1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "memory/allocation.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "opto/addnode.hpp"
  31 #include "opto/cfgnode.hpp"
  32 #include "opto/compile.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/loopnode.hpp"
  36 #include "opto/machnode.hpp"
  37 #include "opto/matcher.hpp"
  38 #include "opto/memnode.hpp"
  39 #include "opto/mulnode.hpp"
  40 #include "opto/narrowptrnode.hpp"
  41 #include "opto/phaseX.hpp"
  42 #include "opto/regmask.hpp"
  43 
  44 // Portions of code courtesy of Clifford Click
  45 
  46 // Optimization - Graph Style
  47 
  48 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st);
  49 
  50 //=============================================================================
  51 uint MemNode::size_of() const { return sizeof(*this); }
  52 
  53 const TypePtr *MemNode::adr_type() const {
  54   Node* adr = in(Address);
  55   const TypePtr* cross_check = NULL;
  56   DEBUG_ONLY(cross_check = _adr_type);
  57   return calculate_adr_type(adr->bottom_type(), cross_check);
  58 }
  59 
  60 #ifndef PRODUCT
  61 void MemNode::dump_spec(outputStream *st) const {
  62   if (in(Address) == NULL)  return; // node is dead
  63 #ifndef ASSERT
  64   // fake the missing field
  65   const TypePtr* _adr_type = NULL;
  66   if (in(Address) != NULL)
  67     _adr_type = in(Address)->bottom_type()->isa_ptr();
  68 #endif
  69   dump_adr_type(this, _adr_type, st);
  70 
  71   Compile* C = Compile::current();
  72   if( C->alias_type(_adr_type)->is_volatile() )
  73     st->print(" Volatile!");
  74 }
  75 
  76 void MemNode::dump_adr_type(const Node* mem, const TypePtr* adr_type, outputStream *st) {
  77   st->print(" @");
  78   if (adr_type == NULL) {
  79     st->print("NULL");
  80   } else {
  81     adr_type->dump_on(st);
  82     Compile* C = Compile::current();
  83     Compile::AliasType* atp = NULL;
  84     if (C->have_alias_type(adr_type))  atp = C->alias_type(adr_type);
  85     if (atp == NULL)
  86       st->print(", idx=?\?;");
  87     else if (atp->index() == Compile::AliasIdxBot)
  88       st->print(", idx=Bot;");
  89     else if (atp->index() == Compile::AliasIdxTop)
  90       st->print(", idx=Top;");
  91     else if (atp->index() == Compile::AliasIdxRaw)
  92       st->print(", idx=Raw;");
  93     else {
  94       ciField* field = atp->field();
  95       if (field) {
  96         st->print(", name=");
  97         field->print_name_on(st);
  98       }
  99       st->print(", idx=%d;", atp->index());
 100     }
 101   }
 102 }
 103 
 104 extern void print_alias_types();
 105 
 106 #endif
 107 
 108 Node *MemNode::optimize_simple_memory_chain(Node *mchain, const TypeOopPtr *t_oop, Node *load, PhaseGVN *phase) {
 109   assert((t_oop != NULL), "sanity");
 110   bool is_instance = t_oop->is_known_instance_field();
 111   bool is_boxed_value_load = t_oop->is_ptr_to_boxed_value() &&
 112                              (load != NULL) && load->is_Load() &&
 113                              (phase->is_IterGVN() != NULL);
 114   if (!(is_instance || is_boxed_value_load))
 115     return mchain;  // don't try to optimize non-instance types
 116   uint instance_id = t_oop->instance_id();
 117   Node *start_mem = phase->C->start()->proj_out(TypeFunc::Memory);
 118   Node *prev = NULL;
 119   Node *result = mchain;
 120   while (prev != result) {
 121     prev = result;
 122     if (result == start_mem)
 123       break;  // hit one of our sentinels
 124     // skip over a call which does not affect this memory slice
 125     if (result->is_Proj() && result->as_Proj()->_con == TypeFunc::Memory) {
 126       Node *proj_in = result->in(0);
 127       if (proj_in->is_Allocate() && proj_in->_idx == instance_id) {
 128         break;  // hit one of our sentinels
 129       } else if (proj_in->is_Call()) {
 130         CallNode *call = proj_in->as_Call();
 131         if (!call->may_modify(t_oop, phase)) { // returns false for instances
 132           result = call->in(TypeFunc::Memory);
 133         }
 134       } else if (proj_in->is_Initialize()) {
 135         AllocateNode* alloc = proj_in->as_Initialize()->allocation();
 136         // Stop if this is the initialization for the object instance which
 137         // which contains this memory slice, otherwise skip over it.
 138         if ((alloc == NULL) || (alloc->_idx == instance_id)) {
 139           break;
 140         }
 141         if (is_instance) {
 142           result = proj_in->in(TypeFunc::Memory);
 143         } else if (is_boxed_value_load) {
 144           Node* klass = alloc->in(AllocateNode::KlassNode);
 145           const TypeKlassPtr* tklass = phase->type(klass)->is_klassptr();
 146           if (tklass->klass_is_exact() && !tklass->klass()->equals(t_oop->klass())) {
 147             result = proj_in->in(TypeFunc::Memory); // not related allocation
 148           }
 149         }
 150       } else if (proj_in->is_MemBar()) {
 151         result = proj_in->in(TypeFunc::Memory);
 152       } else {
 153         assert(false, "unexpected projection");
 154       }
 155     } else if (result->is_ClearArray()) {
 156       if (!is_instance || !ClearArrayNode::step_through(&result, instance_id, phase)) {
 157         // Can not bypass initialization of the instance
 158         // we are looking for.
 159         break;
 160       }
 161       // Otherwise skip it (the call updated 'result' value).
 162     } else if (result->is_MergeMem()) {
 163       result = step_through_mergemem(phase, result->as_MergeMem(), t_oop, NULL, tty);
 164     }
 165   }
 166   return result;
 167 }
 168 
 169 Node *MemNode::optimize_memory_chain(Node *mchain, const TypePtr *t_adr, Node *load, PhaseGVN *phase) {
 170   const TypeOopPtr* t_oop = t_adr->isa_oopptr();
 171   if (t_oop == NULL)
 172     return mchain;  // don't try to optimize non-oop types
 173   Node* result = optimize_simple_memory_chain(mchain, t_oop, load, phase);
 174   bool is_instance = t_oop->is_known_instance_field();
 175   PhaseIterGVN *igvn = phase->is_IterGVN();
 176   if (is_instance && igvn != NULL  && result->is_Phi()) {
 177     PhiNode *mphi = result->as_Phi();
 178     assert(mphi->bottom_type() == Type::MEMORY, "memory phi required");
 179     const TypePtr *t = mphi->adr_type();
 180     if (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 181         t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 182         t->is_oopptr()->cast_to_exactness(true)
 183          ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 184          ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop) {
 185       // clone the Phi with our address type
 186       result = mphi->split_out_instance(t_adr, igvn);
 187     } else {
 188       assert(phase->C->get_alias_index(t) == phase->C->get_alias_index(t_adr), "correct memory chain");
 189     }
 190   }
 191   return result;
 192 }
 193 
 194 static Node *step_through_mergemem(PhaseGVN *phase, MergeMemNode *mmem,  const TypePtr *tp, const TypePtr *adr_check, outputStream *st) {
 195   uint alias_idx = phase->C->get_alias_index(tp);
 196   Node *mem = mmem;
 197 #ifdef ASSERT
 198   {
 199     // Check that current type is consistent with the alias index used during graph construction
 200     assert(alias_idx >= Compile::AliasIdxRaw, "must not be a bad alias_idx");
 201     bool consistent =  adr_check == NULL || adr_check->empty() ||
 202                        phase->C->must_alias(adr_check, alias_idx );
 203     // Sometimes dead array references collapse to a[-1], a[-2], or a[-3]
 204     if( !consistent && adr_check != NULL && !adr_check->empty() &&
 205                tp->isa_aryptr() &&        tp->offset() == Type::OffsetBot &&
 206         adr_check->isa_aryptr() && adr_check->offset() != Type::OffsetBot &&
 207         ( adr_check->offset() == arrayOopDesc::length_offset_in_bytes() ||
 208           adr_check->offset() == oopDesc::klass_offset_in_bytes() ||
 209           adr_check->offset() == oopDesc::mark_offset_in_bytes() ) ) {
 210       // don't assert if it is dead code.
 211       consistent = true;
 212     }
 213     if( !consistent ) {
 214       st->print("alias_idx==%d, adr_check==", alias_idx);
 215       if( adr_check == NULL ) {
 216         st->print("NULL");
 217       } else {
 218         adr_check->dump();
 219       }
 220       st->cr();
 221       print_alias_types();
 222       assert(consistent, "adr_check must match alias idx");
 223     }
 224   }
 225 #endif
 226   // TypeOopPtr::NOTNULL+any is an OOP with unknown offset - generally
 227   // means an array I have not precisely typed yet.  Do not do any
 228   // alias stuff with it any time soon.
 229   const TypeOopPtr *toop = tp->isa_oopptr();
 230   if( tp->base() != Type::AnyPtr &&
 231       !(toop &&
 232         toop->klass() != NULL &&
 233         toop->klass()->is_java_lang_Object() &&
 234         toop->offset() == Type::OffsetBot) ) {
 235     // compress paths and change unreachable cycles to TOP
 236     // If not, we can update the input infinitely along a MergeMem cycle
 237     // Equivalent code in PhiNode::Ideal
 238     Node* m  = phase->transform(mmem);
 239     // If transformed to a MergeMem, get the desired slice
 240     // Otherwise the returned node represents memory for every slice
 241     mem = (m->is_MergeMem())? m->as_MergeMem()->memory_at(alias_idx) : m;
 242     // Update input if it is progress over what we have now
 243   }
 244   return mem;
 245 }
 246 
 247 //--------------------------Ideal_common---------------------------------------
 248 // Look for degenerate control and memory inputs.  Bypass MergeMem inputs.
 249 // Unhook non-raw memories from complete (macro-expanded) initializations.
 250 Node *MemNode::Ideal_common(PhaseGVN *phase, bool can_reshape) {
 251   // If our control input is a dead region, kill all below the region
 252   Node *ctl = in(MemNode::Control);
 253   if (ctl && remove_dead_region(phase, can_reshape))
 254     return this;
 255   ctl = in(MemNode::Control);
 256   // Don't bother trying to transform a dead node
 257   if (ctl && ctl->is_top())  return NodeSentinel;
 258 
 259   PhaseIterGVN *igvn = phase->is_IterGVN();
 260   // Wait if control on the worklist.
 261   if (ctl && can_reshape && igvn != NULL) {
 262     Node* bol = NULL;
 263     Node* cmp = NULL;
 264     if (ctl->in(0)->is_If()) {
 265       assert(ctl->is_IfTrue() || ctl->is_IfFalse(), "sanity");
 266       bol = ctl->in(0)->in(1);
 267       if (bol->is_Bool())
 268         cmp = ctl->in(0)->in(1)->in(1);
 269     }
 270     if (igvn->_worklist.member(ctl) ||
 271         (bol != NULL && igvn->_worklist.member(bol)) ||
 272         (cmp != NULL && igvn->_worklist.member(cmp)) ) {
 273       // This control path may be dead.
 274       // Delay this memory node transformation until the control is processed.
 275       phase->is_IterGVN()->_worklist.push(this);
 276       return NodeSentinel; // caller will return NULL
 277     }
 278   }
 279   // Ignore if memory is dead, or self-loop
 280   Node *mem = in(MemNode::Memory);
 281   if (phase->type( mem ) == Type::TOP) return NodeSentinel; // caller will return NULL
 282   assert(mem != this, "dead loop in MemNode::Ideal");
 283 
 284   if (can_reshape && igvn != NULL && igvn->_worklist.member(mem)) {
 285     // This memory slice may be dead.
 286     // Delay this mem node transformation until the memory is processed.
 287     phase->is_IterGVN()->_worklist.push(this);
 288     return NodeSentinel; // caller will return NULL
 289   }
 290 
 291   Node *address = in(MemNode::Address);
 292   const Type *t_adr = phase->type(address);
 293   if (t_adr == Type::TOP)              return NodeSentinel; // caller will return NULL
 294 
 295   if (can_reshape && igvn != NULL &&
 296       (igvn->_worklist.member(address) ||
 297        igvn->_worklist.size() > 0 && (t_adr != adr_type())) ) {
 298     // The address's base and type may change when the address is processed.
 299     // Delay this mem node transformation until the address is processed.
 300     phase->is_IterGVN()->_worklist.push(this);
 301     return NodeSentinel; // caller will return NULL
 302   }
 303 
 304   // Do NOT remove or optimize the next lines: ensure a new alias index
 305   // is allocated for an oop pointer type before Escape Analysis.
 306   // Note: C++ will not remove it since the call has side effect.
 307   if (t_adr->isa_oopptr()) {
 308     int alias_idx = phase->C->get_alias_index(t_adr->is_ptr());
 309   }
 310 
 311   Node* base = NULL;
 312   if (address->is_AddP()) {
 313     base = address->in(AddPNode::Base);
 314   }
 315   if (base != NULL && phase->type(base)->higher_equal(TypePtr::NULL_PTR) &&
 316       !t_adr->isa_rawptr()) {
 317     // Note: raw address has TOP base and top->higher_equal(TypePtr::NULL_PTR) is true.
 318     // Skip this node optimization if its address has TOP base.
 319     return NodeSentinel; // caller will return NULL
 320   }
 321 
 322   // Avoid independent memory operations
 323   Node* old_mem = mem;
 324 
 325   // The code which unhooks non-raw memories from complete (macro-expanded)
 326   // initializations was removed. After macro-expansion all stores catched
 327   // by Initialize node became raw stores and there is no information
 328   // which memory slices they modify. So it is unsafe to move any memory
 329   // operation above these stores. Also in most cases hooked non-raw memories
 330   // were already unhooked by using information from detect_ptr_independence()
 331   // and find_previous_store().
 332 
 333   if (mem->is_MergeMem()) {
 334     MergeMemNode* mmem = mem->as_MergeMem();
 335     const TypePtr *tp = t_adr->is_ptr();
 336 
 337     mem = step_through_mergemem(phase, mmem, tp, adr_type(), tty);
 338   }
 339 
 340   if (mem != old_mem) {
 341     set_req(MemNode::Memory, mem);
 342     if (can_reshape && old_mem->outcnt() == 0) {
 343         igvn->_worklist.push(old_mem);
 344     }
 345     if (phase->type( mem ) == Type::TOP) return NodeSentinel;
 346     return this;
 347   }
 348 
 349   // let the subclass continue analyzing...
 350   return NULL;
 351 }
 352 
 353 // Helper function for proving some simple control dominations.
 354 // Attempt to prove that all control inputs of 'dom' dominate 'sub'.
 355 // Already assumes that 'dom' is available at 'sub', and that 'sub'
 356 // is not a constant (dominated by the method's StartNode).
 357 // Used by MemNode::find_previous_store to prove that the
 358 // control input of a memory operation predates (dominates)
 359 // an allocation it wants to look past.
 360 bool MemNode::all_controls_dominate(Node* dom, Node* sub) {
 361   if (dom == NULL || dom->is_top() || sub == NULL || sub->is_top())
 362     return false; // Conservative answer for dead code
 363 
 364   // Check 'dom'. Skip Proj and CatchProj nodes.
 365   dom = dom->find_exact_control(dom);
 366   if (dom == NULL || dom->is_top())
 367     return false; // Conservative answer for dead code
 368 
 369   if (dom == sub) {
 370     // For the case when, for example, 'sub' is Initialize and the original
 371     // 'dom' is Proj node of the 'sub'.
 372     return false;
 373   }
 374 
 375   if (dom->is_Con() || dom->is_Start() || dom->is_Root() || dom == sub)
 376     return true;
 377 
 378   // 'dom' dominates 'sub' if its control edge and control edges
 379   // of all its inputs dominate or equal to sub's control edge.
 380 
 381   // Currently 'sub' is either Allocate, Initialize or Start nodes.
 382   // Or Region for the check in LoadNode::Ideal();
 383   // 'sub' should have sub->in(0) != NULL.
 384   assert(sub->is_Allocate() || sub->is_Initialize() || sub->is_Start() ||
 385          sub->is_Region() || sub->is_Call(), "expecting only these nodes");
 386 
 387   // Get control edge of 'sub'.
 388   Node* orig_sub = sub;
 389   sub = sub->find_exact_control(sub->in(0));
 390   if (sub == NULL || sub->is_top())
 391     return false; // Conservative answer for dead code
 392 
 393   assert(sub->is_CFG(), "expecting control");
 394 
 395   if (sub == dom)
 396     return true;
 397 
 398   if (sub->is_Start() || sub->is_Root())
 399     return false;
 400 
 401   {
 402     // Check all control edges of 'dom'.
 403 
 404     ResourceMark rm;
 405     Arena* arena = Thread::current()->resource_area();
 406     Node_List nlist(arena);
 407     Unique_Node_List dom_list(arena);
 408 
 409     dom_list.push(dom);
 410     bool only_dominating_controls = false;
 411 
 412     for (uint next = 0; next < dom_list.size(); next++) {
 413       Node* n = dom_list.at(next);
 414       if (n == orig_sub)
 415         return false; // One of dom's inputs dominated by sub.
 416       if (!n->is_CFG() && n->pinned()) {
 417         // Check only own control edge for pinned non-control nodes.
 418         n = n->find_exact_control(n->in(0));
 419         if (n == NULL || n->is_top())
 420           return false; // Conservative answer for dead code
 421         assert(n->is_CFG(), "expecting control");
 422         dom_list.push(n);
 423       } else if (n->is_Con() || n->is_Start() || n->is_Root()) {
 424         only_dominating_controls = true;
 425       } else if (n->is_CFG()) {
 426         if (n->dominates(sub, nlist))
 427           only_dominating_controls = true;
 428         else
 429           return false;
 430       } else {
 431         // First, own control edge.
 432         Node* m = n->find_exact_control(n->in(0));
 433         if (m != NULL) {
 434           if (m->is_top())
 435             return false; // Conservative answer for dead code
 436           dom_list.push(m);
 437         }
 438         // Now, the rest of edges.
 439         uint cnt = n->req();
 440         for (uint i = 1; i < cnt; i++) {
 441           m = n->find_exact_control(n->in(i));
 442           if (m == NULL || m->is_top())
 443             continue;
 444           dom_list.push(m);
 445         }
 446       }
 447     }
 448     return only_dominating_controls;
 449   }
 450 }
 451 
 452 //---------------------detect_ptr_independence---------------------------------
 453 // Used by MemNode::find_previous_store to prove that two base
 454 // pointers are never equal.
 455 // The pointers are accompanied by their associated allocations,
 456 // if any, which have been previously discovered by the caller.
 457 bool MemNode::detect_ptr_independence(Node* p1, AllocateNode* a1,
 458                                       Node* p2, AllocateNode* a2,
 459                                       PhaseTransform* phase) {
 460   // Attempt to prove that these two pointers cannot be aliased.
 461   // They may both manifestly be allocations, and they should differ.
 462   // Or, if they are not both allocations, they can be distinct constants.
 463   // Otherwise, one is an allocation and the other a pre-existing value.
 464   if (a1 == NULL && a2 == NULL) {           // neither an allocation
 465     return (p1 != p2) && p1->is_Con() && p2->is_Con();
 466   } else if (a1 != NULL && a2 != NULL) {    // both allocations
 467     return (a1 != a2);
 468   } else if (a1 != NULL) {                  // one allocation a1
 469     // (Note:  p2->is_Con implies p2->in(0)->is_Root, which dominates.)
 470     return all_controls_dominate(p2, a1);
 471   } else { //(a2 != NULL)                   // one allocation a2
 472     return all_controls_dominate(p1, a2);
 473   }
 474   return false;
 475 }
 476 
 477 
 478 // The logic for reordering loads and stores uses four steps:
 479 // (a) Walk carefully past stores and initializations which we
 480 //     can prove are independent of this load.
 481 // (b) Observe that the next memory state makes an exact match
 482 //     with self (load or store), and locate the relevant store.
 483 // (c) Ensure that, if we were to wire self directly to the store,
 484 //     the optimizer would fold it up somehow.
 485 // (d) Do the rewiring, and return, depending on some other part of
 486 //     the optimizer to fold up the load.
 487 // This routine handles steps (a) and (b).  Steps (c) and (d) are
 488 // specific to loads and stores, so they are handled by the callers.
 489 // (Currently, only LoadNode::Ideal has steps (c), (d).  More later.)
 490 //
 491 Node* MemNode::find_previous_store(PhaseTransform* phase) {
 492   Node*         ctrl   = in(MemNode::Control);
 493   Node*         adr    = in(MemNode::Address);
 494   intptr_t      offset = 0;
 495   Node*         base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
 496   AllocateNode* alloc  = AllocateNode::Ideal_allocation(base, phase);
 497 
 498   if (offset == Type::OffsetBot)
 499     return NULL;            // cannot unalias unless there are precise offsets
 500 
 501   const TypeOopPtr *addr_t = adr->bottom_type()->isa_oopptr();
 502 
 503   intptr_t size_in_bytes = memory_size();
 504 
 505   Node* mem = in(MemNode::Memory);   // start searching here...
 506 
 507   int cnt = 50;             // Cycle limiter
 508   for (;;) {                // While we can dance past unrelated stores...
 509     if (--cnt < 0)  break;  // Caught in cycle or a complicated dance?
 510 
 511     if (mem->is_Store()) {
 512       Node* st_adr = mem->in(MemNode::Address);
 513       intptr_t st_offset = 0;
 514       Node* st_base = AddPNode::Ideal_base_and_offset(st_adr, phase, st_offset);
 515       if (st_base == NULL)
 516         break;              // inscrutable pointer
 517       if (st_offset != offset && st_offset != Type::OffsetBot) {
 518         const int MAX_STORE = BytesPerLong;
 519         if (st_offset >= offset + size_in_bytes ||
 520             st_offset <= offset - MAX_STORE ||
 521             st_offset <= offset - mem->as_Store()->memory_size()) {
 522           // Success:  The offsets are provably independent.
 523           // (You may ask, why not just test st_offset != offset and be done?
 524           // The answer is that stores of different sizes can co-exist
 525           // in the same sequence of RawMem effects.  We sometimes initialize
 526           // a whole 'tile' of array elements with a single jint or jlong.)
 527           mem = mem->in(MemNode::Memory);
 528           continue;           // (a) advance through independent store memory
 529         }
 530       }
 531       if (st_base != base &&
 532           detect_ptr_independence(base, alloc,
 533                                   st_base,
 534                                   AllocateNode::Ideal_allocation(st_base, phase),
 535                                   phase)) {
 536         // Success:  The bases are provably independent.
 537         mem = mem->in(MemNode::Memory);
 538         continue;           // (a) advance through independent store memory
 539       }
 540 
 541       // (b) At this point, if the bases or offsets do not agree, we lose,
 542       // since we have not managed to prove 'this' and 'mem' independent.
 543       if (st_base == base && st_offset == offset) {
 544         return mem;         // let caller handle steps (c), (d)
 545       }
 546 
 547     } else if (mem->is_Proj() && mem->in(0)->is_Initialize()) {
 548       InitializeNode* st_init = mem->in(0)->as_Initialize();
 549       AllocateNode*  st_alloc = st_init->allocation();
 550       if (st_alloc == NULL)
 551         break;              // something degenerated
 552       bool known_identical = false;
 553       bool known_independent = false;
 554       if (alloc == st_alloc)
 555         known_identical = true;
 556       else if (alloc != NULL)
 557         known_independent = true;
 558       else if (all_controls_dominate(this, st_alloc))
 559         known_independent = true;
 560 
 561       if (known_independent) {
 562         // The bases are provably independent: Either they are
 563         // manifestly distinct allocations, or else the control
 564         // of this load dominates the store's allocation.
 565         int alias_idx = phase->C->get_alias_index(adr_type());
 566         if (alias_idx == Compile::AliasIdxRaw) {
 567           mem = st_alloc->in(TypeFunc::Memory);
 568         } else {
 569           mem = st_init->memory(alias_idx);
 570         }
 571         continue;           // (a) advance through independent store memory
 572       }
 573 
 574       // (b) at this point, if we are not looking at a store initializing
 575       // the same allocation we are loading from, we lose.
 576       if (known_identical) {
 577         // From caller, can_see_stored_value will consult find_captured_store.
 578         return mem;         // let caller handle steps (c), (d)
 579       }
 580 
 581     } else if (addr_t != NULL && addr_t->is_known_instance_field()) {
 582       // Can't use optimize_simple_memory_chain() since it needs PhaseGVN.
 583       if (mem->is_Proj() && mem->in(0)->is_Call()) {
 584         CallNode *call = mem->in(0)->as_Call();
 585         if (!call->may_modify(addr_t, phase)) {
 586           mem = call->in(TypeFunc::Memory);
 587           continue;         // (a) advance through independent call memory
 588         }
 589       } else if (mem->is_Proj() && mem->in(0)->is_MemBar()) {
 590         mem = mem->in(0)->in(TypeFunc::Memory);
 591         continue;           // (a) advance through independent MemBar memory
 592       } else if (mem->is_ClearArray()) {
 593         if (ClearArrayNode::step_through(&mem, (uint)addr_t->instance_id(), phase)) {
 594           // (the call updated 'mem' value)
 595           continue;         // (a) advance through independent allocation memory
 596         } else {
 597           // Can not bypass initialization of the instance
 598           // we are looking for.
 599           return mem;
 600         }
 601       } else if (mem->is_MergeMem()) {
 602         int alias_idx = phase->C->get_alias_index(adr_type());
 603         mem = mem->as_MergeMem()->memory_at(alias_idx);
 604         continue;           // (a) advance through independent MergeMem memory
 605       }
 606     }
 607 
 608     // Unless there is an explicit 'continue', we must bail out here,
 609     // because 'mem' is an inscrutable memory state (e.g., a call).
 610     break;
 611   }
 612 
 613   return NULL;              // bail out
 614 }
 615 
 616 //----------------------calculate_adr_type-------------------------------------
 617 // Helper function.  Notices when the given type of address hits top or bottom.
 618 // Also, asserts a cross-check of the type against the expected address type.
 619 const TypePtr* MemNode::calculate_adr_type(const Type* t, const TypePtr* cross_check) {
 620   if (t == Type::TOP)  return NULL; // does not touch memory any more?
 621   #ifdef PRODUCT
 622   cross_check = NULL;
 623   #else
 624   if (!VerifyAliases || is_error_reported() || Node::in_dump())  cross_check = NULL;
 625   #endif
 626   const TypePtr* tp = t->isa_ptr();
 627   if (tp == NULL) {
 628     assert(cross_check == NULL || cross_check == TypePtr::BOTTOM, "expected memory type must be wide");
 629     return TypePtr::BOTTOM;           // touches lots of memory
 630   } else {
 631     #ifdef ASSERT
 632     // %%%% [phh] We don't check the alias index if cross_check is
 633     //            TypeRawPtr::BOTTOM.  Needs to be investigated.
 634     if (cross_check != NULL &&
 635         cross_check != TypePtr::BOTTOM &&
 636         cross_check != TypeRawPtr::BOTTOM) {
 637       // Recheck the alias index, to see if it has changed (due to a bug).
 638       Compile* C = Compile::current();
 639       assert(C->get_alias_index(cross_check) == C->get_alias_index(tp),
 640              "must stay in the original alias category");
 641       // The type of the address must be contained in the adr_type,
 642       // disregarding "null"-ness.
 643       // (We make an exception for TypeRawPtr::BOTTOM, which is a bit bucket.)
 644       const TypePtr* tp_notnull = tp->join(TypePtr::NOTNULL)->is_ptr();
 645       assert(cross_check->meet(tp_notnull) == cross_check->remove_speculative(),
 646              "real address must not escape from expected memory type");
 647     }
 648     #endif
 649     return tp;
 650   }
 651 }
 652 
 653 //------------------------adr_phi_is_loop_invariant----------------------------
 654 // A helper function for Ideal_DU_postCCP to check if a Phi in a counted
 655 // loop is loop invariant. Make a quick traversal of Phi and associated
 656 // CastPP nodes, looking to see if they are a closed group within the loop.
 657 bool MemNode::adr_phi_is_loop_invariant(Node* adr_phi, Node* cast) {
 658   // The idea is that the phi-nest must boil down to only CastPP nodes
 659   // with the same data. This implies that any path into the loop already
 660   // includes such a CastPP, and so the original cast, whatever its input,
 661   // must be covered by an equivalent cast, with an earlier control input.
 662   ResourceMark rm;
 663 
 664   // The loop entry input of the phi should be the unique dominating
 665   // node for every Phi/CastPP in the loop.
 666   Unique_Node_List closure;
 667   closure.push(adr_phi->in(LoopNode::EntryControl));
 668 
 669   // Add the phi node and the cast to the worklist.
 670   Unique_Node_List worklist;
 671   worklist.push(adr_phi);
 672   if( cast != NULL ){
 673     if( !cast->is_ConstraintCast() ) return false;
 674     worklist.push(cast);
 675   }
 676 
 677   // Begin recursive walk of phi nodes.
 678   while( worklist.size() ){
 679     // Take a node off the worklist
 680     Node *n = worklist.pop();
 681     if( !closure.member(n) ){
 682       // Add it to the closure.
 683       closure.push(n);
 684       // Make a sanity check to ensure we don't waste too much time here.
 685       if( closure.size() > 20) return false;
 686       // This node is OK if:
 687       //  - it is a cast of an identical value
 688       //  - or it is a phi node (then we add its inputs to the worklist)
 689       // Otherwise, the node is not OK, and we presume the cast is not invariant
 690       if( n->is_ConstraintCast() ){
 691         worklist.push(n->in(1));
 692       } else if( n->is_Phi() ) {
 693         for( uint i = 1; i < n->req(); i++ ) {
 694           worklist.push(n->in(i));
 695         }
 696       } else {
 697         return false;
 698       }
 699     }
 700   }
 701 
 702   // Quit when the worklist is empty, and we've found no offending nodes.
 703   return true;
 704 }
 705 
 706 //------------------------------Ideal_DU_postCCP-------------------------------
 707 // Find any cast-away of null-ness and keep its control.  Null cast-aways are
 708 // going away in this pass and we need to make this memory op depend on the
 709 // gating null check.
 710 Node *MemNode::Ideal_DU_postCCP( PhaseCCP *ccp ) {
 711   return Ideal_common_DU_postCCP(ccp, this, in(MemNode::Address));
 712 }
 713 
 714 // I tried to leave the CastPP's in.  This makes the graph more accurate in
 715 // some sense; we get to keep around the knowledge that an oop is not-null
 716 // after some test.  Alas, the CastPP's interfere with GVN (some values are
 717 // the regular oop, some are the CastPP of the oop, all merge at Phi's which
 718 // cannot collapse, etc).  This cost us 10% on SpecJVM, even when I removed
 719 // some of the more trivial cases in the optimizer.  Removing more useless
 720 // Phi's started allowing Loads to illegally float above null checks.  I gave
 721 // up on this approach.  CNC 10/20/2000
 722 // This static method may be called not from MemNode (EncodePNode calls it).
 723 // Only the control edge of the node 'n' might be updated.
 724 Node *MemNode::Ideal_common_DU_postCCP( PhaseCCP *ccp, Node* n, Node* adr ) {
 725   Node *skipped_cast = NULL;
 726   // Need a null check?  Regular static accesses do not because they are
 727   // from constant addresses.  Array ops are gated by the range check (which
 728   // always includes a NULL check).  Just check field ops.
 729   if( n->in(MemNode::Control) == NULL ) {
 730     // Scan upwards for the highest location we can place this memory op.
 731     while( true ) {
 732       switch( adr->Opcode() ) {
 733 
 734       case Op_AddP:             // No change to NULL-ness, so peek thru AddP's
 735         adr = adr->in(AddPNode::Base);
 736         continue;
 737 
 738       case Op_DecodeN:         // No change to NULL-ness, so peek thru
 739       case Op_DecodeNKlass:
 740         adr = adr->in(1);
 741         continue;
 742 
 743       case Op_EncodeP:
 744       case Op_EncodePKlass:
 745         // EncodeP node's control edge could be set by this method
 746         // when EncodeP node depends on CastPP node.
 747         //
 748         // Use its control edge for memory op because EncodeP may go away
 749         // later when it is folded with following or preceding DecodeN node.
 750         if (adr->in(0) == NULL) {
 751           // Keep looking for cast nodes.
 752           adr = adr->in(1);
 753           continue;
 754         }
 755         ccp->hash_delete(n);
 756         n->set_req(MemNode::Control, adr->in(0));
 757         ccp->hash_insert(n);
 758         return n;
 759 
 760       case Op_CastPP:
 761         // If the CastPP is useless, just peek on through it.
 762         if( ccp->type(adr) == ccp->type(adr->in(1)) ) {
 763           // Remember the cast that we've peeked though. If we peek
 764           // through more than one, then we end up remembering the highest
 765           // one, that is, if in a loop, the one closest to the top.
 766           skipped_cast = adr;
 767           adr = adr->in(1);
 768           continue;
 769         }
 770         // CastPP is going away in this pass!  We need this memory op to be
 771         // control-dependent on the test that is guarding the CastPP.
 772         ccp->hash_delete(n);
 773         n->set_req(MemNode::Control, adr->in(0));
 774         ccp->hash_insert(n);
 775         return n;
 776 
 777       case Op_Phi:
 778         // Attempt to float above a Phi to some dominating point.
 779         if (adr->in(0) != NULL && adr->in(0)->is_CountedLoop()) {
 780           // If we've already peeked through a Cast (which could have set the
 781           // control), we can't float above a Phi, because the skipped Cast
 782           // may not be loop invariant.
 783           if (adr_phi_is_loop_invariant(adr, skipped_cast)) {
 784             adr = adr->in(1);
 785             continue;
 786           }
 787         }
 788 
 789         // Intentional fallthrough!
 790 
 791         // No obvious dominating point.  The mem op is pinned below the Phi
 792         // by the Phi itself.  If the Phi goes away (no true value is merged)
 793         // then the mem op can float, but not indefinitely.  It must be pinned
 794         // behind the controls leading to the Phi.
 795       case Op_CheckCastPP:
 796         // These usually stick around to change address type, however a
 797         // useless one can be elided and we still need to pick up a control edge
 798         if (adr->in(0) == NULL) {
 799           // This CheckCastPP node has NO control and is likely useless. But we
 800           // need check further up the ancestor chain for a control input to keep
 801           // the node in place. 4959717.
 802           skipped_cast = adr;
 803           adr = adr->in(1);
 804           continue;
 805         }
 806         ccp->hash_delete(n);
 807         n->set_req(MemNode::Control, adr->in(0));
 808         ccp->hash_insert(n);
 809         return n;
 810 
 811         // List of "safe" opcodes; those that implicitly block the memory
 812         // op below any null check.
 813       case Op_CastX2P:          // no null checks on native pointers
 814       case Op_Parm:             // 'this' pointer is not null
 815       case Op_LoadP:            // Loading from within a klass
 816       case Op_LoadN:            // Loading from within a klass
 817       case Op_LoadKlass:        // Loading from within a klass
 818       case Op_LoadNKlass:       // Loading from within a klass
 819       case Op_ConP:             // Loading from a klass
 820       case Op_ConN:             // Loading from a klass
 821       case Op_ConNKlass:        // Loading from a klass
 822       case Op_CreateEx:         // Sucking up the guts of an exception oop
 823       case Op_Con:              // Reading from TLS
 824       case Op_CMoveP:           // CMoveP is pinned
 825       case Op_CMoveN:           // CMoveN is pinned
 826         break;                  // No progress
 827 
 828       case Op_Proj:             // Direct call to an allocation routine
 829       case Op_SCMemProj:        // Memory state from store conditional ops
 830 #ifdef ASSERT
 831         {
 832           assert(adr->as_Proj()->_con == TypeFunc::Parms, "must be return value");
 833           const Node* call = adr->in(0);
 834           if (call->is_CallJava()) {
 835             const CallJavaNode* call_java = call->as_CallJava();
 836             const TypeTuple *r = call_java->tf()->range();
 837             assert(r->cnt() > TypeFunc::Parms, "must return value");
 838             const Type* ret_type = r->field_at(TypeFunc::Parms);
 839             assert(ret_type && ret_type->isa_ptr(), "must return pointer");
 840             // We further presume that this is one of
 841             // new_instance_Java, new_array_Java, or
 842             // the like, but do not assert for this.
 843           } else if (call->is_Allocate()) {
 844             // similar case to new_instance_Java, etc.
 845           } else if (!call->is_CallLeaf()) {
 846             // Projections from fetch_oop (OSR) are allowed as well.
 847             ShouldNotReachHere();
 848           }
 849         }
 850 #endif
 851         break;
 852       default:
 853         ShouldNotReachHere();
 854       }
 855       break;
 856     }
 857   }
 858 
 859   return  NULL;               // No progress
 860 }
 861 
 862 
 863 //=============================================================================
 864 uint LoadNode::size_of() const { return sizeof(*this); }
 865 uint LoadNode::cmp( const Node &n ) const
 866 { return !Type::cmp( _type, ((LoadNode&)n)._type ); }
 867 const Type *LoadNode::bottom_type() const { return _type; }
 868 uint LoadNode::ideal_reg() const {
 869   return _type->ideal_reg();
 870 }
 871 
 872 #ifndef PRODUCT
 873 void LoadNode::dump_spec(outputStream *st) const {
 874   MemNode::dump_spec(st);
 875   if( !Verbose && !WizardMode ) {
 876     // standard dump does this in Verbose and WizardMode
 877     st->print(" #"); _type->dump_on(st);
 878   }
 879 }
 880 #endif
 881 
 882 #ifdef ASSERT
 883 //----------------------------is_immutable_value-------------------------------
 884 // Helper function to allow a raw load without control edge for some cases
 885 bool LoadNode::is_immutable_value(Node* adr) {
 886   return (adr->is_AddP() && adr->in(AddPNode::Base)->is_top() &&
 887           adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 888           (adr->in(AddPNode::Offset)->find_intptr_t_con(-1) ==
 889            in_bytes(JavaThread::osthread_offset())));
 890 }
 891 #endif
 892 
 893 //----------------------------LoadNode::make-----------------------------------
 894 // Polymorphic factory method:
 895 Node *LoadNode::make(PhaseGVN& gvn, Node *ctl, Node *mem, Node *adr, const TypePtr* adr_type, const Type *rt, BasicType bt, MemOrd mo) {
 896   Compile* C = gvn.C;
 897 
 898   // sanity check the alias category against the created node type
 899   assert(!(adr_type->isa_oopptr() &&
 900            adr_type->offset() == oopDesc::klass_offset_in_bytes()),
 901          "use LoadKlassNode instead");
 902   assert(!(adr_type->isa_aryptr() &&
 903            adr_type->offset() == arrayOopDesc::length_offset_in_bytes()),
 904          "use LoadRangeNode instead");
 905   // Check control edge of raw loads
 906   assert( ctl != NULL || C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
 907           // oop will be recorded in oop map if load crosses safepoint
 908           rt->isa_oopptr() || is_immutable_value(adr),
 909           "raw memory operations should have control edge");
 910   switch (bt) {
 911   case T_BOOLEAN: return new (C) LoadUBNode(ctl, mem, adr, adr_type, rt->is_int(),  mo);
 912   case T_BYTE:    return new (C) LoadBNode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
 913   case T_INT:     return new (C) LoadINode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
 914   case T_CHAR:    return new (C) LoadUSNode(ctl, mem, adr, adr_type, rt->is_int(),  mo);
 915   case T_SHORT:   return new (C) LoadSNode (ctl, mem, adr, adr_type, rt->is_int(),  mo);
 916   case T_LONG:    return new (C) LoadLNode (ctl, mem, adr, adr_type, rt->is_long(), mo);
 917   case T_FLOAT:   return new (C) LoadFNode (ctl, mem, adr, adr_type, rt,            mo);
 918   case T_DOUBLE:  return new (C) LoadDNode (ctl, mem, adr, adr_type, rt,            mo);
 919   case T_ADDRESS: return new (C) LoadPNode (ctl, mem, adr, adr_type, rt->is_ptr(),  mo);
 920   case T_OBJECT:
 921 #ifdef _LP64
 922     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
 923       Node* load  = gvn.transform(new (C) LoadNNode(ctl, mem, adr, adr_type, rt->make_narrowoop(), mo));
 924       return new (C) DecodeNNode(load, load->bottom_type()->make_ptr());
 925     } else
 926 #endif
 927     {
 928       assert(!adr->bottom_type()->is_ptr_to_narrowoop() && !adr->bottom_type()->is_ptr_to_narrowklass(), "should have got back a narrow oop");
 929       return new (C) LoadPNode(ctl, mem, adr, adr_type, rt->is_oopptr(), mo);
 930     }
 931   }
 932   ShouldNotReachHere();
 933   return (LoadNode*)NULL;
 934 }
 935 
 936 LoadLNode* LoadLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, const Type* rt, MemOrd mo) {
 937   bool require_atomic = true;
 938   return new (C) LoadLNode(ctl, mem, adr, adr_type, rt->is_long(), mo, require_atomic);
 939 }
 940 
 941 
 942 
 943 
 944 //------------------------------hash-------------------------------------------
 945 uint LoadNode::hash() const {
 946   // unroll addition of interesting fields
 947   return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address);
 948 }
 949 
 950 static bool skip_through_membars(Compile::AliasType* atp, const TypeInstPtr* tp, bool eliminate_boxing) {
 951   if ((atp != NULL) && (atp->index() >= Compile::AliasIdxRaw)) {
 952     bool non_volatile = (atp->field() != NULL) && !atp->field()->is_volatile();
 953     bool is_stable_ary = FoldStableValues &&
 954                          (tp != NULL) && (tp->isa_aryptr() != NULL) &&
 955                          tp->isa_aryptr()->is_stable();
 956 
 957     return (eliminate_boxing && non_volatile) || is_stable_ary;
 958   }
 959 
 960   return false;
 961 }
 962 
 963 //---------------------------can_see_stored_value------------------------------
 964 // This routine exists to make sure this set of tests is done the same
 965 // everywhere.  We need to make a coordinated change: first LoadNode::Ideal
 966 // will change the graph shape in a way which makes memory alive twice at the
 967 // same time (uses the Oracle model of aliasing), then some
 968 // LoadXNode::Identity will fold things back to the equivalence-class model
 969 // of aliasing.
 970 Node* MemNode::can_see_stored_value(Node* st, PhaseTransform* phase) const {
 971   Node* ld_adr = in(MemNode::Address);
 972   intptr_t ld_off = 0;
 973   AllocateNode* ld_alloc = AllocateNode::Ideal_allocation(ld_adr, phase, ld_off);
 974   const TypeInstPtr* tp = phase->type(ld_adr)->isa_instptr();
 975   Compile::AliasType* atp = (tp != NULL) ? phase->C->alias_type(tp) : NULL;
 976   // This is more general than load from boxing objects.
 977   if (skip_through_membars(atp, tp, phase->C->eliminate_boxing())) {
 978     uint alias_idx = atp->index();
 979     bool final = !atp->is_rewritable();
 980     Node* result = NULL;
 981     Node* current = st;
 982     // Skip through chains of MemBarNodes checking the MergeMems for
 983     // new states for the slice of this load.  Stop once any other
 984     // kind of node is encountered.  Loads from final memory can skip
 985     // through any kind of MemBar but normal loads shouldn't skip
 986     // through MemBarAcquire since the could allow them to move out of
 987     // a synchronized region.
 988     while (current->is_Proj()) {
 989       int opc = current->in(0)->Opcode();
 990       if ((final && (opc == Op_MemBarAcquire ||
 991                      opc == Op_MemBarAcquireLock ||
 992                      opc == Op_LoadFence)) ||
 993           opc == Op_MemBarRelease ||
 994           opc == Op_StoreFence ||
 995           opc == Op_MemBarReleaseLock ||
 996           opc == Op_MemBarCPUOrder) {
 997         Node* mem = current->in(0)->in(TypeFunc::Memory);
 998         if (mem->is_MergeMem()) {
 999           MergeMemNode* merge = mem->as_MergeMem();
1000           Node* new_st = merge->memory_at(alias_idx);
1001           if (new_st == merge->base_memory()) {
1002             // Keep searching
1003             current = new_st;
1004             continue;
1005           }
1006           // Save the new memory state for the slice and fall through
1007           // to exit.
1008           result = new_st;
1009         }
1010       }
1011       break;
1012     }
1013     if (result != NULL) {
1014       st = result;
1015     }
1016   }
1017 
1018   // Loop around twice in the case Load -> Initialize -> Store.
1019   // (See PhaseIterGVN::add_users_to_worklist, which knows about this case.)
1020   for (int trip = 0; trip <= 1; trip++) {
1021 
1022     if (st->is_Store()) {
1023       Node* st_adr = st->in(MemNode::Address);
1024       if (!phase->eqv(st_adr, ld_adr)) {
1025         // Try harder before giving up...  Match raw and non-raw pointers.
1026         intptr_t st_off = 0;
1027         AllocateNode* alloc = AllocateNode::Ideal_allocation(st_adr, phase, st_off);
1028         if (alloc == NULL)       return NULL;
1029         if (alloc != ld_alloc)   return NULL;
1030         if (ld_off != st_off)    return NULL;
1031         // At this point we have proven something like this setup:
1032         //  A = Allocate(...)
1033         //  L = LoadQ(,  AddP(CastPP(, A.Parm),, #Off))
1034         //  S = StoreQ(, AddP(,        A.Parm  , #Off), V)
1035         // (Actually, we haven't yet proven the Q's are the same.)
1036         // In other words, we are loading from a casted version of
1037         // the same pointer-and-offset that we stored to.
1038         // Thus, we are able to replace L by V.
1039       }
1040       // Now prove that we have a LoadQ matched to a StoreQ, for some Q.
1041       if (store_Opcode() != st->Opcode())
1042         return NULL;
1043       return st->in(MemNode::ValueIn);
1044     }
1045 
1046     // A load from a freshly-created object always returns zero.
1047     // (This can happen after LoadNode::Ideal resets the load's memory input
1048     // to find_captured_store, which returned InitializeNode::zero_memory.)
1049     if (st->is_Proj() && st->in(0)->is_Allocate() &&
1050         (st->in(0) == ld_alloc) &&
1051         (ld_off >= st->in(0)->as_Allocate()->minimum_header_size())) {
1052       // return a zero value for the load's basic type
1053       // (This is one of the few places where a generic PhaseTransform
1054       // can create new nodes.  Think of it as lazily manifesting
1055       // virtually pre-existing constants.)
1056       return phase->zerocon(memory_type());
1057     }
1058 
1059     // A load from an initialization barrier can match a captured store.
1060     if (st->is_Proj() && st->in(0)->is_Initialize()) {
1061       InitializeNode* init = st->in(0)->as_Initialize();
1062       AllocateNode* alloc = init->allocation();
1063       if ((alloc != NULL) && (alloc == ld_alloc)) {
1064         // examine a captured store value
1065         st = init->find_captured_store(ld_off, memory_size(), phase);
1066         if (st != NULL)
1067           continue;             // take one more trip around
1068       }
1069     }
1070 
1071     // Load boxed value from result of valueOf() call is input parameter.
1072     if (this->is_Load() && ld_adr->is_AddP() &&
1073         (tp != NULL) && tp->is_ptr_to_boxed_value()) {
1074       intptr_t ignore = 0;
1075       Node* base = AddPNode::Ideal_base_and_offset(ld_adr, phase, ignore);
1076       if (base != NULL && base->is_Proj() &&
1077           base->as_Proj()->_con == TypeFunc::Parms &&
1078           base->in(0)->is_CallStaticJava() &&
1079           base->in(0)->as_CallStaticJava()->is_boxing_method()) {
1080         return base->in(0)->in(TypeFunc::Parms);
1081       }
1082     }
1083 
1084     break;
1085   }
1086 
1087   return NULL;
1088 }
1089 
1090 //----------------------is_instance_field_load_with_local_phi------------------
1091 bool LoadNode::is_instance_field_load_with_local_phi(Node* ctrl) {
1092   if( in(Memory)->is_Phi() && in(Memory)->in(0) == ctrl &&
1093       in(Address)->is_AddP() ) {
1094     const TypeOopPtr* t_oop = in(Address)->bottom_type()->isa_oopptr();
1095     // Only instances and boxed values.
1096     if( t_oop != NULL &&
1097         (t_oop->is_ptr_to_boxed_value() ||
1098          t_oop->is_known_instance_field()) &&
1099         t_oop->offset() != Type::OffsetBot &&
1100         t_oop->offset() != Type::OffsetTop) {
1101       return true;
1102     }
1103   }
1104   return false;
1105 }
1106 
1107 //------------------------------Identity---------------------------------------
1108 // Loads are identity if previous store is to same address
1109 Node *LoadNode::Identity( PhaseTransform *phase ) {
1110   // If the previous store-maker is the right kind of Store, and the store is
1111   // to the same address, then we are equal to the value stored.
1112   Node* mem = in(Memory);
1113   Node* value = can_see_stored_value(mem, phase);
1114   if( value ) {
1115     // byte, short & char stores truncate naturally.
1116     // A load has to load the truncated value which requires
1117     // some sort of masking operation and that requires an
1118     // Ideal call instead of an Identity call.
1119     if (memory_size() < BytesPerInt) {
1120       // If the input to the store does not fit with the load's result type,
1121       // it must be truncated via an Ideal call.
1122       if (!phase->type(value)->higher_equal(phase->type(this)))
1123         return this;
1124     }
1125     // (This works even when value is a Con, but LoadNode::Value
1126     // usually runs first, producing the singleton type of the Con.)
1127     return value;
1128   }
1129 
1130   // Search for an existing data phi which was generated before for the same
1131   // instance's field to avoid infinite generation of phis in a loop.
1132   Node *region = mem->in(0);
1133   if (is_instance_field_load_with_local_phi(region)) {
1134     const TypeOopPtr *addr_t = in(Address)->bottom_type()->isa_oopptr();
1135     int this_index  = phase->C->get_alias_index(addr_t);
1136     int this_offset = addr_t->offset();
1137     int this_iid    = addr_t->instance_id();
1138     if (!addr_t->is_known_instance() &&
1139          addr_t->is_ptr_to_boxed_value()) {
1140       // Use _idx of address base (could be Phi node) for boxed values.
1141       intptr_t   ignore = 0;
1142       Node*      base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1143       this_iid = base->_idx;
1144     }
1145     const Type* this_type = bottom_type();
1146     for (DUIterator_Fast imax, i = region->fast_outs(imax); i < imax; i++) {
1147       Node* phi = region->fast_out(i);
1148       if (phi->is_Phi() && phi != mem &&
1149           phi->as_Phi()->is_same_inst_field(this_type, this_iid, this_index, this_offset)) {
1150         return phi;
1151       }
1152     }
1153   }
1154 
1155   return this;
1156 }
1157 
1158 // We're loading from an object which has autobox behaviour.
1159 // If this object is result of a valueOf call we'll have a phi
1160 // merging a newly allocated object and a load from the cache.
1161 // We want to replace this load with the original incoming
1162 // argument to the valueOf call.
1163 Node* LoadNode::eliminate_autobox(PhaseGVN* phase) {
1164   assert(phase->C->eliminate_boxing(), "sanity");
1165   intptr_t ignore = 0;
1166   Node* base = AddPNode::Ideal_base_and_offset(in(Address), phase, ignore);
1167   if ((base == NULL) || base->is_Phi()) {
1168     // Push the loads from the phi that comes from valueOf up
1169     // through it to allow elimination of the loads and the recovery
1170     // of the original value. It is done in split_through_phi().
1171     return NULL;
1172   } else if (base->is_Load() ||
1173              base->is_DecodeN() && base->in(1)->is_Load()) {
1174     // Eliminate the load of boxed value for integer types from the cache
1175     // array by deriving the value from the index into the array.
1176     // Capture the offset of the load and then reverse the computation.
1177 
1178     // Get LoadN node which loads a boxing object from 'cache' array.
1179     if (base->is_DecodeN()) {
1180       base = base->in(1);
1181     }
1182     if (!base->in(Address)->is_AddP()) {
1183       return NULL; // Complex address
1184     }
1185     AddPNode* address = base->in(Address)->as_AddP();
1186     Node* cache_base = address->in(AddPNode::Base);
1187     if ((cache_base != NULL) && cache_base->is_DecodeN()) {
1188       // Get ConP node which is static 'cache' field.
1189       cache_base = cache_base->in(1);
1190     }
1191     if ((cache_base != NULL) && cache_base->is_Con()) {
1192       const TypeAryPtr* base_type = cache_base->bottom_type()->isa_aryptr();
1193       if ((base_type != NULL) && base_type->is_autobox_cache()) {
1194         Node* elements[4];
1195         int shift = exact_log2(type2aelembytes(T_OBJECT));
1196         int count = address->unpack_offsets(elements, ARRAY_SIZE(elements));
1197         if ((count >  0) && elements[0]->is_Con() &&
1198             ((count == 1) ||
1199              (count == 2) && elements[1]->Opcode() == Op_LShiftX &&
1200                              elements[1]->in(2) == phase->intcon(shift))) {
1201           ciObjArray* array = base_type->const_oop()->as_obj_array();
1202           // Fetch the box object cache[0] at the base of the array and get its value
1203           ciInstance* box = array->obj_at(0)->as_instance();
1204           ciInstanceKlass* ik = box->klass()->as_instance_klass();
1205           assert(ik->is_box_klass(), "sanity");
1206           assert(ik->nof_nonstatic_fields() == 1, "change following code");
1207           if (ik->nof_nonstatic_fields() == 1) {
1208             // This should be true nonstatic_field_at requires calling
1209             // nof_nonstatic_fields so check it anyway
1210             ciConstant c = box->field_value(ik->nonstatic_field_at(0));
1211             BasicType bt = c.basic_type();
1212             // Only integer types have boxing cache.
1213             assert(bt == T_BOOLEAN || bt == T_CHAR  ||
1214                    bt == T_BYTE    || bt == T_SHORT ||
1215                    bt == T_INT     || bt == T_LONG, err_msg_res("wrong type = %s", type2name(bt)));
1216             jlong cache_low = (bt == T_LONG) ? c.as_long() : c.as_int();
1217             if (cache_low != (int)cache_low) {
1218               return NULL; // should not happen since cache is array indexed by value
1219             }
1220             jlong offset = arrayOopDesc::base_offset_in_bytes(T_OBJECT) - (cache_low << shift);
1221             if (offset != (int)offset) {
1222               return NULL; // should not happen since cache is array indexed by value
1223             }
1224            // Add up all the offsets making of the address of the load
1225             Node* result = elements[0];
1226             for (int i = 1; i < count; i++) {
1227               result = phase->transform(new (phase->C) AddXNode(result, elements[i]));
1228             }
1229             // Remove the constant offset from the address and then
1230             result = phase->transform(new (phase->C) AddXNode(result, phase->MakeConX(-(int)offset)));
1231             // remove the scaling of the offset to recover the original index.
1232             if (result->Opcode() == Op_LShiftX && result->in(2) == phase->intcon(shift)) {
1233               // Peel the shift off directly but wrap it in a dummy node
1234               // since Ideal can't return existing nodes
1235               result = new (phase->C) RShiftXNode(result->in(1), phase->intcon(0));
1236             } else if (result->is_Add() && result->in(2)->is_Con() &&
1237                        result->in(1)->Opcode() == Op_LShiftX &&
1238                        result->in(1)->in(2) == phase->intcon(shift)) {
1239               // We can't do general optimization: ((X<<Z) + Y) >> Z ==> X + (Y>>Z)
1240               // but for boxing cache access we know that X<<Z will not overflow
1241               // (there is range check) so we do this optimizatrion by hand here.
1242               Node* add_con = new (phase->C) RShiftXNode(result->in(2), phase->intcon(shift));
1243               result = new (phase->C) AddXNode(result->in(1)->in(1), phase->transform(add_con));
1244             } else {
1245               result = new (phase->C) RShiftXNode(result, phase->intcon(shift));
1246             }
1247 #ifdef _LP64
1248             if (bt != T_LONG) {
1249               result = new (phase->C) ConvL2INode(phase->transform(result));
1250             }
1251 #else
1252             if (bt == T_LONG) {
1253               result = new (phase->C) ConvI2LNode(phase->transform(result));
1254             }
1255 #endif
1256             return result;
1257           }
1258         }
1259       }
1260     }
1261   }
1262   return NULL;
1263 }
1264 
1265 static bool stable_phi(PhiNode* phi, PhaseGVN *phase) {
1266   Node* region = phi->in(0);
1267   if (region == NULL) {
1268     return false; // Wait stable graph
1269   }
1270   uint cnt = phi->req();
1271   for (uint i = 1; i < cnt; i++) {
1272     Node* rc = region->in(i);
1273     if (rc == NULL || phase->type(rc) == Type::TOP)
1274       return false; // Wait stable graph
1275     Node* in = phi->in(i);
1276     if (in == NULL || phase->type(in) == Type::TOP)
1277       return false; // Wait stable graph
1278   }
1279   return true;
1280 }
1281 //------------------------------split_through_phi------------------------------
1282 // Split instance or boxed field load through Phi.
1283 Node *LoadNode::split_through_phi(PhaseGVN *phase) {
1284   Node* mem     = in(Memory);
1285   Node* address = in(Address);
1286   const TypeOopPtr *t_oop = phase->type(address)->isa_oopptr();
1287 
1288   assert((t_oop != NULL) &&
1289          (t_oop->is_known_instance_field() ||
1290           t_oop->is_ptr_to_boxed_value()), "invalide conditions");
1291 
1292   Compile* C = phase->C;
1293   intptr_t ignore = 0;
1294   Node*    base = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1295   bool base_is_phi = (base != NULL) && base->is_Phi();
1296   bool load_boxed_values = t_oop->is_ptr_to_boxed_value() && C->aggressive_unboxing() &&
1297                            (base != NULL) && (base == address->in(AddPNode::Base)) &&
1298                            phase->type(base)->higher_equal(TypePtr::NOTNULL);
1299 
1300   if (!((mem->is_Phi() || base_is_phi) &&
1301         (load_boxed_values || t_oop->is_known_instance_field()))) {
1302     return NULL; // memory is not Phi
1303   }
1304 
1305   if (mem->is_Phi()) {
1306     if (!stable_phi(mem->as_Phi(), phase)) {
1307       return NULL; // Wait stable graph
1308     }
1309     uint cnt = mem->req();
1310     // Check for loop invariant memory.
1311     if (cnt == 3) {
1312       for (uint i = 1; i < cnt; i++) {
1313         Node* in = mem->in(i);
1314         Node*  m = optimize_memory_chain(in, t_oop, this, phase);
1315         if (m == mem) {
1316           set_req(Memory, mem->in(cnt - i));
1317           return this; // made change
1318         }
1319       }
1320     }
1321   }
1322   if (base_is_phi) {
1323     if (!stable_phi(base->as_Phi(), phase)) {
1324       return NULL; // Wait stable graph
1325     }
1326     uint cnt = base->req();
1327     // Check for loop invariant memory.
1328     if (cnt == 3) {
1329       for (uint i = 1; i < cnt; i++) {
1330         if (base->in(i) == base) {
1331           return NULL; // Wait stable graph
1332         }
1333       }
1334     }
1335   }
1336 
1337   bool load_boxed_phi = load_boxed_values && base_is_phi && (base->in(0) == mem->in(0));
1338 
1339   // Split through Phi (see original code in loopopts.cpp).
1340   assert(C->have_alias_type(t_oop), "instance should have alias type");
1341 
1342   // Do nothing here if Identity will find a value
1343   // (to avoid infinite chain of value phis generation).
1344   if (!phase->eqv(this, this->Identity(phase)))
1345     return NULL;
1346 
1347   // Select Region to split through.
1348   Node* region;
1349   if (!base_is_phi) {
1350     assert(mem->is_Phi(), "sanity");
1351     region = mem->in(0);
1352     // Skip if the region dominates some control edge of the address.
1353     if (!MemNode::all_controls_dominate(address, region))
1354       return NULL;
1355   } else if (!mem->is_Phi()) {
1356     assert(base_is_phi, "sanity");
1357     region = base->in(0);
1358     // Skip if the region dominates some control edge of the memory.
1359     if (!MemNode::all_controls_dominate(mem, region))
1360       return NULL;
1361   } else if (base->in(0) != mem->in(0)) {
1362     assert(base_is_phi && mem->is_Phi(), "sanity");
1363     if (MemNode::all_controls_dominate(mem, base->in(0))) {
1364       region = base->in(0);
1365     } else if (MemNode::all_controls_dominate(address, mem->in(0))) {
1366       region = mem->in(0);
1367     } else {
1368       return NULL; // complex graph
1369     }
1370   } else {
1371     assert(base->in(0) == mem->in(0), "sanity");
1372     region = mem->in(0);
1373   }
1374 
1375   const Type* this_type = this->bottom_type();
1376   int this_index  = C->get_alias_index(t_oop);
1377   int this_offset = t_oop->offset();
1378   int this_iid    = t_oop->instance_id();
1379   if (!t_oop->is_known_instance() && load_boxed_values) {
1380     // Use _idx of address base for boxed values.
1381     this_iid = base->_idx;
1382   }
1383   PhaseIterGVN* igvn = phase->is_IterGVN();
1384   Node* phi = new (C) PhiNode(region, this_type, NULL, this_iid, this_index, this_offset);
1385   for (uint i = 1; i < region->req(); i++) {
1386     Node* x;
1387     Node* the_clone = NULL;
1388     if (region->in(i) == C->top()) {
1389       x = C->top();      // Dead path?  Use a dead data op
1390     } else {
1391       x = this->clone();        // Else clone up the data op
1392       the_clone = x;            // Remember for possible deletion.
1393       // Alter data node to use pre-phi inputs
1394       if (this->in(0) == region) {
1395         x->set_req(0, region->in(i));
1396       } else {
1397         x->set_req(0, NULL);
1398       }
1399       if (mem->is_Phi() && (mem->in(0) == region)) {
1400         x->set_req(Memory, mem->in(i)); // Use pre-Phi input for the clone.
1401       }
1402       if (address->is_Phi() && address->in(0) == region) {
1403         x->set_req(Address, address->in(i)); // Use pre-Phi input for the clone
1404       }
1405       if (base_is_phi && (base->in(0) == region)) {
1406         Node* base_x = base->in(i); // Clone address for loads from boxed objects.
1407         Node* adr_x = phase->transform(new (C) AddPNode(base_x,base_x,address->in(AddPNode::Offset)));
1408         x->set_req(Address, adr_x);
1409       }
1410     }
1411     // Check for a 'win' on some paths
1412     const Type *t = x->Value(igvn);
1413 
1414     bool singleton = t->singleton();
1415 
1416     // See comments in PhaseIdealLoop::split_thru_phi().
1417     if (singleton && t == Type::TOP) {
1418       singleton &= region->is_Loop() && (i != LoopNode::EntryControl);
1419     }
1420 
1421     if (singleton) {
1422       x = igvn->makecon(t);
1423     } else {
1424       // We now call Identity to try to simplify the cloned node.
1425       // Note that some Identity methods call phase->type(this).
1426       // Make sure that the type array is big enough for
1427       // our new node, even though we may throw the node away.
1428       // (This tweaking with igvn only works because x is a new node.)
1429       igvn->set_type(x, t);
1430       // If x is a TypeNode, capture any more-precise type permanently into Node
1431       // otherwise it will be not updated during igvn->transform since
1432       // igvn->type(x) is set to x->Value() already.
1433       x->raise_bottom_type(t);
1434       Node *y = x->Identity(igvn);
1435       if (y != x) {
1436         x = y;
1437       } else {
1438         y = igvn->hash_find_insert(x);
1439         if (y) {
1440           x = y;
1441         } else {
1442           // Else x is a new node we are keeping
1443           // We do not need register_new_node_with_optimizer
1444           // because set_type has already been called.
1445           igvn->_worklist.push(x);
1446         }
1447       }
1448     }
1449     if (x != the_clone && the_clone != NULL) {
1450       igvn->remove_dead_node(the_clone);
1451     }
1452     phi->set_req(i, x);
1453   }
1454   // Record Phi
1455   igvn->register_new_node_with_optimizer(phi);
1456   return phi;
1457 }
1458 
1459 //------------------------------Ideal------------------------------------------
1460 // If the load is from Field memory and the pointer is non-null, we can
1461 // zero out the control input.
1462 // If the offset is constant and the base is an object allocation,
1463 // try to hook me up to the exact initializing store.
1464 Node *LoadNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1465   Node* p = MemNode::Ideal_common(phase, can_reshape);
1466   if (p)  return (p == NodeSentinel) ? NULL : p;
1467 
1468   Node* ctrl    = in(MemNode::Control);
1469   Node* address = in(MemNode::Address);
1470 
1471   // Skip up past a SafePoint control.  Cannot do this for Stores because
1472   // pointer stores & cardmarks must stay on the same side of a SafePoint.
1473   if( ctrl != NULL && ctrl->Opcode() == Op_SafePoint &&
1474       phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw ) {
1475     ctrl = ctrl->in(0);
1476     set_req(MemNode::Control,ctrl);
1477   }
1478 
1479   intptr_t ignore = 0;
1480   Node*    base   = AddPNode::Ideal_base_and_offset(address, phase, ignore);
1481   if (base != NULL
1482       && phase->C->get_alias_index(phase->type(address)->is_ptr()) != Compile::AliasIdxRaw) {
1483     // Check for useless control edge in some common special cases
1484     if (in(MemNode::Control) != NULL
1485         && phase->type(base)->higher_equal(TypePtr::NOTNULL)
1486         && all_controls_dominate(base, phase->C->start())) {
1487       // A method-invariant, non-null address (constant or 'this' argument).
1488       set_req(MemNode::Control, NULL);
1489     }
1490   }
1491 
1492   Node* mem = in(MemNode::Memory);
1493   const TypePtr *addr_t = phase->type(address)->isa_ptr();
1494 
1495   if (can_reshape && (addr_t != NULL)) {
1496     // try to optimize our memory input
1497     Node* opt_mem = MemNode::optimize_memory_chain(mem, addr_t, this, phase);
1498     if (opt_mem != mem) {
1499       set_req(MemNode::Memory, opt_mem);
1500       if (phase->type( opt_mem ) == Type::TOP) return NULL;
1501       return this;
1502     }
1503     const TypeOopPtr *t_oop = addr_t->isa_oopptr();
1504     if ((t_oop != NULL) &&
1505         (t_oop->is_known_instance_field() ||
1506          t_oop->is_ptr_to_boxed_value())) {
1507       PhaseIterGVN *igvn = phase->is_IterGVN();
1508       if (igvn != NULL && igvn->_worklist.member(opt_mem)) {
1509         // Delay this transformation until memory Phi is processed.
1510         phase->is_IterGVN()->_worklist.push(this);
1511         return NULL;
1512       }
1513       // Split instance field load through Phi.
1514       Node* result = split_through_phi(phase);
1515       if (result != NULL) return result;
1516 
1517       if (t_oop->is_ptr_to_boxed_value()) {
1518         Node* result = eliminate_autobox(phase);
1519         if (result != NULL) return result;
1520       }
1521     }
1522   }
1523 
1524   // Check for prior store with a different base or offset; make Load
1525   // independent.  Skip through any number of them.  Bail out if the stores
1526   // are in an endless dead cycle and report no progress.  This is a key
1527   // transform for Reflection.  However, if after skipping through the Stores
1528   // we can't then fold up against a prior store do NOT do the transform as
1529   // this amounts to using the 'Oracle' model of aliasing.  It leaves the same
1530   // array memory alive twice: once for the hoisted Load and again after the
1531   // bypassed Store.  This situation only works if EVERYBODY who does
1532   // anti-dependence work knows how to bypass.  I.e. we need all
1533   // anti-dependence checks to ask the same Oracle.  Right now, that Oracle is
1534   // the alias index stuff.  So instead, peek through Stores and IFF we can
1535   // fold up, do so.
1536   Node* prev_mem = find_previous_store(phase);
1537   // Steps (a), (b):  Walk past independent stores to find an exact match.
1538   if (prev_mem != NULL && prev_mem != in(MemNode::Memory)) {
1539     // (c) See if we can fold up on the spot, but don't fold up here.
1540     // Fold-up might require truncation (for LoadB/LoadS/LoadUS) or
1541     // just return a prior value, which is done by Identity calls.
1542     if (can_see_stored_value(prev_mem, phase)) {
1543       // Make ready for step (d):
1544       set_req(MemNode::Memory, prev_mem);
1545       return this;
1546     }
1547   }
1548 
1549   return NULL;                  // No further progress
1550 }
1551 
1552 // Helper to recognize certain Klass fields which are invariant across
1553 // some group of array types (e.g., int[] or all T[] where T < Object).
1554 const Type*
1555 LoadNode::load_array_final_field(const TypeKlassPtr *tkls,
1556                                  ciKlass* klass) const {
1557   if (tkls->offset() == in_bytes(Klass::modifier_flags_offset())) {
1558     // The field is Klass::_modifier_flags.  Return its (constant) value.
1559     // (Folds up the 2nd indirection in aClassConstant.getModifiers().)
1560     assert(this->Opcode() == Op_LoadI, "must load an int from _modifier_flags");
1561     return TypeInt::make(klass->modifier_flags());
1562   }
1563   if (tkls->offset() == in_bytes(Klass::access_flags_offset())) {
1564     // The field is Klass::_access_flags.  Return its (constant) value.
1565     // (Folds up the 2nd indirection in Reflection.getClassAccessFlags(aClassConstant).)
1566     assert(this->Opcode() == Op_LoadI, "must load an int from _access_flags");
1567     return TypeInt::make(klass->access_flags());
1568   }
1569   if (tkls->offset() == in_bytes(Klass::layout_helper_offset())) {
1570     // The field is Klass::_layout_helper.  Return its constant value if known.
1571     assert(this->Opcode() == Op_LoadI, "must load an int from _layout_helper");
1572     return TypeInt::make(klass->layout_helper());
1573   }
1574 
1575   // No match.
1576   return NULL;
1577 }
1578 
1579 // Try to constant-fold a stable array element.
1580 static const Type* fold_stable_ary_elem(const TypeAryPtr* ary, int off, BasicType loadbt) {
1581   assert(ary->const_oop(), "array should be constant");
1582   assert(ary->is_stable(), "array should be stable");
1583 
1584   // Decode the results of GraphKit::array_element_address.
1585   ciArray* aobj = ary->const_oop()->as_array();
1586   ciConstant con = aobj->element_value_by_offset(off);
1587 
1588   if (con.basic_type() != T_ILLEGAL && !con.is_null_or_zero()) {
1589     const Type* con_type = Type::make_from_constant(con);
1590     if (con_type != NULL) {
1591       if (con_type->isa_aryptr()) {
1592         // Join with the array element type, in case it is also stable.
1593         int dim = ary->stable_dimension();
1594         con_type = con_type->is_aryptr()->cast_to_stable(true, dim-1);
1595       }
1596       if (loadbt == T_NARROWOOP && con_type->isa_oopptr()) {
1597         con_type = con_type->make_narrowoop();
1598       }
1599 #ifndef PRODUCT
1600       if (TraceIterativeGVN) {
1601         tty->print("FoldStableValues: array element [off=%d]: con_type=", off);
1602         con_type->dump(); tty->cr();
1603       }
1604 #endif //PRODUCT
1605       return con_type;
1606     }
1607   }
1608   return NULL;
1609 }
1610 
1611 //------------------------------Value-----------------------------------------
1612 const Type *LoadNode::Value( PhaseTransform *phase ) const {
1613   // Either input is TOP ==> the result is TOP
1614   Node* mem = in(MemNode::Memory);
1615   const Type *t1 = phase->type(mem);
1616   if (t1 == Type::TOP)  return Type::TOP;
1617   Node* adr = in(MemNode::Address);
1618   const TypePtr* tp = phase->type(adr)->isa_ptr();
1619   if (tp == NULL || tp->empty())  return Type::TOP;
1620   int off = tp->offset();
1621   assert(off != Type::OffsetTop, "case covered by TypePtr::empty");
1622   Compile* C = phase->C;
1623 
1624   // Try to guess loaded type from pointer type
1625   if (tp->isa_aryptr()) {
1626     const TypeAryPtr* ary = tp->is_aryptr();
1627     const Type* t = ary->elem();
1628 
1629     // Determine whether the reference is beyond the header or not, by comparing
1630     // the offset against the offset of the start of the array's data.
1631     // Different array types begin at slightly different offsets (12 vs. 16).
1632     // We choose T_BYTE as an example base type that is least restrictive
1633     // as to alignment, which will therefore produce the smallest
1634     // possible base offset.
1635     const int min_base_off = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1636     const bool off_beyond_header = ((uint)off >= (uint)min_base_off);
1637 
1638     // Try to constant-fold a stable array element.
1639     if (FoldStableValues && ary->is_stable() && ary->const_oop() != NULL) {
1640       // Make sure the reference is not into the header and the offset is constant
1641       if (off_beyond_header && adr->is_AddP() && off != Type::OffsetBot) {
1642         const Type* con_type = fold_stable_ary_elem(ary, off, memory_type());
1643         if (con_type != NULL) {
1644           return con_type;
1645         }
1646       }
1647     }
1648 
1649     // Don't do this for integer types. There is only potential profit if
1650     // the element type t is lower than _type; that is, for int types, if _type is
1651     // more restrictive than t.  This only happens here if one is short and the other
1652     // char (both 16 bits), and in those cases we've made an intentional decision
1653     // to use one kind of load over the other. See AndINode::Ideal and 4965907.
1654     // Also, do not try to narrow the type for a LoadKlass, regardless of offset.
1655     //
1656     // Yes, it is possible to encounter an expression like (LoadKlass p1:(AddP x x 8))
1657     // where the _gvn.type of the AddP is wider than 8.  This occurs when an earlier
1658     // copy p0 of (AddP x x 8) has been proven equal to p1, and the p0 has been
1659     // subsumed by p1.  If p1 is on the worklist but has not yet been re-transformed,
1660     // it is possible that p1 will have a type like Foo*[int+]:NotNull*+any.
1661     // In fact, that could have been the original type of p1, and p1 could have
1662     // had an original form like p1:(AddP x x (LShiftL quux 3)), where the
1663     // expression (LShiftL quux 3) independently optimized to the constant 8.
1664     if ((t->isa_int() == NULL) && (t->isa_long() == NULL)
1665         && (_type->isa_vect() == NULL)
1666         && Opcode() != Op_LoadKlass && Opcode() != Op_LoadNKlass) {
1667       // t might actually be lower than _type, if _type is a unique
1668       // concrete subclass of abstract class t.
1669       if (off_beyond_header) {  // is the offset beyond the header?
1670         const Type* jt = t->join_speculative(_type);
1671         // In any case, do not allow the join, per se, to empty out the type.
1672         if (jt->empty() && !t->empty()) {
1673           // This can happen if a interface-typed array narrows to a class type.
1674           jt = _type;
1675         }
1676 #ifdef ASSERT
1677         if (phase->C->eliminate_boxing() && adr->is_AddP()) {
1678           // The pointers in the autobox arrays are always non-null
1679           Node* base = adr->in(AddPNode::Base);
1680           if ((base != NULL) && base->is_DecodeN()) {
1681             // Get LoadN node which loads IntegerCache.cache field
1682             base = base->in(1);
1683           }
1684           if ((base != NULL) && base->is_Con()) {
1685             const TypeAryPtr* base_type = base->bottom_type()->isa_aryptr();
1686             if ((base_type != NULL) && base_type->is_autobox_cache()) {
1687               // It could be narrow oop
1688               assert(jt->make_ptr()->ptr() == TypePtr::NotNull,"sanity");
1689             }
1690           }
1691         }
1692 #endif
1693         return jt;
1694       }
1695     }
1696   } else if (tp->base() == Type::InstPtr) {
1697     ciEnv* env = C->env();
1698     const TypeInstPtr* tinst = tp->is_instptr();
1699     ciKlass* klass = tinst->klass();
1700     assert( off != Type::OffsetBot ||
1701             // arrays can be cast to Objects
1702             tp->is_oopptr()->klass()->is_java_lang_Object() ||
1703             // unsafe field access may not have a constant offset
1704             C->has_unsafe_access(),
1705             "Field accesses must be precise" );
1706     // For oop loads, we expect the _type to be precise
1707     if (klass == env->String_klass() &&
1708         adr->is_AddP() && off != Type::OffsetBot) {
1709       // For constant Strings treat the final fields as compile time constants.
1710       Node* base = adr->in(AddPNode::Base);
1711       const TypeOopPtr* t = phase->type(base)->isa_oopptr();
1712       if (t != NULL && t->singleton()) {
1713         ciField* field = env->String_klass()->get_field_by_offset(off, false);
1714         if (field != NULL && field->is_final()) {
1715           ciObject* string = t->const_oop();
1716           ciConstant constant = string->as_instance()->field_value(field);
1717           if (constant.basic_type() == T_INT) {
1718             return TypeInt::make(constant.as_int());
1719           } else if (constant.basic_type() == T_ARRAY) {
1720             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1721               return TypeNarrowOop::make_from_constant(constant.as_object(), true);
1722             } else {
1723               return TypeOopPtr::make_from_constant(constant.as_object(), true);
1724             }
1725           }
1726         }
1727       }
1728     }
1729     // Optimizations for constant objects
1730     ciObject* const_oop = tinst->const_oop();
1731     if (const_oop != NULL) {
1732       // For constant Boxed value treat the target field as a compile time constant.
1733       if (tinst->is_ptr_to_boxed_value()) {
1734         return tinst->get_const_boxed_value();
1735       } else
1736       // For constant CallSites treat the target field as a compile time constant.
1737       if (const_oop->is_call_site()) {
1738         ciCallSite* call_site = const_oop->as_call_site();
1739         ciField* field = call_site->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/ false);
1740         if (field != NULL && field->is_call_site_target()) {
1741           ciMethodHandle* target = call_site->get_target();
1742           if (target != NULL) {  // just in case
1743             ciConstant constant(T_OBJECT, target);
1744             const Type* t;
1745             if (adr->bottom_type()->is_ptr_to_narrowoop()) {
1746               t = TypeNarrowOop::make_from_constant(constant.as_object(), true);
1747             } else {
1748               t = TypeOopPtr::make_from_constant(constant.as_object(), true);
1749             }
1750             // Add a dependence for invalidation of the optimization.
1751             if (!call_site->is_constant_call_site()) {
1752               C->dependencies()->assert_call_site_target_value(call_site, target);
1753             }
1754             return t;
1755           }
1756         }
1757       }
1758     }
1759   } else if (tp->base() == Type::KlassPtr) {
1760     assert( off != Type::OffsetBot ||
1761             // arrays can be cast to Objects
1762             tp->is_klassptr()->klass()->is_java_lang_Object() ||
1763             // also allow array-loading from the primary supertype
1764             // array during subtype checks
1765             Opcode() == Op_LoadKlass,
1766             "Field accesses must be precise" );
1767     // For klass/static loads, we expect the _type to be precise
1768   }
1769 
1770   const TypeKlassPtr *tkls = tp->isa_klassptr();
1771   if (tkls != NULL && !StressReflectiveCode) {
1772     ciKlass* klass = tkls->klass();
1773     if (klass->is_loaded() && tkls->klass_is_exact()) {
1774       // We are loading a field from a Klass metaobject whose identity
1775       // is known at compile time (the type is "exact" or "precise").
1776       // Check for fields we know are maintained as constants by the VM.
1777       if (tkls->offset() == in_bytes(Klass::super_check_offset_offset())) {
1778         // The field is Klass::_super_check_offset.  Return its (constant) value.
1779         // (Folds up type checking code.)
1780         assert(Opcode() == Op_LoadI, "must load an int from _super_check_offset");
1781         return TypeInt::make(klass->super_check_offset());
1782       }
1783       // Compute index into primary_supers array
1784       juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1785       // Check for overflowing; use unsigned compare to handle the negative case.
1786       if( depth < ciKlass::primary_super_limit() ) {
1787         // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1788         // (Folds up type checking code.)
1789         assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1790         ciKlass *ss = klass->super_of_depth(depth);
1791         return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1792       }
1793       const Type* aift = load_array_final_field(tkls, klass);
1794       if (aift != NULL)  return aift;
1795       if (tkls->offset() == in_bytes(ArrayKlass::component_mirror_offset())
1796           && klass->is_array_klass()) {
1797         // The field is ArrayKlass::_component_mirror.  Return its (constant) value.
1798         // (Folds up aClassConstant.getComponentType, common in Arrays.copyOf.)
1799         assert(Opcode() == Op_LoadP, "must load an oop from _component_mirror");
1800         return TypeInstPtr::make(klass->as_array_klass()->component_mirror());
1801       }
1802       if (tkls->offset() == in_bytes(Klass::java_mirror_offset())) {
1803         // The field is Klass::_java_mirror.  Return its (constant) value.
1804         // (Folds up the 2nd indirection in anObjConstant.getClass().)
1805         assert(Opcode() == Op_LoadP, "must load an oop from _java_mirror");
1806         return TypeInstPtr::make(klass->java_mirror());
1807       }
1808     }
1809 
1810     // We can still check if we are loading from the primary_supers array at a
1811     // shallow enough depth.  Even though the klass is not exact, entries less
1812     // than or equal to its super depth are correct.
1813     if (klass->is_loaded() ) {
1814       ciType *inner = klass;
1815       while( inner->is_obj_array_klass() )
1816         inner = inner->as_obj_array_klass()->base_element_type();
1817       if( inner->is_instance_klass() &&
1818           !inner->as_instance_klass()->flags().is_interface() ) {
1819         // Compute index into primary_supers array
1820         juint depth = (tkls->offset() - in_bytes(Klass::primary_supers_offset())) / sizeof(Klass*);
1821         // Check for overflowing; use unsigned compare to handle the negative case.
1822         if( depth < ciKlass::primary_super_limit() &&
1823             depth <= klass->super_depth() ) { // allow self-depth checks to handle self-check case
1824           // The field is an element of Klass::_primary_supers.  Return its (constant) value.
1825           // (Folds up type checking code.)
1826           assert(Opcode() == Op_LoadKlass, "must load a klass from _primary_supers");
1827           ciKlass *ss = klass->super_of_depth(depth);
1828           return ss ? TypeKlassPtr::make(ss) : TypePtr::NULL_PTR;
1829         }
1830       }
1831     }
1832 
1833     // If the type is enough to determine that the thing is not an array,
1834     // we can give the layout_helper a positive interval type.
1835     // This will help short-circuit some reflective code.
1836     if (tkls->offset() == in_bytes(Klass::layout_helper_offset())
1837         && !klass->is_array_klass() // not directly typed as an array
1838         && !klass->is_interface()  // specifically not Serializable & Cloneable
1839         && !klass->is_java_lang_Object()   // not the supertype of all T[]
1840         ) {
1841       // Note:  When interfaces are reliable, we can narrow the interface
1842       // test to (klass != Serializable && klass != Cloneable).
1843       assert(Opcode() == Op_LoadI, "must load an int from _layout_helper");
1844       jint min_size = Klass::instance_layout_helper(oopDesc::header_size(), false);
1845       // The key property of this type is that it folds up tests
1846       // for array-ness, since it proves that the layout_helper is positive.
1847       // Thus, a generic value like the basic object layout helper works fine.
1848       return TypeInt::make(min_size, max_jint, Type::WidenMin);
1849     }
1850   }
1851 
1852   // If we are loading from a freshly-allocated object, produce a zero,
1853   // if the load is provably beyond the header of the object.
1854   // (Also allow a variable load from a fresh array to produce zero.)
1855   const TypeOopPtr *tinst = tp->isa_oopptr();
1856   bool is_instance = (tinst != NULL) && tinst->is_known_instance_field();
1857   bool is_boxed_value = (tinst != NULL) && tinst->is_ptr_to_boxed_value();
1858   if (ReduceFieldZeroing || is_instance || is_boxed_value) {
1859     Node* value = can_see_stored_value(mem,phase);
1860     if (value != NULL && value->is_Con()) {
1861       assert(value->bottom_type()->higher_equal(_type),"sanity");
1862       return value->bottom_type();
1863     }
1864   }
1865 
1866   if (is_instance) {
1867     // If we have an instance type and our memory input is the
1868     // programs's initial memory state, there is no matching store,
1869     // so just return a zero of the appropriate type
1870     Node *mem = in(MemNode::Memory);
1871     if (mem->is_Parm() && mem->in(0)->is_Start()) {
1872       assert(mem->as_Parm()->_con == TypeFunc::Memory, "must be memory Parm");
1873       return Type::get_zero_type(_type->basic_type());
1874     }
1875   }
1876   return _type;
1877 }
1878 
1879 //------------------------------match_edge-------------------------------------
1880 // Do we Match on this edge index or not?  Match only the address.
1881 uint LoadNode::match_edge(uint idx) const {
1882   return idx == MemNode::Address;
1883 }
1884 
1885 //--------------------------LoadBNode::Ideal--------------------------------------
1886 //
1887 //  If the previous store is to the same address as this load,
1888 //  and the value stored was larger than a byte, replace this load
1889 //  with the value stored truncated to a byte.  If no truncation is
1890 //  needed, the replacement is done in LoadNode::Identity().
1891 //
1892 Node *LoadBNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1893   Node* mem = in(MemNode::Memory);
1894   Node* value = can_see_stored_value(mem,phase);
1895   if( value && !phase->type(value)->higher_equal( _type ) ) {
1896     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(24)) );
1897     return new (phase->C) RShiftINode(result, phase->intcon(24));
1898   }
1899   // Identity call will handle the case where truncation is not needed.
1900   return LoadNode::Ideal(phase, can_reshape);
1901 }
1902 
1903 const Type* LoadBNode::Value(PhaseTransform *phase) const {
1904   Node* mem = in(MemNode::Memory);
1905   Node* value = can_see_stored_value(mem,phase);
1906   if (value != NULL && value->is_Con() &&
1907       !value->bottom_type()->higher_equal(_type)) {
1908     // If the input to the store does not fit with the load's result type,
1909     // it must be truncated. We can't delay until Ideal call since
1910     // a singleton Value is needed for split_thru_phi optimization.
1911     int con = value->get_int();
1912     return TypeInt::make((con << 24) >> 24);
1913   }
1914   return LoadNode::Value(phase);
1915 }
1916 
1917 //--------------------------LoadUBNode::Ideal-------------------------------------
1918 //
1919 //  If the previous store is to the same address as this load,
1920 //  and the value stored was larger than a byte, replace this load
1921 //  with the value stored truncated to a byte.  If no truncation is
1922 //  needed, the replacement is done in LoadNode::Identity().
1923 //
1924 Node* LoadUBNode::Ideal(PhaseGVN* phase, bool can_reshape) {
1925   Node* mem = in(MemNode::Memory);
1926   Node* value = can_see_stored_value(mem, phase);
1927   if (value && !phase->type(value)->higher_equal(_type))
1928     return new (phase->C) AndINode(value, phase->intcon(0xFF));
1929   // Identity call will handle the case where truncation is not needed.
1930   return LoadNode::Ideal(phase, can_reshape);
1931 }
1932 
1933 const Type* LoadUBNode::Value(PhaseTransform *phase) const {
1934   Node* mem = in(MemNode::Memory);
1935   Node* value = can_see_stored_value(mem,phase);
1936   if (value != NULL && value->is_Con() &&
1937       !value->bottom_type()->higher_equal(_type)) {
1938     // If the input to the store does not fit with the load's result type,
1939     // it must be truncated. We can't delay until Ideal call since
1940     // a singleton Value is needed for split_thru_phi optimization.
1941     int con = value->get_int();
1942     return TypeInt::make(con & 0xFF);
1943   }
1944   return LoadNode::Value(phase);
1945 }
1946 
1947 //--------------------------LoadUSNode::Ideal-------------------------------------
1948 //
1949 //  If the previous store is to the same address as this load,
1950 //  and the value stored was larger than a char, replace this load
1951 //  with the value stored truncated to a char.  If no truncation is
1952 //  needed, the replacement is done in LoadNode::Identity().
1953 //
1954 Node *LoadUSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1955   Node* mem = in(MemNode::Memory);
1956   Node* value = can_see_stored_value(mem,phase);
1957   if( value && !phase->type(value)->higher_equal( _type ) )
1958     return new (phase->C) AndINode(value,phase->intcon(0xFFFF));
1959   // Identity call will handle the case where truncation is not needed.
1960   return LoadNode::Ideal(phase, can_reshape);
1961 }
1962 
1963 const Type* LoadUSNode::Value(PhaseTransform *phase) const {
1964   Node* mem = in(MemNode::Memory);
1965   Node* value = can_see_stored_value(mem,phase);
1966   if (value != NULL && value->is_Con() &&
1967       !value->bottom_type()->higher_equal(_type)) {
1968     // If the input to the store does not fit with the load's result type,
1969     // it must be truncated. We can't delay until Ideal call since
1970     // a singleton Value is needed for split_thru_phi optimization.
1971     int con = value->get_int();
1972     return TypeInt::make(con & 0xFFFF);
1973   }
1974   return LoadNode::Value(phase);
1975 }
1976 
1977 //--------------------------LoadSNode::Ideal--------------------------------------
1978 //
1979 //  If the previous store is to the same address as this load,
1980 //  and the value stored was larger than a short, replace this load
1981 //  with the value stored truncated to a short.  If no truncation is
1982 //  needed, the replacement is done in LoadNode::Identity().
1983 //
1984 Node *LoadSNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1985   Node* mem = in(MemNode::Memory);
1986   Node* value = can_see_stored_value(mem,phase);
1987   if( value && !phase->type(value)->higher_equal( _type ) ) {
1988     Node *result = phase->transform( new (phase->C) LShiftINode(value, phase->intcon(16)) );
1989     return new (phase->C) RShiftINode(result, phase->intcon(16));
1990   }
1991   // Identity call will handle the case where truncation is not needed.
1992   return LoadNode::Ideal(phase, can_reshape);
1993 }
1994 
1995 const Type* LoadSNode::Value(PhaseTransform *phase) const {
1996   Node* mem = in(MemNode::Memory);
1997   Node* value = can_see_stored_value(mem,phase);
1998   if (value != NULL && value->is_Con() &&
1999       !value->bottom_type()->higher_equal(_type)) {
2000     // If the input to the store does not fit with the load's result type,
2001     // it must be truncated. We can't delay until Ideal call since
2002     // a singleton Value is needed for split_thru_phi optimization.
2003     int con = value->get_int();
2004     return TypeInt::make((con << 16) >> 16);
2005   }
2006   return LoadNode::Value(phase);
2007 }
2008 
2009 //=============================================================================
2010 //----------------------------LoadKlassNode::make------------------------------
2011 // Polymorphic factory method:
2012 Node *LoadKlassNode::make( PhaseGVN& gvn, Node *mem, Node *adr, const TypePtr* at, const TypeKlassPtr *tk ) {
2013   Compile* C = gvn.C;
2014   Node *ctl = NULL;
2015   // sanity check the alias category against the created node type
2016   const TypePtr *adr_type = adr->bottom_type()->isa_ptr();
2017   assert(adr_type != NULL, "expecting TypeKlassPtr");
2018 #ifdef _LP64
2019   if (adr_type->is_ptr_to_narrowklass()) {
2020     assert(UseCompressedClassPointers, "no compressed klasses");
2021     Node* load_klass = gvn.transform(new (C) LoadNKlassNode(ctl, mem, adr, at, tk->make_narrowklass(), MemNode::unordered));
2022     return new (C) DecodeNKlassNode(load_klass, load_klass->bottom_type()->make_ptr());
2023   }
2024 #endif
2025   assert(!adr_type->is_ptr_to_narrowklass() && !adr_type->is_ptr_to_narrowoop(), "should have got back a narrow oop");
2026   return new (C) LoadKlassNode(ctl, mem, adr, at, tk, MemNode::unordered);
2027 }
2028 
2029 //------------------------------Value------------------------------------------
2030 const Type *LoadKlassNode::Value( PhaseTransform *phase ) const {
2031   return klass_value_common(phase);
2032 }
2033 
2034 const Type *LoadNode::klass_value_common( PhaseTransform *phase ) const {
2035   // Either input is TOP ==> the result is TOP
2036   const Type *t1 = phase->type( in(MemNode::Memory) );
2037   if (t1 == Type::TOP)  return Type::TOP;
2038   Node *adr = in(MemNode::Address);
2039   const Type *t2 = phase->type( adr );
2040   if (t2 == Type::TOP)  return Type::TOP;
2041   const TypePtr *tp = t2->is_ptr();
2042   if (TypePtr::above_centerline(tp->ptr()) ||
2043       tp->ptr() == TypePtr::Null)  return Type::TOP;
2044 
2045   // Return a more precise klass, if possible
2046   const TypeInstPtr *tinst = tp->isa_instptr();
2047   if (tinst != NULL) {
2048     ciInstanceKlass* ik = tinst->klass()->as_instance_klass();
2049     int offset = tinst->offset();
2050     if (ik == phase->C->env()->Class_klass()
2051         && (offset == java_lang_Class::klass_offset_in_bytes() ||
2052             offset == java_lang_Class::array_klass_offset_in_bytes())) {
2053       // We are loading a special hidden field from a Class mirror object,
2054       // the field which points to the VM's Klass metaobject.
2055       ciType* t = tinst->java_mirror_type();
2056       // java_mirror_type returns non-null for compile-time Class constants.
2057       if (t != NULL) {
2058         // constant oop => constant klass
2059         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2060           if (t->is_void()) {
2061             // We cannot create a void array.  Since void is a primitive type return null
2062             // klass.  Users of this result need to do a null check on the returned klass.
2063             return TypePtr::NULL_PTR;
2064           }
2065           return TypeKlassPtr::make(ciArrayKlass::make(t));
2066         }
2067         if (!t->is_klass()) {
2068           // a primitive Class (e.g., int.class) has NULL for a klass field
2069           return TypePtr::NULL_PTR;
2070         }
2071         // (Folds up the 1st indirection in aClassConstant.getModifiers().)
2072         return TypeKlassPtr::make(t->as_klass());
2073       }
2074       // non-constant mirror, so we can't tell what's going on
2075     }
2076     if( !ik->is_loaded() )
2077       return _type;             // Bail out if not loaded
2078     if (offset == oopDesc::klass_offset_in_bytes()) {
2079       if (tinst->klass_is_exact()) {
2080         return TypeKlassPtr::make(ik);
2081       }
2082       // See if we can become precise: no subklasses and no interface
2083       // (Note:  We need to support verified interfaces.)
2084       if (!ik->is_interface() && !ik->has_subklass()) {
2085         //assert(!UseExactTypes, "this code should be useless with exact types");
2086         // Add a dependence; if any subclass added we need to recompile
2087         if (!ik->is_final()) {
2088           // %%% should use stronger assert_unique_concrete_subtype instead
2089           phase->C->dependencies()->assert_leaf_type(ik);
2090         }
2091         // Return precise klass
2092         return TypeKlassPtr::make(ik);
2093       }
2094 
2095       // Return root of possible klass
2096       return TypeKlassPtr::make(TypePtr::NotNull, ik, 0/*offset*/);
2097     }
2098   }
2099 
2100   // Check for loading klass from an array
2101   const TypeAryPtr *tary = tp->isa_aryptr();
2102   if( tary != NULL ) {
2103     ciKlass *tary_klass = tary->klass();
2104     if (tary_klass != NULL   // can be NULL when at BOTTOM or TOP
2105         && tary->offset() == oopDesc::klass_offset_in_bytes()) {
2106       if (tary->klass_is_exact()) {
2107         return TypeKlassPtr::make(tary_klass);
2108       }
2109       ciArrayKlass *ak = tary->klass()->as_array_klass();
2110       // If the klass is an object array, we defer the question to the
2111       // array component klass.
2112       if( ak->is_obj_array_klass() ) {
2113         assert( ak->is_loaded(), "" );
2114         ciKlass *base_k = ak->as_obj_array_klass()->base_element_klass();
2115         if( base_k->is_loaded() && base_k->is_instance_klass() ) {
2116           ciInstanceKlass* ik = base_k->as_instance_klass();
2117           // See if we can become precise: no subklasses and no interface
2118           if (!ik->is_interface() && !ik->has_subklass()) {
2119             //assert(!UseExactTypes, "this code should be useless with exact types");
2120             // Add a dependence; if any subclass added we need to recompile
2121             if (!ik->is_final()) {
2122               phase->C->dependencies()->assert_leaf_type(ik);
2123             }
2124             // Return precise array klass
2125             return TypeKlassPtr::make(ak);
2126           }
2127         }
2128         return TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
2129       } else {                  // Found a type-array?
2130         //assert(!UseExactTypes, "this code should be useless with exact types");
2131         assert( ak->is_type_array_klass(), "" );
2132         return TypeKlassPtr::make(ak); // These are always precise
2133       }
2134     }
2135   }
2136 
2137   // Check for loading klass from an array klass
2138   const TypeKlassPtr *tkls = tp->isa_klassptr();
2139   if (tkls != NULL && !StressReflectiveCode) {
2140     ciKlass* klass = tkls->klass();
2141     if( !klass->is_loaded() )
2142       return _type;             // Bail out if not loaded
2143     if( klass->is_obj_array_klass() &&
2144         tkls->offset() == in_bytes(ObjArrayKlass::element_klass_offset())) {
2145       ciKlass* elem = klass->as_obj_array_klass()->element_klass();
2146       // // Always returning precise element type is incorrect,
2147       // // e.g., element type could be object and array may contain strings
2148       // return TypeKlassPtr::make(TypePtr::Constant, elem, 0);
2149 
2150       // The array's TypeKlassPtr was declared 'precise' or 'not precise'
2151       // according to the element type's subclassing.
2152       return TypeKlassPtr::make(tkls->ptr(), elem, 0/*offset*/);
2153     }
2154     if( klass->is_instance_klass() && tkls->klass_is_exact() &&
2155         tkls->offset() == in_bytes(Klass::super_offset())) {
2156       ciKlass* sup = klass->as_instance_klass()->super();
2157       // The field is Klass::_super.  Return its (constant) value.
2158       // (Folds up the 2nd indirection in aClassConstant.getSuperClass().)
2159       return sup ? TypeKlassPtr::make(sup) : TypePtr::NULL_PTR;
2160     }
2161   }
2162 
2163   // Bailout case
2164   return LoadNode::Value(phase);
2165 }
2166 
2167 //------------------------------Identity---------------------------------------
2168 // To clean up reflective code, simplify k.java_mirror.as_klass to plain k.
2169 // Also feed through the klass in Allocate(...klass...)._klass.
2170 Node* LoadKlassNode::Identity( PhaseTransform *phase ) {
2171   return klass_identity_common(phase);
2172 }
2173 
2174 Node* LoadNode::klass_identity_common(PhaseTransform *phase ) {
2175   Node* x = LoadNode::Identity(phase);
2176   if (x != this)  return x;
2177 
2178   // Take apart the address into an oop and and offset.
2179   // Return 'this' if we cannot.
2180   Node*    adr    = in(MemNode::Address);
2181   intptr_t offset = 0;
2182   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2183   if (base == NULL)     return this;
2184   const TypeOopPtr* toop = phase->type(adr)->isa_oopptr();
2185   if (toop == NULL)     return this;
2186 
2187   // We can fetch the klass directly through an AllocateNode.
2188   // This works even if the klass is not constant (clone or newArray).
2189   if (offset == oopDesc::klass_offset_in_bytes()) {
2190     Node* allocated_klass = AllocateNode::Ideal_klass(base, phase);
2191     if (allocated_klass != NULL) {
2192       return allocated_klass;
2193     }
2194   }
2195 
2196   // Simplify k.java_mirror.as_klass to plain k, where k is a Klass*.
2197   // Simplify ak.component_mirror.array_klass to plain ak, ak an ArrayKlass.
2198   // See inline_native_Class_query for occurrences of these patterns.
2199   // Java Example:  x.getClass().isAssignableFrom(y)
2200   // Java Example:  Array.newInstance(x.getClass().getComponentType(), n)
2201   //
2202   // This improves reflective code, often making the Class
2203   // mirror go completely dead.  (Current exception:  Class
2204   // mirrors may appear in debug info, but we could clean them out by
2205   // introducing a new debug info operator for Klass*.java_mirror).
2206   if (toop->isa_instptr() && toop->klass() == phase->C->env()->Class_klass()
2207       && (offset == java_lang_Class::klass_offset_in_bytes() ||
2208           offset == java_lang_Class::array_klass_offset_in_bytes())) {
2209     // We are loading a special hidden field from a Class mirror,
2210     // the field which points to its Klass or ArrayKlass metaobject.
2211     if (base->is_Load()) {
2212       Node* adr2 = base->in(MemNode::Address);
2213       const TypeKlassPtr* tkls = phase->type(adr2)->isa_klassptr();
2214       if (tkls != NULL && !tkls->empty()
2215           && (tkls->klass()->is_instance_klass() ||
2216               tkls->klass()->is_array_klass())
2217           && adr2->is_AddP()
2218           ) {
2219         int mirror_field = in_bytes(Klass::java_mirror_offset());
2220         if (offset == java_lang_Class::array_klass_offset_in_bytes()) {
2221           mirror_field = in_bytes(ArrayKlass::component_mirror_offset());
2222         }
2223         if (tkls->offset() == mirror_field) {
2224           return adr2->in(AddPNode::Base);
2225         }
2226       }
2227     }
2228   }
2229 
2230   return this;
2231 }
2232 
2233 
2234 //------------------------------Value------------------------------------------
2235 const Type *LoadNKlassNode::Value( PhaseTransform *phase ) const {
2236   const Type *t = klass_value_common(phase);
2237   if (t == Type::TOP)
2238     return t;
2239 
2240   return t->make_narrowklass();
2241 }
2242 
2243 //------------------------------Identity---------------------------------------
2244 // To clean up reflective code, simplify k.java_mirror.as_klass to narrow k.
2245 // Also feed through the klass in Allocate(...klass...)._klass.
2246 Node* LoadNKlassNode::Identity( PhaseTransform *phase ) {
2247   Node *x = klass_identity_common(phase);
2248 
2249   const Type *t = phase->type( x );
2250   if( t == Type::TOP ) return x;
2251   if( t->isa_narrowklass()) return x;
2252   assert (!t->isa_narrowoop(), "no narrow oop here");
2253 
2254   return phase->transform(new (phase->C) EncodePKlassNode(x, t->make_narrowklass()));
2255 }
2256 
2257 //------------------------------Value-----------------------------------------
2258 const Type *LoadRangeNode::Value( PhaseTransform *phase ) const {
2259   // Either input is TOP ==> the result is TOP
2260   const Type *t1 = phase->type( in(MemNode::Memory) );
2261   if( t1 == Type::TOP ) return Type::TOP;
2262   Node *adr = in(MemNode::Address);
2263   const Type *t2 = phase->type( adr );
2264   if( t2 == Type::TOP ) return Type::TOP;
2265   const TypePtr *tp = t2->is_ptr();
2266   if (TypePtr::above_centerline(tp->ptr()))  return Type::TOP;
2267   const TypeAryPtr *tap = tp->isa_aryptr();
2268   if( !tap ) return _type;
2269   return tap->size();
2270 }
2271 
2272 //-------------------------------Ideal---------------------------------------
2273 // Feed through the length in AllocateArray(...length...)._length.
2274 Node *LoadRangeNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2275   Node* p = MemNode::Ideal_common(phase, can_reshape);
2276   if (p)  return (p == NodeSentinel) ? NULL : p;
2277 
2278   // Take apart the address into an oop and and offset.
2279   // Return 'this' if we cannot.
2280   Node*    adr    = in(MemNode::Address);
2281   intptr_t offset = 0;
2282   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase,  offset);
2283   if (base == NULL)     return NULL;
2284   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2285   if (tary == NULL)     return NULL;
2286 
2287   // We can fetch the length directly through an AllocateArrayNode.
2288   // This works even if the length is not constant (clone or newArray).
2289   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2290     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2291     if (alloc != NULL) {
2292       Node* allocated_length = alloc->Ideal_length();
2293       Node* len = alloc->make_ideal_length(tary, phase);
2294       if (allocated_length != len) {
2295         // New CastII improves on this.
2296         return len;
2297       }
2298     }
2299   }
2300 
2301   return NULL;
2302 }
2303 
2304 //------------------------------Identity---------------------------------------
2305 // Feed through the length in AllocateArray(...length...)._length.
2306 Node* LoadRangeNode::Identity( PhaseTransform *phase ) {
2307   Node* x = LoadINode::Identity(phase);
2308   if (x != this)  return x;
2309 
2310   // Take apart the address into an oop and and offset.
2311   // Return 'this' if we cannot.
2312   Node*    adr    = in(MemNode::Address);
2313   intptr_t offset = 0;
2314   Node*    base   = AddPNode::Ideal_base_and_offset(adr, phase, offset);
2315   if (base == NULL)     return this;
2316   const TypeAryPtr* tary = phase->type(adr)->isa_aryptr();
2317   if (tary == NULL)     return this;
2318 
2319   // We can fetch the length directly through an AllocateArrayNode.
2320   // This works even if the length is not constant (clone or newArray).
2321   if (offset == arrayOopDesc::length_offset_in_bytes()) {
2322     AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(base, phase);
2323     if (alloc != NULL) {
2324       Node* allocated_length = alloc->Ideal_length();
2325       // Do not allow make_ideal_length to allocate a CastII node.
2326       Node* len = alloc->make_ideal_length(tary, phase, false);
2327       if (allocated_length == len) {
2328         // Return allocated_length only if it would not be improved by a CastII.
2329         return allocated_length;
2330       }
2331     }
2332   }
2333 
2334   return this;
2335 
2336 }
2337 
2338 //=============================================================================
2339 //---------------------------StoreNode::make-----------------------------------
2340 // Polymorphic factory method:
2341 StoreNode* StoreNode::make(PhaseGVN& gvn, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, BasicType bt, MemOrd mo) {
2342   assert((mo == unordered || mo == release), "unexpected");
2343   Compile* C = gvn.C;
2344   assert(C->get_alias_index(adr_type) != Compile::AliasIdxRaw ||
2345          ctl != NULL, "raw memory operations should have control edge");
2346 
2347   switch (bt) {
2348   case T_BOOLEAN:
2349   case T_BYTE:    return new (C) StoreBNode(ctl, mem, adr, adr_type, val, mo);
2350   case T_INT:     return new (C) StoreINode(ctl, mem, adr, adr_type, val, mo);
2351   case T_CHAR:
2352   case T_SHORT:   return new (C) StoreCNode(ctl, mem, adr, adr_type, val, mo);
2353   case T_LONG:    return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo);
2354   case T_FLOAT:   return new (C) StoreFNode(ctl, mem, adr, adr_type, val, mo);
2355   case T_DOUBLE:  return new (C) StoreDNode(ctl, mem, adr, adr_type, val, mo);
2356   case T_METADATA:
2357   case T_ADDRESS:
2358   case T_OBJECT:
2359 #ifdef _LP64
2360     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2361       val = gvn.transform(new (C) EncodePNode(val, val->bottom_type()->make_narrowoop()));
2362       return new (C) StoreNNode(ctl, mem, adr, adr_type, val, mo);
2363     } else if (adr->bottom_type()->is_ptr_to_narrowklass() ||
2364                (UseCompressedClassPointers && val->bottom_type()->isa_klassptr() &&
2365                 adr->bottom_type()->isa_rawptr())) {
2366       val = gvn.transform(new (C) EncodePKlassNode(val, val->bottom_type()->make_narrowklass()));
2367       return new (C) StoreNKlassNode(ctl, mem, adr, adr_type, val, mo);
2368     }
2369 #endif
2370     {
2371       return new (C) StorePNode(ctl, mem, adr, adr_type, val, mo);
2372     }
2373   }
2374   ShouldNotReachHere();
2375   return (StoreNode*)NULL;
2376 }
2377 
2378 StoreLNode* StoreLNode::make_atomic(Compile *C, Node* ctl, Node* mem, Node* adr, const TypePtr* adr_type, Node* val, MemOrd mo) {
2379   bool require_atomic = true;
2380   return new (C) StoreLNode(ctl, mem, adr, adr_type, val, mo, require_atomic);
2381 }
2382 
2383 
2384 //--------------------------bottom_type----------------------------------------
2385 const Type *StoreNode::bottom_type() const {
2386   return Type::MEMORY;
2387 }
2388 
2389 //------------------------------hash-------------------------------------------
2390 uint StoreNode::hash() const {
2391   // unroll addition of interesting fields
2392   //return (uintptr_t)in(Control) + (uintptr_t)in(Memory) + (uintptr_t)in(Address) + (uintptr_t)in(ValueIn);
2393 
2394   // Since they are not commoned, do not hash them:
2395   return NO_HASH;
2396 }
2397 
2398 //------------------------------Ideal------------------------------------------
2399 // Change back-to-back Store(, p, x) -> Store(m, p, y) to Store(m, p, x).
2400 // When a store immediately follows a relevant allocation/initialization,
2401 // try to capture it into the initialization, or hoist it above.
2402 Node *StoreNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2403   Node* p = MemNode::Ideal_common(phase, can_reshape);
2404   if (p)  return (p == NodeSentinel) ? NULL : p;
2405 
2406   Node* mem     = in(MemNode::Memory);
2407   Node* address = in(MemNode::Address);
2408 
2409   // Back-to-back stores to same address?  Fold em up.  Generally
2410   // unsafe if I have intervening uses...  Also disallowed for StoreCM
2411   // since they must follow each StoreP operation.  Redundant StoreCMs
2412   // are eliminated just before matching in final_graph_reshape.
2413   if (mem->is_Store() && mem->in(MemNode::Address)->eqv_uncast(address) &&
2414       mem->Opcode() != Op_StoreCM) {
2415     // Looking at a dead closed cycle of memory?
2416     assert(mem != mem->in(MemNode::Memory), "dead loop in StoreNode::Ideal");
2417 
2418     assert(Opcode() == mem->Opcode() ||
2419            phase->C->get_alias_index(adr_type()) == Compile::AliasIdxRaw,
2420            "no mismatched stores, except on raw memory");
2421 
2422     if (mem->outcnt() == 1 &&           // check for intervening uses
2423         mem->as_Store()->memory_size() <= this->memory_size()) {
2424       // If anybody other than 'this' uses 'mem', we cannot fold 'mem' away.
2425       // For example, 'mem' might be the final state at a conditional return.
2426       // Or, 'mem' might be used by some node which is live at the same time
2427       // 'this' is live, which might be unschedulable.  So, require exactly
2428       // ONE user, the 'this' store, until such time as we clone 'mem' for
2429       // each of 'mem's uses (thus making the exactly-1-user-rule hold true).
2430       if (can_reshape) {  // (%%% is this an anachronism?)
2431         set_req_X(MemNode::Memory, mem->in(MemNode::Memory),
2432                   phase->is_IterGVN());
2433       } else {
2434         // It's OK to do this in the parser, since DU info is always accurate,
2435         // and the parser always refers to nodes via SafePointNode maps.
2436         set_req(MemNode::Memory, mem->in(MemNode::Memory));
2437       }
2438       return this;
2439     }
2440   }
2441 
2442   // Capture an unaliased, unconditional, simple store into an initializer.
2443   // Or, if it is independent of the allocation, hoist it above the allocation.
2444   if (ReduceFieldZeroing && /*can_reshape &&*/
2445       mem->is_Proj() && mem->in(0)->is_Initialize()) {
2446     InitializeNode* init = mem->in(0)->as_Initialize();
2447     intptr_t offset = init->can_capture_store(this, phase, can_reshape);
2448     if (offset > 0) {
2449       Node* moved = init->capture_store(this, offset, phase, can_reshape);
2450       // If the InitializeNode captured me, it made a raw copy of me,
2451       // and I need to disappear.
2452       if (moved != NULL) {
2453         // %%% hack to ensure that Ideal returns a new node:
2454         mem = MergeMemNode::make(phase->C, mem);
2455         return mem;             // fold me away
2456       }
2457     }
2458   }
2459 
2460   return NULL;                  // No further progress
2461 }
2462 
2463 //------------------------------Value-----------------------------------------
2464 const Type *StoreNode::Value( PhaseTransform *phase ) const {
2465   // Either input is TOP ==> the result is TOP
2466   const Type *t1 = phase->type( in(MemNode::Memory) );
2467   if( t1 == Type::TOP ) return Type::TOP;
2468   const Type *t2 = phase->type( in(MemNode::Address) );
2469   if( t2 == Type::TOP ) return Type::TOP;
2470   const Type *t3 = phase->type( in(MemNode::ValueIn) );
2471   if( t3 == Type::TOP ) return Type::TOP;
2472   return Type::MEMORY;
2473 }
2474 
2475 //------------------------------Identity---------------------------------------
2476 // Remove redundant stores:
2477 //   Store(m, p, Load(m, p)) changes to m.
2478 //   Store(, p, x) -> Store(m, p, x) changes to Store(m, p, x).
2479 Node *StoreNode::Identity( PhaseTransform *phase ) {
2480   Node* mem = in(MemNode::Memory);
2481   Node* adr = in(MemNode::Address);
2482   Node* val = in(MemNode::ValueIn);
2483 
2484   // Load then Store?  Then the Store is useless
2485   if (val->is_Load() &&
2486       val->in(MemNode::Address)->eqv_uncast(adr) &&
2487       val->in(MemNode::Memory )->eqv_uncast(mem) &&
2488       val->as_Load()->store_Opcode() == Opcode()) {
2489     return mem;
2490   }
2491 
2492   // Two stores in a row of the same value?
2493   if (mem->is_Store() &&
2494       mem->in(MemNode::Address)->eqv_uncast(adr) &&
2495       mem->in(MemNode::ValueIn)->eqv_uncast(val) &&
2496       mem->Opcode() == Opcode()) {
2497     return mem;
2498   }
2499 
2500   // Store of zero anywhere into a freshly-allocated object?
2501   // Then the store is useless.
2502   // (It must already have been captured by the InitializeNode.)
2503   if (ReduceFieldZeroing && phase->type(val)->is_zero_type()) {
2504     // a newly allocated object is already all-zeroes everywhere
2505     if (mem->is_Proj() && mem->in(0)->is_Allocate()) {
2506       return mem;
2507     }
2508 
2509     // the store may also apply to zero-bits in an earlier object
2510     Node* prev_mem = find_previous_store(phase);
2511     // Steps (a), (b):  Walk past independent stores to find an exact match.
2512     if (prev_mem != NULL) {
2513       Node* prev_val = can_see_stored_value(prev_mem, phase);
2514       if (prev_val != NULL && phase->eqv(prev_val, val)) {
2515         // prev_val and val might differ by a cast; it would be good
2516         // to keep the more informative of the two.
2517         return mem;
2518       }
2519     }
2520   }
2521 
2522   return this;
2523 }
2524 
2525 //------------------------------match_edge-------------------------------------
2526 // Do we Match on this edge index or not?  Match only memory & value
2527 uint StoreNode::match_edge(uint idx) const {
2528   return idx == MemNode::Address || idx == MemNode::ValueIn;
2529 }
2530 
2531 //------------------------------cmp--------------------------------------------
2532 // Do not common stores up together.  They generally have to be split
2533 // back up anyways, so do not bother.
2534 uint StoreNode::cmp( const Node &n ) const {
2535   return (&n == this);          // Always fail except on self
2536 }
2537 
2538 //------------------------------Ideal_masked_input-----------------------------
2539 // Check for a useless mask before a partial-word store
2540 // (StoreB ... (AndI valIn conIa) )
2541 // If (conIa & mask == mask) this simplifies to
2542 // (StoreB ... (valIn) )
2543 Node *StoreNode::Ideal_masked_input(PhaseGVN *phase, uint mask) {
2544   Node *val = in(MemNode::ValueIn);
2545   if( val->Opcode() == Op_AndI ) {
2546     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2547     if( t && t->is_con() && (t->get_con() & mask) == mask ) {
2548       set_req(MemNode::ValueIn, val->in(1));
2549       return this;
2550     }
2551   }
2552   return NULL;
2553 }
2554 
2555 
2556 //------------------------------Ideal_sign_extended_input----------------------
2557 // Check for useless sign-extension before a partial-word store
2558 // (StoreB ... (RShiftI _ (LShiftI _ valIn conIL ) conIR) )
2559 // If (conIL == conIR && conIR <= num_bits)  this simplifies to
2560 // (StoreB ... (valIn) )
2561 Node *StoreNode::Ideal_sign_extended_input(PhaseGVN *phase, int num_bits) {
2562   Node *val = in(MemNode::ValueIn);
2563   if( val->Opcode() == Op_RShiftI ) {
2564     const TypeInt *t = phase->type( val->in(2) )->isa_int();
2565     if( t && t->is_con() && (t->get_con() <= num_bits) ) {
2566       Node *shl = val->in(1);
2567       if( shl->Opcode() == Op_LShiftI ) {
2568         const TypeInt *t2 = phase->type( shl->in(2) )->isa_int();
2569         if( t2 && t2->is_con() && (t2->get_con() == t->get_con()) ) {
2570           set_req(MemNode::ValueIn, shl->in(1));
2571           return this;
2572         }
2573       }
2574     }
2575   }
2576   return NULL;
2577 }
2578 
2579 //------------------------------value_never_loaded-----------------------------------
2580 // Determine whether there are any possible loads of the value stored.
2581 // For simplicity, we actually check if there are any loads from the
2582 // address stored to, not just for loads of the value stored by this node.
2583 //
2584 bool StoreNode::value_never_loaded( PhaseTransform *phase) const {
2585   Node *adr = in(Address);
2586   const TypeOopPtr *adr_oop = phase->type(adr)->isa_oopptr();
2587   if (adr_oop == NULL)
2588     return false;
2589   if (!adr_oop->is_known_instance_field())
2590     return false; // if not a distinct instance, there may be aliases of the address
2591   for (DUIterator_Fast imax, i = adr->fast_outs(imax); i < imax; i++) {
2592     Node *use = adr->fast_out(i);
2593     int opc = use->Opcode();
2594     if (use->is_Load() || use->is_LoadStore()) {
2595       return false;
2596     }
2597   }
2598   return true;
2599 }
2600 
2601 //=============================================================================
2602 //------------------------------Ideal------------------------------------------
2603 // If the store is from an AND mask that leaves the low bits untouched, then
2604 // we can skip the AND operation.  If the store is from a sign-extension
2605 // (a left shift, then right shift) we can skip both.
2606 Node *StoreBNode::Ideal(PhaseGVN *phase, bool can_reshape){
2607   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFF);
2608   if( progress != NULL ) return progress;
2609 
2610   progress = StoreNode::Ideal_sign_extended_input(phase, 24);
2611   if( progress != NULL ) return progress;
2612 
2613   // Finally check the default case
2614   return StoreNode::Ideal(phase, can_reshape);
2615 }
2616 
2617 //=============================================================================
2618 //------------------------------Ideal------------------------------------------
2619 // If the store is from an AND mask that leaves the low bits untouched, then
2620 // we can skip the AND operation
2621 Node *StoreCNode::Ideal(PhaseGVN *phase, bool can_reshape){
2622   Node *progress = StoreNode::Ideal_masked_input(phase, 0xFFFF);
2623   if( progress != NULL ) return progress;
2624 
2625   progress = StoreNode::Ideal_sign_extended_input(phase, 16);
2626   if( progress != NULL ) return progress;
2627 
2628   // Finally check the default case
2629   return StoreNode::Ideal(phase, can_reshape);
2630 }
2631 
2632 //=============================================================================
2633 //------------------------------Identity---------------------------------------
2634 Node *StoreCMNode::Identity( PhaseTransform *phase ) {
2635   // No need to card mark when storing a null ptr
2636   Node* my_store = in(MemNode::OopStore);
2637   if (my_store->is_Store()) {
2638     const Type *t1 = phase->type( my_store->in(MemNode::ValueIn) );
2639     if( t1 == TypePtr::NULL_PTR ) {
2640       return in(MemNode::Memory);
2641     }
2642   }
2643   return this;
2644 }
2645 
2646 //=============================================================================
2647 //------------------------------Ideal---------------------------------------
2648 Node *StoreCMNode::Ideal(PhaseGVN *phase, bool can_reshape){
2649   Node* progress = StoreNode::Ideal(phase, can_reshape);
2650   if (progress != NULL) return progress;
2651 
2652   Node* my_store = in(MemNode::OopStore);
2653   if (my_store->is_MergeMem()) {
2654     Node* mem = my_store->as_MergeMem()->memory_at(oop_alias_idx());
2655     set_req(MemNode::OopStore, mem);
2656     return this;
2657   }
2658 
2659   return NULL;
2660 }
2661 
2662 //------------------------------Value-----------------------------------------
2663 const Type *StoreCMNode::Value( PhaseTransform *phase ) const {
2664   // Either input is TOP ==> the result is TOP
2665   const Type *t = phase->type( in(MemNode::Memory) );
2666   if( t == Type::TOP ) return Type::TOP;
2667   t = phase->type( in(MemNode::Address) );
2668   if( t == Type::TOP ) return Type::TOP;
2669   t = phase->type( in(MemNode::ValueIn) );
2670   if( t == Type::TOP ) return Type::TOP;
2671   // If extra input is TOP ==> the result is TOP
2672   t = phase->type( in(MemNode::OopStore) );
2673   if( t == Type::TOP ) return Type::TOP;
2674 
2675   return StoreNode::Value( phase );
2676 }
2677 
2678 
2679 //=============================================================================
2680 //----------------------------------SCMemProjNode------------------------------
2681 const Type * SCMemProjNode::Value( PhaseTransform *phase ) const
2682 {
2683   return bottom_type();
2684 }
2685 
2686 //=============================================================================
2687 //----------------------------------LoadStoreNode------------------------------
2688 LoadStoreNode::LoadStoreNode( Node *c, Node *mem, Node *adr, Node *val, const TypePtr* at, const Type* rt, uint required )
2689   : Node(required),
2690     _type(rt),
2691     _adr_type(at)
2692 {
2693   init_req(MemNode::Control, c  );
2694   init_req(MemNode::Memory , mem);
2695   init_req(MemNode::Address, adr);
2696   init_req(MemNode::ValueIn, val);
2697   init_class_id(Class_LoadStore);
2698 }
2699 
2700 uint LoadStoreNode::ideal_reg() const {
2701   return _type->ideal_reg();
2702 }
2703 
2704 bool LoadStoreNode::result_not_used() const {
2705   for( DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++ ) {
2706     Node *x = fast_out(i);
2707     if (x->Opcode() == Op_SCMemProj) continue;
2708     return false;
2709   }
2710   return true;
2711 }
2712 
2713 uint LoadStoreNode::size_of() const { return sizeof(*this); }
2714 
2715 //=============================================================================
2716 //----------------------------------LoadStoreConditionalNode--------------------
2717 LoadStoreConditionalNode::LoadStoreConditionalNode( Node *c, Node *mem, Node *adr, Node *val, Node *ex ) : LoadStoreNode(c, mem, adr, val, NULL, TypeInt::BOOL, 5) {
2718   init_req(ExpectedIn, ex );
2719 }
2720 
2721 //=============================================================================
2722 //-------------------------------adr_type--------------------------------------
2723 // Do we Match on this edge index or not?  Do not match memory
2724 const TypePtr* ClearArrayNode::adr_type() const {
2725   Node *adr = in(3);
2726   return MemNode::calculate_adr_type(adr->bottom_type());
2727 }
2728 
2729 //------------------------------match_edge-------------------------------------
2730 // Do we Match on this edge index or not?  Do not match memory
2731 uint ClearArrayNode::match_edge(uint idx) const {
2732   return idx > 1;
2733 }
2734 
2735 //------------------------------Identity---------------------------------------
2736 // Clearing a zero length array does nothing
2737 Node *ClearArrayNode::Identity( PhaseTransform *phase ) {
2738   return phase->type(in(2))->higher_equal(TypeX::ZERO)  ? in(1) : this;
2739 }
2740 
2741 //------------------------------Idealize---------------------------------------
2742 // Clearing a short array is faster with stores
2743 Node *ClearArrayNode::Ideal(PhaseGVN *phase, bool can_reshape){
2744   const int unit = BytesPerLong;
2745   const TypeX* t = phase->type(in(2))->isa_intptr_t();
2746   if (!t)  return NULL;
2747   if (!t->is_con())  return NULL;
2748   intptr_t raw_count = t->get_con();
2749   intptr_t size = raw_count;
2750   if (!Matcher::init_array_count_is_in_bytes) size *= unit;
2751   // Clearing nothing uses the Identity call.
2752   // Negative clears are possible on dead ClearArrays
2753   // (see jck test stmt114.stmt11402.val).
2754   if (size <= 0 || size % unit != 0)  return NULL;
2755   intptr_t count = size / unit;
2756   // Length too long; use fast hardware clear
2757   if (size > Matcher::init_array_short_size)  return NULL;
2758   Node *mem = in(1);
2759   if( phase->type(mem)==Type::TOP ) return NULL;
2760   Node *adr = in(3);
2761   const Type* at = phase->type(adr);
2762   if( at==Type::TOP ) return NULL;
2763   const TypePtr* atp = at->isa_ptr();
2764   // adjust atp to be the correct array element address type
2765   if (atp == NULL)  atp = TypePtr::BOTTOM;
2766   else              atp = atp->add_offset(Type::OffsetBot);
2767   // Get base for derived pointer purposes
2768   if( adr->Opcode() != Op_AddP ) Unimplemented();
2769   Node *base = adr->in(1);
2770 
2771   Node *zero = phase->makecon(TypeLong::ZERO);
2772   Node *off  = phase->MakeConX(BytesPerLong);
2773   mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2774   count--;
2775   while( count-- ) {
2776     mem = phase->transform(mem);
2777     adr = phase->transform(new (phase->C) AddPNode(base,adr,off));
2778     mem = new (phase->C) StoreLNode(in(0),mem,adr,atp,zero,MemNode::unordered,false);
2779   }
2780   return mem;
2781 }
2782 
2783 //----------------------------step_through----------------------------------
2784 // Return allocation input memory edge if it is different instance
2785 // or itself if it is the one we are looking for.
2786 bool ClearArrayNode::step_through(Node** np, uint instance_id, PhaseTransform* phase) {
2787   Node* n = *np;
2788   assert(n->is_ClearArray(), "sanity");
2789   intptr_t offset;
2790   AllocateNode* alloc = AllocateNode::Ideal_allocation(n->in(3), phase, offset);
2791   // This method is called only before Allocate nodes are expanded during
2792   // macro nodes expansion. Before that ClearArray nodes are only generated
2793   // in LibraryCallKit::generate_arraycopy() which follows allocations.
2794   assert(alloc != NULL, "should have allocation");
2795   if (alloc->_idx == instance_id) {
2796     // Can not bypass initialization of the instance we are looking for.
2797     return false;
2798   }
2799   // Otherwise skip it.
2800   InitializeNode* init = alloc->initialization();
2801   if (init != NULL)
2802     *np = init->in(TypeFunc::Memory);
2803   else
2804     *np = alloc->in(TypeFunc::Memory);
2805   return true;
2806 }
2807 
2808 //----------------------------clear_memory-------------------------------------
2809 // Generate code to initialize object storage to zero.
2810 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2811                                    intptr_t start_offset,
2812                                    Node* end_offset,
2813                                    PhaseGVN* phase) {
2814   Compile* C = phase->C;
2815   intptr_t offset = start_offset;
2816 
2817   int unit = BytesPerLong;
2818   if ((offset % unit) != 0) {
2819     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(offset));
2820     adr = phase->transform(adr);
2821     const TypePtr* atp = TypeRawPtr::BOTTOM;
2822     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2823     mem = phase->transform(mem);
2824     offset += BytesPerInt;
2825   }
2826   assert((offset % unit) == 0, "");
2827 
2828   // Initialize the remaining stuff, if any, with a ClearArray.
2829   return clear_memory(ctl, mem, dest, phase->MakeConX(offset), end_offset, phase);
2830 }
2831 
2832 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2833                                    Node* start_offset,
2834                                    Node* end_offset,
2835                                    PhaseGVN* phase) {
2836   if (start_offset == end_offset) {
2837     // nothing to do
2838     return mem;
2839   }
2840 
2841   Compile* C = phase->C;
2842   int unit = BytesPerLong;
2843   Node* zbase = start_offset;
2844   Node* zend  = end_offset;
2845 
2846   // Scale to the unit required by the CPU:
2847   if (!Matcher::init_array_count_is_in_bytes) {
2848     Node* shift = phase->intcon(exact_log2(unit));
2849     zbase = phase->transform( new(C) URShiftXNode(zbase, shift) );
2850     zend  = phase->transform( new(C) URShiftXNode(zend,  shift) );
2851   }
2852 
2853   // Bulk clear double-words
2854   Node* zsize = phase->transform( new(C) SubXNode(zend, zbase) );
2855   Node* adr = phase->transform( new(C) AddPNode(dest, dest, start_offset) );
2856   mem = new (C) ClearArrayNode(ctl, mem, zsize, adr);
2857   return phase->transform(mem);
2858 }
2859 
2860 Node* ClearArrayNode::clear_memory(Node* ctl, Node* mem, Node* dest,
2861                                    intptr_t start_offset,
2862                                    intptr_t end_offset,
2863                                    PhaseGVN* phase) {
2864   if (start_offset == end_offset) {
2865     // nothing to do
2866     return mem;
2867   }
2868 
2869   Compile* C = phase->C;
2870   assert((end_offset % BytesPerInt) == 0, "odd end offset");
2871   intptr_t done_offset = end_offset;
2872   if ((done_offset % BytesPerLong) != 0) {
2873     done_offset -= BytesPerInt;
2874   }
2875   if (done_offset > start_offset) {
2876     mem = clear_memory(ctl, mem, dest,
2877                        start_offset, phase->MakeConX(done_offset), phase);
2878   }
2879   if (done_offset < end_offset) { // emit the final 32-bit store
2880     Node* adr = new (C) AddPNode(dest, dest, phase->MakeConX(done_offset));
2881     adr = phase->transform(adr);
2882     const TypePtr* atp = TypeRawPtr::BOTTOM;
2883     mem = StoreNode::make(*phase, ctl, mem, adr, atp, phase->zerocon(T_INT), T_INT, MemNode::unordered);
2884     mem = phase->transform(mem);
2885     done_offset += BytesPerInt;
2886   }
2887   assert(done_offset == end_offset, "");
2888   return mem;
2889 }
2890 
2891 //=============================================================================
2892 MemBarNode::MemBarNode(Compile* C, int alias_idx, Node* precedent)
2893   : MultiNode(TypeFunc::Parms + (precedent == NULL? 0: 1)),
2894     _adr_type(C->get_adr_type(alias_idx))
2895 {
2896   init_class_id(Class_MemBar);
2897   Node* top = C->top();
2898   init_req(TypeFunc::I_O,top);
2899   init_req(TypeFunc::FramePtr,top);
2900   init_req(TypeFunc::ReturnAdr,top);
2901   if (precedent != NULL)
2902     init_req(TypeFunc::Parms, precedent);
2903 }
2904 
2905 //------------------------------cmp--------------------------------------------
2906 uint MemBarNode::hash() const { return NO_HASH; }
2907 uint MemBarNode::cmp( const Node &n ) const {
2908   return (&n == this);          // Always fail except on self
2909 }
2910 
2911 //------------------------------make-------------------------------------------
2912 MemBarNode* MemBarNode::make(Compile* C, int opcode, int atp, Node* pn) {
2913   switch (opcode) {
2914   case Op_MemBarAcquire:     return new(C) MemBarAcquireNode(C, atp, pn);
2915   case Op_LoadFence:         return new(C) LoadFenceNode(C, atp, pn);
2916   case Op_MemBarRelease:     return new(C) MemBarReleaseNode(C, atp, pn);
2917   case Op_StoreFence:        return new(C) StoreFenceNode(C, atp, pn);
2918   case Op_MemBarAcquireLock: return new(C) MemBarAcquireLockNode(C, atp, pn);
2919   case Op_MemBarReleaseLock: return new(C) MemBarReleaseLockNode(C, atp, pn);
2920   case Op_MemBarVolatile:    return new(C) MemBarVolatileNode(C, atp, pn);
2921   case Op_MemBarCPUOrder:    return new(C) MemBarCPUOrderNode(C, atp, pn);
2922   case Op_Initialize:        return new(C) InitializeNode(C, atp, pn);
2923   case Op_MemBarStoreStore:  return new(C) MemBarStoreStoreNode(C, atp, pn);
2924   default: ShouldNotReachHere(); return NULL;
2925   }
2926 }
2927 
2928 //------------------------------Ideal------------------------------------------
2929 // Return a node which is more "ideal" than the current node.  Strip out
2930 // control copies
2931 Node *MemBarNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2932   if (remove_dead_region(phase, can_reshape)) return this;
2933   // Don't bother trying to transform a dead node
2934   if (in(0) && in(0)->is_top()) {
2935     return NULL;
2936   }
2937 
2938   // Eliminate volatile MemBars for scalar replaced objects.
2939   if (can_reshape && req() == (Precedent+1)) {
2940     bool eliminate = false;
2941     int opc = Opcode();
2942     if ((opc == Op_MemBarAcquire || opc == Op_MemBarVolatile)) {
2943       // Volatile field loads and stores.
2944       Node* my_mem = in(MemBarNode::Precedent);
2945       // The MembarAquire may keep an unused LoadNode alive through the Precedent edge
2946       if ((my_mem != NULL) && (opc == Op_MemBarAcquire) && (my_mem->outcnt() == 1)) {
2947         // if the Precedent is a decodeN and its input (a Load) is used at more than one place,
2948         // replace this Precedent (decodeN) with the Load instead.
2949         if ((my_mem->Opcode() == Op_DecodeN) && (my_mem->in(1)->outcnt() > 1))  {
2950           Node* load_node = my_mem->in(1);
2951           set_req(MemBarNode::Precedent, load_node);
2952           phase->is_IterGVN()->_worklist.push(my_mem);
2953           my_mem = load_node;
2954         } else {
2955           assert(my_mem->unique_out() == this, "sanity");
2956           del_req(Precedent);
2957           phase->is_IterGVN()->_worklist.push(my_mem); // remove dead node later
2958           my_mem = NULL;
2959         }
2960       }
2961       if (my_mem != NULL && my_mem->is_Mem()) {
2962         const TypeOopPtr* t_oop = my_mem->in(MemNode::Address)->bottom_type()->isa_oopptr();
2963         // Check for scalar replaced object reference.
2964         if( t_oop != NULL && t_oop->is_known_instance_field() &&
2965             t_oop->offset() != Type::OffsetBot &&
2966             t_oop->offset() != Type::OffsetTop) {
2967           eliminate = true;
2968         }
2969       }
2970     } else if (opc == Op_MemBarRelease) {
2971       // Final field stores.
2972       Node* alloc = AllocateNode::Ideal_allocation(in(MemBarNode::Precedent), phase);
2973       if ((alloc != NULL) && alloc->is_Allocate() &&
2974           alloc->as_Allocate()->_is_non_escaping) {
2975         // The allocated object does not escape.
2976         eliminate = true;
2977       }
2978     }
2979     if (eliminate) {
2980       // Replace MemBar projections by its inputs.
2981       PhaseIterGVN* igvn = phase->is_IterGVN();
2982       igvn->replace_node(proj_out(TypeFunc::Memory), in(TypeFunc::Memory));
2983       igvn->replace_node(proj_out(TypeFunc::Control), in(TypeFunc::Control));
2984       // Must return either the original node (now dead) or a new node
2985       // (Do not return a top here, since that would break the uniqueness of top.)
2986       return new (phase->C) ConINode(TypeInt::ZERO);
2987     }
2988   }
2989   return NULL;
2990 }
2991 
2992 //------------------------------Value------------------------------------------
2993 const Type *MemBarNode::Value( PhaseTransform *phase ) const {
2994   if( !in(0) ) return Type::TOP;
2995   if( phase->type(in(0)) == Type::TOP )
2996     return Type::TOP;
2997   return TypeTuple::MEMBAR;
2998 }
2999 
3000 //------------------------------match------------------------------------------
3001 // Construct projections for memory.
3002 Node *MemBarNode::match( const ProjNode *proj, const Matcher *m ) {
3003   switch (proj->_con) {
3004   case TypeFunc::Control:
3005   case TypeFunc::Memory:
3006     return new (m->C) MachProjNode(this,proj->_con,RegMask::Empty,MachProjNode::unmatched_proj);
3007   }
3008   ShouldNotReachHere();
3009   return NULL;
3010 }
3011 
3012 //===========================InitializeNode====================================
3013 // SUMMARY:
3014 // This node acts as a memory barrier on raw memory, after some raw stores.
3015 // The 'cooked' oop value feeds from the Initialize, not the Allocation.
3016 // The Initialize can 'capture' suitably constrained stores as raw inits.
3017 // It can coalesce related raw stores into larger units (called 'tiles').
3018 // It can avoid zeroing new storage for memory units which have raw inits.
3019 // At macro-expansion, it is marked 'complete', and does not optimize further.
3020 //
3021 // EXAMPLE:
3022 // The object 'new short[2]' occupies 16 bytes in a 32-bit machine.
3023 //   ctl = incoming control; mem* = incoming memory
3024 // (Note:  A star * on a memory edge denotes I/O and other standard edges.)
3025 // First allocate uninitialized memory and fill in the header:
3026 //   alloc = (Allocate ctl mem* 16 #short[].klass ...)
3027 //   ctl := alloc.Control; mem* := alloc.Memory*
3028 //   rawmem = alloc.Memory; rawoop = alloc.RawAddress
3029 // Then initialize to zero the non-header parts of the raw memory block:
3030 //   init = (Initialize alloc.Control alloc.Memory* alloc.RawAddress)
3031 //   ctl := init.Control; mem.SLICE(#short[*]) := init.Memory
3032 // After the initialize node executes, the object is ready for service:
3033 //   oop := (CheckCastPP init.Control alloc.RawAddress #short[])
3034 // Suppose its body is immediately initialized as {1,2}:
3035 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3036 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3037 //   mem.SLICE(#short[*]) := store2
3038 //
3039 // DETAILS:
3040 // An InitializeNode collects and isolates object initialization after
3041 // an AllocateNode and before the next possible safepoint.  As a
3042 // memory barrier (MemBarNode), it keeps critical stores from drifting
3043 // down past any safepoint or any publication of the allocation.
3044 // Before this barrier, a newly-allocated object may have uninitialized bits.
3045 // After this barrier, it may be treated as a real oop, and GC is allowed.
3046 //
3047 // The semantics of the InitializeNode include an implicit zeroing of
3048 // the new object from object header to the end of the object.
3049 // (The object header and end are determined by the AllocateNode.)
3050 //
3051 // Certain stores may be added as direct inputs to the InitializeNode.
3052 // These stores must update raw memory, and they must be to addresses
3053 // derived from the raw address produced by AllocateNode, and with
3054 // a constant offset.  They must be ordered by increasing offset.
3055 // The first one is at in(RawStores), the last at in(req()-1).
3056 // Unlike most memory operations, they are not linked in a chain,
3057 // but are displayed in parallel as users of the rawmem output of
3058 // the allocation.
3059 //
3060 // (See comments in InitializeNode::capture_store, which continue
3061 // the example given above.)
3062 //
3063 // When the associated Allocate is macro-expanded, the InitializeNode
3064 // may be rewritten to optimize collected stores.  A ClearArrayNode
3065 // may also be created at that point to represent any required zeroing.
3066 // The InitializeNode is then marked 'complete', prohibiting further
3067 // capturing of nearby memory operations.
3068 //
3069 // During macro-expansion, all captured initializations which store
3070 // constant values of 32 bits or smaller are coalesced (if advantageous)
3071 // into larger 'tiles' 32 or 64 bits.  This allows an object to be
3072 // initialized in fewer memory operations.  Memory words which are
3073 // covered by neither tiles nor non-constant stores are pre-zeroed
3074 // by explicit stores of zero.  (The code shape happens to do all
3075 // zeroing first, then all other stores, with both sequences occurring
3076 // in order of ascending offsets.)
3077 //
3078 // Alternatively, code may be inserted between an AllocateNode and its
3079 // InitializeNode, to perform arbitrary initialization of the new object.
3080 // E.g., the object copying intrinsics insert complex data transfers here.
3081 // The initialization must then be marked as 'complete' disable the
3082 // built-in zeroing semantics and the collection of initializing stores.
3083 //
3084 // While an InitializeNode is incomplete, reads from the memory state
3085 // produced by it are optimizable if they match the control edge and
3086 // new oop address associated with the allocation/initialization.
3087 // They return a stored value (if the offset matches) or else zero.
3088 // A write to the memory state, if it matches control and address,
3089 // and if it is to a constant offset, may be 'captured' by the
3090 // InitializeNode.  It is cloned as a raw memory operation and rewired
3091 // inside the initialization, to the raw oop produced by the allocation.
3092 // Operations on addresses which are provably distinct (e.g., to
3093 // other AllocateNodes) are allowed to bypass the initialization.
3094 //
3095 // The effect of all this is to consolidate object initialization
3096 // (both arrays and non-arrays, both piecewise and bulk) into a
3097 // single location, where it can be optimized as a unit.
3098 //
3099 // Only stores with an offset less than TrackedInitializationLimit words
3100 // will be considered for capture by an InitializeNode.  This puts a
3101 // reasonable limit on the complexity of optimized initializations.
3102 
3103 //---------------------------InitializeNode------------------------------------
3104 InitializeNode::InitializeNode(Compile* C, int adr_type, Node* rawoop)
3105   : _is_complete(Incomplete), _does_not_escape(false),
3106     MemBarNode(C, adr_type, rawoop)
3107 {
3108   init_class_id(Class_Initialize);
3109 
3110   assert(adr_type == Compile::AliasIdxRaw, "only valid atp");
3111   assert(in(RawAddress) == rawoop, "proper init");
3112   // Note:  allocation() can be NULL, for secondary initialization barriers
3113 }
3114 
3115 // Since this node is not matched, it will be processed by the
3116 // register allocator.  Declare that there are no constraints
3117 // on the allocation of the RawAddress edge.
3118 const RegMask &InitializeNode::in_RegMask(uint idx) const {
3119   // This edge should be set to top, by the set_complete.  But be conservative.
3120   if (idx == InitializeNode::RawAddress)
3121     return *(Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()]);
3122   return RegMask::Empty;
3123 }
3124 
3125 Node* InitializeNode::memory(uint alias_idx) {
3126   Node* mem = in(Memory);
3127   if (mem->is_MergeMem()) {
3128     return mem->as_MergeMem()->memory_at(alias_idx);
3129   } else {
3130     // incoming raw memory is not split
3131     return mem;
3132   }
3133 }
3134 
3135 bool InitializeNode::is_non_zero() {
3136   if (is_complete())  return false;
3137   remove_extra_zeroes();
3138   return (req() > RawStores);
3139 }
3140 
3141 void InitializeNode::set_complete(PhaseGVN* phase) {
3142   assert(!is_complete(), "caller responsibility");
3143   _is_complete = Complete;
3144 
3145   // After this node is complete, it contains a bunch of
3146   // raw-memory initializations.  There is no need for
3147   // it to have anything to do with non-raw memory effects.
3148   // Therefore, tell all non-raw users to re-optimize themselves,
3149   // after skipping the memory effects of this initialization.
3150   PhaseIterGVN* igvn = phase->is_IterGVN();
3151   if (igvn)  igvn->add_users_to_worklist(this);
3152 }
3153 
3154 // convenience function
3155 // return false if the init contains any stores already
3156 bool AllocateNode::maybe_set_complete(PhaseGVN* phase) {
3157   InitializeNode* init = initialization();
3158   if (init == NULL || init->is_complete())  return false;
3159   init->remove_extra_zeroes();
3160   // for now, if this allocation has already collected any inits, bail:
3161   if (init->is_non_zero())  return false;
3162   init->set_complete(phase);
3163   return true;
3164 }
3165 
3166 void InitializeNode::remove_extra_zeroes() {
3167   if (req() == RawStores)  return;
3168   Node* zmem = zero_memory();
3169   uint fill = RawStores;
3170   for (uint i = fill; i < req(); i++) {
3171     Node* n = in(i);
3172     if (n->is_top() || n == zmem)  continue;  // skip
3173     if (fill < i)  set_req(fill, n);          // compact
3174     ++fill;
3175   }
3176   // delete any empty spaces created:
3177   while (fill < req()) {
3178     del_req(fill);
3179   }
3180 }
3181 
3182 // Helper for remembering which stores go with which offsets.
3183 intptr_t InitializeNode::get_store_offset(Node* st, PhaseTransform* phase) {
3184   if (!st->is_Store())  return -1;  // can happen to dead code via subsume_node
3185   intptr_t offset = -1;
3186   Node* base = AddPNode::Ideal_base_and_offset(st->in(MemNode::Address),
3187                                                phase, offset);
3188   if (base == NULL)     return -1;  // something is dead,
3189   if (offset < 0)       return -1;  //        dead, dead
3190   return offset;
3191 }
3192 
3193 // Helper for proving that an initialization expression is
3194 // "simple enough" to be folded into an object initialization.
3195 // Attempts to prove that a store's initial value 'n' can be captured
3196 // within the initialization without creating a vicious cycle, such as:
3197 //     { Foo p = new Foo(); p.next = p; }
3198 // True for constants and parameters and small combinations thereof.
3199 bool InitializeNode::detect_init_independence(Node* n, int& count) {
3200   if (n == NULL)      return true;   // (can this really happen?)
3201   if (n->is_Proj())   n = n->in(0);
3202   if (n == this)      return false;  // found a cycle
3203   if (n->is_Con())    return true;
3204   if (n->is_Start())  return true;   // params, etc., are OK
3205   if (n->is_Root())   return true;   // even better
3206 
3207   Node* ctl = n->in(0);
3208   if (ctl != NULL && !ctl->is_top()) {
3209     if (ctl->is_Proj())  ctl = ctl->in(0);
3210     if (ctl == this)  return false;
3211 
3212     // If we already know that the enclosing memory op is pinned right after
3213     // the init, then any control flow that the store has picked up
3214     // must have preceded the init, or else be equal to the init.
3215     // Even after loop optimizations (which might change control edges)
3216     // a store is never pinned *before* the availability of its inputs.
3217     if (!MemNode::all_controls_dominate(n, this))
3218       return false;                  // failed to prove a good control
3219   }
3220 
3221   // Check data edges for possible dependencies on 'this'.
3222   if ((count += 1) > 20)  return false;  // complexity limit
3223   for (uint i = 1; i < n->req(); i++) {
3224     Node* m = n->in(i);
3225     if (m == NULL || m == n || m->is_top())  continue;
3226     uint first_i = n->find_edge(m);
3227     if (i != first_i)  continue;  // process duplicate edge just once
3228     if (!detect_init_independence(m, count)) {
3229       return false;
3230     }
3231   }
3232 
3233   return true;
3234 }
3235 
3236 // Here are all the checks a Store must pass before it can be moved into
3237 // an initialization.  Returns zero if a check fails.
3238 // On success, returns the (constant) offset to which the store applies,
3239 // within the initialized memory.
3240 intptr_t InitializeNode::can_capture_store(StoreNode* st, PhaseTransform* phase, bool can_reshape) {
3241   const int FAIL = 0;
3242   if (st->req() != MemNode::ValueIn + 1)
3243     return FAIL;                // an inscrutable StoreNode (card mark?)
3244   Node* ctl = st->in(MemNode::Control);
3245   if (!(ctl != NULL && ctl->is_Proj() && ctl->in(0) == this))
3246     return FAIL;                // must be unconditional after the initialization
3247   Node* mem = st->in(MemNode::Memory);
3248   if (!(mem->is_Proj() && mem->in(0) == this))
3249     return FAIL;                // must not be preceded by other stores
3250   Node* adr = st->in(MemNode::Address);
3251   intptr_t offset;
3252   AllocateNode* alloc = AllocateNode::Ideal_allocation(adr, phase, offset);
3253   if (alloc == NULL)
3254     return FAIL;                // inscrutable address
3255   if (alloc != allocation())
3256     return FAIL;                // wrong allocation!  (store needs to float up)
3257   Node* val = st->in(MemNode::ValueIn);
3258   int complexity_count = 0;
3259   if (!detect_init_independence(val, complexity_count))
3260     return FAIL;                // stored value must be 'simple enough'
3261 
3262   // The Store can be captured only if nothing after the allocation
3263   // and before the Store is using the memory location that the store
3264   // overwrites.
3265   bool failed = false;
3266   // If is_complete_with_arraycopy() is true the shape of the graph is
3267   // well defined and is safe so no need for extra checks.
3268   if (!is_complete_with_arraycopy()) {
3269     // We are going to look at each use of the memory state following
3270     // the allocation to make sure nothing reads the memory that the
3271     // Store writes.
3272     const TypePtr* t_adr = phase->type(adr)->isa_ptr();
3273     int alias_idx = phase->C->get_alias_index(t_adr);
3274     ResourceMark rm;
3275     Unique_Node_List mems;
3276     mems.push(mem);
3277     Node* unique_merge = NULL;
3278     for (uint next = 0; next < mems.size(); ++next) {
3279       Node *m  = mems.at(next);
3280       for (DUIterator_Fast jmax, j = m->fast_outs(jmax); j < jmax; j++) {
3281         Node *n = m->fast_out(j);
3282         if (n->outcnt() == 0) {
3283           continue;
3284         }
3285         if (n == st) {
3286           continue;
3287         } else if (n->in(0) != NULL && n->in(0) != ctl) {
3288           // If the control of this use is different from the control
3289           // of the Store which is right after the InitializeNode then
3290           // this node cannot be between the InitializeNode and the
3291           // Store.
3292           continue;
3293         } else if (n->is_MergeMem()) {
3294           if (n->as_MergeMem()->memory_at(alias_idx) == m) {
3295             // We can hit a MergeMemNode (that will likely go away
3296             // later) that is a direct use of the memory state
3297             // following the InitializeNode on the same slice as the
3298             // store node that we'd like to capture. We need to check
3299             // the uses of the MergeMemNode.
3300             mems.push(n);
3301           }
3302         } else if (n->is_Mem()) {
3303           Node* other_adr = n->in(MemNode::Address);
3304           if (other_adr == adr) {
3305             failed = true;
3306             break;
3307           } else {
3308             const TypePtr* other_t_adr = phase->type(other_adr)->isa_ptr();
3309             if (other_t_adr != NULL) {
3310               int other_alias_idx = phase->C->get_alias_index(other_t_adr);
3311               if (other_alias_idx == alias_idx) {
3312                 // A load from the same memory slice as the store right
3313                 // after the InitializeNode. We check the control of the
3314                 // object/array that is loaded from. If it's the same as
3315                 // the store control then we cannot capture the store.
3316                 assert(!n->is_Store(), "2 stores to same slice on same control?");
3317                 Node* base = other_adr;
3318                 assert(base->is_AddP(), err_msg_res("should be addp but is %s", base->Name()));
3319                 base = base->in(AddPNode::Base);
3320                 if (base != NULL) {
3321                   base = base->uncast();
3322                   if (base->is_Proj() && base->in(0) == alloc) {
3323                     failed = true;
3324                     break;
3325                   }
3326                 }
3327               }
3328             }
3329           }
3330         } else {
3331           failed = true;
3332           break;
3333         }
3334       }
3335     }
3336   }
3337   if (failed) {
3338     if (!can_reshape) {
3339       // We decided we couldn't capture the store during parsing. We
3340       // should try again during the next IGVN once the graph is
3341       // cleaner.
3342       phase->C->record_for_igvn(st);
3343     }
3344     return FAIL;
3345   }
3346 
3347   return offset;                // success
3348 }
3349 
3350 // Find the captured store in(i) which corresponds to the range
3351 // [start..start+size) in the initialized object.
3352 // If there is one, return its index i.  If there isn't, return the
3353 // negative of the index where it should be inserted.
3354 // Return 0 if the queried range overlaps an initialization boundary
3355 // or if dead code is encountered.
3356 // If size_in_bytes is zero, do not bother with overlap checks.
3357 int InitializeNode::captured_store_insertion_point(intptr_t start,
3358                                                    int size_in_bytes,
3359                                                    PhaseTransform* phase) {
3360   const int FAIL = 0, MAX_STORE = BytesPerLong;
3361 
3362   if (is_complete())
3363     return FAIL;                // arraycopy got here first; punt
3364 
3365   assert(allocation() != NULL, "must be present");
3366 
3367   // no negatives, no header fields:
3368   if (start < (intptr_t) allocation()->minimum_header_size())  return FAIL;
3369 
3370   // after a certain size, we bail out on tracking all the stores:
3371   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3372   if (start >= ti_limit)  return FAIL;
3373 
3374   for (uint i = InitializeNode::RawStores, limit = req(); ; ) {
3375     if (i >= limit)  return -(int)i; // not found; here is where to put it
3376 
3377     Node*    st     = in(i);
3378     intptr_t st_off = get_store_offset(st, phase);
3379     if (st_off < 0) {
3380       if (st != zero_memory()) {
3381         return FAIL;            // bail out if there is dead garbage
3382       }
3383     } else if (st_off > start) {
3384       // ...we are done, since stores are ordered
3385       if (st_off < start + size_in_bytes) {
3386         return FAIL;            // the next store overlaps
3387       }
3388       return -(int)i;           // not found; here is where to put it
3389     } else if (st_off < start) {
3390       if (size_in_bytes != 0 &&
3391           start < st_off + MAX_STORE &&
3392           start < st_off + st->as_Store()->memory_size()) {
3393         return FAIL;            // the previous store overlaps
3394       }
3395     } else {
3396       if (size_in_bytes != 0 &&
3397           st->as_Store()->memory_size() != size_in_bytes) {
3398         return FAIL;            // mismatched store size
3399       }
3400       return i;
3401     }
3402 
3403     ++i;
3404   }
3405 }
3406 
3407 // Look for a captured store which initializes at the offset 'start'
3408 // with the given size.  If there is no such store, and no other
3409 // initialization interferes, then return zero_memory (the memory
3410 // projection of the AllocateNode).
3411 Node* InitializeNode::find_captured_store(intptr_t start, int size_in_bytes,
3412                                           PhaseTransform* phase) {
3413   assert(stores_are_sane(phase), "");
3414   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3415   if (i == 0) {
3416     return NULL;                // something is dead
3417   } else if (i < 0) {
3418     return zero_memory();       // just primordial zero bits here
3419   } else {
3420     Node* st = in(i);           // here is the store at this position
3421     assert(get_store_offset(st->as_Store(), phase) == start, "sanity");
3422     return st;
3423   }
3424 }
3425 
3426 // Create, as a raw pointer, an address within my new object at 'offset'.
3427 Node* InitializeNode::make_raw_address(intptr_t offset,
3428                                        PhaseTransform* phase) {
3429   Node* addr = in(RawAddress);
3430   if (offset != 0) {
3431     Compile* C = phase->C;
3432     addr = phase->transform( new (C) AddPNode(C->top(), addr,
3433                                                  phase->MakeConX(offset)) );
3434   }
3435   return addr;
3436 }
3437 
3438 // Clone the given store, converting it into a raw store
3439 // initializing a field or element of my new object.
3440 // Caller is responsible for retiring the original store,
3441 // with subsume_node or the like.
3442 //
3443 // From the example above InitializeNode::InitializeNode,
3444 // here are the old stores to be captured:
3445 //   store1 = (StoreC init.Control init.Memory (+ oop 12) 1)
3446 //   store2 = (StoreC init.Control store1      (+ oop 14) 2)
3447 //
3448 // Here is the changed code; note the extra edges on init:
3449 //   alloc = (Allocate ...)
3450 //   rawoop = alloc.RawAddress
3451 //   rawstore1 = (StoreC alloc.Control alloc.Memory (+ rawoop 12) 1)
3452 //   rawstore2 = (StoreC alloc.Control alloc.Memory (+ rawoop 14) 2)
3453 //   init = (Initialize alloc.Control alloc.Memory rawoop
3454 //                      rawstore1 rawstore2)
3455 //
3456 Node* InitializeNode::capture_store(StoreNode* st, intptr_t start,
3457                                     PhaseTransform* phase, bool can_reshape) {
3458   assert(stores_are_sane(phase), "");
3459 
3460   if (start < 0)  return NULL;
3461   assert(can_capture_store(st, phase, can_reshape) == start, "sanity");
3462 
3463   Compile* C = phase->C;
3464   int size_in_bytes = st->memory_size();
3465   int i = captured_store_insertion_point(start, size_in_bytes, phase);
3466   if (i == 0)  return NULL;     // bail out
3467   Node* prev_mem = NULL;        // raw memory for the captured store
3468   if (i > 0) {
3469     prev_mem = in(i);           // there is a pre-existing store under this one
3470     set_req(i, C->top());       // temporarily disconnect it
3471     // See StoreNode::Ideal 'st->outcnt() == 1' for the reason to disconnect.
3472   } else {
3473     i = -i;                     // no pre-existing store
3474     prev_mem = zero_memory();   // a slice of the newly allocated object
3475     if (i > InitializeNode::RawStores && in(i-1) == prev_mem)
3476       set_req(--i, C->top());   // reuse this edge; it has been folded away
3477     else
3478       ins_req(i, C->top());     // build a new edge
3479   }
3480   Node* new_st = st->clone();
3481   new_st->set_req(MemNode::Control, in(Control));
3482   new_st->set_req(MemNode::Memory,  prev_mem);
3483   new_st->set_req(MemNode::Address, make_raw_address(start, phase));
3484   new_st = phase->transform(new_st);
3485 
3486   // At this point, new_st might have swallowed a pre-existing store
3487   // at the same offset, or perhaps new_st might have disappeared,
3488   // if it redundantly stored the same value (or zero to fresh memory).
3489 
3490   // In any case, wire it in:
3491   set_req(i, new_st);
3492 
3493   // The caller may now kill the old guy.
3494   DEBUG_ONLY(Node* check_st = find_captured_store(start, size_in_bytes, phase));
3495   assert(check_st == new_st || check_st == NULL, "must be findable");
3496   assert(!is_complete(), "");
3497   return new_st;
3498 }
3499 
3500 static bool store_constant(jlong* tiles, int num_tiles,
3501                            intptr_t st_off, int st_size,
3502                            jlong con) {
3503   if ((st_off & (st_size-1)) != 0)
3504     return false;               // strange store offset (assume size==2**N)
3505   address addr = (address)tiles + st_off;
3506   assert(st_off >= 0 && addr+st_size <= (address)&tiles[num_tiles], "oob");
3507   switch (st_size) {
3508   case sizeof(jbyte):  *(jbyte*) addr = (jbyte) con; break;
3509   case sizeof(jchar):  *(jchar*) addr = (jchar) con; break;
3510   case sizeof(jint):   *(jint*)  addr = (jint)  con; break;
3511   case sizeof(jlong):  *(jlong*) addr = (jlong) con; break;
3512   default: return false;        // strange store size (detect size!=2**N here)
3513   }
3514   return true;                  // return success to caller
3515 }
3516 
3517 // Coalesce subword constants into int constants and possibly
3518 // into long constants.  The goal, if the CPU permits,
3519 // is to initialize the object with a small number of 64-bit tiles.
3520 // Also, convert floating-point constants to bit patterns.
3521 // Non-constants are not relevant to this pass.
3522 //
3523 // In terms of the running example on InitializeNode::InitializeNode
3524 // and InitializeNode::capture_store, here is the transformation
3525 // of rawstore1 and rawstore2 into rawstore12:
3526 //   alloc = (Allocate ...)
3527 //   rawoop = alloc.RawAddress
3528 //   tile12 = 0x00010002
3529 //   rawstore12 = (StoreI alloc.Control alloc.Memory (+ rawoop 12) tile12)
3530 //   init = (Initialize alloc.Control alloc.Memory rawoop rawstore12)
3531 //
3532 void
3533 InitializeNode::coalesce_subword_stores(intptr_t header_size,
3534                                         Node* size_in_bytes,
3535                                         PhaseGVN* phase) {
3536   Compile* C = phase->C;
3537 
3538   assert(stores_are_sane(phase), "");
3539   // Note:  After this pass, they are not completely sane,
3540   // since there may be some overlaps.
3541 
3542   int old_subword = 0, old_long = 0, new_int = 0, new_long = 0;
3543 
3544   intptr_t ti_limit = (TrackedInitializationLimit * HeapWordSize);
3545   intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, ti_limit);
3546   size_limit = MIN2(size_limit, ti_limit);
3547   size_limit = align_size_up(size_limit, BytesPerLong);
3548   int num_tiles = size_limit / BytesPerLong;
3549 
3550   // allocate space for the tile map:
3551   const int small_len = DEBUG_ONLY(true ? 3 :) 30; // keep stack frames small
3552   jlong  tiles_buf[small_len];
3553   Node*  nodes_buf[small_len];
3554   jlong  inits_buf[small_len];
3555   jlong* tiles = ((num_tiles <= small_len) ? &tiles_buf[0]
3556                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3557   Node** nodes = ((num_tiles <= small_len) ? &nodes_buf[0]
3558                   : NEW_RESOURCE_ARRAY(Node*, num_tiles));
3559   jlong* inits = ((num_tiles <= small_len) ? &inits_buf[0]
3560                   : NEW_RESOURCE_ARRAY(jlong, num_tiles));
3561   // tiles: exact bitwise model of all primitive constants
3562   // nodes: last constant-storing node subsumed into the tiles model
3563   // inits: which bytes (in each tile) are touched by any initializations
3564 
3565   //// Pass A: Fill in the tile model with any relevant stores.
3566 
3567   Copy::zero_to_bytes(tiles, sizeof(tiles[0]) * num_tiles);
3568   Copy::zero_to_bytes(nodes, sizeof(nodes[0]) * num_tiles);
3569   Copy::zero_to_bytes(inits, sizeof(inits[0]) * num_tiles);
3570   Node* zmem = zero_memory(); // initially zero memory state
3571   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3572     Node* st = in(i);
3573     intptr_t st_off = get_store_offset(st, phase);
3574 
3575     // Figure out the store's offset and constant value:
3576     if (st_off < header_size)             continue; //skip (ignore header)
3577     if (st->in(MemNode::Memory) != zmem)  continue; //skip (odd store chain)
3578     int st_size = st->as_Store()->memory_size();
3579     if (st_off + st_size > size_limit)    break;
3580 
3581     // Record which bytes are touched, whether by constant or not.
3582     if (!store_constant(inits, num_tiles, st_off, st_size, (jlong) -1))
3583       continue;                 // skip (strange store size)
3584 
3585     const Type* val = phase->type(st->in(MemNode::ValueIn));
3586     if (!val->singleton())                continue; //skip (non-con store)
3587     BasicType type = val->basic_type();
3588 
3589     jlong con = 0;
3590     switch (type) {
3591     case T_INT:    con = val->is_int()->get_con();  break;
3592     case T_LONG:   con = val->is_long()->get_con(); break;
3593     case T_FLOAT:  con = jint_cast(val->getf());    break;
3594     case T_DOUBLE: con = jlong_cast(val->getd());   break;
3595     default:                              continue; //skip (odd store type)
3596     }
3597 
3598     if (type == T_LONG && Matcher::isSimpleConstant64(con) &&
3599         st->Opcode() == Op_StoreL) {
3600       continue;                 // This StoreL is already optimal.
3601     }
3602 
3603     // Store down the constant.
3604     store_constant(tiles, num_tiles, st_off, st_size, con);
3605 
3606     intptr_t j = st_off >> LogBytesPerLong;
3607 
3608     if (type == T_INT && st_size == BytesPerInt
3609         && (st_off & BytesPerInt) == BytesPerInt) {
3610       jlong lcon = tiles[j];
3611       if (!Matcher::isSimpleConstant64(lcon) &&
3612           st->Opcode() == Op_StoreI) {
3613         // This StoreI is already optimal by itself.
3614         jint* intcon = (jint*) &tiles[j];
3615         intcon[1] = 0;  // undo the store_constant()
3616 
3617         // If the previous store is also optimal by itself, back up and
3618         // undo the action of the previous loop iteration... if we can.
3619         // But if we can't, just let the previous half take care of itself.
3620         st = nodes[j];
3621         st_off -= BytesPerInt;
3622         con = intcon[0];
3623         if (con != 0 && st != NULL && st->Opcode() == Op_StoreI) {
3624           assert(st_off >= header_size, "still ignoring header");
3625           assert(get_store_offset(st, phase) == st_off, "must be");
3626           assert(in(i-1) == zmem, "must be");
3627           DEBUG_ONLY(const Type* tcon = phase->type(st->in(MemNode::ValueIn)));
3628           assert(con == tcon->is_int()->get_con(), "must be");
3629           // Undo the effects of the previous loop trip, which swallowed st:
3630           intcon[0] = 0;        // undo store_constant()
3631           set_req(i-1, st);     // undo set_req(i, zmem)
3632           nodes[j] = NULL;      // undo nodes[j] = st
3633           --old_subword;        // undo ++old_subword
3634         }
3635         continue;               // This StoreI is already optimal.
3636       }
3637     }
3638 
3639     // This store is not needed.
3640     set_req(i, zmem);
3641     nodes[j] = st;              // record for the moment
3642     if (st_size < BytesPerLong) // something has changed
3643           ++old_subword;        // includes int/float, but who's counting...
3644     else  ++old_long;
3645   }
3646 
3647   if ((old_subword + old_long) == 0)
3648     return;                     // nothing more to do
3649 
3650   //// Pass B: Convert any non-zero tiles into optimal constant stores.
3651   // Be sure to insert them before overlapping non-constant stores.
3652   // (E.g., byte[] x = { 1,2,y,4 }  =>  x[int 0] = 0x01020004, x[2]=y.)
3653   for (int j = 0; j < num_tiles; j++) {
3654     jlong con  = tiles[j];
3655     jlong init = inits[j];
3656     if (con == 0)  continue;
3657     jint con0,  con1;           // split the constant, address-wise
3658     jint init0, init1;          // split the init map, address-wise
3659     { union { jlong con; jint intcon[2]; } u;
3660       u.con = con;
3661       con0  = u.intcon[0];
3662       con1  = u.intcon[1];
3663       u.con = init;
3664       init0 = u.intcon[0];
3665       init1 = u.intcon[1];
3666     }
3667 
3668     Node* old = nodes[j];
3669     assert(old != NULL, "need the prior store");
3670     intptr_t offset = (j * BytesPerLong);
3671 
3672     bool split = !Matcher::isSimpleConstant64(con);
3673 
3674     if (offset < header_size) {
3675       assert(offset + BytesPerInt >= header_size, "second int counts");
3676       assert(*(jint*)&tiles[j] == 0, "junk in header");
3677       split = true;             // only the second word counts
3678       // Example:  int a[] = { 42 ... }
3679     } else if (con0 == 0 && init0 == -1) {
3680       split = true;             // first word is covered by full inits
3681       // Example:  int a[] = { ... foo(), 42 ... }
3682     } else if (con1 == 0 && init1 == -1) {
3683       split = true;             // second word is covered by full inits
3684       // Example:  int a[] = { ... 42, foo() ... }
3685     }
3686 
3687     // Here's a case where init0 is neither 0 nor -1:
3688     //   byte a[] = { ... 0,0,foo(),0,  0,0,0,42 ... }
3689     // Assuming big-endian memory, init0, init1 are 0x0000FF00, 0x000000FF.
3690     // In this case the tile is not split; it is (jlong)42.
3691     // The big tile is stored down, and then the foo() value is inserted.
3692     // (If there were foo(),foo() instead of foo(),0, init0 would be -1.)
3693 
3694     Node* ctl = old->in(MemNode::Control);
3695     Node* adr = make_raw_address(offset, phase);
3696     const TypePtr* atp = TypeRawPtr::BOTTOM;
3697 
3698     // One or two coalesced stores to plop down.
3699     Node*    st[2];
3700     intptr_t off[2];
3701     int  nst = 0;
3702     if (!split) {
3703       ++new_long;
3704       off[nst] = offset;
3705       st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3706                                   phase->longcon(con), T_LONG, MemNode::unordered);
3707     } else {
3708       // Omit either if it is a zero.
3709       if (con0 != 0) {
3710         ++new_int;
3711         off[nst]  = offset;
3712         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3713                                     phase->intcon(con0), T_INT, MemNode::unordered);
3714       }
3715       if (con1 != 0) {
3716         ++new_int;
3717         offset += BytesPerInt;
3718         adr = make_raw_address(offset, phase);
3719         off[nst]  = offset;
3720         st[nst++] = StoreNode::make(*phase, ctl, zmem, adr, atp,
3721                                     phase->intcon(con1), T_INT, MemNode::unordered);
3722       }
3723     }
3724 
3725     // Insert second store first, then the first before the second.
3726     // Insert each one just before any overlapping non-constant stores.
3727     while (nst > 0) {
3728       Node* st1 = st[--nst];
3729       C->copy_node_notes_to(st1, old);
3730       st1 = phase->transform(st1);
3731       offset = off[nst];
3732       assert(offset >= header_size, "do not smash header");
3733       int ins_idx = captured_store_insertion_point(offset, /*size:*/0, phase);
3734       guarantee(ins_idx != 0, "must re-insert constant store");
3735       if (ins_idx < 0)  ins_idx = -ins_idx;  // never overlap
3736       if (ins_idx > InitializeNode::RawStores && in(ins_idx-1) == zmem)
3737         set_req(--ins_idx, st1);
3738       else
3739         ins_req(ins_idx, st1);
3740     }
3741   }
3742 
3743   if (PrintCompilation && WizardMode)
3744     tty->print_cr("Changed %d/%d subword/long constants into %d/%d int/long",
3745                   old_subword, old_long, new_int, new_long);
3746   if (C->log() != NULL)
3747     C->log()->elem("comment that='%d/%d subword/long to %d/%d int/long'",
3748                    old_subword, old_long, new_int, new_long);
3749 
3750   // Clean up any remaining occurrences of zmem:
3751   remove_extra_zeroes();
3752 }
3753 
3754 // Explore forward from in(start) to find the first fully initialized
3755 // word, and return its offset.  Skip groups of subword stores which
3756 // together initialize full words.  If in(start) is itself part of a
3757 // fully initialized word, return the offset of in(start).  If there
3758 // are no following full-word stores, or if something is fishy, return
3759 // a negative value.
3760 intptr_t InitializeNode::find_next_fullword_store(uint start, PhaseGVN* phase) {
3761   int       int_map = 0;
3762   intptr_t  int_map_off = 0;
3763   const int FULL_MAP = right_n_bits(BytesPerInt);  // the int_map we hope for
3764 
3765   for (uint i = start, limit = req(); i < limit; i++) {
3766     Node* st = in(i);
3767 
3768     intptr_t st_off = get_store_offset(st, phase);
3769     if (st_off < 0)  break;  // return conservative answer
3770 
3771     int st_size = st->as_Store()->memory_size();
3772     if (st_size >= BytesPerInt && (st_off % BytesPerInt) == 0) {
3773       return st_off;            // we found a complete word init
3774     }
3775 
3776     // update the map:
3777 
3778     intptr_t this_int_off = align_size_down(st_off, BytesPerInt);
3779     if (this_int_off != int_map_off) {
3780       // reset the map:
3781       int_map = 0;
3782       int_map_off = this_int_off;
3783     }
3784 
3785     int subword_off = st_off - this_int_off;
3786     int_map |= right_n_bits(st_size) << subword_off;
3787     if ((int_map & FULL_MAP) == FULL_MAP) {
3788       return this_int_off;      // we found a complete word init
3789     }
3790 
3791     // Did this store hit or cross the word boundary?
3792     intptr_t next_int_off = align_size_down(st_off + st_size, BytesPerInt);
3793     if (next_int_off == this_int_off + BytesPerInt) {
3794       // We passed the current int, without fully initializing it.
3795       int_map_off = next_int_off;
3796       int_map >>= BytesPerInt;
3797     } else if (next_int_off > this_int_off + BytesPerInt) {
3798       // We passed the current and next int.
3799       return this_int_off + BytesPerInt;
3800     }
3801   }
3802 
3803   return -1;
3804 }
3805 
3806 
3807 // Called when the associated AllocateNode is expanded into CFG.
3808 // At this point, we may perform additional optimizations.
3809 // Linearize the stores by ascending offset, to make memory
3810 // activity as coherent as possible.
3811 Node* InitializeNode::complete_stores(Node* rawctl, Node* rawmem, Node* rawptr,
3812                                       intptr_t header_size,
3813                                       Node* size_in_bytes,
3814                                       PhaseGVN* phase) {
3815   assert(!is_complete(), "not already complete");
3816   assert(stores_are_sane(phase), "");
3817   assert(allocation() != NULL, "must be present");
3818 
3819   remove_extra_zeroes();
3820 
3821   if (ReduceFieldZeroing || ReduceBulkZeroing)
3822     // reduce instruction count for common initialization patterns
3823     coalesce_subword_stores(header_size, size_in_bytes, phase);
3824 
3825   Node* zmem = zero_memory();   // initially zero memory state
3826   Node* inits = zmem;           // accumulating a linearized chain of inits
3827   #ifdef ASSERT
3828   intptr_t first_offset = allocation()->minimum_header_size();
3829   intptr_t last_init_off = first_offset;  // previous init offset
3830   intptr_t last_init_end = first_offset;  // previous init offset+size
3831   intptr_t last_tile_end = first_offset;  // previous tile offset+size
3832   #endif
3833   intptr_t zeroes_done = header_size;
3834 
3835   bool do_zeroing = true;       // we might give up if inits are very sparse
3836   int  big_init_gaps = 0;       // how many large gaps have we seen?
3837 
3838   if (ZeroTLAB)  do_zeroing = false;
3839   if (!ReduceFieldZeroing && !ReduceBulkZeroing)  do_zeroing = false;
3840 
3841   for (uint i = InitializeNode::RawStores, limit = req(); i < limit; i++) {
3842     Node* st = in(i);
3843     intptr_t st_off = get_store_offset(st, phase);
3844     if (st_off < 0)
3845       break;                    // unknown junk in the inits
3846     if (st->in(MemNode::Memory) != zmem)
3847       break;                    // complicated store chains somehow in list
3848 
3849     int st_size = st->as_Store()->memory_size();
3850     intptr_t next_init_off = st_off + st_size;
3851 
3852     if (do_zeroing && zeroes_done < next_init_off) {
3853       // See if this store needs a zero before it or under it.
3854       intptr_t zeroes_needed = st_off;
3855 
3856       if (st_size < BytesPerInt) {
3857         // Look for subword stores which only partially initialize words.
3858         // If we find some, we must lay down some word-level zeroes first,
3859         // underneath the subword stores.
3860         //
3861         // Examples:
3862         //   byte[] a = { p,q,r,s }  =>  a[0]=p,a[1]=q,a[2]=r,a[3]=s
3863         //   byte[] a = { x,y,0,0 }  =>  a[0..3] = 0, a[0]=x,a[1]=y
3864         //   byte[] a = { 0,0,z,0 }  =>  a[0..3] = 0, a[2]=z
3865         //
3866         // Note:  coalesce_subword_stores may have already done this,
3867         // if it was prompted by constant non-zero subword initializers.
3868         // But this case can still arise with non-constant stores.
3869 
3870         intptr_t next_full_store = find_next_fullword_store(i, phase);
3871 
3872         // In the examples above:
3873         //   in(i)          p   q   r   s     x   y     z
3874         //   st_off        12  13  14  15    12  13    14
3875         //   st_size        1   1   1   1     1   1     1
3876         //   next_full_s.  12  16  16  16    16  16    16
3877         //   z's_done      12  16  16  16    12  16    12
3878         //   z's_needed    12  16  16  16    16  16    16
3879         //   zsize          0   0   0   0     4   0     4
3880         if (next_full_store < 0) {
3881           // Conservative tack:  Zero to end of current word.
3882           zeroes_needed = align_size_up(zeroes_needed, BytesPerInt);
3883         } else {
3884           // Zero to beginning of next fully initialized word.
3885           // Or, don't zero at all, if we are already in that word.
3886           assert(next_full_store >= zeroes_needed, "must go forward");
3887           assert((next_full_store & (BytesPerInt-1)) == 0, "even boundary");
3888           zeroes_needed = next_full_store;
3889         }
3890       }
3891 
3892       if (zeroes_needed > zeroes_done) {
3893         intptr_t zsize = zeroes_needed - zeroes_done;
3894         // Do some incremental zeroing on rawmem, in parallel with inits.
3895         zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3896         rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3897                                               zeroes_done, zeroes_needed,
3898                                               phase);
3899         zeroes_done = zeroes_needed;
3900         if (zsize > Matcher::init_array_short_size && ++big_init_gaps > 2)
3901           do_zeroing = false;   // leave the hole, next time
3902       }
3903     }
3904 
3905     // Collect the store and move on:
3906     st->set_req(MemNode::Memory, inits);
3907     inits = st;                 // put it on the linearized chain
3908     set_req(i, zmem);           // unhook from previous position
3909 
3910     if (zeroes_done == st_off)
3911       zeroes_done = next_init_off;
3912 
3913     assert(!do_zeroing || zeroes_done >= next_init_off, "don't miss any");
3914 
3915     #ifdef ASSERT
3916     // Various order invariants.  Weaker than stores_are_sane because
3917     // a large constant tile can be filled in by smaller non-constant stores.
3918     assert(st_off >= last_init_off, "inits do not reverse");
3919     last_init_off = st_off;
3920     const Type* val = NULL;
3921     if (st_size >= BytesPerInt &&
3922         (val = phase->type(st->in(MemNode::ValueIn)))->singleton() &&
3923         (int)val->basic_type() < (int)T_OBJECT) {
3924       assert(st_off >= last_tile_end, "tiles do not overlap");
3925       assert(st_off >= last_init_end, "tiles do not overwrite inits");
3926       last_tile_end = MAX2(last_tile_end, next_init_off);
3927     } else {
3928       intptr_t st_tile_end = align_size_up(next_init_off, BytesPerLong);
3929       assert(st_tile_end >= last_tile_end, "inits stay with tiles");
3930       assert(st_off      >= last_init_end, "inits do not overlap");
3931       last_init_end = next_init_off;  // it's a non-tile
3932     }
3933     #endif //ASSERT
3934   }
3935 
3936   remove_extra_zeroes();        // clear out all the zmems left over
3937   add_req(inits);
3938 
3939   if (!ZeroTLAB) {
3940     // If anything remains to be zeroed, zero it all now.
3941     zeroes_done = align_size_down(zeroes_done, BytesPerInt);
3942     // if it is the last unused 4 bytes of an instance, forget about it
3943     intptr_t size_limit = phase->find_intptr_t_con(size_in_bytes, max_jint);
3944     if (zeroes_done + BytesPerLong >= size_limit) {
3945       assert(allocation() != NULL, "");
3946       if (allocation()->Opcode() == Op_Allocate) {
3947         Node* klass_node = allocation()->in(AllocateNode::KlassNode);
3948         ciKlass* k = phase->type(klass_node)->is_klassptr()->klass();
3949         if (zeroes_done == k->layout_helper())
3950           zeroes_done = size_limit;
3951       }
3952     }
3953     if (zeroes_done < size_limit) {
3954       rawmem = ClearArrayNode::clear_memory(rawctl, rawmem, rawptr,
3955                                             zeroes_done, size_in_bytes, phase);
3956     }
3957   }
3958 
3959   set_complete(phase);
3960   return rawmem;
3961 }
3962 
3963 
3964 #ifdef ASSERT
3965 bool InitializeNode::stores_are_sane(PhaseTransform* phase) {
3966   if (is_complete())
3967     return true;                // stores could be anything at this point
3968   assert(allocation() != NULL, "must be present");
3969   intptr_t last_off = allocation()->minimum_header_size();
3970   for (uint i = InitializeNode::RawStores; i < req(); i++) {
3971     Node* st = in(i);
3972     intptr_t st_off = get_store_offset(st, phase);
3973     if (st_off < 0)  continue;  // ignore dead garbage
3974     if (last_off > st_off) {
3975       tty->print_cr("*** bad store offset at %d: %d > %d", i, last_off, st_off);
3976       this->dump(2);
3977       assert(false, "ascending store offsets");
3978       return false;
3979     }
3980     last_off = st_off + st->as_Store()->memory_size();
3981   }
3982   return true;
3983 }
3984 #endif //ASSERT
3985 
3986 
3987 
3988 
3989 //============================MergeMemNode=====================================
3990 //
3991 // SEMANTICS OF MEMORY MERGES:  A MergeMem is a memory state assembled from several
3992 // contributing store or call operations.  Each contributor provides the memory
3993 // state for a particular "alias type" (see Compile::alias_type).  For example,
3994 // if a MergeMem has an input X for alias category #6, then any memory reference
3995 // to alias category #6 may use X as its memory state input, as an exact equivalent
3996 // to using the MergeMem as a whole.
3997 //   Load<6>( MergeMem(<6>: X, ...), p ) <==> Load<6>(X,p)
3998 //
3999 // (Here, the <N> notation gives the index of the relevant adr_type.)
4000 //
4001 // In one special case (and more cases in the future), alias categories overlap.
4002 // The special alias category "Bot" (Compile::AliasIdxBot) includes all memory
4003 // states.  Therefore, if a MergeMem has only one contributing input W for Bot,
4004 // it is exactly equivalent to that state W:
4005 //   MergeMem(<Bot>: W) <==> W
4006 //
4007 // Usually, the merge has more than one input.  In that case, where inputs
4008 // overlap (i.e., one is Bot), the narrower alias type determines the memory
4009 // state for that type, and the wider alias type (Bot) fills in everywhere else:
4010 //   Load<5>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<5>(W,p)
4011 //   Load<6>( MergeMem(<Bot>: W, <6>: X), p ) <==> Load<6>(X,p)
4012 //
4013 // A merge can take a "wide" memory state as one of its narrow inputs.
4014 // This simply means that the merge observes out only the relevant parts of
4015 // the wide input.  That is, wide memory states arriving at narrow merge inputs
4016 // are implicitly "filtered" or "sliced" as necessary.  (This is rare.)
4017 //
4018 // These rules imply that MergeMem nodes may cascade (via their <Bot> links),
4019 // and that memory slices "leak through":
4020 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y)) <==> MergeMem(<Bot>: W, <7>: Y)
4021 //
4022 // But, in such a cascade, repeated memory slices can "block the leak":
4023 //   MergeMem(<Bot>: MergeMem(<Bot>: W, <7>: Y), <7>: Y') <==> MergeMem(<Bot>: W, <7>: Y')
4024 //
4025 // In the last example, Y is not part of the combined memory state of the
4026 // outermost MergeMem.  The system must, of course, prevent unschedulable
4027 // memory states from arising, so you can be sure that the state Y is somehow
4028 // a precursor to state Y'.
4029 //
4030 //
4031 // REPRESENTATION OF MEMORY MERGES: The indexes used to address the Node::in array
4032 // of each MergeMemNode array are exactly the numerical alias indexes, including
4033 // but not limited to AliasIdxTop, AliasIdxBot, and AliasIdxRaw.  The functions
4034 // Compile::alias_type (and kin) produce and manage these indexes.
4035 //
4036 // By convention, the value of in(AliasIdxTop) (i.e., in(1)) is always the top node.
4037 // (Note that this provides quick access to the top node inside MergeMem methods,
4038 // without the need to reach out via TLS to Compile::current.)
4039 //
4040 // As a consequence of what was just described, a MergeMem that represents a full
4041 // memory state has an edge in(AliasIdxBot) which is a "wide" memory state,
4042 // containing all alias categories.
4043 //
4044 // MergeMem nodes never (?) have control inputs, so in(0) is NULL.
4045 //
4046 // All other edges in(N) (including in(AliasIdxRaw), which is in(3)) are either
4047 // a memory state for the alias type <N>, or else the top node, meaning that
4048 // there is no particular input for that alias type.  Note that the length of
4049 // a MergeMem is variable, and may be extended at any time to accommodate new
4050 // memory states at larger alias indexes.  When merges grow, they are of course
4051 // filled with "top" in the unused in() positions.
4052 //
4053 // This use of top is named "empty_memory()", or "empty_mem" (no-memory) as a variable.
4054 // (Top was chosen because it works smoothly with passes like GCM.)
4055 //
4056 // For convenience, we hardwire the alias index for TypeRawPtr::BOTTOM.  (It is
4057 // the type of random VM bits like TLS references.)  Since it is always the
4058 // first non-Bot memory slice, some low-level loops use it to initialize an
4059 // index variable:  for (i = AliasIdxRaw; i < req(); i++).
4060 //
4061 //
4062 // ACCESSORS:  There is a special accessor MergeMemNode::base_memory which returns
4063 // the distinguished "wide" state.  The accessor MergeMemNode::memory_at(N) returns
4064 // the memory state for alias type <N>, or (if there is no particular slice at <N>,
4065 // it returns the base memory.  To prevent bugs, memory_at does not accept <Top>
4066 // or <Bot> indexes.  The iterator MergeMemStream provides robust iteration over
4067 // MergeMem nodes or pairs of such nodes, ensuring that the non-top edges are visited.
4068 //
4069 // %%%% We may get rid of base_memory as a separate accessor at some point; it isn't
4070 // really that different from the other memory inputs.  An abbreviation called
4071 // "bot_memory()" for "memory_at(AliasIdxBot)" would keep code tidy.
4072 //
4073 //
4074 // PARTIAL MEMORY STATES:  During optimization, MergeMem nodes may arise that represent
4075 // partial memory states.  When a Phi splits through a MergeMem, the copy of the Phi
4076 // that "emerges though" the base memory will be marked as excluding the alias types
4077 // of the other (narrow-memory) copies which "emerged through" the narrow edges:
4078 //
4079 //   Phi<Bot>(U, MergeMem(<Bot>: W, <8>: Y))
4080 //     ==Ideal=>  MergeMem(<Bot>: Phi<Bot-8>(U, W), Phi<8>(U, Y))
4081 //
4082 // This strange "subtraction" effect is necessary to ensure IGVN convergence.
4083 // (It is currently unimplemented.)  As you can see, the resulting merge is
4084 // actually a disjoint union of memory states, rather than an overlay.
4085 //
4086 
4087 //------------------------------MergeMemNode-----------------------------------
4088 Node* MergeMemNode::make_empty_memory() {
4089   Node* empty_memory = (Node*) Compile::current()->top();
4090   assert(empty_memory->is_top(), "correct sentinel identity");
4091   return empty_memory;
4092 }
4093 
4094 MergeMemNode::MergeMemNode(Node *new_base) : Node(1+Compile::AliasIdxRaw) {
4095   init_class_id(Class_MergeMem);
4096   // all inputs are nullified in Node::Node(int)
4097   // set_input(0, NULL);  // no control input
4098 
4099   // Initialize the edges uniformly to top, for starters.
4100   Node* empty_mem = make_empty_memory();
4101   for (uint i = Compile::AliasIdxTop; i < req(); i++) {
4102     init_req(i,empty_mem);
4103   }
4104   assert(empty_memory() == empty_mem, "");
4105 
4106   if( new_base != NULL && new_base->is_MergeMem() ) {
4107     MergeMemNode* mdef = new_base->as_MergeMem();
4108     assert(mdef->empty_memory() == empty_mem, "consistent sentinels");
4109     for (MergeMemStream mms(this, mdef); mms.next_non_empty2(); ) {
4110       mms.set_memory(mms.memory2());
4111     }
4112     assert(base_memory() == mdef->base_memory(), "");
4113   } else {
4114     set_base_memory(new_base);
4115   }
4116 }
4117 
4118 // Make a new, untransformed MergeMem with the same base as 'mem'.
4119 // If mem is itself a MergeMem, populate the result with the same edges.
4120 MergeMemNode* MergeMemNode::make(Compile* C, Node* mem) {
4121   return new(C) MergeMemNode(mem);
4122 }
4123 
4124 //------------------------------cmp--------------------------------------------
4125 uint MergeMemNode::hash() const { return NO_HASH; }
4126 uint MergeMemNode::cmp( const Node &n ) const {
4127   return (&n == this);          // Always fail except on self
4128 }
4129 
4130 //------------------------------Identity---------------------------------------
4131 Node* MergeMemNode::Identity(PhaseTransform *phase) {
4132   // Identity if this merge point does not record any interesting memory
4133   // disambiguations.
4134   Node* base_mem = base_memory();
4135   Node* empty_mem = empty_memory();
4136   if (base_mem != empty_mem) {  // Memory path is not dead?
4137     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4138       Node* mem = in(i);
4139       if (mem != empty_mem && mem != base_mem) {
4140         return this;            // Many memory splits; no change
4141       }
4142     }
4143   }
4144   return base_mem;              // No memory splits; ID on the one true input
4145 }
4146 
4147 //------------------------------Ideal------------------------------------------
4148 // This method is invoked recursively on chains of MergeMem nodes
4149 Node *MergeMemNode::Ideal(PhaseGVN *phase, bool can_reshape) {
4150   // Remove chain'd MergeMems
4151   //
4152   // This is delicate, because the each "in(i)" (i >= Raw) is interpreted
4153   // relative to the "in(Bot)".  Since we are patching both at the same time,
4154   // we have to be careful to read each "in(i)" relative to the old "in(Bot)",
4155   // but rewrite each "in(i)" relative to the new "in(Bot)".
4156   Node *progress = NULL;
4157 
4158 
4159   Node* old_base = base_memory();
4160   Node* empty_mem = empty_memory();
4161   if (old_base == empty_mem)
4162     return NULL; // Dead memory path.
4163 
4164   MergeMemNode* old_mbase;
4165   if (old_base != NULL && old_base->is_MergeMem())
4166     old_mbase = old_base->as_MergeMem();
4167   else
4168     old_mbase = NULL;
4169   Node* new_base = old_base;
4170 
4171   // simplify stacked MergeMems in base memory
4172   if (old_mbase)  new_base = old_mbase->base_memory();
4173 
4174   // the base memory might contribute new slices beyond my req()
4175   if (old_mbase)  grow_to_match(old_mbase);
4176 
4177   // Look carefully at the base node if it is a phi.
4178   PhiNode* phi_base;
4179   if (new_base != NULL && new_base->is_Phi())
4180     phi_base = new_base->as_Phi();
4181   else
4182     phi_base = NULL;
4183 
4184   Node*    phi_reg = NULL;
4185   uint     phi_len = (uint)-1;
4186   if (phi_base != NULL && !phi_base->is_copy()) {
4187     // do not examine phi if degraded to a copy
4188     phi_reg = phi_base->region();
4189     phi_len = phi_base->req();
4190     // see if the phi is unfinished
4191     for (uint i = 1; i < phi_len; i++) {
4192       if (phi_base->in(i) == NULL) {
4193         // incomplete phi; do not look at it yet!
4194         phi_reg = NULL;
4195         phi_len = (uint)-1;
4196         break;
4197       }
4198     }
4199   }
4200 
4201   // Note:  We do not call verify_sparse on entry, because inputs
4202   // can normalize to the base_memory via subsume_node or similar
4203   // mechanisms.  This method repairs that damage.
4204 
4205   assert(!old_mbase || old_mbase->is_empty_memory(empty_mem), "consistent sentinels");
4206 
4207   // Look at each slice.
4208   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4209     Node* old_in = in(i);
4210     // calculate the old memory value
4211     Node* old_mem = old_in;
4212     if (old_mem == empty_mem)  old_mem = old_base;
4213     assert(old_mem == memory_at(i), "");
4214 
4215     // maybe update (reslice) the old memory value
4216 
4217     // simplify stacked MergeMems
4218     Node* new_mem = old_mem;
4219     MergeMemNode* old_mmem;
4220     if (old_mem != NULL && old_mem->is_MergeMem())
4221       old_mmem = old_mem->as_MergeMem();
4222     else
4223       old_mmem = NULL;
4224     if (old_mmem == this) {
4225       // This can happen if loops break up and safepoints disappear.
4226       // A merge of BotPtr (default) with a RawPtr memory derived from a
4227       // safepoint can be rewritten to a merge of the same BotPtr with
4228       // the BotPtr phi coming into the loop.  If that phi disappears
4229       // also, we can end up with a self-loop of the mergemem.
4230       // In general, if loops degenerate and memory effects disappear,
4231       // a mergemem can be left looking at itself.  This simply means
4232       // that the mergemem's default should be used, since there is
4233       // no longer any apparent effect on this slice.
4234       // Note: If a memory slice is a MergeMem cycle, it is unreachable
4235       //       from start.  Update the input to TOP.
4236       new_mem = (new_base == this || new_base == empty_mem)? empty_mem : new_base;
4237     }
4238     else if (old_mmem != NULL) {
4239       new_mem = old_mmem->memory_at(i);
4240     }
4241     // else preceding memory was not a MergeMem
4242 
4243     // replace equivalent phis (unfortunately, they do not GVN together)
4244     if (new_mem != NULL && new_mem != new_base &&
4245         new_mem->req() == phi_len && new_mem->in(0) == phi_reg) {
4246       if (new_mem->is_Phi()) {
4247         PhiNode* phi_mem = new_mem->as_Phi();
4248         for (uint i = 1; i < phi_len; i++) {
4249           if (phi_base->in(i) != phi_mem->in(i)) {
4250             phi_mem = NULL;
4251             break;
4252           }
4253         }
4254         if (phi_mem != NULL) {
4255           // equivalent phi nodes; revert to the def
4256           new_mem = new_base;
4257         }
4258       }
4259     }
4260 
4261     // maybe store down a new value
4262     Node* new_in = new_mem;
4263     if (new_in == new_base)  new_in = empty_mem;
4264 
4265     if (new_in != old_in) {
4266       // Warning:  Do not combine this "if" with the previous "if"
4267       // A memory slice might have be be rewritten even if it is semantically
4268       // unchanged, if the base_memory value has changed.
4269       set_req(i, new_in);
4270       progress = this;          // Report progress
4271     }
4272   }
4273 
4274   if (new_base != old_base) {
4275     set_req(Compile::AliasIdxBot, new_base);
4276     // Don't use set_base_memory(new_base), because we need to update du.
4277     assert(base_memory() == new_base, "");
4278     progress = this;
4279   }
4280 
4281   if( base_memory() == this ) {
4282     // a self cycle indicates this memory path is dead
4283     set_req(Compile::AliasIdxBot, empty_mem);
4284   }
4285 
4286   // Resolve external cycles by calling Ideal on a MergeMem base_memory
4287   // Recursion must occur after the self cycle check above
4288   if( base_memory()->is_MergeMem() ) {
4289     MergeMemNode *new_mbase = base_memory()->as_MergeMem();
4290     Node *m = phase->transform(new_mbase);  // Rollup any cycles
4291     if( m != NULL && (m->is_top() ||
4292         m->is_MergeMem() && m->as_MergeMem()->base_memory() == empty_mem) ) {
4293       // propagate rollup of dead cycle to self
4294       set_req(Compile::AliasIdxBot, empty_mem);
4295     }
4296   }
4297 
4298   if( base_memory() == empty_mem ) {
4299     progress = this;
4300     // Cut inputs during Parse phase only.
4301     // During Optimize phase a dead MergeMem node will be subsumed by Top.
4302     if( !can_reshape ) {
4303       for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4304         if( in(i) != empty_mem ) { set_req(i, empty_mem); }
4305       }
4306     }
4307   }
4308 
4309   if( !progress && base_memory()->is_Phi() && can_reshape ) {
4310     // Check if PhiNode::Ideal's "Split phis through memory merges"
4311     // transform should be attempted. Look for this->phi->this cycle.
4312     uint merge_width = req();
4313     if (merge_width > Compile::AliasIdxRaw) {
4314       PhiNode* phi = base_memory()->as_Phi();
4315       for( uint i = 1; i < phi->req(); ++i ) {// For all paths in
4316         if (phi->in(i) == this) {
4317           phase->is_IterGVN()->_worklist.push(phi);
4318           break;
4319         }
4320       }
4321     }
4322   }
4323 
4324   assert(progress || verify_sparse(), "please, no dups of base");
4325   return progress;
4326 }
4327 
4328 //-------------------------set_base_memory-------------------------------------
4329 void MergeMemNode::set_base_memory(Node *new_base) {
4330   Node* empty_mem = empty_memory();
4331   set_req(Compile::AliasIdxBot, new_base);
4332   assert(memory_at(req()) == new_base, "must set default memory");
4333   // Clear out other occurrences of new_base:
4334   if (new_base != empty_mem) {
4335     for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4336       if (in(i) == new_base)  set_req(i, empty_mem);
4337     }
4338   }
4339 }
4340 
4341 //------------------------------out_RegMask------------------------------------
4342 const RegMask &MergeMemNode::out_RegMask() const {
4343   return RegMask::Empty;
4344 }
4345 
4346 //------------------------------dump_spec--------------------------------------
4347 #ifndef PRODUCT
4348 void MergeMemNode::dump_spec(outputStream *st) const {
4349   st->print(" {");
4350   Node* base_mem = base_memory();
4351   for( uint i = Compile::AliasIdxRaw; i < req(); i++ ) {
4352     Node* mem = memory_at(i);
4353     if (mem == base_mem) { st->print(" -"); continue; }
4354     st->print( " N%d:", mem->_idx );
4355     Compile::current()->get_adr_type(i)->dump_on(st);
4356   }
4357   st->print(" }");
4358 }
4359 #endif // !PRODUCT
4360 
4361 
4362 #ifdef ASSERT
4363 static bool might_be_same(Node* a, Node* b) {
4364   if (a == b)  return true;
4365   if (!(a->is_Phi() || b->is_Phi()))  return false;
4366   // phis shift around during optimization
4367   return true;  // pretty stupid...
4368 }
4369 
4370 // verify a narrow slice (either incoming or outgoing)
4371 static void verify_memory_slice(const MergeMemNode* m, int alias_idx, Node* n) {
4372   if (!VerifyAliases)       return;  // don't bother to verify unless requested
4373   if (is_error_reported())  return;  // muzzle asserts when debugging an error
4374   if (Node::in_dump())      return;  // muzzle asserts when printing
4375   assert(alias_idx >= Compile::AliasIdxRaw, "must not disturb base_memory or sentinel");
4376   assert(n != NULL, "");
4377   // Elide intervening MergeMem's
4378   while (n->is_MergeMem()) {
4379     n = n->as_MergeMem()->memory_at(alias_idx);
4380   }
4381   Compile* C = Compile::current();
4382   const TypePtr* n_adr_type = n->adr_type();
4383   if (n == m->empty_memory()) {
4384     // Implicit copy of base_memory()
4385   } else if (n_adr_type != TypePtr::BOTTOM) {
4386     assert(n_adr_type != NULL, "new memory must have a well-defined adr_type");
4387     assert(C->must_alias(n_adr_type, alias_idx), "new memory must match selected slice");
4388   } else {
4389     // A few places like make_runtime_call "know" that VM calls are narrow,
4390     // and can be used to update only the VM bits stored as TypeRawPtr::BOTTOM.
4391     bool expected_wide_mem = false;
4392     if (n == m->base_memory()) {
4393       expected_wide_mem = true;
4394     } else if (alias_idx == Compile::AliasIdxRaw ||
4395                n == m->memory_at(Compile::AliasIdxRaw)) {
4396       expected_wide_mem = true;
4397     } else if (!C->alias_type(alias_idx)->is_rewritable()) {
4398       // memory can "leak through" calls on channels that
4399       // are write-once.  Allow this also.
4400       expected_wide_mem = true;
4401     }
4402     assert(expected_wide_mem, "expected narrow slice replacement");
4403   }
4404 }
4405 #else // !ASSERT
4406 #define verify_memory_slice(m,i,n) (void)(0)  // PRODUCT version is no-op
4407 #endif
4408 
4409 
4410 //-----------------------------memory_at---------------------------------------
4411 Node* MergeMemNode::memory_at(uint alias_idx) const {
4412   assert(alias_idx >= Compile::AliasIdxRaw ||
4413          alias_idx == Compile::AliasIdxBot && Compile::current()->AliasLevel() == 0,
4414          "must avoid base_memory and AliasIdxTop");
4415 
4416   // Otherwise, it is a narrow slice.
4417   Node* n = alias_idx < req() ? in(alias_idx) : empty_memory();
4418   Compile *C = Compile::current();
4419   if (is_empty_memory(n)) {
4420     // the array is sparse; empty slots are the "top" node
4421     n = base_memory();
4422     assert(Node::in_dump()
4423            || n == NULL || n->bottom_type() == Type::TOP
4424            || n->adr_type() == NULL // address is TOP
4425            || n->adr_type() == TypePtr::BOTTOM
4426            || n->adr_type() == TypeRawPtr::BOTTOM
4427            || Compile::current()->AliasLevel() == 0,
4428            "must be a wide memory");
4429     // AliasLevel == 0 if we are organizing the memory states manually.
4430     // See verify_memory_slice for comments on TypeRawPtr::BOTTOM.
4431   } else {
4432     // make sure the stored slice is sane
4433     #ifdef ASSERT
4434     if (is_error_reported() || Node::in_dump()) {
4435     } else if (might_be_same(n, base_memory())) {
4436       // Give it a pass:  It is a mostly harmless repetition of the base.
4437       // This can arise normally from node subsumption during optimization.
4438     } else {
4439       verify_memory_slice(this, alias_idx, n);
4440     }
4441     #endif
4442   }
4443   return n;
4444 }
4445 
4446 //---------------------------set_memory_at-------------------------------------
4447 void MergeMemNode::set_memory_at(uint alias_idx, Node *n) {
4448   verify_memory_slice(this, alias_idx, n);
4449   Node* empty_mem = empty_memory();
4450   if (n == base_memory())  n = empty_mem;  // collapse default
4451   uint need_req = alias_idx+1;
4452   if (req() < need_req) {
4453     if (n == empty_mem)  return;  // already the default, so do not grow me
4454     // grow the sparse array
4455     do {
4456       add_req(empty_mem);
4457     } while (req() < need_req);
4458   }
4459   set_req( alias_idx, n );
4460 }
4461 
4462 
4463 
4464 //--------------------------iteration_setup------------------------------------
4465 void MergeMemNode::iteration_setup(const MergeMemNode* other) {
4466   if (other != NULL) {
4467     grow_to_match(other);
4468     // invariant:  the finite support of mm2 is within mm->req()
4469     #ifdef ASSERT
4470     for (uint i = req(); i < other->req(); i++) {
4471       assert(other->is_empty_memory(other->in(i)), "slice left uncovered");
4472     }
4473     #endif
4474   }
4475   // Replace spurious copies of base_memory by top.
4476   Node* base_mem = base_memory();
4477   if (base_mem != NULL && !base_mem->is_top()) {
4478     for (uint i = Compile::AliasIdxBot+1, imax = req(); i < imax; i++) {
4479       if (in(i) == base_mem)
4480         set_req(i, empty_memory());
4481     }
4482   }
4483 }
4484 
4485 //---------------------------grow_to_match-------------------------------------
4486 void MergeMemNode::grow_to_match(const MergeMemNode* other) {
4487   Node* empty_mem = empty_memory();
4488   assert(other->is_empty_memory(empty_mem), "consistent sentinels");
4489   // look for the finite support of the other memory
4490   for (uint i = other->req(); --i >= req(); ) {
4491     if (other->in(i) != empty_mem) {
4492       uint new_len = i+1;
4493       while (req() < new_len)  add_req(empty_mem);
4494       break;
4495     }
4496   }
4497 }
4498 
4499 //---------------------------verify_sparse-------------------------------------
4500 #ifndef PRODUCT
4501 bool MergeMemNode::verify_sparse() const {
4502   assert(is_empty_memory(make_empty_memory()), "sane sentinel");
4503   Node* base_mem = base_memory();
4504   // The following can happen in degenerate cases, since empty==top.
4505   if (is_empty_memory(base_mem))  return true;
4506   for (uint i = Compile::AliasIdxRaw; i < req(); i++) {
4507     assert(in(i) != NULL, "sane slice");
4508     if (in(i) == base_mem)  return false;  // should have been the sentinel value!
4509   }
4510   return true;
4511 }
4512 
4513 bool MergeMemStream::match_memory(Node* mem, const MergeMemNode* mm, int idx) {
4514   Node* n;
4515   n = mm->in(idx);
4516   if (mem == n)  return true;  // might be empty_memory()
4517   n = (idx == Compile::AliasIdxBot)? mm->base_memory(): mm->memory_at(idx);
4518   if (mem == n)  return true;
4519   while (n->is_Phi() && (n = n->as_Phi()->is_copy()) != NULL) {
4520     if (mem == n)  return true;
4521     if (n == NULL)  break;
4522   }
4523   return false;
4524 }
4525 #endif // !PRODUCT