been optimized to a direct call
1089     // so don't check for the receiver class.
1090     // FIXME this weakens the assert too much
1091     methodHandle callee = callinfo.selected_method();
1092     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1093            callee->is_method_handle_intrinsic() ||
1094            callee->is_compiled_lambda_form(),
1095            "actual receiver must be subclass of static receiver klass");
1096     if (receiver_klass->oop_is_instance()) {
1097       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1098         tty->print_cr("ERROR: Klass not yet initialized!!");
1099         receiver_klass()->print();
1100       }
1101       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1102     }
1103   }
1104 #endif
1105 
1106   return receiver;
1107 }
1108 
1109 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1110   ResourceMark rm(THREAD);
1111   // We need first to check if any Java activations (compiled, interpreted)
1112   // exist on the stack since last JavaCall.  If not, we need
1113   // to get the target method from the JavaCall wrapper.
1114   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1115   methodHandle callee_method;
1116   if (vfst.at_end()) {
1117     // No Java frames were found on stack since we did the JavaCall.
1118     // Hence the stack can only contain an entry_frame.  We need to
1119     // find the target method from the stub frame.
1120     RegisterMap reg_map(thread, false);
1121     frame fr = thread->last_frame();
1122     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1123     fr = fr.sender(&reg_map);
1124     assert(fr.is_entry_frame(), "must be");
1125     // fr is now pointing to the entry frame.
1126     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1127     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1128   } else {
1129     Bytecodes::Code bc;
1130     CallInfo callinfo;
1131     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1132     callee_method = callinfo.selected_method();
1133   }
1134   assert(callee_method()->is_method(), "must be");
1135   return callee_method;
1136 }
1137 
1138 // Resolves a call.
1139 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1140                                            bool is_virtual,
1141                                            bool is_optimized, TRAPS) {
1142   methodHandle callee_method;
1143   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1144   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1145     int retry_count = 0;
1146     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1147            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1148       // If has a pending exception then there is no need to re-try to
1149       // resolve this method.
1150       // If the method has been redefined, we need to try again.
1151       // Hack: we have no way to update the vtables of arrays, so don't
1152       // require that java.lang.Object has been updated.
1153 
1154       // It is very unlikely that method is redefined more than 100 times
1155       // in the middle of resolve. If it is looping here more than 100 times
1156       // means then there could be a bug here.
1157       guarantee((retry_count++ < 100),
1158                 "Could not resolve to latest version of redefined method");
1159       // method is redefined in the middle of resolve so re-try.
1160       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1161     }
1162   }
1163   return callee_method;
1164 }
1165 
1166 // Resolves a call.  The compilers generate code for calls that go here
1167 // and are patched with the real destination of the call.
1168 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1169                                            bool is_virtual,
1170                                            bool is_optimized, TRAPS) {
1171 
1172   ResourceMark rm(thread);
1173   RegisterMap cbl_map(thread, false);
1174   frame caller_frame = thread->last_frame().sender(&cbl_map);
1175 
1176   CodeBlob* caller_cb = caller_frame.cb();
1177   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1178   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1179   // make sure caller is not getting deoptimized
1180   // and removed before we are done with it.
1181   // CLEANUP - with lazy deopt shouldn't need this lock
1182   nmethodLocker caller_lock(caller_nm);
1183 
1184 
1185   // determine call info & receiver
1186   // note: a) receiver is NULL for static calls
1187   //       b) an exception is thrown if receiver is NULL for non-static calls
1188   CallInfo call_info;
1189   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1190   Handle receiver = find_callee_info(thread, invoke_code,
1191                                      call_info, CHECK_(methodHandle()));
1192   methodHandle callee_method = call_info.selected_method();
1193 
1194   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1195          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1196          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1197          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1198 
1199 #ifndef PRODUCT
1200   // tracing/debugging/statistics
1201   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1202                 (is_virtual) ? (&_resolve_virtual_ctr) :
1203                                (&_resolve_static_ctr);
1204   Atomic::inc(addr);
1205 
1206   if (TraceCallFixup) {
1207     ResourceMark rm(thread);
1208     tty->print("resolving %s%s (%s) call to",
1209       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1210       Bytecodes::name(invoke_code));
1211     callee_method->print_short_name(tty);
1212     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1213   }
1214 #endif
1215 
1216   // JSR 292 key invariant:
1217   // If the resolved method is a MethodHandle invoke target the call
1218   // site must be a MethodHandle call site, because the lambda form might tail-call
1219   // leaving the stack in a state unknown to either caller or callee
1220   // TODO detune for now but we might need it again
1221 //  assert(!callee_method->is_compiled_lambda_form() ||
1222 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1223 
1224   // Compute entry points. This might require generation of C2I converter
1225   // frames, so we cannot be holding any locks here. Furthermore, the
1226   // computation of the entry points is independent of patching the call.  We
1227   // always return the entry-point, but we only patch the stub if the call has
1228   // not been deoptimized.  Return values: For a virtual call this is an
1229   // (cached_oop, destination address) pair. For a static call/optimized
1230   // virtual this is just a destination address.
1231 
1232   StaticCallInfo static_call_info;
1233   CompiledICInfo virtual_call_info;
1234 
1235   // Make sure the callee nmethod does not get deoptimized and removed before
1236   // we are done patching the code.
1237   nmethod* callee_nm = callee_method->code();
1238   nmethodLocker nl_callee(callee_nm);
1239 #ifdef ASSERT
1240   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1241 #endif
1242 
1243   if (is_virtual) {
1244     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1245     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1246     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1247     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1248                      is_optimized, static_bound, virtual_call_info,
1249                      CHECK_(methodHandle()));
1250   } else {
1251     // static call
1252     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1253   }
1254 
1255   // grab lock, check for deoptimization and potentially patch caller
1256   {
1257     MutexLocker ml_patch(CompiledIC_lock);
1258 
1259     // Now that we are ready to patch if the Method* was redefined then
1260     // don't update call site and let the caller retry.
1261 
1262     if (!callee_method->is_old()) {
1263 #ifdef ASSERT
1264       // We must not try to patch to jump to an already unloaded method.
1265       if (dest_entry_point != 0) {
1266         assert(CodeCache::find_blob(dest_entry_point) != NULL,
1267                "should not unload nmethod while locked");
1268       }
1269 #endif
1270       if (is_virtual) {
1271         nmethod* nm = callee_nm;
1272         if (nm == NULL) CodeCache::find_blob(caller_frame.pc());
1273         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1274         if (inline_cache->is_clean()) {
1275           inline_cache->set_to_monomorphic(virtual_call_info);
1276         }
1277       } else {
1278         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1279         if (ssc->is_clean()) ssc->set(static_call_info);
1280       }
1281     }
1282 
1283   } // unlock CompiledIC_lock
1284 
1285   return callee_method;
1286 }
1287 
1288 
1289 // Inline caches exist only in compiled code
1290 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1291 #ifdef ASSERT
1292   RegisterMap reg_map(thread, false);
1293   frame stub_frame = thread->last_frame();
1294   assert(stub_frame.is_runtime_frame(), "sanity check");
1295   frame caller_frame = stub_frame.sender(&reg_map);
1296   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1297 #endif /* ASSERT */
1298 
1299   methodHandle callee_method;
1300   JRT_BLOCK
1301     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1302     // Return Method* through TLS
1303     thread->set_vm_result_2(callee_method());
1304   JRT_BLOCK_END
1305   // return compiled code entry point after potential safepoints
1306   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1307   return callee_method->verified_code_entry();
1308 JRT_END
1309 
1310 
1311 // Handle call site that has been made non-entrant
1312 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1313   // 6243940 We might end up in here if the callee is deoptimized
1314   // as we race to call it.  We don't want to take a safepoint if
1315   // the caller was interpreted because the caller frame will look
1316   // interpreted to the stack walkers and arguments are now
1317   // "compiled" so it is much better to make this transition
1318   // invisible to the stack walking code. The i2c path will
1319   // place the callee method in the callee_target. It is stashed
1320   // there because if we try and find the callee by normal means a
1321   // safepoint is possible and have trouble gc'ing the compiled args.
1322   RegisterMap reg_map(thread, false);
1323   frame stub_frame = thread->last_frame();
1324   assert(stub_frame.is_runtime_frame(), "sanity check");
1325   frame caller_frame = stub_frame.sender(&reg_map);
1326 
1327   if (caller_frame.is_interpreted_frame() ||
1328       caller_frame.is_entry_frame()) {
1329     Method* callee = thread->callee_target();
1330     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1331     thread->set_vm_result_2(callee);
1332     thread->set_callee_target(NULL);
1333     return callee->get_c2i_entry();
1334   }
1335 
1336   // Must be compiled to compiled path which is safe to stackwalk
1337   methodHandle callee_method;
1338   JRT_BLOCK
1339     // Force resolving of caller (if we called from compiled frame)
1340     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1341     thread->set_vm_result_2(callee_method());
1342   JRT_BLOCK_END
1343   // return compiled code entry point after potential safepoints
1344   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1345   return callee_method->verified_code_entry();
1346 JRT_END
1347 
1348 
1349 // resolve a static call and patch code
1350 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1351   methodHandle callee_method;
1352   JRT_BLOCK
1353     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1354     thread->set_vm_result_2(callee_method());
1355   JRT_BLOCK_END
1356   // return compiled code entry point after potential safepoints
1357   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1358   return callee_method->verified_code_entry();
1359 JRT_END
1360 
1361 
1362 // resolve virtual call and update inline cache to monomorphic
1363 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1364   methodHandle callee_method;
1365   JRT_BLOCK
1366     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1367     thread->set_vm_result_2(callee_method());
1368   JRT_BLOCK_END
1369   // return compiled code entry point after potential safepoints
1370   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1371   return callee_method->verified_code_entry();
1372 JRT_END
1373 
1374 
1375 // Resolve a virtual call that can be statically bound (e.g., always
1376 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1377 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1378   methodHandle callee_method;
1379   JRT_BLOCK
1380     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1381     thread->set_vm_result_2(callee_method());
1382   JRT_BLOCK_END
1383   // return compiled code entry point after potential safepoints
1384   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1385   return callee_method->verified_code_entry();
1386 JRT_END
1387 
1388 
1389 
1390 
1391 
1392 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1393   ResourceMark rm(thread);
1394   CallInfo call_info;
1395   Bytecodes::Code bc;
1396 
1397   // receiver is NULL for static calls. An exception is thrown for NULL
1398   // receivers for non-static calls
1399   Handle receiver = find_callee_info(thread, bc, call_info,
1400                                      CHECK_(methodHandle()));
1401   // Compiler1 can produce virtual call sites that can actually be statically bound
1402   // If we fell thru to below we would think that the site was going megamorphic
1403   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1404   // we'd try and do a vtable dispatch however methods that can be statically bound
1405   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1406   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1407   // plain ic_miss) and the site will be converted to an optimized virtual call site
1408   // never to miss again. I don't believe C2 will produce code like this but if it
1409   // did this would still be the correct thing to do for it too, hence no ifdef.
1410   //
1411   if (call_info.resolved_method()->can_be_statically_bound()) {
1412     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1413     if (TraceCallFixup) {
1414       RegisterMap reg_map(thread, false);
1415       frame caller_frame = thread->last_frame().sender(&reg_map);
1416       ResourceMark rm(thread);
1417       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1418       callee_method->print_short_name(tty);
1419       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1420       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1421     }
1422     return callee_method;
1423   }
1424 
1425   methodHandle callee_method = call_info.selected_method();
1426 
1427   bool should_be_mono = false;
1428 
1429 #ifndef PRODUCT
1430   Atomic::inc(&_ic_miss_ctr);
1431 
1432   // Statistics & Tracing
1433   if (TraceCallFixup) {
1434     ResourceMark rm(thread);
1435     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1436     callee_method->print_short_name(tty);
1437     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1438   }
1439 
1440   if (ICMissHistogram) {
1441     MutexLocker m(VMStatistic_lock);
1442     RegisterMap reg_map(thread, false);
1443     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1444     // produce statistics under the lock
1445     trace_ic_miss(f.pc());
1446   }
1447 #endif
1448 
1449   // install an event collector so that when a vtable stub is created the
1450   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1451   // event can't be posted when the stub is created as locks are held
1452   // - instead the event will be deferred until the event collector goes
1453   // out of scope.
1454   JvmtiDynamicCodeEventCollector event_collector;
1455 
1456   // Update inline cache to megamorphic. Skip update if caller has been
1457   // made non-entrant or we are called from interpreted.
1458   { MutexLocker ml_patch (CompiledIC_lock);
1459     RegisterMap reg_map(thread, false);
1460     frame caller_frame = thread->last_frame().sender(&reg_map);
1461     CodeBlob* cb = caller_frame.cb();
1462     if (cb->is_nmethod() && ((nmethod*)cb)->is_in_use()) {
1463       // Not a non-entrant nmethod, so find inline_cache
1464       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1465       bool should_be_mono = false;
1466       if (inline_cache->is_optimized()) {
1467         if (TraceCallFixup) {
1468           ResourceMark rm(thread);
1469           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1470           callee_method->print_short_name(tty);
1471           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1472         }
1473         should_be_mono = true;
1474       } else if (inline_cache->is_icholder_call()) {
1475         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1476         if ( ic_oop != NULL) {
1477 
1478           if (receiver()->klass() == ic_oop->holder_klass()) {
1479             // This isn't a real miss. We must have seen that compiled code
1480             // is now available and we want the call site converted to a
1481             // monomorphic compiled call site.
1482             // We can't assert for callee_method->code() != NULL because it
1483             // could have been deoptimized in the meantime
1484             if (TraceCallFixup) {
1485               ResourceMark rm(thread);
1486               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1487               callee_method->print_short_name(tty);
1488               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1489             }
1490             should_be_mono = true;
1491           }
1492         }
1493       }
1494 
1495       if (should_be_mono) {
1496 
1497         // We have a path that was monomorphic but was going interpreted
1498         // and now we have (or had) a compiled entry. We correct the IC
1499         // by using a new icBuffer.
1500         CompiledICInfo info;
1501         KlassHandle receiver_klass(THREAD, receiver()->klass());
1502         inline_cache->compute_monomorphic_entry(callee_method,
1503                                                 receiver_klass,
1504                                                 inline_cache->is_optimized(),
1505                                                 false,
1506                                                 info, CHECK_(methodHandle()));
1507         inline_cache->set_to_monomorphic(info);
1508       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1509         // Potential change to megamorphic
1510         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1511         if (!successful) {
1512           inline_cache->set_to_clean();
1513         }
1514       } else {
1515         // Either clean or megamorphic
1516       }
1517     }
1518   } // Release CompiledIC_lock
1519 
1520   return callee_method;
1521 }
1522 
1523 //
1524 // Resets a call-site in compiled code so it will get resolved again.
1525 // This routines handles both virtual call sites, optimized virtual call
1526 // sites, and static call sites. Typically used to change a call sites
1527 // destination from compiled to interpreted.
1528 //
1529 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1530   ResourceMark rm(thread);
1531   RegisterMap reg_map(thread, false);
1532   frame stub_frame = thread->last_frame();
1533   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1534   frame caller = stub_frame.sender(&reg_map);
1535 
1536   // Do nothing if the frame isn't a live compiled frame.
1537   // nmethod could be deoptimized by the time we get here
1538   // so no update to the caller is needed.
1539 
1540   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1541 
1542     address pc = caller.pc();
1543 
1544     // Default call_addr is the location of the "basic" call.
1545     // Determine the address of the call we a reresolving. With
1546     // Inline Caches we will always find a recognizable call.
1547     // With Inline Caches disabled we may or may not find a
1548     // recognizable call. We will always find a call for static
1549     // calls and for optimized virtual calls. For vanilla virtual
1550     // calls it depends on the state of the UseInlineCaches switch.
1551     //
1552     // With Inline Caches disabled we can get here for a virtual call
1553     // for two reasons:
1554     //   1 - calling an abstract method. The vtable for abstract methods
1555     //       will run us thru handle_wrong_method and we will eventually
1556     //       end up in the interpreter to throw the ame.
1557     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1558     //       call and between the time we fetch the entry address and
1559     //       we jump to it the target gets deoptimized. Similar to 1
1560     //       we will wind up in the interprter (thru a c2i with c2).
1561     //
1562     address call_addr = NULL;
1563     {
1564       // Get call instruction under lock because another thread may be
1565       // busy patching it.
1566       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1567       // Location of call instruction
1568       if (NativeCall::is_call_before(pc)) {
1569         NativeCall *ncall = nativeCall_before(pc);
1570         call_addr = ncall->instruction_address();
1571       }
1572     }
1573 
1574     // Check for static or virtual call
1575     bool is_static_call = false;
1576     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1577     // Make sure nmethod doesn't get deoptimized and removed until
1578     // this is done with it.
1579     // CLEANUP - with lazy deopt shouldn't need this lock
1580     nmethodLocker nmlock(caller_nm);
1581 
1582     if (call_addr != NULL) {
1583       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1584       int ret = iter.next(); // Get item
1585       if (ret) {
1586         assert(iter.addr() == call_addr, "must find call");
1587         if (iter.type() == relocInfo::static_call_type) {
1588           is_static_call = true;
1589         } else {
1590           assert(iter.type() == relocInfo::virtual_call_type ||
1591                  iter.type() == relocInfo::opt_virtual_call_type
1592                 , "unexpected relocInfo. type");
1593         }
1594       } else {
1595         assert(!UseInlineCaches, "relocation info. must exist for this address");
1596       }
1597 
1598       // Cleaning the inline cache will force a new resolve. This is more robust
1599       // than directly setting it to the new destination, since resolving of calls
1600       // is always done through the same code path. (experience shows that it
1601       // leads to very hard to track down bugs, if an inline cache gets updated
1602       // to a wrong method). It should not be performance critical, since the
1603       // resolve is only done once.
1604 
1605       MutexLocker ml(CompiledIC_lock);
1606       //
1607       // We do not patch the call site if the nmethod has been made non-entrant
1608       // as it is a waste of time
1609       //
1610       if (caller_nm->is_in_use()) {
1611         if (is_static_call) {
1612           CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1613           ssc->set_to_clean();
1614         } else {
1615           // compiled, dispatched call (which used to call an interpreted method)
1616           CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1617           inline_cache->set_to_clean();
1618         }
1619       }
1620     }
1621 
1622   }
1623 
1624   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1625 
1626 
1627 #ifndef PRODUCT
1628   Atomic::inc(&_wrong_method_ctr);
1629 
1630   if (TraceCallFixup) {
1631     ResourceMark rm(thread);
1632     tty->print("handle_wrong_method reresolving call to");
1633     callee_method->print_short_name(tty);
1634     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1635   }
1636 #endif
1637 
1638   return callee_method;
1639 }
1640 
1641 #ifdef ASSERT
1642 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1643                                                                 const BasicType* sig_bt,
1644                                                                 const VMRegPair* regs) {
1645   ResourceMark rm;
1646   const int total_args_passed = method->size_of_parameters();
1647   const VMRegPair*    regs_with_member_name = regs;
1648         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1649 
1650   const int member_arg_pos = total_args_passed - 1;
1651   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1652   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1653 
1654   const bool is_outgoing = method->is_method_handle_intrinsic();
1655   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1656 
1657   for (int i = 0; i < member_arg_pos; i++) {
1658     VMReg a =    regs_with_member_name[i].first();
1659     VMReg b = regs_without_member_name[i].first();
1660     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1661   }
1662   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1663 }
1664 #endif
1665 
1666 // ---------------------------------------------------------------------------
1667 // We are calling the interpreter via a c2i. Normally this would mean that
1668 // we were called by a compiled method. However we could have lost a race
1669 // where we went int -> i2c -> c2i and so the caller could in fact be
1670 // interpreted. If the caller is compiled we attempt to patch the caller
1671 // so he no longer calls into the interpreter.
1672 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1673   Method* moop(method);
1674 
1675   address entry_point = moop->from_compiled_entry();
1676 
1677   // It's possible that deoptimization can occur at a call site which hasn't
1678   // been resolved yet, in which case this function will be called from
1679   // an nmethod that has been patched for deopt and we can ignore the
1680   // request for a fixup.
1681   // Also it is possible that we lost a race in that from_compiled_entry
1682   // is now back to the i2c in that case we don't need to patch and if
1683   // we did we'd leap into space because the callsite needs to use
1684   // "to interpreter" stub in order to load up the Method*. Don't
1685   // ask me how I know this...
1686 
1687   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1688   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1689     return;
1690   }
1691 
1692   // The check above makes sure this is a nmethod.
1693   nmethod* nm = cb->as_nmethod_or_null();
1694   assert(nm, "must be");
1695 
1696   // Get the return PC for the passed caller PC.
1697   address return_pc = caller_pc + frame::pc_return_offset;
1698 
1699   // There is a benign race here. We could be attempting to patch to a compiled
1700   // entry point at the same time the callee is being deoptimized. If that is
1701   // the case then entry_point may in fact point to a c2i and we'd patch the
1702   // call site with the same old data. clear_code will set code() to NULL
1703   // at the end of it. If we happen to see that NULL then we can skip trying
1704   // to patch. If we hit the window where the callee has a c2i in the
1705   // from_compiled_entry and the NULL isn't present yet then we lose the race
1706   // and patch the code with the same old data. Asi es la vida.
1707 
1708   if (moop->code() == NULL) return;
1709 
1710   if (nm->is_in_use()) {
1711 
1712     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1713     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1714     if (NativeCall::is_call_before(return_pc)) {
1715       NativeCall *call = nativeCall_before(return_pc);
1716       //
1717       // bug 6281185. We might get here after resolving a call site to a vanilla
1718       // virtual call. Because the resolvee uses the verified entry it may then
1719       // see compiled code and attempt to patch the site by calling us. This would
1720       // then incorrectly convert the call site to optimized and its downhill from
1721       // there. If you're lucky you'll get the assert in the bugid, if not you've
1722       // just made a call site that could be megamorphic into a monomorphic site
1723       // for the rest of its life! Just another racing bug in the life of
1724       // fixup_callers_callsite ...
1725       //
1726       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1727       iter.next();
1728       assert(iter.has_current(), "must have a reloc at java call site");
1729       relocInfo::relocType typ = iter.reloc()->type();
1730       if ( typ != relocInfo::static_call_type &&
1731            typ != relocInfo::opt_virtual_call_type &&
1732            typ != relocInfo::static_stub_type) {
1733         return;
1734       }
1735       address destination = call->destination();
1736       if (destination != entry_point) {
1737         CodeBlob* callee = CodeCache::find_blob(destination);
1738         // callee == cb seems weird. It means calling interpreter thru stub.
1739         if (callee == cb || callee->is_adapter_blob()) {
1740           // static call or optimized virtual
1741           if (TraceCallFixup) {
1742             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1743             moop->print_short_name(tty);
1744             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1745           }
1746           call->set_destination_mt_safe(entry_point);
1747         } else {
1748           if (TraceCallFixup) {
1749             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1750             moop->print_short_name(tty);
1751             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1752           }
1753           // assert is too strong could also be resolve destinations.
1754           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1755         }
1756       } else {
1757           if (TraceCallFixup) {
1758             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1759             moop->print_short_name(tty);
1760             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1761           }
1762       }
1763     }
1764   }
1765 IRT_END
1766 
1767 
1768 // same as JVM_Arraycopy, but called directly from compiled code
1769 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1770                                                 oopDesc* dest, jint dest_pos,
1771                                                 jint length,
1772                                                 JavaThread* thread)) {
1773 #ifndef PRODUCT
1774   _slow_array_copy_ctr++;
1775 #endif
1776   // Check if we have null pointers
1777   if (src == NULL || dest == NULL) {
1778     THROW(vmSymbols::java_lang_NullPointerException());
1779   }
1780   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1781   // even though the copy_array API also performs dynamic checks to ensure
1782   // that src and dest are truly arrays (and are conformable).
1783   // The copy_array mechanism is awkward and could be removed, but
1784   // the compilers don't call this function except as a last resort,
1785   // so it probably doesn't matter.
1786   src->klass()->copy_array((arrayOopDesc*)src,  src_pos,
1787                                         (arrayOopDesc*)dest, dest_pos,
1788                                         length, thread);
1789 }
1790 JRT_END
1791 
1792 char* SharedRuntime::generate_class_cast_message(
1793     JavaThread* thread, const char* objName) {
1794 
1795   // Get target class name from the checkcast instruction
1796   vframeStream vfst(thread, true);
1797   assert(!vfst.at_end(), "Java frame must exist");
1798   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1799   Klass* targetKlass = vfst.method()->constants()->klass_at(
1800     cc.index(), thread);
1801   return generate_class_cast_message(objName, targetKlass->external_name());
1802 }
1803 
1804 char* SharedRuntime::generate_class_cast_message(
1805     const char* objName, const char* targetKlassName, const char* desc) {
1806   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1807 
1808   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1809   if (NULL == message) {
1810     // Shouldn't happen, but don't cause even more problems if it does
1811     message = const_cast<char*>(objName);
1812   } else {
1813     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1814   }
1815   return message;
1816 }
1817 
1818 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1819   (void) JavaThread::current()->reguard_stack();
1820 JRT_END
1821 
1822 
1823 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1824 #ifndef PRODUCT
1825 int SharedRuntime::_monitor_enter_ctr=0;
1826 #endif
1827 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1828   oop obj(_obj);
1829 #ifndef PRODUCT
1830   _monitor_enter_ctr++;             // monitor enter slow
1831 #endif
1832   if (PrintBiasedLockingStatistics) {
1833     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1834   }
1835   Handle h_obj(THREAD, obj);
1836   if (UseBiasedLocking) {
1837     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1838     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1839   } else {
1840     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1841   }
1842   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1843 JRT_END
1844 
1845 #ifndef PRODUCT
1846 int SharedRuntime::_monitor_exit_ctr=0;
1847 #endif
1848 // Handles the uncommon cases of monitor unlocking in compiled code
1849 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1850    oop obj(_obj);
1851 #ifndef PRODUCT
1852   _monitor_exit_ctr++;              // monitor exit slow
1853 #endif
1854   Thread* THREAD = JavaThread::current();
1855   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1856   // testing was unable to ever fire the assert that guarded it so I have removed it.
1857   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1858 #undef MIGHT_HAVE_PENDING
1859 #ifdef MIGHT_HAVE_PENDING
1860   // Save and restore any pending_exception around the exception mark.
1861   // While the slow_exit must not throw an exception, we could come into
1862   // this routine with one set.
1863   oop pending_excep = NULL;
1864   const char* pending_file;
1865   int pending_line;
1866   if (HAS_PENDING_EXCEPTION) {
1867     pending_excep = PENDING_EXCEPTION;
1868     pending_file  = THREAD->exception_file();
1869     pending_line  = THREAD->exception_line();
1870     CLEAR_PENDING_EXCEPTION;
1871   }
1872 #endif /* MIGHT_HAVE_PENDING */
1873 
1874   {
1875     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1876     EXCEPTION_MARK;
1877     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1878   }
1879 
1880 #ifdef MIGHT_HAVE_PENDING
1881   if (pending_excep != NULL) {
1882     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1883   }
1884 #endif /* MIGHT_HAVE_PENDING */
1885 JRT_END
1886 
1887 #ifndef PRODUCT
1888 
1889 void SharedRuntime::print_statistics() {
1890   ttyLocker ttyl;
1891   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1892 
1893   if (_monitor_enter_ctr ) tty->print_cr("%5d monitor enter slow",  _monitor_enter_ctr);
1894   if (_monitor_exit_ctr  ) tty->print_cr("%5d monitor exit slow",   _monitor_exit_ctr);
1895   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1896 
1897   SharedRuntime::print_ic_miss_histogram();
1898 
1899   if (CountRemovableExceptions) {
1900     if (_nof_removable_exceptions > 0) {
1901       Unimplemented(); // this counter is not yet incremented
1902       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1903     }
1904   }
1905 
1906   // Dump the JRT_ENTRY counters
1907   if( _new_instance_ctr ) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1908   if( _new_array_ctr ) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1909   if( _multi1_ctr ) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1910   if( _multi2_ctr ) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1911   if( _multi3_ctr ) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1912   if( _multi4_ctr ) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1913   if( _multi5_ctr ) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1914 
1915   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr );
1916   tty->print_cr("%5d wrong method", _wrong_method_ctr );
1917   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr );
1918   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr );
1919   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr );
1920 
1921   if( _mon_enter_stub_ctr ) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr );
1922   if( _mon_exit_stub_ctr ) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr );
1923   if( _mon_enter_ctr ) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr );
1924   if( _mon_exit_ctr ) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr );
1925   if( _partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr );
1926   if( _jbyte_array_copy_ctr ) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr );
1927   if( _jshort_array_copy_ctr ) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr );
1928   if( _jint_array_copy_ctr ) tty->print_cr("%5d int array copies", _jint_array_copy_ctr );
1929   if( _jlong_array_copy_ctr ) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr );
1930   if( _oop_array_copy_ctr ) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr );
1931   if( _checkcast_array_copy_ctr ) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr );
1932   if( _unsafe_array_copy_ctr ) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr );
1933   if( _generic_array_copy_ctr ) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr );
1934   if( _slow_array_copy_ctr ) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr );
1935   if( _find_handler_ctr ) tty->print_cr("%5d find exception handler", _find_handler_ctr );
1936   if( _rethrow_ctr ) tty->print_cr("%5d rethrow handler", _rethrow_ctr );
1937 
1938   AdapterHandlerLibrary::print_statistics();
1939 
1940   if (xtty != NULL)  xtty->tail("statistics");
1941 }
1942 
1943 inline double percent(int x, int y) {
1944   return 100.0 * x / MAX2(y, 1);
1945 }
1946 
1947 class MethodArityHistogram {
1948  public:
1949   enum { MAX_ARITY = 256 };
1950  private:
1951   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1952   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1953   static int _max_arity;                      // max. arity seen
1954   static int _max_size;                       // max. arg size seen
1955 
1956   static void add_method_to_histogram(nmethod* nm) {
1957     Method* m = nm->method();
1958     ArgumentCount args(m->signature());
1959     int arity   = args.size() + (m->is_static() ? 0 : 1);
1960     int argsize = m->size_of_parameters();
1961     arity   = MIN2(arity, MAX_ARITY-1);
1962     argsize = MIN2(argsize, MAX_ARITY-1);
1963     int count = nm->method()->compiled_invocation_count();
1964     _arity_histogram[arity]  += count;
1965     _size_histogram[argsize] += count;
1966     _max_arity = MAX2(_max_arity, arity);
1967     _max_size  = MAX2(_max_size, argsize);
1968   }
1969 
1970   void print_histogram_helper(int n, int* histo, const char* name) {
1971     const int N = MIN2(5, n);
1972     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1973     double sum = 0;
1974     double weighted_sum = 0;
1975     int i;
1976     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1977     double rest = sum;
1978     double percent = sum / 100;
1979     for (i = 0; i <= N; i++) {
1980       rest -= histo[i];
1981       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1982     }
1983     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1984     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1985   }
1986 
1987   void print_histogram() {
1988     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1989     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1990     tty->print_cr("\nSame for parameter size (in words):");
1991     print_histogram_helper(_max_size, _size_histogram, "size");
1992     tty->cr();
1993   }
1994 
1995  public:
1996   MethodArityHistogram() {
1997     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1998     _max_arity = _max_size = 0;
1999     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram [i] = 0;
2000     CodeCache::nmethods_do(add_method_to_histogram);
2001     print_histogram();
2002   }
2003 };
2004 
2005 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2006 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2007 int MethodArityHistogram::_max_arity;
2008 int MethodArityHistogram::_max_size;
2009 
2010 void SharedRuntime::print_call_statistics(int comp_total) {
2011   tty->print_cr("Calls from compiled code:");
2012   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2013   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2014   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2015   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2016   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2017   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2018   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2019   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2020   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2021   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2022   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2023   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2024   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2025   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2026   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2027   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2028   tty->cr();
2029   tty->print_cr("Note 1: counter updates are not MT-safe.");
2030   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2031   tty->print_cr("        %% in nested categories are relative to their category");
2032   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2033   tty->cr();
2034 
2035   MethodArityHistogram h;
2036 }
2037 #endif
2038 
2039 
2040 // A simple wrapper class around the calling convention information
2041 // that allows sharing of adapters for the same calling convention.
2042 class AdapterFingerPrint : public CHeapObj<mtCode> {
2043  private:
2044   enum {
2045     _basic_type_bits = 4,
2046     _basic_type_mask = right_n_bits(_basic_type_bits),
2047     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2048     _compact_int_count = 3
2049   };
2050   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2051   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2052 
2053   union {
2054     int  _compact[_compact_int_count];
2055     int* _fingerprint;
2056   } _value;
2057   int _length; // A negative length indicates the fingerprint is in the compact form,
2058                // Otherwise _value._fingerprint is the array.
2059 
2060   // Remap BasicTypes that are handled equivalently by the adapters.
2061   // These are correct for the current system but someday it might be
2062   // necessary to make this mapping platform dependent.
2063   static int adapter_encoding(BasicType in) {
2064     switch(in) {
2065       case T_BOOLEAN:
2066       case T_BYTE:
2067       case T_SHORT:
2068       case T_CHAR:
2069         // There are all promoted to T_INT in the calling convention
2070         return T_INT;
2071 
2072       case T_OBJECT:
2073       case T_ARRAY:
2074         // In other words, we assume that any register good enough for
2075         // an int or long is good enough for a managed pointer.
2076 #ifdef _LP64
2077         return T_LONG;
2078 #else
2079         return T_INT;
2080 #endif
2081 
2082       case T_INT:
2083       case T_LONG:
2084       case T_FLOAT:
2085       case T_DOUBLE:
2086       case T_VOID:
2087         return in;
2088 
2089       default:
2090         ShouldNotReachHere();
2091         return T_CONFLICT;
2092     }
2093   }
2094 
2095  public:
2096   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2097     // The fingerprint is based on the BasicType signature encoded
2098     // into an array of ints with eight entries per int.
2099     int* ptr;
2100     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2101     if (len <= _compact_int_count) {
2102       assert(_compact_int_count == 3, "else change next line");
2103       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2104       // Storing the signature encoded as signed chars hits about 98%
2105       // of the time.
2106       _length = -len;
2107       ptr = _value._compact;
2108     } else {
2109       _length = len;
2110       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2111       ptr = _value._fingerprint;
2112     }
2113 
2114     // Now pack the BasicTypes with 8 per int
2115     int sig_index = 0;
2116     for (int index = 0; index < len; index++) {
2117       int value = 0;
2118       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2119         int bt = ((sig_index < total_args_passed)
2120                   ? adapter_encoding(sig_bt[sig_index++])
2121                   : 0);
2122         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2123         value = (value << _basic_type_bits) | bt;
2124       }
2125       ptr[index] = value;
2126     }
2127   }
2128 
2129   ~AdapterFingerPrint() {
2130     if (_length > 0) {
2131       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2132     }
2133   }
2134 
2135   int value(int index) {
2136     if (_length < 0) {
2137       return _value._compact[index];
2138     }
2139     return _value._fingerprint[index];
2140   }
2141   int length() {
2142     if (_length < 0) return -_length;
2143     return _length;
2144   }
2145 
2146   bool is_compact() {
2147     return _length <= 0;
2148   }
2149 
2150   unsigned int compute_hash() {
2151     int hash = 0;
2152     for (int i = 0; i < length(); i++) {
2153       int v = value(i);
2154       hash = (hash << 8) ^ v ^ (hash >> 5);
2155     }
2156     return (unsigned int)hash;
2157   }
2158 
2159   const char* as_string() {
2160     stringStream st;
2161     st.print("0x");
2162     for (int i = 0; i < length(); i++) {
2163       st.print("%08x", value(i));
2164     }
2165     return st.as_string();
2166   }
2167 
2168   bool equals(AdapterFingerPrint* other) {
2169     if (other->_length != _length) {
2170       return false;
2171     }
2172     if (_length < 0) {
2173       assert(_compact_int_count == 3, "else change next line");
2174       return _value._compact[0] == other->_value._compact[0] &&
2175              _value._compact[1] == other->_value._compact[1] &&
2176              _value._compact[2] == other->_value._compact[2];
2177     } else {
2178       for (int i = 0; i < _length; i++) {
2179         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2180           return false;
2181         }
2182       }
2183     }
2184     return true;
2185   }
2186 };
2187 
2188 
2189 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2190 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2191   friend class AdapterHandlerTableIterator;
2192 
2193  private:
2194 
2195 #ifndef PRODUCT
2196   static int _lookups; // number of calls to lookup
2197   static int _buckets; // number of buckets checked
2198   static int _equals;  // number of buckets checked with matching hash
2199   static int _hits;    // number of successful lookups
2200   static int _compact; // number of equals calls with compact signature
2201 #endif
2202 
2203   AdapterHandlerEntry* bucket(int i) {
2204     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2205   }
2206 
2207  public:
2208   AdapterHandlerTable()
2209     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2210 
2211   // Create a new entry suitable for insertion in the table
2212   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2213     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2214     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2215     return entry;
2216   }
2217 
2218   // Insert an entry into the table
2219   void add(AdapterHandlerEntry* entry) {
2220     int index = hash_to_index(entry->hash());
2221     add_entry(index, entry);
2222   }
2223 
2224   void free_entry(AdapterHandlerEntry* entry) {
2225     AdapterFingerPrint* finger_print = entry->fingerprint();
2226     unsigned int hash = entry->fingerprint()->compute_hash();
2227     int index = hash_to_index(hash);
2228     AdapterHandlerEntry* previous = NULL;
2229 
2230     // Loop over entries of the bucket and update linked list
2231     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2232       if (e->hash() == hash) {
2233         if (finger_print->equals(e->fingerprint())) {
2234           if (previous != NULL) {
2235             previous->set_next(e->next());
2236           } else {
2237             set_entry(index, e->next());
2238           }
2239         }
2240       }
2241       previous = e;
2242     }
2243 
2244     // Do the actual de-allocation
2245     entry->deallocate();
2246     BasicHashtable<mtCode>::free_entry(entry);
2247   }
2248 
2249   // Find a entry with the same fingerprint if it exists
2250   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2251     NOT_PRODUCT(_lookups++);
2252     AdapterFingerPrint fp(total_args_passed, sig_bt);
2253     unsigned int hash = fp.compute_hash();
2254     int index = hash_to_index(hash);
2255     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2256       NOT_PRODUCT(_buckets++);
2257       if (e->hash() == hash) {
2258         NOT_PRODUCT(_equals++);
2259         if (fp.equals(e->fingerprint())) {
2260 #ifndef PRODUCT
2261           if (fp.is_compact()) _compact++;
2262           _hits++;
2263 #endif
2264           return e;
2265         }
2266       }
2267     }
2268     return NULL;
2269   }
2270 
2271 #ifndef PRODUCT
2272   void print_statistics() {
2273     ResourceMark rm;
2274     int longest = 0;
2275     int empty = 0;
2276     int total = 0;
2277     int nonempty = 0;
2278     for (int index = 0; index < table_size(); index++) {
2279       int count = 0;
2280       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2281         count++;
2282       }
2283       if (count != 0) nonempty++;
2284       if (count == 0) empty++;
2285       if (count > longest) longest = count;
2286       total += count;
2287     }
2288     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2289                   empty, longest, total, total / (double)nonempty);
2290     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2291                   _lookups, _buckets, _equals, _hits, _compact);
2292   }
2293 #endif
2294 };
2295 
2296 
2297 #ifndef PRODUCT
2298 
2299 int AdapterHandlerTable::_lookups;
2300 int AdapterHandlerTable::_buckets;
2301 int AdapterHandlerTable::_equals;
2302 int AdapterHandlerTable::_hits;
2303 int AdapterHandlerTable::_compact;
2304 
2305 #endif
2306 
2307 class AdapterHandlerTableIterator : public StackObj {
2308  private:
2309   AdapterHandlerTable* _table;
2310   int _index;
2311   AdapterHandlerEntry* _current;
2312 
2313   void scan() {
2314     while (_index < _table->table_size()) {
2315       AdapterHandlerEntry* a = _table->bucket(_index);
2316       _index++;
2317       if (a != NULL) {
2318         _current = a;
2319         return;
2320       }
2321     }
2322   }
2323 
2324  public:
2325   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2326     scan();
2327   }
2328   bool has_next() {
2329     return _current != NULL;
2330   }
2331   AdapterHandlerEntry* next() {
2332     if (_current != NULL) {
2333       AdapterHandlerEntry* result = _current;
2334       _current = _current->next();
2335       if (_current == NULL) scan();
2336       return result;
2337     } else {
2338       return NULL;
2339     }
2340   }
2341 };
2342 
2343 
2344 // ---------------------------------------------------------------------------
2345 // Implementation of AdapterHandlerLibrary
2346 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2347 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2348 const int AdapterHandlerLibrary_size = 16*K;
2349 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2350 
2351 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2352   // Should be called only when AdapterHandlerLibrary_lock is active.
2353   if (_buffer == NULL) // Initialize lazily
2354       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2355   return _buffer;
2356 }
2357 
2358 void AdapterHandlerLibrary::initialize() {
2359   if (_adapters != NULL) return;
2360   _adapters = new AdapterHandlerTable();
2361 
2362   // Create a special handler for abstract methods.  Abstract methods
2363   // are never compiled so an i2c entry is somewhat meaningless, but
2364   // fill it in with something appropriate just in case.  Pass handle
2365   // wrong method for the c2i transitions.
2366   address wrong_method = SharedRuntime::get_handle_wrong_method_stub();
2367   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2368                                                               StubRoutines::throw_AbstractMethodError_entry(),
2369                                                               wrong_method, wrong_method);
2370 }
2371 
2372 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2373                                                       address i2c_entry,
2374                                                       address c2i_entry,
2375                                                       address c2i_unverified_entry) {
2376   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2377 }
2378 
2379 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2380   // Use customized signature handler.  Need to lock around updates to
2381   // the AdapterHandlerTable (it is not safe for concurrent readers
2382   // and a single writer: this could be fixed if it becomes a
2383   // problem).
2384 
2385   // Get the address of the ic_miss handlers before we grab the
2386   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2387   // was caused by the initialization of the stubs happening
2388   // while we held the lock and then notifying jvmti while
2389   // holding it. This just forces the initialization to be a little
2390   // earlier.
2391   address ic_miss = SharedRuntime::get_ic_miss_stub();
2392   assert(ic_miss != NULL, "must have handler");
2393 
2394   ResourceMark rm;
2395 
2396   NOT_PRODUCT(int insts_size);
2397   AdapterBlob* B = NULL;
2398   AdapterHandlerEntry* entry = NULL;
2399   AdapterFingerPrint* fingerprint = NULL;
2400   {
2401     MutexLocker mu(AdapterHandlerLibrary_lock);
2402     // make sure data structure is initialized
2403     initialize();
2404 
2405     if (method->is_abstract()) {
2406       return _abstract_method_handler;
2407     }
2408 
2409     // Fill in the signature array, for the calling-convention call.
2410     int total_args_passed = method->size_of_parameters(); // All args on stack
2411 
2412     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2413     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2414     int i = 0;
2415     if (!method->is_static())  // Pass in receiver first
2416       sig_bt[i++] = T_OBJECT;
2417     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2418       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2419       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2420         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2421     }
2422     assert(i == total_args_passed, "");
2423 
2424     // Lookup method signature's fingerprint
2425     entry = _adapters->lookup(total_args_passed, sig_bt);
2426 
2427 #ifdef ASSERT
2428     AdapterHandlerEntry* shared_entry = NULL;
2429     // Start adapter sharing verification only after the VM is booted.
2430     if (VerifyAdapterSharing && (entry != NULL) && entry->contains_all_checks()) {
2431       shared_entry = entry;
2432       entry = NULL;
2433     }
2434 #endif
2435 
2436     if (entry != NULL) {
2437       // Re-use generated adapter only if VM is booted (StubRoutines::code2() != NULL
2438       // or VerifyAdapterCalls is false. The reason is that gen_i2c_adapter() generates
2439       // code based on the existence of StubRoutines::code1() and StubRoutines::code2().
2440       // Since these fields can be initialized after adapters are generated, VerifyAdapterCalls
2441       // potentially reports a false error and/or VerifyAdapterSharing will fail.
2442       if (!entry->contains_all_checks()) {
2443         _adapters->free_entry(entry);
2444       } else {
2445         return entry;
2446       }
2447     }
2448 
2449     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2450     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2451 
2452     // Make a C heap allocated version of the fingerprint to store in the adapter
2453     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2454 
2455     // Create I2C & C2I handlers
2456     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2457     if (buf != NULL) {
2458       CodeBuffer buffer(buf);
2459       short buffer_locs[20];
2460       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2461                                              sizeof(buffer_locs)/sizeof(relocInfo));
2462 
2463       bool contains_all_checks = (StubRoutines::code2() != NULL) || !VerifyAdapterCalls;
2464       MacroAssembler _masm(&buffer);
2465       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2466                                                      total_args_passed,
2467                                                      comp_args_on_stack,
2468                                                      sig_bt,
2469                                                      regs,
2470                                                      fingerprint);
2471       entry->set_contains_all_checks(contains_all_checks);
2472 #ifdef ASSERT
2473       if (VerifyAdapterSharing) {
2474         if (shared_entry != NULL) {
2475           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2476           // Release the one just created and return the original
2477           _adapters->free_entry(entry);
2478           return shared_entry;
2479         } else  {
2480           entry->save_code(buf->code_begin(), buffer.insts_size());
2481         }
2482       }
2483 #endif
2484 
2485       B = AdapterBlob::create(&buffer);
2486       NOT_PRODUCT(insts_size = buffer.insts_size());
2487     }
2488     if (B == NULL) {
2489       // CodeCache is full, disable compilation
2490       // Ought to log this but compile log is only per compile thread
2491       // and we're some non descript Java thread.
2492       MutexUnlocker mu(AdapterHandlerLibrary_lock);
2493       CompileBroker::handle_full_code_cache();
2494       return NULL; // Out of CodeCache space
2495     }
2496     entry->relocate(B->content_begin());
2497 #ifndef PRODUCT
2498     // debugging suppport
2499     if (PrintAdapterHandlers || PrintStubCode) {
2500       ttyLocker ttyl;
2501       entry->print_adapter_on(tty);
2502       tty->print_cr("i2c argument handler #%d for: %s %s (%d bytes generated)",
2503                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2504                     method->signature()->as_C_string(), insts_size);
2505       tty->print_cr("c2i argument handler starts at %p",entry->get_c2i_entry());
2506       if (Verbose || PrintStubCode) {
2507         address first_pc = entry->base_address();
2508         if (first_pc != NULL) {
2509           Disassembler::decode(first_pc, first_pc + insts_size);
2510           tty->cr();
2511         }
2512       }
2513     }
2514 #endif
2515 
2516     _adapters->add(entry);
2517   }
2518   // Outside of the lock
2519   if (B != NULL) {
2520     char blob_id[256];
2521     jio_snprintf(blob_id,
2522                  sizeof(blob_id),
2523                  "%s(%s)@" PTR_FORMAT,
2524                  B->name(),
2525                  fingerprint->as_string(),
2526                  B->content_begin());
2527     Forte::register_stub(blob_id, B->content_begin(), B->content_end());
2528 
2529     if (JvmtiExport::should_post_dynamic_code_generated()) {
2530       JvmtiExport::post_dynamic_code_generated(blob_id, B->content_begin(), B->content_end());
2531     }
2532   }
2533   return entry;
2534 }
2535 
2536 address AdapterHandlerEntry::base_address() {
2537   address base = _i2c_entry;
2538   if (base == NULL)  base = _c2i_entry;
2539   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2540   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2541   return base;
2542 }
2543 
2544 void AdapterHandlerEntry::relocate(address new_base) {
2545   address old_base = base_address();
2546   assert(old_base != NULL, "");
2547   ptrdiff_t delta = new_base - old_base;
2548   if (_i2c_entry != NULL)
2549     _i2c_entry += delta;
2550   if (_c2i_entry != NULL)
2551     _c2i_entry += delta;
2552   if (_c2i_unverified_entry != NULL)
2553     _c2i_unverified_entry += delta;
2554   assert(base_address() == new_base, "");
2555 }
2556 
2557 
2558 void AdapterHandlerEntry::deallocate() {
2559   delete _fingerprint;
2560 #ifdef ASSERT
2561   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2562 #endif
2563 }
2564 
2565 
2566 #ifdef ASSERT
2567 // Capture the code before relocation so that it can be compared
2568 // against other versions.  If the code is captured after relocation
2569 // then relative instructions won't be equivalent.
2570 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2571   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2572   _saved_code_length = length;
2573   memcpy(_saved_code, buffer, length);
2574 }
2575 
2576 
2577 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2578   if (length != _saved_code_length) {
2579     return false;
2580   }
2581 
2582   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2583 }
2584 #endif
2585 
2586 
2587 // Create a native wrapper for this native method.  The wrapper converts the
2588 // java compiled calling convention to the native convention, handlizes
2589 // arguments, and transitions to native.  On return from the native we transition
2590 // back to java blocking if a safepoint is in progress.
2591 nmethod *AdapterHandlerLibrary::create_native_wrapper(methodHandle method, int compile_id) {
2592   ResourceMark rm;
2593   nmethod* nm = NULL;
2594 
2595   assert(method->is_native(), "must be native");
2596   assert(method->is_method_handle_intrinsic() ||
2597          method->has_native_function(), "must have something valid to call!");
2598 
2599   {
2600     // perform the work while holding the lock, but perform any printing outside the lock
2601     MutexLocker mu(AdapterHandlerLibrary_lock);
2602     // See if somebody beat us to it
2603     nm = method->code();
2604     if (nm) {
2605       return nm;
2606     }
2607 
2608     ResourceMark rm;
2609 
2610     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2611     if (buf != NULL) {
2612       CodeBuffer buffer(buf);
2613       double locs_buf[20];
2614       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2615       MacroAssembler _masm(&buffer);
2616 
2617       // Fill in the signature array, for the calling-convention call.
2618       const int total_args_passed = method->size_of_parameters();
2619 
2620       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2621       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2622       int i=0;
2623       if( !method->is_static() )  // Pass in receiver first
2624         sig_bt[i++] = T_OBJECT;
2625       SignatureStream ss(method->signature());
2626       for( ; !ss.at_return_type(); ss.next()) {
2627         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2628         if( ss.type() == T_LONG || ss.type() == T_DOUBLE )
2629           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2630       }
2631       assert(i == total_args_passed, "");
2632       BasicType ret_type = ss.type();
2633 
2634       // Now get the compiled-Java layout as input (or output) arguments.
2635       // NOTE: Stubs for compiled entry points of method handle intrinsics
2636       // are just trampolines so the argument registers must be outgoing ones.
2637       const bool is_outgoing = method->is_method_handle_intrinsic();
2638       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2639 
2640       // Generate the compiled-to-native wrapper code
2641       nm = SharedRuntime::generate_native_wrapper(&_masm,
2642                                                   method,
2643                                                   compile_id,
2644                                                   sig_bt,
2645                                                   regs,
2646                                                   ret_type);
2647     }
2648   }
2649 
2650   // Must unlock before calling set_code
2651 
2652   // Install the generated code.
2653   if (nm != NULL) {
2654     if (PrintCompilation) {
2655       ttyLocker ttyl;
2656       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2657     }
2658     method->set_code(method, nm);
2659     nm->post_compiled_method_load_event();
2660   } else {
2661     // CodeCache is full, disable compilation
2662     CompileBroker::handle_full_code_cache();
2663   }
2664   return nm;
2665 }
2666 
2667 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2668   assert(thread == JavaThread::current(), "must be");
2669   // The code is about to enter a JNI lazy critical native method and
2670   // _needs_gc is true, so if this thread is already in a critical
2671   // section then just return, otherwise this thread should block
2672   // until needs_gc has been cleared.
2673   if (thread->in_critical()) {
2674     return;
2675   }
2676   // Lock and unlock a critical section to give the system a chance to block
2677   GC_locker::lock_critical(thread);
2678   GC_locker::unlock_critical(thread);
2679 JRT_END
2680 
2681 #ifdef HAVE_DTRACE_H
2682 // Create a dtrace nmethod for this method.  The wrapper converts the
2683 // java compiled calling convention to the native convention, makes a dummy call
2684 // (actually nops for the size of the call instruction, which become a trap if
2685 // probe is enabled). The returns to the caller. Since this all looks like a
2686 // leaf no thread transition is needed.
2687 
2688 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2689   ResourceMark rm;
2690   nmethod* nm = NULL;
2691 
2692   if (PrintCompilation) {
2693     ttyLocker ttyl;
2694     tty->print("---   n%s  ");
2695     method->print_short_name(tty);
2696     if (method->is_static()) {
2697       tty->print(" (static)");
2698     }
2699     tty->cr();
2700   }
2701 
2702   {
2703     // perform the work while holding the lock, but perform any printing
2704     // outside the lock
2705     MutexLocker mu(AdapterHandlerLibrary_lock);
2706     // See if somebody beat us to it
2707     nm = method->code();
2708     if (nm) {
2709       return nm;
2710     }
2711 
2712     ResourceMark rm;
2713 
2714     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2715     if (buf != NULL) {
2716       CodeBuffer buffer(buf);
2717       // Need a few relocation entries
2718       double locs_buf[20];
2719       buffer.insts()->initialize_shared_locs(
2720         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2721       MacroAssembler _masm(&buffer);
2722 
2723       // Generate the compiled-to-native wrapper code
2724       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2725     }
2726   }
2727   return nm;
2728 }
2729 
2730 // the dtrace method needs to convert java lang string to utf8 string.
2731 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2732   typeArrayOop jlsValue  = java_lang_String::value(src);
2733   int          jlsOffset = java_lang_String::offset(src);
2734   int          jlsLen    = java_lang_String::length(src);
2735   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2736                                            jlsValue->char_at_addr(jlsOffset);
2737   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2738   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2739 }
2740 #endif // ndef HAVE_DTRACE_H
2741 
2742 // -------------------------------------------------------------------------
2743 // Java-Java calling convention
2744 // (what you use when Java calls Java)
2745 
2746 //------------------------------name_for_receiver----------------------------------
2747 // For a given signature, return the VMReg for parameter 0.
2748 VMReg SharedRuntime::name_for_receiver() {
2749   VMRegPair regs;
2750   BasicType sig_bt = T_OBJECT;
2751   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2752   // Return argument 0 register.  In the LP64 build pointers
2753   // take 2 registers, but the VM wants only the 'main' name.
2754   return regs.first();
2755 }
2756 
2757 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2758   // This method is returning a data structure allocating as a
2759   // ResourceObject, so do not put any ResourceMarks in here.
2760   char *s = sig->as_C_string();
2761   int len = (int)strlen(s);
2762   s++; len--;                   // Skip opening paren
2763   char *t = s+len;
2764   while( *(--t) != ')' ) ;      // Find close paren
2765 
2766   BasicType *sig_bt = NEW_RESOURCE_ARRAY( BasicType, 256 );
2767   VMRegPair *regs = NEW_RESOURCE_ARRAY( VMRegPair, 256 );
2768   int cnt = 0;
2769   if (has_receiver) {
2770     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2771   }
2772 
2773   while( s < t ) {
2774     switch( *s++ ) {            // Switch on signature character
2775     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2776     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2777     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2778     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2779     case 'I': sig_bt[cnt++] = T_INT;     break;
2780     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2781     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2782     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2783     case 'V': sig_bt[cnt++] = T_VOID;    break;
2784     case 'L':                   // Oop
2785       while( *s++ != ';'  ) ;   // Skip signature
2786       sig_bt[cnt++] = T_OBJECT;
2787       break;
2788     case '[': {                 // Array
2789       do {                      // Skip optional size
2790         while( *s >= '0' && *s <= '9' ) s++;
2791       } while( *s++ == '[' );   // Nested arrays?
2792       // Skip element type
2793       if( s[-1] == 'L' )
2794         while( *s++ != ';'  ) ; // Skip signature
2795       sig_bt[cnt++] = T_ARRAY;
2796       break;
2797     }
2798     default : ShouldNotReachHere();
2799     }
2800   }
2801 
2802   if (has_appendix) {
2803     sig_bt[cnt++] = T_OBJECT;
2804   }
2805 
2806   assert( cnt < 256, "grow table size" );
2807 
2808   int comp_args_on_stack;
2809   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2810 
2811   // the calling convention doesn't count out_preserve_stack_slots so
2812   // we must add that in to get "true" stack offsets.
2813 
2814   if (comp_args_on_stack) {
2815     for (int i = 0; i < cnt; i++) {
2816       VMReg reg1 = regs[i].first();
2817       if( reg1->is_stack()) {
2818         // Yuck
2819         reg1 = reg1->bias(out_preserve_stack_slots());
2820       }
2821       VMReg reg2 = regs[i].second();
2822       if( reg2->is_stack()) {
2823         // Yuck
2824         reg2 = reg2->bias(out_preserve_stack_slots());
2825       }
2826       regs[i].set_pair(reg2, reg1);
2827     }
2828   }
2829 
2830   // results
2831   *arg_size = cnt;
2832   return regs;
2833 }
2834 
2835 // OSR Migration Code
2836 //
2837 // This code is used convert interpreter frames into compiled frames.  It is
2838 // called from very start of a compiled OSR nmethod.  A temp array is
2839 // allocated to hold the interesting bits of the interpreter frame.  All
2840 // active locks are inflated to allow them to move.  The displaced headers and
2841 // active interpeter locals are copied into the temp buffer.  Then we return
2842 // back to the compiled code.  The compiled code then pops the current
2843 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2844 // copies the interpreter locals and displaced headers where it wants.
2845 // Finally it calls back to free the temp buffer.
2846 //
2847 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2848 
2849 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2850 
2851   //
2852   // This code is dependent on the memory layout of the interpreter local
2853   // array and the monitors. On all of our platforms the layout is identical
2854   // so this code is shared. If some platform lays the their arrays out
2855   // differently then this code could move to platform specific code or
2856   // the code here could be modified to copy items one at a time using
2857   // frame accessor methods and be platform independent.
2858 
2859   frame fr = thread->last_frame();
2860   assert( fr.is_interpreted_frame(), "" );
2861   assert( fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks" );
2862 
2863   // Figure out how many monitors are active.
2864   int active_monitor_count = 0;
2865   for( BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2866        kptr < fr.interpreter_frame_monitor_begin();
2867        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2868     if( kptr->obj() != NULL ) active_monitor_count++;
2869   }
2870 
2871   // QQQ we could place number of active monitors in the array so that compiled code
2872   // could double check it.
2873 
2874   Method* moop = fr.interpreter_frame_method();
2875   int max_locals = moop->max_locals();
2876   // Allocate temp buffer, 1 word per local & 2 per active monitor
2877   int buf_size_words = max_locals + active_monitor_count*2;
2878   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2879 
2880   // Copy the locals.  Order is preserved so that loading of longs works.
2881   // Since there's no GC I can copy the oops blindly.
2882   assert( sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2883   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2884                        (HeapWord*)&buf[0],
2885                        max_locals);
2886 
2887   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2888   int i = max_locals;
2889   for( BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2890        kptr2 < fr.interpreter_frame_monitor_begin();
2891        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2892     if( kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2893       BasicLock *lock = kptr2->lock();
2894       // Inflate so the displaced header becomes position-independent
2895       if (lock->displaced_header()->is_unlocked())
2896         ObjectSynchronizer::inflate_helper(kptr2->obj());
2897       // Now the displaced header is free to move
2898       buf[i++] = (intptr_t)lock->displaced_header();
2899       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2900     }
2901   }
2902   assert( i - max_locals == active_monitor_count*2, "found the expected number of monitors" );
2903 
2904   return buf;
2905 JRT_END
2906 
2907 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2908   FREE_C_HEAP_ARRAY(intptr_t,buf, mtCode);
2909 JRT_END
2910 
2911 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2912   AdapterHandlerTableIterator iter(_adapters);
2913   while (iter.has_next()) {
2914     AdapterHandlerEntry* a = iter.next();
2915     if ( b == CodeCache::find_blob(a->get_i2c_entry()) ) return true;
2916   }
2917   return false;
2918 }
2919 
2920 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2921   AdapterHandlerTableIterator iter(_adapters);
2922   while (iter.has_next()) {
2923     AdapterHandlerEntry* a = iter.next();
2924     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2925       st->print("Adapter for signature: ");
2926       a->print_adapter_on(tty);
2927       return;
2928     }
2929   }
2930   assert(false, "Should have found handler");
2931 }
2932 
2933 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2934   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2935                (intptr_t) this, fingerprint()->as_string(),
2936                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2937 
2938 }
2939 
2940 #ifndef PRODUCT
2941 
2942 void AdapterHandlerLibrary::print_statistics() {
2943   _adapters->print_statistics();
2944 }
2945 
2946 #endif /* PRODUCT */