1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "c1/c1_Defs.hpp"
  28 #include "c1/c1_MacroAssembler.hpp"
  29 #include "c1/c1_Runtime1.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "nativeInst_x86.hpp"
  32 #include "oops/compiledICHolder.hpp"
  33 #include "oops/oop.inline.hpp"
  34 #include "prims/jvmtiExport.hpp"
  35 #include "register_x86.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/signature.hpp"
  38 #include "runtime/vframeArray.hpp"
  39 #include "utilities/macros.hpp"
  40 #include "vmreg_x86.inline.hpp"
  41 #if INCLUDE_ALL_GCS
  42 #include "gc_implementation/g1/g1SATBCardTableModRefBS.hpp"
  43 #endif
  44 
  45 
  46 // Implementation of StubAssembler
  47 
  48 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, int args_size) {
  49   // setup registers
  50   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread); // is callee-saved register (Visual C++ calling conventions)
  51   assert(!(oop_result1->is_valid() || metadata_result->is_valid()) || oop_result1 != metadata_result, "registers must be different");
  52   assert(oop_result1 != thread && metadata_result != thread, "registers must be different");
  53   assert(args_size >= 0, "illegal args_size");
  54   bool align_stack = false;
  55 #ifdef _LP64
  56   // At a method handle call, the stack may not be properly aligned
  57   // when returning with an exception.
  58   align_stack = (stub_id() == Runtime1::handle_exception_from_callee_id);
  59 #endif
  60 
  61 #ifdef _LP64
  62   mov(c_rarg0, thread);
  63   set_num_rt_args(0); // Nothing on stack
  64 #else
  65   set_num_rt_args(1 + args_size);
  66 
  67   // push java thread (becomes first argument of C function)
  68   get_thread(thread);
  69   push(thread);
  70 #endif // _LP64
  71 
  72   int call_offset;
  73   if (!align_stack) {
  74     set_last_Java_frame(thread, noreg, rbp, NULL);
  75   } else {
  76     address the_pc = pc();
  77     call_offset = offset();
  78     set_last_Java_frame(thread, noreg, rbp, the_pc);
  79     andptr(rsp, -(StackAlignmentInBytes));    // Align stack
  80   }
  81 
  82   // do the call
  83   call(RuntimeAddress(entry));
  84   if (!align_stack) {
  85     call_offset = offset();
  86   }
  87   // verify callee-saved register
  88 #ifdef ASSERT
  89   guarantee(thread != rax, "change this code");
  90   push(rax);
  91   { Label L;
  92     get_thread(rax);
  93     cmpptr(thread, rax);
  94     jcc(Assembler::equal, L);
  95     int3();
  96     stop("StubAssembler::call_RT: rdi not callee saved?");
  97     bind(L);
  98   }
  99   pop(rax);
 100 #endif
 101   reset_last_Java_frame(thread, true, align_stack);
 102 
 103   // discard thread and arguments
 104   NOT_LP64(addptr(rsp, num_rt_args()*BytesPerWord));
 105 
 106   // check for pending exceptions
 107   { Label L;
 108     cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 109     jcc(Assembler::equal, L);
 110     // exception pending => remove activation and forward to exception handler
 111     movptr(rax, Address(thread, Thread::pending_exception_offset()));
 112     // make sure that the vm_results are cleared
 113     if (oop_result1->is_valid()) {
 114       movptr(Address(thread, JavaThread::vm_result_offset()), NULL_WORD);
 115     }
 116     if (metadata_result->is_valid()) {
 117       movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 118     }
 119     if (frame_size() == no_frame_size) {
 120       leave();
 121       jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
 122     } else if (_stub_id == Runtime1::forward_exception_id) {
 123       should_not_reach_here();
 124     } else {
 125       jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 126     }
 127     bind(L);
 128   }
 129   // get oop results if there are any and reset the values in the thread
 130   if (oop_result1->is_valid()) {
 131     get_vm_result(oop_result1, thread);
 132   }
 133   if (metadata_result->is_valid()) {
 134     get_vm_result_2(metadata_result, thread);
 135   }
 136   return call_offset;
 137 }
 138 
 139 
 140 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1) {
 141 #ifdef _LP64
 142   mov(c_rarg1, arg1);
 143 #else
 144   push(arg1);
 145 #endif // _LP64
 146   return call_RT(oop_result1, metadata_result, entry, 1);
 147 }
 148 
 149 
 150 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2) {
 151 #ifdef _LP64
 152   if (c_rarg1 == arg2) {
 153     if (c_rarg2 == arg1) {
 154       xchgq(arg1, arg2);
 155     } else {
 156       mov(c_rarg2, arg2);
 157       mov(c_rarg1, arg1);
 158     }
 159   } else {
 160     mov(c_rarg1, arg1);
 161     mov(c_rarg2, arg2);
 162   }
 163 #else
 164   push(arg2);
 165   push(arg1);
 166 #endif // _LP64
 167   return call_RT(oop_result1, metadata_result, entry, 2);
 168 }
 169 
 170 
 171 int StubAssembler::call_RT(Register oop_result1, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
 172 #ifdef _LP64
 173   // if there is any conflict use the stack
 174   if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
 175       arg2 == c_rarg1 || arg1 == c_rarg3 ||
 176       arg3 == c_rarg1 || arg1 == c_rarg2) {
 177     push(arg3);
 178     push(arg2);
 179     push(arg1);
 180     pop(c_rarg1);
 181     pop(c_rarg2);
 182     pop(c_rarg3);
 183   } else {
 184     mov(c_rarg1, arg1);
 185     mov(c_rarg2, arg2);
 186     mov(c_rarg3, arg3);
 187   }
 188 #else
 189   push(arg3);
 190   push(arg2);
 191   push(arg1);
 192 #endif // _LP64
 193   return call_RT(oop_result1, metadata_result, entry, 3);
 194 }
 195 
 196 
 197 // Implementation of StubFrame
 198 
 199 class StubFrame: public StackObj {
 200  private:
 201   StubAssembler* _sasm;
 202 
 203  public:
 204   StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments);
 205   void load_argument(int offset_in_words, Register reg);
 206 
 207   ~StubFrame();
 208 };
 209 
 210 
 211 #define __ _sasm->
 212 
 213 StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments) {
 214   _sasm = sasm;
 215   __ set_info(name, must_gc_arguments);
 216   __ enter();
 217 }
 218 
 219 // load parameters that were stored with LIR_Assembler::store_parameter
 220 // Note: offsets for store_parameter and load_argument must match
 221 void StubFrame::load_argument(int offset_in_words, Register reg) {
 222   // rbp, + 0: link
 223   //     + 1: return address
 224   //     + 2: argument with offset 0
 225   //     + 3: argument with offset 1
 226   //     + 4: ...
 227 
 228   __ movptr(reg, Address(rbp, (offset_in_words + 2) * BytesPerWord));
 229 }
 230 
 231 
 232 StubFrame::~StubFrame() {
 233   __ leave();
 234   __ ret(0);
 235 }
 236 
 237 #undef __
 238 
 239 
 240 // Implementation of Runtime1
 241 
 242 #define __ sasm->
 243 
 244 const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
 245 const int xmm_regs_as_doubles_size_in_slots = FrameMap::nof_xmm_regs * 2;
 246 
 247 // Stack layout for saving/restoring  all the registers needed during a runtime
 248 // call (this includes deoptimization)
 249 // Note: note that users of this frame may well have arguments to some runtime
 250 // while these values are on the stack. These positions neglect those arguments
 251 // but the code in save_live_registers will take the argument count into
 252 // account.
 253 //
 254 #ifdef _LP64
 255   #define SLOT2(x) x,
 256   #define SLOT_PER_WORD 2
 257 #else
 258   #define SLOT2(x)
 259   #define SLOT_PER_WORD 1
 260 #endif // _LP64
 261 
 262 enum reg_save_layout {
 263   // 64bit needs to keep stack 16 byte aligned. So we add some alignment dummies to make that
 264   // happen and will assert if the stack size we create is misaligned
 265 #ifdef _LP64
 266   align_dummy_0, align_dummy_1,
 267 #endif // _LP64
 268 #ifdef _WIN64
 269   // Windows always allocates space for it's argument registers (see
 270   // frame::arg_reg_save_area_bytes).
 271   arg_reg_save_1, arg_reg_save_1H,                                                          // 0, 4
 272   arg_reg_save_2, arg_reg_save_2H,                                                          // 8, 12
 273   arg_reg_save_3, arg_reg_save_3H,                                                          // 16, 20
 274   arg_reg_save_4, arg_reg_save_4H,                                                          // 24, 28
 275 #endif // _WIN64
 276   xmm_regs_as_doubles_off,                                                                  // 32
 277   float_regs_as_doubles_off = xmm_regs_as_doubles_off + xmm_regs_as_doubles_size_in_slots,  // 160
 278   fpu_state_off = float_regs_as_doubles_off + float_regs_as_doubles_size_in_slots,          // 224
 279   // fpu_state_end_off is exclusive
 280   fpu_state_end_off = fpu_state_off + (FPUStateSizeInWords / SLOT_PER_WORD),                // 352
 281   marker = fpu_state_end_off, SLOT2(markerH)                                                // 352, 356
 282   extra_space_offset,                                                                       // 360
 283 #ifdef _LP64
 284   r15_off = extra_space_offset, r15H_off,                                                   // 360, 364
 285   r14_off, r14H_off,                                                                        // 368, 372
 286   r13_off, r13H_off,                                                                        // 376, 380
 287   r12_off, r12H_off,                                                                        // 384, 388
 288   r11_off, r11H_off,                                                                        // 392, 396
 289   r10_off, r10H_off,                                                                        // 400, 404
 290   r9_off, r9H_off,                                                                          // 408, 412
 291   r8_off, r8H_off,                                                                          // 416, 420
 292   rdi_off, rdiH_off,                                                                        // 424, 428
 293 #else
 294   rdi_off = extra_space_offset,
 295 #endif // _LP64
 296   rsi_off, SLOT2(rsiH_off)                                                                  // 432, 436
 297   rbp_off, SLOT2(rbpH_off)                                                                  // 440, 444
 298   rsp_off, SLOT2(rspH_off)                                                                  // 448, 452
 299   rbx_off, SLOT2(rbxH_off)                                                                  // 456, 460
 300   rdx_off, SLOT2(rdxH_off)                                                                  // 464, 468
 301   rcx_off, SLOT2(rcxH_off)                                                                  // 472, 476
 302   rax_off, SLOT2(raxH_off)                                                                  // 480, 484
 303   saved_rbp_off, SLOT2(saved_rbpH_off)                                                      // 488, 492
 304   return_off, SLOT2(returnH_off)                                                            // 496, 500
 305   reg_save_frame_size   // As noted: neglects any parameters to runtime                     // 504
 306 };
 307 
 308 
 309 
 310 // Save off registers which might be killed by calls into the runtime.
 311 // Tries to smart of about FP registers.  In particular we separate
 312 // saving and describing the FPU registers for deoptimization since we
 313 // have to save the FPU registers twice if we describe them and on P4
 314 // saving FPU registers which don't contain anything appears
 315 // expensive.  The deopt blob is the only thing which needs to
 316 // describe FPU registers.  In all other cases it should be sufficient
 317 // to simply save their current value.
 318 
 319 static OopMap* generate_oop_map(StubAssembler* sasm, int num_rt_args,
 320                                 bool save_fpu_registers = true) {
 321 
 322   // In 64bit all the args are in regs so there are no additional stack slots
 323   LP64_ONLY(num_rt_args = 0);
 324   LP64_ONLY(assert((reg_save_frame_size * VMRegImpl::stack_slot_size) % 16 == 0, "must be 16 byte aligned");)
 325   int frame_size_in_slots = reg_save_frame_size + num_rt_args; // args + thread
 326   sasm->set_frame_size(frame_size_in_slots / VMRegImpl::slots_per_word );
 327 
 328   // record saved value locations in an OopMap
 329   // locations are offsets from sp after runtime call; num_rt_args is number of arguments in call, including thread
 330   OopMap* map = new OopMap(frame_size_in_slots, 0);
 331   map->set_callee_saved(VMRegImpl::stack2reg(rax_off + num_rt_args), rax->as_VMReg());
 332   map->set_callee_saved(VMRegImpl::stack2reg(rcx_off + num_rt_args), rcx->as_VMReg());
 333   map->set_callee_saved(VMRegImpl::stack2reg(rdx_off + num_rt_args), rdx->as_VMReg());
 334   map->set_callee_saved(VMRegImpl::stack2reg(rbx_off + num_rt_args), rbx->as_VMReg());
 335   map->set_callee_saved(VMRegImpl::stack2reg(rsi_off + num_rt_args), rsi->as_VMReg());
 336   map->set_callee_saved(VMRegImpl::stack2reg(rdi_off + num_rt_args), rdi->as_VMReg());
 337 #ifdef _LP64
 338   map->set_callee_saved(VMRegImpl::stack2reg(r8_off + num_rt_args),  r8->as_VMReg());
 339   map->set_callee_saved(VMRegImpl::stack2reg(r9_off + num_rt_args),  r9->as_VMReg());
 340   map->set_callee_saved(VMRegImpl::stack2reg(r10_off + num_rt_args), r10->as_VMReg());
 341   map->set_callee_saved(VMRegImpl::stack2reg(r11_off + num_rt_args), r11->as_VMReg());
 342   map->set_callee_saved(VMRegImpl::stack2reg(r12_off + num_rt_args), r12->as_VMReg());
 343   map->set_callee_saved(VMRegImpl::stack2reg(r13_off + num_rt_args), r13->as_VMReg());
 344   map->set_callee_saved(VMRegImpl::stack2reg(r14_off + num_rt_args), r14->as_VMReg());
 345   map->set_callee_saved(VMRegImpl::stack2reg(r15_off + num_rt_args), r15->as_VMReg());
 346 
 347   // This is stupid but needed.
 348   map->set_callee_saved(VMRegImpl::stack2reg(raxH_off + num_rt_args), rax->as_VMReg()->next());
 349   map->set_callee_saved(VMRegImpl::stack2reg(rcxH_off + num_rt_args), rcx->as_VMReg()->next());
 350   map->set_callee_saved(VMRegImpl::stack2reg(rdxH_off + num_rt_args), rdx->as_VMReg()->next());
 351   map->set_callee_saved(VMRegImpl::stack2reg(rbxH_off + num_rt_args), rbx->as_VMReg()->next());
 352   map->set_callee_saved(VMRegImpl::stack2reg(rsiH_off + num_rt_args), rsi->as_VMReg()->next());
 353   map->set_callee_saved(VMRegImpl::stack2reg(rdiH_off + num_rt_args), rdi->as_VMReg()->next());
 354 
 355   map->set_callee_saved(VMRegImpl::stack2reg(r8H_off + num_rt_args),  r8->as_VMReg()->next());
 356   map->set_callee_saved(VMRegImpl::stack2reg(r9H_off + num_rt_args),  r9->as_VMReg()->next());
 357   map->set_callee_saved(VMRegImpl::stack2reg(r10H_off + num_rt_args), r10->as_VMReg()->next());
 358   map->set_callee_saved(VMRegImpl::stack2reg(r11H_off + num_rt_args), r11->as_VMReg()->next());
 359   map->set_callee_saved(VMRegImpl::stack2reg(r12H_off + num_rt_args), r12->as_VMReg()->next());
 360   map->set_callee_saved(VMRegImpl::stack2reg(r13H_off + num_rt_args), r13->as_VMReg()->next());
 361   map->set_callee_saved(VMRegImpl::stack2reg(r14H_off + num_rt_args), r14->as_VMReg()->next());
 362   map->set_callee_saved(VMRegImpl::stack2reg(r15H_off + num_rt_args), r15->as_VMReg()->next());
 363 #endif // _LP64
 364 
 365   if (save_fpu_registers) {
 366     if (UseSSE < 2) {
 367       int fpu_off = float_regs_as_doubles_off;
 368       for (int n = 0; n < FrameMap::nof_fpu_regs; n++) {
 369         VMReg fpu_name_0 = FrameMap::fpu_regname(n);
 370         map->set_callee_saved(VMRegImpl::stack2reg(fpu_off +     num_rt_args), fpu_name_0);
 371         // %%% This is really a waste but we'll keep things as they were for now
 372         if (true) {
 373           map->set_callee_saved(VMRegImpl::stack2reg(fpu_off + 1 + num_rt_args), fpu_name_0->next());
 374         }
 375         fpu_off += 2;
 376       }
 377       assert(fpu_off == fpu_state_off, "incorrect number of fpu stack slots");
 378     }
 379 
 380     if (UseSSE >= 2) {
 381       int xmm_off = xmm_regs_as_doubles_off;
 382       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
 383         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
 384         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
 385         // %%% This is really a waste but we'll keep things as they were for now
 386         if (true) {
 387           map->set_callee_saved(VMRegImpl::stack2reg(xmm_off + 1 + num_rt_args), xmm_name_0->next());
 388         }
 389         xmm_off += 2;
 390       }
 391       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
 392 
 393     } else if (UseSSE == 1) {
 394       int xmm_off = xmm_regs_as_doubles_off;
 395       for (int n = 0; n < FrameMap::nof_xmm_regs; n++) {
 396         VMReg xmm_name_0 = as_XMMRegister(n)->as_VMReg();
 397         map->set_callee_saved(VMRegImpl::stack2reg(xmm_off +     num_rt_args), xmm_name_0);
 398         xmm_off += 2;
 399       }
 400       assert(xmm_off == float_regs_as_doubles_off, "incorrect number of xmm registers");
 401     }
 402   }
 403 
 404   return map;
 405 }
 406 
 407 static OopMap* save_live_registers(StubAssembler* sasm, int num_rt_args,
 408                                    bool save_fpu_registers = true) {
 409   __ block_comment("save_live_registers");
 410 
 411   __ pusha();         // integer registers
 412 
 413   // assert(float_regs_as_doubles_off % 2 == 0, "misaligned offset");
 414   // assert(xmm_regs_as_doubles_off % 2 == 0, "misaligned offset");
 415 
 416   __ subptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
 417 
 418 #ifdef ASSERT
 419   __ movptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
 420 #endif
 421 
 422   if (save_fpu_registers) {
 423     if (UseSSE < 2) {
 424       // save FPU stack
 425       __ fnsave(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 426       __ fwait();
 427 
 428 #ifdef ASSERT
 429       Label ok;
 430       __ cmpw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
 431       __ jccb(Assembler::equal, ok);
 432       __ stop("corrupted control word detected");
 433       __ bind(ok);
 434 #endif
 435 
 436       // Reset the control word to guard against exceptions being unmasked
 437       // since fstp_d can cause FPU stack underflow exceptions.  Write it
 438       // into the on stack copy and then reload that to make sure that the
 439       // current and future values are correct.
 440       __ movw(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size), StubRoutines::fpu_cntrl_wrd_std());
 441       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 442 
 443       // Save the FPU registers in de-opt-able form
 444       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
 445       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
 446       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
 447       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
 448       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
 449       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
 450       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
 451       __ fstp_d(Address(rsp, float_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
 452     }
 453 
 454     if (UseSSE >= 2) {
 455       // save XMM registers
 456       // XMM registers can contain float or double values, but this is not known here,
 457       // so always save them as doubles.
 458       // note that float values are _not_ converted automatically, so for float values
 459       // the second word contains only garbage data.
 460       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
 461       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
 462       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
 463       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
 464       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
 465       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
 466       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
 467       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
 468 #ifdef _LP64
 469       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64), xmm8);
 470       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72), xmm9);
 471       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80), xmm10);
 472       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88), xmm11);
 473       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96), xmm12);
 474       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104), xmm13);
 475       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112), xmm14);
 476       __ movdbl(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120), xmm15);
 477 #endif // _LP64
 478     } else if (UseSSE == 1) {
 479       // save XMM registers as float because double not supported without SSE2
 480       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0), xmm0);
 481       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8), xmm1);
 482       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16), xmm2);
 483       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24), xmm3);
 484       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32), xmm4);
 485       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40), xmm5);
 486       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48), xmm6);
 487       __ movflt(Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56), xmm7);
 488     }
 489   }
 490 
 491   // FPU stack must be empty now
 492   __ verify_FPU(0, "save_live_registers");
 493 
 494   return generate_oop_map(sasm, num_rt_args, save_fpu_registers);
 495 }
 496 
 497 
 498 static void restore_fpu(StubAssembler* sasm, bool restore_fpu_registers = true) {
 499   if (restore_fpu_registers) {
 500     if (UseSSE >= 2) {
 501       // restore XMM registers
 502       __ movdbl(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
 503       __ movdbl(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
 504       __ movdbl(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
 505       __ movdbl(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
 506       __ movdbl(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
 507       __ movdbl(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
 508       __ movdbl(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
 509       __ movdbl(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
 510 #ifdef _LP64
 511       __ movdbl(xmm8, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 64));
 512       __ movdbl(xmm9, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 72));
 513       __ movdbl(xmm10, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 80));
 514       __ movdbl(xmm11, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 88));
 515       __ movdbl(xmm12, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 96));
 516       __ movdbl(xmm13, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 104));
 517       __ movdbl(xmm14, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 112));
 518       __ movdbl(xmm15, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 120));
 519 #endif // _LP64
 520     } else if (UseSSE == 1) {
 521       // restore XMM registers
 522       __ movflt(xmm0, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  0));
 523       __ movflt(xmm1, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size +  8));
 524       __ movflt(xmm2, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 16));
 525       __ movflt(xmm3, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 24));
 526       __ movflt(xmm4, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 32));
 527       __ movflt(xmm5, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 40));
 528       __ movflt(xmm6, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 48));
 529       __ movflt(xmm7, Address(rsp, xmm_regs_as_doubles_off * VMRegImpl::stack_slot_size + 56));
 530     }
 531 
 532     if (UseSSE < 2) {
 533       __ frstor(Address(rsp, fpu_state_off * VMRegImpl::stack_slot_size));
 534     } else {
 535       // check that FPU stack is really empty
 536       __ verify_FPU(0, "restore_live_registers");
 537     }
 538 
 539   } else {
 540     // check that FPU stack is really empty
 541     __ verify_FPU(0, "restore_live_registers");
 542   }
 543 
 544 #ifdef ASSERT
 545   {
 546     Label ok;
 547     __ cmpptr(Address(rsp, marker * VMRegImpl::stack_slot_size), (int32_t)0xfeedbeef);
 548     __ jcc(Assembler::equal, ok);
 549     __ stop("bad offsets in frame");
 550     __ bind(ok);
 551   }
 552 #endif // ASSERT
 553 
 554   __ addptr(rsp, extra_space_offset * VMRegImpl::stack_slot_size);
 555 }
 556 
 557 
 558 static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
 559   __ block_comment("restore_live_registers");
 560 
 561   restore_fpu(sasm, restore_fpu_registers);
 562   __ popa();
 563 }
 564 
 565 
 566 static void restore_live_registers_except_rax(StubAssembler* sasm, bool restore_fpu_registers = true) {
 567   __ block_comment("restore_live_registers_except_rax");
 568 
 569   restore_fpu(sasm, restore_fpu_registers);
 570 
 571 #ifdef _LP64
 572   __ movptr(r15, Address(rsp, 0));
 573   __ movptr(r14, Address(rsp, wordSize));
 574   __ movptr(r13, Address(rsp, 2 * wordSize));
 575   __ movptr(r12, Address(rsp, 3 * wordSize));
 576   __ movptr(r11, Address(rsp, 4 * wordSize));
 577   __ movptr(r10, Address(rsp, 5 * wordSize));
 578   __ movptr(r9,  Address(rsp, 6 * wordSize));
 579   __ movptr(r8,  Address(rsp, 7 * wordSize));
 580   __ movptr(rdi, Address(rsp, 8 * wordSize));
 581   __ movptr(rsi, Address(rsp, 9 * wordSize));
 582   __ movptr(rbp, Address(rsp, 10 * wordSize));
 583   // skip rsp
 584   __ movptr(rbx, Address(rsp, 12 * wordSize));
 585   __ movptr(rdx, Address(rsp, 13 * wordSize));
 586   __ movptr(rcx, Address(rsp, 14 * wordSize));
 587 
 588   __ addptr(rsp, 16 * wordSize);
 589 #else
 590 
 591   __ pop(rdi);
 592   __ pop(rsi);
 593   __ pop(rbp);
 594   __ pop(rbx); // skip this value
 595   __ pop(rbx);
 596   __ pop(rdx);
 597   __ pop(rcx);
 598   __ addptr(rsp, BytesPerWord);
 599 #endif // _LP64
 600 }
 601 
 602 
 603 void Runtime1::initialize_pd() {
 604   // nothing to do
 605 }
 606 
 607 
 608 // target: the entry point of the method that creates and posts the exception oop
 609 // has_argument: true if the exception needs an argument (passed on stack because registers must be preserved)
 610 
 611 OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
 612   // preserve all registers
 613   int num_rt_args = has_argument ? 2 : 1;
 614   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
 615 
 616   // now all registers are saved and can be used freely
 617   // verify that no old value is used accidentally
 618   __ invalidate_registers(true, true, true, true, true, true);
 619 
 620   // registers used by this stub
 621   const Register temp_reg = rbx;
 622 
 623   // load argument for exception that is passed as an argument into the stub
 624   if (has_argument) {
 625 #ifdef _LP64
 626     __ movptr(c_rarg1, Address(rbp, 2*BytesPerWord));
 627 #else
 628     __ movptr(temp_reg, Address(rbp, 2*BytesPerWord));
 629     __ push(temp_reg);
 630 #endif // _LP64
 631   }
 632   int call_offset = __ call_RT(noreg, noreg, target, num_rt_args - 1);
 633 
 634   OopMapSet* oop_maps = new OopMapSet();
 635   oop_maps->add_gc_map(call_offset, oop_map);
 636 
 637   __ stop("should not reach here");
 638 
 639   return oop_maps;
 640 }
 641 
 642 
 643 OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
 644   __ block_comment("generate_handle_exception");
 645 
 646   // incoming parameters
 647   const Register exception_oop = rax;
 648   const Register exception_pc  = rdx;
 649   // other registers used in this stub
 650   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
 651 
 652   // Save registers, if required.
 653   OopMapSet* oop_maps = new OopMapSet();
 654   OopMap* oop_map = NULL;
 655   switch (id) {
 656   case forward_exception_id:
 657     // We're handling an exception in the context of a compiled frame.
 658     // The registers have been saved in the standard places.  Perform
 659     // an exception lookup in the caller and dispatch to the handler
 660     // if found.  Otherwise unwind and dispatch to the callers
 661     // exception handler.
 662     oop_map = generate_oop_map(sasm, 1 /*thread*/);
 663 
 664     // load and clear pending exception oop into RAX
 665     __ movptr(exception_oop, Address(thread, Thread::pending_exception_offset()));
 666     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 667 
 668     // load issuing PC (the return address for this stub) into rdx
 669     __ movptr(exception_pc, Address(rbp, 1*BytesPerWord));
 670 
 671     // make sure that the vm_results are cleared (may be unnecessary)
 672     __ movptr(Address(thread, JavaThread::vm_result_offset()),   NULL_WORD);
 673     __ movptr(Address(thread, JavaThread::vm_result_2_offset()), NULL_WORD);
 674     break;
 675   case handle_exception_nofpu_id:
 676   case handle_exception_id:
 677     // At this point all registers MAY be live.
 678     oop_map = save_live_registers(sasm, 1 /*thread*/, id == handle_exception_nofpu_id);
 679     break;
 680   case handle_exception_from_callee_id: {
 681     // At this point all registers except exception oop (RAX) and
 682     // exception pc (RDX) are dead.
 683     const int frame_size = 2 /*BP, return address*/ NOT_LP64(+ 1 /*thread*/) WIN64_ONLY(+ frame::arg_reg_save_area_bytes / BytesPerWord);
 684     oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
 685     sasm->set_frame_size(frame_size);
 686     WIN64_ONLY(__ subq(rsp, frame::arg_reg_save_area_bytes));
 687     break;
 688   }
 689   default:  ShouldNotReachHere();
 690   }
 691 
 692 #ifdef TIERED
 693   // C2 can leave the fpu stack dirty
 694   if (UseSSE < 2) {
 695     __ empty_FPU_stack();
 696   }
 697 #endif // TIERED
 698 
 699   // verify that only rax, and rdx is valid at this time
 700   __ invalidate_registers(false, true, true, false, true, true);
 701   // verify that rax, contains a valid exception
 702   __ verify_not_null_oop(exception_oop);
 703 
 704   // load address of JavaThread object for thread-local data
 705   NOT_LP64(__ get_thread(thread);)
 706 
 707 #ifdef ASSERT
 708   // check that fields in JavaThread for exception oop and issuing pc are
 709   // empty before writing to them
 710   Label oop_empty;
 711   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t) NULL_WORD);
 712   __ jcc(Assembler::equal, oop_empty);
 713   __ stop("exception oop already set");
 714   __ bind(oop_empty);
 715 
 716   Label pc_empty;
 717   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
 718   __ jcc(Assembler::equal, pc_empty);
 719   __ stop("exception pc already set");
 720   __ bind(pc_empty);
 721 #endif
 722 
 723   // save exception oop and issuing pc into JavaThread
 724   // (exception handler will load it from here)
 725   __ movptr(Address(thread, JavaThread::exception_oop_offset()), exception_oop);
 726   __ movptr(Address(thread, JavaThread::exception_pc_offset()),  exception_pc);
 727 
 728   // patch throwing pc into return address (has bci & oop map)
 729   __ movptr(Address(rbp, 1*BytesPerWord), exception_pc);
 730 
 731   // compute the exception handler.
 732   // the exception oop and the throwing pc are read from the fields in JavaThread
 733   int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
 734   oop_maps->add_gc_map(call_offset, oop_map);
 735 
 736   // rax: handler address
 737   //      will be the deopt blob if nmethod was deoptimized while we looked up
 738   //      handler regardless of whether handler existed in the nmethod.
 739 
 740   // only rax, is valid at this time, all other registers have been destroyed by the runtime call
 741   __ invalidate_registers(false, true, true, true, true, true);
 742 
 743   // patch the return address, this stub will directly return to the exception handler
 744   __ movptr(Address(rbp, 1*BytesPerWord), rax);
 745 
 746   switch (id) {
 747   case forward_exception_id:
 748   case handle_exception_nofpu_id:
 749   case handle_exception_id:
 750     // Restore the registers that were saved at the beginning.
 751     restore_live_registers(sasm, id == handle_exception_nofpu_id);
 752     break;
 753   case handle_exception_from_callee_id:
 754     // WIN64_ONLY: No need to add frame::arg_reg_save_area_bytes to SP
 755     // since we do a leave anyway.
 756 
 757     // Pop the return address since we are possibly changing SP (restoring from BP).
 758     __ leave();
 759     __ pop(rcx);
 760 
 761     // Restore SP from BP if the exception PC is a method handle call site.
 762     NOT_LP64(__ get_thread(thread);)
 763     __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
 764     __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
 765     __ jmp(rcx);  // jump to exception handler
 766     break;
 767   default:  ShouldNotReachHere();
 768   }
 769 
 770   return oop_maps;
 771 }
 772 
 773 
 774 void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
 775   // incoming parameters
 776   const Register exception_oop = rax;
 777   // callee-saved copy of exception_oop during runtime call
 778   const Register exception_oop_callee_saved = NOT_LP64(rsi) LP64_ONLY(r14);
 779   // other registers used in this stub
 780   const Register exception_pc = rdx;
 781   const Register handler_addr = rbx;
 782   const Register thread = NOT_LP64(rdi) LP64_ONLY(r15_thread);
 783 
 784   // verify that only rax, is valid at this time
 785   __ invalidate_registers(false, true, true, true, true, true);
 786 
 787 #ifdef ASSERT
 788   // check that fields in JavaThread for exception oop and issuing pc are empty
 789   NOT_LP64(__ get_thread(thread);)
 790   Label oop_empty;
 791   __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), 0);
 792   __ jcc(Assembler::equal, oop_empty);
 793   __ stop("exception oop must be empty");
 794   __ bind(oop_empty);
 795 
 796   Label pc_empty;
 797   __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), 0);
 798   __ jcc(Assembler::equal, pc_empty);
 799   __ stop("exception pc must be empty");
 800   __ bind(pc_empty);
 801 #endif
 802 
 803   // clear the FPU stack in case any FPU results are left behind
 804   __ empty_FPU_stack();
 805 
 806   // save exception_oop in callee-saved register to preserve it during runtime calls
 807   __ verify_not_null_oop(exception_oop);
 808   __ movptr(exception_oop_callee_saved, exception_oop);
 809 
 810   NOT_LP64(__ get_thread(thread);)
 811   // Get return address (is on top of stack after leave).
 812   __ movptr(exception_pc, Address(rsp, 0));
 813 
 814   // search the exception handler address of the caller (using the return address)
 815   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), thread, exception_pc);
 816   // rax: exception handler address of the caller
 817 
 818   // Only RAX and RSI are valid at this time, all other registers have been destroyed by the call.
 819   __ invalidate_registers(false, true, true, true, false, true);
 820 
 821   // move result of call into correct register
 822   __ movptr(handler_addr, rax);
 823 
 824   // Restore exception oop to RAX (required convention of exception handler).
 825   __ movptr(exception_oop, exception_oop_callee_saved);
 826 
 827   // verify that there is really a valid exception in rax
 828   __ verify_not_null_oop(exception_oop);
 829 
 830   // get throwing pc (= return address).
 831   // rdx has been destroyed by the call, so it must be set again
 832   // the pop is also necessary to simulate the effect of a ret(0)
 833   __ pop(exception_pc);
 834 
 835   // Restore SP from BP if the exception PC is a method handle call site.
 836   NOT_LP64(__ get_thread(thread);)
 837   __ cmpl(Address(thread, JavaThread::is_method_handle_return_offset()), 0);
 838   __ cmovptr(Assembler::notEqual, rsp, rbp_mh_SP_save);
 839 
 840   // continue at exception handler (return address removed)
 841   // note: do *not* remove arguments when unwinding the
 842   //       activation since the caller assumes having
 843   //       all arguments on the stack when entering the
 844   //       runtime to determine the exception handler
 845   //       (GC happens at call site with arguments!)
 846   // rax: exception oop
 847   // rdx: throwing pc
 848   // rbx: exception handler
 849   __ jmp(handler_addr);
 850 }
 851 
 852 
 853 OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
 854   // use the maximum number of runtime-arguments here because it is difficult to
 855   // distinguish each RT-Call.
 856   // Note: This number affects also the RT-Call in generate_handle_exception because
 857   //       the oop-map is shared for all calls.
 858   const int num_rt_args = 2;  // thread + dummy
 859 
 860   DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
 861   assert(deopt_blob != NULL, "deoptimization blob must have been created");
 862 
 863   OopMap* oop_map = save_live_registers(sasm, num_rt_args);
 864 
 865 #ifdef _LP64
 866   const Register thread = r15_thread;
 867   // No need to worry about dummy
 868   __ mov(c_rarg0, thread);
 869 #else
 870   __ push(rax); // push dummy
 871 
 872   const Register thread = rdi; // is callee-saved register (Visual C++ calling conventions)
 873   // push java thread (becomes first argument of C function)
 874   __ get_thread(thread);
 875   __ push(thread);
 876 #endif // _LP64
 877   __ set_last_Java_frame(thread, noreg, rbp, NULL);
 878   // do the call
 879   __ call(RuntimeAddress(target));
 880   OopMapSet* oop_maps = new OopMapSet();
 881   oop_maps->add_gc_map(__ offset(), oop_map);
 882   // verify callee-saved register
 883 #ifdef ASSERT
 884   guarantee(thread != rax, "change this code");
 885   __ push(rax);
 886   { Label L;
 887     __ get_thread(rax);
 888     __ cmpptr(thread, rax);
 889     __ jcc(Assembler::equal, L);
 890     __ stop("StubAssembler::call_RT: rdi/r15 not callee saved?");
 891     __ bind(L);
 892   }
 893   __ pop(rax);
 894 #endif
 895   __ reset_last_Java_frame(thread, true, false);
 896 #ifndef _LP64
 897   __ pop(rcx); // discard thread arg
 898   __ pop(rcx); // discard dummy
 899 #endif // _LP64
 900 
 901   // check for pending exceptions
 902   { Label L;
 903     __ cmpptr(Address(thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
 904     __ jcc(Assembler::equal, L);
 905     // exception pending => remove activation and forward to exception handler
 906 
 907     __ testptr(rax, rax);                                   // have we deoptimized?
 908     __ jump_cc(Assembler::equal,
 909                RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
 910 
 911     // the deopt blob expects exceptions in the special fields of
 912     // JavaThread, so copy and clear pending exception.
 913 
 914     // load and clear pending exception
 915     __ movptr(rax, Address(thread, Thread::pending_exception_offset()));
 916     __ movptr(Address(thread, Thread::pending_exception_offset()), NULL_WORD);
 917 
 918     // check that there is really a valid exception
 919     __ verify_not_null_oop(rax);
 920 
 921     // load throwing pc: this is the return address of the stub
 922     __ movptr(rdx, Address(rsp, return_off * VMRegImpl::stack_slot_size));
 923 
 924 #ifdef ASSERT
 925     // check that fields in JavaThread for exception oop and issuing pc are empty
 926     Label oop_empty;
 927     __ cmpptr(Address(thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
 928     __ jcc(Assembler::equal, oop_empty);
 929     __ stop("exception oop must be empty");
 930     __ bind(oop_empty);
 931 
 932     Label pc_empty;
 933     __ cmpptr(Address(thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
 934     __ jcc(Assembler::equal, pc_empty);
 935     __ stop("exception pc must be empty");
 936     __ bind(pc_empty);
 937 #endif
 938 
 939     // store exception oop and throwing pc to JavaThread
 940     __ movptr(Address(thread, JavaThread::exception_oop_offset()), rax);
 941     __ movptr(Address(thread, JavaThread::exception_pc_offset()), rdx);
 942 
 943     restore_live_registers(sasm);
 944 
 945     __ leave();
 946     __ addptr(rsp, BytesPerWord);  // remove return address from stack
 947 
 948     // Forward the exception directly to deopt blob. We can blow no
 949     // registers and must leave throwing pc on the stack.  A patch may
 950     // have values live in registers so the entry point with the
 951     // exception in tls.
 952     __ jump(RuntimeAddress(deopt_blob->unpack_with_exception_in_tls()));
 953 
 954     __ bind(L);
 955   }
 956 
 957 
 958   // Runtime will return true if the nmethod has been deoptimized during
 959   // the patching process. In that case we must do a deopt reexecute instead.
 960 
 961   Label reexecuteEntry, cont;
 962 
 963   __ testptr(rax, rax);                                 // have we deoptimized?
 964   __ jcc(Assembler::equal, cont);                       // no
 965 
 966   // Will reexecute. Proper return address is already on the stack we just restore
 967   // registers, pop all of our frame but the return address and jump to the deopt blob
 968   restore_live_registers(sasm);
 969   __ leave();
 970   __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
 971 
 972   __ bind(cont);
 973   restore_live_registers(sasm);
 974   __ leave();
 975   __ ret(0);
 976 
 977   return oop_maps;
 978 }
 979 
 980 
 981 OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
 982 
 983   // for better readability
 984   const bool must_gc_arguments = true;
 985   const bool dont_gc_arguments = false;
 986 
 987   // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
 988   bool save_fpu_registers = true;
 989 
 990   // stub code & info for the different stubs
 991   OopMapSet* oop_maps = NULL;
 992   switch (id) {
 993     case forward_exception_id:
 994       {
 995         oop_maps = generate_handle_exception(id, sasm);
 996         __ leave();
 997         __ ret(0);
 998       }
 999       break;
1000 
1001     case new_instance_id:
1002     case fast_new_instance_id:
1003     case fast_new_instance_init_check_id:
1004       {
1005         Register klass = rdx; // Incoming
1006         Register obj   = rax; // Result
1007 
1008         if (id == new_instance_id) {
1009           __ set_info("new_instance", dont_gc_arguments);
1010         } else if (id == fast_new_instance_id) {
1011           __ set_info("fast new_instance", dont_gc_arguments);
1012         } else {
1013           assert(id == fast_new_instance_init_check_id, "bad StubID");
1014           __ set_info("fast new_instance init check", dont_gc_arguments);
1015         }
1016 
1017         if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
1018             UseTLAB && FastTLABRefill) {
1019           Label slow_path;
1020           Register obj_size = rcx;
1021           Register t1       = rbx;
1022           Register t2       = rsi;
1023           assert_different_registers(klass, obj, obj_size, t1, t2);
1024 
1025           __ push(rdi);
1026           __ push(rbx);
1027 
1028           if (id == fast_new_instance_init_check_id) {
1029             // make sure the klass is initialized
1030             __ cmpb(Address(klass, InstanceKlass::init_state_offset()), InstanceKlass::fully_initialized);
1031             __ jcc(Assembler::notEqual, slow_path);
1032           }
1033 
1034 #ifdef ASSERT
1035           // assert object can be fast path allocated
1036           {
1037             Label ok, not_ok;
1038             __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1039             __ cmpl(obj_size, 0);  // make sure it's an instance (LH > 0)
1040             __ jcc(Assembler::lessEqual, not_ok);
1041             __ testl(obj_size, Klass::_lh_instance_slow_path_bit);
1042             __ jcc(Assembler::zero, ok);
1043             __ bind(not_ok);
1044             __ stop("assert(can be fast path allocated)");
1045             __ should_not_reach_here();
1046             __ bind(ok);
1047           }
1048 #endif // ASSERT
1049 
1050           // if we got here then the TLAB allocation failed, so try
1051           // refilling the TLAB or allocating directly from eden.
1052           Label retry_tlab, try_eden;
1053           const Register thread =
1054             __ tlab_refill(retry_tlab, try_eden, slow_path); // does not destroy rdx (klass), returns rdi
1055 
1056           __ bind(retry_tlab);
1057 
1058           // get the instance size (size is postive so movl is fine for 64bit)
1059           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1060 
1061           __ tlab_allocate(obj, obj_size, 0, t1, t2, slow_path);
1062 
1063           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
1064           __ verify_oop(obj);
1065           __ pop(rbx);
1066           __ pop(rdi);
1067           __ ret(0);
1068 
1069           __ bind(try_eden);
1070           // get the instance size (size is postive so movl is fine for 64bit)
1071           __ movl(obj_size, Address(klass, Klass::layout_helper_offset()));
1072 
1073           __ eden_allocate(obj, obj_size, 0, t1, slow_path);
1074           __ incr_allocated_bytes(thread, obj_size, 0);
1075 
1076           __ initialize_object(obj, klass, obj_size, 0, t1, t2);
1077           __ verify_oop(obj);
1078           __ pop(rbx);
1079           __ pop(rdi);
1080           __ ret(0);
1081 
1082           __ bind(slow_path);
1083           __ pop(rbx);
1084           __ pop(rdi);
1085         }
1086 
1087         __ enter();
1088         OopMap* map = save_live_registers(sasm, 2);
1089         int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
1090         oop_maps = new OopMapSet();
1091         oop_maps->add_gc_map(call_offset, map);
1092         restore_live_registers_except_rax(sasm);
1093         __ verify_oop(obj);
1094         __ leave();
1095         __ ret(0);
1096 
1097         // rax,: new instance
1098       }
1099 
1100       break;
1101 
1102     case counter_overflow_id:
1103       {
1104         Register bci = rax, method = rbx;
1105         __ enter();
1106         OopMap* map = save_live_registers(sasm, 3);
1107         // Retrieve bci
1108         __ movl(bci, Address(rbp, 2*BytesPerWord));
1109         // And a pointer to the Method*
1110         __ movptr(method, Address(rbp, 3*BytesPerWord));
1111         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
1112         oop_maps = new OopMapSet();
1113         oop_maps->add_gc_map(call_offset, map);
1114         restore_live_registers(sasm);
1115         __ leave();
1116         __ ret(0);
1117       }
1118       break;
1119 
1120     case new_type_array_id:
1121     case new_object_array_id:
1122       {
1123         Register length   = rbx; // Incoming
1124         Register klass    = rdx; // Incoming
1125         Register obj      = rax; // Result
1126 
1127         if (id == new_type_array_id) {
1128           __ set_info("new_type_array", dont_gc_arguments);
1129         } else {
1130           __ set_info("new_object_array", dont_gc_arguments);
1131         }
1132 
1133 #ifdef ASSERT
1134         // assert object type is really an array of the proper kind
1135         {
1136           Label ok;
1137           Register t0 = obj;
1138           __ movl(t0, Address(klass, Klass::layout_helper_offset()));
1139           __ sarl(t0, Klass::_lh_array_tag_shift);
1140           int tag = ((id == new_type_array_id)
1141                      ? Klass::_lh_array_tag_type_value
1142                      : Klass::_lh_array_tag_obj_value);
1143           __ cmpl(t0, tag);
1144           __ jcc(Assembler::equal, ok);
1145           __ stop("assert(is an array klass)");
1146           __ should_not_reach_here();
1147           __ bind(ok);
1148         }
1149 #endif // ASSERT
1150 
1151         if (UseTLAB && FastTLABRefill) {
1152           Register arr_size = rsi;
1153           Register t1       = rcx;  // must be rcx for use as shift count
1154           Register t2       = rdi;
1155           Label slow_path;
1156           assert_different_registers(length, klass, obj, arr_size, t1, t2);
1157 
1158           // check that array length is small enough for fast path.
1159           __ cmpl(length, C1_MacroAssembler::max_array_allocation_length);
1160           __ jcc(Assembler::above, slow_path);
1161 
1162           // if we got here then the TLAB allocation failed, so try
1163           // refilling the TLAB or allocating directly from eden.
1164           Label retry_tlab, try_eden;
1165           const Register thread =
1166             __ tlab_refill(retry_tlab, try_eden, slow_path); // preserves rbx & rdx, returns rdi
1167 
1168           __ bind(retry_tlab);
1169 
1170           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1171           // since size is positive movl does right thing on 64bit
1172           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1173           // since size is postive movl does right thing on 64bit
1174           __ movl(arr_size, length);
1175           assert(t1 == rcx, "fixed register usage");
1176           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1177           __ shrptr(t1, Klass::_lh_header_size_shift);
1178           __ andptr(t1, Klass::_lh_header_size_mask);
1179           __ addptr(arr_size, t1);
1180           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1181           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1182 
1183           __ tlab_allocate(obj, arr_size, 0, t1, t2, slow_path);  // preserves arr_size
1184 
1185           __ initialize_header(obj, klass, length, t1, t2);
1186           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1187           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1188           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1189           __ andptr(t1, Klass::_lh_header_size_mask);
1190           __ subptr(arr_size, t1);  // body length
1191           __ addptr(t1, obj);       // body start
1192           __ initialize_body(t1, arr_size, 0, t2);
1193           __ verify_oop(obj);
1194           __ ret(0);
1195 
1196           __ bind(try_eden);
1197           // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
1198           // since size is positive movl does right thing on 64bit
1199           __ movl(t1, Address(klass, Klass::layout_helper_offset()));
1200           // since size is postive movl does right thing on 64bit
1201           __ movl(arr_size, length);
1202           assert(t1 == rcx, "fixed register usage");
1203           __ shlptr(arr_size /* by t1=rcx, mod 32 */);
1204           __ shrptr(t1, Klass::_lh_header_size_shift);
1205           __ andptr(t1, Klass::_lh_header_size_mask);
1206           __ addptr(arr_size, t1);
1207           __ addptr(arr_size, MinObjAlignmentInBytesMask); // align up
1208           __ andptr(arr_size, ~MinObjAlignmentInBytesMask);
1209 
1210           __ eden_allocate(obj, arr_size, 0, t1, slow_path);  // preserves arr_size
1211           __ incr_allocated_bytes(thread, arr_size, 0);
1212 
1213           __ initialize_header(obj, klass, length, t1, t2);
1214           __ movb(t1, Address(klass, in_bytes(Klass::layout_helper_offset()) + (Klass::_lh_header_size_shift / BitsPerByte)));
1215           assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
1216           assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
1217           __ andptr(t1, Klass::_lh_header_size_mask);
1218           __ subptr(arr_size, t1);  // body length
1219           __ addptr(t1, obj);       // body start
1220           __ initialize_body(t1, arr_size, 0, t2);
1221           __ verify_oop(obj);
1222           __ ret(0);
1223 
1224           __ bind(slow_path);
1225         }
1226 
1227         __ enter();
1228         OopMap* map = save_live_registers(sasm, 3);
1229         int call_offset;
1230         if (id == new_type_array_id) {
1231           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
1232         } else {
1233           call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
1234         }
1235 
1236         oop_maps = new OopMapSet();
1237         oop_maps->add_gc_map(call_offset, map);
1238         restore_live_registers_except_rax(sasm);
1239 
1240         __ verify_oop(obj);
1241         __ leave();
1242         __ ret(0);
1243 
1244         // rax,: new array
1245       }
1246       break;
1247 
1248     case new_multi_array_id:
1249       { StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
1250         // rax,: klass
1251         // rbx,: rank
1252         // rcx: address of 1st dimension
1253         OopMap* map = save_live_registers(sasm, 4);
1254         int call_offset = __ call_RT(rax, noreg, CAST_FROM_FN_PTR(address, new_multi_array), rax, rbx, rcx);
1255 
1256         oop_maps = new OopMapSet();
1257         oop_maps->add_gc_map(call_offset, map);
1258         restore_live_registers_except_rax(sasm);
1259 
1260         // rax,: new multi array
1261         __ verify_oop(rax);
1262       }
1263       break;
1264 
1265     case register_finalizer_id:
1266       {
1267         __ set_info("register_finalizer", dont_gc_arguments);
1268 
1269         // This is called via call_runtime so the arguments
1270         // will be place in C abi locations
1271 
1272 #ifdef _LP64
1273         __ verify_oop(c_rarg0);
1274         __ mov(rax, c_rarg0);
1275 #else
1276         // The object is passed on the stack and we haven't pushed a
1277         // frame yet so it's one work away from top of stack.
1278         __ movptr(rax, Address(rsp, 1 * BytesPerWord));
1279         __ verify_oop(rax);
1280 #endif // _LP64
1281 
1282         // load the klass and check the has finalizer flag
1283         Label register_finalizer;
1284         Register t = rsi;
1285         __ load_klass(t, rax);
1286         __ movl(t, Address(t, Klass::access_flags_offset()));
1287         __ testl(t, JVM_ACC_HAS_FINALIZER);
1288         __ jcc(Assembler::notZero, register_finalizer);
1289         __ ret(0);
1290 
1291         __ bind(register_finalizer);
1292         __ enter();
1293         OopMap* oop_map = save_live_registers(sasm, 2 /*num_rt_args */);
1294         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), rax);
1295         oop_maps = new OopMapSet();
1296         oop_maps->add_gc_map(call_offset, oop_map);
1297 
1298         // Now restore all the live registers
1299         restore_live_registers(sasm);
1300 
1301         __ leave();
1302         __ ret(0);
1303       }
1304       break;
1305 
1306     case throw_range_check_failed_id:
1307       { StubFrame f(sasm, "range_check_failed", dont_gc_arguments);
1308         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
1309       }
1310       break;
1311 
1312     case throw_index_exception_id:
1313       { StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments);
1314         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
1315       }
1316       break;
1317 
1318     case throw_div0_exception_id:
1319       { StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments);
1320         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
1321       }
1322       break;
1323 
1324     case throw_null_pointer_exception_id:
1325       { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments);
1326         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
1327       }
1328       break;
1329 
1330     case handle_exception_nofpu_id:
1331     case handle_exception_id:
1332       { StubFrame f(sasm, "handle_exception", dont_gc_arguments);
1333         oop_maps = generate_handle_exception(id, sasm);
1334       }
1335       break;
1336 
1337     case handle_exception_from_callee_id:
1338       { StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
1339         oop_maps = generate_handle_exception(id, sasm);
1340       }
1341       break;
1342 
1343     case unwind_exception_id:
1344       { __ set_info("unwind_exception", dont_gc_arguments);
1345         // note: no stubframe since we are about to leave the current
1346         //       activation and we are calling a leaf VM function only.
1347         generate_unwind_exception(sasm);
1348       }
1349       break;
1350 
1351     case throw_array_store_exception_id:
1352       { StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments);
1353         // tos + 0: link
1354         //     + 1: return address
1355         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
1356       }
1357       break;
1358 
1359     case throw_class_cast_exception_id:
1360       { StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments);
1361         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
1362       }
1363       break;
1364 
1365     case throw_incompatible_class_change_error_id:
1366       { StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments);
1367         oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
1368       }
1369       break;
1370 
1371     case slow_subtype_check_id:
1372       {
1373         // Typical calling sequence:
1374         // __ push(klass_RInfo);  // object klass or other subclass
1375         // __ push(sup_k_RInfo);  // array element klass or other superclass
1376         // __ call(slow_subtype_check);
1377         // Note that the subclass is pushed first, and is therefore deepest.
1378         // Previous versions of this code reversed the names 'sub' and 'super'.
1379         // This was operationally harmless but made the code unreadable.
1380         enum layout {
1381           rax_off, SLOT2(raxH_off)
1382           rcx_off, SLOT2(rcxH_off)
1383           rsi_off, SLOT2(rsiH_off)
1384           rdi_off, SLOT2(rdiH_off)
1385           // saved_rbp_off, SLOT2(saved_rbpH_off)
1386           return_off, SLOT2(returnH_off)
1387           sup_k_off, SLOT2(sup_kH_off)
1388           klass_off, SLOT2(superH_off)
1389           framesize,
1390           result_off = klass_off  // deepest argument is also the return value
1391         };
1392 
1393         __ set_info("slow_subtype_check", dont_gc_arguments);
1394         __ push(rdi);
1395         __ push(rsi);
1396         __ push(rcx);
1397         __ push(rax);
1398 
1399         // This is called by pushing args and not with C abi
1400         __ movptr(rsi, Address(rsp, (klass_off) * VMRegImpl::stack_slot_size)); // subclass
1401         __ movptr(rax, Address(rsp, (sup_k_off) * VMRegImpl::stack_slot_size)); // superclass
1402 
1403         Label miss;
1404         __ check_klass_subtype_slow_path(rsi, rax, rcx, rdi, NULL, &miss);
1405 
1406         // fallthrough on success:
1407         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), 1); // result
1408         __ pop(rax);
1409         __ pop(rcx);
1410         __ pop(rsi);
1411         __ pop(rdi);
1412         __ ret(0);
1413 
1414         __ bind(miss);
1415         __ movptr(Address(rsp, (result_off) * VMRegImpl::stack_slot_size), NULL_WORD); // result
1416         __ pop(rax);
1417         __ pop(rcx);
1418         __ pop(rsi);
1419         __ pop(rdi);
1420         __ ret(0);
1421       }
1422       break;
1423 
1424     case monitorenter_nofpu_id:
1425       save_fpu_registers = false;
1426       // fall through
1427     case monitorenter_id:
1428       {
1429         StubFrame f(sasm, "monitorenter", dont_gc_arguments);
1430         OopMap* map = save_live_registers(sasm, 3, save_fpu_registers);
1431 
1432         // Called with store_parameter and not C abi
1433 
1434         f.load_argument(1, rax); // rax,: object
1435         f.load_argument(0, rbx); // rbx,: lock address
1436 
1437         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), rax, rbx);
1438 
1439         oop_maps = new OopMapSet();
1440         oop_maps->add_gc_map(call_offset, map);
1441         restore_live_registers(sasm, save_fpu_registers);
1442       }
1443       break;
1444 
1445     case monitorexit_nofpu_id:
1446       save_fpu_registers = false;
1447       // fall through
1448     case monitorexit_id:
1449       {
1450         StubFrame f(sasm, "monitorexit", dont_gc_arguments);
1451         OopMap* map = save_live_registers(sasm, 2, save_fpu_registers);
1452 
1453         // Called with store_parameter and not C abi
1454 
1455         f.load_argument(0, rax); // rax,: lock address
1456 
1457         // note: really a leaf routine but must setup last java sp
1458         //       => use call_RT for now (speed can be improved by
1459         //       doing last java sp setup manually)
1460         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), rax);
1461 
1462         oop_maps = new OopMapSet();
1463         oop_maps->add_gc_map(call_offset, map);
1464         restore_live_registers(sasm, save_fpu_registers);
1465       }
1466       break;
1467 
1468     case deoptimize_id:
1469       {
1470         StubFrame f(sasm, "deoptimize", dont_gc_arguments);
1471         const int num_rt_args = 1;  // thread
1472         OopMap* oop_map = save_live_registers(sasm, num_rt_args);
1473         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize));
1474         oop_maps = new OopMapSet();
1475         oop_maps->add_gc_map(call_offset, oop_map);
1476         restore_live_registers(sasm);
1477         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1478         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1479         __ leave();
1480         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1481       }
1482       break;
1483 
1484     case access_field_patching_id:
1485       { StubFrame f(sasm, "access_field_patching", dont_gc_arguments);
1486         // we should set up register map
1487         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
1488       }
1489       break;
1490 
1491     case load_klass_patching_id:
1492       { StubFrame f(sasm, "load_klass_patching", dont_gc_arguments);
1493         // we should set up register map
1494         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
1495       }
1496       break;
1497 
1498     case load_mirror_patching_id:
1499       { StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments);
1500         // we should set up register map
1501         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
1502       }
1503       break;
1504 
1505     case load_appendix_patching_id:
1506       { StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments);
1507         // we should set up register map
1508         oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
1509       }
1510       break;
1511 
1512     case dtrace_object_alloc_id:
1513       { // rax,: object
1514         StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
1515         // we can't gc here so skip the oopmap but make sure that all
1516         // the live registers get saved.
1517         save_live_registers(sasm, 1);
1518 
1519         __ NOT_LP64(push(rax)) LP64_ONLY(mov(c_rarg0, rax));
1520         __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc)));
1521         NOT_LP64(__ pop(rax));
1522 
1523         restore_live_registers(sasm);
1524       }
1525       break;
1526 
1527     case fpu2long_stub_id:
1528       {
1529         // rax, and rdx are destroyed, but should be free since the result is returned there
1530         // preserve rsi,ecx
1531         __ push(rsi);
1532         __ push(rcx);
1533         LP64_ONLY(__ push(rdx);)
1534 
1535         // check for NaN
1536         Label return0, do_return, return_min_jlong, do_convert;
1537 
1538         Address value_high_word(rsp, wordSize + 4);
1539         Address value_low_word(rsp, wordSize);
1540         Address result_high_word(rsp, 3*wordSize + 4);
1541         Address result_low_word(rsp, 3*wordSize);
1542 
1543         __ subptr(rsp, 32);                    // more than enough on 32bit
1544         __ fst_d(value_low_word);
1545         __ movl(rax, value_high_word);
1546         __ andl(rax, 0x7ff00000);
1547         __ cmpl(rax, 0x7ff00000);
1548         __ jcc(Assembler::notEqual, do_convert);
1549         __ movl(rax, value_high_word);
1550         __ andl(rax, 0xfffff);
1551         __ orl(rax, value_low_word);
1552         __ jcc(Assembler::notZero, return0);
1553 
1554         __ bind(do_convert);
1555         __ fnstcw(Address(rsp, 0));
1556         __ movzwl(rax, Address(rsp, 0));
1557         __ orl(rax, 0xc00);
1558         __ movw(Address(rsp, 2), rax);
1559         __ fldcw(Address(rsp, 2));
1560         __ fwait();
1561         __ fistp_d(result_low_word);
1562         __ fldcw(Address(rsp, 0));
1563         __ fwait();
1564         // This gets the entire long in rax on 64bit
1565         __ movptr(rax, result_low_word);
1566         // testing of high bits
1567         __ movl(rdx, result_high_word);
1568         __ mov(rcx, rax);
1569         // What the heck is the point of the next instruction???
1570         __ xorl(rcx, 0x0);
1571         __ movl(rsi, 0x80000000);
1572         __ xorl(rsi, rdx);
1573         __ orl(rcx, rsi);
1574         __ jcc(Assembler::notEqual, do_return);
1575         __ fldz();
1576         __ fcomp_d(value_low_word);
1577         __ fnstsw_ax();
1578 #ifdef _LP64
1579         __ testl(rax, 0x4100);  // ZF & CF == 0
1580         __ jcc(Assembler::equal, return_min_jlong);
1581 #else
1582         __ sahf();
1583         __ jcc(Assembler::above, return_min_jlong);
1584 #endif // _LP64
1585         // return max_jlong
1586 #ifndef _LP64
1587         __ movl(rdx, 0x7fffffff);
1588         __ movl(rax, 0xffffffff);
1589 #else
1590         __ mov64(rax, CONST64(0x7fffffffffffffff));
1591 #endif // _LP64
1592         __ jmp(do_return);
1593 
1594         __ bind(return_min_jlong);
1595 #ifndef _LP64
1596         __ movl(rdx, 0x80000000);
1597         __ xorl(rax, rax);
1598 #else
1599         __ mov64(rax, CONST64(0x8000000000000000));
1600 #endif // _LP64
1601         __ jmp(do_return);
1602 
1603         __ bind(return0);
1604         __ fpop();
1605 #ifndef _LP64
1606         __ xorptr(rdx,rdx);
1607         __ xorptr(rax,rax);
1608 #else
1609         __ xorptr(rax, rax);
1610 #endif // _LP64
1611 
1612         __ bind(do_return);
1613         __ addptr(rsp, 32);
1614         LP64_ONLY(__ pop(rdx);)
1615         __ pop(rcx);
1616         __ pop(rsi);
1617         __ ret(0);
1618       }
1619       break;
1620 
1621 #if INCLUDE_ALL_GCS
1622     case g1_pre_barrier_slow_id:
1623       {
1624         StubFrame f(sasm, "g1_pre_barrier", dont_gc_arguments);
1625         // arg0 : previous value of memory
1626 
1627         BarrierSet* bs = Universe::heap()->barrier_set();
1628         if (bs->kind() != BarrierSet::G1SATBCTLogging) {
1629           __ movptr(rax, (int)id);
1630           __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1631           __ should_not_reach_here();
1632           break;
1633         }
1634         __ push(rax);
1635         __ push(rdx);
1636 
1637         const Register pre_val = rax;
1638         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1639         const Register tmp = rdx;
1640 
1641         NOT_LP64(__ get_thread(thread);)
1642 
1643         Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1644                                              PtrQueue::byte_offset_of_active()));
1645 
1646         Address queue_index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1647                                              PtrQueue::byte_offset_of_index()));
1648         Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
1649                                         PtrQueue::byte_offset_of_buf()));
1650 
1651 
1652         Label done;
1653         Label runtime;
1654 
1655         // Can we store original value in the thread's buffer?
1656 
1657 #ifdef _LP64
1658         __ movslq(tmp, queue_index);
1659         __ cmpq(tmp, 0);
1660 #else
1661         __ cmpl(queue_index, 0);
1662 #endif
1663         __ jcc(Assembler::equal, runtime);
1664 #ifdef _LP64
1665         __ subq(tmp, wordSize);
1666         __ movl(queue_index, tmp);
1667         __ addq(tmp, buffer);
1668 #else
1669         __ subl(queue_index, wordSize);
1670         __ movl(tmp, buffer);
1671         __ addl(tmp, queue_index);
1672 #endif
1673 
1674         // prev_val (rax)
1675         f.load_argument(0, pre_val);
1676         __ movptr(Address(tmp, 0), pre_val);
1677         __ jmp(done);
1678 
1679         __ bind(runtime);
1680         __ push(rcx);
1681 #ifdef _LP64
1682         __ push(r8);
1683         __ push(r9);
1684         __ push(r10);
1685         __ push(r11);
1686 #  ifndef _WIN64
1687         __ push(rdi);
1688         __ push(rsi);
1689 #  endif
1690 #endif
1691         // load the pre-value
1692         f.load_argument(0, rcx);
1693         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), rcx, thread);
1694 #ifdef _LP64
1695 #  ifndef _WIN64
1696         __ pop(rsi);
1697         __ pop(rdi);
1698 #  endif
1699         __ pop(r11);
1700         __ pop(r10);
1701         __ pop(r9);
1702         __ pop(r8);
1703 #endif
1704         __ pop(rcx);
1705         __ bind(done);
1706 
1707         __ pop(rdx);
1708         __ pop(rax);
1709       }
1710       break;
1711 
1712     case g1_post_barrier_slow_id:
1713       {
1714         StubFrame f(sasm, "g1_post_barrier", dont_gc_arguments);
1715 
1716 
1717         // arg0: store_address
1718         Address store_addr(rbp, 2*BytesPerWord);
1719 
1720         BarrierSet* bs = Universe::heap()->barrier_set();
1721         CardTableModRefBS* ct = (CardTableModRefBS*)bs;
1722         Label done;
1723         Label runtime;
1724 
1725         // At this point we know new_value is non-NULL and the new_value crosses regsion.
1726         // Must check to see if card is already dirty
1727 
1728         const Register thread = NOT_LP64(rax) LP64_ONLY(r15_thread);
1729 
1730         Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1731                                              PtrQueue::byte_offset_of_index()));
1732         Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
1733                                         PtrQueue::byte_offset_of_buf()));
1734 
1735         __ push(rax);
1736         __ push(rcx);
1737 
1738         NOT_LP64(__ get_thread(thread);)
1739         ExternalAddress cardtable((address)ct->byte_map_base);
1740         assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
1741 
1742         const Register card_addr = rcx;
1743 #ifdef _LP64
1744         const Register tmp = rscratch1;
1745         f.load_argument(0, card_addr);
1746         __ shrq(card_addr, CardTableModRefBS::card_shift);
1747         __ lea(tmp, cardtable);
1748         // get the address of the card
1749         __ addq(card_addr, tmp);
1750 #else
1751         const Register card_index = rcx;
1752         f.load_argument(0, card_index);
1753         __ shrl(card_index, CardTableModRefBS::card_shift);
1754 
1755         Address index(noreg, card_index, Address::times_1);
1756         __ leal(card_addr, __ as_Address(ArrayAddress(cardtable, index)));
1757 #endif
1758 
1759         __ cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
1760         __ jcc(Assembler::equal, done);
1761 
1762         __ membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
1763         __ cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
1764         __ jcc(Assembler::equal, done);
1765 
1766         // storing region crossing non-NULL, card is clean.
1767         // dirty card and log.
1768 
1769         __ movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
1770 
1771         __ cmpl(queue_index, 0);
1772         __ jcc(Assembler::equal, runtime);
1773         __ subl(queue_index, wordSize);
1774 
1775         const Register buffer_addr = rbx;
1776         __ push(rbx);
1777 
1778         __ movptr(buffer_addr, buffer);
1779 
1780 #ifdef _LP64
1781         __ movslq(rscratch1, queue_index);
1782         __ addptr(buffer_addr, rscratch1);
1783 #else
1784         __ addptr(buffer_addr, queue_index);
1785 #endif
1786         __ movptr(Address(buffer_addr, 0), card_addr);
1787 
1788         __ pop(rbx);
1789         __ jmp(done);
1790 
1791         __ bind(runtime);
1792         __ push(rdx);
1793 #ifdef _LP64
1794         __ push(r8);
1795         __ push(r9);
1796         __ push(r10);
1797         __ push(r11);
1798 #  ifndef _WIN64
1799         __ push(rdi);
1800         __ push(rsi);
1801 #  endif
1802 #endif
1803         __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
1804 #ifdef _LP64
1805 #  ifndef _WIN64
1806         __ pop(rsi);
1807         __ pop(rdi);
1808 #  endif
1809         __ pop(r11);
1810         __ pop(r10);
1811         __ pop(r9);
1812         __ pop(r8);
1813 #endif
1814         __ pop(rdx);
1815         __ bind(done);
1816 
1817         __ pop(rcx);
1818         __ pop(rax);
1819 
1820       }
1821       break;
1822 #endif // INCLUDE_ALL_GCS
1823 
1824     case predicate_failed_trap_id:
1825       {
1826         StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments);
1827 
1828         OopMap* map = save_live_registers(sasm, 1);
1829 
1830         int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
1831         oop_maps = new OopMapSet();
1832         oop_maps->add_gc_map(call_offset, map);
1833         restore_live_registers(sasm);
1834         __ leave();
1835         DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
1836         assert(deopt_blob != NULL, "deoptimization blob must have been created");
1837 
1838         __ jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
1839       }
1840       break;
1841 
1842     default:
1843       { StubFrame f(sasm, "unimplemented entry", dont_gc_arguments);
1844         __ movptr(rax, (int)id);
1845         __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), rax);
1846         __ should_not_reach_here();
1847       }
1848       break;
1849   }
1850   return oop_maps;
1851 }
1852 
1853 #undef __
1854 
1855 const char *Runtime1::pd_name_for_address(address entry) {
1856   return "<unknown function>";
1857 }