1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "oops/objArrayKlass.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/cfgnode.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/convertnode.hpp"
  33 #include "opto/loopnode.hpp"
  34 #include "opto/machnode.hpp"
  35 #include "opto/movenode.hpp"
  36 #include "opto/narrowptrnode.hpp"
  37 #include "opto/mulnode.hpp"
  38 #include "opto/phaseX.hpp"
  39 #include "opto/regmask.hpp"
  40 #include "opto/runtime.hpp"
  41 #include "opto/subnode.hpp"
  42 
  43 // Portions of code courtesy of Clifford Click
  44 
  45 // Optimization - Graph Style
  46 
  47 //=============================================================================
  48 //------------------------------Value------------------------------------------
  49 // Compute the type of the RegionNode.
  50 const Type *RegionNode::Value( PhaseTransform *phase ) const {
  51   for( uint i=1; i<req(); ++i ) {       // For all paths in
  52     Node *n = in(i);            // Get Control source
  53     if( !n ) continue;          // Missing inputs are TOP
  54     if( phase->type(n) == Type::CONTROL )
  55       return Type::CONTROL;
  56   }
  57   return Type::TOP;             // All paths dead?  Then so are we
  58 }
  59 
  60 //------------------------------Identity---------------------------------------
  61 // Check for Region being Identity.
  62 Node *RegionNode::Identity( PhaseTransform *phase ) {
  63   // Cannot have Region be an identity, even if it has only 1 input.
  64   // Phi users cannot have their Region input folded away for them,
  65   // since they need to select the proper data input
  66   return this;
  67 }
  68 
  69 //------------------------------merge_region-----------------------------------
  70 // If a Region flows into a Region, merge into one big happy merge.  This is
  71 // hard to do if there is stuff that has to happen
  72 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
  73   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
  74     return NULL;
  75   Node *progress = NULL;        // Progress flag
  76   PhaseIterGVN *igvn = phase->is_IterGVN();
  77 
  78   uint rreq = region->req();
  79   for( uint i = 1; i < rreq; i++ ) {
  80     Node *r = region->in(i);
  81     if( r && r->Opcode() == Op_Region && // Found a region?
  82         r->in(0) == r &&        // Not already collapsed?
  83         r != region &&          // Avoid stupid situations
  84         r->outcnt() == 2 ) {    // Self user and 'region' user only?
  85       assert(!r->as_Region()->has_phi(), "no phi users");
  86       if( !progress ) {         // No progress
  87         if (region->has_phi()) {
  88           return NULL;        // Only flatten if no Phi users
  89           // igvn->hash_delete( phi );
  90         }
  91         igvn->hash_delete( region );
  92         progress = region;      // Making progress
  93       }
  94       igvn->hash_delete( r );
  95 
  96       // Append inputs to 'r' onto 'region'
  97       for( uint j = 1; j < r->req(); j++ ) {
  98         // Move an input from 'r' to 'region'
  99         region->add_req(r->in(j));
 100         r->set_req(j, phase->C->top());
 101         // Update phis of 'region'
 102         //for( uint k = 0; k < max; k++ ) {
 103         //  Node *phi = region->out(k);
 104         //  if( phi->is_Phi() ) {
 105         //    phi->add_req(phi->in(i));
 106         //  }
 107         //}
 108 
 109         rreq++;                 // One more input to Region
 110       } // Found a region to merge into Region
 111       // Clobber pointer to the now dead 'r'
 112       region->set_req(i, phase->C->top());
 113     }
 114   }
 115 
 116   return progress;
 117 }
 118 
 119 
 120 
 121 //--------------------------------has_phi--------------------------------------
 122 // Helper function: Return any PhiNode that uses this region or NULL
 123 PhiNode* RegionNode::has_phi() const {
 124   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 125     Node* phi = fast_out(i);
 126     if (phi->is_Phi()) {   // Check for Phi users
 127       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 128       return phi->as_Phi();  // this one is good enough
 129     }
 130   }
 131 
 132   return NULL;
 133 }
 134 
 135 
 136 //-----------------------------has_unique_phi----------------------------------
 137 // Helper function: Return the only PhiNode that uses this region or NULL
 138 PhiNode* RegionNode::has_unique_phi() const {
 139   // Check that only one use is a Phi
 140   PhiNode* only_phi = NULL;
 141   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 142     Node* phi = fast_out(i);
 143     if (phi->is_Phi()) {   // Check for Phi users
 144       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 145       if (only_phi == NULL) {
 146         only_phi = phi->as_Phi();
 147       } else {
 148         return NULL;  // multiple phis
 149       }
 150     }
 151   }
 152 
 153   return only_phi;
 154 }
 155 
 156 
 157 //------------------------------check_phi_clipping-----------------------------
 158 // Helper function for RegionNode's identification of FP clipping
 159 // Check inputs to the Phi
 160 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
 161   min     = NULL;
 162   max     = NULL;
 163   val     = NULL;
 164   min_idx = 0;
 165   max_idx = 0;
 166   val_idx = 0;
 167   uint  phi_max = phi->req();
 168   if( phi_max == 4 ) {
 169     for( uint j = 1; j < phi_max; ++j ) {
 170       Node *n = phi->in(j);
 171       int opcode = n->Opcode();
 172       switch( opcode ) {
 173       case Op_ConI:
 174         {
 175           if( min == NULL ) {
 176             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 177             min_idx = j;
 178           } else {
 179             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 180             max_idx = j;
 181             if( min->get_int() > max->get_int() ) {
 182               // Swap min and max
 183               ConNode *temp;
 184               uint     temp_idx;
 185               temp     = min;     min     = max;     max     = temp;
 186               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
 187             }
 188           }
 189         }
 190         break;
 191       default:
 192         {
 193           val = n;
 194           val_idx = j;
 195         }
 196         break;
 197       }
 198     }
 199   }
 200   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
 201 }
 202 
 203 
 204 //------------------------------check_if_clipping------------------------------
 205 // Helper function for RegionNode's identification of FP clipping
 206 // Check that inputs to Region come from two IfNodes,
 207 //
 208 //            If
 209 //      False    True
 210 //       If        |
 211 //  False  True    |
 212 //    |      |     |
 213 //  RegionNode_inputs
 214 //
 215 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
 216   top_if = NULL;
 217   bot_if = NULL;
 218 
 219   // Check control structure above RegionNode for (if  ( if  ) )
 220   Node *in1 = region->in(1);
 221   Node *in2 = region->in(2);
 222   Node *in3 = region->in(3);
 223   // Check that all inputs are projections
 224   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
 225     Node *in10 = in1->in(0);
 226     Node *in20 = in2->in(0);
 227     Node *in30 = in3->in(0);
 228     // Check that #1 and #2 are ifTrue and ifFalse from same If
 229     if( in10 != NULL && in10->is_If() &&
 230         in20 != NULL && in20->is_If() &&
 231         in30 != NULL && in30->is_If() && in10 == in20 &&
 232         (in1->Opcode() != in2->Opcode()) ) {
 233       Node  *in100 = in10->in(0);
 234       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
 235       // Check that control for in10 comes from other branch of IF from in3
 236       if( in1000 != NULL && in1000->is_If() &&
 237           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
 238         // Control pattern checks
 239         top_if = (IfNode*)in1000;
 240         bot_if = (IfNode*)in10;
 241       }
 242     }
 243   }
 244 
 245   return (top_if != NULL);
 246 }
 247 
 248 
 249 //------------------------------check_convf2i_clipping-------------------------
 250 // Helper function for RegionNode's identification of FP clipping
 251 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
 252 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
 253   convf2i = NULL;
 254 
 255   // Check for the RShiftNode
 256   Node *rshift = phi->in(idx);
 257   assert( rshift, "Previous checks ensure phi input is present");
 258   if( rshift->Opcode() != Op_RShiftI )  { return false; }
 259 
 260   // Check for the LShiftNode
 261   Node *lshift = rshift->in(1);
 262   assert( lshift, "Previous checks ensure phi input is present");
 263   if( lshift->Opcode() != Op_LShiftI )  { return false; }
 264 
 265   // Check for the ConvF2INode
 266   Node *conv = lshift->in(1);
 267   if( conv->Opcode() != Op_ConvF2I ) { return false; }
 268 
 269   // Check that shift amounts are only to get sign bits set after F2I
 270   jint max_cutoff     = max->get_int();
 271   jint min_cutoff     = min->get_int();
 272   jint left_shift     = lshift->in(2)->get_int();
 273   jint right_shift    = rshift->in(2)->get_int();
 274   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
 275   if( left_shift != right_shift ||
 276       0 > left_shift || left_shift >= BitsPerJavaInteger ||
 277       max_post_shift < max_cutoff ||
 278       max_post_shift < -min_cutoff ) {
 279     // Shifts are necessary but current transformation eliminates them
 280     return false;
 281   }
 282 
 283   // OK to return the result of ConvF2I without shifting
 284   convf2i = (ConvF2INode*)conv;
 285   return true;
 286 }
 287 
 288 
 289 //------------------------------check_compare_clipping-------------------------
 290 // Helper function for RegionNode's identification of FP clipping
 291 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
 292   Node *i1 = iff->in(1);
 293   if ( !i1->is_Bool() ) { return false; }
 294   BoolNode *bool1 = i1->as_Bool();
 295   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
 296   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
 297   const Node *cmpF = bool1->in(1);
 298   if( cmpF->Opcode() != Op_CmpF )      { return false; }
 299   // Test that the float value being compared against
 300   // is equivalent to the int value used as a limit
 301   Node *nodef = cmpF->in(2);
 302   if( nodef->Opcode() != Op_ConF ) { return false; }
 303   jfloat conf = nodef->getf();
 304   jint   coni = limit->get_int();
 305   if( ((int)conf) != coni )        { return false; }
 306   input = cmpF->in(1);
 307   return true;
 308 }
 309 
 310 //------------------------------is_unreachable_region--------------------------
 311 // Find if the Region node is reachable from the root.
 312 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
 313   assert(req() == 2, "");
 314 
 315   // First, cut the simple case of fallthrough region when NONE of
 316   // region's phis references itself directly or through a data node.
 317   uint max = outcnt();
 318   uint i;
 319   for (i = 0; i < max; i++) {
 320     Node* phi = raw_out(i);
 321     if (phi != NULL && phi->is_Phi()) {
 322       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
 323       if (phi->outcnt() == 0)
 324         continue; // Safe case - no loops
 325       if (phi->outcnt() == 1) {
 326         Node* u = phi->raw_out(0);
 327         // Skip if only one use is an other Phi or Call or Uncommon trap.
 328         // It is safe to consider this case as fallthrough.
 329         if (u != NULL && (u->is_Phi() || u->is_CFG()))
 330           continue;
 331       }
 332       // Check when phi references itself directly or through an other node.
 333       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
 334         break; // Found possible unsafe data loop.
 335     }
 336   }
 337   if (i >= max)
 338     return false; // An unsafe case was NOT found - don't need graph walk.
 339 
 340   // Unsafe case - check if the Region node is reachable from root.
 341   ResourceMark rm;
 342 
 343   Arena *a = Thread::current()->resource_area();
 344   Node_List nstack(a);
 345   VectorSet visited(a);
 346 
 347   // Mark all control nodes reachable from root outputs
 348   Node *n = (Node*)phase->C->root();
 349   nstack.push(n);
 350   visited.set(n->_idx);
 351   while (nstack.size() != 0) {
 352     n = nstack.pop();
 353     uint max = n->outcnt();
 354     for (uint i = 0; i < max; i++) {
 355       Node* m = n->raw_out(i);
 356       if (m != NULL && m->is_CFG()) {
 357         if (phase->eqv(m, this)) {
 358           return false; // We reached the Region node - it is not dead.
 359         }
 360         if (!visited.test_set(m->_idx))
 361           nstack.push(m);
 362       }
 363     }
 364   }
 365 
 366   return true; // The Region node is unreachable - it is dead.
 367 }
 368 
 369 bool RegionNode::try_clean_mem_phi(PhaseGVN *phase) {
 370   // Incremental inlining + PhaseStringOpts sometimes produce:
 371   //
 372   // cmpP with 1 top input
 373   //           |
 374   //          If
 375   //         /  \
 376   //   IfFalse  IfTrue  /- Some Node
 377   //         \  /      /    /
 378   //        Region    / /-MergeMem
 379   //             \---Phi
 380   //
 381   //
 382   // It's expected by PhaseStringOpts that the Region goes away and is
 383   // replaced by If's control input but because there's still a Phi,
 384   // the Region stays in the graph. The top input from the cmpP is
 385   // propagated forward and a subgraph that is useful goes away. The
 386   // code below replaces the Phi with the MergeMem so that the Region
 387   // is simplified.
 388 
 389   PhiNode* phi = has_unique_phi();
 390   if (phi && phi->type() == Type::MEMORY && req() == 3 && phi->is_diamond_phi(true)) {
 391     MergeMemNode* m = NULL;
 392     assert(phi->req() == 3, "same as region");
 393     for (uint i = 1; i < 3; ++i) {
 394       Node *mem = phi->in(i);
 395       if (mem && mem->is_MergeMem() && in(i)->outcnt() == 1) {
 396         // Nothing is control-dependent on path #i except the region itself.
 397         m = mem->as_MergeMem();
 398         uint j = 3 - i;
 399         Node* other = phi->in(j);
 400         if (other && other == m->base_memory()) {
 401           // m is a successor memory to other, and is not pinned inside the diamond, so push it out.
 402           // This will allow the diamond to collapse completely.
 403           phase->is_IterGVN()->replace_node(phi, m);
 404           return true;
 405         }
 406       }
 407     }
 408   }
 409   return false;
 410 }
 411 
 412 //------------------------------Ideal------------------------------------------
 413 // Return a node which is more "ideal" than the current node.  Must preserve
 414 // the CFG, but we can still strip out dead paths.
 415 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 416   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
 417   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
 418 
 419   // Check for RegionNode with no Phi users and both inputs come from either
 420   // arm of the same IF.  If found, then the control-flow split is useless.
 421   bool has_phis = false;
 422   if (can_reshape) {            // Need DU info to check for Phi users
 423     has_phis = (has_phi() != NULL);       // Cache result
 424     if (has_phis && try_clean_mem_phi(phase)) {
 425       has_phis = false;
 426     }
 427 
 428     if (!has_phis) {            // No Phi users?  Nothing merging?
 429       for (uint i = 1; i < req()-1; i++) {
 430         Node *if1 = in(i);
 431         if( !if1 ) continue;
 432         Node *iff = if1->in(0);
 433         if( !iff || !iff->is_If() ) continue;
 434         for( uint j=i+1; j<req(); j++ ) {
 435           if( in(j) && in(j)->in(0) == iff &&
 436               if1->Opcode() != in(j)->Opcode() ) {
 437             // Add the IF Projections to the worklist. They (and the IF itself)
 438             // will be eliminated if dead.
 439             phase->is_IterGVN()->add_users_to_worklist(iff);
 440             set_req(i, iff->in(0));// Skip around the useless IF diamond
 441             set_req(j, NULL);
 442             return this;      // Record progress
 443           }
 444         }
 445       }
 446     }
 447   }
 448 
 449   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
 450   // degrades to a copy.
 451   bool add_to_worklist = false;
 452   int cnt = 0;                  // Count of values merging
 453   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
 454   int del_it = 0;               // The last input path we delete
 455   // For all inputs...
 456   for( uint i=1; i<req(); ++i ){// For all paths in
 457     Node *n = in(i);            // Get the input
 458     if( n != NULL ) {
 459       // Remove useless control copy inputs
 460       if( n->is_Region() && n->as_Region()->is_copy() ) {
 461         set_req(i, n->nonnull_req());
 462         i--;
 463         continue;
 464       }
 465       if( n->is_Proj() ) {      // Remove useless rethrows
 466         Node *call = n->in(0);
 467         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
 468           set_req(i, call->in(0));
 469           i--;
 470           continue;
 471         }
 472       }
 473       if( phase->type(n) == Type::TOP ) {
 474         set_req(i, NULL);       // Ignore TOP inputs
 475         i--;
 476         continue;
 477       }
 478       cnt++;                    // One more value merging
 479 
 480     } else if (can_reshape) {   // Else found dead path with DU info
 481       PhaseIterGVN *igvn = phase->is_IterGVN();
 482       del_req(i);               // Yank path from self
 483       del_it = i;
 484       uint max = outcnt();
 485       DUIterator j;
 486       bool progress = true;
 487       while(progress) {         // Need to establish property over all users
 488         progress = false;
 489         for (j = outs(); has_out(j); j++) {
 490           Node *n = out(j);
 491           if( n->req() != req() && n->is_Phi() ) {
 492             assert( n->in(0) == this, "" );
 493             igvn->hash_delete(n); // Yank from hash before hacking edges
 494             n->set_req_X(i,NULL,igvn);// Correct DU info
 495             n->del_req(i);        // Yank path from Phis
 496             if( max != outcnt() ) {
 497               progress = true;
 498               j = refresh_out_pos(j);
 499               max = outcnt();
 500             }
 501           }
 502         }
 503       }
 504       add_to_worklist = true;
 505       i--;
 506     }
 507   }
 508 
 509   if (can_reshape && cnt == 1) {
 510     // Is it dead loop?
 511     // If it is LoopNopde it had 2 (+1 itself) inputs and
 512     // one of them was cut. The loop is dead if it was EntryContol.
 513     // Loop node may have only one input because entry path
 514     // is removed in PhaseIdealLoop::Dominators().
 515     assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
 516     if (this->is_Loop() && (del_it == LoopNode::EntryControl ||
 517                             del_it == 0 && is_unreachable_region(phase)) ||
 518        !this->is_Loop() && has_phis && is_unreachable_region(phase)) {
 519       // Yes,  the region will be removed during the next step below.
 520       // Cut the backedge input and remove phis since no data paths left.
 521       // We don't cut outputs to other nodes here since we need to put them
 522       // on the worklist.
 523       del_req(1);
 524       cnt = 0;
 525       assert( req() == 1, "no more inputs expected" );
 526       uint max = outcnt();
 527       bool progress = true;
 528       Node *top = phase->C->top();
 529       PhaseIterGVN *igvn = phase->is_IterGVN();
 530       DUIterator j;
 531       while(progress) {
 532         progress = false;
 533         for (j = outs(); has_out(j); j++) {
 534           Node *n = out(j);
 535           if( n->is_Phi() ) {
 536             assert( igvn->eqv(n->in(0), this), "" );
 537             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 538             // Break dead loop data path.
 539             // Eagerly replace phis with top to avoid phis copies generation.
 540             igvn->replace_node(n, top);
 541             if( max != outcnt() ) {
 542               progress = true;
 543               j = refresh_out_pos(j);
 544               max = outcnt();
 545             }
 546           }
 547         }
 548       }
 549       add_to_worklist = true;
 550     }
 551   }
 552   if (add_to_worklist) {
 553     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
 554   }
 555 
 556   if( cnt <= 1 ) {              // Only 1 path in?
 557     set_req(0, NULL);           // Null control input for region copy
 558     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
 559       // No inputs or all inputs are NULL.
 560       return NULL;
 561     } else if (can_reshape) {   // Optimization phase - remove the node
 562       PhaseIterGVN *igvn = phase->is_IterGVN();
 563       Node *parent_ctrl;
 564       if( cnt == 0 ) {
 565         assert( req() == 1, "no inputs expected" );
 566         // During IGVN phase such region will be subsumed by TOP node
 567         // so region's phis will have TOP as control node.
 568         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
 569         // Also set other user's input to top.
 570         parent_ctrl = phase->C->top();
 571       } else {
 572         // The fallthrough case since we already checked dead loops above.
 573         parent_ctrl = in(1);
 574         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
 575         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
 576       }
 577       if (!add_to_worklist)
 578         igvn->add_users_to_worklist(this); // Check for further allowed opts
 579       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
 580         Node* n = last_out(i);
 581         igvn->hash_delete(n); // Remove from worklist before modifying edges
 582         if( n->is_Phi() ) {   // Collapse all Phis
 583           // Eagerly replace phis to avoid copies generation.
 584           Node* in;
 585           if( cnt == 0 ) {
 586             assert( n->req() == 1, "No data inputs expected" );
 587             in = parent_ctrl; // replaced by top
 588           } else {
 589             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 590             in = n->in(1);               // replaced by unique input
 591             if( n->as_Phi()->is_unsafe_data_reference(in) )
 592               in = phase->C->top();      // replaced by top
 593           }
 594           igvn->replace_node(n, in);
 595         }
 596         else if( n->is_Region() ) { // Update all incoming edges
 597           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
 598           uint uses_found = 0;
 599           for( uint k=1; k < n->req(); k++ ) {
 600             if( n->in(k) == this ) {
 601               n->set_req(k, parent_ctrl);
 602               uses_found++;
 603             }
 604           }
 605           if( uses_found > 1 ) { // (--i) done at the end of the loop.
 606             i -= (uses_found - 1);
 607           }
 608         }
 609         else {
 610           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
 611           n->set_req(0, parent_ctrl);
 612         }
 613 #ifdef ASSERT
 614         for( uint k=0; k < n->req(); k++ ) {
 615           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
 616         }
 617 #endif
 618       }
 619       // Remove the RegionNode itself from DefUse info
 620       igvn->remove_dead_node(this);
 621       return NULL;
 622     }
 623     return this;                // Record progress
 624   }
 625 
 626 
 627   // If a Region flows into a Region, merge into one big happy merge.
 628   if (can_reshape) {
 629     Node *m = merge_region(this, phase);
 630     if (m != NULL)  return m;
 631   }
 632 
 633   // Check if this region is the root of a clipping idiom on floats
 634   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
 635     // Check that only one use is a Phi and that it simplifies to two constants +
 636     PhiNode* phi = has_unique_phi();
 637     if (phi != NULL) {          // One Phi user
 638       // Check inputs to the Phi
 639       ConNode *min;
 640       ConNode *max;
 641       Node    *val;
 642       uint     min_idx;
 643       uint     max_idx;
 644       uint     val_idx;
 645       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
 646         IfNode *top_if;
 647         IfNode *bot_if;
 648         if( check_if_clipping( this, bot_if, top_if ) ) {
 649           // Control pattern checks, now verify compares
 650           Node   *top_in = NULL;   // value being compared against
 651           Node   *bot_in = NULL;
 652           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
 653               check_compare_clipping( false, top_if, max, top_in ) ) {
 654             if( bot_in == top_in ) {
 655               PhaseIterGVN *gvn = phase->is_IterGVN();
 656               assert( gvn != NULL, "Only had DefUse info in IterGVN");
 657               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
 658 
 659               // Check for the ConvF2INode
 660               ConvF2INode *convf2i;
 661               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
 662                 convf2i->in(1) == bot_in ) {
 663                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
 664                 // max test
 665                 Node *cmp   = gvn->register_new_node_with_optimizer(new (phase->C) CmpINode( convf2i, min ));
 666                 Node *boo   = gvn->register_new_node_with_optimizer(new (phase->C) BoolNode( cmp, BoolTest::lt ));
 667                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C) IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
 668                 Node *if_min= gvn->register_new_node_with_optimizer(new (phase->C) IfTrueNode (iff));
 669                 Node *ifF   = gvn->register_new_node_with_optimizer(new (phase->C) IfFalseNode(iff));
 670                 // min test
 671                 cmp         = gvn->register_new_node_with_optimizer(new (phase->C) CmpINode( convf2i, max ));
 672                 boo         = gvn->register_new_node_with_optimizer(new (phase->C) BoolNode( cmp, BoolTest::gt ));
 673                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new (phase->C) IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
 674                 Node *if_max= gvn->register_new_node_with_optimizer(new (phase->C) IfTrueNode (iff));
 675                 ifF         = gvn->register_new_node_with_optimizer(new (phase->C) IfFalseNode(iff));
 676                 // update input edges to region node
 677                 set_req_X( min_idx, if_min, gvn );
 678                 set_req_X( max_idx, if_max, gvn );
 679                 set_req_X( val_idx, ifF,    gvn );
 680                 // remove unnecessary 'LShiftI; RShiftI' idiom
 681                 gvn->hash_delete(phi);
 682                 phi->set_req_X( val_idx, convf2i, gvn );
 683                 gvn->hash_find_insert(phi);
 684                 // Return transformed region node
 685                 return this;
 686               }
 687             }
 688           }
 689         }
 690       }
 691     }
 692   }
 693 
 694   return NULL;
 695 }
 696 
 697 
 698 
 699 const RegMask &RegionNode::out_RegMask() const {
 700   return RegMask::Empty;
 701 }
 702 
 703 // Find the one non-null required input.  RegionNode only
 704 Node *Node::nonnull_req() const {
 705   assert( is_Region(), "" );
 706   for( uint i = 1; i < _cnt; i++ )
 707     if( in(i) )
 708       return in(i);
 709   ShouldNotReachHere();
 710   return NULL;
 711 }
 712 
 713 
 714 //=============================================================================
 715 // note that these functions assume that the _adr_type field is flattened
 716 uint PhiNode::hash() const {
 717   const Type* at = _adr_type;
 718   return TypeNode::hash() + (at ? at->hash() : 0);
 719 }
 720 uint PhiNode::cmp( const Node &n ) const {
 721   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
 722 }
 723 static inline
 724 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
 725   if (at == NULL || at == TypePtr::BOTTOM)  return at;
 726   return Compile::current()->alias_type(at)->adr_type();
 727 }
 728 
 729 //----------------------------make---------------------------------------------
 730 // create a new phi with edges matching r and set (initially) to x
 731 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
 732   uint preds = r->req();   // Number of predecessor paths
 733   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
 734   PhiNode* p = new (Compile::current()) PhiNode(r, t, at);
 735   for (uint j = 1; j < preds; j++) {
 736     // Fill in all inputs, except those which the region does not yet have
 737     if (r->in(j) != NULL)
 738       p->init_req(j, x);
 739   }
 740   return p;
 741 }
 742 PhiNode* PhiNode::make(Node* r, Node* x) {
 743   const Type*    t  = x->bottom_type();
 744   const TypePtr* at = NULL;
 745   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 746   return make(r, x, t, at);
 747 }
 748 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
 749   const Type*    t  = x->bottom_type();
 750   const TypePtr* at = NULL;
 751   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 752   return new (Compile::current()) PhiNode(r, t, at);
 753 }
 754 
 755 
 756 //------------------------slice_memory-----------------------------------------
 757 // create a new phi with narrowed memory type
 758 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
 759   PhiNode* mem = (PhiNode*) clone();
 760   *(const TypePtr**)&mem->_adr_type = adr_type;
 761   // convert self-loops, or else we get a bad graph
 762   for (uint i = 1; i < req(); i++) {
 763     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
 764   }
 765   mem->verify_adr_type();
 766   return mem;
 767 }
 768 
 769 //------------------------split_out_instance-----------------------------------
 770 // Split out an instance type from a bottom phi.
 771 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
 772   const TypeOopPtr *t_oop = at->isa_oopptr();
 773   assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
 774   const TypePtr *t = adr_type();
 775   assert(type() == Type::MEMORY &&
 776          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 777           t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 778           t->is_oopptr()->cast_to_exactness(true)
 779            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 780            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
 781          "bottom or raw memory required");
 782 
 783   // Check if an appropriate node already exists.
 784   Node *region = in(0);
 785   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 786     Node* use = region->fast_out(k);
 787     if( use->is_Phi()) {
 788       PhiNode *phi2 = use->as_Phi();
 789       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
 790         return phi2;
 791       }
 792     }
 793   }
 794   Compile *C = igvn->C;
 795   Arena *a = Thread::current()->resource_area();
 796   Node_Array node_map = new Node_Array(a);
 797   Node_Stack stack(a, C->unique() >> 4);
 798   PhiNode *nphi = slice_memory(at);
 799   igvn->register_new_node_with_optimizer( nphi );
 800   node_map.map(_idx, nphi);
 801   stack.push((Node *)this, 1);
 802   while(!stack.is_empty()) {
 803     PhiNode *ophi = stack.node()->as_Phi();
 804     uint i = stack.index();
 805     assert(i >= 1, "not control edge");
 806     stack.pop();
 807     nphi = node_map[ophi->_idx]->as_Phi();
 808     for (; i < ophi->req(); i++) {
 809       Node *in = ophi->in(i);
 810       if (in == NULL || igvn->type(in) == Type::TOP)
 811         continue;
 812       Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
 813       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
 814       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
 815         opt = node_map[optphi->_idx];
 816         if (opt == NULL) {
 817           stack.push(ophi, i);
 818           nphi = optphi->slice_memory(at);
 819           igvn->register_new_node_with_optimizer( nphi );
 820           node_map.map(optphi->_idx, nphi);
 821           ophi = optphi;
 822           i = 0; // will get incremented at top of loop
 823           continue;
 824         }
 825       }
 826       nphi->set_req(i, opt);
 827     }
 828   }
 829   return nphi;
 830 }
 831 
 832 //------------------------verify_adr_type--------------------------------------
 833 #ifdef ASSERT
 834 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
 835   if (visited.test_set(_idx))  return;  //already visited
 836 
 837   // recheck constructor invariants:
 838   verify_adr_type(false);
 839 
 840   // recheck local phi/phi consistency:
 841   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
 842          "adr_type must be consistent across phi nest");
 843 
 844   // walk around
 845   for (uint i = 1; i < req(); i++) {
 846     Node* n = in(i);
 847     if (n == NULL)  continue;
 848     const Node* np = in(i);
 849     if (np->is_Phi()) {
 850       np->as_Phi()->verify_adr_type(visited, at);
 851     } else if (n->bottom_type() == Type::TOP
 852                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
 853       // ignore top inputs
 854     } else {
 855       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
 856       // recheck phi/non-phi consistency at leaves:
 857       assert((nat != NULL) == (at != NULL), "");
 858       assert(nat == at || nat == TypePtr::BOTTOM,
 859              "adr_type must be consistent at leaves of phi nest");
 860     }
 861   }
 862 }
 863 
 864 // Verify a whole nest of phis rooted at this one.
 865 void PhiNode::verify_adr_type(bool recursive) const {
 866   if (is_error_reported())  return;  // muzzle asserts when debugging an error
 867   if (Node::in_dump())      return;  // muzzle asserts when printing
 868 
 869   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
 870 
 871   if (!VerifyAliases)       return;  // verify thoroughly only if requested
 872 
 873   assert(_adr_type == flatten_phi_adr_type(_adr_type),
 874          "Phi::adr_type must be pre-normalized");
 875 
 876   if (recursive) {
 877     VectorSet visited(Thread::current()->resource_area());
 878     verify_adr_type(visited, _adr_type);
 879   }
 880 }
 881 #endif
 882 
 883 
 884 //------------------------------Value------------------------------------------
 885 // Compute the type of the PhiNode
 886 const Type *PhiNode::Value( PhaseTransform *phase ) const {
 887   Node *r = in(0);              // RegionNode
 888   if( !r )                      // Copy or dead
 889     return in(1) ? phase->type(in(1)) : Type::TOP;
 890 
 891   // Note: During parsing, phis are often transformed before their regions.
 892   // This means we have to use type_or_null to defend against untyped regions.
 893   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
 894     return Type::TOP;
 895 
 896   // Check for trip-counted loop.  If so, be smarter.
 897   CountedLoopNode *l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
 898   if( l && l->can_be_counted_loop(phase) &&
 899       ((const Node*)l->phi() == this) ) { // Trip counted loop!
 900     // protect against init_trip() or limit() returning NULL
 901     const Node *init   = l->init_trip();
 902     const Node *limit  = l->limit();
 903     if( init != NULL && limit != NULL && l->stride_is_con() ) {
 904       const TypeInt *lo = init ->bottom_type()->isa_int();
 905       const TypeInt *hi = limit->bottom_type()->isa_int();
 906       if( lo && hi ) {            // Dying loops might have TOP here
 907         int stride = l->stride_con();
 908         if( stride < 0 ) {          // Down-counter loop
 909           const TypeInt *tmp = lo; lo = hi; hi = tmp;
 910           stride = -stride;
 911         }
 912         if( lo->_hi < hi->_lo )     // Reversed endpoints are well defined :-(
 913           return TypeInt::make(lo->_lo,hi->_hi,3);
 914       }
 915     }
 916   }
 917 
 918   // Until we have harmony between classes and interfaces in the type
 919   // lattice, we must tread carefully around phis which implicitly
 920   // convert the one to the other.
 921   const TypePtr* ttp = _type->make_ptr();
 922   const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
 923   const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
 924   bool is_intf = false;
 925   if (ttip != NULL) {
 926     ciKlass* k = ttip->klass();
 927     if (k->is_loaded() && k->is_interface())
 928       is_intf = true;
 929   }
 930   if (ttkp != NULL) {
 931     ciKlass* k = ttkp->klass();
 932     if (k->is_loaded() && k->is_interface())
 933       is_intf = true;
 934   }
 935 
 936   // Default case: merge all inputs
 937   const Type *t = Type::TOP;        // Merged type starting value
 938   for (uint i = 1; i < req(); ++i) {// For all paths in
 939     // Reachable control path?
 940     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
 941       const Type* ti = phase->type(in(i));
 942       // We assume that each input of an interface-valued Phi is a true
 943       // subtype of that interface.  This might not be true of the meet
 944       // of all the input types.  The lattice is not distributive in
 945       // such cases.  Ward off asserts in type.cpp by refusing to do
 946       // meets between interfaces and proper classes.
 947       const TypePtr* tip = ti->make_ptr();
 948       const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
 949       if (tiip) {
 950         bool ti_is_intf = false;
 951         ciKlass* k = tiip->klass();
 952         if (k->is_loaded() && k->is_interface())
 953           ti_is_intf = true;
 954         if (is_intf != ti_is_intf)
 955           { t = _type; break; }
 956       }
 957       t = t->meet_speculative(ti);
 958     }
 959   }
 960 
 961   // The worst-case type (from ciTypeFlow) should be consistent with "t".
 962   // That is, we expect that "t->higher_equal(_type)" holds true.
 963   // There are various exceptions:
 964   // - Inputs which are phis might in fact be widened unnecessarily.
 965   //   For example, an input might be a widened int while the phi is a short.
 966   // - Inputs might be BotPtrs but this phi is dependent on a null check,
 967   //   and postCCP has removed the cast which encodes the result of the check.
 968   // - The type of this phi is an interface, and the inputs are classes.
 969   // - Value calls on inputs might produce fuzzy results.
 970   //   (Occurrences of this case suggest improvements to Value methods.)
 971   //
 972   // It is not possible to see Type::BOTTOM values as phi inputs,
 973   // because the ciTypeFlow pre-pass produces verifier-quality types.
 974   const Type* ft = t->filter_speculative(_type);  // Worst case type
 975 
 976 #ifdef ASSERT
 977   // The following logic has been moved into TypeOopPtr::filter.
 978   const Type* jt = t->join_speculative(_type);
 979   if( jt->empty() ) {           // Emptied out???
 980 
 981     // Check for evil case of 't' being a class and '_type' expecting an
 982     // interface.  This can happen because the bytecodes do not contain
 983     // enough type info to distinguish a Java-level interface variable
 984     // from a Java-level object variable.  If we meet 2 classes which
 985     // both implement interface I, but their meet is at 'j/l/O' which
 986     // doesn't implement I, we have no way to tell if the result should
 987     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
 988     // into a Phi which "knows" it's an Interface type we'll have to
 989     // uplift the type.
 990     if( !t->empty() && ttip && ttip->is_loaded() && ttip->klass()->is_interface() )
 991       { assert(ft == _type, ""); } // Uplift to interface
 992     else if( !t->empty() && ttkp && ttkp->is_loaded() && ttkp->klass()->is_interface() )
 993       { assert(ft == _type, ""); } // Uplift to interface
 994     // Otherwise it's something stupid like non-overlapping int ranges
 995     // found on dying counted loops.
 996     else
 997       { assert(ft == Type::TOP, ""); } // Canonical empty value
 998   }
 999 
1000   else {
1001 
1002     // If we have an interface-typed Phi and we narrow to a class type, the join
1003     // should report back the class.  However, if we have a J/L/Object
1004     // class-typed Phi and an interface flows in, it's possible that the meet &
1005     // join report an interface back out.  This isn't possible but happens
1006     // because the type system doesn't interact well with interfaces.
1007     const TypePtr *jtp = jt->make_ptr();
1008     const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1009     const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1010     if( jtip && ttip ) {
1011       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
1012           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1013         // Happens in a CTW of rt.jar, 320-341, no extra flags
1014         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1015                ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1016         jt = ft;
1017       }
1018     }
1019     if( jtkp && ttkp ) {
1020       if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
1021           !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1022           ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1023         assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1024                ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1025         jt = ft;
1026       }
1027     }
1028     if (jt != ft && jt->base() == ft->base()) {
1029       if (jt->isa_int() &&
1030           jt->is_int()->_lo == ft->is_int()->_lo &&
1031           jt->is_int()->_hi == ft->is_int()->_hi)
1032         jt = ft;
1033       if (jt->isa_long() &&
1034           jt->is_long()->_lo == ft->is_long()->_lo &&
1035           jt->is_long()->_hi == ft->is_long()->_hi)
1036         jt = ft;
1037     }
1038     if (jt != ft) {
1039       tty->print("merge type:  "); t->dump(); tty->cr();
1040       tty->print("kill type:   "); _type->dump(); tty->cr();
1041       tty->print("join type:   "); jt->dump(); tty->cr();
1042       tty->print("filter type: "); ft->dump(); tty->cr();
1043     }
1044     assert(jt == ft, "");
1045   }
1046 #endif //ASSERT
1047 
1048   // Deal with conversion problems found in data loops.
1049   ft = phase->saturate(ft, phase->type_or_null(this), _type);
1050 
1051   return ft;
1052 }
1053 
1054 
1055 //------------------------------is_diamond_phi---------------------------------
1056 // Does this Phi represent a simple well-shaped diamond merge?  Return the
1057 // index of the true path or 0 otherwise.
1058 // If check_control_only is true, do not inspect the If node at the
1059 // top, and return -1 (not an edge number) on success.
1060 int PhiNode::is_diamond_phi(bool check_control_only) const {
1061   // Check for a 2-path merge
1062   Node *region = in(0);
1063   if( !region ) return 0;
1064   if( region->req() != 3 ) return 0;
1065   if(         req() != 3 ) return 0;
1066   // Check that both paths come from the same If
1067   Node *ifp1 = region->in(1);
1068   Node *ifp2 = region->in(2);
1069   if( !ifp1 || !ifp2 ) return 0;
1070   Node *iff = ifp1->in(0);
1071   if( !iff || !iff->is_If() ) return 0;
1072   if( iff != ifp2->in(0) ) return 0;
1073   if (check_control_only)  return -1;
1074   // Check for a proper bool/cmp
1075   const Node *b = iff->in(1);
1076   if( !b->is_Bool() ) return 0;
1077   const Node *cmp = b->in(1);
1078   if( !cmp->is_Cmp() ) return 0;
1079 
1080   // Check for branching opposite expected
1081   if( ifp2->Opcode() == Op_IfTrue ) {
1082     assert( ifp1->Opcode() == Op_IfFalse, "" );
1083     return 2;
1084   } else {
1085     assert( ifp1->Opcode() == Op_IfTrue, "" );
1086     return 1;
1087   }
1088 }
1089 
1090 //----------------------------check_cmove_id-----------------------------------
1091 // Check for CMove'ing a constant after comparing against the constant.
1092 // Happens all the time now, since if we compare equality vs a constant in
1093 // the parser, we "know" the variable is constant on one path and we force
1094 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1095 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1096 // general in that we don't need constants.  Since CMove's are only inserted
1097 // in very special circumstances, we do it here on generic Phi's.
1098 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1099   assert(true_path !=0, "only diamond shape graph expected");
1100 
1101   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1102   // phi->region->if_proj->ifnode->bool->cmp
1103   Node*     region = in(0);
1104   Node*     iff    = region->in(1)->in(0);
1105   BoolNode* b      = iff->in(1)->as_Bool();
1106   Node*     cmp    = b->in(1);
1107   Node*     tval   = in(true_path);
1108   Node*     fval   = in(3-true_path);
1109   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1110   if (id == NULL)
1111     return NULL;
1112 
1113   // Either value might be a cast that depends on a branch of 'iff'.
1114   // Since the 'id' value will float free of the diamond, either
1115   // decast or return failure.
1116   Node* ctl = id->in(0);
1117   if (ctl != NULL && ctl->in(0) == iff) {
1118     if (id->is_ConstraintCast()) {
1119       return id->in(1);
1120     } else {
1121       // Don't know how to disentangle this value.
1122       return NULL;
1123     }
1124   }
1125 
1126   return id;
1127 }
1128 
1129 //------------------------------Identity---------------------------------------
1130 // Check for Region being Identity.
1131 Node *PhiNode::Identity( PhaseTransform *phase ) {
1132   // Check for no merging going on
1133   // (There used to be special-case code here when this->region->is_Loop.
1134   // It would check for a tributary phi on the backedge that the main phi
1135   // trivially, perhaps with a single cast.  The unique_input method
1136   // does all this and more, by reducing such tributaries to 'this'.)
1137   Node* uin = unique_input(phase);
1138   if (uin != NULL) {
1139     return uin;
1140   }
1141 
1142   int true_path = is_diamond_phi();
1143   if (true_path != 0) {
1144     Node* id = is_cmove_id(phase, true_path);
1145     if (id != NULL)  return id;
1146   }
1147 
1148   return this;                     // No identity
1149 }
1150 
1151 //-----------------------------unique_input------------------------------------
1152 // Find the unique value, discounting top, self-loops, and casts.
1153 // Return top if there are no inputs, and self if there are multiple.
1154 Node* PhiNode::unique_input(PhaseTransform* phase) {
1155   //  1) One unique direct input, or
1156   //  2) some of the inputs have an intervening ConstraintCast and
1157   //     the type of input is the same or sharper (more specific)
1158   //     than the phi's type.
1159   //  3) an input is a self loop
1160   //
1161   //  1) input   or   2) input     or   3) input __
1162   //     /   \           /   \               \  /  \
1163   //     \   /          |    cast             phi  cast
1164   //      phi            \   /               /  \  /
1165   //                      phi               /    --
1166 
1167   Node* r = in(0);                      // RegionNode
1168   if (r == NULL)  return in(1);         // Already degraded to a Copy
1169   Node* uncasted_input = NULL; // The unique uncasted input (ConstraintCasts removed)
1170   Node* direct_input   = NULL; // The unique direct input
1171 
1172   for (uint i = 1, cnt = req(); i < cnt; ++i) {
1173     Node* rc = r->in(i);
1174     if (rc == NULL || phase->type(rc) == Type::TOP)
1175       continue;                 // ignore unreachable control path
1176     Node* n = in(i);
1177     if (n == NULL)
1178       continue;
1179     Node* un = n->uncast();
1180     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1181       continue; // ignore if top, or in(i) and "this" are in a data cycle
1182     }
1183     // Check for a unique uncasted input
1184     if (uncasted_input == NULL) {
1185       uncasted_input = un;
1186     } else if (uncasted_input != un) {
1187       uncasted_input = NodeSentinel; // no unique uncasted input
1188     }
1189     // Check for a unique direct input
1190     if (direct_input == NULL) {
1191       direct_input = n;
1192     } else if (direct_input != n) {
1193       direct_input = NodeSentinel; // no unique direct input
1194     }
1195   }
1196   if (direct_input == NULL) {
1197     return phase->C->top();        // no inputs
1198   }
1199   assert(uncasted_input != NULL,"");
1200 
1201   if (direct_input != NodeSentinel) {
1202     return direct_input;           // one unique direct input
1203   }
1204   if (uncasted_input != NodeSentinel &&
1205       phase->type(uncasted_input)->higher_equal(type())) {
1206     return uncasted_input;         // one unique uncasted input
1207   }
1208 
1209   // Nothing.
1210   return NULL;
1211 }
1212 
1213 //------------------------------is_x2logic-------------------------------------
1214 // Check for simple convert-to-boolean pattern
1215 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1216 // Convert Phi to an ConvIB.
1217 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1218   assert(true_path !=0, "only diamond shape graph expected");
1219   // Convert the true/false index into an expected 0/1 return.
1220   // Map 2->0 and 1->1.
1221   int flipped = 2-true_path;
1222 
1223   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1224   // phi->region->if_proj->ifnode->bool->cmp
1225   Node *region = phi->in(0);
1226   Node *iff = region->in(1)->in(0);
1227   BoolNode *b = (BoolNode*)iff->in(1);
1228   const CmpNode *cmp = (CmpNode*)b->in(1);
1229 
1230   Node *zero = phi->in(1);
1231   Node *one  = phi->in(2);
1232   const Type *tzero = phase->type( zero );
1233   const Type *tone  = phase->type( one  );
1234 
1235   // Check for compare vs 0
1236   const Type *tcmp = phase->type(cmp->in(2));
1237   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1238     // Allow cmp-vs-1 if the other input is bounded by 0-1
1239     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1240       return NULL;
1241     flipped = 1-flipped;        // Test is vs 1 instead of 0!
1242   }
1243 
1244   // Check for setting zero/one opposite expected
1245   if( tzero == TypeInt::ZERO ) {
1246     if( tone == TypeInt::ONE ) {
1247     } else return NULL;
1248   } else if( tzero == TypeInt::ONE ) {
1249     if( tone == TypeInt::ZERO ) {
1250       flipped = 1-flipped;
1251     } else return NULL;
1252   } else return NULL;
1253 
1254   // Check for boolean test backwards
1255   if( b->_test._test == BoolTest::ne ) {
1256   } else if( b->_test._test == BoolTest::eq ) {
1257     flipped = 1-flipped;
1258   } else return NULL;
1259 
1260   // Build int->bool conversion
1261   Node *n = new (phase->C) Conv2BNode( cmp->in(1) );
1262   if( flipped )
1263     n = new (phase->C) XorINode( phase->transform(n), phase->intcon(1) );
1264 
1265   return n;
1266 }
1267 
1268 //------------------------------is_cond_add------------------------------------
1269 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1270 // To be profitable the control flow has to disappear; there can be no other
1271 // values merging here.  We replace the test-and-branch with:
1272 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1273 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1274 // Then convert Y to 0-or-Y and finally add.
1275 // This is a key transform for SpecJava _201_compress.
1276 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1277   assert(true_path !=0, "only diamond shape graph expected");
1278 
1279   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1280   // phi->region->if_proj->ifnode->bool->cmp
1281   RegionNode *region = (RegionNode*)phi->in(0);
1282   Node *iff = region->in(1)->in(0);
1283   BoolNode* b = iff->in(1)->as_Bool();
1284   const CmpNode *cmp = (CmpNode*)b->in(1);
1285 
1286   // Make sure only merging this one phi here
1287   if (region->has_unique_phi() != phi)  return NULL;
1288 
1289   // Make sure each arm of the diamond has exactly one output, which we assume
1290   // is the region.  Otherwise, the control flow won't disappear.
1291   if (region->in(1)->outcnt() != 1) return NULL;
1292   if (region->in(2)->outcnt() != 1) return NULL;
1293 
1294   // Check for "(P < Q)" of type signed int
1295   if (b->_test._test != BoolTest::lt)  return NULL;
1296   if (cmp->Opcode() != Op_CmpI)        return NULL;
1297 
1298   Node *p = cmp->in(1);
1299   Node *q = cmp->in(2);
1300   Node *n1 = phi->in(  true_path);
1301   Node *n2 = phi->in(3-true_path);
1302 
1303   int op = n1->Opcode();
1304   if( op != Op_AddI           // Need zero as additive identity
1305       /*&&op != Op_SubI &&
1306       op != Op_AddP &&
1307       op != Op_XorI &&
1308       op != Op_OrI*/ )
1309     return NULL;
1310 
1311   Node *x = n2;
1312   Node *y = NULL;
1313   if( x == n1->in(1) ) {
1314     y = n1->in(2);
1315   } else if( x == n1->in(2) ) {
1316     y = n1->in(1);
1317   } else return NULL;
1318 
1319   // Not so profitable if compare and add are constants
1320   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1321     return NULL;
1322 
1323   Node *cmplt = phase->transform( new (phase->C) CmpLTMaskNode(p,q) );
1324   Node *j_and   = phase->transform( new (phase->C) AndINode(cmplt,y) );
1325   return new (phase->C) AddINode(j_and,x);
1326 }
1327 
1328 //------------------------------is_absolute------------------------------------
1329 // Check for absolute value.
1330 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1331   assert(true_path !=0, "only diamond shape graph expected");
1332 
1333   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1334   int  phi_x_idx = 0;           // Index of phi input where to find naked x
1335 
1336   // ABS ends with the merge of 2 control flow paths.
1337   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1338   int false_path = 3 - true_path;
1339 
1340   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1341   // phi->region->if_proj->ifnode->bool->cmp
1342   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1343 
1344   // Check bool sense
1345   switch( bol->_test._test ) {
1346   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1347   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1348   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1349   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1350   default:           return NULL;                              break;
1351   }
1352 
1353   // Test is next
1354   Node *cmp = bol->in(1);
1355   const Type *tzero = NULL;
1356   switch( cmp->Opcode() ) {
1357   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1358   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1359   default: return NULL;
1360   }
1361 
1362   // Find zero input of compare; the other input is being abs'd
1363   Node *x = NULL;
1364   bool flip = false;
1365   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1366     x = cmp->in(3 - cmp_zero_idx);
1367   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1368     // The test is inverted, we should invert the result...
1369     x = cmp->in(cmp_zero_idx);
1370     flip = true;
1371   } else {
1372     return NULL;
1373   }
1374 
1375   // Next get the 2 pieces being selected, one is the original value
1376   // and the other is the negated value.
1377   if( phi_root->in(phi_x_idx) != x ) return NULL;
1378 
1379   // Check other phi input for subtract node
1380   Node *sub = phi_root->in(3 - phi_x_idx);
1381 
1382   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1383   if( tzero == TypeF::ZERO ) {
1384     if( sub->Opcode() != Op_SubF ||
1385         sub->in(2) != x ||
1386         phase->type(sub->in(1)) != tzero ) return NULL;
1387     x = new (phase->C) AbsFNode(x);
1388     if (flip) {
1389       x = new (phase->C) SubFNode(sub->in(1), phase->transform(x));
1390     }
1391   } else {
1392     if( sub->Opcode() != Op_SubD ||
1393         sub->in(2) != x ||
1394         phase->type(sub->in(1)) != tzero ) return NULL;
1395     x = new (phase->C) AbsDNode(x);
1396     if (flip) {
1397       x = new (phase->C) SubDNode(sub->in(1), phase->transform(x));
1398     }
1399   }
1400 
1401   return x;
1402 }
1403 
1404 //------------------------------split_once-------------------------------------
1405 // Helper for split_flow_path
1406 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1407   igvn->hash_delete(n);         // Remove from hash before hacking edges
1408 
1409   uint j = 1;
1410   for (uint i = phi->req()-1; i > 0; i--) {
1411     if (phi->in(i) == val) {   // Found a path with val?
1412       // Add to NEW Region/Phi, no DU info
1413       newn->set_req( j++, n->in(i) );
1414       // Remove from OLD Region/Phi
1415       n->del_req(i);
1416     }
1417   }
1418 
1419   // Register the new node but do not transform it.  Cannot transform until the
1420   // entire Region/Phi conglomerate has been hacked as a single huge transform.
1421   igvn->register_new_node_with_optimizer( newn );
1422 
1423   // Now I can point to the new node.
1424   n->add_req(newn);
1425   igvn->_worklist.push(n);
1426 }
1427 
1428 //------------------------------split_flow_path--------------------------------
1429 // Check for merging identical values and split flow paths
1430 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1431   BasicType bt = phi->type()->basic_type();
1432   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1433     return NULL;                // Bail out on funny non-value stuff
1434   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1435     return NULL;                // third unequal input to be worth doing
1436 
1437   // Scan for a constant
1438   uint i;
1439   for( i = 1; i < phi->req()-1; i++ ) {
1440     Node *n = phi->in(i);
1441     if( !n ) return NULL;
1442     if( phase->type(n) == Type::TOP ) return NULL;
1443     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1444       break;
1445   }
1446   if( i >= phi->req() )         // Only split for constants
1447     return NULL;
1448 
1449   Node *val = phi->in(i);       // Constant to split for
1450   uint hit = 0;                 // Number of times it occurs
1451   Node *r = phi->region();
1452 
1453   for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1454     Node *n = phi->in(i);
1455     if( !n ) return NULL;
1456     if( phase->type(n) == Type::TOP ) return NULL;
1457     if( phi->in(i) == val ) {
1458       hit++;
1459       if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1460         return NULL;            // don't split loop entry path
1461       }
1462     }
1463   }
1464 
1465   if( hit <= 1 ||               // Make sure we find 2 or more
1466       hit == phi->req()-1 )     // and not ALL the same value
1467     return NULL;
1468 
1469   // Now start splitting out the flow paths that merge the same value.
1470   // Split first the RegionNode.
1471   PhaseIterGVN *igvn = phase->is_IterGVN();
1472   RegionNode *newr = new (phase->C) RegionNode(hit+1);
1473   split_once(igvn, phi, val, r, newr);
1474 
1475   // Now split all other Phis than this one
1476   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1477     Node* phi2 = r->fast_out(k);
1478     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1479       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1480       split_once(igvn, phi, val, phi2, newphi);
1481     }
1482   }
1483 
1484   // Clean up this guy
1485   igvn->hash_delete(phi);
1486   for( i = phi->req()-1; i > 0; i-- ) {
1487     if( phi->in(i) == val ) {
1488       phi->del_req(i);
1489     }
1490   }
1491   phi->add_req(val);
1492 
1493   return phi;
1494 }
1495 
1496 //=============================================================================
1497 //------------------------------simple_data_loop_check-------------------------
1498 //  Try to determining if the phi node in a simple safe/unsafe data loop.
1499 //  Returns:
1500 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1501 // Safe       - safe case when the phi and it's inputs reference only safe data
1502 //              nodes;
1503 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1504 //              is no reference back to the phi - need a graph walk
1505 //              to determine if it is in a loop;
1506 // UnsafeLoop - unsafe case when the phi references itself directly or through
1507 //              unsafe data node.
1508 //  Note: a safe data node is a node which could/never reference itself during
1509 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1510 //  I mark Phi nodes as safe node not only because they can reference itself
1511 //  but also to prevent mistaking the fallthrough case inside an outer loop
1512 //  as dead loop when the phi references itselfs through an other phi.
1513 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1514   // It is unsafe loop if the phi node references itself directly.
1515   if (in == (Node*)this)
1516     return UnsafeLoop; // Unsafe loop
1517   // Unsafe loop if the phi node references itself through an unsafe data node.
1518   // Exclude cases with null inputs or data nodes which could reference
1519   // itself (safe for dead loops).
1520   if (in != NULL && !in->is_dead_loop_safe()) {
1521     // Check inputs of phi's inputs also.
1522     // It is much less expensive then full graph walk.
1523     uint cnt = in->req();
1524     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1525     for (; i < cnt; ++i) {
1526       Node* m = in->in(i);
1527       if (m == (Node*)this)
1528         return UnsafeLoop; // Unsafe loop
1529       if (m != NULL && !m->is_dead_loop_safe()) {
1530         // Check the most common case (about 30% of all cases):
1531         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1532         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1533         if (m1 == (Node*)this)
1534           return UnsafeLoop; // Unsafe loop
1535         if (m1 != NULL && m1 == m->in(2) &&
1536             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1537           continue; // Safe case
1538         }
1539         // The phi references an unsafe node - need full analysis.
1540         return Unsafe;
1541       }
1542     }
1543   }
1544   return Safe; // Safe case - we can optimize the phi node.
1545 }
1546 
1547 //------------------------------is_unsafe_data_reference-----------------------
1548 // If phi can be reached through the data input - it is data loop.
1549 bool PhiNode::is_unsafe_data_reference(Node *in) const {
1550   assert(req() > 1, "");
1551   // First, check simple cases when phi references itself directly or
1552   // through an other node.
1553   LoopSafety safety = simple_data_loop_check(in);
1554   if (safety == UnsafeLoop)
1555     return true;  // phi references itself - unsafe loop
1556   else if (safety == Safe)
1557     return false; // Safe case - phi could be replaced with the unique input.
1558 
1559   // Unsafe case when we should go through data graph to determine
1560   // if the phi references itself.
1561 
1562   ResourceMark rm;
1563 
1564   Arena *a = Thread::current()->resource_area();
1565   Node_List nstack(a);
1566   VectorSet visited(a);
1567 
1568   nstack.push(in); // Start with unique input.
1569   visited.set(in->_idx);
1570   while (nstack.size() != 0) {
1571     Node* n = nstack.pop();
1572     uint cnt = n->req();
1573     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1574     for (; i < cnt; i++) {
1575       Node* m = n->in(i);
1576       if (m == (Node*)this) {
1577         return true;    // Data loop
1578       }
1579       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1580         if (!visited.test_set(m->_idx))
1581           nstack.push(m);
1582       }
1583     }
1584   }
1585   return false; // The phi is not reachable from its inputs
1586 }
1587 
1588 
1589 //------------------------------Ideal------------------------------------------
1590 // Return a node which is more "ideal" than the current node.  Must preserve
1591 // the CFG, but we can still strip out dead paths.
1592 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1593   // The next should never happen after 6297035 fix.
1594   if( is_copy() )               // Already degraded to a Copy ?
1595     return NULL;                // No change
1596 
1597   Node *r = in(0);              // RegionNode
1598   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1599 
1600   // Note: During parsing, phis are often transformed before their regions.
1601   // This means we have to use type_or_null to defend against untyped regions.
1602   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1603     return NULL;                // No change
1604 
1605   Node *top = phase->C->top();
1606   bool new_phi = (outcnt() == 0); // transforming new Phi
1607   // No change for igvn if new phi is not hooked
1608   if (new_phi && can_reshape)
1609     return NULL;
1610 
1611   // The are 2 situations when only one valid phi's input is left
1612   // (in addition to Region input).
1613   // One: region is not loop - replace phi with this input.
1614   // Two: region is loop - replace phi with top since this data path is dead
1615   //                       and we need to break the dead data loop.
1616   Node* progress = NULL;        // Record if any progress made
1617   for( uint j = 1; j < req(); ++j ){ // For all paths in
1618     // Check unreachable control paths
1619     Node* rc = r->in(j);
1620     Node* n = in(j);            // Get the input
1621     if (rc == NULL || phase->type(rc) == Type::TOP) {
1622       if (n != top) {           // Not already top?
1623         PhaseIterGVN *igvn = phase->is_IterGVN();
1624         if (can_reshape && igvn != NULL) {
1625           igvn->_worklist.push(r);
1626         }
1627         set_req(j, top);        // Nuke it down
1628         progress = this;        // Record progress
1629       }
1630     }
1631   }
1632 
1633   if (can_reshape && outcnt() == 0) {
1634     // set_req() above may kill outputs if Phi is referenced
1635     // only by itself on the dead (top) control path.
1636     return top;
1637   }
1638 
1639   Node* uin = unique_input(phase);
1640   if (uin == top) {             // Simplest case: no alive inputs.
1641     if (can_reshape)            // IGVN transformation
1642       return top;
1643     else
1644       return NULL;              // Identity will return TOP
1645   } else if (uin != NULL) {
1646     // Only one not-NULL unique input path is left.
1647     // Determine if this input is backedge of a loop.
1648     // (Skip new phis which have no uses and dead regions).
1649     if (outcnt() > 0 && r->in(0) != NULL) {
1650       // First, take the short cut when we know it is a loop and
1651       // the EntryControl data path is dead.
1652       // Loop node may have only one input because entry path
1653       // is removed in PhaseIdealLoop::Dominators().
1654       assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
1655       bool is_loop = (r->is_Loop() && r->req() == 3);
1656       // Then, check if there is a data loop when phi references itself directly
1657       // or through other data nodes.
1658       if (is_loop && !uin->eqv_uncast(in(LoopNode::EntryControl)) ||
1659          !is_loop && is_unsafe_data_reference(uin)) {
1660         // Break this data loop to avoid creation of a dead loop.
1661         if (can_reshape) {
1662           return top;
1663         } else {
1664           // We can't return top if we are in Parse phase - cut inputs only
1665           // let Identity to handle the case.
1666           replace_edge(uin, top);
1667           return NULL;
1668         }
1669       }
1670     }
1671 
1672     // One unique input.
1673     debug_only(Node* ident = Identity(phase));
1674     // The unique input must eventually be detected by the Identity call.
1675 #ifdef ASSERT
1676     if (ident != uin && !ident->is_top()) {
1677       // print this output before failing assert
1678       r->dump(3);
1679       this->dump(3);
1680       ident->dump();
1681       uin->dump();
1682     }
1683 #endif
1684     assert(ident == uin || ident->is_top(), "Identity must clean this up");
1685     return NULL;
1686   }
1687 
1688 
1689   Node* opt = NULL;
1690   int true_path = is_diamond_phi();
1691   if( true_path != 0 ) {
1692     // Check for CMove'ing identity. If it would be unsafe,
1693     // handle it here. In the safe case, let Identity handle it.
1694     Node* unsafe_id = is_cmove_id(phase, true_path);
1695     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1696       opt = unsafe_id;
1697 
1698     // Check for simple convert-to-boolean pattern
1699     if( opt == NULL )
1700       opt = is_x2logic(phase, this, true_path);
1701 
1702     // Check for absolute value
1703     if( opt == NULL )
1704       opt = is_absolute(phase, this, true_path);
1705 
1706     // Check for conditional add
1707     if( opt == NULL && can_reshape )
1708       opt = is_cond_add(phase, this, true_path);
1709 
1710     // These 4 optimizations could subsume the phi:
1711     // have to check for a dead data loop creation.
1712     if( opt != NULL ) {
1713       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1714         // Found dead loop.
1715         if( can_reshape )
1716           return top;
1717         // We can't return top if we are in Parse phase - cut inputs only
1718         // to stop further optimizations for this phi. Identity will return TOP.
1719         assert(req() == 3, "only diamond merge phi here");
1720         set_req(1, top);
1721         set_req(2, top);
1722         return NULL;
1723       } else {
1724         return opt;
1725       }
1726     }
1727   }
1728 
1729   // Check for merging identical values and split flow paths
1730   if (can_reshape) {
1731     opt = split_flow_path(phase, this);
1732     // This optimization only modifies phi - don't need to check for dead loop.
1733     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
1734     if (opt != NULL)  return opt;
1735   }
1736 
1737   if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
1738     // Try to undo Phi of AddP:
1739     // (Phi (AddP base base y) (AddP base2 base2 y))
1740     // becomes:
1741     // newbase := (Phi base base2)
1742     // (AddP newbase newbase y)
1743     //
1744     // This occurs as a result of unsuccessful split_thru_phi and
1745     // interferes with taking advantage of addressing modes. See the
1746     // clone_shift_expressions code in matcher.cpp
1747     Node* addp = in(1);
1748     const Type* type = addp->in(AddPNode::Base)->bottom_type();
1749     Node* y = addp->in(AddPNode::Offset);
1750     if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
1751       // make sure that all the inputs are similar to the first one,
1752       // i.e. AddP with base == address and same offset as first AddP
1753       bool doit = true;
1754       for (uint i = 2; i < req(); i++) {
1755         if (in(i) == NULL ||
1756             in(i)->Opcode() != Op_AddP ||
1757             in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
1758             in(i)->in(AddPNode::Offset) != y) {
1759           doit = false;
1760           break;
1761         }
1762         // Accumulate type for resulting Phi
1763         type = type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
1764       }
1765       Node* base = NULL;
1766       if (doit) {
1767         // Check for neighboring AddP nodes in a tree.
1768         // If they have a base, use that it.
1769         for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
1770           Node* u = this->fast_out(k);
1771           if (u->is_AddP()) {
1772             Node* base2 = u->in(AddPNode::Base);
1773             if (base2 != NULL && !base2->is_top()) {
1774               if (base == NULL)
1775                 base = base2;
1776               else if (base != base2)
1777                 { doit = false; break; }
1778             }
1779           }
1780         }
1781       }
1782       if (doit) {
1783         if (base == NULL) {
1784           base = new (phase->C) PhiNode(in(0), type, NULL);
1785           for (uint i = 1; i < req(); i++) {
1786             base->init_req(i, in(i)->in(AddPNode::Base));
1787           }
1788           phase->is_IterGVN()->register_new_node_with_optimizer(base);
1789         }
1790         return new (phase->C) AddPNode(base, base, y);
1791       }
1792     }
1793   }
1794 
1795   // Split phis through memory merges, so that the memory merges will go away.
1796   // Piggy-back this transformation on the search for a unique input....
1797   // It will be as if the merged memory is the unique value of the phi.
1798   // (Do not attempt this optimization unless parsing is complete.
1799   // It would make the parser's memory-merge logic sick.)
1800   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
1801   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
1802     // see if this phi should be sliced
1803     uint merge_width = 0;
1804     bool saw_self = false;
1805     for( uint i=1; i<req(); ++i ) {// For all paths in
1806       Node *ii = in(i);
1807       if (ii->is_MergeMem()) {
1808         MergeMemNode* n = ii->as_MergeMem();
1809         merge_width = MAX2(merge_width, n->req());
1810         saw_self = saw_self || phase->eqv(n->base_memory(), this);
1811       }
1812     }
1813 
1814     // This restriction is temporarily necessary to ensure termination:
1815     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
1816 
1817     if (merge_width > Compile::AliasIdxRaw) {
1818       // found at least one non-empty MergeMem
1819       const TypePtr* at = adr_type();
1820       if (at != TypePtr::BOTTOM) {
1821         // Patch the existing phi to select an input from the merge:
1822         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
1823         //     Phi:AT1(...m1...)
1824         int alias_idx = phase->C->get_alias_index(at);
1825         for (uint i=1; i<req(); ++i) {
1826           Node *ii = in(i);
1827           if (ii->is_MergeMem()) {
1828             MergeMemNode* n = ii->as_MergeMem();
1829             // compress paths and change unreachable cycles to TOP
1830             // If not, we can update the input infinitely along a MergeMem cycle
1831             // Equivalent code is in MemNode::Ideal_common
1832             Node *m  = phase->transform(n);
1833             if (outcnt() == 0) {  // Above transform() may kill us!
1834               return top;
1835             }
1836             // If transformed to a MergeMem, get the desired slice
1837             // Otherwise the returned node represents memory for every slice
1838             Node *new_mem = (m->is_MergeMem()) ?
1839                              m->as_MergeMem()->memory_at(alias_idx) : m;
1840             // Update input if it is progress over what we have now
1841             if (new_mem != ii) {
1842               set_req(i, new_mem);
1843               progress = this;
1844             }
1845           }
1846         }
1847       } else {
1848         // We know that at least one MergeMem->base_memory() == this
1849         // (saw_self == true). If all other inputs also references this phi
1850         // (directly or through data nodes) - it is dead loop.
1851         bool saw_safe_input = false;
1852         for (uint j = 1; j < req(); ++j) {
1853           Node *n = in(j);
1854           if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
1855             continue;              // skip known cases
1856           if (!is_unsafe_data_reference(n)) {
1857             saw_safe_input = true; // found safe input
1858             break;
1859           }
1860         }
1861         if (!saw_safe_input)
1862           return top; // all inputs reference back to this phi - dead loop
1863 
1864         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
1865         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
1866         PhaseIterGVN *igvn = phase->is_IterGVN();
1867         Node* hook = new (phase->C) Node(1);
1868         PhiNode* new_base = (PhiNode*) clone();
1869         // Must eagerly register phis, since they participate in loops.
1870         if (igvn) {
1871           igvn->register_new_node_with_optimizer(new_base);
1872           hook->add_req(new_base);
1873         }
1874         MergeMemNode* result = MergeMemNode::make(phase->C, new_base);
1875         for (uint i = 1; i < req(); ++i) {
1876           Node *ii = in(i);
1877           if (ii->is_MergeMem()) {
1878             MergeMemNode* n = ii->as_MergeMem();
1879             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
1880               // If we have not seen this slice yet, make a phi for it.
1881               bool made_new_phi = false;
1882               if (mms.is_empty()) {
1883                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
1884                 made_new_phi = true;
1885                 if (igvn) {
1886                   igvn->register_new_node_with_optimizer(new_phi);
1887                   hook->add_req(new_phi);
1888                 }
1889                 mms.set_memory(new_phi);
1890               }
1891               Node* phi = mms.memory();
1892               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
1893               phi->set_req(i, mms.memory2());
1894             }
1895           }
1896         }
1897         // Distribute all self-loops.
1898         { // (Extra braces to hide mms.)
1899           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1900             Node* phi = mms.memory();
1901             for (uint i = 1; i < req(); ++i) {
1902               if (phi->in(i) == this)  phi->set_req(i, phi);
1903             }
1904           }
1905         }
1906         // now transform the new nodes, and return the mergemem
1907         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
1908           Node* phi = mms.memory();
1909           mms.set_memory(phase->transform(phi));
1910         }
1911         if (igvn) { // Unhook.
1912           igvn->hash_delete(hook);
1913           for (uint i = 1; i < hook->req(); i++) {
1914             hook->set_req(i, NULL);
1915           }
1916         }
1917         // Replace self with the result.
1918         return result;
1919       }
1920     }
1921     //
1922     // Other optimizations on the memory chain
1923     //
1924     const TypePtr* at = adr_type();
1925     for( uint i=1; i<req(); ++i ) {// For all paths in
1926       Node *ii = in(i);
1927       Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
1928       if (ii != new_in ) {
1929         set_req(i, new_in);
1930         progress = this;
1931       }
1932     }
1933   }
1934 
1935 #ifdef _LP64
1936   // Push DecodeN/DecodeNKlass down through phi.
1937   // The rest of phi graph will transform by split EncodeP node though phis up.
1938   if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
1939     bool may_push = true;
1940     bool has_decodeN = false;
1941     bool is_decodeN = false;
1942     for (uint i=1; i<req(); ++i) {// For all paths in
1943       Node *ii = in(i);
1944       if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
1945         // Do optimization if a non dead path exist.
1946         if (ii->in(1)->bottom_type() != Type::TOP) {
1947           has_decodeN = true;
1948           is_decodeN = ii->is_DecodeN();
1949         }
1950       } else if (!ii->is_Phi()) {
1951         may_push = false;
1952       }
1953     }
1954 
1955     if (has_decodeN && may_push) {
1956       PhaseIterGVN *igvn = phase->is_IterGVN();
1957       // Make narrow type for new phi.
1958       const Type* narrow_t;
1959       if (is_decodeN) {
1960         narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
1961       } else {
1962         narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
1963       }
1964       PhiNode* new_phi = new (phase->C) PhiNode(r, narrow_t);
1965       uint orig_cnt = req();
1966       for (uint i=1; i<req(); ++i) {// For all paths in
1967         Node *ii = in(i);
1968         Node* new_ii = NULL;
1969         if (ii->is_DecodeNarrowPtr()) {
1970           assert(ii->bottom_type() == bottom_type(), "sanity");
1971           new_ii = ii->in(1);
1972         } else {
1973           assert(ii->is_Phi(), "sanity");
1974           if (ii->as_Phi() == this) {
1975             new_ii = new_phi;
1976           } else {
1977             if (is_decodeN) {
1978               new_ii = new (phase->C) EncodePNode(ii, narrow_t);
1979             } else {
1980               new_ii = new (phase->C) EncodePKlassNode(ii, narrow_t);
1981             }
1982             igvn->register_new_node_with_optimizer(new_ii);
1983           }
1984         }
1985         new_phi->set_req(i, new_ii);
1986       }
1987       igvn->register_new_node_with_optimizer(new_phi, this);
1988       if (is_decodeN) {
1989         progress = new (phase->C) DecodeNNode(new_phi, bottom_type());
1990       } else {
1991         progress = new (phase->C) DecodeNKlassNode(new_phi, bottom_type());
1992       }
1993     }
1994   }
1995 #endif
1996 
1997   return progress;              // Return any progress
1998 }
1999 
2000 //------------------------------is_tripcount-----------------------------------
2001 bool PhiNode::is_tripcount() const {
2002   return (in(0) != NULL && in(0)->is_CountedLoop() &&
2003           in(0)->as_CountedLoop()->phi() == this);
2004 }
2005 
2006 //------------------------------out_RegMask------------------------------------
2007 const RegMask &PhiNode::in_RegMask(uint i) const {
2008   return i ? out_RegMask() : RegMask::Empty;
2009 }
2010 
2011 const RegMask &PhiNode::out_RegMask() const {
2012   uint ideal_reg = _type->ideal_reg();
2013   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2014   if( ideal_reg == 0 ) return RegMask::Empty;
2015   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2016 }
2017 
2018 #ifndef PRODUCT
2019 void PhiNode::dump_spec(outputStream *st) const {
2020   TypeNode::dump_spec(st);
2021   if (is_tripcount()) {
2022     st->print(" #tripcount");
2023   }
2024 }
2025 #endif
2026 
2027 
2028 //=============================================================================
2029 const Type *GotoNode::Value( PhaseTransform *phase ) const {
2030   // If the input is reachable, then we are executed.
2031   // If the input is not reachable, then we are not executed.
2032   return phase->type(in(0));
2033 }
2034 
2035 Node *GotoNode::Identity( PhaseTransform *phase ) {
2036   return in(0);                // Simple copy of incoming control
2037 }
2038 
2039 const RegMask &GotoNode::out_RegMask() const {
2040   return RegMask::Empty;
2041 }
2042 
2043 //=============================================================================
2044 const RegMask &JumpNode::out_RegMask() const {
2045   return RegMask::Empty;
2046 }
2047 
2048 //=============================================================================
2049 const RegMask &JProjNode::out_RegMask() const {
2050   return RegMask::Empty;
2051 }
2052 
2053 //=============================================================================
2054 const RegMask &CProjNode::out_RegMask() const {
2055   return RegMask::Empty;
2056 }
2057 
2058 
2059 
2060 //=============================================================================
2061 
2062 uint PCTableNode::hash() const { return Node::hash() + _size; }
2063 uint PCTableNode::cmp( const Node &n ) const
2064 { return _size == ((PCTableNode&)n)._size; }
2065 
2066 const Type *PCTableNode::bottom_type() const {
2067   const Type** f = TypeTuple::fields(_size);
2068   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2069   return TypeTuple::make(_size, f);
2070 }
2071 
2072 //------------------------------Value------------------------------------------
2073 // Compute the type of the PCTableNode.  If reachable it is a tuple of
2074 // Control, otherwise the table targets are not reachable
2075 const Type *PCTableNode::Value( PhaseTransform *phase ) const {
2076   if( phase->type(in(0)) == Type::CONTROL )
2077     return bottom_type();
2078   return Type::TOP;             // All paths dead?  Then so are we
2079 }
2080 
2081 //------------------------------Ideal------------------------------------------
2082 // Return a node which is more "ideal" than the current node.  Strip out
2083 // control copies
2084 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2085   return remove_dead_region(phase, can_reshape) ? this : NULL;
2086 }
2087 
2088 //=============================================================================
2089 uint JumpProjNode::hash() const {
2090   return Node::hash() + _dest_bci;
2091 }
2092 
2093 uint JumpProjNode::cmp( const Node &n ) const {
2094   return ProjNode::cmp(n) &&
2095     _dest_bci == ((JumpProjNode&)n)._dest_bci;
2096 }
2097 
2098 #ifndef PRODUCT
2099 void JumpProjNode::dump_spec(outputStream *st) const {
2100   ProjNode::dump_spec(st);
2101    st->print("@bci %d ",_dest_bci);
2102 }
2103 #endif
2104 
2105 //=============================================================================
2106 //------------------------------Value------------------------------------------
2107 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
2108 // have the default "fall_through_index" path.
2109 const Type *CatchNode::Value( PhaseTransform *phase ) const {
2110   // Unreachable?  Then so are all paths from here.
2111   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2112   // First assume all paths are reachable
2113   const Type** f = TypeTuple::fields(_size);
2114   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2115   // Identify cases that will always throw an exception
2116   // () rethrow call
2117   // () virtual or interface call with NULL receiver
2118   // () call is a check cast with incompatible arguments
2119   if( in(1)->is_Proj() ) {
2120     Node *i10 = in(1)->in(0);
2121     if( i10->is_Call() ) {
2122       CallNode *call = i10->as_Call();
2123       // Rethrows always throw exceptions, never return
2124       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2125         f[CatchProjNode::fall_through_index] = Type::TOP;
2126       } else if( call->req() > TypeFunc::Parms ) {
2127         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2128         // Check for null receiver to virtual or interface calls
2129         if( call->is_CallDynamicJava() &&
2130             arg0->higher_equal(TypePtr::NULL_PTR) ) {
2131           f[CatchProjNode::fall_through_index] = Type::TOP;
2132         }
2133       } // End of if not a runtime stub
2134     } // End of if have call above me
2135   } // End of slot 1 is not a projection
2136   return TypeTuple::make(_size, f);
2137 }
2138 
2139 //=============================================================================
2140 uint CatchProjNode::hash() const {
2141   return Node::hash() + _handler_bci;
2142 }
2143 
2144 
2145 uint CatchProjNode::cmp( const Node &n ) const {
2146   return ProjNode::cmp(n) &&
2147     _handler_bci == ((CatchProjNode&)n)._handler_bci;
2148 }
2149 
2150 
2151 //------------------------------Identity---------------------------------------
2152 // If only 1 target is possible, choose it if it is the main control
2153 Node *CatchProjNode::Identity( PhaseTransform *phase ) {
2154   // If my value is control and no other value is, then treat as ID
2155   const TypeTuple *t = phase->type(in(0))->is_tuple();
2156   if (t->field_at(_con) != Type::CONTROL)  return this;
2157   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2158   // also remove any exception table entry.  Thus we must know the call
2159   // feeding the Catch will not really throw an exception.  This is ok for
2160   // the main fall-thru control (happens when we know a call can never throw
2161   // an exception) or for "rethrow", because a further optimization will
2162   // yank the rethrow (happens when we inline a function that can throw an
2163   // exception and the caller has no handler).  Not legal, e.g., for passing
2164   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2165   // These cases MUST throw an exception via the runtime system, so the VM
2166   // will be looking for a table entry.
2167   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2168   CallNode *call;
2169   if (_con != TypeFunc::Control && // Bail out if not the main control.
2170       !(proj->is_Proj() &&      // AND NOT a rethrow
2171         proj->in(0)->is_Call() &&
2172         (call = proj->in(0)->as_Call()) &&
2173         call->entry_point() == OptoRuntime::rethrow_stub()))
2174     return this;
2175 
2176   // Search for any other path being control
2177   for (uint i = 0; i < t->cnt(); i++) {
2178     if (i != _con && t->field_at(i) == Type::CONTROL)
2179       return this;
2180   }
2181   // Only my path is possible; I am identity on control to the jump
2182   return in(0)->in(0);
2183 }
2184 
2185 
2186 #ifndef PRODUCT
2187 void CatchProjNode::dump_spec(outputStream *st) const {
2188   ProjNode::dump_spec(st);
2189   st->print("@bci %d ",_handler_bci);
2190 }
2191 #endif
2192 
2193 //=============================================================================
2194 //------------------------------Identity---------------------------------------
2195 // Check for CreateEx being Identity.
2196 Node *CreateExNode::Identity( PhaseTransform *phase ) {
2197   if( phase->type(in(1)) == Type::TOP ) return in(1);
2198   if( phase->type(in(0)) == Type::TOP ) return in(0);
2199   // We only come from CatchProj, unless the CatchProj goes away.
2200   // If the CatchProj is optimized away, then we just carry the
2201   // exception oop through.
2202   CallNode *call = in(1)->in(0)->as_Call();
2203 
2204   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2205     ? this
2206     : call->in(TypeFunc::Parms);
2207 }
2208 
2209 //=============================================================================
2210 //------------------------------Value------------------------------------------
2211 // Check for being unreachable.
2212 const Type *NeverBranchNode::Value( PhaseTransform *phase ) const {
2213   if (!in(0) || in(0)->is_top()) return Type::TOP;
2214   return bottom_type();
2215 }
2216 
2217 //------------------------------Ideal------------------------------------------
2218 // Check for no longer being part of a loop
2219 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2220   if (can_reshape && !in(0)->is_Loop()) {
2221     // Dead code elimination can sometimes delete this projection so
2222     // if it's not there, there's nothing to do.
2223     Node* fallthru = proj_out(0);
2224     if (fallthru != NULL) {
2225       phase->is_IterGVN()->replace_node(fallthru, in(0));
2226     }
2227     return phase->C->top();
2228   }
2229   return NULL;
2230 }
2231 
2232 #ifndef PRODUCT
2233 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2234   st->print("%s", Name());
2235 }
2236 #endif