1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_CODE_DEPENDENCIES_HPP
  26 #define SHARE_VM_CODE_DEPENDENCIES_HPP
  27 
  28 #include "ci/ciCallSite.hpp"
  29 #include "ci/ciKlass.hpp"
  30 #include "ci/ciMethodHandle.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "code/compressedStream.hpp"
  33 #include "code/nmethod.hpp"
  34 #include "utilities/growableArray.hpp"
  35 #include "utilities/hashtable.hpp"
  36 
  37 //** Dependencies represent assertions (approximate invariants) within
  38 // the runtime system, e.g. class hierarchy changes.  An example is an
  39 // assertion that a given method is not overridden; another example is
  40 // that a type has only one concrete subtype.  Compiled code which
  41 // relies on such assertions must be discarded if they are overturned
  42 // by changes in the runtime system.  We can think of these assertions
  43 // as approximate invariants, because we expect them to be overturned
  44 // very infrequently.  We are willing to perform expensive recovery
  45 // operations when they are overturned.  The benefit, of course, is
  46 // performing optimistic optimizations (!) on the object code.
  47 //
  48 // Changes in the class hierarchy due to dynamic linking or
  49 // class evolution can violate dependencies.  There is enough
  50 // indexing between classes and nmethods to make dependency
  51 // checking reasonably efficient.
  52 
  53 class ciEnv;
  54 class nmethod;
  55 class OopRecorder;
  56 class xmlStream;
  57 class CompileLog;
  58 class DepChange;
  59 class   KlassDepChange;
  60 class   CallSiteDepChange;
  61 class No_Safepoint_Verifier;
  62 
  63 class Dependencies: public ResourceObj {
  64  public:
  65   // Note: In the comments on dependency types, most uses of the terms
  66   // subtype and supertype are used in a "non-strict" or "inclusive"
  67   // sense, and are starred to remind the reader of this fact.
  68   // Strict uses of the terms use the word "proper".
  69   //
  70   // Specifically, every class is its own subtype* and supertype*.
  71   // (This trick is easier than continually saying things like "Y is a
  72   // subtype of X or X itself".)
  73   //
  74   // Sometimes we write X > Y to mean X is a proper supertype of Y.
  75   // The notation X > {Y, Z} means X has proper subtypes Y, Z.
  76   // The notation X.m > Y means that Y inherits m from X, while
  77   // X.m > Y.m means Y overrides X.m.  A star denotes abstractness,
  78   // as *I > A, meaning (abstract) interface I is a super type of A,
  79   // or A.*m > B.m, meaning B.m implements abstract method A.m.
  80   //
  81   // In this module, the terms "subtype" and "supertype" refer to
  82   // Java-level reference type conversions, as detected by
  83   // "instanceof" and performed by "checkcast" operations.  The method
  84   // Klass::is_subtype_of tests these relations.  Note that "subtype"
  85   // is richer than "subclass" (as tested by Klass::is_subclass_of),
  86   // since it takes account of relations involving interface and array
  87   // types.
  88   //
  89   // To avoid needless complexity, dependencies involving array types
  90   // are not accepted.  If you need to make an assertion about an
  91   // array type, make the assertion about its corresponding element
  92   // types.  Any assertion that might change about an array type can
  93   // be converted to an assertion about its element type.
  94   //
  95   // Most dependencies are evaluated over a "context type" CX, which
  96   // stands for the set Subtypes(CX) of every Java type that is a subtype*
  97   // of CX.  When the system loads a new class or interface N, it is
  98   // responsible for re-evaluating changed dependencies whose context
  99   // type now includes N, that is, all super types of N.
 100   //
 101   enum DepType {
 102     end_marker = 0,
 103 
 104     // An 'evol' dependency simply notes that the contents of the
 105     // method were used.  If it evolves (is replaced), the nmethod
 106     // must be recompiled.  No other dependencies are implied.
 107     evol_method,
 108     FIRST_TYPE = evol_method,
 109 
 110     // A context type CX is a leaf it if has no proper subtype.
 111     leaf_type,
 112 
 113     // An abstract class CX has exactly one concrete subtype CC.
 114     abstract_with_unique_concrete_subtype,
 115 
 116     // The type CX is purely abstract, with no concrete subtype* at all.
 117     abstract_with_no_concrete_subtype,
 118 
 119     // The concrete CX is free of concrete proper subtypes.
 120     concrete_with_no_concrete_subtype,
 121 
 122     // Given a method M1 and a context class CX, the set MM(CX, M1) of
 123     // "concrete matching methods" in CX of M1 is the set of every
 124     // concrete M2 for which it is possible to create an invokevirtual
 125     // or invokeinterface call site that can reach either M1 or M2.
 126     // That is, M1 and M2 share a name, signature, and vtable index.
 127     // We wish to notice when the set MM(CX, M1) is just {M1}, or
 128     // perhaps a set of two {M1,M2}, and issue dependencies on this.
 129 
 130     // The set MM(CX, M1) can be computed by starting with any matching
 131     // concrete M2 that is inherited into CX, and then walking the
 132     // subtypes* of CX looking for concrete definitions.
 133 
 134     // The parameters to this dependency are the method M1 and the
 135     // context class CX.  M1 must be either inherited in CX or defined
 136     // in a subtype* of CX.  It asserts that MM(CX, M1) is no greater
 137     // than {M1}.
 138     unique_concrete_method,       // one unique concrete method under CX
 139 
 140     // An "exclusive" assertion concerns two methods or subtypes, and
 141     // declares that there are at most two (or perhaps later N>2)
 142     // specific items that jointly satisfy the restriction.
 143     // We list all items explicitly rather than just giving their
 144     // count, for robustness in the face of complex schema changes.
 145 
 146     // A context class CX (which may be either abstract or concrete)
 147     // has two exclusive concrete subtypes* C1, C2 if every concrete
 148     // subtype* of CX is either C1 or C2.  Note that if neither C1 or C2
 149     // are equal to CX, then CX itself must be abstract.  But it is
 150     // also possible (for example) that C1 is CX (a concrete class)
 151     // and C2 is a proper subtype of C1.
 152     abstract_with_exclusive_concrete_subtypes_2,
 153 
 154     // This dependency asserts that MM(CX, M1) is no greater than {M1,M2}.
 155     exclusive_concrete_methods_2,
 156 
 157     // This dependency asserts that no instances of class or it's
 158     // subclasses require finalization registration.
 159     no_finalizable_subclasses,
 160 
 161     // This dependency asserts when the CallSite.target value changed.
 162     call_site_target_value,
 163 
 164     TYPE_LIMIT
 165   };
 166   enum {
 167     LG2_TYPE_LIMIT = 4,  // assert(TYPE_LIMIT <= (1<<LG2_TYPE_LIMIT))
 168 
 169     // handy categorizations of dependency types:
 170     all_types           = ((1 << TYPE_LIMIT) - 1) & ((-1) << FIRST_TYPE),
 171 
 172     non_klass_types     = (1 << call_site_target_value),
 173     klass_types         = all_types & ~non_klass_types,
 174 
 175     non_ctxk_types      = (1 << evol_method),
 176     implicit_ctxk_types = (1 << call_site_target_value),
 177     explicit_ctxk_types = all_types & ~(non_ctxk_types | implicit_ctxk_types),
 178 
 179     max_arg_count = 3,   // current maximum number of arguments (incl. ctxk)
 180 
 181     // A "context type" is a class or interface that
 182     // provides context for evaluating a dependency.
 183     // When present, it is one of the arguments (dep_context_arg).
 184     //
 185     // If a dependency does not have a context type, there is a
 186     // default context, depending on the type of the dependency.
 187     // This bit signals that a default context has been compressed away.
 188     default_context_type_bit = (1<<LG2_TYPE_LIMIT)
 189   };
 190 
 191   static const char* dep_name(DepType dept);
 192   static int         dep_args(DepType dept);
 193 
 194   static bool is_klass_type(           DepType dept) { return dept_in_mask(dept, klass_types        ); }
 195 
 196   static bool has_explicit_context_arg(DepType dept) { return dept_in_mask(dept, explicit_ctxk_types); }
 197   static bool has_implicit_context_arg(DepType dept) { return dept_in_mask(dept, implicit_ctxk_types); }
 198 
 199   static int           dep_context_arg(DepType dept) { return has_explicit_context_arg(dept) ? 0 : -1; }
 200   static int  dep_implicit_context_arg(DepType dept) { return has_implicit_context_arg(dept) ? 0 : -1; }
 201 
 202   static void check_valid_dependency_type(DepType dept);
 203 
 204  private:
 205   // State for writing a new set of dependencies:
 206   GrowableArray<int>*       _dep_seen;  // (seen[h->ident] & (1<<dept))
 207   GrowableArray<ciBaseObject*>*  _deps[TYPE_LIMIT];
 208 
 209   static const char* _dep_name[TYPE_LIMIT];
 210   static int         _dep_args[TYPE_LIMIT];
 211 
 212   static bool dept_in_mask(DepType dept, int mask) {
 213     return (int)dept >= 0 && dept < TYPE_LIMIT && ((1<<dept) & mask) != 0;
 214   }
 215 
 216   bool note_dep_seen(int dept, ciBaseObject* x) {
 217     assert(dept < BitsPerInt, "oob");
 218     int x_id = x->ident();
 219     assert(_dep_seen != NULL, "deps must be writable");
 220     int seen = _dep_seen->at_grow(x_id, 0);
 221     _dep_seen->at_put(x_id, seen | (1<<dept));
 222     // return true if we've already seen dept/x
 223     return (seen & (1<<dept)) != 0;
 224   }
 225 
 226   bool maybe_merge_ctxk(GrowableArray<ciBaseObject*>* deps,
 227                         int ctxk_i, ciKlass* ctxk);
 228 
 229   void sort_all_deps();
 230   size_t estimate_size_in_bytes();
 231 
 232   // Initialize _deps, etc.
 233   void initialize(ciEnv* env);
 234 
 235   // State for making a new set of dependencies:
 236   OopRecorder* _oop_recorder;
 237 
 238   // Logging support
 239   CompileLog* _log;
 240 
 241   address  _content_bytes;  // everything but the oop references, encoded
 242   size_t   _size_in_bytes;
 243 
 244  public:
 245   // Make a new empty dependencies set.
 246   Dependencies(ciEnv* env) {
 247     initialize(env);
 248   }
 249 
 250  private:
 251   // Check for a valid context type.
 252   // Enforce the restriction against array types.
 253   static void check_ctxk(ciKlass* ctxk) {
 254     assert(ctxk->is_instance_klass(), "java types only");
 255   }
 256   static void check_ctxk_concrete(ciKlass* ctxk) {
 257     assert(is_concrete_klass(ctxk->as_instance_klass()), "must be concrete");
 258   }
 259   static void check_ctxk_abstract(ciKlass* ctxk) {
 260     check_ctxk(ctxk);
 261     assert(!is_concrete_klass(ctxk->as_instance_klass()), "must be abstract");
 262   }
 263 
 264   void assert_common_1(DepType dept, ciBaseObject* x);
 265   void assert_common_2(DepType dept, ciBaseObject* x0, ciBaseObject* x1);
 266   void assert_common_3(DepType dept, ciKlass* ctxk, ciBaseObject* x1, ciBaseObject* x2);
 267 
 268  public:
 269   // Adding assertions to a new dependency set at compile time:
 270   void assert_evol_method(ciMethod* m);
 271   void assert_leaf_type(ciKlass* ctxk);
 272   void assert_abstract_with_unique_concrete_subtype(ciKlass* ctxk, ciKlass* conck);
 273   void assert_abstract_with_no_concrete_subtype(ciKlass* ctxk);
 274   void assert_concrete_with_no_concrete_subtype(ciKlass* ctxk);
 275   void assert_unique_concrete_method(ciKlass* ctxk, ciMethod* uniqm);
 276   void assert_abstract_with_exclusive_concrete_subtypes(ciKlass* ctxk, ciKlass* k1, ciKlass* k2);
 277   void assert_exclusive_concrete_methods(ciKlass* ctxk, ciMethod* m1, ciMethod* m2);
 278   void assert_has_no_finalizable_subclasses(ciKlass* ctxk);
 279   void assert_call_site_target_value(ciCallSite* call_site, ciMethodHandle* method_handle);
 280 
 281   // Define whether a given method or type is concrete.
 282   // These methods define the term "concrete" as used in this module.
 283   // For this module, an "abstract" class is one which is non-concrete.
 284   //
 285   // Future optimizations may allow some classes to remain
 286   // non-concrete until their first instantiation, and allow some
 287   // methods to remain non-concrete until their first invocation.
 288   // In that case, there would be a middle ground between concrete
 289   // and abstract (as defined by the Java language and VM).
 290   static bool is_concrete_klass(Klass* k);    // k is instantiable
 291   static bool is_concrete_method(Method* m);  // m is invocable
 292   static Klass* find_finalizable_subclass(Klass* k);
 293 
 294   // These versions of the concreteness queries work through the CI.
 295   // The CI versions are allowed to skew sometimes from the VM
 296   // (oop-based) versions.  The cost of such a difference is a
 297   // (safely) aborted compilation, or a deoptimization, or a missed
 298   // optimization opportunity.
 299   //
 300   // In order to prevent spurious assertions, query results must
 301   // remain stable within any single ciEnv instance.  (I.e., they must
 302   // not go back into the VM to get their value; they must cache the
 303   // bit in the CI, either eagerly or lazily.)
 304   static bool is_concrete_klass(ciInstanceKlass* k); // k appears instantiable
 305   static bool is_concrete_method(ciMethod* m);       // m appears invocable
 306   static bool has_finalizable_subclass(ciInstanceKlass* k);
 307 
 308   // As a general rule, it is OK to compile under the assumption that
 309   // a given type or method is concrete, even if it at some future
 310   // point becomes abstract.  So dependency checking is one-sided, in
 311   // that it permits supposedly concrete classes or methods to turn up
 312   // as really abstract.  (This shouldn't happen, except during class
 313   // evolution, but that's the logic of the checking.)  However, if a
 314   // supposedly abstract class or method suddenly becomes concrete, a
 315   // dependency on it must fail.
 316 
 317   // Checking old assertions at run-time (in the VM only):
 318   static Klass* check_evol_method(Method* m);
 319   static Klass* check_leaf_type(Klass* ctxk);
 320   static Klass* check_abstract_with_unique_concrete_subtype(Klass* ctxk, Klass* conck,
 321                                                               KlassDepChange* changes = NULL);
 322   static Klass* check_abstract_with_no_concrete_subtype(Klass* ctxk,
 323                                                           KlassDepChange* changes = NULL);
 324   static Klass* check_concrete_with_no_concrete_subtype(Klass* ctxk,
 325                                                           KlassDepChange* changes = NULL);
 326   static Klass* check_unique_concrete_method(Klass* ctxk, Method* uniqm,
 327                                                KlassDepChange* changes = NULL);
 328   static Klass* check_abstract_with_exclusive_concrete_subtypes(Klass* ctxk, Klass* k1, Klass* k2,
 329                                                                   KlassDepChange* changes = NULL);
 330   static Klass* check_exclusive_concrete_methods(Klass* ctxk, Method* m1, Method* m2,
 331                                                    KlassDepChange* changes = NULL);
 332   static Klass* check_has_no_finalizable_subclasses(Klass* ctxk, KlassDepChange* changes = NULL);
 333   static Klass* check_call_site_target_value(oop call_site, oop method_handle, CallSiteDepChange* changes = NULL);
 334   // A returned Klass* is NULL if the dependency assertion is still
 335   // valid.  A non-NULL Klass* is a 'witness' to the assertion
 336   // failure, a point in the class hierarchy where the assertion has
 337   // been proven false.  For example, if check_leaf_type returns
 338   // non-NULL, the value is a subtype of the supposed leaf type.  This
 339   // witness value may be useful for logging the dependency failure.
 340   // Note that, when a dependency fails, there may be several possible
 341   // witnesses to the failure.  The value returned from the check_foo
 342   // method is chosen arbitrarily.
 343 
 344   // The 'changes' value, if non-null, requests a limited spot-check
 345   // near the indicated recent changes in the class hierarchy.
 346   // It is used by DepStream::spot_check_dependency_at.
 347 
 348   // Detecting possible new assertions:
 349   static Klass*    find_unique_concrete_subtype(Klass* ctxk);
 350   static Method*   find_unique_concrete_method(Klass* ctxk, Method* m);
 351   static int       find_exclusive_concrete_subtypes(Klass* ctxk, int klen, Klass* k[]);
 352   static int       find_exclusive_concrete_methods(Klass* ctxk, int mlen, Method* m[]);
 353 
 354   // Create the encoding which will be stored in an nmethod.
 355   void encode_content_bytes();
 356 
 357   address content_bytes() {
 358     assert(_content_bytes != NULL, "encode it first");
 359     return _content_bytes;
 360   }
 361   size_t size_in_bytes() {
 362     assert(_content_bytes != NULL, "encode it first");
 363     return _size_in_bytes;
 364   }
 365 
 366   OopRecorder* oop_recorder() { return _oop_recorder; }
 367   CompileLog*  log()          { return _log; }
 368 
 369   void copy_to(nmethod* nm);
 370 
 371   void log_all_dependencies();
 372   void log_dependency(DepType dept, int nargs, ciBaseObject* args[]) {
 373     write_dependency_to(log(), dept, nargs, args);
 374   }
 375   void log_dependency(DepType dept,
 376                       ciBaseObject* x0,
 377                       ciBaseObject* x1 = NULL,
 378                       ciBaseObject* x2 = NULL) {
 379     if (log() == NULL)  return;
 380     ciBaseObject* args[max_arg_count];
 381     args[0] = x0;
 382     args[1] = x1;
 383     args[2] = x2;
 384     assert(2 < max_arg_count, "");
 385     log_dependency(dept, dep_args(dept), args);
 386   }
 387 
 388   class DepArgument : public ResourceObj {
 389    private:
 390     bool  _is_oop;
 391     bool  _valid;
 392     void* _value;
 393    public:
 394     DepArgument() : _is_oop(false), _value(NULL), _valid(false) {}
 395     DepArgument(oop v): _is_oop(true), _value(v), _valid(true) {}
 396     DepArgument(Metadata* v): _is_oop(false), _value(v), _valid(true) {}
 397 
 398     bool is_null() const               { return _value == NULL; }
 399     bool is_oop() const                { return _is_oop; }
 400     bool is_metadata() const           { return !_is_oop; }
 401     bool is_klass() const              { return is_metadata() && metadata_value()->is_klass(); }
 402     bool is_method() const              { return is_metadata() && metadata_value()->is_method(); }
 403 
 404     oop oop_value() const              { assert(_is_oop && _valid, "must be"); return (oop) _value; }
 405     Metadata* metadata_value() const { assert(!_is_oop && _valid, "must be"); return (Metadata*) _value; }
 406   };
 407 
 408   static void write_dependency_to(CompileLog* log,
 409                                   DepType dept,
 410                                   int nargs, ciBaseObject* args[],
 411                                   Klass* witness = NULL);
 412   static void write_dependency_to(CompileLog* log,
 413                                   DepType dept,
 414                                   int nargs, DepArgument args[],
 415                                   Klass* witness = NULL);
 416   static void write_dependency_to(xmlStream* xtty,
 417                                   DepType dept,
 418                                   int nargs, DepArgument args[],
 419                                   Klass* witness = NULL);
 420   static void print_dependency(DepType dept,
 421                                int nargs, DepArgument args[],
 422                                Klass* witness = NULL);
 423 
 424  private:
 425   // helper for encoding common context types as zero:
 426   static ciKlass* ctxk_encoded_as_null(DepType dept, ciBaseObject* x);
 427 
 428   static Klass* ctxk_encoded_as_null(DepType dept, Metadata* x);
 429 
 430  public:
 431   // Use this to iterate over an nmethod's dependency set.
 432   // Works on new and old dependency sets.
 433   // Usage:
 434   //
 435   // ;
 436   // Dependencies::DepType dept;
 437   // for (Dependencies::DepStream deps(nm); deps.next(); ) {
 438   //   ...
 439   // }
 440   //
 441   // The caller must be in the VM, since oops are not wrapped in handles.
 442   class DepStream {
 443   private:
 444     nmethod*              _code;   // null if in a compiler thread
 445     Dependencies*         _deps;   // null if not in a compiler thread
 446     CompressedReadStream  _bytes;
 447 #ifdef ASSERT
 448     size_t                _byte_limit;
 449 #endif
 450 
 451     // iteration variables:
 452     DepType               _type;
 453     int                   _xi[max_arg_count+1];
 454 
 455     void initial_asserts(size_t byte_limit) NOT_DEBUG({});
 456 
 457     inline Metadata* recorded_metadata_at(int i);
 458     inline oop recorded_oop_at(int i);
 459 
 460     Klass* check_klass_dependency(KlassDepChange* changes);
 461     Klass* check_call_site_dependency(CallSiteDepChange* changes);
 462 
 463     void trace_and_log_witness(Klass* witness);
 464 
 465   public:
 466     DepStream(Dependencies* deps)
 467       : _deps(deps),
 468         _code(NULL),
 469         _bytes(deps->content_bytes())
 470     {
 471       initial_asserts(deps->size_in_bytes());
 472     }
 473     DepStream(nmethod* code)
 474       : _deps(NULL),
 475         _code(code),
 476         _bytes(code->dependencies_begin())
 477     {
 478       initial_asserts(code->dependencies_size());
 479     }
 480 
 481     bool next();
 482 
 483     DepType type()               { return _type; }
 484     bool has_oop_argument()      { return type() == call_site_target_value; }
 485     uintptr_t get_identifier(int i);
 486 
 487     int argument_count()         { return dep_args(type()); }
 488     int argument_index(int i)    { assert(0 <= i && i < argument_count(), "oob");
 489                                    return _xi[i]; }
 490     Metadata* argument(int i);     // => recorded_oop_at(argument_index(i))
 491     oop argument_oop(int i);         // => recorded_oop_at(argument_index(i))
 492     Klass* context_type();
 493 
 494     bool is_klass_type()         { return Dependencies::is_klass_type(type()); }
 495 
 496     Method* method_argument(int i) {
 497       Metadata* x = argument(i);
 498       assert(x->is_method(), "type");
 499       return (Method*) x;
 500     }
 501     Klass* type_argument(int i) {
 502       Metadata* x = argument(i);
 503       assert(x->is_klass(), "type");
 504       return (Klass*) x;
 505     }
 506 
 507     // The point of the whole exercise:  Is this dep still OK?
 508     Klass* check_dependency() {
 509       Klass* result = check_klass_dependency(NULL);
 510       if (result != NULL)  return result;
 511       return check_call_site_dependency(NULL);
 512     }
 513 
 514     // A lighter version:  Checks only around recent changes in a class
 515     // hierarchy.  (See Universe::flush_dependents_on.)
 516     Klass* spot_check_dependency_at(DepChange& changes);
 517 
 518     // Log the current dependency to xtty or compilation log.
 519     void log_dependency(Klass* witness = NULL);
 520 
 521     // Print the current dependency to tty.
 522     void print_dependency(Klass* witness = NULL, bool verbose = false);
 523   };
 524   friend class Dependencies::DepStream;
 525 
 526   static void print_statistics() PRODUCT_RETURN;
 527 };
 528 
 529 
 530 class DependencySignature : public GenericHashtableEntry<DependencySignature, ResourceObj> {
 531  private:
 532   int                   _args_count;
 533   uintptr_t             _argument_hash[Dependencies::max_arg_count];
 534   Dependencies::DepType _type;
 535 
 536  public:
 537   DependencySignature(Dependencies::DepStream& dep) {
 538     _args_count = dep.argument_count();
 539     _type = dep.type();
 540     for (int i = 0; i < _args_count; i++) {
 541       _argument_hash[i] = dep.get_identifier(i);
 542     }
 543   }
 544 
 545   bool equals(DependencySignature* sig) const;
 546   uintptr_t hash() const { return _argument_hash[0] >> 2; }
 547 
 548   int args_count()             const { return _args_count; }
 549   uintptr_t arg(int idx)       const { return _argument_hash[idx]; }
 550   Dependencies::DepType type() const { return _type; }
 551 };
 552 
 553 
 554 // Every particular DepChange is a sub-class of this class.
 555 class DepChange : public StackObj {
 556  public:
 557   // What kind of DepChange is this?
 558   virtual bool is_klass_change()     const { return false; }
 559   virtual bool is_call_site_change() const { return false; }
 560 
 561   // Subclass casting with assertions.
 562   KlassDepChange*    as_klass_change() {
 563     assert(is_klass_change(), "bad cast");
 564     return (KlassDepChange*) this;
 565   }
 566   CallSiteDepChange* as_call_site_change() {
 567     assert(is_call_site_change(), "bad cast");
 568     return (CallSiteDepChange*) this;
 569   }
 570 
 571   void print();
 572 
 573  public:
 574   enum ChangeType {
 575     NO_CHANGE = 0,              // an uninvolved klass
 576     Change_new_type,            // a newly loaded type
 577     Change_new_sub,             // a super with a new subtype
 578     Change_new_impl,            // an interface with a new implementation
 579     CHANGE_LIMIT,
 580     Start_Klass = CHANGE_LIMIT  // internal indicator for ContextStream
 581   };
 582 
 583   // Usage:
 584   // for (DepChange::ContextStream str(changes); str.next(); ) {
 585   //   Klass* k = str.klass();
 586   //   switch (str.change_type()) {
 587   //     ...
 588   //   }
 589   // }
 590   class ContextStream : public StackObj {
 591    private:
 592     DepChange&  _changes;
 593     friend class DepChange;
 594 
 595     // iteration variables:
 596     ChangeType  _change_type;
 597     Klass*      _klass;
 598     Array<Klass*>* _ti_base;    // i.e., transitive_interfaces
 599     int         _ti_index;
 600     int         _ti_limit;
 601 
 602     // start at the beginning:
 603     void start();
 604 
 605    public:
 606     ContextStream(DepChange& changes)
 607       : _changes(changes)
 608     { start(); }
 609 
 610     ContextStream(DepChange& changes, No_Safepoint_Verifier& nsv)
 611       : _changes(changes)
 612       // the nsv argument makes it safe to hold oops like _klass
 613     { start(); }
 614 
 615     bool next();
 616 
 617     ChangeType change_type()     { return _change_type; }
 618     Klass*     klass()           { return _klass; }
 619   };
 620   friend class DepChange::ContextStream;
 621 };
 622 
 623 
 624 // A class hierarchy change coming through the VM (under the Compile_lock).
 625 // The change is structured as a single new type with any number of supers
 626 // and implemented interface types.  Other than the new type, any of the
 627 // super types can be context types for a relevant dependency, which the
 628 // new type could invalidate.
 629 class KlassDepChange : public DepChange {
 630  private:
 631   // each change set is rooted in exactly one new type (at present):
 632   KlassHandle _new_type;
 633 
 634   void initialize();
 635 
 636  public:
 637   // notes the new type, marks it and all its super-types
 638   KlassDepChange(KlassHandle new_type)
 639     : _new_type(new_type)
 640   {
 641     initialize();
 642   }
 643 
 644   // cleans up the marks
 645   ~KlassDepChange();
 646 
 647   // What kind of DepChange is this?
 648   virtual bool is_klass_change() const { return true; }
 649 
 650   Klass* new_type() { return _new_type(); }
 651 
 652   // involves_context(k) is true if k is new_type or any of the super types
 653   bool involves_context(Klass* k);
 654 };
 655 
 656 
 657 // A CallSite has changed its target.
 658 class CallSiteDepChange : public DepChange {
 659  private:
 660   Handle _call_site;
 661   Handle _method_handle;
 662 
 663  public:
 664   CallSiteDepChange(Handle call_site, Handle method_handle)
 665     : _call_site(call_site),
 666       _method_handle(method_handle)
 667   {
 668     assert(_call_site()    ->is_a(SystemDictionary::CallSite_klass()),     "must be");
 669     assert(_method_handle()->is_a(SystemDictionary::MethodHandle_klass()), "must be");
 670   }
 671 
 672   // What kind of DepChange is this?
 673   virtual bool is_call_site_change() const { return true; }
 674 
 675   oop call_site()     const { return _call_site();     }
 676   oop method_handle() const { return _method_handle(); }
 677 };
 678 
 679 #endif // SHARE_VM_CODE_DEPENDENCIES_HPP