1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "compiler/oopMap.hpp"
  35 #include "opto/addnode.hpp"
  36 #include "opto/block.hpp"
  37 #include "opto/c2compiler.hpp"
  38 #include "opto/callGenerator.hpp"
  39 #include "opto/callnode.hpp"
  40 #include "opto/cfgnode.hpp"
  41 #include "opto/chaitin.hpp"
  42 #include "opto/compile.hpp"
  43 #include "opto/connode.hpp"
  44 #include "opto/divnode.hpp"
  45 #include "opto/escape.hpp"
  46 #include "opto/idealGraphPrinter.hpp"
  47 #include "opto/loopnode.hpp"
  48 #include "opto/machnode.hpp"
  49 #include "opto/macro.hpp"
  50 #include "opto/matcher.hpp"
  51 #include "opto/mathexactnode.hpp"
  52 #include "opto/memnode.hpp"
  53 #include "opto/mulnode.hpp"
  54 #include "opto/narrowptrnode.hpp"
  55 #include "opto/node.hpp"
  56 #include "opto/opcodes.hpp"
  57 #include "opto/output.hpp"
  58 #include "opto/parse.hpp"
  59 #include "opto/phaseX.hpp"
  60 #include "opto/rootnode.hpp"
  61 #include "opto/runtime.hpp"
  62 #include "opto/stringopts.hpp"
  63 #include "opto/type.hpp"
  64 #include "opto/vectornode.hpp"
  65 #include "runtime/arguments.hpp"
  66 #include "runtime/signature.hpp"
  67 #include "runtime/stubRoutines.hpp"
  68 #include "runtime/timer.hpp"
  69 #include "trace/tracing.hpp"
  70 #include "utilities/copy.hpp"
  71 #ifdef TARGET_ARCH_MODEL_x86_32
  72 # include "adfiles/ad_x86_32.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_x86_64
  75 # include "adfiles/ad_x86_64.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_sparc
  78 # include "adfiles/ad_sparc.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_zero
  81 # include "adfiles/ad_zero.hpp"
  82 #endif
  83 #ifdef TARGET_ARCH_MODEL_arm
  84 # include "adfiles/ad_arm.hpp"
  85 #endif
  86 #ifdef TARGET_ARCH_MODEL_ppc_32
  87 # include "adfiles/ad_ppc_32.hpp"
  88 #endif
  89 #ifdef TARGET_ARCH_MODEL_ppc_64
  90 # include "adfiles/ad_ppc_64.hpp"
  91 #endif
  92 
  93 
  94 // -------------------- Compile::mach_constant_base_node -----------------------
  95 // Constant table base node singleton.
  96 MachConstantBaseNode* Compile::mach_constant_base_node() {
  97   if (_mach_constant_base_node == NULL) {
  98     _mach_constant_base_node = new (C) MachConstantBaseNode();
  99     _mach_constant_base_node->add_req(C->root());
 100   }
 101   return _mach_constant_base_node;
 102 }
 103 
 104 
 105 /// Support for intrinsics.
 106 
 107 // Return the index at which m must be inserted (or already exists).
 108 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 109 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 110 #ifdef ASSERT
 111   for (int i = 1; i < _intrinsics->length(); i++) {
 112     CallGenerator* cg1 = _intrinsics->at(i-1);
 113     CallGenerator* cg2 = _intrinsics->at(i);
 114     assert(cg1->method() != cg2->method()
 115            ? cg1->method()     < cg2->method()
 116            : cg1->is_virtual() < cg2->is_virtual(),
 117            "compiler intrinsics list must stay sorted");
 118   }
 119 #endif
 120   // Binary search sorted list, in decreasing intervals [lo, hi].
 121   int lo = 0, hi = _intrinsics->length()-1;
 122   while (lo <= hi) {
 123     int mid = (uint)(hi + lo) / 2;
 124     ciMethod* mid_m = _intrinsics->at(mid)->method();
 125     if (m < mid_m) {
 126       hi = mid-1;
 127     } else if (m > mid_m) {
 128       lo = mid+1;
 129     } else {
 130       // look at minor sort key
 131       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 132       if (is_virtual < mid_virt) {
 133         hi = mid-1;
 134       } else if (is_virtual > mid_virt) {
 135         lo = mid+1;
 136       } else {
 137         return mid;  // exact match
 138       }
 139     }
 140   }
 141   return lo;  // inexact match
 142 }
 143 
 144 void Compile::register_intrinsic(CallGenerator* cg) {
 145   if (_intrinsics == NULL) {
 146     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 147   }
 148   // This code is stolen from ciObjectFactory::insert.
 149   // Really, GrowableArray should have methods for
 150   // insert_at, remove_at, and binary_search.
 151   int len = _intrinsics->length();
 152   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 153   if (index == len) {
 154     _intrinsics->append(cg);
 155   } else {
 156 #ifdef ASSERT
 157     CallGenerator* oldcg = _intrinsics->at(index);
 158     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 159 #endif
 160     _intrinsics->append(_intrinsics->at(len-1));
 161     int pos;
 162     for (pos = len-2; pos >= index; pos--) {
 163       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 164     }
 165     _intrinsics->at_put(index, cg);
 166   }
 167   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 168 }
 169 
 170 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 171   assert(m->is_loaded(), "don't try this on unloaded methods");
 172   if (_intrinsics != NULL) {
 173     int index = intrinsic_insertion_index(m, is_virtual);
 174     if (index < _intrinsics->length()
 175         && _intrinsics->at(index)->method() == m
 176         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 177       return _intrinsics->at(index);
 178     }
 179   }
 180   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 181   if (m->intrinsic_id() != vmIntrinsics::_none &&
 182       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 183     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 184     if (cg != NULL) {
 185       // Save it for next time:
 186       register_intrinsic(cg);
 187       return cg;
 188     } else {
 189       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 190     }
 191   }
 192   return NULL;
 193 }
 194 
 195 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 196 // in library_call.cpp.
 197 
 198 
 199 #ifndef PRODUCT
 200 // statistics gathering...
 201 
 202 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 203 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 204 
 205 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 206   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 207   int oflags = _intrinsic_hist_flags[id];
 208   assert(flags != 0, "what happened?");
 209   if (is_virtual) {
 210     flags |= _intrinsic_virtual;
 211   }
 212   bool changed = (flags != oflags);
 213   if ((flags & _intrinsic_worked) != 0) {
 214     juint count = (_intrinsic_hist_count[id] += 1);
 215     if (count == 1) {
 216       changed = true;           // first time
 217     }
 218     // increment the overall count also:
 219     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 220   }
 221   if (changed) {
 222     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 223       // Something changed about the intrinsic's virtuality.
 224       if ((flags & _intrinsic_virtual) != 0) {
 225         // This is the first use of this intrinsic as a virtual call.
 226         if (oflags != 0) {
 227           // We already saw it as a non-virtual, so note both cases.
 228           flags |= _intrinsic_both;
 229         }
 230       } else if ((oflags & _intrinsic_both) == 0) {
 231         // This is the first use of this intrinsic as a non-virtual
 232         flags |= _intrinsic_both;
 233       }
 234     }
 235     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 236   }
 237   // update the overall flags also:
 238   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 239   return changed;
 240 }
 241 
 242 static char* format_flags(int flags, char* buf) {
 243   buf[0] = 0;
 244   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 245   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 246   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 247   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 248   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 249   if (buf[0] == 0)  strcat(buf, ",");
 250   assert(buf[0] == ',', "must be");
 251   return &buf[1];
 252 }
 253 
 254 void Compile::print_intrinsic_statistics() {
 255   char flagsbuf[100];
 256   ttyLocker ttyl;
 257   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 258   tty->print_cr("Compiler intrinsic usage:");
 259   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 260   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 261   #define PRINT_STAT_LINE(name, c, f) \
 262     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 263   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 264     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 265     int   flags = _intrinsic_hist_flags[id];
 266     juint count = _intrinsic_hist_count[id];
 267     if ((flags | count) != 0) {
 268       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 269     }
 270   }
 271   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 272   if (xtty != NULL)  xtty->tail("statistics");
 273 }
 274 
 275 void Compile::print_statistics() {
 276   { ttyLocker ttyl;
 277     if (xtty != NULL)  xtty->head("statistics type='opto'");
 278     Parse::print_statistics();
 279     PhaseCCP::print_statistics();
 280     PhaseRegAlloc::print_statistics();
 281     Scheduling::print_statistics();
 282     PhasePeephole::print_statistics();
 283     PhaseIdealLoop::print_statistics();
 284     if (xtty != NULL)  xtty->tail("statistics");
 285   }
 286   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 287     // put this under its own <statistics> element.
 288     print_intrinsic_statistics();
 289   }
 290 }
 291 #endif //PRODUCT
 292 
 293 // Support for bundling info
 294 Bundle* Compile::node_bundling(const Node *n) {
 295   assert(valid_bundle_info(n), "oob");
 296   return &_node_bundling_base[n->_idx];
 297 }
 298 
 299 bool Compile::valid_bundle_info(const Node *n) {
 300   return (_node_bundling_limit > n->_idx);
 301 }
 302 
 303 
 304 void Compile::gvn_replace_by(Node* n, Node* nn) {
 305   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 306     Node* use = n->last_out(i);
 307     bool is_in_table = initial_gvn()->hash_delete(use);
 308     uint uses_found = 0;
 309     for (uint j = 0; j < use->len(); j++) {
 310       if (use->in(j) == n) {
 311         if (j < use->req())
 312           use->set_req(j, nn);
 313         else
 314           use->set_prec(j, nn);
 315         uses_found++;
 316       }
 317     }
 318     if (is_in_table) {
 319       // reinsert into table
 320       initial_gvn()->hash_find_insert(use);
 321     }
 322     record_for_igvn(use);
 323     i -= uses_found;    // we deleted 1 or more copies of this edge
 324   }
 325 }
 326 
 327 
 328 static inline bool not_a_node(const Node* n) {
 329   if (n == NULL)                   return true;
 330   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 331   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 332   return false;
 333 }
 334 
 335 // Identify all nodes that are reachable from below, useful.
 336 // Use breadth-first pass that records state in a Unique_Node_List,
 337 // recursive traversal is slower.
 338 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 339   int estimated_worklist_size = unique();
 340   useful.map( estimated_worklist_size, NULL );  // preallocate space
 341 
 342   // Initialize worklist
 343   if (root() != NULL)     { useful.push(root()); }
 344   // If 'top' is cached, declare it useful to preserve cached node
 345   if( cached_top_node() ) { useful.push(cached_top_node()); }
 346 
 347   // Push all useful nodes onto the list, breadthfirst
 348   for( uint next = 0; next < useful.size(); ++next ) {
 349     assert( next < unique(), "Unique useful nodes < total nodes");
 350     Node *n  = useful.at(next);
 351     uint max = n->len();
 352     for( uint i = 0; i < max; ++i ) {
 353       Node *m = n->in(i);
 354       if (not_a_node(m))  continue;
 355       useful.push(m);
 356     }
 357   }
 358 }
 359 
 360 // Update dead_node_list with any missing dead nodes using useful
 361 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 362 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 363   uint max_idx = unique();
 364   VectorSet& useful_node_set = useful.member_set();
 365 
 366   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 367     // If node with index node_idx is not in useful set,
 368     // mark it as dead in dead node list.
 369     if (! useful_node_set.test(node_idx) ) {
 370       record_dead_node(node_idx);
 371     }
 372   }
 373 }
 374 
 375 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 376   int shift = 0;
 377   for (int i = 0; i < inlines->length(); i++) {
 378     CallGenerator* cg = inlines->at(i);
 379     CallNode* call = cg->call_node();
 380     if (shift > 0) {
 381       inlines->at_put(i-shift, cg);
 382     }
 383     if (!useful.member(call)) {
 384       shift++;
 385     }
 386   }
 387   inlines->trunc_to(inlines->length()-shift);
 388 }
 389 
 390 // Disconnect all useless nodes by disconnecting those at the boundary.
 391 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 392   uint next = 0;
 393   while (next < useful.size()) {
 394     Node *n = useful.at(next++);
 395     // Use raw traversal of out edges since this code removes out edges
 396     int max = n->outcnt();
 397     for (int j = 0; j < max; ++j) {
 398       Node* child = n->raw_out(j);
 399       if (! useful.member(child)) {
 400         assert(!child->is_top() || child != top(),
 401                "If top is cached in Compile object it is in useful list");
 402         // Only need to remove this out-edge to the useless node
 403         n->raw_del_out(j);
 404         --j;
 405         --max;
 406       }
 407     }
 408     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 409       record_for_igvn(n->unique_out());
 410     }
 411   }
 412   // Remove useless macro and predicate opaq nodes
 413   for (int i = C->macro_count()-1; i >= 0; i--) {
 414     Node* n = C->macro_node(i);
 415     if (!useful.member(n)) {
 416       remove_macro_node(n);
 417     }
 418   }
 419   // Remove useless expensive node
 420   for (int i = C->expensive_count()-1; i >= 0; i--) {
 421     Node* n = C->expensive_node(i);
 422     if (!useful.member(n)) {
 423       remove_expensive_node(n);
 424     }
 425   }
 426   // clean up the late inline lists
 427   remove_useless_late_inlines(&_string_late_inlines, useful);
 428   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 429   remove_useless_late_inlines(&_late_inlines, useful);
 430   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 431 }
 432 
 433 //------------------------------frame_size_in_words-----------------------------
 434 // frame_slots in units of words
 435 int Compile::frame_size_in_words() const {
 436   // shift is 0 in LP32 and 1 in LP64
 437   const int shift = (LogBytesPerWord - LogBytesPerInt);
 438   int words = _frame_slots >> shift;
 439   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 440   return words;
 441 }
 442 
 443 // ============================================================================
 444 //------------------------------CompileWrapper---------------------------------
 445 class CompileWrapper : public StackObj {
 446   Compile *const _compile;
 447  public:
 448   CompileWrapper(Compile* compile);
 449 
 450   ~CompileWrapper();
 451 };
 452 
 453 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 454   // the Compile* pointer is stored in the current ciEnv:
 455   ciEnv* env = compile->env();
 456   assert(env == ciEnv::current(), "must already be a ciEnv active");
 457   assert(env->compiler_data() == NULL, "compile already active?");
 458   env->set_compiler_data(compile);
 459   assert(compile == Compile::current(), "sanity");
 460 
 461   compile->set_type_dict(NULL);
 462   compile->set_type_hwm(NULL);
 463   compile->set_type_last_size(0);
 464   compile->set_last_tf(NULL, NULL);
 465   compile->set_indexSet_arena(NULL);
 466   compile->set_indexSet_free_block_list(NULL);
 467   compile->init_type_arena();
 468   Type::Initialize(compile);
 469   _compile->set_scratch_buffer_blob(NULL);
 470   _compile->begin_method();
 471 }
 472 CompileWrapper::~CompileWrapper() {
 473   _compile->end_method();
 474   if (_compile->scratch_buffer_blob() != NULL)
 475     BufferBlob::free(_compile->scratch_buffer_blob());
 476   _compile->env()->set_compiler_data(NULL);
 477 }
 478 
 479 
 480 //----------------------------print_compile_messages---------------------------
 481 void Compile::print_compile_messages() {
 482 #ifndef PRODUCT
 483   // Check if recompiling
 484   if (_subsume_loads == false && PrintOpto) {
 485     // Recompiling without allowing machine instructions to subsume loads
 486     tty->print_cr("*********************************************************");
 487     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 488     tty->print_cr("*********************************************************");
 489   }
 490   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 491     // Recompiling without escape analysis
 492     tty->print_cr("*********************************************************");
 493     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 494     tty->print_cr("*********************************************************");
 495   }
 496   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 497     // Recompiling without boxing elimination
 498     tty->print_cr("*********************************************************");
 499     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 500     tty->print_cr("*********************************************************");
 501   }
 502   if (env()->break_at_compile()) {
 503     // Open the debugger when compiling this method.
 504     tty->print("### Breaking when compiling: ");
 505     method()->print_short_name();
 506     tty->cr();
 507     BREAKPOINT;
 508   }
 509 
 510   if( PrintOpto ) {
 511     if (is_osr_compilation()) {
 512       tty->print("[OSR]%3d", _compile_id);
 513     } else {
 514       tty->print("%3d", _compile_id);
 515     }
 516   }
 517 #endif
 518 }
 519 
 520 
 521 //-----------------------init_scratch_buffer_blob------------------------------
 522 // Construct a temporary BufferBlob and cache it for this compile.
 523 void Compile::init_scratch_buffer_blob(int const_size) {
 524   // If there is already a scratch buffer blob allocated and the
 525   // constant section is big enough, use it.  Otherwise free the
 526   // current and allocate a new one.
 527   BufferBlob* blob = scratch_buffer_blob();
 528   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 529     // Use the current blob.
 530   } else {
 531     if (blob != NULL) {
 532       BufferBlob::free(blob);
 533     }
 534 
 535     ResourceMark rm;
 536     _scratch_const_size = const_size;
 537     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 538     blob = BufferBlob::create("Compile::scratch_buffer", size);
 539     // Record the buffer blob for next time.
 540     set_scratch_buffer_blob(blob);
 541     // Have we run out of code space?
 542     if (scratch_buffer_blob() == NULL) {
 543       // Let CompilerBroker disable further compilations.
 544       record_failure("Not enough space for scratch buffer in CodeCache");
 545       return;
 546     }
 547   }
 548 
 549   // Initialize the relocation buffers
 550   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 551   set_scratch_locs_memory(locs_buf);
 552 }
 553 
 554 
 555 //-----------------------scratch_emit_size-------------------------------------
 556 // Helper function that computes size by emitting code
 557 uint Compile::scratch_emit_size(const Node* n) {
 558   // Start scratch_emit_size section.
 559   set_in_scratch_emit_size(true);
 560 
 561   // Emit into a trash buffer and count bytes emitted.
 562   // This is a pretty expensive way to compute a size,
 563   // but it works well enough if seldom used.
 564   // All common fixed-size instructions are given a size
 565   // method by the AD file.
 566   // Note that the scratch buffer blob and locs memory are
 567   // allocated at the beginning of the compile task, and
 568   // may be shared by several calls to scratch_emit_size.
 569   // The allocation of the scratch buffer blob is particularly
 570   // expensive, since it has to grab the code cache lock.
 571   BufferBlob* blob = this->scratch_buffer_blob();
 572   assert(blob != NULL, "Initialize BufferBlob at start");
 573   assert(blob->size() > MAX_inst_size, "sanity");
 574   relocInfo* locs_buf = scratch_locs_memory();
 575   address blob_begin = blob->content_begin();
 576   address blob_end   = (address)locs_buf;
 577   assert(blob->content_contains(blob_end), "sanity");
 578   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 579   buf.initialize_consts_size(_scratch_const_size);
 580   buf.initialize_stubs_size(MAX_stubs_size);
 581   assert(locs_buf != NULL, "sanity");
 582   int lsize = MAX_locs_size / 3;
 583   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 584   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 585   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 586 
 587   // Do the emission.
 588 
 589   Label fakeL; // Fake label for branch instructions.
 590   Label*   saveL = NULL;
 591   uint save_bnum = 0;
 592   bool is_branch = n->is_MachBranch();
 593   if (is_branch) {
 594     MacroAssembler masm(&buf);
 595     masm.bind(fakeL);
 596     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 597     n->as_MachBranch()->label_set(&fakeL, 0);
 598   }
 599   n->emit(buf, this->regalloc());
 600   if (is_branch) // Restore label.
 601     n->as_MachBranch()->label_set(saveL, save_bnum);
 602 
 603   // End scratch_emit_size section.
 604   set_in_scratch_emit_size(false);
 605 
 606   return buf.insts_size();
 607 }
 608 
 609 
 610 // ============================================================================
 611 //------------------------------Compile standard-------------------------------
 612 debug_only( int Compile::_debug_idx = 100000; )
 613 
 614 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 615 // the continuation bci for on stack replacement.
 616 
 617 
 618 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 619                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 620                 : Phase(Compiler),
 621                   _env(ci_env),
 622                   _log(ci_env->log()),
 623                   _compile_id(ci_env->compile_id()),
 624                   _save_argument_registers(false),
 625                   _stub_name(NULL),
 626                   _stub_function(NULL),
 627                   _stub_entry_point(NULL),
 628                   _method(target),
 629                   _entry_bci(osr_bci),
 630                   _initial_gvn(NULL),
 631                   _for_igvn(NULL),
 632                   _warm_calls(NULL),
 633                   _subsume_loads(subsume_loads),
 634                   _do_escape_analysis(do_escape_analysis),
 635                   _eliminate_boxing(eliminate_boxing),
 636                   _failure_reason(NULL),
 637                   _code_buffer("Compile::Fill_buffer"),
 638                   _orig_pc_slot(0),
 639                   _orig_pc_slot_offset_in_bytes(0),
 640                   _has_method_handle_invokes(false),
 641                   _mach_constant_base_node(NULL),
 642                   _node_bundling_limit(0),
 643                   _node_bundling_base(NULL),
 644                   _java_calls(0),
 645                   _inner_loops(0),
 646                   _scratch_const_size(-1),
 647                   _in_scratch_emit_size(false),
 648                   _dead_node_list(comp_arena()),
 649                   _dead_node_count(0),
 650 #ifndef PRODUCT
 651                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 652                   _in_dump_cnt(0),
 653                   _printer(IdealGraphPrinter::printer()),
 654 #endif
 655                   _congraph(NULL),
 656                   _replay_inline_data(NULL),
 657                   _late_inlines(comp_arena(), 2, 0, NULL),
 658                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 659                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 660                   _late_inlines_pos(0),
 661                   _number_of_mh_late_inlines(0),
 662                   _inlining_progress(false),
 663                   _inlining_incrementally(false),
 664                   _print_inlining_list(NULL),
 665                   _print_inlining_idx(0),
 666                   _preserve_jvm_state(0) {
 667   C = this;
 668 
 669   CompileWrapper cw(this);
 670 #ifndef PRODUCT
 671   if (TimeCompiler2) {
 672     tty->print(" ");
 673     target->holder()->name()->print();
 674     tty->print(".");
 675     target->print_short_name();
 676     tty->print("  ");
 677   }
 678   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 679   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 680   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 681   if (!print_opto_assembly) {
 682     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 683     if (print_assembly && !Disassembler::can_decode()) {
 684       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 685       print_opto_assembly = true;
 686     }
 687   }
 688   set_print_assembly(print_opto_assembly);
 689   set_parsed_irreducible_loop(false);
 690 
 691   if (method()->has_option("ReplayInline")) {
 692     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 693   }
 694 #endif
 695   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 696   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 697 
 698   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 699     // Make sure the method being compiled gets its own MDO,
 700     // so we can at least track the decompile_count().
 701     // Need MDO to record RTM code generation state.
 702     method()->ensure_method_data();
 703   }
 704 
 705   Init(::AliasLevel);
 706 
 707 
 708   print_compile_messages();
 709 
 710   _ilt = InlineTree::build_inline_tree_root();
 711 
 712   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 713   assert(num_alias_types() >= AliasIdxRaw, "");
 714 
 715 #define MINIMUM_NODE_HASH  1023
 716   // Node list that Iterative GVN will start with
 717   Unique_Node_List for_igvn(comp_arena());
 718   set_for_igvn(&for_igvn);
 719 
 720   // GVN that will be run immediately on new nodes
 721   uint estimated_size = method()->code_size()*4+64;
 722   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 723   PhaseGVN gvn(node_arena(), estimated_size);
 724   set_initial_gvn(&gvn);
 725 
 726   if (print_inlining() || print_intrinsics()) {
 727     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
 728   }
 729   { // Scope for timing the parser
 730     TracePhase t3("parse", &_t_parser, true);
 731 
 732     // Put top into the hash table ASAP.
 733     initial_gvn()->transform_no_reclaim(top());
 734 
 735     // Set up tf(), start(), and find a CallGenerator.
 736     CallGenerator* cg = NULL;
 737     if (is_osr_compilation()) {
 738       const TypeTuple *domain = StartOSRNode::osr_domain();
 739       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 740       init_tf(TypeFunc::make(domain, range));
 741       StartNode* s = new (this) StartOSRNode(root(), domain);
 742       initial_gvn()->set_type_bottom(s);
 743       init_start(s);
 744       cg = CallGenerator::for_osr(method(), entry_bci());
 745     } else {
 746       // Normal case.
 747       init_tf(TypeFunc::make(method()));
 748       StartNode* s = new (this) StartNode(root(), tf()->domain());
 749       initial_gvn()->set_type_bottom(s);
 750       init_start(s);
 751       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 752         // With java.lang.ref.reference.get() we must go through the
 753         // intrinsic when G1 is enabled - even when get() is the root
 754         // method of the compile - so that, if necessary, the value in
 755         // the referent field of the reference object gets recorded by
 756         // the pre-barrier code.
 757         // Specifically, if G1 is enabled, the value in the referent
 758         // field is recorded by the G1 SATB pre barrier. This will
 759         // result in the referent being marked live and the reference
 760         // object removed from the list of discovered references during
 761         // reference processing.
 762         cg = find_intrinsic(method(), false);
 763       }
 764       if (cg == NULL) {
 765         float past_uses = method()->interpreter_invocation_count();
 766         float expected_uses = past_uses;
 767         cg = CallGenerator::for_inline(method(), expected_uses);
 768       }
 769     }
 770     if (failing())  return;
 771     if (cg == NULL) {
 772       record_method_not_compilable_all_tiers("cannot parse method");
 773       return;
 774     }
 775     JVMState* jvms = build_start_state(start(), tf());
 776     if ((jvms = cg->generate(jvms, NULL)) == NULL) {
 777       record_method_not_compilable("method parse failed");
 778       return;
 779     }
 780     GraphKit kit(jvms);
 781 
 782     if (!kit.stopped()) {
 783       // Accept return values, and transfer control we know not where.
 784       // This is done by a special, unique ReturnNode bound to root.
 785       return_values(kit.jvms());
 786     }
 787 
 788     if (kit.has_exceptions()) {
 789       // Any exceptions that escape from this call must be rethrown
 790       // to whatever caller is dynamically above us on the stack.
 791       // This is done by a special, unique RethrowNode bound to root.
 792       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 793     }
 794 
 795     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 796 
 797     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 798       inline_string_calls(true);
 799     }
 800 
 801     if (failing())  return;
 802 
 803     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 804 
 805     // Remove clutter produced by parsing.
 806     if (!failing()) {
 807       ResourceMark rm;
 808       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 809     }
 810   }
 811 
 812   // Note:  Large methods are capped off in do_one_bytecode().
 813   if (failing())  return;
 814 
 815   // After parsing, node notes are no longer automagic.
 816   // They must be propagated by register_new_node_with_optimizer(),
 817   // clone(), or the like.
 818   set_default_node_notes(NULL);
 819 
 820   for (;;) {
 821     int successes = Inline_Warm();
 822     if (failing())  return;
 823     if (successes == 0)  break;
 824   }
 825 
 826   // Drain the list.
 827   Finish_Warm();
 828 #ifndef PRODUCT
 829   if (_printer) {
 830     _printer->print_inlining(this);
 831   }
 832 #endif
 833 
 834   if (failing())  return;
 835   NOT_PRODUCT( verify_graph_edges(); )
 836 
 837   // Now optimize
 838   Optimize();
 839   if (failing())  return;
 840   NOT_PRODUCT( verify_graph_edges(); )
 841 
 842 #ifndef PRODUCT
 843   if (PrintIdeal) {
 844     ttyLocker ttyl;  // keep the following output all in one block
 845     // This output goes directly to the tty, not the compiler log.
 846     // To enable tools to match it up with the compilation activity,
 847     // be sure to tag this tty output with the compile ID.
 848     if (xtty != NULL) {
 849       xtty->head("ideal compile_id='%d'%s", compile_id(),
 850                  is_osr_compilation()    ? " compile_kind='osr'" :
 851                  "");
 852     }
 853     root()->dump(9999);
 854     if (xtty != NULL) {
 855       xtty->tail("ideal");
 856     }
 857   }
 858 #endif
 859 
 860   NOT_PRODUCT( verify_barriers(); )
 861 
 862   // Dump compilation data to replay it.
 863   if (method()->has_option("DumpReplay")) {
 864     env()->dump_replay_data(_compile_id);
 865   }
 866   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 867     env()->dump_inline_data(_compile_id);
 868   }
 869 
 870   // Now that we know the size of all the monitors we can add a fixed slot
 871   // for the original deopt pc.
 872 
 873   _orig_pc_slot =  fixed_slots();
 874   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 875   set_fixed_slots(next_slot);
 876 
 877   // Compute when to use implicit null checks. Used by matching trap based
 878   // nodes and NullCheck optimization.
 879   set_allowed_deopt_reasons();
 880 
 881   // Now generate code
 882   Code_Gen();
 883   if (failing())  return;
 884 
 885   // Check if we want to skip execution of all compiled code.
 886   {
 887 #ifndef PRODUCT
 888     if (OptoNoExecute) {
 889       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 890       return;
 891     }
 892     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 893 #endif
 894 
 895     if (is_osr_compilation()) {
 896       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 897       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 898     } else {
 899       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 900       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 901     }
 902 
 903     env()->register_method(_method, _entry_bci,
 904                            &_code_offsets,
 905                            _orig_pc_slot_offset_in_bytes,
 906                            code_buffer(),
 907                            frame_size_in_words(), _oop_map_set,
 908                            &_handler_table, &_inc_table,
 909                            compiler,
 910                            env()->comp_level(),
 911                            has_unsafe_access(),
 912                            SharedRuntime::is_wide_vector(max_vector_size()),
 913                            rtm_state()
 914                            );
 915 
 916     if (log() != NULL) // Print code cache state into compiler log
 917       log()->code_cache_state();
 918   }
 919 }
 920 
 921 //------------------------------Compile----------------------------------------
 922 // Compile a runtime stub
 923 Compile::Compile( ciEnv* ci_env,
 924                   TypeFunc_generator generator,
 925                   address stub_function,
 926                   const char *stub_name,
 927                   int is_fancy_jump,
 928                   bool pass_tls,
 929                   bool save_arg_registers,
 930                   bool return_pc )
 931   : Phase(Compiler),
 932     _env(ci_env),
 933     _log(ci_env->log()),
 934     _compile_id(0),
 935     _save_argument_registers(save_arg_registers),
 936     _method(NULL),
 937     _stub_name(stub_name),
 938     _stub_function(stub_function),
 939     _stub_entry_point(NULL),
 940     _entry_bci(InvocationEntryBci),
 941     _initial_gvn(NULL),
 942     _for_igvn(NULL),
 943     _warm_calls(NULL),
 944     _orig_pc_slot(0),
 945     _orig_pc_slot_offset_in_bytes(0),
 946     _subsume_loads(true),
 947     _do_escape_analysis(false),
 948     _eliminate_boxing(false),
 949     _failure_reason(NULL),
 950     _code_buffer("Compile::Fill_buffer"),
 951     _has_method_handle_invokes(false),
 952     _mach_constant_base_node(NULL),
 953     _node_bundling_limit(0),
 954     _node_bundling_base(NULL),
 955     _java_calls(0),
 956     _inner_loops(0),
 957 #ifndef PRODUCT
 958     _trace_opto_output(TraceOptoOutput),
 959     _in_dump_cnt(0),
 960     _printer(NULL),
 961 #endif
 962     _dead_node_list(comp_arena()),
 963     _dead_node_count(0),
 964     _congraph(NULL),
 965     _replay_inline_data(NULL),
 966     _number_of_mh_late_inlines(0),
 967     _inlining_progress(false),
 968     _inlining_incrementally(false),
 969     _print_inlining_list(NULL),
 970     _print_inlining_idx(0),
 971     _preserve_jvm_state(0),
 972     _allowed_reasons(0) {
 973   C = this;
 974 
 975 #ifndef PRODUCT
 976   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 977   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 978   set_print_assembly(PrintFrameConverterAssembly);
 979   set_parsed_irreducible_loop(false);
 980 #endif
 981   CompileWrapper cw(this);
 982   Init(/*AliasLevel=*/ 0);
 983   init_tf((*generator)());
 984 
 985   {
 986     // The following is a dummy for the sake of GraphKit::gen_stub
 987     Unique_Node_List for_igvn(comp_arena());
 988     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 989     PhaseGVN gvn(Thread::current()->resource_area(),255);
 990     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 991     gvn.transform_no_reclaim(top());
 992 
 993     GraphKit kit;
 994     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 995   }
 996 
 997   NOT_PRODUCT( verify_graph_edges(); )
 998   Code_Gen();
 999   if (failing())  return;
1000 
1001 
1002   // Entry point will be accessed using compile->stub_entry_point();
1003   if (code_buffer() == NULL) {
1004     Matcher::soft_match_failure();
1005   } else {
1006     if (PrintAssembly && (WizardMode || Verbose))
1007       tty->print_cr("### Stub::%s", stub_name);
1008 
1009     if (!failing()) {
1010       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1011 
1012       // Make the NMethod
1013       // For now we mark the frame as never safe for profile stackwalking
1014       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1015                                                       code_buffer(),
1016                                                       CodeOffsets::frame_never_safe,
1017                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1018                                                       frame_size_in_words(),
1019                                                       _oop_map_set,
1020                                                       save_arg_registers);
1021       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1022 
1023       _stub_entry_point = rs->entry_point();
1024     }
1025   }
1026 }
1027 
1028 //------------------------------Init-------------------------------------------
1029 // Prepare for a single compilation
1030 void Compile::Init(int aliaslevel) {
1031   _unique  = 0;
1032   _regalloc = NULL;
1033 
1034   _tf      = NULL;  // filled in later
1035   _top     = NULL;  // cached later
1036   _matcher = NULL;  // filled in later
1037   _cfg     = NULL;  // filled in later
1038 
1039   set_24_bit_selection_and_mode(Use24BitFP, false);
1040 
1041   _node_note_array = NULL;
1042   _default_node_notes = NULL;
1043 
1044   _immutable_memory = NULL; // filled in at first inquiry
1045 
1046   // Globally visible Nodes
1047   // First set TOP to NULL to give safe behavior during creation of RootNode
1048   set_cached_top_node(NULL);
1049   set_root(new (this) RootNode());
1050   // Now that you have a Root to point to, create the real TOP
1051   set_cached_top_node( new (this) ConNode(Type::TOP) );
1052   set_recent_alloc(NULL, NULL);
1053 
1054   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1055   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1056   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1057   env()->set_dependencies(new Dependencies(env()));
1058 
1059   _fixed_slots = 0;
1060   set_has_split_ifs(false);
1061   set_has_loops(has_method() && method()->has_loops()); // first approximation
1062   set_has_stringbuilder(false);
1063   set_has_boxed_value(false);
1064   _trap_can_recompile = false;  // no traps emitted yet
1065   _major_progress = true; // start out assuming good things will happen
1066   set_has_unsafe_access(false);
1067   set_max_vector_size(0);
1068   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1069   set_decompile_count(0);
1070 
1071   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1072   set_num_loop_opts(LoopOptsCount);
1073   set_do_inlining(Inline);
1074   set_max_inline_size(MaxInlineSize);
1075   set_freq_inline_size(FreqInlineSize);
1076   set_do_scheduling(OptoScheduling);
1077   set_do_count_invocations(false);
1078   set_do_method_data_update(false);
1079   set_rtm_state(NoRTM); // No RTM lock eliding by default
1080 #if INCLUDE_RTM_OPT
1081   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1082     int rtm_state = method()->method_data()->rtm_state();
1083     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1084       // Don't generate RTM lock eliding code.
1085       set_rtm_state(NoRTM);
1086     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1087       // Generate RTM lock eliding code without abort ratio calculation code.
1088       set_rtm_state(UseRTM);
1089     } else if (UseRTMDeopt) {
1090       // Generate RTM lock eliding code and include abort ratio calculation
1091       // code if UseRTMDeopt is on.
1092       set_rtm_state(ProfileRTM);
1093     }
1094   }
1095 #endif
1096   if (debug_info()->recording_non_safepoints()) {
1097     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1098                         (comp_arena(), 8, 0, NULL));
1099     set_default_node_notes(Node_Notes::make(this));
1100   }
1101 
1102   // // -- Initialize types before each compile --
1103   // // Update cached type information
1104   // if( _method && _method->constants() )
1105   //   Type::update_loaded_types(_method, _method->constants());
1106 
1107   // Init alias_type map.
1108   if (!_do_escape_analysis && aliaslevel == 3)
1109     aliaslevel = 2;  // No unique types without escape analysis
1110   _AliasLevel = aliaslevel;
1111   const int grow_ats = 16;
1112   _max_alias_types = grow_ats;
1113   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1114   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1115   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1116   {
1117     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1118   }
1119   // Initialize the first few types.
1120   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1121   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1122   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1123   _num_alias_types = AliasIdxRaw+1;
1124   // Zero out the alias type cache.
1125   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1126   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1127   probe_alias_cache(NULL)->_index = AliasIdxTop;
1128 
1129   _intrinsics = NULL;
1130   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1131   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1132   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1133   register_library_intrinsics();
1134 }
1135 
1136 //---------------------------init_start----------------------------------------
1137 // Install the StartNode on this compile object.
1138 void Compile::init_start(StartNode* s) {
1139   if (failing())
1140     return; // already failing
1141   assert(s == start(), "");
1142 }
1143 
1144 StartNode* Compile::start() const {
1145   assert(!failing(), "");
1146   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1147     Node* start = root()->fast_out(i);
1148     if( start->is_Start() )
1149       return start->as_Start();
1150   }
1151   ShouldNotReachHere();
1152   return NULL;
1153 }
1154 
1155 //-------------------------------immutable_memory-------------------------------------
1156 // Access immutable memory
1157 Node* Compile::immutable_memory() {
1158   if (_immutable_memory != NULL) {
1159     return _immutable_memory;
1160   }
1161   StartNode* s = start();
1162   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1163     Node *p = s->fast_out(i);
1164     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1165       _immutable_memory = p;
1166       return _immutable_memory;
1167     }
1168   }
1169   ShouldNotReachHere();
1170   return NULL;
1171 }
1172 
1173 //----------------------set_cached_top_node------------------------------------
1174 // Install the cached top node, and make sure Node::is_top works correctly.
1175 void Compile::set_cached_top_node(Node* tn) {
1176   if (tn != NULL)  verify_top(tn);
1177   Node* old_top = _top;
1178   _top = tn;
1179   // Calling Node::setup_is_top allows the nodes the chance to adjust
1180   // their _out arrays.
1181   if (_top != NULL)     _top->setup_is_top();
1182   if (old_top != NULL)  old_top->setup_is_top();
1183   assert(_top == NULL || top()->is_top(), "");
1184 }
1185 
1186 #ifdef ASSERT
1187 uint Compile::count_live_nodes_by_graph_walk() {
1188   Unique_Node_List useful(comp_arena());
1189   // Get useful node list by walking the graph.
1190   identify_useful_nodes(useful);
1191   return useful.size();
1192 }
1193 
1194 void Compile::print_missing_nodes() {
1195 
1196   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1197   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1198     return;
1199   }
1200 
1201   // This is an expensive function. It is executed only when the user
1202   // specifies VerifyIdealNodeCount option or otherwise knows the
1203   // additional work that needs to be done to identify reachable nodes
1204   // by walking the flow graph and find the missing ones using
1205   // _dead_node_list.
1206 
1207   Unique_Node_List useful(comp_arena());
1208   // Get useful node list by walking the graph.
1209   identify_useful_nodes(useful);
1210 
1211   uint l_nodes = C->live_nodes();
1212   uint l_nodes_by_walk = useful.size();
1213 
1214   if (l_nodes != l_nodes_by_walk) {
1215     if (_log != NULL) {
1216       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1217       _log->stamp();
1218       _log->end_head();
1219     }
1220     VectorSet& useful_member_set = useful.member_set();
1221     int last_idx = l_nodes_by_walk;
1222     for (int i = 0; i < last_idx; i++) {
1223       if (useful_member_set.test(i)) {
1224         if (_dead_node_list.test(i)) {
1225           if (_log != NULL) {
1226             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1227           }
1228           if (PrintIdealNodeCount) {
1229             // Print the log message to tty
1230               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1231               useful.at(i)->dump();
1232           }
1233         }
1234       }
1235       else if (! _dead_node_list.test(i)) {
1236         if (_log != NULL) {
1237           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1238         }
1239         if (PrintIdealNodeCount) {
1240           // Print the log message to tty
1241           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1242         }
1243       }
1244     }
1245     if (_log != NULL) {
1246       _log->tail("mismatched_nodes");
1247     }
1248   }
1249 }
1250 #endif
1251 
1252 #ifndef PRODUCT
1253 void Compile::verify_top(Node* tn) const {
1254   if (tn != NULL) {
1255     assert(tn->is_Con(), "top node must be a constant");
1256     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1257     assert(tn->in(0) != NULL, "must have live top node");
1258   }
1259 }
1260 #endif
1261 
1262 
1263 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1264 
1265 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1266   guarantee(arr != NULL, "");
1267   int num_blocks = arr->length();
1268   if (grow_by < num_blocks)  grow_by = num_blocks;
1269   int num_notes = grow_by * _node_notes_block_size;
1270   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1271   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1272   while (num_notes > 0) {
1273     arr->append(notes);
1274     notes     += _node_notes_block_size;
1275     num_notes -= _node_notes_block_size;
1276   }
1277   assert(num_notes == 0, "exact multiple, please");
1278 }
1279 
1280 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1281   if (source == NULL || dest == NULL)  return false;
1282 
1283   if (dest->is_Con())
1284     return false;               // Do not push debug info onto constants.
1285 
1286 #ifdef ASSERT
1287   // Leave a bread crumb trail pointing to the original node:
1288   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1289     dest->set_debug_orig(source);
1290   }
1291 #endif
1292 
1293   if (node_note_array() == NULL)
1294     return false;               // Not collecting any notes now.
1295 
1296   // This is a copy onto a pre-existing node, which may already have notes.
1297   // If both nodes have notes, do not overwrite any pre-existing notes.
1298   Node_Notes* source_notes = node_notes_at(source->_idx);
1299   if (source_notes == NULL || source_notes->is_clear())  return false;
1300   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1301   if (dest_notes == NULL || dest_notes->is_clear()) {
1302     return set_node_notes_at(dest->_idx, source_notes);
1303   }
1304 
1305   Node_Notes merged_notes = (*source_notes);
1306   // The order of operations here ensures that dest notes will win...
1307   merged_notes.update_from(dest_notes);
1308   return set_node_notes_at(dest->_idx, &merged_notes);
1309 }
1310 
1311 
1312 //--------------------------allow_range_check_smearing-------------------------
1313 // Gating condition for coalescing similar range checks.
1314 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1315 // single covering check that is at least as strong as any of them.
1316 // If the optimization succeeds, the simplified (strengthened) range check
1317 // will always succeed.  If it fails, we will deopt, and then give up
1318 // on the optimization.
1319 bool Compile::allow_range_check_smearing() const {
1320   // If this method has already thrown a range-check,
1321   // assume it was because we already tried range smearing
1322   // and it failed.
1323   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1324   return !already_trapped;
1325 }
1326 
1327 
1328 //------------------------------flatten_alias_type-----------------------------
1329 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1330   int offset = tj->offset();
1331   TypePtr::PTR ptr = tj->ptr();
1332 
1333   // Known instance (scalarizable allocation) alias only with itself.
1334   bool is_known_inst = tj->isa_oopptr() != NULL &&
1335                        tj->is_oopptr()->is_known_instance();
1336 
1337   // Process weird unsafe references.
1338   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1339     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1340     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1341     tj = TypeOopPtr::BOTTOM;
1342     ptr = tj->ptr();
1343     offset = tj->offset();
1344   }
1345 
1346   // Array pointers need some flattening
1347   const TypeAryPtr *ta = tj->isa_aryptr();
1348   if (ta && ta->is_stable()) {
1349     // Erase stability property for alias analysis.
1350     tj = ta = ta->cast_to_stable(false);
1351   }
1352   if( ta && is_known_inst ) {
1353     if ( offset != Type::OffsetBot &&
1354          offset > arrayOopDesc::length_offset_in_bytes() ) {
1355       offset = Type::OffsetBot; // Flatten constant access into array body only
1356       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1357     }
1358   } else if( ta && _AliasLevel >= 2 ) {
1359     // For arrays indexed by constant indices, we flatten the alias
1360     // space to include all of the array body.  Only the header, klass
1361     // and array length can be accessed un-aliased.
1362     if( offset != Type::OffsetBot ) {
1363       if( ta->const_oop() ) { // MethodData* or Method*
1364         offset = Type::OffsetBot;   // Flatten constant access into array body
1365         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1366       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1367         // range is OK as-is.
1368         tj = ta = TypeAryPtr::RANGE;
1369       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1370         tj = TypeInstPtr::KLASS; // all klass loads look alike
1371         ta = TypeAryPtr::RANGE; // generic ignored junk
1372         ptr = TypePtr::BotPTR;
1373       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1374         tj = TypeInstPtr::MARK;
1375         ta = TypeAryPtr::RANGE; // generic ignored junk
1376         ptr = TypePtr::BotPTR;
1377       } else {                  // Random constant offset into array body
1378         offset = Type::OffsetBot;   // Flatten constant access into array body
1379         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1380       }
1381     }
1382     // Arrays of fixed size alias with arrays of unknown size.
1383     if (ta->size() != TypeInt::POS) {
1384       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1385       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1386     }
1387     // Arrays of known objects become arrays of unknown objects.
1388     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1389       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1390       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1391     }
1392     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1393       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1394       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1395     }
1396     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1397     // cannot be distinguished by bytecode alone.
1398     if (ta->elem() == TypeInt::BOOL) {
1399       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1400       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1401       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1402     }
1403     // During the 2nd round of IterGVN, NotNull castings are removed.
1404     // Make sure the Bottom and NotNull variants alias the same.
1405     // Also, make sure exact and non-exact variants alias the same.
1406     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1407       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1408     }
1409   }
1410 
1411   // Oop pointers need some flattening
1412   const TypeInstPtr *to = tj->isa_instptr();
1413   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1414     ciInstanceKlass *k = to->klass()->as_instance_klass();
1415     if( ptr == TypePtr::Constant ) {
1416       if (to->klass() != ciEnv::current()->Class_klass() ||
1417           offset < k->size_helper() * wordSize) {
1418         // No constant oop pointers (such as Strings); they alias with
1419         // unknown strings.
1420         assert(!is_known_inst, "not scalarizable allocation");
1421         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1422       }
1423     } else if( is_known_inst ) {
1424       tj = to; // Keep NotNull and klass_is_exact for instance type
1425     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1426       // During the 2nd round of IterGVN, NotNull castings are removed.
1427       // Make sure the Bottom and NotNull variants alias the same.
1428       // Also, make sure exact and non-exact variants alias the same.
1429       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1430     }
1431     if (to->speculative() != NULL) {
1432       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1433     }
1434     // Canonicalize the holder of this field
1435     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1436       // First handle header references such as a LoadKlassNode, even if the
1437       // object's klass is unloaded at compile time (4965979).
1438       if (!is_known_inst) { // Do it only for non-instance types
1439         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1440       }
1441     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1442       // Static fields are in the space above the normal instance
1443       // fields in the java.lang.Class instance.
1444       if (to->klass() != ciEnv::current()->Class_klass()) {
1445         to = NULL;
1446         tj = TypeOopPtr::BOTTOM;
1447         offset = tj->offset();
1448       }
1449     } else {
1450       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1451       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1452         if( is_known_inst ) {
1453           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1454         } else {
1455           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1456         }
1457       }
1458     }
1459   }
1460 
1461   // Klass pointers to object array klasses need some flattening
1462   const TypeKlassPtr *tk = tj->isa_klassptr();
1463   if( tk ) {
1464     // If we are referencing a field within a Klass, we need
1465     // to assume the worst case of an Object.  Both exact and
1466     // inexact types must flatten to the same alias class so
1467     // use NotNull as the PTR.
1468     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1469 
1470       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1471                                    TypeKlassPtr::OBJECT->klass(),
1472                                    offset);
1473     }
1474 
1475     ciKlass* klass = tk->klass();
1476     if( klass->is_obj_array_klass() ) {
1477       ciKlass* k = TypeAryPtr::OOPS->klass();
1478       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1479         k = TypeInstPtr::BOTTOM->klass();
1480       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1481     }
1482 
1483     // Check for precise loads from the primary supertype array and force them
1484     // to the supertype cache alias index.  Check for generic array loads from
1485     // the primary supertype array and also force them to the supertype cache
1486     // alias index.  Since the same load can reach both, we need to merge
1487     // these 2 disparate memories into the same alias class.  Since the
1488     // primary supertype array is read-only, there's no chance of confusion
1489     // where we bypass an array load and an array store.
1490     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1491     if (offset == Type::OffsetBot ||
1492         (offset >= primary_supers_offset &&
1493          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1494         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1495       offset = in_bytes(Klass::secondary_super_cache_offset());
1496       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1497     }
1498   }
1499 
1500   // Flatten all Raw pointers together.
1501   if (tj->base() == Type::RawPtr)
1502     tj = TypeRawPtr::BOTTOM;
1503 
1504   if (tj->base() == Type::AnyPtr)
1505     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1506 
1507   // Flatten all to bottom for now
1508   switch( _AliasLevel ) {
1509   case 0:
1510     tj = TypePtr::BOTTOM;
1511     break;
1512   case 1:                       // Flatten to: oop, static, field or array
1513     switch (tj->base()) {
1514     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1515     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1516     case Type::AryPtr:   // do not distinguish arrays at all
1517     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1518     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1519     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1520     default: ShouldNotReachHere();
1521     }
1522     break;
1523   case 2:                       // No collapsing at level 2; keep all splits
1524   case 3:                       // No collapsing at level 3; keep all splits
1525     break;
1526   default:
1527     Unimplemented();
1528   }
1529 
1530   offset = tj->offset();
1531   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1532 
1533   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1534           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1535           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1536           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1537           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1538           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1539           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1540           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1541   assert( tj->ptr() != TypePtr::TopPTR &&
1542           tj->ptr() != TypePtr::AnyNull &&
1543           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1544 //    assert( tj->ptr() != TypePtr::Constant ||
1545 //            tj->base() == Type::RawPtr ||
1546 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1547 
1548   return tj;
1549 }
1550 
1551 void Compile::AliasType::Init(int i, const TypePtr* at) {
1552   _index = i;
1553   _adr_type = at;
1554   _field = NULL;
1555   _element = NULL;
1556   _is_rewritable = true; // default
1557   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1558   if (atoop != NULL && atoop->is_known_instance()) {
1559     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1560     _general_index = Compile::current()->get_alias_index(gt);
1561   } else {
1562     _general_index = 0;
1563   }
1564 }
1565 
1566 //---------------------------------print_on------------------------------------
1567 #ifndef PRODUCT
1568 void Compile::AliasType::print_on(outputStream* st) {
1569   if (index() < 10)
1570         st->print("@ <%d> ", index());
1571   else  st->print("@ <%d>",  index());
1572   st->print(is_rewritable() ? "   " : " RO");
1573   int offset = adr_type()->offset();
1574   if (offset == Type::OffsetBot)
1575         st->print(" +any");
1576   else  st->print(" +%-3d", offset);
1577   st->print(" in ");
1578   adr_type()->dump_on(st);
1579   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1580   if (field() != NULL && tjp) {
1581     if (tjp->klass()  != field()->holder() ||
1582         tjp->offset() != field()->offset_in_bytes()) {
1583       st->print(" != ");
1584       field()->print();
1585       st->print(" ***");
1586     }
1587   }
1588 }
1589 
1590 void print_alias_types() {
1591   Compile* C = Compile::current();
1592   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1593   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1594     C->alias_type(idx)->print_on(tty);
1595     tty->cr();
1596   }
1597 }
1598 #endif
1599 
1600 
1601 //----------------------------probe_alias_cache--------------------------------
1602 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1603   intptr_t key = (intptr_t) adr_type;
1604   key ^= key >> logAliasCacheSize;
1605   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1606 }
1607 
1608 
1609 //-----------------------------grow_alias_types--------------------------------
1610 void Compile::grow_alias_types() {
1611   const int old_ats  = _max_alias_types; // how many before?
1612   const int new_ats  = old_ats;          // how many more?
1613   const int grow_ats = old_ats+new_ats;  // how many now?
1614   _max_alias_types = grow_ats;
1615   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1616   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1617   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1618   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1619 }
1620 
1621 
1622 //--------------------------------find_alias_type------------------------------
1623 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1624   if (_AliasLevel == 0)
1625     return alias_type(AliasIdxBot);
1626 
1627   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1628   if (ace->_adr_type == adr_type) {
1629     return alias_type(ace->_index);
1630   }
1631 
1632   // Handle special cases.
1633   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1634   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1635 
1636   // Do it the slow way.
1637   const TypePtr* flat = flatten_alias_type(adr_type);
1638 
1639 #ifdef ASSERT
1640   assert(flat == flatten_alias_type(flat), "idempotent");
1641   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1642   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1643     const TypeOopPtr* foop = flat->is_oopptr();
1644     // Scalarizable allocations have exact klass always.
1645     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1646     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1647     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1648   }
1649   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1650 #endif
1651 
1652   int idx = AliasIdxTop;
1653   for (int i = 0; i < num_alias_types(); i++) {
1654     if (alias_type(i)->adr_type() == flat) {
1655       idx = i;
1656       break;
1657     }
1658   }
1659 
1660   if (idx == AliasIdxTop) {
1661     if (no_create)  return NULL;
1662     // Grow the array if necessary.
1663     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1664     // Add a new alias type.
1665     idx = _num_alias_types++;
1666     _alias_types[idx]->Init(idx, flat);
1667     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1668     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1669     if (flat->isa_instptr()) {
1670       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1671           && flat->is_instptr()->klass() == env()->Class_klass())
1672         alias_type(idx)->set_rewritable(false);
1673     }
1674     if (flat->isa_aryptr()) {
1675 #ifdef ASSERT
1676       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1677       // (T_BYTE has the weakest alignment and size restrictions...)
1678       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1679 #endif
1680       if (flat->offset() == TypePtr::OffsetBot) {
1681         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1682       }
1683     }
1684     if (flat->isa_klassptr()) {
1685       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1686         alias_type(idx)->set_rewritable(false);
1687       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1688         alias_type(idx)->set_rewritable(false);
1689       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1690         alias_type(idx)->set_rewritable(false);
1691       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1692         alias_type(idx)->set_rewritable(false);
1693     }
1694     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1695     // but the base pointer type is not distinctive enough to identify
1696     // references into JavaThread.)
1697 
1698     // Check for final fields.
1699     const TypeInstPtr* tinst = flat->isa_instptr();
1700     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1701       ciField* field;
1702       if (tinst->const_oop() != NULL &&
1703           tinst->klass() == ciEnv::current()->Class_klass() &&
1704           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1705         // static field
1706         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1707         field = k->get_field_by_offset(tinst->offset(), true);
1708       } else {
1709         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1710         field = k->get_field_by_offset(tinst->offset(), false);
1711       }
1712       assert(field == NULL ||
1713              original_field == NULL ||
1714              (field->holder() == original_field->holder() &&
1715               field->offset() == original_field->offset() &&
1716               field->is_static() == original_field->is_static()), "wrong field?");
1717       // Set field() and is_rewritable() attributes.
1718       if (field != NULL)  alias_type(idx)->set_field(field);
1719     }
1720   }
1721 
1722   // Fill the cache for next time.
1723   ace->_adr_type = adr_type;
1724   ace->_index    = idx;
1725   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1726 
1727   // Might as well try to fill the cache for the flattened version, too.
1728   AliasCacheEntry* face = probe_alias_cache(flat);
1729   if (face->_adr_type == NULL) {
1730     face->_adr_type = flat;
1731     face->_index    = idx;
1732     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1733   }
1734 
1735   return alias_type(idx);
1736 }
1737 
1738 
1739 Compile::AliasType* Compile::alias_type(ciField* field) {
1740   const TypeOopPtr* t;
1741   if (field->is_static())
1742     t = TypeInstPtr::make(field->holder()->java_mirror());
1743   else
1744     t = TypeOopPtr::make_from_klass_raw(field->holder());
1745   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1746   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1747   return atp;
1748 }
1749 
1750 
1751 //------------------------------have_alias_type--------------------------------
1752 bool Compile::have_alias_type(const TypePtr* adr_type) {
1753   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1754   if (ace->_adr_type == adr_type) {
1755     return true;
1756   }
1757 
1758   // Handle special cases.
1759   if (adr_type == NULL)             return true;
1760   if (adr_type == TypePtr::BOTTOM)  return true;
1761 
1762   return find_alias_type(adr_type, true, NULL) != NULL;
1763 }
1764 
1765 //-----------------------------must_alias--------------------------------------
1766 // True if all values of the given address type are in the given alias category.
1767 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1768   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1769   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1770   if (alias_idx == AliasIdxTop)         return false; // the empty category
1771   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1772 
1773   // the only remaining possible overlap is identity
1774   int adr_idx = get_alias_index(adr_type);
1775   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1776   assert(adr_idx == alias_idx ||
1777          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1778           && adr_type                       != TypeOopPtr::BOTTOM),
1779          "should not be testing for overlap with an unsafe pointer");
1780   return adr_idx == alias_idx;
1781 }
1782 
1783 //------------------------------can_alias--------------------------------------
1784 // True if any values of the given address type are in the given alias category.
1785 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1786   if (alias_idx == AliasIdxTop)         return false; // the empty category
1787   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1788   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1789   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1790 
1791   // the only remaining possible overlap is identity
1792   int adr_idx = get_alias_index(adr_type);
1793   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1794   return adr_idx == alias_idx;
1795 }
1796 
1797 
1798 
1799 //---------------------------pop_warm_call-------------------------------------
1800 WarmCallInfo* Compile::pop_warm_call() {
1801   WarmCallInfo* wci = _warm_calls;
1802   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1803   return wci;
1804 }
1805 
1806 //----------------------------Inline_Warm--------------------------------------
1807 int Compile::Inline_Warm() {
1808   // If there is room, try to inline some more warm call sites.
1809   // %%% Do a graph index compaction pass when we think we're out of space?
1810   if (!InlineWarmCalls)  return 0;
1811 
1812   int calls_made_hot = 0;
1813   int room_to_grow   = NodeCountInliningCutoff - unique();
1814   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1815   int amount_grown   = 0;
1816   WarmCallInfo* call;
1817   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1818     int est_size = (int)call->size();
1819     if (est_size > (room_to_grow - amount_grown)) {
1820       // This one won't fit anyway.  Get rid of it.
1821       call->make_cold();
1822       continue;
1823     }
1824     call->make_hot();
1825     calls_made_hot++;
1826     amount_grown   += est_size;
1827     amount_to_grow -= est_size;
1828   }
1829 
1830   if (calls_made_hot > 0)  set_major_progress();
1831   return calls_made_hot;
1832 }
1833 
1834 
1835 //----------------------------Finish_Warm--------------------------------------
1836 void Compile::Finish_Warm() {
1837   if (!InlineWarmCalls)  return;
1838   if (failing())  return;
1839   if (warm_calls() == NULL)  return;
1840 
1841   // Clean up loose ends, if we are out of space for inlining.
1842   WarmCallInfo* call;
1843   while ((call = pop_warm_call()) != NULL) {
1844     call->make_cold();
1845   }
1846 }
1847 
1848 //---------------------cleanup_loop_predicates-----------------------
1849 // Remove the opaque nodes that protect the predicates so that all unused
1850 // checks and uncommon_traps will be eliminated from the ideal graph
1851 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1852   if (predicate_count()==0) return;
1853   for (int i = predicate_count(); i > 0; i--) {
1854     Node * n = predicate_opaque1_node(i-1);
1855     assert(n->Opcode() == Op_Opaque1, "must be");
1856     igvn.replace_node(n, n->in(1));
1857   }
1858   assert(predicate_count()==0, "should be clean!");
1859 }
1860 
1861 // StringOpts and late inlining of string methods
1862 void Compile::inline_string_calls(bool parse_time) {
1863   {
1864     // remove useless nodes to make the usage analysis simpler
1865     ResourceMark rm;
1866     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1867   }
1868 
1869   {
1870     ResourceMark rm;
1871     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1872     PhaseStringOpts pso(initial_gvn(), for_igvn());
1873     print_method(PHASE_AFTER_STRINGOPTS, 3);
1874   }
1875 
1876   // now inline anything that we skipped the first time around
1877   if (!parse_time) {
1878     _late_inlines_pos = _late_inlines.length();
1879   }
1880 
1881   while (_string_late_inlines.length() > 0) {
1882     CallGenerator* cg = _string_late_inlines.pop();
1883     cg->do_late_inline();
1884     if (failing())  return;
1885   }
1886   _string_late_inlines.trunc_to(0);
1887 }
1888 
1889 // Late inlining of boxing methods
1890 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1891   if (_boxing_late_inlines.length() > 0) {
1892     assert(has_boxed_value(), "inconsistent");
1893 
1894     PhaseGVN* gvn = initial_gvn();
1895     set_inlining_incrementally(true);
1896 
1897     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1898     for_igvn()->clear();
1899     gvn->replace_with(&igvn);
1900 
1901     while (_boxing_late_inlines.length() > 0) {
1902       CallGenerator* cg = _boxing_late_inlines.pop();
1903       cg->do_late_inline();
1904       if (failing())  return;
1905     }
1906     _boxing_late_inlines.trunc_to(0);
1907 
1908     {
1909       ResourceMark rm;
1910       PhaseRemoveUseless pru(gvn, for_igvn());
1911     }
1912 
1913     igvn = PhaseIterGVN(gvn);
1914     igvn.optimize();
1915 
1916     set_inlining_progress(false);
1917     set_inlining_incrementally(false);
1918   }
1919 }
1920 
1921 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1922   assert(IncrementalInline, "incremental inlining should be on");
1923   PhaseGVN* gvn = initial_gvn();
1924 
1925   set_inlining_progress(false);
1926   for_igvn()->clear();
1927   gvn->replace_with(&igvn);
1928 
1929   int i = 0;
1930 
1931   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1932     CallGenerator* cg = _late_inlines.at(i);
1933     _late_inlines_pos = i+1;
1934     cg->do_late_inline();
1935     if (failing())  return;
1936   }
1937   int j = 0;
1938   for (; i < _late_inlines.length(); i++, j++) {
1939     _late_inlines.at_put(j, _late_inlines.at(i));
1940   }
1941   _late_inlines.trunc_to(j);
1942 
1943   {
1944     ResourceMark rm;
1945     PhaseRemoveUseless pru(gvn, for_igvn());
1946   }
1947 
1948   igvn = PhaseIterGVN(gvn);
1949 }
1950 
1951 // Perform incremental inlining until bound on number of live nodes is reached
1952 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1953   PhaseGVN* gvn = initial_gvn();
1954 
1955   set_inlining_incrementally(true);
1956   set_inlining_progress(true);
1957   uint low_live_nodes = 0;
1958 
1959   while(inlining_progress() && _late_inlines.length() > 0) {
1960 
1961     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1962       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1963         // PhaseIdealLoop is expensive so we only try it once we are
1964         // out of loop and we only try it again if the previous helped
1965         // got the number of nodes down significantly
1966         PhaseIdealLoop ideal_loop( igvn, false, true );
1967         if (failing())  return;
1968         low_live_nodes = live_nodes();
1969         _major_progress = true;
1970       }
1971 
1972       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1973         break;
1974       }
1975     }
1976 
1977     inline_incrementally_one(igvn);
1978 
1979     if (failing())  return;
1980 
1981     igvn.optimize();
1982 
1983     if (failing())  return;
1984   }
1985 
1986   assert( igvn._worklist.size() == 0, "should be done with igvn" );
1987 
1988   if (_string_late_inlines.length() > 0) {
1989     assert(has_stringbuilder(), "inconsistent");
1990     for_igvn()->clear();
1991     initial_gvn()->replace_with(&igvn);
1992 
1993     inline_string_calls(false);
1994 
1995     if (failing())  return;
1996 
1997     {
1998       ResourceMark rm;
1999       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2000     }
2001 
2002     igvn = PhaseIterGVN(gvn);
2003 
2004     igvn.optimize();
2005   }
2006 
2007   set_inlining_incrementally(false);
2008 }
2009 
2010 
2011 //------------------------------Optimize---------------------------------------
2012 // Given a graph, optimize it.
2013 void Compile::Optimize() {
2014   TracePhase t1("optimizer", &_t_optimizer, true);
2015 
2016 #ifndef PRODUCT
2017   if (env()->break_at_compile()) {
2018     BREAKPOINT;
2019   }
2020 
2021 #endif
2022 
2023   ResourceMark rm;
2024   int          loop_opts_cnt;
2025 
2026   NOT_PRODUCT( verify_graph_edges(); )
2027 
2028   print_method(PHASE_AFTER_PARSING);
2029 
2030  {
2031   // Iterative Global Value Numbering, including ideal transforms
2032   // Initialize IterGVN with types and values from parse-time GVN
2033   PhaseIterGVN igvn(initial_gvn());
2034   {
2035     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
2036     igvn.optimize();
2037   }
2038 
2039   print_method(PHASE_ITER_GVN1, 2);
2040 
2041   if (failing())  return;
2042 
2043   {
2044     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2045     inline_incrementally(igvn);
2046   }
2047 
2048   print_method(PHASE_INCREMENTAL_INLINE, 2);
2049 
2050   if (failing())  return;
2051 
2052   if (eliminate_boxing()) {
2053     NOT_PRODUCT( TracePhase t2("incrementalInline", &_t_incrInline, TimeCompiler); )
2054     // Inline valueOf() methods now.
2055     inline_boxing_calls(igvn);
2056 
2057     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2058 
2059     if (failing())  return;
2060   }
2061 
2062   // Remove the speculative part of types and clean up the graph from
2063   // the extra CastPP nodes whose only purpose is to carry them. Do
2064   // that early so that optimizations are not disrupted by the extra
2065   // CastPP nodes.
2066   remove_speculative_types(igvn);
2067 
2068   // No more new expensive nodes will be added to the list from here
2069   // so keep only the actual candidates for optimizations.
2070   cleanup_expensive_nodes(igvn);
2071 
2072   // Perform escape analysis
2073   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2074     if (has_loops()) {
2075       // Cleanup graph (remove dead nodes).
2076       TracePhase t2("idealLoop", &_t_idealLoop, true);
2077       PhaseIdealLoop ideal_loop( igvn, false, true );
2078       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2079       if (failing())  return;
2080     }
2081     ConnectionGraph::do_analysis(this, &igvn);
2082 
2083     if (failing())  return;
2084 
2085     // Optimize out fields loads from scalar replaceable allocations.
2086     igvn.optimize();
2087     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2088 
2089     if (failing())  return;
2090 
2091     if (congraph() != NULL && macro_count() > 0) {
2092       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
2093       PhaseMacroExpand mexp(igvn);
2094       mexp.eliminate_macro_nodes();
2095       igvn.set_delay_transform(false);
2096 
2097       igvn.optimize();
2098       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2099 
2100       if (failing())  return;
2101     }
2102   }
2103 
2104   // Loop transforms on the ideal graph.  Range Check Elimination,
2105   // peeling, unrolling, etc.
2106 
2107   // Set loop opts counter
2108   loop_opts_cnt = num_loop_opts();
2109   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2110     {
2111       TracePhase t2("idealLoop", &_t_idealLoop, true);
2112       PhaseIdealLoop ideal_loop( igvn, true );
2113       loop_opts_cnt--;
2114       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2115       if (failing())  return;
2116     }
2117     // Loop opts pass if partial peeling occurred in previous pass
2118     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2119       TracePhase t3("idealLoop", &_t_idealLoop, true);
2120       PhaseIdealLoop ideal_loop( igvn, false );
2121       loop_opts_cnt--;
2122       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2123       if (failing())  return;
2124     }
2125     // Loop opts pass for loop-unrolling before CCP
2126     if(major_progress() && (loop_opts_cnt > 0)) {
2127       TracePhase t4("idealLoop", &_t_idealLoop, true);
2128       PhaseIdealLoop ideal_loop( igvn, false );
2129       loop_opts_cnt--;
2130       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2131     }
2132     if (!failing()) {
2133       // Verify that last round of loop opts produced a valid graph
2134       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2135       PhaseIdealLoop::verify(igvn);
2136     }
2137   }
2138   if (failing())  return;
2139 
2140   // Conditional Constant Propagation;
2141   PhaseCCP ccp( &igvn );
2142   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2143   {
2144     TracePhase t2("ccp", &_t_ccp, true);
2145     ccp.do_transform();
2146   }
2147   print_method(PHASE_CPP1, 2);
2148 
2149   assert( true, "Break here to ccp.dump_old2new_map()");
2150 
2151   // Iterative Global Value Numbering, including ideal transforms
2152   {
2153     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
2154     igvn = ccp;
2155     igvn.optimize();
2156   }
2157 
2158   print_method(PHASE_ITER_GVN2, 2);
2159 
2160   if (failing())  return;
2161 
2162   // Loop transforms on the ideal graph.  Range Check Elimination,
2163   // peeling, unrolling, etc.
2164   if(loop_opts_cnt > 0) {
2165     debug_only( int cnt = 0; );
2166     while(major_progress() && (loop_opts_cnt > 0)) {
2167       TracePhase t2("idealLoop", &_t_idealLoop, true);
2168       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2169       PhaseIdealLoop ideal_loop( igvn, true);
2170       loop_opts_cnt--;
2171       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2172       if (failing())  return;
2173     }
2174   }
2175 
2176   {
2177     // Verify that all previous optimizations produced a valid graph
2178     // at least to this point, even if no loop optimizations were done.
2179     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
2180     PhaseIdealLoop::verify(igvn);
2181   }
2182 
2183   {
2184     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
2185     PhaseMacroExpand  mex(igvn);
2186     if (mex.expand_macro_nodes()) {
2187       assert(failing(), "must bail out w/ explicit message");
2188       return;
2189     }
2190   }
2191 
2192  } // (End scope of igvn; run destructor if necessary for asserts.)
2193 
2194   dump_inlining();
2195   // A method with only infinite loops has no edges entering loops from root
2196   {
2197     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
2198     if (final_graph_reshaping()) {
2199       assert(failing(), "must bail out w/ explicit message");
2200       return;
2201     }
2202   }
2203 
2204   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2205 }
2206 
2207 
2208 //------------------------------Code_Gen---------------------------------------
2209 // Given a graph, generate code for it
2210 void Compile::Code_Gen() {
2211   if (failing()) {
2212     return;
2213   }
2214 
2215   // Perform instruction selection.  You might think we could reclaim Matcher
2216   // memory PDQ, but actually the Matcher is used in generating spill code.
2217   // Internals of the Matcher (including some VectorSets) must remain live
2218   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2219   // set a bit in reclaimed memory.
2220 
2221   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2222   // nodes.  Mapping is only valid at the root of each matched subtree.
2223   NOT_PRODUCT( verify_graph_edges(); )
2224 
2225   Matcher matcher;
2226   _matcher = &matcher;
2227   {
2228     TracePhase t2("matcher", &_t_matcher, true);
2229     matcher.match();
2230   }
2231   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2232   // nodes.  Mapping is only valid at the root of each matched subtree.
2233   NOT_PRODUCT( verify_graph_edges(); )
2234 
2235   // If you have too many nodes, or if matching has failed, bail out
2236   check_node_count(0, "out of nodes matching instructions");
2237   if (failing()) {
2238     return;
2239   }
2240 
2241   // Build a proper-looking CFG
2242   PhaseCFG cfg(node_arena(), root(), matcher);
2243   _cfg = &cfg;
2244   {
2245     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
2246     bool success = cfg.do_global_code_motion();
2247     if (!success) {
2248       return;
2249     }
2250 
2251     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2252     NOT_PRODUCT( verify_graph_edges(); )
2253     debug_only( cfg.verify(); )
2254   }
2255 
2256   PhaseChaitin regalloc(unique(), cfg, matcher);
2257   _regalloc = &regalloc;
2258   {
2259     TracePhase t2("regalloc", &_t_registerAllocation, true);
2260     // Perform register allocation.  After Chaitin, use-def chains are
2261     // no longer accurate (at spill code) and so must be ignored.
2262     // Node->LRG->reg mappings are still accurate.
2263     _regalloc->Register_Allocate();
2264 
2265     // Bail out if the allocator builds too many nodes
2266     if (failing()) {
2267       return;
2268     }
2269   }
2270 
2271   // Prior to register allocation we kept empty basic blocks in case the
2272   // the allocator needed a place to spill.  After register allocation we
2273   // are not adding any new instructions.  If any basic block is empty, we
2274   // can now safely remove it.
2275   {
2276     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
2277     cfg.remove_empty_blocks();
2278     if (do_freq_based_layout()) {
2279       PhaseBlockLayout layout(cfg);
2280     } else {
2281       cfg.set_loop_alignment();
2282     }
2283     cfg.fixup_flow();
2284   }
2285 
2286   // Apply peephole optimizations
2287   if( OptoPeephole ) {
2288     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
2289     PhasePeephole peep( _regalloc, cfg);
2290     peep.do_transform();
2291   }
2292 
2293   // Do late expand if CPU requires this.
2294   if (Matcher::require_postalloc_expand) {
2295     NOT_PRODUCT(TracePhase t2c("postalloc_expand", &_t_postalloc_expand, true));
2296     cfg.postalloc_expand(_regalloc);
2297   }
2298 
2299   // Convert Nodes to instruction bits in a buffer
2300   {
2301     // %%%% workspace merge brought two timers together for one job
2302     TracePhase t2a("output", &_t_output, true);
2303     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
2304     Output();
2305   }
2306 
2307   print_method(PHASE_FINAL_CODE);
2308 
2309   // He's dead, Jim.
2310   _cfg     = (PhaseCFG*)0xdeadbeef;
2311   _regalloc = (PhaseChaitin*)0xdeadbeef;
2312 }
2313 
2314 
2315 //------------------------------dump_asm---------------------------------------
2316 // Dump formatted assembly
2317 #ifndef PRODUCT
2318 void Compile::dump_asm(int *pcs, uint pc_limit) {
2319   bool cut_short = false;
2320   tty->print_cr("#");
2321   tty->print("#  ");  _tf->dump();  tty->cr();
2322   tty->print_cr("#");
2323 
2324   // For all blocks
2325   int pc = 0x0;                 // Program counter
2326   char starts_bundle = ' ';
2327   _regalloc->dump_frame();
2328 
2329   Node *n = NULL;
2330   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2331     if (VMThread::should_terminate()) {
2332       cut_short = true;
2333       break;
2334     }
2335     Block* block = _cfg->get_block(i);
2336     if (block->is_connector() && !Verbose) {
2337       continue;
2338     }
2339     n = block->head();
2340     if (pcs && n->_idx < pc_limit) {
2341       tty->print("%3.3x   ", pcs[n->_idx]);
2342     } else {
2343       tty->print("      ");
2344     }
2345     block->dump_head(_cfg);
2346     if (block->is_connector()) {
2347       tty->print_cr("        # Empty connector block");
2348     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2349       tty->print_cr("        # Block is sole successor of call");
2350     }
2351 
2352     // For all instructions
2353     Node *delay = NULL;
2354     for (uint j = 0; j < block->number_of_nodes(); j++) {
2355       if (VMThread::should_terminate()) {
2356         cut_short = true;
2357         break;
2358       }
2359       n = block->get_node(j);
2360       if (valid_bundle_info(n)) {
2361         Bundle* bundle = node_bundling(n);
2362         if (bundle->used_in_unconditional_delay()) {
2363           delay = n;
2364           continue;
2365         }
2366         if (bundle->starts_bundle()) {
2367           starts_bundle = '+';
2368         }
2369       }
2370 
2371       if (WizardMode) {
2372         n->dump();
2373       }
2374 
2375       if( !n->is_Region() &&    // Dont print in the Assembly
2376           !n->is_Phi() &&       // a few noisely useless nodes
2377           !n->is_Proj() &&
2378           !n->is_MachTemp() &&
2379           !n->is_SafePointScalarObject() &&
2380           !n->is_Catch() &&     // Would be nice to print exception table targets
2381           !n->is_MergeMem() &&  // Not very interesting
2382           !n->is_top() &&       // Debug info table constants
2383           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2384           ) {
2385         if (pcs && n->_idx < pc_limit)
2386           tty->print("%3.3x", pcs[n->_idx]);
2387         else
2388           tty->print("   ");
2389         tty->print(" %c ", starts_bundle);
2390         starts_bundle = ' ';
2391         tty->print("\t");
2392         n->format(_regalloc, tty);
2393         tty->cr();
2394       }
2395 
2396       // If we have an instruction with a delay slot, and have seen a delay,
2397       // then back up and print it
2398       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2399         assert(delay != NULL, "no unconditional delay instruction");
2400         if (WizardMode) delay->dump();
2401 
2402         if (node_bundling(delay)->starts_bundle())
2403           starts_bundle = '+';
2404         if (pcs && n->_idx < pc_limit)
2405           tty->print("%3.3x", pcs[n->_idx]);
2406         else
2407           tty->print("   ");
2408         tty->print(" %c ", starts_bundle);
2409         starts_bundle = ' ';
2410         tty->print("\t");
2411         delay->format(_regalloc, tty);
2412         tty->print_cr("");
2413         delay = NULL;
2414       }
2415 
2416       // Dump the exception table as well
2417       if( n->is_Catch() && (Verbose || WizardMode) ) {
2418         // Print the exception table for this offset
2419         _handler_table.print_subtable_for(pc);
2420       }
2421     }
2422 
2423     if (pcs && n->_idx < pc_limit)
2424       tty->print_cr("%3.3x", pcs[n->_idx]);
2425     else
2426       tty->print_cr("");
2427 
2428     assert(cut_short || delay == NULL, "no unconditional delay branch");
2429 
2430   } // End of per-block dump
2431   tty->print_cr("");
2432 
2433   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2434 }
2435 #endif
2436 
2437 //------------------------------Final_Reshape_Counts---------------------------
2438 // This class defines counters to help identify when a method
2439 // may/must be executed using hardware with only 24-bit precision.
2440 struct Final_Reshape_Counts : public StackObj {
2441   int  _call_count;             // count non-inlined 'common' calls
2442   int  _float_count;            // count float ops requiring 24-bit precision
2443   int  _double_count;           // count double ops requiring more precision
2444   int  _java_call_count;        // count non-inlined 'java' calls
2445   int  _inner_loop_count;       // count loops which need alignment
2446   VectorSet _visited;           // Visitation flags
2447   Node_List _tests;             // Set of IfNodes & PCTableNodes
2448 
2449   Final_Reshape_Counts() :
2450     _call_count(0), _float_count(0), _double_count(0),
2451     _java_call_count(0), _inner_loop_count(0),
2452     _visited( Thread::current()->resource_area() ) { }
2453 
2454   void inc_call_count  () { _call_count  ++; }
2455   void inc_float_count () { _float_count ++; }
2456   void inc_double_count() { _double_count++; }
2457   void inc_java_call_count() { _java_call_count++; }
2458   void inc_inner_loop_count() { _inner_loop_count++; }
2459 
2460   int  get_call_count  () const { return _call_count  ; }
2461   int  get_float_count () const { return _float_count ; }
2462   int  get_double_count() const { return _double_count; }
2463   int  get_java_call_count() const { return _java_call_count; }
2464   int  get_inner_loop_count() const { return _inner_loop_count; }
2465 };
2466 
2467 #ifdef ASSERT
2468 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2469   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2470   // Make sure the offset goes inside the instance layout.
2471   return k->contains_field_offset(tp->offset());
2472   // Note that OffsetBot and OffsetTop are very negative.
2473 }
2474 #endif
2475 
2476 // Eliminate trivially redundant StoreCMs and accumulate their
2477 // precedence edges.
2478 void Compile::eliminate_redundant_card_marks(Node* n) {
2479   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2480   if (n->in(MemNode::Address)->outcnt() > 1) {
2481     // There are multiple users of the same address so it might be
2482     // possible to eliminate some of the StoreCMs
2483     Node* mem = n->in(MemNode::Memory);
2484     Node* adr = n->in(MemNode::Address);
2485     Node* val = n->in(MemNode::ValueIn);
2486     Node* prev = n;
2487     bool done = false;
2488     // Walk the chain of StoreCMs eliminating ones that match.  As
2489     // long as it's a chain of single users then the optimization is
2490     // safe.  Eliminating partially redundant StoreCMs would require
2491     // cloning copies down the other paths.
2492     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2493       if (adr == mem->in(MemNode::Address) &&
2494           val == mem->in(MemNode::ValueIn)) {
2495         // redundant StoreCM
2496         if (mem->req() > MemNode::OopStore) {
2497           // Hasn't been processed by this code yet.
2498           n->add_prec(mem->in(MemNode::OopStore));
2499         } else {
2500           // Already converted to precedence edge
2501           for (uint i = mem->req(); i < mem->len(); i++) {
2502             // Accumulate any precedence edges
2503             if (mem->in(i) != NULL) {
2504               n->add_prec(mem->in(i));
2505             }
2506           }
2507           // Everything above this point has been processed.
2508           done = true;
2509         }
2510         // Eliminate the previous StoreCM
2511         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2512         assert(mem->outcnt() == 0, "should be dead");
2513         mem->disconnect_inputs(NULL, this);
2514       } else {
2515         prev = mem;
2516       }
2517       mem = prev->in(MemNode::Memory);
2518     }
2519   }
2520 }
2521 
2522 //------------------------------final_graph_reshaping_impl----------------------
2523 // Implement items 1-5 from final_graph_reshaping below.
2524 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2525 
2526   if ( n->outcnt() == 0 ) return; // dead node
2527   uint nop = n->Opcode();
2528 
2529   // Check for 2-input instruction with "last use" on right input.
2530   // Swap to left input.  Implements item (2).
2531   if( n->req() == 3 &&          // two-input instruction
2532       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2533       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2534       n->in(2)->outcnt() == 1 &&// right use IS a last use
2535       !n->in(2)->is_Con() ) {   // right use is not a constant
2536     // Check for commutative opcode
2537     switch( nop ) {
2538     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2539     case Op_MaxI:  case Op_MinI:
2540     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2541     case Op_AndL:  case Op_XorL:  case Op_OrL:
2542     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2543       // Move "last use" input to left by swapping inputs
2544       n->swap_edges(1, 2);
2545       break;
2546     }
2547     default:
2548       break;
2549     }
2550   }
2551 
2552 #ifdef ASSERT
2553   if( n->is_Mem() ) {
2554     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2555     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2556             // oop will be recorded in oop map if load crosses safepoint
2557             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2558                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2559             "raw memory operations should have control edge");
2560   }
2561 #endif
2562   // Count FPU ops and common calls, implements item (3)
2563   switch( nop ) {
2564   // Count all float operations that may use FPU
2565   case Op_AddF:
2566   case Op_SubF:
2567   case Op_MulF:
2568   case Op_DivF:
2569   case Op_NegF:
2570   case Op_ModF:
2571   case Op_ConvI2F:
2572   case Op_ConF:
2573   case Op_CmpF:
2574   case Op_CmpF3:
2575   // case Op_ConvL2F: // longs are split into 32-bit halves
2576     frc.inc_float_count();
2577     break;
2578 
2579   case Op_ConvF2D:
2580   case Op_ConvD2F:
2581     frc.inc_float_count();
2582     frc.inc_double_count();
2583     break;
2584 
2585   // Count all double operations that may use FPU
2586   case Op_AddD:
2587   case Op_SubD:
2588   case Op_MulD:
2589   case Op_DivD:
2590   case Op_NegD:
2591   case Op_ModD:
2592   case Op_ConvI2D:
2593   case Op_ConvD2I:
2594   // case Op_ConvL2D: // handled by leaf call
2595   // case Op_ConvD2L: // handled by leaf call
2596   case Op_ConD:
2597   case Op_CmpD:
2598   case Op_CmpD3:
2599     frc.inc_double_count();
2600     break;
2601   case Op_Opaque1:              // Remove Opaque Nodes before matching
2602   case Op_Opaque2:              // Remove Opaque Nodes before matching
2603   case Op_Opaque3:
2604     n->subsume_by(n->in(1), this);
2605     break;
2606   case Op_CallStaticJava:
2607   case Op_CallJava:
2608   case Op_CallDynamicJava:
2609     frc.inc_java_call_count(); // Count java call site;
2610   case Op_CallRuntime:
2611   case Op_CallLeaf:
2612   case Op_CallLeafNoFP: {
2613     assert( n->is_Call(), "" );
2614     CallNode *call = n->as_Call();
2615     // Count call sites where the FP mode bit would have to be flipped.
2616     // Do not count uncommon runtime calls:
2617     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2618     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2619     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2620       frc.inc_call_count();   // Count the call site
2621     } else {                  // See if uncommon argument is shared
2622       Node *n = call->in(TypeFunc::Parms);
2623       int nop = n->Opcode();
2624       // Clone shared simple arguments to uncommon calls, item (1).
2625       if( n->outcnt() > 1 &&
2626           !n->is_Proj() &&
2627           nop != Op_CreateEx &&
2628           nop != Op_CheckCastPP &&
2629           nop != Op_DecodeN &&
2630           nop != Op_DecodeNKlass &&
2631           !n->is_Mem() ) {
2632         Node *x = n->clone();
2633         call->set_req( TypeFunc::Parms, x );
2634       }
2635     }
2636     break;
2637   }
2638 
2639   case Op_StoreD:
2640   case Op_LoadD:
2641   case Op_LoadD_unaligned:
2642     frc.inc_double_count();
2643     goto handle_mem;
2644   case Op_StoreF:
2645   case Op_LoadF:
2646     frc.inc_float_count();
2647     goto handle_mem;
2648 
2649   case Op_StoreCM:
2650     {
2651       // Convert OopStore dependence into precedence edge
2652       Node* prec = n->in(MemNode::OopStore);
2653       n->del_req(MemNode::OopStore);
2654       n->add_prec(prec);
2655       eliminate_redundant_card_marks(n);
2656     }
2657 
2658     // fall through
2659 
2660   case Op_StoreB:
2661   case Op_StoreC:
2662   case Op_StorePConditional:
2663   case Op_StoreI:
2664   case Op_StoreL:
2665   case Op_StoreIConditional:
2666   case Op_StoreLConditional:
2667   case Op_CompareAndSwapI:
2668   case Op_CompareAndSwapL:
2669   case Op_CompareAndSwapP:
2670   case Op_CompareAndSwapN:
2671   case Op_GetAndAddI:
2672   case Op_GetAndAddL:
2673   case Op_GetAndSetI:
2674   case Op_GetAndSetL:
2675   case Op_GetAndSetP:
2676   case Op_GetAndSetN:
2677   case Op_StoreP:
2678   case Op_StoreN:
2679   case Op_StoreNKlass:
2680   case Op_LoadB:
2681   case Op_LoadUB:
2682   case Op_LoadUS:
2683   case Op_LoadI:
2684   case Op_LoadKlass:
2685   case Op_LoadNKlass:
2686   case Op_LoadL:
2687   case Op_LoadL_unaligned:
2688   case Op_LoadPLocked:
2689   case Op_LoadP:
2690   case Op_LoadN:
2691   case Op_LoadRange:
2692   case Op_LoadS: {
2693   handle_mem:
2694 #ifdef ASSERT
2695     if( VerifyOptoOopOffsets ) {
2696       assert( n->is_Mem(), "" );
2697       MemNode *mem  = (MemNode*)n;
2698       // Check to see if address types have grounded out somehow.
2699       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2700       assert( !tp || oop_offset_is_sane(tp), "" );
2701     }
2702 #endif
2703     break;
2704   }
2705 
2706   case Op_AddP: {               // Assert sane base pointers
2707     Node *addp = n->in(AddPNode::Address);
2708     assert( !addp->is_AddP() ||
2709             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2710             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2711             "Base pointers must match" );
2712 #ifdef _LP64
2713     if ((UseCompressedOops || UseCompressedClassPointers) &&
2714         addp->Opcode() == Op_ConP &&
2715         addp == n->in(AddPNode::Base) &&
2716         n->in(AddPNode::Offset)->is_Con()) {
2717       // Use addressing with narrow klass to load with offset on x86.
2718       // On sparc loading 32-bits constant and decoding it have less
2719       // instructions (4) then load 64-bits constant (7).
2720       // Do this transformation here since IGVN will convert ConN back to ConP.
2721       const Type* t = addp->bottom_type();
2722       if (t->isa_oopptr() || t->isa_klassptr()) {
2723         Node* nn = NULL;
2724 
2725         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2726 
2727         // Look for existing ConN node of the same exact type.
2728         Node* r  = root();
2729         uint cnt = r->outcnt();
2730         for (uint i = 0; i < cnt; i++) {
2731           Node* m = r->raw_out(i);
2732           if (m!= NULL && m->Opcode() == op &&
2733               m->bottom_type()->make_ptr() == t) {
2734             nn = m;
2735             break;
2736           }
2737         }
2738         if (nn != NULL) {
2739           // Decode a narrow oop to match address
2740           // [R12 + narrow_oop_reg<<3 + offset]
2741           if (t->isa_oopptr()) {
2742             nn = new (this) DecodeNNode(nn, t);
2743           } else {
2744             nn = new (this) DecodeNKlassNode(nn, t);
2745           }
2746           n->set_req(AddPNode::Base, nn);
2747           n->set_req(AddPNode::Address, nn);
2748           if (addp->outcnt() == 0) {
2749             addp->disconnect_inputs(NULL, this);
2750           }
2751         }
2752       }
2753     }
2754 #endif
2755     break;
2756   }
2757 
2758 #ifdef _LP64
2759   case Op_CastPP:
2760     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2761       Node* in1 = n->in(1);
2762       const Type* t = n->bottom_type();
2763       Node* new_in1 = in1->clone();
2764       new_in1->as_DecodeN()->set_type(t);
2765 
2766       if (!Matcher::narrow_oop_use_complex_address()) {
2767         //
2768         // x86, ARM and friends can handle 2 adds in addressing mode
2769         // and Matcher can fold a DecodeN node into address by using
2770         // a narrow oop directly and do implicit NULL check in address:
2771         //
2772         // [R12 + narrow_oop_reg<<3 + offset]
2773         // NullCheck narrow_oop_reg
2774         //
2775         // On other platforms (Sparc) we have to keep new DecodeN node and
2776         // use it to do implicit NULL check in address:
2777         //
2778         // decode_not_null narrow_oop_reg, base_reg
2779         // [base_reg + offset]
2780         // NullCheck base_reg
2781         //
2782         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2783         // to keep the information to which NULL check the new DecodeN node
2784         // corresponds to use it as value in implicit_null_check().
2785         //
2786         new_in1->set_req(0, n->in(0));
2787       }
2788 
2789       n->subsume_by(new_in1, this);
2790       if (in1->outcnt() == 0) {
2791         in1->disconnect_inputs(NULL, this);
2792       }
2793     }
2794     break;
2795 
2796   case Op_CmpP:
2797     // Do this transformation here to preserve CmpPNode::sub() and
2798     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2799     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2800       Node* in1 = n->in(1);
2801       Node* in2 = n->in(2);
2802       if (!in1->is_DecodeNarrowPtr()) {
2803         in2 = in1;
2804         in1 = n->in(2);
2805       }
2806       assert(in1->is_DecodeNarrowPtr(), "sanity");
2807 
2808       Node* new_in2 = NULL;
2809       if (in2->is_DecodeNarrowPtr()) {
2810         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2811         new_in2 = in2->in(1);
2812       } else if (in2->Opcode() == Op_ConP) {
2813         const Type* t = in2->bottom_type();
2814         if (t == TypePtr::NULL_PTR) {
2815           assert(in1->is_DecodeN(), "compare klass to null?");
2816           // Don't convert CmpP null check into CmpN if compressed
2817           // oops implicit null check is not generated.
2818           // This will allow to generate normal oop implicit null check.
2819           if (Matcher::gen_narrow_oop_implicit_null_checks())
2820             new_in2 = ConNode::make(this, TypeNarrowOop::NULL_PTR);
2821           //
2822           // This transformation together with CastPP transformation above
2823           // will generated code for implicit NULL checks for compressed oops.
2824           //
2825           // The original code after Optimize()
2826           //
2827           //    LoadN memory, narrow_oop_reg
2828           //    decode narrow_oop_reg, base_reg
2829           //    CmpP base_reg, NULL
2830           //    CastPP base_reg // NotNull
2831           //    Load [base_reg + offset], val_reg
2832           //
2833           // after these transformations will be
2834           //
2835           //    LoadN memory, narrow_oop_reg
2836           //    CmpN narrow_oop_reg, NULL
2837           //    decode_not_null narrow_oop_reg, base_reg
2838           //    Load [base_reg + offset], val_reg
2839           //
2840           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2841           // since narrow oops can be used in debug info now (see the code in
2842           // final_graph_reshaping_walk()).
2843           //
2844           // At the end the code will be matched to
2845           // on x86:
2846           //
2847           //    Load_narrow_oop memory, narrow_oop_reg
2848           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2849           //    NullCheck narrow_oop_reg
2850           //
2851           // and on sparc:
2852           //
2853           //    Load_narrow_oop memory, narrow_oop_reg
2854           //    decode_not_null narrow_oop_reg, base_reg
2855           //    Load [base_reg + offset], val_reg
2856           //    NullCheck base_reg
2857           //
2858         } else if (t->isa_oopptr()) {
2859           new_in2 = ConNode::make(this, t->make_narrowoop());
2860         } else if (t->isa_klassptr()) {
2861           new_in2 = ConNode::make(this, t->make_narrowklass());
2862         }
2863       }
2864       if (new_in2 != NULL) {
2865         Node* cmpN = new (this) CmpNNode(in1->in(1), new_in2);
2866         n->subsume_by(cmpN, this);
2867         if (in1->outcnt() == 0) {
2868           in1->disconnect_inputs(NULL, this);
2869         }
2870         if (in2->outcnt() == 0) {
2871           in2->disconnect_inputs(NULL, this);
2872         }
2873       }
2874     }
2875     break;
2876 
2877   case Op_DecodeN:
2878   case Op_DecodeNKlass:
2879     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2880     // DecodeN could be pinned when it can't be fold into
2881     // an address expression, see the code for Op_CastPP above.
2882     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2883     break;
2884 
2885   case Op_EncodeP:
2886   case Op_EncodePKlass: {
2887     Node* in1 = n->in(1);
2888     if (in1->is_DecodeNarrowPtr()) {
2889       n->subsume_by(in1->in(1), this);
2890     } else if (in1->Opcode() == Op_ConP) {
2891       const Type* t = in1->bottom_type();
2892       if (t == TypePtr::NULL_PTR) {
2893         assert(t->isa_oopptr(), "null klass?");
2894         n->subsume_by(ConNode::make(this, TypeNarrowOop::NULL_PTR), this);
2895       } else if (t->isa_oopptr()) {
2896         n->subsume_by(ConNode::make(this, t->make_narrowoop()), this);
2897       } else if (t->isa_klassptr()) {
2898         n->subsume_by(ConNode::make(this, t->make_narrowklass()), this);
2899       }
2900     }
2901     if (in1->outcnt() == 0) {
2902       in1->disconnect_inputs(NULL, this);
2903     }
2904     break;
2905   }
2906 
2907   case Op_Proj: {
2908     if (OptimizeStringConcat) {
2909       ProjNode* p = n->as_Proj();
2910       if (p->_is_io_use) {
2911         // Separate projections were used for the exception path which
2912         // are normally removed by a late inline.  If it wasn't inlined
2913         // then they will hang around and should just be replaced with
2914         // the original one.
2915         Node* proj = NULL;
2916         // Replace with just one
2917         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2918           Node *use = i.get();
2919           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2920             proj = use;
2921             break;
2922           }
2923         }
2924         assert(proj != NULL, "must be found");
2925         p->subsume_by(proj, this);
2926       }
2927     }
2928     break;
2929   }
2930 
2931   case Op_Phi:
2932     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2933       // The EncodeP optimization may create Phi with the same edges
2934       // for all paths. It is not handled well by Register Allocator.
2935       Node* unique_in = n->in(1);
2936       assert(unique_in != NULL, "");
2937       uint cnt = n->req();
2938       for (uint i = 2; i < cnt; i++) {
2939         Node* m = n->in(i);
2940         assert(m != NULL, "");
2941         if (unique_in != m)
2942           unique_in = NULL;
2943       }
2944       if (unique_in != NULL) {
2945         n->subsume_by(unique_in, this);
2946       }
2947     }
2948     break;
2949 
2950 #endif
2951 
2952   case Op_ModI:
2953     if (UseDivMod) {
2954       // Check if a%b and a/b both exist
2955       Node* d = n->find_similar(Op_DivI);
2956       if (d) {
2957         // Replace them with a fused divmod if supported
2958         if (Matcher::has_match_rule(Op_DivModI)) {
2959           DivModINode* divmod = DivModINode::make(this, n);
2960           d->subsume_by(divmod->div_proj(), this);
2961           n->subsume_by(divmod->mod_proj(), this);
2962         } else {
2963           // replace a%b with a-((a/b)*b)
2964           Node* mult = new (this) MulINode(d, d->in(2));
2965           Node* sub  = new (this) SubINode(d->in(1), mult);
2966           n->subsume_by(sub, this);
2967         }
2968       }
2969     }
2970     break;
2971 
2972   case Op_ModL:
2973     if (UseDivMod) {
2974       // Check if a%b and a/b both exist
2975       Node* d = n->find_similar(Op_DivL);
2976       if (d) {
2977         // Replace them with a fused divmod if supported
2978         if (Matcher::has_match_rule(Op_DivModL)) {
2979           DivModLNode* divmod = DivModLNode::make(this, n);
2980           d->subsume_by(divmod->div_proj(), this);
2981           n->subsume_by(divmod->mod_proj(), this);
2982         } else {
2983           // replace a%b with a-((a/b)*b)
2984           Node* mult = new (this) MulLNode(d, d->in(2));
2985           Node* sub  = new (this) SubLNode(d->in(1), mult);
2986           n->subsume_by(sub, this);
2987         }
2988       }
2989     }
2990     break;
2991 
2992   case Op_LoadVector:
2993   case Op_StoreVector:
2994     break;
2995 
2996   case Op_PackB:
2997   case Op_PackS:
2998   case Op_PackI:
2999   case Op_PackF:
3000   case Op_PackL:
3001   case Op_PackD:
3002     if (n->req()-1 > 2) {
3003       // Replace many operand PackNodes with a binary tree for matching
3004       PackNode* p = (PackNode*) n;
3005       Node* btp = p->binary_tree_pack(this, 1, n->req());
3006       n->subsume_by(btp, this);
3007     }
3008     break;
3009   case Op_Loop:
3010   case Op_CountedLoop:
3011     if (n->as_Loop()->is_inner_loop()) {
3012       frc.inc_inner_loop_count();
3013     }
3014     break;
3015   case Op_LShiftI:
3016   case Op_RShiftI:
3017   case Op_URShiftI:
3018   case Op_LShiftL:
3019   case Op_RShiftL:
3020   case Op_URShiftL:
3021     if (Matcher::need_masked_shift_count) {
3022       // The cpu's shift instructions don't restrict the count to the
3023       // lower 5/6 bits. We need to do the masking ourselves.
3024       Node* in2 = n->in(2);
3025       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3026       const TypeInt* t = in2->find_int_type();
3027       if (t != NULL && t->is_con()) {
3028         juint shift = t->get_con();
3029         if (shift > mask) { // Unsigned cmp
3030           n->set_req(2, ConNode::make(this, TypeInt::make(shift & mask)));
3031         }
3032       } else {
3033         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3034           Node* shift = new (this) AndINode(in2, ConNode::make(this, TypeInt::make(mask)));
3035           n->set_req(2, shift);
3036         }
3037       }
3038       if (in2->outcnt() == 0) { // Remove dead node
3039         in2->disconnect_inputs(NULL, this);
3040       }
3041     }
3042     break;
3043   case Op_MemBarStoreStore:
3044   case Op_MemBarRelease:
3045     // Break the link with AllocateNode: it is no longer useful and
3046     // confuses register allocation.
3047     if (n->req() > MemBarNode::Precedent) {
3048       n->set_req(MemBarNode::Precedent, top());
3049     }
3050     break;
3051   default:
3052     assert( !n->is_Call(), "" );
3053     assert( !n->is_Mem(), "" );
3054     break;
3055   }
3056 
3057   // Collect CFG split points
3058   if (n->is_MultiBranch())
3059     frc._tests.push(n);
3060 }
3061 
3062 //------------------------------final_graph_reshaping_walk---------------------
3063 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3064 // requires that the walk visits a node's inputs before visiting the node.
3065 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3066   ResourceArea *area = Thread::current()->resource_area();
3067   Unique_Node_List sfpt(area);
3068 
3069   frc._visited.set(root->_idx); // first, mark node as visited
3070   uint cnt = root->req();
3071   Node *n = root;
3072   uint  i = 0;
3073   while (true) {
3074     if (i < cnt) {
3075       // Place all non-visited non-null inputs onto stack
3076       Node* m = n->in(i);
3077       ++i;
3078       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3079         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
3080           sfpt.push(m);
3081         cnt = m->req();
3082         nstack.push(n, i); // put on stack parent and next input's index
3083         n = m;
3084         i = 0;
3085       }
3086     } else {
3087       // Now do post-visit work
3088       final_graph_reshaping_impl( n, frc );
3089       if (nstack.is_empty())
3090         break;             // finished
3091       n = nstack.node();   // Get node from stack
3092       cnt = n->req();
3093       i = nstack.index();
3094       nstack.pop();        // Shift to the next node on stack
3095     }
3096   }
3097 
3098   // Skip next transformation if compressed oops are not used.
3099   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3100       (!UseCompressedOops && !UseCompressedClassPointers))
3101     return;
3102 
3103   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3104   // It could be done for an uncommon traps or any safepoints/calls
3105   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3106   while (sfpt.size() > 0) {
3107     n = sfpt.pop();
3108     JVMState *jvms = n->as_SafePoint()->jvms();
3109     assert(jvms != NULL, "sanity");
3110     int start = jvms->debug_start();
3111     int end   = n->req();
3112     bool is_uncommon = (n->is_CallStaticJava() &&
3113                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3114     for (int j = start; j < end; j++) {
3115       Node* in = n->in(j);
3116       if (in->is_DecodeNarrowPtr()) {
3117         bool safe_to_skip = true;
3118         if (!is_uncommon ) {
3119           // Is it safe to skip?
3120           for (uint i = 0; i < in->outcnt(); i++) {
3121             Node* u = in->raw_out(i);
3122             if (!u->is_SafePoint() ||
3123                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3124               safe_to_skip = false;
3125             }
3126           }
3127         }
3128         if (safe_to_skip) {
3129           n->set_req(j, in->in(1));
3130         }
3131         if (in->outcnt() == 0) {
3132           in->disconnect_inputs(NULL, this);
3133         }
3134       }
3135     }
3136   }
3137 }
3138 
3139 //------------------------------final_graph_reshaping--------------------------
3140 // Final Graph Reshaping.
3141 //
3142 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3143 //     and not commoned up and forced early.  Must come after regular
3144 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3145 //     inputs to Loop Phis; these will be split by the allocator anyways.
3146 //     Remove Opaque nodes.
3147 // (2) Move last-uses by commutative operations to the left input to encourage
3148 //     Intel update-in-place two-address operations and better register usage
3149 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3150 //     calls canonicalizing them back.
3151 // (3) Count the number of double-precision FP ops, single-precision FP ops
3152 //     and call sites.  On Intel, we can get correct rounding either by
3153 //     forcing singles to memory (requires extra stores and loads after each
3154 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3155 //     clearing the mode bit around call sites).  The mode bit is only used
3156 //     if the relative frequency of single FP ops to calls is low enough.
3157 //     This is a key transform for SPEC mpeg_audio.
3158 // (4) Detect infinite loops; blobs of code reachable from above but not
3159 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3160 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3161 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3162 //     Detection is by looking for IfNodes where only 1 projection is
3163 //     reachable from below or CatchNodes missing some targets.
3164 // (5) Assert for insane oop offsets in debug mode.
3165 
3166 bool Compile::final_graph_reshaping() {
3167   // an infinite loop may have been eliminated by the optimizer,
3168   // in which case the graph will be empty.
3169   if (root()->req() == 1) {
3170     record_method_not_compilable("trivial infinite loop");
3171     return true;
3172   }
3173 
3174   // Expensive nodes have their control input set to prevent the GVN
3175   // from freely commoning them. There's no GVN beyond this point so
3176   // no need to keep the control input. We want the expensive nodes to
3177   // be freely moved to the least frequent code path by gcm.
3178   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3179   for (int i = 0; i < expensive_count(); i++) {
3180     _expensive_nodes->at(i)->set_req(0, NULL);
3181   }
3182 
3183   Final_Reshape_Counts frc;
3184 
3185   // Visit everybody reachable!
3186   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3187   Node_Stack nstack(unique() >> 1);
3188   final_graph_reshaping_walk(nstack, root(), frc);
3189 
3190   // Check for unreachable (from below) code (i.e., infinite loops).
3191   for( uint i = 0; i < frc._tests.size(); i++ ) {
3192     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3193     // Get number of CFG targets.
3194     // Note that PCTables include exception targets after calls.
3195     uint required_outcnt = n->required_outcnt();
3196     if (n->outcnt() != required_outcnt) {
3197       // Check for a few special cases.  Rethrow Nodes never take the
3198       // 'fall-thru' path, so expected kids is 1 less.
3199       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3200         if (n->in(0)->in(0)->is_Call()) {
3201           CallNode *call = n->in(0)->in(0)->as_Call();
3202           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3203             required_outcnt--;      // Rethrow always has 1 less kid
3204           } else if (call->req() > TypeFunc::Parms &&
3205                      call->is_CallDynamicJava()) {
3206             // Check for null receiver. In such case, the optimizer has
3207             // detected that the virtual call will always result in a null
3208             // pointer exception. The fall-through projection of this CatchNode
3209             // will not be populated.
3210             Node *arg0 = call->in(TypeFunc::Parms);
3211             if (arg0->is_Type() &&
3212                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3213               required_outcnt--;
3214             }
3215           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3216                      call->req() > TypeFunc::Parms+1 &&
3217                      call->is_CallStaticJava()) {
3218             // Check for negative array length. In such case, the optimizer has
3219             // detected that the allocation attempt will always result in an
3220             // exception. There is no fall-through projection of this CatchNode .
3221             Node *arg1 = call->in(TypeFunc::Parms+1);
3222             if (arg1->is_Type() &&
3223                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3224               required_outcnt--;
3225             }
3226           }
3227         }
3228       }
3229       // Recheck with a better notion of 'required_outcnt'
3230       if (n->outcnt() != required_outcnt) {
3231         record_method_not_compilable("malformed control flow");
3232         return true;            // Not all targets reachable!
3233       }
3234     }
3235     // Check that I actually visited all kids.  Unreached kids
3236     // must be infinite loops.
3237     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3238       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3239         record_method_not_compilable("infinite loop");
3240         return true;            // Found unvisited kid; must be unreach
3241       }
3242   }
3243 
3244   // If original bytecodes contained a mixture of floats and doubles
3245   // check if the optimizer has made it homogenous, item (3).
3246   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3247       frc.get_float_count() > 32 &&
3248       frc.get_double_count() == 0 &&
3249       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3250     set_24_bit_selection_and_mode( false,  true );
3251   }
3252 
3253   set_java_calls(frc.get_java_call_count());
3254   set_inner_loops(frc.get_inner_loop_count());
3255 
3256   // No infinite loops, no reason to bail out.
3257   return false;
3258 }
3259 
3260 //-----------------------------too_many_traps----------------------------------
3261 // Report if there are too many traps at the current method and bci.
3262 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3263 bool Compile::too_many_traps(ciMethod* method,
3264                              int bci,
3265                              Deoptimization::DeoptReason reason) {
3266   ciMethodData* md = method->method_data();
3267   if (md->is_empty()) {
3268     // Assume the trap has not occurred, or that it occurred only
3269     // because of a transient condition during start-up in the interpreter.
3270     return false;
3271   }
3272   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3273   if (md->has_trap_at(bci, m, reason) != 0) {
3274     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3275     // Also, if there are multiple reasons, or if there is no per-BCI record,
3276     // assume the worst.
3277     if (log())
3278       log()->elem("observe trap='%s' count='%d'",
3279                   Deoptimization::trap_reason_name(reason),
3280                   md->trap_count(reason));
3281     return true;
3282   } else {
3283     // Ignore method/bci and see if there have been too many globally.
3284     return too_many_traps(reason, md);
3285   }
3286 }
3287 
3288 // Less-accurate variant which does not require a method and bci.
3289 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3290                              ciMethodData* logmd) {
3291   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3292     // Too many traps globally.
3293     // Note that we use cumulative trap_count, not just md->trap_count.
3294     if (log()) {
3295       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3296       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3297                   Deoptimization::trap_reason_name(reason),
3298                   mcount, trap_count(reason));
3299     }
3300     return true;
3301   } else {
3302     // The coast is clear.
3303     return false;
3304   }
3305 }
3306 
3307 //--------------------------too_many_recompiles--------------------------------
3308 // Report if there are too many recompiles at the current method and bci.
3309 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3310 // Is not eager to return true, since this will cause the compiler to use
3311 // Action_none for a trap point, to avoid too many recompilations.
3312 bool Compile::too_many_recompiles(ciMethod* method,
3313                                   int bci,
3314                                   Deoptimization::DeoptReason reason) {
3315   ciMethodData* md = method->method_data();
3316   if (md->is_empty()) {
3317     // Assume the trap has not occurred, or that it occurred only
3318     // because of a transient condition during start-up in the interpreter.
3319     return false;
3320   }
3321   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3322   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3323   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3324   Deoptimization::DeoptReason per_bc_reason
3325     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3326   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3327   if ((per_bc_reason == Deoptimization::Reason_none
3328        || md->has_trap_at(bci, m, reason) != 0)
3329       // The trap frequency measure we care about is the recompile count:
3330       && md->trap_recompiled_at(bci, m)
3331       && md->overflow_recompile_count() >= bc_cutoff) {
3332     // Do not emit a trap here if it has already caused recompilations.
3333     // Also, if there are multiple reasons, or if there is no per-BCI record,
3334     // assume the worst.
3335     if (log())
3336       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3337                   Deoptimization::trap_reason_name(reason),
3338                   md->trap_count(reason),
3339                   md->overflow_recompile_count());
3340     return true;
3341   } else if (trap_count(reason) != 0
3342              && decompile_count() >= m_cutoff) {
3343     // Too many recompiles globally, and we have seen this sort of trap.
3344     // Use cumulative decompile_count, not just md->decompile_count.
3345     if (log())
3346       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3347                   Deoptimization::trap_reason_name(reason),
3348                   md->trap_count(reason), trap_count(reason),
3349                   md->decompile_count(), decompile_count());
3350     return true;
3351   } else {
3352     // The coast is clear.
3353     return false;
3354   }
3355 }
3356 
3357 // Compute when not to trap. Used by matching trap based nodes and
3358 // NullCheck optimization.
3359 void Compile::set_allowed_deopt_reasons() {
3360   _allowed_reasons = 0;
3361   if (is_method_compilation()) {
3362     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3363       assert(rs < BitsPerInt, "recode bit map");
3364       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3365         _allowed_reasons |= nth_bit(rs);
3366       }
3367     }
3368   }
3369 }
3370 
3371 #ifndef PRODUCT
3372 //------------------------------verify_graph_edges---------------------------
3373 // Walk the Graph and verify that there is a one-to-one correspondence
3374 // between Use-Def edges and Def-Use edges in the graph.
3375 void Compile::verify_graph_edges(bool no_dead_code) {
3376   if (VerifyGraphEdges) {
3377     ResourceArea *area = Thread::current()->resource_area();
3378     Unique_Node_List visited(area);
3379     // Call recursive graph walk to check edges
3380     _root->verify_edges(visited);
3381     if (no_dead_code) {
3382       // Now make sure that no visited node is used by an unvisited node.
3383       bool dead_nodes = 0;
3384       Unique_Node_List checked(area);
3385       while (visited.size() > 0) {
3386         Node* n = visited.pop();
3387         checked.push(n);
3388         for (uint i = 0; i < n->outcnt(); i++) {
3389           Node* use = n->raw_out(i);
3390           if (checked.member(use))  continue;  // already checked
3391           if (visited.member(use))  continue;  // already in the graph
3392           if (use->is_Con())        continue;  // a dead ConNode is OK
3393           // At this point, we have found a dead node which is DU-reachable.
3394           if (dead_nodes++ == 0)
3395             tty->print_cr("*** Dead nodes reachable via DU edges:");
3396           use->dump(2);
3397           tty->print_cr("---");
3398           checked.push(use);  // No repeats; pretend it is now checked.
3399         }
3400       }
3401       assert(dead_nodes == 0, "using nodes must be reachable from root");
3402     }
3403   }
3404 }
3405 
3406 // Verify GC barriers consistency
3407 // Currently supported:
3408 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3409 void Compile::verify_barriers() {
3410   if (UseG1GC) {
3411     // Verify G1 pre-barriers
3412     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3413 
3414     ResourceArea *area = Thread::current()->resource_area();
3415     Unique_Node_List visited(area);
3416     Node_List worklist(area);
3417     // We're going to walk control flow backwards starting from the Root
3418     worklist.push(_root);
3419     while (worklist.size() > 0) {
3420       Node* x = worklist.pop();
3421       if (x == NULL || x == top()) continue;
3422       if (visited.member(x)) {
3423         continue;
3424       } else {
3425         visited.push(x);
3426       }
3427 
3428       if (x->is_Region()) {
3429         for (uint i = 1; i < x->req(); i++) {
3430           worklist.push(x->in(i));
3431         }
3432       } else {
3433         worklist.push(x->in(0));
3434         // We are looking for the pattern:
3435         //                            /->ThreadLocal
3436         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3437         //              \->ConI(0)
3438         // We want to verify that the If and the LoadB have the same control
3439         // See GraphKit::g1_write_barrier_pre()
3440         if (x->is_If()) {
3441           IfNode *iff = x->as_If();
3442           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3443             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3444             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3445                 && cmp->in(1)->is_Load()) {
3446               LoadNode* load = cmp->in(1)->as_Load();
3447               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3448                   && load->in(2)->in(3)->is_Con()
3449                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3450 
3451                 Node* if_ctrl = iff->in(0);
3452                 Node* load_ctrl = load->in(0);
3453 
3454                 if (if_ctrl != load_ctrl) {
3455                   // Skip possible CProj->NeverBranch in infinite loops
3456                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3457                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3458                     if_ctrl = if_ctrl->in(0)->in(0);
3459                   }
3460                 }
3461                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3462               }
3463             }
3464           }
3465         }
3466       }
3467     }
3468   }
3469 }
3470 
3471 #endif
3472 
3473 // The Compile object keeps track of failure reasons separately from the ciEnv.
3474 // This is required because there is not quite a 1-1 relation between the
3475 // ciEnv and its compilation task and the Compile object.  Note that one
3476 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3477 // to backtrack and retry without subsuming loads.  Other than this backtracking
3478 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3479 // by the logic in C2Compiler.
3480 void Compile::record_failure(const char* reason) {
3481   if (log() != NULL) {
3482     log()->elem("failure reason='%s' phase='compile'", reason);
3483   }
3484   if (_failure_reason == NULL) {
3485     // Record the first failure reason.
3486     _failure_reason = reason;
3487   }
3488 
3489   EventCompilerFailure event;
3490   if (event.should_commit()) {
3491     event.set_compileID(Compile::compile_id());
3492     event.set_failure(reason);
3493     event.commit();
3494   }
3495 
3496   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3497     C->print_method(PHASE_FAILURE);
3498   }
3499   _root = NULL;  // flush the graph, too
3500 }
3501 
3502 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3503   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false),
3504     _phase_name(name), _dolog(dolog)
3505 {
3506   if (dolog) {
3507     C = Compile::current();
3508     _log = C->log();
3509   } else {
3510     C = NULL;
3511     _log = NULL;
3512   }
3513   if (_log != NULL) {
3514     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3515     _log->stamp();
3516     _log->end_head();
3517   }
3518 }
3519 
3520 Compile::TracePhase::~TracePhase() {
3521 
3522   C = Compile::current();
3523   if (_dolog) {
3524     _log = C->log();
3525   } else {
3526     _log = NULL;
3527   }
3528 
3529 #ifdef ASSERT
3530   if (PrintIdealNodeCount) {
3531     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3532                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3533   }
3534 
3535   if (VerifyIdealNodeCount) {
3536     Compile::current()->print_missing_nodes();
3537   }
3538 #endif
3539 
3540   if (_log != NULL) {
3541     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3542   }
3543 }
3544 
3545 //=============================================================================
3546 // Two Constant's are equal when the type and the value are equal.
3547 bool Compile::Constant::operator==(const Constant& other) {
3548   if (type()          != other.type()         )  return false;
3549   if (can_be_reused() != other.can_be_reused())  return false;
3550   // For floating point values we compare the bit pattern.
3551   switch (type()) {
3552   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3553   case T_LONG:
3554   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3555   case T_OBJECT:
3556   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3557   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3558   case T_METADATA: return (_v._metadata == other._v._metadata);
3559   default: ShouldNotReachHere();
3560   }
3561   return false;
3562 }
3563 
3564 static int type_to_size_in_bytes(BasicType t) {
3565   switch (t) {
3566   case T_LONG:    return sizeof(jlong  );
3567   case T_FLOAT:   return sizeof(jfloat );
3568   case T_DOUBLE:  return sizeof(jdouble);
3569   case T_METADATA: return sizeof(Metadata*);
3570     // We use T_VOID as marker for jump-table entries (labels) which
3571     // need an internal word relocation.
3572   case T_VOID:
3573   case T_ADDRESS:
3574   case T_OBJECT:  return sizeof(jobject);
3575   }
3576 
3577   ShouldNotReachHere();
3578   return -1;
3579 }
3580 
3581 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3582   // sort descending
3583   if (a->freq() > b->freq())  return -1;
3584   if (a->freq() < b->freq())  return  1;
3585   return 0;
3586 }
3587 
3588 void Compile::ConstantTable::calculate_offsets_and_size() {
3589   // First, sort the array by frequencies.
3590   _constants.sort(qsort_comparator);
3591 
3592 #ifdef ASSERT
3593   // Make sure all jump-table entries were sorted to the end of the
3594   // array (they have a negative frequency).
3595   bool found_void = false;
3596   for (int i = 0; i < _constants.length(); i++) {
3597     Constant con = _constants.at(i);
3598     if (con.type() == T_VOID)
3599       found_void = true;  // jump-tables
3600     else
3601       assert(!found_void, "wrong sorting");
3602   }
3603 #endif
3604 
3605   int offset = 0;
3606   for (int i = 0; i < _constants.length(); i++) {
3607     Constant* con = _constants.adr_at(i);
3608 
3609     // Align offset for type.
3610     int typesize = type_to_size_in_bytes(con->type());
3611     offset = align_size_up(offset, typesize);
3612     con->set_offset(offset);   // set constant's offset
3613 
3614     if (con->type() == T_VOID) {
3615       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3616       offset = offset + typesize * n->outcnt();  // expand jump-table
3617     } else {
3618       offset = offset + typesize;
3619     }
3620   }
3621 
3622   // Align size up to the next section start (which is insts; see
3623   // CodeBuffer::align_at_start).
3624   assert(_size == -1, "already set?");
3625   _size = align_size_up(offset, CodeEntryAlignment);
3626 }
3627 
3628 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3629   MacroAssembler _masm(&cb);
3630   for (int i = 0; i < _constants.length(); i++) {
3631     Constant con = _constants.at(i);
3632     address constant_addr;
3633     switch (con.type()) {
3634     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3635     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3636     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3637     case T_OBJECT: {
3638       jobject obj = con.get_jobject();
3639       int oop_index = _masm.oop_recorder()->find_index(obj);
3640       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3641       break;
3642     }
3643     case T_ADDRESS: {
3644       address addr = (address) con.get_jobject();
3645       constant_addr = _masm.address_constant(addr);
3646       break;
3647     }
3648     // We use T_VOID as marker for jump-table entries (labels) which
3649     // need an internal word relocation.
3650     case T_VOID: {
3651       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3652       // Fill the jump-table with a dummy word.  The real value is
3653       // filled in later in fill_jump_table.
3654       address dummy = (address) n;
3655       constant_addr = _masm.address_constant(dummy);
3656       // Expand jump-table
3657       for (uint i = 1; i < n->outcnt(); i++) {
3658         address temp_addr = _masm.address_constant(dummy + i);
3659         assert(temp_addr, "consts section too small");
3660       }
3661       break;
3662     }
3663     case T_METADATA: {
3664       Metadata* obj = con.get_metadata();
3665       int metadata_index = _masm.oop_recorder()->find_index(obj);
3666       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3667       break;
3668     }
3669     default: ShouldNotReachHere();
3670     }
3671     assert(constant_addr, "consts section too small");
3672     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3673   }
3674 }
3675 
3676 int Compile::ConstantTable::find_offset(Constant& con) const {
3677   int idx = _constants.find(con);
3678   assert(idx != -1, "constant must be in constant table");
3679   int offset = _constants.at(idx).offset();
3680   assert(offset != -1, "constant table not emitted yet?");
3681   return offset;
3682 }
3683 
3684 void Compile::ConstantTable::add(Constant& con) {
3685   if (con.can_be_reused()) {
3686     int idx = _constants.find(con);
3687     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3688       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3689       return;
3690     }
3691   }
3692   (void) _constants.append(con);
3693 }
3694 
3695 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3696   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3697   Constant con(type, value, b->_freq);
3698   add(con);
3699   return con;
3700 }
3701 
3702 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3703   Constant con(metadata);
3704   add(con);
3705   return con;
3706 }
3707 
3708 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3709   jvalue value;
3710   BasicType type = oper->type()->basic_type();
3711   switch (type) {
3712   case T_LONG:    value.j = oper->constantL(); break;
3713   case T_FLOAT:   value.f = oper->constantF(); break;
3714   case T_DOUBLE:  value.d = oper->constantD(); break;
3715   case T_OBJECT:
3716   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3717   case T_METADATA: return add((Metadata*)oper->constant()); break;
3718   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3719   }
3720   return add(n, type, value);
3721 }
3722 
3723 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3724   jvalue value;
3725   // We can use the node pointer here to identify the right jump-table
3726   // as this method is called from Compile::Fill_buffer right before
3727   // the MachNodes are emitted and the jump-table is filled (means the
3728   // MachNode pointers do not change anymore).
3729   value.l = (jobject) n;
3730   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3731   add(con);
3732   return con;
3733 }
3734 
3735 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3736   // If called from Compile::scratch_emit_size do nothing.
3737   if (Compile::current()->in_scratch_emit_size())  return;
3738 
3739   assert(labels.is_nonempty(), "must be");
3740   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3741 
3742   // Since MachConstantNode::constant_offset() also contains
3743   // table_base_offset() we need to subtract the table_base_offset()
3744   // to get the plain offset into the constant table.
3745   int offset = n->constant_offset() - table_base_offset();
3746 
3747   MacroAssembler _masm(&cb);
3748   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3749 
3750   for (uint i = 0; i < n->outcnt(); i++) {
3751     address* constant_addr = &jump_table_base[i];
3752     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3753     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3754     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3755   }
3756 }
3757 
3758 void Compile::dump_inlining() {
3759   if (print_inlining() || print_intrinsics()) {
3760     // Print inlining message for candidates that we couldn't inline
3761     // for lack of space or non constant receiver
3762     for (int i = 0; i < _late_inlines.length(); i++) {
3763       CallGenerator* cg = _late_inlines.at(i);
3764       cg->print_inlining_late("live nodes > LiveNodeCountInliningCutoff");
3765     }
3766     Unique_Node_List useful;
3767     useful.push(root());
3768     for (uint next = 0; next < useful.size(); ++next) {
3769       Node* n  = useful.at(next);
3770       if (n->is_Call() && n->as_Call()->generator() != NULL && n->as_Call()->generator()->call_node() == n) {
3771         CallNode* call = n->as_Call();
3772         CallGenerator* cg = call->generator();
3773         cg->print_inlining_late("receiver not constant");
3774       }
3775       uint max = n->len();
3776       for ( uint i = 0; i < max; ++i ) {
3777         Node *m = n->in(i);
3778         if ( m == NULL ) continue;
3779         useful.push(m);
3780       }
3781     }
3782     for (int i = 0; i < _print_inlining_list->length(); i++) {
3783       tty->print(_print_inlining_list->adr_at(i)->ss()->as_string());
3784     }
3785   }
3786 }
3787 
3788 // Dump inlining replay data to the stream.
3789 // Don't change thread state and acquire any locks.
3790 void Compile::dump_inline_data(outputStream* out) {
3791   InlineTree* inl_tree = ilt();
3792   if (inl_tree != NULL) {
3793     out->print(" inline %d", inl_tree->count());
3794     inl_tree->dump_replay_data(out);
3795   }
3796 }
3797 
3798 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
3799   if (n1->Opcode() < n2->Opcode())      return -1;
3800   else if (n1->Opcode() > n2->Opcode()) return 1;
3801 
3802   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
3803   for (uint i = 1; i < n1->req(); i++) {
3804     if (n1->in(i) < n2->in(i))      return -1;
3805     else if (n1->in(i) > n2->in(i)) return 1;
3806   }
3807 
3808   return 0;
3809 }
3810 
3811 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
3812   Node* n1 = *n1p;
3813   Node* n2 = *n2p;
3814 
3815   return cmp_expensive_nodes(n1, n2);
3816 }
3817 
3818 void Compile::sort_expensive_nodes() {
3819   if (!expensive_nodes_sorted()) {
3820     _expensive_nodes->sort(cmp_expensive_nodes);
3821   }
3822 }
3823 
3824 bool Compile::expensive_nodes_sorted() const {
3825   for (int i = 1; i < _expensive_nodes->length(); i++) {
3826     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
3827       return false;
3828     }
3829   }
3830   return true;
3831 }
3832 
3833 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
3834   if (_expensive_nodes->length() == 0) {
3835     return false;
3836   }
3837 
3838   assert(OptimizeExpensiveOps, "optimization off?");
3839 
3840   // Take this opportunity to remove dead nodes from the list
3841   int j = 0;
3842   for (int i = 0; i < _expensive_nodes->length(); i++) {
3843     Node* n = _expensive_nodes->at(i);
3844     if (!n->is_unreachable(igvn)) {
3845       assert(n->is_expensive(), "should be expensive");
3846       _expensive_nodes->at_put(j, n);
3847       j++;
3848     }
3849   }
3850   _expensive_nodes->trunc_to(j);
3851 
3852   // Then sort the list so that similar nodes are next to each other
3853   // and check for at least two nodes of identical kind with same data
3854   // inputs.
3855   sort_expensive_nodes();
3856 
3857   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
3858     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
3859       return true;
3860     }
3861   }
3862 
3863   return false;
3864 }
3865 
3866 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
3867   if (_expensive_nodes->length() == 0) {
3868     return;
3869   }
3870 
3871   assert(OptimizeExpensiveOps, "optimization off?");
3872 
3873   // Sort to bring similar nodes next to each other and clear the
3874   // control input of nodes for which there's only a single copy.
3875   sort_expensive_nodes();
3876 
3877   int j = 0;
3878   int identical = 0;
3879   int i = 0;
3880   for (; i < _expensive_nodes->length()-1; i++) {
3881     assert(j <= i, "can't write beyond current index");
3882     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
3883       identical++;
3884       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3885       continue;
3886     }
3887     if (identical > 0) {
3888       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3889       identical = 0;
3890     } else {
3891       Node* n = _expensive_nodes->at(i);
3892       igvn.hash_delete(n);
3893       n->set_req(0, NULL);
3894       igvn.hash_insert(n);
3895     }
3896   }
3897   if (identical > 0) {
3898     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
3899   } else if (_expensive_nodes->length() >= 1) {
3900     Node* n = _expensive_nodes->at(i);
3901     igvn.hash_delete(n);
3902     n->set_req(0, NULL);
3903     igvn.hash_insert(n);
3904   }
3905   _expensive_nodes->trunc_to(j);
3906 }
3907 
3908 void Compile::add_expensive_node(Node * n) {
3909   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
3910   assert(n->is_expensive(), "expensive nodes with non-null control here only");
3911   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
3912   if (OptimizeExpensiveOps) {
3913     _expensive_nodes->append(n);
3914   } else {
3915     // Clear control input and let IGVN optimize expensive nodes if
3916     // OptimizeExpensiveOps is off.
3917     n->set_req(0, NULL);
3918   }
3919 }
3920 
3921 /**
3922  * Remove the speculative part of types and clean up the graph
3923  */
3924 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
3925   if (UseTypeSpeculation) {
3926     Unique_Node_List worklist;
3927     worklist.push(root());
3928     int modified = 0;
3929     // Go over all type nodes that carry a speculative type, drop the
3930     // speculative part of the type and enqueue the node for an igvn
3931     // which may optimize it out.
3932     for (uint next = 0; next < worklist.size(); ++next) {
3933       Node *n  = worklist.at(next);
3934       if (n->is_Type()) {
3935         TypeNode* tn = n->as_Type();
3936         const Type* t = tn->type();
3937         const Type* t_no_spec = t->remove_speculative();
3938         if (t_no_spec != t) {
3939           bool in_hash = igvn.hash_delete(n);
3940           assert(in_hash, "node should be in igvn hash table");
3941           tn->set_type(t_no_spec);
3942           igvn.hash_insert(n);
3943           igvn._worklist.push(n); // give it a chance to go away
3944           modified++;
3945         }
3946       }
3947       uint max = n->len();
3948       for( uint i = 0; i < max; ++i ) {
3949         Node *m = n->in(i);
3950         if (not_a_node(m))  continue;
3951         worklist.push(m);
3952       }
3953     }
3954     // Drop the speculative part of all types in the igvn's type table
3955     igvn.remove_speculative_types();
3956     if (modified > 0) {
3957       igvn.optimize();
3958     }
3959 #ifdef ASSERT
3960     // Verify that after the IGVN is over no speculative type has resurfaced
3961     worklist.clear();
3962     worklist.push(root());
3963     for (uint next = 0; next < worklist.size(); ++next) {
3964       Node *n  = worklist.at(next);
3965       const Type* t = igvn.type(n);
3966       assert(t == t->remove_speculative(), "no more speculative types");
3967       if (n->is_Type()) {
3968         t = n->as_Type()->type();
3969         assert(t == t->remove_speculative(), "no more speculative types");
3970       }
3971       uint max = n->len();
3972       for( uint i = 0; i < max; ++i ) {
3973         Node *m = n->in(i);
3974         if (not_a_node(m))  continue;
3975         worklist.push(m);
3976       }
3977     }
3978     igvn.check_no_speculative_types();
3979 #endif
3980   }
3981 }
3982 
3983 // Auxiliary method to support randomized stressing/fuzzing.
3984 //
3985 // This method can be called the arbitrary number of times, with current count
3986 // as the argument. The logic allows selecting a single candidate from the
3987 // running list of candidates as follows:
3988 //    int count = 0;
3989 //    Cand* selected = null;
3990 //    while(cand = cand->next()) {
3991 //      if (randomized_select(++count)) {
3992 //        selected = cand;
3993 //      }
3994 //    }
3995 //
3996 // Including count equalizes the chances any candidate is "selected".
3997 // This is useful when we don't have the complete list of candidates to choose
3998 // from uniformly. In this case, we need to adjust the randomicity of the
3999 // selection, or else we will end up biasing the selection towards the latter
4000 // candidates.
4001 //
4002 // Quick back-envelope calculation shows that for the list of n candidates
4003 // the equal probability for the candidate to persist as "best" can be
4004 // achieved by replacing it with "next" k-th candidate with the probability
4005 // of 1/k. It can be easily shown that by the end of the run, the
4006 // probability for any candidate is converged to 1/n, thus giving the
4007 // uniform distribution among all the candidates.
4008 //
4009 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4010 #define RANDOMIZED_DOMAIN_POW 29
4011 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4012 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4013 bool Compile::randomized_select(int count) {
4014   assert(count > 0, "only positive");
4015   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4016 }