src/share/vm/opto/loopTransform.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File 8034812 Sdiff src/share/vm/opto

src/share/vm/opto/loopTransform.cpp

Print this page




 210   Node* inv1 = n1->in(inv1_idx);
 211   Node* n2 = n1->in(3 - inv1_idx);
 212   int inv2_idx = is_invariant_addition(n2, phase);
 213   if (!inv2_idx) return NULL;
 214   Node* x    = n2->in(3 - inv2_idx);
 215   Node* inv2 = n2->in(inv2_idx);
 216 
 217   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
 218   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
 219   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
 220   if (n1->is_Sub() && inv1_idx == 1) {
 221     neg_x    = !neg_x;
 222     neg_inv2 = !neg_inv2;
 223   }
 224   Node* inv1_c = phase->get_ctrl(inv1);
 225   Node* inv2_c = phase->get_ctrl(inv2);
 226   Node* n_inv1;
 227   if (neg_inv1) {
 228     Node *zero = phase->_igvn.intcon(0);
 229     phase->set_ctrl(zero, phase->C->root());
 230     n_inv1 = new (phase->C) SubINode(zero, inv1);
 231     phase->register_new_node(n_inv1, inv1_c);
 232   } else {
 233     n_inv1 = inv1;
 234   }
 235   Node* inv;
 236   if (neg_inv2) {
 237     inv = new (phase->C) SubINode(n_inv1, inv2);
 238   } else {
 239     inv = new (phase->C) AddINode(n_inv1, inv2);
 240   }
 241   phase->register_new_node(inv, phase->get_early_ctrl(inv));
 242 
 243   Node* addx;
 244   if (neg_x) {
 245     addx = new (phase->C) SubINode(inv, x);
 246   } else {
 247     addx = new (phase->C) AddINode(x, inv);
 248   }
 249   phase->register_new_node(addx, phase->get_ctrl(x));
 250   phase->_igvn.replace_node(n1, addx);
 251   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
 252   _body.yank(n1);
 253   return addx;
 254 }
 255 
 256 //---------------------reassociate_invariants-----------------------------
 257 // Reassociate invariant expressions:
 258 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
 259   for (int i = _body.size() - 1; i >= 0; i--) {
 260     Node *n = _body.at(i);
 261     for (int j = 0; j < 5; j++) {
 262       Node* nn = reassociate_add_sub(n, phase);
 263       if (nn == NULL) break;
 264       n = nn; // again
 265     };
 266   }
 267 }


 936   }
 937 
 938   //------------------------------
 939   // Step A: Create Post-Loop.
 940   Node* main_exit = main_end->proj_out(false);
 941   assert( main_exit->Opcode() == Op_IfFalse, "" );
 942   int dd_main_exit = dom_depth(main_exit);
 943 
 944   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
 945   // loop pre-header illegally has 2 control users (old & new loops).
 946   clone_loop( loop, old_new, dd_main_exit );
 947   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
 948   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
 949   post_head->set_post_loop(main_head);
 950 
 951   // Reduce the post-loop trip count.
 952   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
 953   post_end->_prob = PROB_FAIR;
 954 
 955   // Build the main-loop normal exit.
 956   IfFalseNode *new_main_exit = new (C) IfFalseNode(main_end);
 957   _igvn.register_new_node_with_optimizer( new_main_exit );
 958   set_idom(new_main_exit, main_end, dd_main_exit );
 959   set_loop(new_main_exit, loop->_parent);
 960 
 961   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
 962   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
 963   // (the main-loop trip-counter exit value) because we will be changing
 964   // the exit value (via unrolling) so we cannot constant-fold away the zero
 965   // trip guard until all unrolling is done.
 966   Node *zer_opaq = new (C) Opaque1Node(C, incr);
 967   Node *zer_cmp  = new (C) CmpINode( zer_opaq, limit );
 968   Node *zer_bol  = new (C) BoolNode( zer_cmp, b_test );
 969   register_new_node( zer_opaq, new_main_exit );
 970   register_new_node( zer_cmp , new_main_exit );
 971   register_new_node( zer_bol , new_main_exit );
 972 
 973   // Build the IfNode
 974   IfNode *zer_iff = new (C) IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
 975   _igvn.register_new_node_with_optimizer( zer_iff );
 976   set_idom(zer_iff, new_main_exit, dd_main_exit);
 977   set_loop(zer_iff, loop->_parent);
 978 
 979   // Plug in the false-path, taken if we need to skip post-loop
 980   _igvn.replace_input_of(main_exit, 0, zer_iff);
 981   set_idom(main_exit, zer_iff, dd_main_exit);
 982   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
 983   // Make the true-path, must enter the post loop
 984   Node *zer_taken = new (C) IfTrueNode( zer_iff );
 985   _igvn.register_new_node_with_optimizer( zer_taken );
 986   set_idom(zer_taken, zer_iff, dd_main_exit);
 987   set_loop(zer_taken, loop->_parent);
 988   // Plug in the true path
 989   _igvn.hash_delete( post_head );
 990   post_head->set_req(LoopNode::EntryControl, zer_taken);
 991   set_idom(post_head, zer_taken, dd_main_exit);
 992 
 993   Arena *a = Thread::current()->resource_area();
 994   VectorSet visited(a);
 995   Node_Stack clones(a, main_head->back_control()->outcnt());
 996   // Step A3: Make the fall-in values to the post-loop come from the
 997   // fall-out values of the main-loop.
 998   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
 999     Node* main_phi = main_head->fast_out(i);
1000     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
1001       Node *post_phi = old_new[main_phi->_idx];
1002       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
1003                                               post_head->init_control(),
1004                                               main_phi->in(LoopNode::LoopBackControl),


1012   main_exit = new_main_exit;
1013 
1014 
1015   //------------------------------
1016   // Step B: Create Pre-Loop.
1017 
1018   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
1019   // loop pre-header illegally has 2 control users (old & new loops).
1020   clone_loop( loop, old_new, dd_main_head );
1021   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
1022   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
1023   pre_head->set_pre_loop(main_head);
1024   Node *pre_incr = old_new[incr->_idx];
1025 
1026   // Reduce the pre-loop trip count.
1027   pre_end->_prob = PROB_FAIR;
1028 
1029   // Find the pre-loop normal exit.
1030   Node* pre_exit = pre_end->proj_out(false);
1031   assert( pre_exit->Opcode() == Op_IfFalse, "" );
1032   IfFalseNode *new_pre_exit = new (C) IfFalseNode(pre_end);
1033   _igvn.register_new_node_with_optimizer( new_pre_exit );
1034   set_idom(new_pre_exit, pre_end, dd_main_head);
1035   set_loop(new_pre_exit, loop->_parent);
1036 
1037   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
1038   // pre-loop, the main-loop may not execute at all.  Later in life this
1039   // zero-trip guard will become the minimum-trip guard when we unroll
1040   // the main-loop.
1041   Node *min_opaq = new (C) Opaque1Node(C, limit);
1042   Node *min_cmp  = new (C) CmpINode( pre_incr, min_opaq );
1043   Node *min_bol  = new (C) BoolNode( min_cmp, b_test );
1044   register_new_node( min_opaq, new_pre_exit );
1045   register_new_node( min_cmp , new_pre_exit );
1046   register_new_node( min_bol , new_pre_exit );
1047 
1048   // Build the IfNode (assume the main-loop is executed always).
1049   IfNode *min_iff = new (C) IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
1050   _igvn.register_new_node_with_optimizer( min_iff );
1051   set_idom(min_iff, new_pre_exit, dd_main_head);
1052   set_loop(min_iff, loop->_parent);
1053 
1054   // Plug in the false-path, taken if we need to skip main-loop
1055   _igvn.hash_delete( pre_exit );
1056   pre_exit->set_req(0, min_iff);
1057   set_idom(pre_exit, min_iff, dd_main_head);
1058   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
1059   // Make the true-path, must enter the main loop
1060   Node *min_taken = new (C) IfTrueNode( min_iff );
1061   _igvn.register_new_node_with_optimizer( min_taken );
1062   set_idom(min_taken, min_iff, dd_main_head);
1063   set_loop(min_taken, loop->_parent);
1064   // Plug in the true path
1065   _igvn.hash_delete( main_head );
1066   main_head->set_req(LoopNode::EntryControl, min_taken);
1067   set_idom(main_head, min_taken, dd_main_head);
1068 
1069   visited.Clear();
1070   clones.clear();
1071   // Step B3: Make the fall-in values to the main-loop come from the
1072   // fall-out values of the pre-loop.
1073   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
1074     Node* main_phi = main_head->fast_out(i2);
1075     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
1076       Node *pre_phi = old_new[main_phi->_idx];
1077       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
1078                                              main_head->init_control(),
1079                                              pre_phi->in(LoopNode::LoopBackControl),
1080                                              visited, clones);
1081       _igvn.hash_delete(main_phi);
1082       main_phi->set_req( LoopNode::EntryControl, fallpre );
1083     }
1084   }
1085 
1086   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
1087   // RCE and alignment may change this later.
1088   Node *cmp_end = pre_end->cmp_node();
1089   assert( cmp_end->in(2) == limit, "" );
1090   Node *pre_limit = new (C) AddINode( init, stride );
1091 
1092   // Save the original loop limit in this Opaque1 node for
1093   // use by range check elimination.
1094   Node *pre_opaq  = new (C) Opaque1Node(C, pre_limit, limit);
1095 
1096   register_new_node( pre_limit, pre_head->in(0) );
1097   register_new_node( pre_opaq , pre_head->in(0) );
1098 
1099   // Since no other users of pre-loop compare, I can hack limit directly
1100   assert( cmp_end->outcnt() == 1, "no other users" );
1101   _igvn.hash_delete(cmp_end);
1102   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
1103 
1104   // Special case for not-equal loop bounds:
1105   // Change pre loop test, main loop test, and the
1106   // main loop guard test to use lt or gt depending on stride
1107   // direction:
1108   // positive stride use <
1109   // negative stride use >
1110   //
1111   // not-equal test is kept for post loop to handle case
1112   // when init > limit when stride > 0 (and reverse).
1113 
1114   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
1115 
1116     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
1117     // Modify pre loop end condition
1118     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1119     BoolNode* new_bol0 = new (C) BoolNode(pre_bol->in(1), new_test);
1120     register_new_node( new_bol0, pre_head->in(0) );
1121     _igvn.hash_delete(pre_end);
1122     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
1123     // Modify main loop guard condition
1124     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
1125     BoolNode* new_bol1 = new (C) BoolNode(min_bol->in(1), new_test);
1126     register_new_node( new_bol1, new_pre_exit );
1127     _igvn.hash_delete(min_iff);
1128     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
1129     // Modify main loop end condition
1130     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1131     BoolNode* new_bol2 = new (C) BoolNode(main_bol->in(1), new_test);
1132     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
1133     _igvn.hash_delete(main_end);
1134     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
1135   }
1136 
1137   // Flag main loop
1138   main_head->set_main_loop();
1139   if( peel_only ) main_head->set_main_no_pre_loop();
1140 
1141   // Subtract a trip count for the pre-loop.
1142   main_head->set_trip_count(main_head->trip_count() - 1);
1143 
1144   // It's difficult to be precise about the trip-counts
1145   // for the pre/post loops.  They are usually very short,
1146   // so guess that 4 trips is a reasonable value.
1147   post_head->set_profile_trip_cnt(4.0);
1148   pre_head->set_profile_trip_cnt(4.0);
1149 
1150   // Now force out all loop-invariant dominating tests.  The optimizer
1151   // finds some, but we _know_ they are all useless.


1262       const TypeInt* limit_type = _igvn.type(limit)->is_int();
1263       assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
1264              stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
1265 
1266       if (limit->is_Con()) {
1267         // The check in policy_unroll and the assert above guarantee
1268         // no underflow if limit is constant.
1269         new_limit = _igvn.intcon(limit->get_int() - stride_con);
1270         set_ctrl(new_limit, C->root());
1271       } else {
1272         // Limit is not constant.
1273         if (loop_head->unrolled_count() == 1) { // only for first unroll
1274           // Separate limit by Opaque node in case it is an incremented
1275           // variable from previous loop to avoid using pre-incremented
1276           // value which could increase register pressure.
1277           // Otherwise reorg_offsets() optimization will create a separate
1278           // Opaque node for each use of trip-counter and as result
1279           // zero trip guard limit will be different from loop limit.
1280           assert(has_ctrl(opaq), "should have it");
1281           Node* opaq_ctrl = get_ctrl(opaq);
1282           limit = new (C) Opaque2Node( C, limit );
1283           register_new_node( limit, opaq_ctrl );
1284         }
1285         if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
1286                    stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
1287           // No underflow.
1288           new_limit = new (C) SubINode(limit, stride);
1289         } else {
1290           // (limit - stride) may underflow.
1291           // Clamp the adjustment value with MININT or MAXINT:
1292           //
1293           //   new_limit = limit-stride
1294           //   if (stride > 0)
1295           //     new_limit = (limit < new_limit) ? MININT : new_limit;
1296           //   else
1297           //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
1298           //
1299           BoolTest::mask bt = loop_end->test_trip();
1300           assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
1301           Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
1302           set_ctrl(adj_max, C->root());
1303           Node* old_limit = NULL;
1304           Node* adj_limit = NULL;
1305           Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
1306           if (loop_head->unrolled_count() > 1 &&
1307               limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
1308               limit->in(CMoveNode::IfTrue) == adj_max &&
1309               bol->as_Bool()->_test._test == bt &&
1310               bol->in(1)->Opcode() == Op_CmpI &&
1311               bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
1312             // Loop was unrolled before.
1313             // Optimize the limit to avoid nested CMove:
1314             // use original limit as old limit.
1315             old_limit = bol->in(1)->in(1);
1316             // Adjust previous adjusted limit.
1317             adj_limit = limit->in(CMoveNode::IfFalse);
1318             adj_limit = new (C) SubINode(adj_limit, stride);
1319           } else {
1320             old_limit = limit;
1321             adj_limit = new (C) SubINode(limit, stride);
1322           }
1323           assert(old_limit != NULL && adj_limit != NULL, "");
1324           register_new_node( adj_limit, ctrl ); // adjust amount
1325           Node* adj_cmp = new (C) CmpINode(old_limit, adj_limit);
1326           register_new_node( adj_cmp, ctrl );
1327           Node* adj_bool = new (C) BoolNode(adj_cmp, bt);
1328           register_new_node( adj_bool, ctrl );
1329           new_limit = new (C) CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
1330         }
1331         register_new_node(new_limit, ctrl);
1332       }
1333       assert(new_limit != NULL, "");
1334       // Replace in loop test.
1335       assert(loop_end->in(1)->in(1) == cmp, "sanity");
1336       if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
1337         // Don't need to create new test since only one user.
1338         _igvn.hash_delete(cmp);
1339         cmp->set_req(2, new_limit);
1340       } else {
1341         // Create new test since it is shared.
1342         Node* ctrl2 = loop_end->in(0);
1343         Node* cmp2  = cmp->clone();
1344         cmp2->set_req(2, new_limit);
1345         register_new_node(cmp2, ctrl2);
1346         Node* bol2 = loop_end->in(1)->clone();
1347         bol2->set_req(1, cmp2);
1348         register_new_node(bol2, ctrl2);
1349         _igvn.hash_delete(loop_end);


1371     loop_head->double_unrolled_count();
1372 
1373   } else { // LoopLimitCheck
1374 
1375     // Adjust max trip count. The trip count is intentionally rounded
1376     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1377     // the main, unrolled, part of the loop will never execute as it is protected
1378     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1379     // and later determined that part of the unrolled loop was dead.
1380     loop_head->set_trip_count(loop_head->trip_count() / 2);
1381 
1382     // Double the count of original iterations in the unrolled loop body.
1383     loop_head->double_unrolled_count();
1384 
1385     // -----------
1386     // Step 2: Cut back the trip counter for an unroll amount of 2.
1387     // Loop will normally trip (limit - init)/stride_con.  Since it's a
1388     // CountedLoop this is exact (stride divides limit-init exactly).
1389     // We are going to double the loop body, so we want to knock off any
1390     // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
1391     Node *span = new (C) SubINode( limit, init );
1392     register_new_node( span, ctrl );
1393     Node *trip = new (C) DivINode( 0, span, stride );
1394     register_new_node( trip, ctrl );
1395     Node *mtwo = _igvn.intcon(-2);
1396     set_ctrl(mtwo, C->root());
1397     Node *rond = new (C) AndINode( trip, mtwo );
1398     register_new_node( rond, ctrl );
1399     Node *spn2 = new (C) MulINode( rond, stride );
1400     register_new_node( spn2, ctrl );
1401     new_limit = new (C) AddINode( spn2, init );
1402     register_new_node( new_limit, ctrl );
1403 
1404     // Hammer in the new limit
1405     Node *ctrl2 = loop_end->in(0);
1406     Node *cmp2 = new (C) CmpINode( loop_head->incr(), new_limit );
1407     register_new_node( cmp2, ctrl2 );
1408     Node *bol2 = new (C) BoolNode( cmp2, loop_end->test_trip() );
1409     register_new_node( bol2, ctrl2 );
1410     _igvn.hash_delete(loop_end);
1411     loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
1412 
1413     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1414     // Make it a 1-trip test (means at least 2 trips).
1415     if( adjust_min_trip ) {
1416       assert( new_limit != NULL, "" );
1417       // Guard test uses an 'opaque' node which is not shared.  Hence I
1418       // can edit it's inputs directly.  Hammer in the new limit for the
1419       // minimum-trip guard.
1420       assert( opaq->outcnt() == 1, "" );
1421       _igvn.hash_delete(opaq);
1422       opaq->set_req(1, new_limit);
1423     }
1424   } // LoopLimitCheck
1425 
1426   // ---------
1427   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
1428   // represents the odd iterations; since the loop trips an even number of


1494   // Now its tripping an even number of times remaining.  Double loop body.
1495   // Do not adjust pre-guards; they are not needed and do not exist.
1496   if (cl->trip_count() > 0) {
1497     assert((cl->trip_count() & 1) == 0, "missed peeling");
1498     do_unroll(loop, old_new, false);
1499   }
1500 }
1501 
1502 //------------------------------dominates_backedge---------------------------------
1503 // Returns true if ctrl is executed on every complete iteration
1504 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
1505   assert(ctrl->is_CFG(), "must be control");
1506   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
1507   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
1508 }
1509 
1510 //------------------------------adjust_limit-----------------------------------
1511 // Helper function for add_constraint().
1512 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
1513   // Compute "I :: (limit-offset)/scale"
1514   Node *con = new (C) SubINode(rc_limit, offset);
1515   register_new_node(con, pre_ctrl);
1516   Node *X = new (C) DivINode(0, con, scale);
1517   register_new_node(X, pre_ctrl);
1518 
1519   // Adjust loop limit
1520   loop_limit = (stride_con > 0)
1521                ? (Node*)(new (C) MinINode(loop_limit, X))
1522                : (Node*)(new (C) MaxINode(loop_limit, X));
1523   register_new_node(loop_limit, pre_ctrl);
1524   return loop_limit;
1525 }
1526 
1527 //------------------------------add_constraint---------------------------------
1528 // Constrain the main loop iterations so the conditions:
1529 //    low_limit <= scale_con * I + offset  <  upper_limit
1530 // always holds true.  That is, either increase the number of iterations in
1531 // the pre-loop or the post-loop until the condition holds true in the main
1532 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
1533 // stride and scale are constants (offset and limit often are).
1534 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
1535   // For positive stride, the pre-loop limit always uses a MAX function
1536   // and the main loop a MIN function.  For negative stride these are
1537   // reversed.
1538 
1539   // Also for positive stride*scale the affine function is increasing, so the
1540   // pre-loop must check for underflow and the post-loop for overflow.
1541   // Negative stride*scale reverses this; pre-loop checks for overflow and
1542   // post-loop for underflow.


1563     //   NOT(scale*I+offset >= low_limit)
1564     //   scale*I+offset < low_limit
1565     //   ( if (scale > 0) /* and stride > 0 */
1566     //       I < (low_limit-offset)/scale
1567     //     else /* scale < 0 and stride < 0 */
1568     //       I > (low_limit-offset)/scale
1569     //   )
1570 
1571     if (low_limit->get_int() == -max_jint) {
1572       if (!RangeLimitCheck) return;
1573       // We need this guard when scale*pre_limit+offset >= limit
1574       // due to underflow. So we need execute pre-loop until
1575       // scale*I+offset >= min_int. But (min_int-offset) will
1576       // underflow when offset > 0 and X will be > original_limit
1577       // when stride > 0. To avoid it we replace positive offset with 0.
1578       //
1579       // Also (min_int+1 == -max_int) is used instead of min_int here
1580       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1581       Node* shift = _igvn.intcon(31);
1582       set_ctrl(shift, C->root());
1583       Node* sign = new (C) RShiftINode(offset, shift);
1584       register_new_node(sign, pre_ctrl);
1585       offset = new (C) AndINode(offset, sign);
1586       register_new_node(offset, pre_ctrl);
1587     } else {
1588       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1589       // The only problem we have here when offset == min_int
1590       // since (0-min_int) == min_int. It may be fine for stride > 0
1591       // but for stride < 0 X will be < original_limit. To avoid it
1592       // max(pre_limit, original_limit) is used in do_range_check().
1593     }
1594     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1595     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
1596 
1597   } else { // stride_con*scale_con < 0
1598     // For negative stride*scale pre-loop checks for overflow and
1599     // post-loop for underflow.
1600     //
1601     // The overflow limit: scale*I+offset < upper_limit
1602     // For pre-loop compute
1603     //   NOT(scale*I+offset < upper_limit)
1604     //   scale*I+offset >= upper_limit
1605     //   scale*I+offset+1 > upper_limit
1606     //   ( if (scale < 0) /* and stride > 0 */
1607     //       I < (upper_limit-(offset+1))/scale
1608     //     else /* scale > 0 and stride < 0 */
1609     //       I > (upper_limit-(offset+1))/scale
1610     //   )
1611     //
1612     // (upper_limit-offset-1) may underflow or overflow.
1613     // To avoid it min(pre_limit, original_limit) is used
1614     // in do_range_check() for stride > 0 and max() for < 0.
1615     Node *one  = _igvn.intcon(1);
1616     set_ctrl(one, C->root());
1617 
1618     Node *plus_one = new (C) AddINode(offset, one);
1619     register_new_node( plus_one, pre_ctrl );
1620     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1621     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
1622 
1623     if (low_limit->get_int() == -max_jint) {
1624       if (!RangeLimitCheck) return;
1625       // We need this guard when scale*main_limit+offset >= limit
1626       // due to underflow. So we need execute main-loop while
1627       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
1628       // underflow when (offset+1) > 0 and X will be < main_limit
1629       // when scale < 0 (and stride > 0). To avoid it we replace
1630       // positive (offset+1) with 0.
1631       //
1632       // Also (min_int+1 == -max_int) is used instead of min_int here
1633       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1634       Node* shift = _igvn.intcon(31);
1635       set_ctrl(shift, C->root());
1636       Node* sign = new (C) RShiftINode(plus_one, shift);
1637       register_new_node(sign, pre_ctrl);
1638       plus_one = new (C) AndINode(plus_one, sign);
1639       register_new_node(plus_one, pre_ctrl);
1640     } else {
1641       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1642       // The only problem we have here when offset == max_int
1643       // since (max_int+1) == min_int and (0-min_int) == min_int.
1644       // But it is fine since main loop will either have
1645       // less iterations or will be skipped in such case.
1646     }
1647     // The underflow limit: low_limit <= scale*I+offset.
1648     // For main-loop compute
1649     //   scale*I+offset+1 > low_limit
1650     //   ( if (scale < 0) /* and stride > 0 */
1651     //       I < (low_limit-(offset+1))/scale
1652     //     else /* scale > 0 and stride < 0 */
1653     //       I > (low_limit-(offset+1))/scale
1654     //   )
1655 
1656     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
1657   }
1658 }


1701       set_ctrl(zero, C->root());
1702       *p_offset = zero;
1703     }
1704     return true;
1705   }
1706   int opc = exp->Opcode();
1707   if (opc == Op_AddI) {
1708     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1709       if (p_offset != NULL) {
1710         *p_offset = exp->in(2);
1711       }
1712       return true;
1713     }
1714     if (exp->in(2)->is_Con()) {
1715       Node* offset2 = NULL;
1716       if (depth < 2 &&
1717           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
1718                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
1719         if (p_offset != NULL) {
1720           Node *ctrl_off2 = get_ctrl(offset2);
1721           Node* offset = new (C) AddINode(offset2, exp->in(2));
1722           register_new_node(offset, ctrl_off2);
1723           *p_offset = offset;
1724         }
1725         return true;
1726       }
1727     }
1728   } else if (opc == Op_SubI) {
1729     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1730       if (p_offset != NULL) {
1731         Node *zero = _igvn.intcon(0);
1732         set_ctrl(zero, C->root());
1733         Node *ctrl_off = get_ctrl(exp->in(2));
1734         Node* offset = new (C) SubINode(zero, exp->in(2));
1735         register_new_node(offset, ctrl_off);
1736         *p_offset = offset;
1737       }
1738       return true;
1739     }
1740     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
1741       if (p_offset != NULL) {
1742         *p_scale *= -1;
1743         *p_offset = exp->in(1);
1744       }
1745       return true;
1746     }
1747   }
1748   return false;
1749 }
1750 
1751 //------------------------------do_range_check---------------------------------
1752 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1753 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
1754 #ifndef PRODUCT


1917           // The underflow and overflow limits: 0 <= scale*I+offset < limit
1918           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
1919           if (!conditional_rc) {
1920             // (0-offset)/scale could be outside of loop iterations range.
1921             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
1922           }
1923         } else {
1924 #ifndef PRODUCT
1925           if( PrintOpto )
1926             tty->print_cr("missed RCE opportunity");
1927 #endif
1928           continue;             // In release mode, ignore it
1929         }
1930       } else {                  // Otherwise work on normal compares
1931         switch( b_test._test ) {
1932         case BoolTest::gt:
1933           // Fall into GE case
1934         case BoolTest::ge:
1935           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
1936           scale_con = -scale_con;
1937           offset = new (C) SubINode( zero, offset );
1938           register_new_node( offset, pre_ctrl );
1939           limit  = new (C) SubINode( zero, limit  );
1940           register_new_node( limit, pre_ctrl );
1941           // Fall into LE case
1942         case BoolTest::le:
1943           if (b_test._test != BoolTest::gt) {
1944             // Convert X <= Y to X < Y+1
1945             limit = new (C) AddINode( limit, one );
1946             register_new_node( limit, pre_ctrl );
1947           }
1948           // Fall into LT case
1949         case BoolTest::lt:
1950           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
1951           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
1952           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
1953           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
1954           if (!conditional_rc) {
1955             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
1956             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
1957             // still be outside of loop range.
1958             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
1959           }
1960           break;
1961         default:
1962 #ifndef PRODUCT
1963           if( PrintOpto )
1964             tty->print_cr("missed RCE opportunity");
1965 #endif


1976       assert(iff->is_If(), "");
1977       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
1978       // Find loads off the surviving projection; remove their control edge
1979       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
1980         Node* cd = dp->fast_out(i); // Control-dependent node
1981         if (cd->is_Load() && cd->depends_only_on_test()) {   // Loads can now float around in the loop
1982           // Allow the load to float around in the loop, or before it
1983           // but NOT before the pre-loop.
1984           _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
1985           --i;
1986           --imax;
1987         }
1988       }
1989 
1990     } // End of is IF
1991 
1992   }
1993 
1994   // Update loop limits
1995   if (conditional_rc) {
1996     pre_limit = (stride_con > 0) ? (Node*)new (C) MinINode(pre_limit, orig_limit)
1997                                  : (Node*)new (C) MaxINode(pre_limit, orig_limit);
1998     register_new_node(pre_limit, pre_ctrl);
1999   }
2000   _igvn.hash_delete(pre_opaq);
2001   pre_opaq->set_req(1, pre_limit);
2002 
2003   // Note:: we are making the main loop limit no longer precise;
2004   // need to round up based on stride.
2005   cl->set_nonexact_trip_count();
2006   if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
2007     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
2008     // Hopefully, compiler will optimize for powers of 2.
2009     Node *ctrl = get_ctrl(main_limit);
2010     Node *stride = cl->stride();
2011     Node *init = cl->init_trip();
2012     Node *span = new (C) SubINode(main_limit,init);
2013     register_new_node(span,ctrl);
2014     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
2015     Node *add = new (C) AddINode(span,rndup);
2016     register_new_node(add,ctrl);
2017     Node *div = new (C) DivINode(0,add,stride);
2018     register_new_node(div,ctrl);
2019     Node *mul = new (C) MulINode(div,stride);
2020     register_new_node(mul,ctrl);
2021     Node *newlim = new (C) AddINode(mul,init);
2022     register_new_node(newlim,ctrl);
2023     main_limit = newlim;
2024   }
2025 
2026   Node *main_cle = cl->loopexit();
2027   Node *main_bol = main_cle->in(1);
2028   // Hacking loop bounds; need private copies of exit test
2029   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
2030     _igvn.hash_delete(main_cle);
2031     main_bol = main_bol->clone();// Clone a private BoolNode
2032     register_new_node( main_bol, main_cle->in(0) );
2033     main_cle->set_req(1,main_bol);
2034   }
2035   Node *main_cmp = main_bol->in(1);
2036   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
2037     _igvn.hash_delete(main_bol);
2038     main_cmp = main_cmp->clone();// Clone a private CmpNode
2039     register_new_node( main_cmp, main_cle->in(0) );
2040     main_bol->set_req(1,main_cmp);
2041   }


2172   if (needs_guard) {
2173     // Peel the loop to ensure there's a zero trip guard
2174     Node_List old_new;
2175     phase->do_peeling(this, old_new);
2176   }
2177 
2178   // Replace the phi at loop head with the final value of the last
2179   // iteration.  Then the CountedLoopEnd will collapse (backedge never
2180   // taken) and all loop-invariant uses of the exit values will be correct.
2181   Node *phi = cl->phi();
2182   Node *exact_limit = phase->exact_limit(this);
2183   if (exact_limit != cl->limit()) {
2184     // We also need to replace the original limit to collapse loop exit.
2185     Node* cmp = cl->loopexit()->cmp_node();
2186     assert(cl->limit() == cmp->in(2), "sanity");
2187     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
2188     phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
2189   }
2190   // Note: the final value after increment should not overflow since
2191   // counted loop has limit check predicate.
2192   Node *final = new (phase->C) SubINode( exact_limit, cl->stride() );
2193   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
2194   phase->_igvn.replace_node(phi,final);
2195   phase->C->set_major_progress();
2196   return true;
2197 }
2198 
2199 //------------------------------policy_do_one_iteration_loop-------------------
2200 // Convert one iteration loop into normal code.
2201 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
2202   if (!_head->as_Loop()->is_valid_counted_loop())
2203     return false; // Only for counted loop
2204 
2205   CountedLoopNode *cl = _head->as_CountedLoop();
2206   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
2207     return false;
2208   }
2209 
2210 #ifndef PRODUCT
2211   if(TraceLoopOpts) {
2212     tty->print("OneIteration ");


2659   Node* shift = NULL;
2660   Node* offset = NULL;
2661   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
2662     return false;
2663   }
2664 
2665 #ifndef PRODUCT
2666   if (TraceLoopOpts) {
2667     tty->print("ArrayFill    ");
2668     lpt->dump_head();
2669   }
2670 #endif
2671 
2672   // Now replace the whole loop body by a call to a fill routine that
2673   // covers the same region as the loop.
2674   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
2675 
2676   // Build an expression for the beginning of the copy region
2677   Node* index = head->init_trip();
2678 #ifdef _LP64
2679   index = new (C) ConvI2LNode(index);
2680   _igvn.register_new_node_with_optimizer(index);
2681 #endif
2682   if (shift != NULL) {
2683     // byte arrays don't require a shift but others do.
2684     index = new (C) LShiftXNode(index, shift->in(2));
2685     _igvn.register_new_node_with_optimizer(index);
2686   }
2687   index = new (C) AddPNode(base, base, index);
2688   _igvn.register_new_node_with_optimizer(index);
2689   Node* from = new (C) AddPNode(base, index, offset);
2690   _igvn.register_new_node_with_optimizer(from);
2691   // Compute the number of elements to copy
2692   Node* len = new (C) SubINode(head->limit(), head->init_trip());
2693   _igvn.register_new_node_with_optimizer(len);
2694 
2695   BasicType t = store->as_Mem()->memory_type();
2696   bool aligned = false;
2697   if (offset != NULL && head->init_trip()->is_Con()) {
2698     int element_size = type2aelembytes(t);
2699     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
2700   }
2701 
2702   // Build a call to the fill routine
2703   const char* fill_name;
2704   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
2705   assert(fill != NULL, "what?");
2706 
2707   // Convert float/double to int/long for fill routines
2708   if (t == T_FLOAT) {
2709     store_value = new (C) MoveF2INode(store_value);
2710     _igvn.register_new_node_with_optimizer(store_value);
2711   } else if (t == T_DOUBLE) {
2712     store_value = new (C) MoveD2LNode(store_value);
2713     _igvn.register_new_node_with_optimizer(store_value);
2714   }
2715 
2716   if (CCallingConventionRequiresIntsAsLongs &&
2717       // See StubRoutines::select_fill_function for types. FLOAT has been converted to INT.
2718       (t == T_FLOAT || t == T_INT ||  is_subword_type(t))) {
2719     store_value = new (C) ConvI2LNode(store_value);
2720     _igvn.register_new_node_with_optimizer(store_value);
2721   }
2722 
2723   Node* mem_phi = store->in(MemNode::Memory);
2724   Node* result_ctrl;
2725   Node* result_mem;
2726   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
2727   CallLeafNode *call = new (C) CallLeafNoFPNode(call_type, fill,
2728                                                 fill_name, TypeAryPtr::get_array_body_type(t));
2729   uint cnt = 0;
2730   call->init_req(TypeFunc::Parms + cnt++, from);
2731   call->init_req(TypeFunc::Parms + cnt++, store_value);
2732   if (CCallingConventionRequiresIntsAsLongs) {
2733     call->init_req(TypeFunc::Parms + cnt++, C->top());
2734   }
2735 #ifdef _LP64
2736   len = new (C) ConvI2LNode(len);
2737   _igvn.register_new_node_with_optimizer(len);
2738 #endif
2739   call->init_req(TypeFunc::Parms + cnt++, len);
2740 #ifdef _LP64
2741   call->init_req(TypeFunc::Parms + cnt++, C->top());
2742 #endif
2743   call->init_req(TypeFunc::Control,   head->init_control());
2744   call->init_req(TypeFunc::I_O,       C->top());       // Does no I/O.
2745   call->init_req(TypeFunc::Memory,    mem_phi->in(LoopNode::EntryControl));
2746   call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr));
2747   call->init_req(TypeFunc::FramePtr,  C->start()->proj_out(TypeFunc::FramePtr));
2748   _igvn.register_new_node_with_optimizer(call);
2749   result_ctrl = new (C) ProjNode(call,TypeFunc::Control);
2750   _igvn.register_new_node_with_optimizer(result_ctrl);
2751   result_mem = new (C) ProjNode(call,TypeFunc::Memory);
2752   _igvn.register_new_node_with_optimizer(result_mem);
2753 
2754 /* Disable following optimization until proper fix (add missing checks).
2755 
2756   // If this fill is tightly coupled to an allocation and overwrites
2757   // the whole body, allow it to take over the zeroing.
2758   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
2759   if (alloc != NULL && alloc->is_AllocateArray()) {
2760     Node* length = alloc->as_AllocateArray()->Ideal_length();
2761     if (head->limit() == length &&
2762         head->init_trip() == _igvn.intcon(0)) {
2763       if (TraceOptimizeFill) {
2764         tty->print_cr("Eliminated zeroing in allocation");
2765       }
2766       alloc->maybe_set_complete(&_igvn);
2767     } else {
2768 #ifdef ASSERT
2769       if (TraceOptimizeFill) {
2770         tty->print_cr("filling array but bounds don't match");
2771         alloc->dump();




 210   Node* inv1 = n1->in(inv1_idx);
 211   Node* n2 = n1->in(3 - inv1_idx);
 212   int inv2_idx = is_invariant_addition(n2, phase);
 213   if (!inv2_idx) return NULL;
 214   Node* x    = n2->in(3 - inv2_idx);
 215   Node* inv2 = n2->in(inv2_idx);
 216 
 217   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
 218   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
 219   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
 220   if (n1->is_Sub() && inv1_idx == 1) {
 221     neg_x    = !neg_x;
 222     neg_inv2 = !neg_inv2;
 223   }
 224   Node* inv1_c = phase->get_ctrl(inv1);
 225   Node* inv2_c = phase->get_ctrl(inv2);
 226   Node* n_inv1;
 227   if (neg_inv1) {
 228     Node *zero = phase->_igvn.intcon(0);
 229     phase->set_ctrl(zero, phase->C->root());
 230     n_inv1 = new SubINode(zero, inv1);
 231     phase->register_new_node(n_inv1, inv1_c);
 232   } else {
 233     n_inv1 = inv1;
 234   }
 235   Node* inv;
 236   if (neg_inv2) {
 237     inv = new SubINode(n_inv1, inv2);
 238   } else {
 239     inv = new AddINode(n_inv1, inv2);
 240   }
 241   phase->register_new_node(inv, phase->get_early_ctrl(inv));
 242 
 243   Node* addx;
 244   if (neg_x) {
 245     addx = new SubINode(inv, x);
 246   } else {
 247     addx = new AddINode(x, inv);
 248   }
 249   phase->register_new_node(addx, phase->get_ctrl(x));
 250   phase->_igvn.replace_node(n1, addx);
 251   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
 252   _body.yank(n1);
 253   return addx;
 254 }
 255 
 256 //---------------------reassociate_invariants-----------------------------
 257 // Reassociate invariant expressions:
 258 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
 259   for (int i = _body.size() - 1; i >= 0; i--) {
 260     Node *n = _body.at(i);
 261     for (int j = 0; j < 5; j++) {
 262       Node* nn = reassociate_add_sub(n, phase);
 263       if (nn == NULL) break;
 264       n = nn; // again
 265     };
 266   }
 267 }


 936   }
 937 
 938   //------------------------------
 939   // Step A: Create Post-Loop.
 940   Node* main_exit = main_end->proj_out(false);
 941   assert( main_exit->Opcode() == Op_IfFalse, "" );
 942   int dd_main_exit = dom_depth(main_exit);
 943 
 944   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
 945   // loop pre-header illegally has 2 control users (old & new loops).
 946   clone_loop( loop, old_new, dd_main_exit );
 947   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
 948   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
 949   post_head->set_post_loop(main_head);
 950 
 951   // Reduce the post-loop trip count.
 952   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
 953   post_end->_prob = PROB_FAIR;
 954 
 955   // Build the main-loop normal exit.
 956   IfFalseNode *new_main_exit = new IfFalseNode(main_end);
 957   _igvn.register_new_node_with_optimizer( new_main_exit );
 958   set_idom(new_main_exit, main_end, dd_main_exit );
 959   set_loop(new_main_exit, loop->_parent);
 960 
 961   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
 962   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
 963   // (the main-loop trip-counter exit value) because we will be changing
 964   // the exit value (via unrolling) so we cannot constant-fold away the zero
 965   // trip guard until all unrolling is done.
 966   Node *zer_opaq = new Opaque1Node(C, incr);
 967   Node *zer_cmp  = new CmpINode( zer_opaq, limit );
 968   Node *zer_bol  = new BoolNode( zer_cmp, b_test );
 969   register_new_node( zer_opaq, new_main_exit );
 970   register_new_node( zer_cmp , new_main_exit );
 971   register_new_node( zer_bol , new_main_exit );
 972 
 973   // Build the IfNode
 974   IfNode *zer_iff = new IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
 975   _igvn.register_new_node_with_optimizer( zer_iff );
 976   set_idom(zer_iff, new_main_exit, dd_main_exit);
 977   set_loop(zer_iff, loop->_parent);
 978 
 979   // Plug in the false-path, taken if we need to skip post-loop
 980   _igvn.replace_input_of(main_exit, 0, zer_iff);
 981   set_idom(main_exit, zer_iff, dd_main_exit);
 982   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
 983   // Make the true-path, must enter the post loop
 984   Node *zer_taken = new IfTrueNode( zer_iff );
 985   _igvn.register_new_node_with_optimizer( zer_taken );
 986   set_idom(zer_taken, zer_iff, dd_main_exit);
 987   set_loop(zer_taken, loop->_parent);
 988   // Plug in the true path
 989   _igvn.hash_delete( post_head );
 990   post_head->set_req(LoopNode::EntryControl, zer_taken);
 991   set_idom(post_head, zer_taken, dd_main_exit);
 992 
 993   Arena *a = Thread::current()->resource_area();
 994   VectorSet visited(a);
 995   Node_Stack clones(a, main_head->back_control()->outcnt());
 996   // Step A3: Make the fall-in values to the post-loop come from the
 997   // fall-out values of the main-loop.
 998   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
 999     Node* main_phi = main_head->fast_out(i);
1000     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
1001       Node *post_phi = old_new[main_phi->_idx];
1002       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
1003                                               post_head->init_control(),
1004                                               main_phi->in(LoopNode::LoopBackControl),


1012   main_exit = new_main_exit;
1013 
1014 
1015   //------------------------------
1016   // Step B: Create Pre-Loop.
1017 
1018   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
1019   // loop pre-header illegally has 2 control users (old & new loops).
1020   clone_loop( loop, old_new, dd_main_head );
1021   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
1022   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
1023   pre_head->set_pre_loop(main_head);
1024   Node *pre_incr = old_new[incr->_idx];
1025 
1026   // Reduce the pre-loop trip count.
1027   pre_end->_prob = PROB_FAIR;
1028 
1029   // Find the pre-loop normal exit.
1030   Node* pre_exit = pre_end->proj_out(false);
1031   assert( pre_exit->Opcode() == Op_IfFalse, "" );
1032   IfFalseNode *new_pre_exit = new IfFalseNode(pre_end);
1033   _igvn.register_new_node_with_optimizer( new_pre_exit );
1034   set_idom(new_pre_exit, pre_end, dd_main_head);
1035   set_loop(new_pre_exit, loop->_parent);
1036 
1037   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
1038   // pre-loop, the main-loop may not execute at all.  Later in life this
1039   // zero-trip guard will become the minimum-trip guard when we unroll
1040   // the main-loop.
1041   Node *min_opaq = new Opaque1Node(C, limit);
1042   Node *min_cmp  = new CmpINode( pre_incr, min_opaq );
1043   Node *min_bol  = new BoolNode( min_cmp, b_test );
1044   register_new_node( min_opaq, new_pre_exit );
1045   register_new_node( min_cmp , new_pre_exit );
1046   register_new_node( min_bol , new_pre_exit );
1047 
1048   // Build the IfNode (assume the main-loop is executed always).
1049   IfNode *min_iff = new IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
1050   _igvn.register_new_node_with_optimizer( min_iff );
1051   set_idom(min_iff, new_pre_exit, dd_main_head);
1052   set_loop(min_iff, loop->_parent);
1053 
1054   // Plug in the false-path, taken if we need to skip main-loop
1055   _igvn.hash_delete( pre_exit );
1056   pre_exit->set_req(0, min_iff);
1057   set_idom(pre_exit, min_iff, dd_main_head);
1058   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
1059   // Make the true-path, must enter the main loop
1060   Node *min_taken = new IfTrueNode( min_iff );
1061   _igvn.register_new_node_with_optimizer( min_taken );
1062   set_idom(min_taken, min_iff, dd_main_head);
1063   set_loop(min_taken, loop->_parent);
1064   // Plug in the true path
1065   _igvn.hash_delete( main_head );
1066   main_head->set_req(LoopNode::EntryControl, min_taken);
1067   set_idom(main_head, min_taken, dd_main_head);
1068 
1069   visited.Clear();
1070   clones.clear();
1071   // Step B3: Make the fall-in values to the main-loop come from the
1072   // fall-out values of the pre-loop.
1073   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
1074     Node* main_phi = main_head->fast_out(i2);
1075     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
1076       Node *pre_phi = old_new[main_phi->_idx];
1077       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
1078                                              main_head->init_control(),
1079                                              pre_phi->in(LoopNode::LoopBackControl),
1080                                              visited, clones);
1081       _igvn.hash_delete(main_phi);
1082       main_phi->set_req( LoopNode::EntryControl, fallpre );
1083     }
1084   }
1085 
1086   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
1087   // RCE and alignment may change this later.
1088   Node *cmp_end = pre_end->cmp_node();
1089   assert( cmp_end->in(2) == limit, "" );
1090   Node *pre_limit = new AddINode( init, stride );
1091 
1092   // Save the original loop limit in this Opaque1 node for
1093   // use by range check elimination.
1094   Node *pre_opaq  = new Opaque1Node(C, pre_limit, limit);
1095 
1096   register_new_node( pre_limit, pre_head->in(0) );
1097   register_new_node( pre_opaq , pre_head->in(0) );
1098 
1099   // Since no other users of pre-loop compare, I can hack limit directly
1100   assert( cmp_end->outcnt() == 1, "no other users" );
1101   _igvn.hash_delete(cmp_end);
1102   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
1103 
1104   // Special case for not-equal loop bounds:
1105   // Change pre loop test, main loop test, and the
1106   // main loop guard test to use lt or gt depending on stride
1107   // direction:
1108   // positive stride use <
1109   // negative stride use >
1110   //
1111   // not-equal test is kept for post loop to handle case
1112   // when init > limit when stride > 0 (and reverse).
1113 
1114   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
1115 
1116     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
1117     // Modify pre loop end condition
1118     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1119     BoolNode* new_bol0 = new BoolNode(pre_bol->in(1), new_test);
1120     register_new_node( new_bol0, pre_head->in(0) );
1121     _igvn.hash_delete(pre_end);
1122     pre_end->set_req(CountedLoopEndNode::TestValue, new_bol0);
1123     // Modify main loop guard condition
1124     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
1125     BoolNode* new_bol1 = new BoolNode(min_bol->in(1), new_test);
1126     register_new_node( new_bol1, new_pre_exit );
1127     _igvn.hash_delete(min_iff);
1128     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
1129     // Modify main loop end condition
1130     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1131     BoolNode* new_bol2 = new BoolNode(main_bol->in(1), new_test);
1132     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
1133     _igvn.hash_delete(main_end);
1134     main_end->set_req(CountedLoopEndNode::TestValue, new_bol2);
1135   }
1136 
1137   // Flag main loop
1138   main_head->set_main_loop();
1139   if( peel_only ) main_head->set_main_no_pre_loop();
1140 
1141   // Subtract a trip count for the pre-loop.
1142   main_head->set_trip_count(main_head->trip_count() - 1);
1143 
1144   // It's difficult to be precise about the trip-counts
1145   // for the pre/post loops.  They are usually very short,
1146   // so guess that 4 trips is a reasonable value.
1147   post_head->set_profile_trip_cnt(4.0);
1148   pre_head->set_profile_trip_cnt(4.0);
1149 
1150   // Now force out all loop-invariant dominating tests.  The optimizer
1151   // finds some, but we _know_ they are all useless.


1262       const TypeInt* limit_type = _igvn.type(limit)->is_int();
1263       assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
1264              stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
1265 
1266       if (limit->is_Con()) {
1267         // The check in policy_unroll and the assert above guarantee
1268         // no underflow if limit is constant.
1269         new_limit = _igvn.intcon(limit->get_int() - stride_con);
1270         set_ctrl(new_limit, C->root());
1271       } else {
1272         // Limit is not constant.
1273         if (loop_head->unrolled_count() == 1) { // only for first unroll
1274           // Separate limit by Opaque node in case it is an incremented
1275           // variable from previous loop to avoid using pre-incremented
1276           // value which could increase register pressure.
1277           // Otherwise reorg_offsets() optimization will create a separate
1278           // Opaque node for each use of trip-counter and as result
1279           // zero trip guard limit will be different from loop limit.
1280           assert(has_ctrl(opaq), "should have it");
1281           Node* opaq_ctrl = get_ctrl(opaq);
1282           limit = new Opaque2Node( C, limit );
1283           register_new_node( limit, opaq_ctrl );
1284         }
1285         if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
1286                    stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
1287           // No underflow.
1288           new_limit = new SubINode(limit, stride);
1289         } else {
1290           // (limit - stride) may underflow.
1291           // Clamp the adjustment value with MININT or MAXINT:
1292           //
1293           //   new_limit = limit-stride
1294           //   if (stride > 0)
1295           //     new_limit = (limit < new_limit) ? MININT : new_limit;
1296           //   else
1297           //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
1298           //
1299           BoolTest::mask bt = loop_end->test_trip();
1300           assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
1301           Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
1302           set_ctrl(adj_max, C->root());
1303           Node* old_limit = NULL;
1304           Node* adj_limit = NULL;
1305           Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
1306           if (loop_head->unrolled_count() > 1 &&
1307               limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
1308               limit->in(CMoveNode::IfTrue) == adj_max &&
1309               bol->as_Bool()->_test._test == bt &&
1310               bol->in(1)->Opcode() == Op_CmpI &&
1311               bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
1312             // Loop was unrolled before.
1313             // Optimize the limit to avoid nested CMove:
1314             // use original limit as old limit.
1315             old_limit = bol->in(1)->in(1);
1316             // Adjust previous adjusted limit.
1317             adj_limit = limit->in(CMoveNode::IfFalse);
1318             adj_limit = new SubINode(adj_limit, stride);
1319           } else {
1320             old_limit = limit;
1321             adj_limit = new SubINode(limit, stride);
1322           }
1323           assert(old_limit != NULL && adj_limit != NULL, "");
1324           register_new_node( adj_limit, ctrl ); // adjust amount
1325           Node* adj_cmp = new CmpINode(old_limit, adj_limit);
1326           register_new_node( adj_cmp, ctrl );
1327           Node* adj_bool = new BoolNode(adj_cmp, bt);
1328           register_new_node( adj_bool, ctrl );
1329           new_limit = new CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
1330         }
1331         register_new_node(new_limit, ctrl);
1332       }
1333       assert(new_limit != NULL, "");
1334       // Replace in loop test.
1335       assert(loop_end->in(1)->in(1) == cmp, "sanity");
1336       if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
1337         // Don't need to create new test since only one user.
1338         _igvn.hash_delete(cmp);
1339         cmp->set_req(2, new_limit);
1340       } else {
1341         // Create new test since it is shared.
1342         Node* ctrl2 = loop_end->in(0);
1343         Node* cmp2  = cmp->clone();
1344         cmp2->set_req(2, new_limit);
1345         register_new_node(cmp2, ctrl2);
1346         Node* bol2 = loop_end->in(1)->clone();
1347         bol2->set_req(1, cmp2);
1348         register_new_node(bol2, ctrl2);
1349         _igvn.hash_delete(loop_end);


1371     loop_head->double_unrolled_count();
1372 
1373   } else { // LoopLimitCheck
1374 
1375     // Adjust max trip count. The trip count is intentionally rounded
1376     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1377     // the main, unrolled, part of the loop will never execute as it is protected
1378     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1379     // and later determined that part of the unrolled loop was dead.
1380     loop_head->set_trip_count(loop_head->trip_count() / 2);
1381 
1382     // Double the count of original iterations in the unrolled loop body.
1383     loop_head->double_unrolled_count();
1384 
1385     // -----------
1386     // Step 2: Cut back the trip counter for an unroll amount of 2.
1387     // Loop will normally trip (limit - init)/stride_con.  Since it's a
1388     // CountedLoop this is exact (stride divides limit-init exactly).
1389     // We are going to double the loop body, so we want to knock off any
1390     // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
1391     Node *span = new SubINode( limit, init );
1392     register_new_node( span, ctrl );
1393     Node *trip = new DivINode( 0, span, stride );
1394     register_new_node( trip, ctrl );
1395     Node *mtwo = _igvn.intcon(-2);
1396     set_ctrl(mtwo, C->root());
1397     Node *rond = new AndINode( trip, mtwo );
1398     register_new_node( rond, ctrl );
1399     Node *spn2 = new MulINode( rond, stride );
1400     register_new_node( spn2, ctrl );
1401     new_limit = new AddINode( spn2, init );
1402     register_new_node( new_limit, ctrl );
1403 
1404     // Hammer in the new limit
1405     Node *ctrl2 = loop_end->in(0);
1406     Node *cmp2 = new CmpINode( loop_head->incr(), new_limit );
1407     register_new_node( cmp2, ctrl2 );
1408     Node *bol2 = new BoolNode( cmp2, loop_end->test_trip() );
1409     register_new_node( bol2, ctrl2 );
1410     _igvn.hash_delete(loop_end);
1411     loop_end->set_req(CountedLoopEndNode::TestValue, bol2);
1412 
1413     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1414     // Make it a 1-trip test (means at least 2 trips).
1415     if( adjust_min_trip ) {
1416       assert( new_limit != NULL, "" );
1417       // Guard test uses an 'opaque' node which is not shared.  Hence I
1418       // can edit it's inputs directly.  Hammer in the new limit for the
1419       // minimum-trip guard.
1420       assert( opaq->outcnt() == 1, "" );
1421       _igvn.hash_delete(opaq);
1422       opaq->set_req(1, new_limit);
1423     }
1424   } // LoopLimitCheck
1425 
1426   // ---------
1427   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
1428   // represents the odd iterations; since the loop trips an even number of


1494   // Now its tripping an even number of times remaining.  Double loop body.
1495   // Do not adjust pre-guards; they are not needed and do not exist.
1496   if (cl->trip_count() > 0) {
1497     assert((cl->trip_count() & 1) == 0, "missed peeling");
1498     do_unroll(loop, old_new, false);
1499   }
1500 }
1501 
1502 //------------------------------dominates_backedge---------------------------------
1503 // Returns true if ctrl is executed on every complete iteration
1504 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
1505   assert(ctrl->is_CFG(), "must be control");
1506   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
1507   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
1508 }
1509 
1510 //------------------------------adjust_limit-----------------------------------
1511 // Helper function for add_constraint().
1512 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
1513   // Compute "I :: (limit-offset)/scale"
1514   Node *con = new SubINode(rc_limit, offset);
1515   register_new_node(con, pre_ctrl);
1516   Node *X = new DivINode(0, con, scale);
1517   register_new_node(X, pre_ctrl);
1518 
1519   // Adjust loop limit
1520   loop_limit = (stride_con > 0)
1521                ? (Node*)(new MinINode(loop_limit, X))
1522                : (Node*)(new MaxINode(loop_limit, X));
1523   register_new_node(loop_limit, pre_ctrl);
1524   return loop_limit;
1525 }
1526 
1527 //------------------------------add_constraint---------------------------------
1528 // Constrain the main loop iterations so the conditions:
1529 //    low_limit <= scale_con * I + offset  <  upper_limit
1530 // always holds true.  That is, either increase the number of iterations in
1531 // the pre-loop or the post-loop until the condition holds true in the main
1532 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
1533 // stride and scale are constants (offset and limit often are).
1534 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
1535   // For positive stride, the pre-loop limit always uses a MAX function
1536   // and the main loop a MIN function.  For negative stride these are
1537   // reversed.
1538 
1539   // Also for positive stride*scale the affine function is increasing, so the
1540   // pre-loop must check for underflow and the post-loop for overflow.
1541   // Negative stride*scale reverses this; pre-loop checks for overflow and
1542   // post-loop for underflow.


1563     //   NOT(scale*I+offset >= low_limit)
1564     //   scale*I+offset < low_limit
1565     //   ( if (scale > 0) /* and stride > 0 */
1566     //       I < (low_limit-offset)/scale
1567     //     else /* scale < 0 and stride < 0 */
1568     //       I > (low_limit-offset)/scale
1569     //   )
1570 
1571     if (low_limit->get_int() == -max_jint) {
1572       if (!RangeLimitCheck) return;
1573       // We need this guard when scale*pre_limit+offset >= limit
1574       // due to underflow. So we need execute pre-loop until
1575       // scale*I+offset >= min_int. But (min_int-offset) will
1576       // underflow when offset > 0 and X will be > original_limit
1577       // when stride > 0. To avoid it we replace positive offset with 0.
1578       //
1579       // Also (min_int+1 == -max_int) is used instead of min_int here
1580       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1581       Node* shift = _igvn.intcon(31);
1582       set_ctrl(shift, C->root());
1583       Node* sign = new RShiftINode(offset, shift);
1584       register_new_node(sign, pre_ctrl);
1585       offset = new AndINode(offset, sign);
1586       register_new_node(offset, pre_ctrl);
1587     } else {
1588       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1589       // The only problem we have here when offset == min_int
1590       // since (0-min_int) == min_int. It may be fine for stride > 0
1591       // but for stride < 0 X will be < original_limit. To avoid it
1592       // max(pre_limit, original_limit) is used in do_range_check().
1593     }
1594     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1595     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
1596 
1597   } else { // stride_con*scale_con < 0
1598     // For negative stride*scale pre-loop checks for overflow and
1599     // post-loop for underflow.
1600     //
1601     // The overflow limit: scale*I+offset < upper_limit
1602     // For pre-loop compute
1603     //   NOT(scale*I+offset < upper_limit)
1604     //   scale*I+offset >= upper_limit
1605     //   scale*I+offset+1 > upper_limit
1606     //   ( if (scale < 0) /* and stride > 0 */
1607     //       I < (upper_limit-(offset+1))/scale
1608     //     else /* scale > 0 and stride < 0 */
1609     //       I > (upper_limit-(offset+1))/scale
1610     //   )
1611     //
1612     // (upper_limit-offset-1) may underflow or overflow.
1613     // To avoid it min(pre_limit, original_limit) is used
1614     // in do_range_check() for stride > 0 and max() for < 0.
1615     Node *one  = _igvn.intcon(1);
1616     set_ctrl(one, C->root());
1617 
1618     Node *plus_one = new AddINode(offset, one);
1619     register_new_node( plus_one, pre_ctrl );
1620     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1621     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
1622 
1623     if (low_limit->get_int() == -max_jint) {
1624       if (!RangeLimitCheck) return;
1625       // We need this guard when scale*main_limit+offset >= limit
1626       // due to underflow. So we need execute main-loop while
1627       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
1628       // underflow when (offset+1) > 0 and X will be < main_limit
1629       // when scale < 0 (and stride > 0). To avoid it we replace
1630       // positive (offset+1) with 0.
1631       //
1632       // Also (min_int+1 == -max_int) is used instead of min_int here
1633       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1634       Node* shift = _igvn.intcon(31);
1635       set_ctrl(shift, C->root());
1636       Node* sign = new RShiftINode(plus_one, shift);
1637       register_new_node(sign, pre_ctrl);
1638       plus_one = new AndINode(plus_one, sign);
1639       register_new_node(plus_one, pre_ctrl);
1640     } else {
1641       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1642       // The only problem we have here when offset == max_int
1643       // since (max_int+1) == min_int and (0-min_int) == min_int.
1644       // But it is fine since main loop will either have
1645       // less iterations or will be skipped in such case.
1646     }
1647     // The underflow limit: low_limit <= scale*I+offset.
1648     // For main-loop compute
1649     //   scale*I+offset+1 > low_limit
1650     //   ( if (scale < 0) /* and stride > 0 */
1651     //       I < (low_limit-(offset+1))/scale
1652     //     else /* scale > 0 and stride < 0 */
1653     //       I > (low_limit-(offset+1))/scale
1654     //   )
1655 
1656     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
1657   }
1658 }


1701       set_ctrl(zero, C->root());
1702       *p_offset = zero;
1703     }
1704     return true;
1705   }
1706   int opc = exp->Opcode();
1707   if (opc == Op_AddI) {
1708     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1709       if (p_offset != NULL) {
1710         *p_offset = exp->in(2);
1711       }
1712       return true;
1713     }
1714     if (exp->in(2)->is_Con()) {
1715       Node* offset2 = NULL;
1716       if (depth < 2 &&
1717           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
1718                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
1719         if (p_offset != NULL) {
1720           Node *ctrl_off2 = get_ctrl(offset2);
1721           Node* offset = new AddINode(offset2, exp->in(2));
1722           register_new_node(offset, ctrl_off2);
1723           *p_offset = offset;
1724         }
1725         return true;
1726       }
1727     }
1728   } else if (opc == Op_SubI) {
1729     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1730       if (p_offset != NULL) {
1731         Node *zero = _igvn.intcon(0);
1732         set_ctrl(zero, C->root());
1733         Node *ctrl_off = get_ctrl(exp->in(2));
1734         Node* offset = new SubINode(zero, exp->in(2));
1735         register_new_node(offset, ctrl_off);
1736         *p_offset = offset;
1737       }
1738       return true;
1739     }
1740     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
1741       if (p_offset != NULL) {
1742         *p_scale *= -1;
1743         *p_offset = exp->in(1);
1744       }
1745       return true;
1746     }
1747   }
1748   return false;
1749 }
1750 
1751 //------------------------------do_range_check---------------------------------
1752 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1753 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
1754 #ifndef PRODUCT


1917           // The underflow and overflow limits: 0 <= scale*I+offset < limit
1918           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
1919           if (!conditional_rc) {
1920             // (0-offset)/scale could be outside of loop iterations range.
1921             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
1922           }
1923         } else {
1924 #ifndef PRODUCT
1925           if( PrintOpto )
1926             tty->print_cr("missed RCE opportunity");
1927 #endif
1928           continue;             // In release mode, ignore it
1929         }
1930       } else {                  // Otherwise work on normal compares
1931         switch( b_test._test ) {
1932         case BoolTest::gt:
1933           // Fall into GE case
1934         case BoolTest::ge:
1935           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
1936           scale_con = -scale_con;
1937           offset = new SubINode( zero, offset );
1938           register_new_node( offset, pre_ctrl );
1939           limit  = new SubINode( zero, limit  );
1940           register_new_node( limit, pre_ctrl );
1941           // Fall into LE case
1942         case BoolTest::le:
1943           if (b_test._test != BoolTest::gt) {
1944             // Convert X <= Y to X < Y+1
1945             limit = new AddINode( limit, one );
1946             register_new_node( limit, pre_ctrl );
1947           }
1948           // Fall into LT case
1949         case BoolTest::lt:
1950           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
1951           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
1952           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
1953           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
1954           if (!conditional_rc) {
1955             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
1956             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
1957             // still be outside of loop range.
1958             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
1959           }
1960           break;
1961         default:
1962 #ifndef PRODUCT
1963           if( PrintOpto )
1964             tty->print_cr("missed RCE opportunity");
1965 #endif


1976       assert(iff->is_If(), "");
1977       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
1978       // Find loads off the surviving projection; remove their control edge
1979       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
1980         Node* cd = dp->fast_out(i); // Control-dependent node
1981         if (cd->is_Load() && cd->depends_only_on_test()) {   // Loads can now float around in the loop
1982           // Allow the load to float around in the loop, or before it
1983           // but NOT before the pre-loop.
1984           _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
1985           --i;
1986           --imax;
1987         }
1988       }
1989 
1990     } // End of is IF
1991 
1992   }
1993 
1994   // Update loop limits
1995   if (conditional_rc) {
1996     pre_limit = (stride_con > 0) ? (Node*)new MinINode(pre_limit, orig_limit)
1997                                  : (Node*)new MaxINode(pre_limit, orig_limit);
1998     register_new_node(pre_limit, pre_ctrl);
1999   }
2000   _igvn.hash_delete(pre_opaq);
2001   pre_opaq->set_req(1, pre_limit);
2002 
2003   // Note:: we are making the main loop limit no longer precise;
2004   // need to round up based on stride.
2005   cl->set_nonexact_trip_count();
2006   if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
2007     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
2008     // Hopefully, compiler will optimize for powers of 2.
2009     Node *ctrl = get_ctrl(main_limit);
2010     Node *stride = cl->stride();
2011     Node *init = cl->init_trip();
2012     Node *span = new SubINode(main_limit,init);
2013     register_new_node(span,ctrl);
2014     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
2015     Node *add = new AddINode(span,rndup);
2016     register_new_node(add,ctrl);
2017     Node *div = new DivINode(0,add,stride);
2018     register_new_node(div,ctrl);
2019     Node *mul = new MulINode(div,stride);
2020     register_new_node(mul,ctrl);
2021     Node *newlim = new AddINode(mul,init);
2022     register_new_node(newlim,ctrl);
2023     main_limit = newlim;
2024   }
2025 
2026   Node *main_cle = cl->loopexit();
2027   Node *main_bol = main_cle->in(1);
2028   // Hacking loop bounds; need private copies of exit test
2029   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
2030     _igvn.hash_delete(main_cle);
2031     main_bol = main_bol->clone();// Clone a private BoolNode
2032     register_new_node( main_bol, main_cle->in(0) );
2033     main_cle->set_req(1,main_bol);
2034   }
2035   Node *main_cmp = main_bol->in(1);
2036   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
2037     _igvn.hash_delete(main_bol);
2038     main_cmp = main_cmp->clone();// Clone a private CmpNode
2039     register_new_node( main_cmp, main_cle->in(0) );
2040     main_bol->set_req(1,main_cmp);
2041   }


2172   if (needs_guard) {
2173     // Peel the loop to ensure there's a zero trip guard
2174     Node_List old_new;
2175     phase->do_peeling(this, old_new);
2176   }
2177 
2178   // Replace the phi at loop head with the final value of the last
2179   // iteration.  Then the CountedLoopEnd will collapse (backedge never
2180   // taken) and all loop-invariant uses of the exit values will be correct.
2181   Node *phi = cl->phi();
2182   Node *exact_limit = phase->exact_limit(this);
2183   if (exact_limit != cl->limit()) {
2184     // We also need to replace the original limit to collapse loop exit.
2185     Node* cmp = cl->loopexit()->cmp_node();
2186     assert(cl->limit() == cmp->in(2), "sanity");
2187     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
2188     phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
2189   }
2190   // Note: the final value after increment should not overflow since
2191   // counted loop has limit check predicate.
2192   Node *final = new SubINode( exact_limit, cl->stride() );
2193   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
2194   phase->_igvn.replace_node(phi,final);
2195   phase->C->set_major_progress();
2196   return true;
2197 }
2198 
2199 //------------------------------policy_do_one_iteration_loop-------------------
2200 // Convert one iteration loop into normal code.
2201 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
2202   if (!_head->as_Loop()->is_valid_counted_loop())
2203     return false; // Only for counted loop
2204 
2205   CountedLoopNode *cl = _head->as_CountedLoop();
2206   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
2207     return false;
2208   }
2209 
2210 #ifndef PRODUCT
2211   if(TraceLoopOpts) {
2212     tty->print("OneIteration ");


2659   Node* shift = NULL;
2660   Node* offset = NULL;
2661   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
2662     return false;
2663   }
2664 
2665 #ifndef PRODUCT
2666   if (TraceLoopOpts) {
2667     tty->print("ArrayFill    ");
2668     lpt->dump_head();
2669   }
2670 #endif
2671 
2672   // Now replace the whole loop body by a call to a fill routine that
2673   // covers the same region as the loop.
2674   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
2675 
2676   // Build an expression for the beginning of the copy region
2677   Node* index = head->init_trip();
2678 #ifdef _LP64
2679   index = new ConvI2LNode(index);
2680   _igvn.register_new_node_with_optimizer(index);
2681 #endif
2682   if (shift != NULL) {
2683     // byte arrays don't require a shift but others do.
2684     index = new LShiftXNode(index, shift->in(2));
2685     _igvn.register_new_node_with_optimizer(index);
2686   }
2687   index = new AddPNode(base, base, index);
2688   _igvn.register_new_node_with_optimizer(index);
2689   Node* from = new AddPNode(base, index, offset);
2690   _igvn.register_new_node_with_optimizer(from);
2691   // Compute the number of elements to copy
2692   Node* len = new SubINode(head->limit(), head->init_trip());
2693   _igvn.register_new_node_with_optimizer(len);
2694 
2695   BasicType t = store->as_Mem()->memory_type();
2696   bool aligned = false;
2697   if (offset != NULL && head->init_trip()->is_Con()) {
2698     int element_size = type2aelembytes(t);
2699     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
2700   }
2701 
2702   // Build a call to the fill routine
2703   const char* fill_name;
2704   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
2705   assert(fill != NULL, "what?");
2706 
2707   // Convert float/double to int/long for fill routines
2708   if (t == T_FLOAT) {
2709     store_value = new MoveF2INode(store_value);
2710     _igvn.register_new_node_with_optimizer(store_value);
2711   } else if (t == T_DOUBLE) {
2712     store_value = new MoveD2LNode(store_value);
2713     _igvn.register_new_node_with_optimizer(store_value);
2714   }
2715 
2716   if (CCallingConventionRequiresIntsAsLongs &&
2717       // See StubRoutines::select_fill_function for types. FLOAT has been converted to INT.
2718       (t == T_FLOAT || t == T_INT ||  is_subword_type(t))) {
2719     store_value = new ConvI2LNode(store_value);
2720     _igvn.register_new_node_with_optimizer(store_value);
2721   }
2722 
2723   Node* mem_phi = store->in(MemNode::Memory);
2724   Node* result_ctrl;
2725   Node* result_mem;
2726   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
2727   CallLeafNode *call = new CallLeafNoFPNode(call_type, fill,
2728                                             fill_name, TypeAryPtr::get_array_body_type(t));
2729   uint cnt = 0;
2730   call->init_req(TypeFunc::Parms + cnt++, from);
2731   call->init_req(TypeFunc::Parms + cnt++, store_value);
2732   if (CCallingConventionRequiresIntsAsLongs) {
2733     call->init_req(TypeFunc::Parms + cnt++, C->top());
2734   }
2735 #ifdef _LP64
2736   len = new ConvI2LNode(len);
2737   _igvn.register_new_node_with_optimizer(len);
2738 #endif
2739   call->init_req(TypeFunc::Parms + cnt++, len);
2740 #ifdef _LP64
2741   call->init_req(TypeFunc::Parms + cnt++, C->top());
2742 #endif
2743   call->init_req(TypeFunc::Control,   head->init_control());
2744   call->init_req(TypeFunc::I_O,       C->top());       // Does no I/O.
2745   call->init_req(TypeFunc::Memory,    mem_phi->in(LoopNode::EntryControl));
2746   call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr));
2747   call->init_req(TypeFunc::FramePtr,  C->start()->proj_out(TypeFunc::FramePtr));
2748   _igvn.register_new_node_with_optimizer(call);
2749   result_ctrl = new ProjNode(call,TypeFunc::Control);
2750   _igvn.register_new_node_with_optimizer(result_ctrl);
2751   result_mem = new ProjNode(call,TypeFunc::Memory);
2752   _igvn.register_new_node_with_optimizer(result_mem);
2753 
2754 /* Disable following optimization until proper fix (add missing checks).
2755 
2756   // If this fill is tightly coupled to an allocation and overwrites
2757   // the whole body, allow it to take over the zeroing.
2758   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
2759   if (alloc != NULL && alloc->is_AllocateArray()) {
2760     Node* length = alloc->as_AllocateArray()->Ideal_length();
2761     if (head->limit() == length &&
2762         head->init_trip() == _igvn.intcon(0)) {
2763       if (TraceOptimizeFill) {
2764         tty->print_cr("Eliminated zeroing in allocation");
2765       }
2766       alloc->maybe_set_complete(&_igvn);
2767     } else {
2768 #ifdef ASSERT
2769       if (TraceOptimizeFill) {
2770         tty->print_cr("filling array but bounds don't match");
2771         alloc->dump();


src/share/vm/opto/loopTransform.cpp
Index Unified diffs Context diffs Sdiffs Patch New Old Previous File Next File