1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "compiler/compileBroker.hpp"
  29 #include "compiler/compileLog.hpp"
  30 #include "oops/objArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/callGenerator.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/countbitsnode.hpp"
  37 #include "opto/intrinsicnode.hpp"
  38 #include "opto/idealKit.hpp"
  39 #include "opto/mathexactnode.hpp"
  40 #include "opto/movenode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/narrowptrnode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/subnode.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "runtime/sharedRuntime.hpp"
  48 #include "trace/traceMacros.hpp"
  49 
  50 class LibraryIntrinsic : public InlineCallGenerator {
  51   // Extend the set of intrinsics known to the runtime:
  52  public:
  53  private:
  54   bool             _is_virtual;
  55   bool             _is_predicted;
  56   bool             _does_virtual_dispatch;
  57   vmIntrinsics::ID _intrinsic_id;
  58 
  59  public:
  60   LibraryIntrinsic(ciMethod* m, bool is_virtual, bool is_predicted, bool does_virtual_dispatch, vmIntrinsics::ID id)
  61     : InlineCallGenerator(m),
  62       _is_virtual(is_virtual),
  63       _is_predicted(is_predicted),
  64       _does_virtual_dispatch(does_virtual_dispatch),
  65       _intrinsic_id(id)
  66   {
  67   }
  68   virtual bool is_intrinsic() const { return true; }
  69   virtual bool is_virtual()   const { return _is_virtual; }
  70   virtual bool is_predicted()   const { return _is_predicted; }
  71   virtual bool does_virtual_dispatch()   const { return _does_virtual_dispatch; }
  72   virtual JVMState* generate(JVMState* jvms, Parse* parent_parser);
  73   virtual Node* generate_predicate(JVMState* jvms);
  74   vmIntrinsics::ID intrinsic_id() const { return _intrinsic_id; }
  75 };
  76 
  77 
  78 // Local helper class for LibraryIntrinsic:
  79 class LibraryCallKit : public GraphKit {
  80  private:
  81   LibraryIntrinsic* _intrinsic;     // the library intrinsic being called
  82   Node*             _result;        // the result node, if any
  83   int               _reexecute_sp;  // the stack pointer when bytecode needs to be reexecuted
  84 
  85   const TypeOopPtr* sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr = false);
  86 
  87  public:
  88   LibraryCallKit(JVMState* jvms, LibraryIntrinsic* intrinsic)
  89     : GraphKit(jvms),
  90       _intrinsic(intrinsic),
  91       _result(NULL)
  92   {
  93     // Check if this is a root compile.  In that case we don't have a caller.
  94     if (!jvms->has_method()) {
  95       _reexecute_sp = sp();
  96     } else {
  97       // Find out how many arguments the interpreter needs when deoptimizing
  98       // and save the stack pointer value so it can used by uncommon_trap.
  99       // We find the argument count by looking at the declared signature.
 100       bool ignored_will_link;
 101       ciSignature* declared_signature = NULL;
 102       ciMethod* ignored_callee = caller()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
 103       const int nargs = declared_signature->arg_size_for_bc(caller()->java_code_at_bci(bci()));
 104       _reexecute_sp = sp() + nargs;  // "push" arguments back on stack
 105     }
 106   }
 107 
 108   virtual LibraryCallKit* is_LibraryCallKit() const { return (LibraryCallKit*)this; }
 109 
 110   ciMethod*         caller()    const    { return jvms()->method(); }
 111   int               bci()       const    { return jvms()->bci(); }
 112   LibraryIntrinsic* intrinsic() const    { return _intrinsic; }
 113   vmIntrinsics::ID  intrinsic_id() const { return _intrinsic->intrinsic_id(); }
 114   ciMethod*         callee()    const    { return _intrinsic->method(); }
 115 
 116   bool try_to_inline();
 117   Node* try_to_predicate();
 118 
 119   void push_result() {
 120     // Push the result onto the stack.
 121     if (!stopped() && result() != NULL) {
 122       BasicType bt = result()->bottom_type()->basic_type();
 123       push_node(bt, result());
 124     }
 125   }
 126 
 127  private:
 128   void fatal_unexpected_iid(vmIntrinsics::ID iid) {
 129     fatal(err_msg_res("unexpected intrinsic %d: %s", iid, vmIntrinsics::name_at(iid)));
 130   }
 131 
 132   void  set_result(Node* n) { assert(_result == NULL, "only set once"); _result = n; }
 133   void  set_result(RegionNode* region, PhiNode* value);
 134   Node*     result() { return _result; }
 135 
 136   virtual int reexecute_sp() { return _reexecute_sp; }
 137 
 138   // Helper functions to inline natives
 139   Node* generate_guard(Node* test, RegionNode* region, float true_prob);
 140   Node* generate_slow_guard(Node* test, RegionNode* region);
 141   Node* generate_fair_guard(Node* test, RegionNode* region);
 142   Node* generate_negative_guard(Node* index, RegionNode* region,
 143                                 // resulting CastII of index:
 144                                 Node* *pos_index = NULL);
 145   Node* generate_nonpositive_guard(Node* index, bool never_negative,
 146                                    // resulting CastII of index:
 147                                    Node* *pos_index = NULL);
 148   Node* generate_limit_guard(Node* offset, Node* subseq_length,
 149                              Node* array_length,
 150                              RegionNode* region);
 151   Node* generate_current_thread(Node* &tls_output);
 152   address basictype2arraycopy(BasicType t, Node *src_offset, Node *dest_offset,
 153                               bool disjoint_bases, const char* &name, bool dest_uninitialized);
 154   Node* load_mirror_from_klass(Node* klass);
 155   Node* load_klass_from_mirror_common(Node* mirror, bool never_see_null,
 156                                       RegionNode* region, int null_path,
 157                                       int offset);
 158   Node* load_klass_from_mirror(Node* mirror, bool never_see_null,
 159                                RegionNode* region, int null_path) {
 160     int offset = java_lang_Class::klass_offset_in_bytes();
 161     return load_klass_from_mirror_common(mirror, never_see_null,
 162                                          region, null_path,
 163                                          offset);
 164   }
 165   Node* load_array_klass_from_mirror(Node* mirror, bool never_see_null,
 166                                      RegionNode* region, int null_path) {
 167     int offset = java_lang_Class::array_klass_offset_in_bytes();
 168     return load_klass_from_mirror_common(mirror, never_see_null,
 169                                          region, null_path,
 170                                          offset);
 171   }
 172   Node* generate_access_flags_guard(Node* kls,
 173                                     int modifier_mask, int modifier_bits,
 174                                     RegionNode* region);
 175   Node* generate_interface_guard(Node* kls, RegionNode* region);
 176   Node* generate_array_guard(Node* kls, RegionNode* region) {
 177     return generate_array_guard_common(kls, region, false, false);
 178   }
 179   Node* generate_non_array_guard(Node* kls, RegionNode* region) {
 180     return generate_array_guard_common(kls, region, false, true);
 181   }
 182   Node* generate_objArray_guard(Node* kls, RegionNode* region) {
 183     return generate_array_guard_common(kls, region, true, false);
 184   }
 185   Node* generate_non_objArray_guard(Node* kls, RegionNode* region) {
 186     return generate_array_guard_common(kls, region, true, true);
 187   }
 188   Node* generate_array_guard_common(Node* kls, RegionNode* region,
 189                                     bool obj_array, bool not_array);
 190   Node* generate_virtual_guard(Node* obj_klass, RegionNode* slow_region);
 191   CallJavaNode* generate_method_call(vmIntrinsics::ID method_id,
 192                                      bool is_virtual = false, bool is_static = false);
 193   CallJavaNode* generate_method_call_static(vmIntrinsics::ID method_id) {
 194     return generate_method_call(method_id, false, true);
 195   }
 196   CallJavaNode* generate_method_call_virtual(vmIntrinsics::ID method_id) {
 197     return generate_method_call(method_id, true, false);
 198   }
 199   Node * load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString, bool is_exact, bool is_static);
 200 
 201   Node* make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2);
 202   Node* make_string_method_node(int opcode, Node* str1, Node* str2);
 203   bool inline_string_compareTo();
 204   bool inline_string_indexOf();
 205   Node* string_indexOf(Node* string_object, ciTypeArray* target_array, jint offset, jint cache_i, jint md2_i);
 206   bool inline_string_equals();
 207   Node* round_double_node(Node* n);
 208   bool runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName);
 209   bool inline_math_native(vmIntrinsics::ID id);
 210   bool inline_trig(vmIntrinsics::ID id);
 211   bool inline_math(vmIntrinsics::ID id);
 212   template <typename OverflowOp>
 213   bool inline_math_overflow(Node* arg1, Node* arg2);
 214   void inline_math_mathExact(Node* math, Node* test);
 215   bool inline_math_addExactI(bool is_increment);
 216   bool inline_math_addExactL(bool is_increment);
 217   bool inline_math_multiplyExactI();
 218   bool inline_math_multiplyExactL();
 219   bool inline_math_negateExactI();
 220   bool inline_math_negateExactL();
 221   bool inline_math_subtractExactI(bool is_decrement);
 222   bool inline_math_subtractExactL(bool is_decrement);
 223   bool inline_exp();
 224   bool inline_pow();
 225   Node* finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName);
 226   bool inline_min_max(vmIntrinsics::ID id);
 227   Node* generate_min_max(vmIntrinsics::ID id, Node* x, Node* y);
 228   // This returns Type::AnyPtr, RawPtr, or OopPtr.
 229   int classify_unsafe_addr(Node* &base, Node* &offset);
 230   Node* make_unsafe_address(Node* base, Node* offset);
 231   // Helper for inline_unsafe_access.
 232   // Generates the guards that check whether the result of
 233   // Unsafe.getObject should be recorded in an SATB log buffer.
 234   void insert_pre_barrier(Node* base_oop, Node* offset, Node* pre_val, bool need_mem_bar);
 235   bool inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile);
 236   bool inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static);
 237   static bool klass_needs_init_guard(Node* kls);
 238   bool inline_unsafe_allocate();
 239   bool inline_unsafe_copyMemory();
 240   bool inline_native_currentThread();
 241 #ifdef TRACE_HAVE_INTRINSICS
 242   bool inline_native_classID();
 243   bool inline_native_threadID();
 244 #endif
 245   bool inline_native_time_funcs(address method, const char* funcName);
 246   bool inline_native_isInterrupted();
 247   bool inline_native_Class_query(vmIntrinsics::ID id);
 248   bool inline_native_subtype_check();
 249 
 250   bool inline_native_newArray();
 251   bool inline_native_getLength();
 252   bool inline_array_copyOf(bool is_copyOfRange);
 253   bool inline_array_equals();
 254   void copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark);
 255   bool inline_native_clone(bool is_virtual);
 256   bool inline_native_Reflection_getCallerClass();
 257   // Helper function for inlining native object hash method
 258   bool inline_native_hashcode(bool is_virtual, bool is_static);
 259   bool inline_native_getClass();
 260 
 261   // Helper functions for inlining arraycopy
 262   bool inline_arraycopy();
 263   void generate_arraycopy(const TypePtr* adr_type,
 264                           BasicType basic_elem_type,
 265                           Node* src,  Node* src_offset,
 266                           Node* dest, Node* dest_offset,
 267                           Node* copy_length,
 268                           bool disjoint_bases = false,
 269                           bool length_never_negative = false,
 270                           RegionNode* slow_region = NULL);
 271   AllocateArrayNode* tightly_coupled_allocation(Node* ptr,
 272                                                 RegionNode* slow_region);
 273   void generate_clear_array(const TypePtr* adr_type,
 274                             Node* dest,
 275                             BasicType basic_elem_type,
 276                             Node* slice_off,
 277                             Node* slice_len,
 278                             Node* slice_end);
 279   bool generate_block_arraycopy(const TypePtr* adr_type,
 280                                 BasicType basic_elem_type,
 281                                 AllocateNode* alloc,
 282                                 Node* src,  Node* src_offset,
 283                                 Node* dest, Node* dest_offset,
 284                                 Node* dest_size, bool dest_uninitialized);
 285   void generate_slow_arraycopy(const TypePtr* adr_type,
 286                                Node* src,  Node* src_offset,
 287                                Node* dest, Node* dest_offset,
 288                                Node* copy_length, bool dest_uninitialized);
 289   Node* generate_checkcast_arraycopy(const TypePtr* adr_type,
 290                                      Node* dest_elem_klass,
 291                                      Node* src,  Node* src_offset,
 292                                      Node* dest, Node* dest_offset,
 293                                      Node* copy_length, bool dest_uninitialized);
 294   Node* generate_generic_arraycopy(const TypePtr* adr_type,
 295                                    Node* src,  Node* src_offset,
 296                                    Node* dest, Node* dest_offset,
 297                                    Node* copy_length, bool dest_uninitialized);
 298   void generate_unchecked_arraycopy(const TypePtr* adr_type,
 299                                     BasicType basic_elem_type,
 300                                     bool disjoint_bases,
 301                                     Node* src,  Node* src_offset,
 302                                     Node* dest, Node* dest_offset,
 303                                     Node* copy_length, bool dest_uninitialized);
 304   typedef enum { LS_xadd, LS_xchg, LS_cmpxchg } LoadStoreKind;
 305   bool inline_unsafe_load_store(BasicType type,  LoadStoreKind kind);
 306   bool inline_unsafe_ordered_store(BasicType type);
 307   bool inline_unsafe_fence(vmIntrinsics::ID id);
 308   bool inline_fp_conversions(vmIntrinsics::ID id);
 309   bool inline_number_methods(vmIntrinsics::ID id);
 310   bool inline_reference_get();
 311   bool inline_aescrypt_Block(vmIntrinsics::ID id);
 312   bool inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id);
 313   Node* inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting);
 314   Node* get_key_start_from_aescrypt_object(Node* aescrypt_object);
 315   Node* get_original_key_start_from_aescrypt_object(Node* aescrypt_object);
 316   bool inline_encodeISOArray();
 317   bool inline_updateCRC32();
 318   bool inline_updateBytesCRC32();
 319   bool inline_updateByteBufferCRC32();
 320 };
 321 
 322 
 323 //---------------------------make_vm_intrinsic----------------------------
 324 CallGenerator* Compile::make_vm_intrinsic(ciMethod* m, bool is_virtual) {
 325   vmIntrinsics::ID id = m->intrinsic_id();
 326   assert(id != vmIntrinsics::_none, "must be a VM intrinsic");
 327 
 328   if (DisableIntrinsic[0] != '\0'
 329       && strstr(DisableIntrinsic, vmIntrinsics::name_at(id)) != NULL) {
 330     // disabled by a user request on the command line:
 331     // example: -XX:DisableIntrinsic=_hashCode,_getClass
 332     return NULL;
 333   }
 334 
 335   if (!m->is_loaded()) {
 336     // do not attempt to inline unloaded methods
 337     return NULL;
 338   }
 339 
 340   // Only a few intrinsics implement a virtual dispatch.
 341   // They are expensive calls which are also frequently overridden.
 342   if (is_virtual) {
 343     switch (id) {
 344     case vmIntrinsics::_hashCode:
 345     case vmIntrinsics::_clone:
 346       // OK, Object.hashCode and Object.clone intrinsics come in both flavors
 347       break;
 348     default:
 349       return NULL;
 350     }
 351   }
 352 
 353   // -XX:-InlineNatives disables nearly all intrinsics:
 354   if (!InlineNatives) {
 355     switch (id) {
 356     case vmIntrinsics::_indexOf:
 357     case vmIntrinsics::_compareTo:
 358     case vmIntrinsics::_equals:
 359     case vmIntrinsics::_equalsC:
 360     case vmIntrinsics::_getAndAddInt:
 361     case vmIntrinsics::_getAndAddLong:
 362     case vmIntrinsics::_getAndSetInt:
 363     case vmIntrinsics::_getAndSetLong:
 364     case vmIntrinsics::_getAndSetObject:
 365     case vmIntrinsics::_loadFence:
 366     case vmIntrinsics::_storeFence:
 367     case vmIntrinsics::_fullFence:
 368       break;  // InlineNatives does not control String.compareTo
 369     case vmIntrinsics::_Reference_get:
 370       break;  // InlineNatives does not control Reference.get
 371     default:
 372       return NULL;
 373     }
 374   }
 375 
 376   bool is_predicted = false;
 377   bool does_virtual_dispatch = false;
 378 
 379   switch (id) {
 380   case vmIntrinsics::_compareTo:
 381     if (!SpecialStringCompareTo)  return NULL;
 382     if (!Matcher::match_rule_supported(Op_StrComp))  return NULL;
 383     break;
 384   case vmIntrinsics::_indexOf:
 385     if (!SpecialStringIndexOf)  return NULL;
 386     break;
 387   case vmIntrinsics::_equals:
 388     if (!SpecialStringEquals)  return NULL;
 389     if (!Matcher::match_rule_supported(Op_StrEquals))  return NULL;
 390     break;
 391   case vmIntrinsics::_equalsC:
 392     if (!SpecialArraysEquals)  return NULL;
 393     if (!Matcher::match_rule_supported(Op_AryEq))  return NULL;
 394     break;
 395   case vmIntrinsics::_arraycopy:
 396     if (!InlineArrayCopy)  return NULL;
 397     break;
 398   case vmIntrinsics::_copyMemory:
 399     if (StubRoutines::unsafe_arraycopy() == NULL)  return NULL;
 400     if (!InlineArrayCopy)  return NULL;
 401     break;
 402   case vmIntrinsics::_hashCode:
 403     if (!InlineObjectHash)  return NULL;
 404     does_virtual_dispatch = true;
 405     break;
 406   case vmIntrinsics::_clone:
 407     does_virtual_dispatch = true;
 408   case vmIntrinsics::_copyOf:
 409   case vmIntrinsics::_copyOfRange:
 410     if (!InlineObjectCopy)  return NULL;
 411     // These also use the arraycopy intrinsic mechanism:
 412     if (!InlineArrayCopy)  return NULL;
 413     break;
 414   case vmIntrinsics::_encodeISOArray:
 415     if (!SpecialEncodeISOArray)  return NULL;
 416     if (!Matcher::match_rule_supported(Op_EncodeISOArray))  return NULL;
 417     break;
 418   case vmIntrinsics::_checkIndex:
 419     // We do not intrinsify this.  The optimizer does fine with it.
 420     return NULL;
 421 
 422   case vmIntrinsics::_getCallerClass:
 423     if (!UseNewReflection)  return NULL;
 424     if (!InlineReflectionGetCallerClass)  return NULL;
 425     if (SystemDictionary::reflect_CallerSensitive_klass() == NULL)  return NULL;
 426     break;
 427 
 428   case vmIntrinsics::_bitCount_i:
 429     if (!Matcher::match_rule_supported(Op_PopCountI)) return NULL;
 430     break;
 431 
 432   case vmIntrinsics::_bitCount_l:
 433     if (!Matcher::match_rule_supported(Op_PopCountL)) return NULL;
 434     break;
 435 
 436   case vmIntrinsics::_numberOfLeadingZeros_i:
 437     if (!Matcher::match_rule_supported(Op_CountLeadingZerosI)) return NULL;
 438     break;
 439 
 440   case vmIntrinsics::_numberOfLeadingZeros_l:
 441     if (!Matcher::match_rule_supported(Op_CountLeadingZerosL)) return NULL;
 442     break;
 443 
 444   case vmIntrinsics::_numberOfTrailingZeros_i:
 445     if (!Matcher::match_rule_supported(Op_CountTrailingZerosI)) return NULL;
 446     break;
 447 
 448   case vmIntrinsics::_numberOfTrailingZeros_l:
 449     if (!Matcher::match_rule_supported(Op_CountTrailingZerosL)) return NULL;
 450     break;
 451 
 452   case vmIntrinsics::_reverseBytes_c:
 453     if (!Matcher::match_rule_supported(Op_ReverseBytesUS)) return NULL;
 454     break;
 455   case vmIntrinsics::_reverseBytes_s:
 456     if (!Matcher::match_rule_supported(Op_ReverseBytesS))  return NULL;
 457     break;
 458   case vmIntrinsics::_reverseBytes_i:
 459     if (!Matcher::match_rule_supported(Op_ReverseBytesI))  return NULL;
 460     break;
 461   case vmIntrinsics::_reverseBytes_l:
 462     if (!Matcher::match_rule_supported(Op_ReverseBytesL))  return NULL;
 463     break;
 464 
 465   case vmIntrinsics::_Reference_get:
 466     // Use the intrinsic version of Reference.get() so that the value in
 467     // the referent field can be registered by the G1 pre-barrier code.
 468     // Also add memory barrier to prevent commoning reads from this field
 469     // across safepoint since GC can change it value.
 470     break;
 471 
 472   case vmIntrinsics::_compareAndSwapObject:
 473 #ifdef _LP64
 474     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_CompareAndSwapP)) return NULL;
 475 #endif
 476     break;
 477 
 478   case vmIntrinsics::_compareAndSwapLong:
 479     if (!Matcher::match_rule_supported(Op_CompareAndSwapL)) return NULL;
 480     break;
 481 
 482   case vmIntrinsics::_getAndAddInt:
 483     if (!Matcher::match_rule_supported(Op_GetAndAddI)) return NULL;
 484     break;
 485 
 486   case vmIntrinsics::_getAndAddLong:
 487     if (!Matcher::match_rule_supported(Op_GetAndAddL)) return NULL;
 488     break;
 489 
 490   case vmIntrinsics::_getAndSetInt:
 491     if (!Matcher::match_rule_supported(Op_GetAndSetI)) return NULL;
 492     break;
 493 
 494   case vmIntrinsics::_getAndSetLong:
 495     if (!Matcher::match_rule_supported(Op_GetAndSetL)) return NULL;
 496     break;
 497 
 498   case vmIntrinsics::_getAndSetObject:
 499 #ifdef _LP64
 500     if (!UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 501     if (UseCompressedOops && !Matcher::match_rule_supported(Op_GetAndSetN)) return NULL;
 502     break;
 503 #else
 504     if (!Matcher::match_rule_supported(Op_GetAndSetP)) return NULL;
 505     break;
 506 #endif
 507 
 508   case vmIntrinsics::_aescrypt_encryptBlock:
 509   case vmIntrinsics::_aescrypt_decryptBlock:
 510     if (!UseAESIntrinsics) return NULL;
 511     break;
 512 
 513   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 514   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 515     if (!UseAESIntrinsics) return NULL;
 516     // these two require the predicated logic
 517     is_predicted = true;
 518     break;
 519 
 520   case vmIntrinsics::_updateCRC32:
 521   case vmIntrinsics::_updateBytesCRC32:
 522   case vmIntrinsics::_updateByteBufferCRC32:
 523     if (!UseCRC32Intrinsics) return NULL;
 524     break;
 525 
 526   case vmIntrinsics::_incrementExactI:
 527   case vmIntrinsics::_addExactI:
 528     if (!Matcher::match_rule_supported(Op_OverflowAddI) || !UseMathExactIntrinsics) return NULL;
 529     break;
 530   case vmIntrinsics::_incrementExactL:
 531   case vmIntrinsics::_addExactL:
 532     if (!Matcher::match_rule_supported(Op_OverflowAddL) || !UseMathExactIntrinsics) return NULL;
 533     break;
 534   case vmIntrinsics::_decrementExactI:
 535   case vmIntrinsics::_subtractExactI:
 536     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 537     break;
 538   case vmIntrinsics::_decrementExactL:
 539   case vmIntrinsics::_subtractExactL:
 540     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 541     break;
 542   case vmIntrinsics::_negateExactI:
 543     if (!Matcher::match_rule_supported(Op_OverflowSubI) || !UseMathExactIntrinsics) return NULL;
 544     break;
 545   case vmIntrinsics::_negateExactL:
 546     if (!Matcher::match_rule_supported(Op_OverflowSubL) || !UseMathExactIntrinsics) return NULL;
 547     break;
 548   case vmIntrinsics::_multiplyExactI:
 549     if (!Matcher::match_rule_supported(Op_OverflowMulI) || !UseMathExactIntrinsics) return NULL;
 550     break;
 551   case vmIntrinsics::_multiplyExactL:
 552     if (!Matcher::match_rule_supported(Op_OverflowMulL) || !UseMathExactIntrinsics) return NULL;
 553     break;
 554 
 555  default:
 556     assert(id <= vmIntrinsics::LAST_COMPILER_INLINE, "caller responsibility");
 557     assert(id != vmIntrinsics::_Object_init && id != vmIntrinsics::_invoke, "enum out of order?");
 558     break;
 559   }
 560 
 561   // -XX:-InlineClassNatives disables natives from the Class class.
 562   // The flag applies to all reflective calls, notably Array.newArray
 563   // (visible to Java programmers as Array.newInstance).
 564   if (m->holder()->name() == ciSymbol::java_lang_Class() ||
 565       m->holder()->name() == ciSymbol::java_lang_reflect_Array()) {
 566     if (!InlineClassNatives)  return NULL;
 567   }
 568 
 569   // -XX:-InlineThreadNatives disables natives from the Thread class.
 570   if (m->holder()->name() == ciSymbol::java_lang_Thread()) {
 571     if (!InlineThreadNatives)  return NULL;
 572   }
 573 
 574   // -XX:-InlineMathNatives disables natives from the Math,Float and Double classes.
 575   if (m->holder()->name() == ciSymbol::java_lang_Math() ||
 576       m->holder()->name() == ciSymbol::java_lang_Float() ||
 577       m->holder()->name() == ciSymbol::java_lang_Double()) {
 578     if (!InlineMathNatives)  return NULL;
 579   }
 580 
 581   // -XX:-InlineUnsafeOps disables natives from the Unsafe class.
 582   if (m->holder()->name() == ciSymbol::sun_misc_Unsafe()) {
 583     if (!InlineUnsafeOps)  return NULL;
 584   }
 585 
 586   return new LibraryIntrinsic(m, is_virtual, is_predicted, does_virtual_dispatch, (vmIntrinsics::ID) id);
 587 }
 588 
 589 //----------------------register_library_intrinsics-----------------------
 590 // Initialize this file's data structures, for each Compile instance.
 591 void Compile::register_library_intrinsics() {
 592   // Nothing to do here.
 593 }
 594 
 595 JVMState* LibraryIntrinsic::generate(JVMState* jvms, Parse* parent_parser) {
 596   LibraryCallKit kit(jvms, this);
 597   Compile* C = kit.C;
 598   int nodes = C->unique();
 599 #ifndef PRODUCT
 600   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 601     char buf[1000];
 602     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 603     tty->print_cr("Intrinsic %s", str);
 604   }
 605 #endif
 606   ciMethod* callee = kit.callee();
 607   const int bci    = kit.bci();
 608 
 609   // Try to inline the intrinsic.
 610   if (kit.try_to_inline()) {
 611     if (C->print_intrinsics() || C->print_inlining()) {
 612       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 613     }
 614     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 615     if (C->log()) {
 616       C->log()->elem("intrinsic id='%s'%s nodes='%d'",
 617                      vmIntrinsics::name_at(intrinsic_id()),
 618                      (is_virtual() ? " virtual='1'" : ""),
 619                      C->unique() - nodes);
 620     }
 621     // Push the result from the inlined method onto the stack.
 622     kit.push_result();
 623     C->print_inlining_update(this);
 624     return kit.transfer_exceptions_into_jvms();
 625   }
 626 
 627   // The intrinsic bailed out
 628   if (C->print_intrinsics() || C->print_inlining()) {
 629     if (jvms->has_method()) {
 630       // Not a root compile.
 631       const char* msg = is_virtual() ? "failed to inline (intrinsic, virtual)" : "failed to inline (intrinsic)";
 632       C->print_inlining(callee, jvms->depth() - 1, bci, msg);
 633     } else {
 634       // Root compile
 635       tty->print("Did not generate intrinsic %s%s at bci:%d in",
 636                vmIntrinsics::name_at(intrinsic_id()),
 637                (is_virtual() ? " (virtual)" : ""), bci);
 638     }
 639   }
 640   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 641   C->print_inlining_update(this);
 642   return NULL;
 643 }
 644 
 645 Node* LibraryIntrinsic::generate_predicate(JVMState* jvms) {
 646   LibraryCallKit kit(jvms, this);
 647   Compile* C = kit.C;
 648   int nodes = C->unique();
 649 #ifndef PRODUCT
 650   assert(is_predicted(), "sanity");
 651   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
 652     char buf[1000];
 653     const char* str = vmIntrinsics::short_name_as_C_string(intrinsic_id(), buf, sizeof(buf));
 654     tty->print_cr("Predicate for intrinsic %s", str);
 655   }
 656 #endif
 657   ciMethod* callee = kit.callee();
 658   const int bci    = kit.bci();
 659 
 660   Node* slow_ctl = kit.try_to_predicate();
 661   if (!kit.failing()) {
 662     if (C->print_intrinsics() || C->print_inlining()) {
 663       C->print_inlining(callee, jvms->depth() - 1, bci, is_virtual() ? "(intrinsic, virtual)" : "(intrinsic)");
 664     }
 665     C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_worked);
 666     if (C->log()) {
 667       C->log()->elem("predicate_intrinsic id='%s'%s nodes='%d'",
 668                      vmIntrinsics::name_at(intrinsic_id()),
 669                      (is_virtual() ? " virtual='1'" : ""),
 670                      C->unique() - nodes);
 671     }
 672     return slow_ctl; // Could be NULL if the check folds.
 673   }
 674 
 675   // The intrinsic bailed out
 676   if (C->print_intrinsics() || C->print_inlining()) {
 677     if (jvms->has_method()) {
 678       // Not a root compile.
 679       const char* msg = "failed to generate predicate for intrinsic";
 680       C->print_inlining(kit.callee(), jvms->depth() - 1, bci, msg);
 681     } else {
 682       // Root compile
 683       C->print_inlining_stream()->print("Did not generate predicate for intrinsic %s%s at bci:%d in",
 684                                         vmIntrinsics::name_at(intrinsic_id()),
 685                                         (is_virtual() ? " (virtual)" : ""), bci);
 686     }
 687   }
 688   C->gather_intrinsic_statistics(intrinsic_id(), is_virtual(), Compile::_intrinsic_failed);
 689   return NULL;
 690 }
 691 
 692 bool LibraryCallKit::try_to_inline() {
 693   // Handle symbolic names for otherwise undistinguished boolean switches:
 694   const bool is_store       = true;
 695   const bool is_native_ptr  = true;
 696   const bool is_static      = true;
 697   const bool is_volatile    = true;
 698 
 699   if (!jvms()->has_method()) {
 700     // Root JVMState has a null method.
 701     assert(map()->memory()->Opcode() == Op_Parm, "");
 702     // Insert the memory aliasing node
 703     set_all_memory(reset_memory());
 704   }
 705   assert(merged_memory(), "");
 706 
 707 
 708   switch (intrinsic_id()) {
 709   case vmIntrinsics::_hashCode:                 return inline_native_hashcode(intrinsic()->is_virtual(), !is_static);
 710   case vmIntrinsics::_identityHashCode:         return inline_native_hashcode(/*!virtual*/ false,         is_static);
 711   case vmIntrinsics::_getClass:                 return inline_native_getClass();
 712 
 713   case vmIntrinsics::_dsin:
 714   case vmIntrinsics::_dcos:
 715   case vmIntrinsics::_dtan:
 716   case vmIntrinsics::_dabs:
 717   case vmIntrinsics::_datan2:
 718   case vmIntrinsics::_dsqrt:
 719   case vmIntrinsics::_dexp:
 720   case vmIntrinsics::_dlog:
 721   case vmIntrinsics::_dlog10:
 722   case vmIntrinsics::_dpow:                     return inline_math_native(intrinsic_id());
 723 
 724   case vmIntrinsics::_min:
 725   case vmIntrinsics::_max:                      return inline_min_max(intrinsic_id());
 726 
 727   case vmIntrinsics::_addExactI:                return inline_math_addExactI(false /* add */);
 728   case vmIntrinsics::_addExactL:                return inline_math_addExactL(false /* add */);
 729   case vmIntrinsics::_decrementExactI:          return inline_math_subtractExactI(true /* decrement */);
 730   case vmIntrinsics::_decrementExactL:          return inline_math_subtractExactL(true /* decrement */);
 731   case vmIntrinsics::_incrementExactI:          return inline_math_addExactI(true /* increment */);
 732   case vmIntrinsics::_incrementExactL:          return inline_math_addExactL(true /* increment */);
 733   case vmIntrinsics::_multiplyExactI:           return inline_math_multiplyExactI();
 734   case vmIntrinsics::_multiplyExactL:           return inline_math_multiplyExactL();
 735   case vmIntrinsics::_negateExactI:             return inline_math_negateExactI();
 736   case vmIntrinsics::_negateExactL:             return inline_math_negateExactL();
 737   case vmIntrinsics::_subtractExactI:           return inline_math_subtractExactI(false /* subtract */);
 738   case vmIntrinsics::_subtractExactL:           return inline_math_subtractExactL(false /* subtract */);
 739 
 740   case vmIntrinsics::_arraycopy:                return inline_arraycopy();
 741 
 742   case vmIntrinsics::_compareTo:                return inline_string_compareTo();
 743   case vmIntrinsics::_indexOf:                  return inline_string_indexOf();
 744   case vmIntrinsics::_equals:                   return inline_string_equals();
 745 
 746   case vmIntrinsics::_getObject:                return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,  !is_volatile);
 747   case vmIntrinsics::_getBoolean:               return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN, !is_volatile);
 748   case vmIntrinsics::_getByte:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 749   case vmIntrinsics::_getShort:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 750   case vmIntrinsics::_getChar:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 751   case vmIntrinsics::_getInt:                   return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,     !is_volatile);
 752   case vmIntrinsics::_getLong:                  return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,    !is_volatile);
 753   case vmIntrinsics::_getFloat:                 return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 754   case vmIntrinsics::_getDouble:                return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 755 
 756   case vmIntrinsics::_putObject:                return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,  !is_volatile);
 757   case vmIntrinsics::_putBoolean:               return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN, !is_volatile);
 758   case vmIntrinsics::_putByte:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 759   case vmIntrinsics::_putShort:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 760   case vmIntrinsics::_putChar:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 761   case vmIntrinsics::_putInt:                   return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,     !is_volatile);
 762   case vmIntrinsics::_putLong:                  return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,    !is_volatile);
 763   case vmIntrinsics::_putFloat:                 return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 764   case vmIntrinsics::_putDouble:                return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 765 
 766   case vmIntrinsics::_getByte_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_BYTE,    !is_volatile);
 767   case vmIntrinsics::_getShort_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_SHORT,   !is_volatile);
 768   case vmIntrinsics::_getChar_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_CHAR,    !is_volatile);
 769   case vmIntrinsics::_getInt_raw:               return inline_unsafe_access( is_native_ptr, !is_store, T_INT,     !is_volatile);
 770   case vmIntrinsics::_getLong_raw:              return inline_unsafe_access( is_native_ptr, !is_store, T_LONG,    !is_volatile);
 771   case vmIntrinsics::_getFloat_raw:             return inline_unsafe_access( is_native_ptr, !is_store, T_FLOAT,   !is_volatile);
 772   case vmIntrinsics::_getDouble_raw:            return inline_unsafe_access( is_native_ptr, !is_store, T_DOUBLE,  !is_volatile);
 773   case vmIntrinsics::_getAddress_raw:           return inline_unsafe_access( is_native_ptr, !is_store, T_ADDRESS, !is_volatile);
 774 
 775   case vmIntrinsics::_putByte_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_BYTE,    !is_volatile);
 776   case vmIntrinsics::_putShort_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_SHORT,   !is_volatile);
 777   case vmIntrinsics::_putChar_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_CHAR,    !is_volatile);
 778   case vmIntrinsics::_putInt_raw:               return inline_unsafe_access( is_native_ptr,  is_store, T_INT,     !is_volatile);
 779   case vmIntrinsics::_putLong_raw:              return inline_unsafe_access( is_native_ptr,  is_store, T_LONG,    !is_volatile);
 780   case vmIntrinsics::_putFloat_raw:             return inline_unsafe_access( is_native_ptr,  is_store, T_FLOAT,   !is_volatile);
 781   case vmIntrinsics::_putDouble_raw:            return inline_unsafe_access( is_native_ptr,  is_store, T_DOUBLE,  !is_volatile);
 782   case vmIntrinsics::_putAddress_raw:           return inline_unsafe_access( is_native_ptr,  is_store, T_ADDRESS, !is_volatile);
 783 
 784   case vmIntrinsics::_getObjectVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_OBJECT,   is_volatile);
 785   case vmIntrinsics::_getBooleanVolatile:       return inline_unsafe_access(!is_native_ptr, !is_store, T_BOOLEAN,  is_volatile);
 786   case vmIntrinsics::_getByteVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_BYTE,     is_volatile);
 787   case vmIntrinsics::_getShortVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_SHORT,    is_volatile);
 788   case vmIntrinsics::_getCharVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_CHAR,     is_volatile);
 789   case vmIntrinsics::_getIntVolatile:           return inline_unsafe_access(!is_native_ptr, !is_store, T_INT,      is_volatile);
 790   case vmIntrinsics::_getLongVolatile:          return inline_unsafe_access(!is_native_ptr, !is_store, T_LONG,     is_volatile);
 791   case vmIntrinsics::_getFloatVolatile:         return inline_unsafe_access(!is_native_ptr, !is_store, T_FLOAT,    is_volatile);
 792   case vmIntrinsics::_getDoubleVolatile:        return inline_unsafe_access(!is_native_ptr, !is_store, T_DOUBLE,   is_volatile);
 793 
 794   case vmIntrinsics::_putObjectVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_OBJECT,   is_volatile);
 795   case vmIntrinsics::_putBooleanVolatile:       return inline_unsafe_access(!is_native_ptr,  is_store, T_BOOLEAN,  is_volatile);
 796   case vmIntrinsics::_putByteVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_BYTE,     is_volatile);
 797   case vmIntrinsics::_putShortVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_SHORT,    is_volatile);
 798   case vmIntrinsics::_putCharVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_CHAR,     is_volatile);
 799   case vmIntrinsics::_putIntVolatile:           return inline_unsafe_access(!is_native_ptr,  is_store, T_INT,      is_volatile);
 800   case vmIntrinsics::_putLongVolatile:          return inline_unsafe_access(!is_native_ptr,  is_store, T_LONG,     is_volatile);
 801   case vmIntrinsics::_putFloatVolatile:         return inline_unsafe_access(!is_native_ptr,  is_store, T_FLOAT,    is_volatile);
 802   case vmIntrinsics::_putDoubleVolatile:        return inline_unsafe_access(!is_native_ptr,  is_store, T_DOUBLE,   is_volatile);
 803 
 804   case vmIntrinsics::_prefetchRead:             return inline_unsafe_prefetch(!is_native_ptr, !is_store, !is_static);
 805   case vmIntrinsics::_prefetchWrite:            return inline_unsafe_prefetch(!is_native_ptr,  is_store, !is_static);
 806   case vmIntrinsics::_prefetchReadStatic:       return inline_unsafe_prefetch(!is_native_ptr, !is_store,  is_static);
 807   case vmIntrinsics::_prefetchWriteStatic:      return inline_unsafe_prefetch(!is_native_ptr,  is_store,  is_static);
 808 
 809   case vmIntrinsics::_compareAndSwapObject:     return inline_unsafe_load_store(T_OBJECT, LS_cmpxchg);
 810   case vmIntrinsics::_compareAndSwapInt:        return inline_unsafe_load_store(T_INT,    LS_cmpxchg);
 811   case vmIntrinsics::_compareAndSwapLong:       return inline_unsafe_load_store(T_LONG,   LS_cmpxchg);
 812 
 813   case vmIntrinsics::_putOrderedObject:         return inline_unsafe_ordered_store(T_OBJECT);
 814   case vmIntrinsics::_putOrderedInt:            return inline_unsafe_ordered_store(T_INT);
 815   case vmIntrinsics::_putOrderedLong:           return inline_unsafe_ordered_store(T_LONG);
 816 
 817   case vmIntrinsics::_getAndAddInt:             return inline_unsafe_load_store(T_INT,    LS_xadd);
 818   case vmIntrinsics::_getAndAddLong:            return inline_unsafe_load_store(T_LONG,   LS_xadd);
 819   case vmIntrinsics::_getAndSetInt:             return inline_unsafe_load_store(T_INT,    LS_xchg);
 820   case vmIntrinsics::_getAndSetLong:            return inline_unsafe_load_store(T_LONG,   LS_xchg);
 821   case vmIntrinsics::_getAndSetObject:          return inline_unsafe_load_store(T_OBJECT, LS_xchg);
 822 
 823   case vmIntrinsics::_loadFence:
 824   case vmIntrinsics::_storeFence:
 825   case vmIntrinsics::_fullFence:                return inline_unsafe_fence(intrinsic_id());
 826 
 827   case vmIntrinsics::_currentThread:            return inline_native_currentThread();
 828   case vmIntrinsics::_isInterrupted:            return inline_native_isInterrupted();
 829 
 830 #ifdef TRACE_HAVE_INTRINSICS
 831   case vmIntrinsics::_classID:                  return inline_native_classID();
 832   case vmIntrinsics::_threadID:                 return inline_native_threadID();
 833   case vmIntrinsics::_counterTime:              return inline_native_time_funcs(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), "counterTime");
 834 #endif
 835   case vmIntrinsics::_currentTimeMillis:        return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeMillis), "currentTimeMillis");
 836   case vmIntrinsics::_nanoTime:                 return inline_native_time_funcs(CAST_FROM_FN_PTR(address, os::javaTimeNanos), "nanoTime");
 837   case vmIntrinsics::_allocateInstance:         return inline_unsafe_allocate();
 838   case vmIntrinsics::_copyMemory:               return inline_unsafe_copyMemory();
 839   case vmIntrinsics::_newArray:                 return inline_native_newArray();
 840   case vmIntrinsics::_getLength:                return inline_native_getLength();
 841   case vmIntrinsics::_copyOf:                   return inline_array_copyOf(false);
 842   case vmIntrinsics::_copyOfRange:              return inline_array_copyOf(true);
 843   case vmIntrinsics::_equalsC:                  return inline_array_equals();
 844   case vmIntrinsics::_clone:                    return inline_native_clone(intrinsic()->is_virtual());
 845 
 846   case vmIntrinsics::_isAssignableFrom:         return inline_native_subtype_check();
 847 
 848   case vmIntrinsics::_isInstance:
 849   case vmIntrinsics::_getModifiers:
 850   case vmIntrinsics::_isInterface:
 851   case vmIntrinsics::_isArray:
 852   case vmIntrinsics::_isPrimitive:
 853   case vmIntrinsics::_getSuperclass:
 854   case vmIntrinsics::_getComponentType:
 855   case vmIntrinsics::_getClassAccessFlags:      return inline_native_Class_query(intrinsic_id());
 856 
 857   case vmIntrinsics::_floatToRawIntBits:
 858   case vmIntrinsics::_floatToIntBits:
 859   case vmIntrinsics::_intBitsToFloat:
 860   case vmIntrinsics::_doubleToRawLongBits:
 861   case vmIntrinsics::_doubleToLongBits:
 862   case vmIntrinsics::_longBitsToDouble:         return inline_fp_conversions(intrinsic_id());
 863 
 864   case vmIntrinsics::_numberOfLeadingZeros_i:
 865   case vmIntrinsics::_numberOfLeadingZeros_l:
 866   case vmIntrinsics::_numberOfTrailingZeros_i:
 867   case vmIntrinsics::_numberOfTrailingZeros_l:
 868   case vmIntrinsics::_bitCount_i:
 869   case vmIntrinsics::_bitCount_l:
 870   case vmIntrinsics::_reverseBytes_i:
 871   case vmIntrinsics::_reverseBytes_l:
 872   case vmIntrinsics::_reverseBytes_s:
 873   case vmIntrinsics::_reverseBytes_c:           return inline_number_methods(intrinsic_id());
 874 
 875   case vmIntrinsics::_getCallerClass:           return inline_native_Reflection_getCallerClass();
 876 
 877   case vmIntrinsics::_Reference_get:            return inline_reference_get();
 878 
 879   case vmIntrinsics::_aescrypt_encryptBlock:
 880   case vmIntrinsics::_aescrypt_decryptBlock:    return inline_aescrypt_Block(intrinsic_id());
 881 
 882   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 883   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 884     return inline_cipherBlockChaining_AESCrypt(intrinsic_id());
 885 
 886   case vmIntrinsics::_encodeISOArray:
 887     return inline_encodeISOArray();
 888 
 889   case vmIntrinsics::_updateCRC32:
 890     return inline_updateCRC32();
 891   case vmIntrinsics::_updateBytesCRC32:
 892     return inline_updateBytesCRC32();
 893   case vmIntrinsics::_updateByteBufferCRC32:
 894     return inline_updateByteBufferCRC32();
 895 
 896   default:
 897     // If you get here, it may be that someone has added a new intrinsic
 898     // to the list in vmSymbols.hpp without implementing it here.
 899 #ifndef PRODUCT
 900     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 901       tty->print_cr("*** Warning: Unimplemented intrinsic %s(%d)",
 902                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 903     }
 904 #endif
 905     return false;
 906   }
 907 }
 908 
 909 Node* LibraryCallKit::try_to_predicate() {
 910   if (!jvms()->has_method()) {
 911     // Root JVMState has a null method.
 912     assert(map()->memory()->Opcode() == Op_Parm, "");
 913     // Insert the memory aliasing node
 914     set_all_memory(reset_memory());
 915   }
 916   assert(merged_memory(), "");
 917 
 918   switch (intrinsic_id()) {
 919   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
 920     return inline_cipherBlockChaining_AESCrypt_predicate(false);
 921   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
 922     return inline_cipherBlockChaining_AESCrypt_predicate(true);
 923 
 924   default:
 925     // If you get here, it may be that someone has added a new intrinsic
 926     // to the list in vmSymbols.hpp without implementing it here.
 927 #ifndef PRODUCT
 928     if ((PrintMiscellaneous && (Verbose || WizardMode)) || PrintOpto) {
 929       tty->print_cr("*** Warning: Unimplemented predicate for intrinsic %s(%d)",
 930                     vmIntrinsics::name_at(intrinsic_id()), intrinsic_id());
 931     }
 932 #endif
 933     Node* slow_ctl = control();
 934     set_control(top()); // No fast path instrinsic
 935     return slow_ctl;
 936   }
 937 }
 938 
 939 //------------------------------set_result-------------------------------
 940 // Helper function for finishing intrinsics.
 941 void LibraryCallKit::set_result(RegionNode* region, PhiNode* value) {
 942   record_for_igvn(region);
 943   set_control(_gvn.transform(region));
 944   set_result( _gvn.transform(value));
 945   assert(value->type()->basic_type() == result()->bottom_type()->basic_type(), "sanity");
 946 }
 947 
 948 //------------------------------generate_guard---------------------------
 949 // Helper function for generating guarded fast-slow graph structures.
 950 // The given 'test', if true, guards a slow path.  If the test fails
 951 // then a fast path can be taken.  (We generally hope it fails.)
 952 // In all cases, GraphKit::control() is updated to the fast path.
 953 // The returned value represents the control for the slow path.
 954 // The return value is never 'top'; it is either a valid control
 955 // or NULL if it is obvious that the slow path can never be taken.
 956 // Also, if region and the slow control are not NULL, the slow edge
 957 // is appended to the region.
 958 Node* LibraryCallKit::generate_guard(Node* test, RegionNode* region, float true_prob) {
 959   if (stopped()) {
 960     // Already short circuited.
 961     return NULL;
 962   }
 963 
 964   // Build an if node and its projections.
 965   // If test is true we take the slow path, which we assume is uncommon.
 966   if (_gvn.type(test) == TypeInt::ZERO) {
 967     // The slow branch is never taken.  No need to build this guard.
 968     return NULL;
 969   }
 970 
 971   IfNode* iff = create_and_map_if(control(), test, true_prob, COUNT_UNKNOWN);
 972 
 973   Node* if_slow = _gvn.transform(new (C) IfTrueNode(iff));
 974   if (if_slow == top()) {
 975     // The slow branch is never taken.  No need to build this guard.
 976     return NULL;
 977   }
 978 
 979   if (region != NULL)
 980     region->add_req(if_slow);
 981 
 982   Node* if_fast = _gvn.transform(new (C) IfFalseNode(iff));
 983   set_control(if_fast);
 984 
 985   return if_slow;
 986 }
 987 
 988 inline Node* LibraryCallKit::generate_slow_guard(Node* test, RegionNode* region) {
 989   return generate_guard(test, region, PROB_UNLIKELY_MAG(3));
 990 }
 991 inline Node* LibraryCallKit::generate_fair_guard(Node* test, RegionNode* region) {
 992   return generate_guard(test, region, PROB_FAIR);
 993 }
 994 
 995 inline Node* LibraryCallKit::generate_negative_guard(Node* index, RegionNode* region,
 996                                                      Node* *pos_index) {
 997   if (stopped())
 998     return NULL;                // already stopped
 999   if (_gvn.type(index)->higher_equal(TypeInt::POS)) // [0,maxint]
1000     return NULL;                // index is already adequately typed
1001   Node* cmp_lt = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1002   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1003   Node* is_neg = generate_guard(bol_lt, region, PROB_MIN);
1004   if (is_neg != NULL && pos_index != NULL) {
1005     // Emulate effect of Parse::adjust_map_after_if.
1006     Node* ccast = new (C) CastIINode(index, TypeInt::POS);
1007     ccast->set_req(0, control());
1008     (*pos_index) = _gvn.transform(ccast);
1009   }
1010   return is_neg;
1011 }
1012 
1013 inline Node* LibraryCallKit::generate_nonpositive_guard(Node* index, bool never_negative,
1014                                                         Node* *pos_index) {
1015   if (stopped())
1016     return NULL;                // already stopped
1017   if (_gvn.type(index)->higher_equal(TypeInt::POS1)) // [1,maxint]
1018     return NULL;                // index is already adequately typed
1019   Node* cmp_le = _gvn.transform(new (C) CmpINode(index, intcon(0)));
1020   BoolTest::mask le_or_eq = (never_negative ? BoolTest::eq : BoolTest::le);
1021   Node* bol_le = _gvn.transform(new (C) BoolNode(cmp_le, le_or_eq));
1022   Node* is_notp = generate_guard(bol_le, NULL, PROB_MIN);
1023   if (is_notp != NULL && pos_index != NULL) {
1024     // Emulate effect of Parse::adjust_map_after_if.
1025     Node* ccast = new (C) CastIINode(index, TypeInt::POS1);
1026     ccast->set_req(0, control());
1027     (*pos_index) = _gvn.transform(ccast);
1028   }
1029   return is_notp;
1030 }
1031 
1032 // Make sure that 'position' is a valid limit index, in [0..length].
1033 // There are two equivalent plans for checking this:
1034 //   A. (offset + copyLength)  unsigned<=  arrayLength
1035 //   B. offset  <=  (arrayLength - copyLength)
1036 // We require that all of the values above, except for the sum and
1037 // difference, are already known to be non-negative.
1038 // Plan A is robust in the face of overflow, if offset and copyLength
1039 // are both hugely positive.
1040 //
1041 // Plan B is less direct and intuitive, but it does not overflow at
1042 // all, since the difference of two non-negatives is always
1043 // representable.  Whenever Java methods must perform the equivalent
1044 // check they generally use Plan B instead of Plan A.
1045 // For the moment we use Plan A.
1046 inline Node* LibraryCallKit::generate_limit_guard(Node* offset,
1047                                                   Node* subseq_length,
1048                                                   Node* array_length,
1049                                                   RegionNode* region) {
1050   if (stopped())
1051     return NULL;                // already stopped
1052   bool zero_offset = _gvn.type(offset) == TypeInt::ZERO;
1053   if (zero_offset && subseq_length->eqv_uncast(array_length))
1054     return NULL;                // common case of whole-array copy
1055   Node* last = subseq_length;
1056   if (!zero_offset)             // last += offset
1057     last = _gvn.transform(new (C) AddINode(last, offset));
1058   Node* cmp_lt = _gvn.transform(new (C) CmpUNode(array_length, last));
1059   Node* bol_lt = _gvn.transform(new (C) BoolNode(cmp_lt, BoolTest::lt));
1060   Node* is_over = generate_guard(bol_lt, region, PROB_MIN);
1061   return is_over;
1062 }
1063 
1064 
1065 //--------------------------generate_current_thread--------------------
1066 Node* LibraryCallKit::generate_current_thread(Node* &tls_output) {
1067   ciKlass*    thread_klass = env()->Thread_klass();
1068   const Type* thread_type  = TypeOopPtr::make_from_klass(thread_klass)->cast_to_ptr_type(TypePtr::NotNull);
1069   Node* thread = _gvn.transform(new (C) ThreadLocalNode());
1070   Node* p = basic_plus_adr(top()/*!oop*/, thread, in_bytes(JavaThread::threadObj_offset()));
1071   Node* threadObj = make_load(NULL, p, thread_type, T_OBJECT, MemNode::unordered);
1072   tls_output = thread;
1073   return threadObj;
1074 }
1075 
1076 
1077 //------------------------------make_string_method_node------------------------
1078 // Helper method for String intrinsic functions. This version is called
1079 // with str1 and str2 pointing to String object nodes.
1080 //
1081 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1, Node* str2) {
1082   Node* no_ctrl = NULL;
1083 
1084   // Get start addr of string
1085   Node* str1_value   = load_String_value(no_ctrl, str1);
1086   Node* str1_offset  = load_String_offset(no_ctrl, str1);
1087   Node* str1_start   = array_element_address(str1_value, str1_offset, T_CHAR);
1088 
1089   // Get length of string 1
1090   Node* str1_len  = load_String_length(no_ctrl, str1);
1091 
1092   Node* str2_value   = load_String_value(no_ctrl, str2);
1093   Node* str2_offset  = load_String_offset(no_ctrl, str2);
1094   Node* str2_start   = array_element_address(str2_value, str2_offset, T_CHAR);
1095 
1096   Node* str2_len = NULL;
1097   Node* result = NULL;
1098 
1099   switch (opcode) {
1100   case Op_StrIndexOf:
1101     // Get length of string 2
1102     str2_len = load_String_length(no_ctrl, str2);
1103 
1104     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1105                                  str1_start, str1_len, str2_start, str2_len);
1106     break;
1107   case Op_StrComp:
1108     // Get length of string 2
1109     str2_len = load_String_length(no_ctrl, str2);
1110 
1111     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1112                                  str1_start, str1_len, str2_start, str2_len);
1113     break;
1114   case Op_StrEquals:
1115     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1116                                str1_start, str2_start, str1_len);
1117     break;
1118   default:
1119     ShouldNotReachHere();
1120     return NULL;
1121   }
1122 
1123   // All these intrinsics have checks.
1124   C->set_has_split_ifs(true); // Has chance for split-if optimization
1125 
1126   return _gvn.transform(result);
1127 }
1128 
1129 // Helper method for String intrinsic functions. This version is called
1130 // with str1 and str2 pointing to char[] nodes, with cnt1 and cnt2 pointing
1131 // to Int nodes containing the lenghts of str1 and str2.
1132 //
1133 Node* LibraryCallKit::make_string_method_node(int opcode, Node* str1_start, Node* cnt1, Node* str2_start, Node* cnt2) {
1134   Node* result = NULL;
1135   switch (opcode) {
1136   case Op_StrIndexOf:
1137     result = new (C) StrIndexOfNode(control(), memory(TypeAryPtr::CHARS),
1138                                  str1_start, cnt1, str2_start, cnt2);
1139     break;
1140   case Op_StrComp:
1141     result = new (C) StrCompNode(control(), memory(TypeAryPtr::CHARS),
1142                                  str1_start, cnt1, str2_start, cnt2);
1143     break;
1144   case Op_StrEquals:
1145     result = new (C) StrEqualsNode(control(), memory(TypeAryPtr::CHARS),
1146                                  str1_start, str2_start, cnt1);
1147     break;
1148   default:
1149     ShouldNotReachHere();
1150     return NULL;
1151   }
1152 
1153   // All these intrinsics have checks.
1154   C->set_has_split_ifs(true); // Has chance for split-if optimization
1155 
1156   return _gvn.transform(result);
1157 }
1158 
1159 //------------------------------inline_string_compareTo------------------------
1160 // public int java.lang.String.compareTo(String anotherString);
1161 bool LibraryCallKit::inline_string_compareTo() {
1162   Node* receiver = null_check(argument(0));
1163   Node* arg      = null_check(argument(1));
1164   if (stopped()) {
1165     return true;
1166   }
1167   set_result(make_string_method_node(Op_StrComp, receiver, arg));
1168   return true;
1169 }
1170 
1171 //------------------------------inline_string_equals------------------------
1172 bool LibraryCallKit::inline_string_equals() {
1173   Node* receiver = null_check_receiver();
1174   // NOTE: Do not null check argument for String.equals() because spec
1175   // allows to specify NULL as argument.
1176   Node* argument = this->argument(1);
1177   if (stopped()) {
1178     return true;
1179   }
1180 
1181   // paths (plus control) merge
1182   RegionNode* region = new (C) RegionNode(5);
1183   Node* phi = new (C) PhiNode(region, TypeInt::BOOL);
1184 
1185   // does source == target string?
1186   Node* cmp = _gvn.transform(new (C) CmpPNode(receiver, argument));
1187   Node* bol = _gvn.transform(new (C) BoolNode(cmp, BoolTest::eq));
1188 
1189   Node* if_eq = generate_slow_guard(bol, NULL);
1190   if (if_eq != NULL) {
1191     // receiver == argument
1192     phi->init_req(2, intcon(1));
1193     region->init_req(2, if_eq);
1194   }
1195 
1196   // get String klass for instanceOf
1197   ciInstanceKlass* klass = env()->String_klass();
1198 
1199   if (!stopped()) {
1200     Node* inst = gen_instanceof(argument, makecon(TypeKlassPtr::make(klass)));
1201     Node* cmp  = _gvn.transform(new (C) CmpINode(inst, intcon(1)));
1202     Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
1203 
1204     Node* inst_false = generate_guard(bol, NULL, PROB_MIN);
1205     //instanceOf == true, fallthrough
1206 
1207     if (inst_false != NULL) {
1208       phi->init_req(3, intcon(0));
1209       region->init_req(3, inst_false);
1210     }
1211   }
1212 
1213   if (!stopped()) {
1214     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(klass);
1215 
1216     // Properly cast the argument to String
1217     argument = _gvn.transform(new (C) CheckCastPPNode(control(), argument, string_type));
1218     // This path is taken only when argument's type is String:NotNull.
1219     argument = cast_not_null(argument, false);
1220 
1221     Node* no_ctrl = NULL;
1222 
1223     // Get start addr of receiver
1224     Node* receiver_val    = load_String_value(no_ctrl, receiver);
1225     Node* receiver_offset = load_String_offset(no_ctrl, receiver);
1226     Node* receiver_start = array_element_address(receiver_val, receiver_offset, T_CHAR);
1227 
1228     // Get length of receiver
1229     Node* receiver_cnt  = load_String_length(no_ctrl, receiver);
1230 
1231     // Get start addr of argument
1232     Node* argument_val    = load_String_value(no_ctrl, argument);
1233     Node* argument_offset = load_String_offset(no_ctrl, argument);
1234     Node* argument_start = array_element_address(argument_val, argument_offset, T_CHAR);
1235 
1236     // Get length of argument
1237     Node* argument_cnt  = load_String_length(no_ctrl, argument);
1238 
1239     // Check for receiver count != argument count
1240     Node* cmp = _gvn.transform(new(C) CmpINode(receiver_cnt, argument_cnt));
1241     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::ne));
1242     Node* if_ne = generate_slow_guard(bol, NULL);
1243     if (if_ne != NULL) {
1244       phi->init_req(4, intcon(0));
1245       region->init_req(4, if_ne);
1246     }
1247 
1248     // Check for count == 0 is done by assembler code for StrEquals.
1249 
1250     if (!stopped()) {
1251       Node* equals = make_string_method_node(Op_StrEquals, receiver_start, receiver_cnt, argument_start, argument_cnt);
1252       phi->init_req(1, equals);
1253       region->init_req(1, control());
1254     }
1255   }
1256 
1257   // post merge
1258   set_control(_gvn.transform(region));
1259   record_for_igvn(region);
1260 
1261   set_result(_gvn.transform(phi));
1262   return true;
1263 }
1264 
1265 //------------------------------inline_array_equals----------------------------
1266 bool LibraryCallKit::inline_array_equals() {
1267   Node* arg1 = argument(0);
1268   Node* arg2 = argument(1);
1269   set_result(_gvn.transform(new (C) AryEqNode(control(), memory(TypeAryPtr::CHARS), arg1, arg2)));
1270   return true;
1271 }
1272 
1273 // Java version of String.indexOf(constant string)
1274 // class StringDecl {
1275 //   StringDecl(char[] ca) {
1276 //     offset = 0;
1277 //     count = ca.length;
1278 //     value = ca;
1279 //   }
1280 //   int offset;
1281 //   int count;
1282 //   char[] value;
1283 // }
1284 //
1285 // static int string_indexOf_J(StringDecl string_object, char[] target_object,
1286 //                             int targetOffset, int cache_i, int md2) {
1287 //   int cache = cache_i;
1288 //   int sourceOffset = string_object.offset;
1289 //   int sourceCount = string_object.count;
1290 //   int targetCount = target_object.length;
1291 //
1292 //   int targetCountLess1 = targetCount - 1;
1293 //   int sourceEnd = sourceOffset + sourceCount - targetCountLess1;
1294 //
1295 //   char[] source = string_object.value;
1296 //   char[] target = target_object;
1297 //   int lastChar = target[targetCountLess1];
1298 //
1299 //  outer_loop:
1300 //   for (int i = sourceOffset; i < sourceEnd; ) {
1301 //     int src = source[i + targetCountLess1];
1302 //     if (src == lastChar) {
1303 //       // With random strings and a 4-character alphabet,
1304 //       // reverse matching at this point sets up 0.8% fewer
1305 //       // frames, but (paradoxically) makes 0.3% more probes.
1306 //       // Since those probes are nearer the lastChar probe,
1307 //       // there is may be a net D$ win with reverse matching.
1308 //       // But, reversing loop inhibits unroll of inner loop
1309 //       // for unknown reason.  So, does running outer loop from
1310 //       // (sourceOffset - targetCountLess1) to (sourceOffset + sourceCount)
1311 //       for (int j = 0; j < targetCountLess1; j++) {
1312 //         if (target[targetOffset + j] != source[i+j]) {
1313 //           if ((cache & (1 << source[i+j])) == 0) {
1314 //             if (md2 < j+1) {
1315 //               i += j+1;
1316 //               continue outer_loop;
1317 //             }
1318 //           }
1319 //           i += md2;
1320 //           continue outer_loop;
1321 //         }
1322 //       }
1323 //       return i - sourceOffset;
1324 //     }
1325 //     if ((cache & (1 << src)) == 0) {
1326 //       i += targetCountLess1;
1327 //     } // using "i += targetCount;" and an "else i++;" causes a jump to jump.
1328 //     i++;
1329 //   }
1330 //   return -1;
1331 // }
1332 
1333 //------------------------------string_indexOf------------------------
1334 Node* LibraryCallKit::string_indexOf(Node* string_object, ciTypeArray* target_array, jint targetOffset_i,
1335                                      jint cache_i, jint md2_i) {
1336 
1337   Node* no_ctrl  = NULL;
1338   float likely   = PROB_LIKELY(0.9);
1339   float unlikely = PROB_UNLIKELY(0.9);
1340 
1341   const int nargs = 0; // no arguments to push back for uncommon trap in predicate
1342 
1343   Node* source        = load_String_value(no_ctrl, string_object);
1344   Node* sourceOffset  = load_String_offset(no_ctrl, string_object);
1345   Node* sourceCount   = load_String_length(no_ctrl, string_object);
1346 
1347   Node* target = _gvn.transform( makecon(TypeOopPtr::make_from_constant(target_array, true)));
1348   jint target_length = target_array->length();
1349   const TypeAry* target_array_type = TypeAry::make(TypeInt::CHAR, TypeInt::make(0, target_length, Type::WidenMin));
1350   const TypeAryPtr* target_type = TypeAryPtr::make(TypePtr::BotPTR, target_array_type, target_array->klass(), true, Type::OffsetBot);
1351 
1352   // String.value field is known to be @Stable.
1353   if (UseImplicitStableValues) {
1354     target = cast_array_to_stable(target, target_type);
1355   }
1356 
1357   IdealKit kit(this, false, true);
1358 #define __ kit.
1359   Node* zero             = __ ConI(0);
1360   Node* one              = __ ConI(1);
1361   Node* cache            = __ ConI(cache_i);
1362   Node* md2              = __ ConI(md2_i);
1363   Node* lastChar         = __ ConI(target_array->char_at(target_length - 1));
1364   Node* targetCount      = __ ConI(target_length);
1365   Node* targetCountLess1 = __ ConI(target_length - 1);
1366   Node* targetOffset     = __ ConI(targetOffset_i);
1367   Node* sourceEnd        = __ SubI(__ AddI(sourceOffset, sourceCount), targetCountLess1);
1368 
1369   IdealVariable rtn(kit), i(kit), j(kit); __ declarations_done();
1370   Node* outer_loop = __ make_label(2 /* goto */);
1371   Node* return_    = __ make_label(1);
1372 
1373   __ set(rtn,__ ConI(-1));
1374   __ loop(this, nargs, i, sourceOffset, BoolTest::lt, sourceEnd); {
1375        Node* i2  = __ AddI(__ value(i), targetCountLess1);
1376        // pin to prohibit loading of "next iteration" value which may SEGV (rare)
1377        Node* src = load_array_element(__ ctrl(), source, i2, TypeAryPtr::CHARS);
1378        __ if_then(src, BoolTest::eq, lastChar, unlikely); {
1379          __ loop(this, nargs, j, zero, BoolTest::lt, targetCountLess1); {
1380               Node* tpj = __ AddI(targetOffset, __ value(j));
1381               Node* targ = load_array_element(no_ctrl, target, tpj, target_type);
1382               Node* ipj  = __ AddI(__ value(i), __ value(j));
1383               Node* src2 = load_array_element(no_ctrl, source, ipj, TypeAryPtr::CHARS);
1384               __ if_then(targ, BoolTest::ne, src2); {
1385                 __ if_then(__ AndI(cache, __ LShiftI(one, src2)), BoolTest::eq, zero); {
1386                   __ if_then(md2, BoolTest::lt, __ AddI(__ value(j), one)); {
1387                     __ increment(i, __ AddI(__ value(j), one));
1388                     __ goto_(outer_loop);
1389                   } __ end_if(); __ dead(j);
1390                 }__ end_if(); __ dead(j);
1391                 __ increment(i, md2);
1392                 __ goto_(outer_loop);
1393               }__ end_if();
1394               __ increment(j, one);
1395          }__ end_loop(); __ dead(j);
1396          __ set(rtn, __ SubI(__ value(i), sourceOffset)); __ dead(i);
1397          __ goto_(return_);
1398        }__ end_if();
1399        __ if_then(__ AndI(cache, __ LShiftI(one, src)), BoolTest::eq, zero, likely); {
1400          __ increment(i, targetCountLess1);
1401        }__ end_if();
1402        __ increment(i, one);
1403        __ bind(outer_loop);
1404   }__ end_loop(); __ dead(i);
1405   __ bind(return_);
1406 
1407   // Final sync IdealKit and GraphKit.
1408   final_sync(kit);
1409   Node* result = __ value(rtn);
1410 #undef __
1411   C->set_has_loops(true);
1412   return result;
1413 }
1414 
1415 //------------------------------inline_string_indexOf------------------------
1416 bool LibraryCallKit::inline_string_indexOf() {
1417   Node* receiver = argument(0);
1418   Node* arg      = argument(1);
1419 
1420   Node* result;
1421   // Disable the use of pcmpestri until it can be guaranteed that
1422   // the load doesn't cross into the uncommited space.
1423   if (Matcher::has_match_rule(Op_StrIndexOf) &&
1424       UseSSE42Intrinsics) {
1425     // Generate SSE4.2 version of indexOf
1426     // We currently only have match rules that use SSE4.2
1427 
1428     receiver = null_check(receiver);
1429     arg      = null_check(arg);
1430     if (stopped()) {
1431       return true;
1432     }
1433 
1434     ciInstanceKlass* str_klass = env()->String_klass();
1435     const TypeOopPtr* string_type = TypeOopPtr::make_from_klass(str_klass);
1436 
1437     // Make the merge point
1438     RegionNode* result_rgn = new (C) RegionNode(4);
1439     Node*       result_phi = new (C) PhiNode(result_rgn, TypeInt::INT);
1440     Node* no_ctrl  = NULL;
1441 
1442     // Get start addr of source string
1443     Node* source = load_String_value(no_ctrl, receiver);
1444     Node* source_offset = load_String_offset(no_ctrl, receiver);
1445     Node* source_start = array_element_address(source, source_offset, T_CHAR);
1446 
1447     // Get length of source string
1448     Node* source_cnt  = load_String_length(no_ctrl, receiver);
1449 
1450     // Get start addr of substring
1451     Node* substr = load_String_value(no_ctrl, arg);
1452     Node* substr_offset = load_String_offset(no_ctrl, arg);
1453     Node* substr_start = array_element_address(substr, substr_offset, T_CHAR);
1454 
1455     // Get length of source string
1456     Node* substr_cnt  = load_String_length(no_ctrl, arg);
1457 
1458     // Check for substr count > string count
1459     Node* cmp = _gvn.transform(new(C) CmpINode(substr_cnt, source_cnt));
1460     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::gt));
1461     Node* if_gt = generate_slow_guard(bol, NULL);
1462     if (if_gt != NULL) {
1463       result_phi->init_req(2, intcon(-1));
1464       result_rgn->init_req(2, if_gt);
1465     }
1466 
1467     if (!stopped()) {
1468       // Check for substr count == 0
1469       cmp = _gvn.transform(new(C) CmpINode(substr_cnt, intcon(0)));
1470       bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
1471       Node* if_zero = generate_slow_guard(bol, NULL);
1472       if (if_zero != NULL) {
1473         result_phi->init_req(3, intcon(0));
1474         result_rgn->init_req(3, if_zero);
1475       }
1476     }
1477 
1478     if (!stopped()) {
1479       result = make_string_method_node(Op_StrIndexOf, source_start, source_cnt, substr_start, substr_cnt);
1480       result_phi->init_req(1, result);
1481       result_rgn->init_req(1, control());
1482     }
1483     set_control(_gvn.transform(result_rgn));
1484     record_for_igvn(result_rgn);
1485     result = _gvn.transform(result_phi);
1486 
1487   } else { // Use LibraryCallKit::string_indexOf
1488     // don't intrinsify if argument isn't a constant string.
1489     if (!arg->is_Con()) {
1490      return false;
1491     }
1492     const TypeOopPtr* str_type = _gvn.type(arg)->isa_oopptr();
1493     if (str_type == NULL) {
1494       return false;
1495     }
1496     ciInstanceKlass* klass = env()->String_klass();
1497     ciObject* str_const = str_type->const_oop();
1498     if (str_const == NULL || str_const->klass() != klass) {
1499       return false;
1500     }
1501     ciInstance* str = str_const->as_instance();
1502     assert(str != NULL, "must be instance");
1503 
1504     ciObject* v = str->field_value_by_offset(java_lang_String::value_offset_in_bytes()).as_object();
1505     ciTypeArray* pat = v->as_type_array(); // pattern (argument) character array
1506 
1507     int o;
1508     int c;
1509     if (java_lang_String::has_offset_field()) {
1510       o = str->field_value_by_offset(java_lang_String::offset_offset_in_bytes()).as_int();
1511       c = str->field_value_by_offset(java_lang_String::count_offset_in_bytes()).as_int();
1512     } else {
1513       o = 0;
1514       c = pat->length();
1515     }
1516 
1517     // constant strings have no offset and count == length which
1518     // simplifies the resulting code somewhat so lets optimize for that.
1519     if (o != 0 || c != pat->length()) {
1520      return false;
1521     }
1522 
1523     receiver = null_check(receiver, T_OBJECT);
1524     // NOTE: No null check on the argument is needed since it's a constant String oop.
1525     if (stopped()) {
1526       return true;
1527     }
1528 
1529     // The null string as a pattern always returns 0 (match at beginning of string)
1530     if (c == 0) {
1531       set_result(intcon(0));
1532       return true;
1533     }
1534 
1535     // Generate default indexOf
1536     jchar lastChar = pat->char_at(o + (c - 1));
1537     int cache = 0;
1538     int i;
1539     for (i = 0; i < c - 1; i++) {
1540       assert(i < pat->length(), "out of range");
1541       cache |= (1 << (pat->char_at(o + i) & (sizeof(cache) * BitsPerByte - 1)));
1542     }
1543 
1544     int md2 = c;
1545     for (i = 0; i < c - 1; i++) {
1546       assert(i < pat->length(), "out of range");
1547       if (pat->char_at(o + i) == lastChar) {
1548         md2 = (c - 1) - i;
1549       }
1550     }
1551 
1552     result = string_indexOf(receiver, pat, o, cache, md2);
1553   }
1554   set_result(result);
1555   return true;
1556 }
1557 
1558 //--------------------------round_double_node--------------------------------
1559 // Round a double node if necessary.
1560 Node* LibraryCallKit::round_double_node(Node* n) {
1561   if (Matcher::strict_fp_requires_explicit_rounding && UseSSE <= 1)
1562     n = _gvn.transform(new (C) RoundDoubleNode(0, n));
1563   return n;
1564 }
1565 
1566 //------------------------------inline_math-----------------------------------
1567 // public static double Math.abs(double)
1568 // public static double Math.sqrt(double)
1569 // public static double Math.log(double)
1570 // public static double Math.log10(double)
1571 bool LibraryCallKit::inline_math(vmIntrinsics::ID id) {
1572   Node* arg = round_double_node(argument(0));
1573   Node* n;
1574   switch (id) {
1575   case vmIntrinsics::_dabs:   n = new (C) AbsDNode(                arg);  break;
1576   case vmIntrinsics::_dsqrt:  n = new (C) SqrtDNode(C, control(),  arg);  break;
1577   case vmIntrinsics::_dlog:   n = new (C) LogDNode(C, control(),   arg);  break;
1578   case vmIntrinsics::_dlog10: n = new (C) Log10DNode(C, control(), arg);  break;
1579   default:  fatal_unexpected_iid(id);  break;
1580   }
1581   set_result(_gvn.transform(n));
1582   return true;
1583 }
1584 
1585 //------------------------------inline_trig----------------------------------
1586 // Inline sin/cos/tan instructions, if possible.  If rounding is required, do
1587 // argument reduction which will turn into a fast/slow diamond.
1588 bool LibraryCallKit::inline_trig(vmIntrinsics::ID id) {
1589   Node* arg = round_double_node(argument(0));
1590   Node* n = NULL;
1591 
1592   switch (id) {
1593   case vmIntrinsics::_dsin:  n = new (C) SinDNode(C, control(), arg);  break;
1594   case vmIntrinsics::_dcos:  n = new (C) CosDNode(C, control(), arg);  break;
1595   case vmIntrinsics::_dtan:  n = new (C) TanDNode(C, control(), arg);  break;
1596   default:  fatal_unexpected_iid(id);  break;
1597   }
1598   n = _gvn.transform(n);
1599 
1600   // Rounding required?  Check for argument reduction!
1601   if (Matcher::strict_fp_requires_explicit_rounding) {
1602     static const double     pi_4 =  0.7853981633974483;
1603     static const double neg_pi_4 = -0.7853981633974483;
1604     // pi/2 in 80-bit extended precision
1605     // static const unsigned char pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0x3f,0x00,0x00,0x00,0x00,0x00,0x00};
1606     // -pi/2 in 80-bit extended precision
1607     // static const unsigned char neg_pi_2_bits_x[] = {0x35,0xc2,0x68,0x21,0xa2,0xda,0x0f,0xc9,0xff,0xbf,0x00,0x00,0x00,0x00,0x00,0x00};
1608     // Cutoff value for using this argument reduction technique
1609     //static const double    pi_2_minus_epsilon =  1.564660403643354;
1610     //static const double neg_pi_2_plus_epsilon = -1.564660403643354;
1611 
1612     // Pseudocode for sin:
1613     // if (x <= Math.PI / 4.0) {
1614     //   if (x >= -Math.PI / 4.0) return  fsin(x);
1615     //   if (x >= -Math.PI / 2.0) return -fcos(x + Math.PI / 2.0);
1616     // } else {
1617     //   if (x <=  Math.PI / 2.0) return  fcos(x - Math.PI / 2.0);
1618     // }
1619     // return StrictMath.sin(x);
1620 
1621     // Pseudocode for cos:
1622     // if (x <= Math.PI / 4.0) {
1623     //   if (x >= -Math.PI / 4.0) return  fcos(x);
1624     //   if (x >= -Math.PI / 2.0) return  fsin(x + Math.PI / 2.0);
1625     // } else {
1626     //   if (x <=  Math.PI / 2.0) return -fsin(x - Math.PI / 2.0);
1627     // }
1628     // return StrictMath.cos(x);
1629 
1630     // Actually, sticking in an 80-bit Intel value into C2 will be tough; it
1631     // requires a special machine instruction to load it.  Instead we'll try
1632     // the 'easy' case.  If we really need the extra range +/- PI/2 we'll
1633     // probably do the math inside the SIN encoding.
1634 
1635     // Make the merge point
1636     RegionNode* r = new (C) RegionNode(3);
1637     Node* phi = new (C) PhiNode(r, Type::DOUBLE);
1638 
1639     // Flatten arg so we need only 1 test
1640     Node *abs = _gvn.transform(new (C) AbsDNode(arg));
1641     // Node for PI/4 constant
1642     Node *pi4 = makecon(TypeD::make(pi_4));
1643     // Check PI/4 : abs(arg)
1644     Node *cmp = _gvn.transform(new (C) CmpDNode(pi4,abs));
1645     // Check: If PI/4 < abs(arg) then go slow
1646     Node *bol = _gvn.transform(new (C) BoolNode( cmp, BoolTest::lt ));
1647     // Branch either way
1648     IfNode *iff = create_and_xform_if(control(),bol, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1649     set_control(opt_iff(r,iff));
1650 
1651     // Set fast path result
1652     phi->init_req(2, n);
1653 
1654     // Slow path - non-blocking leaf call
1655     Node* call = NULL;
1656     switch (id) {
1657     case vmIntrinsics::_dsin:
1658       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1659                                CAST_FROM_FN_PTR(address, SharedRuntime::dsin),
1660                                "Sin", NULL, arg, top());
1661       break;
1662     case vmIntrinsics::_dcos:
1663       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1664                                CAST_FROM_FN_PTR(address, SharedRuntime::dcos),
1665                                "Cos", NULL, arg, top());
1666       break;
1667     case vmIntrinsics::_dtan:
1668       call = make_runtime_call(RC_LEAF, OptoRuntime::Math_D_D_Type(),
1669                                CAST_FROM_FN_PTR(address, SharedRuntime::dtan),
1670                                "Tan", NULL, arg, top());
1671       break;
1672     }
1673     assert(control()->in(0) == call, "");
1674     Node* slow_result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
1675     r->init_req(1, control());
1676     phi->init_req(1, slow_result);
1677 
1678     // Post-merge
1679     set_control(_gvn.transform(r));
1680     record_for_igvn(r);
1681     n = _gvn.transform(phi);
1682 
1683     C->set_has_split_ifs(true); // Has chance for split-if optimization
1684   }
1685   set_result(n);
1686   return true;
1687 }
1688 
1689 Node* LibraryCallKit::finish_pow_exp(Node* result, Node* x, Node* y, const TypeFunc* call_type, address funcAddr, const char* funcName) {
1690   //-------------------
1691   //result=(result.isNaN())? funcAddr():result;
1692   // Check: If isNaN() by checking result!=result? then either trap
1693   // or go to runtime
1694   Node* cmpisnan = _gvn.transform(new (C) CmpDNode(result, result));
1695   // Build the boolean node
1696   Node* bolisnum = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::eq));
1697 
1698   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1699     { BuildCutout unless(this, bolisnum, PROB_STATIC_FREQUENT);
1700       // The pow or exp intrinsic returned a NaN, which requires a call
1701       // to the runtime.  Recompile with the runtime call.
1702       uncommon_trap(Deoptimization::Reason_intrinsic,
1703                     Deoptimization::Action_make_not_entrant);
1704     }
1705     return result;
1706   } else {
1707     // If this inlining ever returned NaN in the past, we compile a call
1708     // to the runtime to properly handle corner cases
1709 
1710     IfNode* iff = create_and_xform_if(control(), bolisnum, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
1711     Node* if_slow = _gvn.transform(new (C) IfFalseNode(iff));
1712     Node* if_fast = _gvn.transform(new (C) IfTrueNode(iff));
1713 
1714     if (!if_slow->is_top()) {
1715       RegionNode* result_region = new (C) RegionNode(3);
1716       PhiNode*    result_val = new (C) PhiNode(result_region, Type::DOUBLE);
1717 
1718       result_region->init_req(1, if_fast);
1719       result_val->init_req(1, result);
1720 
1721       set_control(if_slow);
1722 
1723       const TypePtr* no_memory_effects = NULL;
1724       Node* rt = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1725                                    no_memory_effects,
1726                                    x, top(), y, y ? top() : NULL);
1727       Node* value = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+0));
1728 #ifdef ASSERT
1729       Node* value_top = _gvn.transform(new (C) ProjNode(rt, TypeFunc::Parms+1));
1730       assert(value_top == top(), "second value must be top");
1731 #endif
1732 
1733       result_region->init_req(2, control());
1734       result_val->init_req(2, value);
1735       set_control(_gvn.transform(result_region));
1736       // Make sure type of PhiNode is recorded
1737       _gvn.transform(result_val);
1738       return result_val;
1739     } else {
1740       return result;
1741     }
1742   }
1743 }
1744 
1745 //------------------------------inline_exp-------------------------------------
1746 // Inline exp instructions, if possible.  The Intel hardware only misses
1747 // really odd corner cases (+/- Infinity).  Just uncommon-trap them.
1748 bool LibraryCallKit::inline_exp() {
1749   Node* arg = round_double_node(argument(0));
1750   Node* n   = _gvn.transform(new (C) ExpDNode(C, control(), arg));
1751 
1752   n = finish_pow_exp(n, arg, NULL, OptoRuntime::Math_D_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dexp), "EXP");
1753   set_result(n);
1754 
1755   C->set_has_split_ifs(true); // Has chance for split-if optimization
1756   return true;
1757 }
1758 
1759 //------------------------------inline_pow-------------------------------------
1760 // Inline power instructions, if possible.
1761 bool LibraryCallKit::inline_pow() {
1762   // Pseudocode for pow
1763   // if (y == 2) {
1764   //   return x * x;
1765   // } else {
1766   //   if (x <= 0.0) {
1767   //     long longy = (long)y;
1768   //     if ((double)longy == y) { // if y is long
1769   //       if (y + 1 == y) longy = 0; // huge number: even
1770   //       result = ((1&longy) == 0)?-DPow(abs(x), y):DPow(abs(x), y);
1771   //     } else {
1772   //       result = NaN;
1773   //     }
1774   //   } else {
1775   //     result = DPow(x,y);
1776   //   }
1777   //   if (result != result)?  {
1778   //     result = uncommon_trap() or runtime_call();
1779   //   }
1780   //   return result;
1781   // }
1782 
1783   Node* x = round_double_node(argument(0));
1784   Node* y = round_double_node(argument(2));
1785 
1786   Node* result = NULL;
1787 
1788   Node*   const_two_node = makecon(TypeD::make(2.0));
1789   Node*   cmp_node       = _gvn.transform(new (C) CmpDNode(y, const_two_node));
1790   Node*   bool_node      = _gvn.transform(new (C) BoolNode(cmp_node, BoolTest::eq));
1791   IfNode* if_node        = create_and_xform_if(control(), bool_node, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1792   Node*   if_true        = _gvn.transform(new (C) IfTrueNode(if_node));
1793   Node*   if_false       = _gvn.transform(new (C) IfFalseNode(if_node));
1794 
1795   RegionNode* region_node = new (C) RegionNode(3);
1796   region_node->init_req(1, if_true);
1797 
1798   Node* phi_node = new (C) PhiNode(region_node, Type::DOUBLE);
1799   // special case for x^y where y == 2, we can convert it to x * x
1800   phi_node->init_req(1, _gvn.transform(new (C) MulDNode(x, x)));
1801 
1802   // set control to if_false since we will now process the false branch
1803   set_control(if_false);
1804 
1805   if (!too_many_traps(Deoptimization::Reason_intrinsic)) {
1806     // Short form: skip the fancy tests and just check for NaN result.
1807     result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1808   } else {
1809     // If this inlining ever returned NaN in the past, include all
1810     // checks + call to the runtime.
1811 
1812     // Set the merge point for If node with condition of (x <= 0.0)
1813     // There are four possible paths to region node and phi node
1814     RegionNode *r = new (C) RegionNode(4);
1815     Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1816 
1817     // Build the first if node: if (x <= 0.0)
1818     // Node for 0 constant
1819     Node *zeronode = makecon(TypeD::ZERO);
1820     // Check x:0
1821     Node *cmp = _gvn.transform(new (C) CmpDNode(x, zeronode));
1822     // Check: If (x<=0) then go complex path
1823     Node *bol1 = _gvn.transform(new (C) BoolNode( cmp, BoolTest::le ));
1824     // Branch either way
1825     IfNode *if1 = create_and_xform_if(control(),bol1, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1826     // Fast path taken; set region slot 3
1827     Node *fast_taken = _gvn.transform(new (C) IfFalseNode(if1));
1828     r->init_req(3,fast_taken); // Capture fast-control
1829 
1830     // Fast path not-taken, i.e. slow path
1831     Node *complex_path = _gvn.transform(new (C) IfTrueNode(if1));
1832 
1833     // Set fast path result
1834     Node *fast_result = _gvn.transform(new (C) PowDNode(C, control(), x, y));
1835     phi->init_req(3, fast_result);
1836 
1837     // Complex path
1838     // Build the second if node (if y is long)
1839     // Node for (long)y
1840     Node *longy = _gvn.transform(new (C) ConvD2LNode(y));
1841     // Node for (double)((long) y)
1842     Node *doublelongy= _gvn.transform(new (C) ConvL2DNode(longy));
1843     // Check (double)((long) y) : y
1844     Node *cmplongy= _gvn.transform(new (C) CmpDNode(doublelongy, y));
1845     // Check if (y isn't long) then go to slow path
1846 
1847     Node *bol2 = _gvn.transform(new (C) BoolNode( cmplongy, BoolTest::ne ));
1848     // Branch either way
1849     IfNode *if2 = create_and_xform_if(complex_path,bol2, PROB_STATIC_INFREQUENT, COUNT_UNKNOWN);
1850     Node* ylong_path = _gvn.transform(new (C) IfFalseNode(if2));
1851 
1852     Node *slow_path = _gvn.transform(new (C) IfTrueNode(if2));
1853 
1854     // Calculate DPow(abs(x), y)*(1 & (long)y)
1855     // Node for constant 1
1856     Node *conone = longcon(1);
1857     // 1& (long)y
1858     Node *signnode= _gvn.transform(new (C) AndLNode(conone, longy));
1859 
1860     // A huge number is always even. Detect a huge number by checking
1861     // if y + 1 == y and set integer to be tested for parity to 0.
1862     // Required for corner case:
1863     // (long)9.223372036854776E18 = max_jlong
1864     // (double)(long)9.223372036854776E18 = 9.223372036854776E18
1865     // max_jlong is odd but 9.223372036854776E18 is even
1866     Node* yplus1 = _gvn.transform(new (C) AddDNode(y, makecon(TypeD::make(1))));
1867     Node *cmpyplus1= _gvn.transform(new (C) CmpDNode(yplus1, y));
1868     Node *bolyplus1 = _gvn.transform(new (C) BoolNode( cmpyplus1, BoolTest::eq ));
1869     Node* correctedsign = NULL;
1870     if (ConditionalMoveLimit != 0) {
1871       correctedsign = _gvn.transform( CMoveNode::make(C, NULL, bolyplus1, signnode, longcon(0), TypeLong::LONG));
1872     } else {
1873       IfNode *ifyplus1 = create_and_xform_if(ylong_path,bolyplus1, PROB_FAIR, COUNT_UNKNOWN);
1874       RegionNode *r = new (C) RegionNode(3);
1875       Node *phi = new (C) PhiNode(r, TypeLong::LONG);
1876       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyplus1)));
1877       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyplus1)));
1878       phi->init_req(1, signnode);
1879       phi->init_req(2, longcon(0));
1880       correctedsign = _gvn.transform(phi);
1881       ylong_path = _gvn.transform(r);
1882       record_for_igvn(r);
1883     }
1884 
1885     // zero node
1886     Node *conzero = longcon(0);
1887     // Check (1&(long)y)==0?
1888     Node *cmpeq1 = _gvn.transform(new (C) CmpLNode(correctedsign, conzero));
1889     // Check if (1&(long)y)!=0?, if so the result is negative
1890     Node *bol3 = _gvn.transform(new (C) BoolNode( cmpeq1, BoolTest::ne ));
1891     // abs(x)
1892     Node *absx=_gvn.transform(new (C) AbsDNode(x));
1893     // abs(x)^y
1894     Node *absxpowy = _gvn.transform(new (C) PowDNode(C, control(), absx, y));
1895     // -abs(x)^y
1896     Node *negabsxpowy = _gvn.transform(new (C) NegDNode (absxpowy));
1897     // (1&(long)y)==1?-DPow(abs(x), y):DPow(abs(x), y)
1898     Node *signresult = NULL;
1899     if (ConditionalMoveLimit != 0) {
1900       signresult = _gvn.transform( CMoveNode::make(C, NULL, bol3, absxpowy, negabsxpowy, Type::DOUBLE));
1901     } else {
1902       IfNode *ifyeven = create_and_xform_if(ylong_path,bol3, PROB_FAIR, COUNT_UNKNOWN);
1903       RegionNode *r = new (C) RegionNode(3);
1904       Node *phi = new (C) PhiNode(r, Type::DOUBLE);
1905       r->init_req(1, _gvn.transform(new (C) IfFalseNode(ifyeven)));
1906       r->init_req(2, _gvn.transform(new (C) IfTrueNode(ifyeven)));
1907       phi->init_req(1, absxpowy);
1908       phi->init_req(2, negabsxpowy);
1909       signresult = _gvn.transform(phi);
1910       ylong_path = _gvn.transform(r);
1911       record_for_igvn(r);
1912     }
1913     // Set complex path fast result
1914     r->init_req(2, ylong_path);
1915     phi->init_req(2, signresult);
1916 
1917     static const jlong nan_bits = CONST64(0x7ff8000000000000);
1918     Node *slow_result = makecon(TypeD::make(*(double*)&nan_bits)); // return NaN
1919     r->init_req(1,slow_path);
1920     phi->init_req(1,slow_result);
1921 
1922     // Post merge
1923     set_control(_gvn.transform(r));
1924     record_for_igvn(r);
1925     result = _gvn.transform(phi);
1926   }
1927 
1928   result = finish_pow_exp(result, x, y, OptoRuntime::Math_DD_D_Type(), CAST_FROM_FN_PTR(address, SharedRuntime::dpow), "POW");
1929 
1930   // control from finish_pow_exp is now input to the region node
1931   region_node->set_req(2, control());
1932   // the result from finish_pow_exp is now input to the phi node
1933   phi_node->init_req(2, _gvn.transform(result));
1934   set_control(_gvn.transform(region_node));
1935   record_for_igvn(region_node);
1936   set_result(_gvn.transform(phi_node));
1937 
1938   C->set_has_split_ifs(true); // Has chance for split-if optimization
1939   return true;
1940 }
1941 
1942 //------------------------------runtime_math-----------------------------
1943 bool LibraryCallKit::runtime_math(const TypeFunc* call_type, address funcAddr, const char* funcName) {
1944   assert(call_type == OptoRuntime::Math_DD_D_Type() || call_type == OptoRuntime::Math_D_D_Type(),
1945          "must be (DD)D or (D)D type");
1946 
1947   // Inputs
1948   Node* a = round_double_node(argument(0));
1949   Node* b = (call_type == OptoRuntime::Math_DD_D_Type()) ? round_double_node(argument(2)) : NULL;
1950 
1951   const TypePtr* no_memory_effects = NULL;
1952   Node* trig = make_runtime_call(RC_LEAF, call_type, funcAddr, funcName,
1953                                  no_memory_effects,
1954                                  a, top(), b, b ? top() : NULL);
1955   Node* value = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+0));
1956 #ifdef ASSERT
1957   Node* value_top = _gvn.transform(new (C) ProjNode(trig, TypeFunc::Parms+1));
1958   assert(value_top == top(), "second value must be top");
1959 #endif
1960 
1961   set_result(value);
1962   return true;
1963 }
1964 
1965 //------------------------------inline_math_native-----------------------------
1966 bool LibraryCallKit::inline_math_native(vmIntrinsics::ID id) {
1967 #define FN_PTR(f) CAST_FROM_FN_PTR(address, f)
1968   switch (id) {
1969     // These intrinsics are not properly supported on all hardware
1970   case vmIntrinsics::_dcos:   return Matcher::has_match_rule(Op_CosD)   ? inline_trig(id) :
1971     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dcos),   "COS");
1972   case vmIntrinsics::_dsin:   return Matcher::has_match_rule(Op_SinD)   ? inline_trig(id) :
1973     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dsin),   "SIN");
1974   case vmIntrinsics::_dtan:   return Matcher::has_match_rule(Op_TanD)   ? inline_trig(id) :
1975     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dtan),   "TAN");
1976 
1977   case vmIntrinsics::_dlog:   return Matcher::has_match_rule(Op_LogD)   ? inline_math(id) :
1978     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog),   "LOG");
1979   case vmIntrinsics::_dlog10: return Matcher::has_match_rule(Op_Log10D) ? inline_math(id) :
1980     runtime_math(OptoRuntime::Math_D_D_Type(), FN_PTR(SharedRuntime::dlog10), "LOG10");
1981 
1982     // These intrinsics are supported on all hardware
1983   case vmIntrinsics::_dsqrt:  return Matcher::match_rule_supported(Op_SqrtD) ? inline_math(id) : false;
1984   case vmIntrinsics::_dabs:   return Matcher::has_match_rule(Op_AbsD)   ? inline_math(id) : false;
1985 
1986   case vmIntrinsics::_dexp:   return Matcher::has_match_rule(Op_ExpD)   ? inline_exp()    :
1987     runtime_math(OptoRuntime::Math_D_D_Type(),  FN_PTR(SharedRuntime::dexp),  "EXP");
1988   case vmIntrinsics::_dpow:   return Matcher::has_match_rule(Op_PowD)   ? inline_pow()    :
1989     runtime_math(OptoRuntime::Math_DD_D_Type(), FN_PTR(SharedRuntime::dpow),  "POW");
1990 #undef FN_PTR
1991 
1992    // These intrinsics are not yet correctly implemented
1993   case vmIntrinsics::_datan2:
1994     return false;
1995 
1996   default:
1997     fatal_unexpected_iid(id);
1998     return false;
1999   }
2000 }
2001 
2002 static bool is_simple_name(Node* n) {
2003   return (n->req() == 1         // constant
2004           || (n->is_Type() && n->as_Type()->type()->singleton())
2005           || n->is_Proj()       // parameter or return value
2006           || n->is_Phi()        // local of some sort
2007           );
2008 }
2009 
2010 //----------------------------inline_min_max-----------------------------------
2011 bool LibraryCallKit::inline_min_max(vmIntrinsics::ID id) {
2012   set_result(generate_min_max(id, argument(0), argument(1)));
2013   return true;
2014 }
2015 
2016 void LibraryCallKit::inline_math_mathExact(Node* math, Node *test) {
2017   Node* bol = _gvn.transform( new (C) BoolNode(test, BoolTest::overflow) );
2018   IfNode* check = create_and_map_if(control(), bol, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
2019   Node* fast_path = _gvn.transform( new (C) IfFalseNode(check));
2020   Node* slow_path = _gvn.transform( new (C) IfTrueNode(check) );
2021 
2022   {
2023     PreserveJVMState pjvms(this);
2024     PreserveReexecuteState preexecs(this);
2025     jvms()->set_should_reexecute(true);
2026 
2027     set_control(slow_path);
2028     set_i_o(i_o());
2029 
2030     uncommon_trap(Deoptimization::Reason_intrinsic,
2031                   Deoptimization::Action_none);
2032   }
2033 
2034   set_control(fast_path);
2035   set_result(math);
2036 }
2037 
2038 template <typename OverflowOp>
2039 bool LibraryCallKit::inline_math_overflow(Node* arg1, Node* arg2) {
2040   typedef typename OverflowOp::MathOp MathOp;
2041 
2042   MathOp* mathOp = new(C) MathOp(arg1, arg2);
2043   Node* operation = _gvn.transform( mathOp );
2044   Node* ofcheck = _gvn.transform( new(C) OverflowOp(arg1, arg2) );
2045   inline_math_mathExact(operation, ofcheck);
2046   return true;
2047 }
2048 
2049 bool LibraryCallKit::inline_math_addExactI(bool is_increment) {
2050   return inline_math_overflow<OverflowAddINode>(argument(0), is_increment ? intcon(1) : argument(1));
2051 }
2052 
2053 bool LibraryCallKit::inline_math_addExactL(bool is_increment) {
2054   return inline_math_overflow<OverflowAddLNode>(argument(0), is_increment ? longcon(1) : argument(2));
2055 }
2056 
2057 bool LibraryCallKit::inline_math_subtractExactI(bool is_decrement) {
2058   return inline_math_overflow<OverflowSubINode>(argument(0), is_decrement ? intcon(1) : argument(1));
2059 }
2060 
2061 bool LibraryCallKit::inline_math_subtractExactL(bool is_decrement) {
2062   return inline_math_overflow<OverflowSubLNode>(argument(0), is_decrement ? longcon(1) : argument(2));
2063 }
2064 
2065 bool LibraryCallKit::inline_math_negateExactI() {
2066   return inline_math_overflow<OverflowSubINode>(intcon(0), argument(0));
2067 }
2068 
2069 bool LibraryCallKit::inline_math_negateExactL() {
2070   return inline_math_overflow<OverflowSubLNode>(longcon(0), argument(0));
2071 }
2072 
2073 bool LibraryCallKit::inline_math_multiplyExactI() {
2074   return inline_math_overflow<OverflowMulINode>(argument(0), argument(1));
2075 }
2076 
2077 bool LibraryCallKit::inline_math_multiplyExactL() {
2078   return inline_math_overflow<OverflowMulLNode>(argument(0), argument(2));
2079 }
2080 
2081 Node*
2082 LibraryCallKit::generate_min_max(vmIntrinsics::ID id, Node* x0, Node* y0) {
2083   // These are the candidate return value:
2084   Node* xvalue = x0;
2085   Node* yvalue = y0;
2086 
2087   if (xvalue == yvalue) {
2088     return xvalue;
2089   }
2090 
2091   bool want_max = (id == vmIntrinsics::_max);
2092 
2093   const TypeInt* txvalue = _gvn.type(xvalue)->isa_int();
2094   const TypeInt* tyvalue = _gvn.type(yvalue)->isa_int();
2095   if (txvalue == NULL || tyvalue == NULL)  return top();
2096   // This is not really necessary, but it is consistent with a
2097   // hypothetical MaxINode::Value method:
2098   int widen = MAX2(txvalue->_widen, tyvalue->_widen);
2099 
2100   // %%% This folding logic should (ideally) be in a different place.
2101   // Some should be inside IfNode, and there to be a more reliable
2102   // transformation of ?: style patterns into cmoves.  We also want
2103   // more powerful optimizations around cmove and min/max.
2104 
2105   // Try to find a dominating comparison of these guys.
2106   // It can simplify the index computation for Arrays.copyOf
2107   // and similar uses of System.arraycopy.
2108   // First, compute the normalized version of CmpI(x, y).
2109   int   cmp_op = Op_CmpI;
2110   Node* xkey = xvalue;
2111   Node* ykey = yvalue;
2112   Node* ideal_cmpxy = _gvn.transform(new(C) CmpINode(xkey, ykey));
2113   if (ideal_cmpxy->is_Cmp()) {
2114     // E.g., if we have CmpI(length - offset, count),
2115     // it might idealize to CmpI(length, count + offset)
2116     cmp_op = ideal_cmpxy->Opcode();
2117     xkey = ideal_cmpxy->in(1);
2118     ykey = ideal_cmpxy->in(2);
2119   }
2120 
2121   // Start by locating any relevant comparisons.
2122   Node* start_from = (xkey->outcnt() < ykey->outcnt()) ? xkey : ykey;
2123   Node* cmpxy = NULL;
2124   Node* cmpyx = NULL;
2125   for (DUIterator_Fast kmax, k = start_from->fast_outs(kmax); k < kmax; k++) {
2126     Node* cmp = start_from->fast_out(k);
2127     if (cmp->outcnt() > 0 &&            // must have prior uses
2128         cmp->in(0) == NULL &&           // must be context-independent
2129         cmp->Opcode() == cmp_op) {      // right kind of compare
2130       if (cmp->in(1) == xkey && cmp->in(2) == ykey)  cmpxy = cmp;
2131       if (cmp->in(1) == ykey && cmp->in(2) == xkey)  cmpyx = cmp;
2132     }
2133   }
2134 
2135   const int NCMPS = 2;
2136   Node* cmps[NCMPS] = { cmpxy, cmpyx };
2137   int cmpn;
2138   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2139     if (cmps[cmpn] != NULL)  break;     // find a result
2140   }
2141   if (cmpn < NCMPS) {
2142     // Look for a dominating test that tells us the min and max.
2143     int depth = 0;                // Limit search depth for speed
2144     Node* dom = control();
2145     for (; dom != NULL; dom = IfNode::up_one_dom(dom, true)) {
2146       if (++depth >= 100)  break;
2147       Node* ifproj = dom;
2148       if (!ifproj->is_Proj())  continue;
2149       Node* iff = ifproj->in(0);
2150       if (!iff->is_If())  continue;
2151       Node* bol = iff->in(1);
2152       if (!bol->is_Bool())  continue;
2153       Node* cmp = bol->in(1);
2154       if (cmp == NULL)  continue;
2155       for (cmpn = 0; cmpn < NCMPS; cmpn++)
2156         if (cmps[cmpn] == cmp)  break;
2157       if (cmpn == NCMPS)  continue;
2158       BoolTest::mask btest = bol->as_Bool()->_test._test;
2159       if (ifproj->is_IfFalse())  btest = BoolTest(btest).negate();
2160       if (cmp->in(1) == ykey)    btest = BoolTest(btest).commute();
2161       // At this point, we know that 'x btest y' is true.
2162       switch (btest) {
2163       case BoolTest::eq:
2164         // They are proven equal, so we can collapse the min/max.
2165         // Either value is the answer.  Choose the simpler.
2166         if (is_simple_name(yvalue) && !is_simple_name(xvalue))
2167           return yvalue;
2168         return xvalue;
2169       case BoolTest::lt:          // x < y
2170       case BoolTest::le:          // x <= y
2171         return (want_max ? yvalue : xvalue);
2172       case BoolTest::gt:          // x > y
2173       case BoolTest::ge:          // x >= y
2174         return (want_max ? xvalue : yvalue);
2175       }
2176     }
2177   }
2178 
2179   // We failed to find a dominating test.
2180   // Let's pick a test that might GVN with prior tests.
2181   Node*          best_bol   = NULL;
2182   BoolTest::mask best_btest = BoolTest::illegal;
2183   for (cmpn = 0; cmpn < NCMPS; cmpn++) {
2184     Node* cmp = cmps[cmpn];
2185     if (cmp == NULL)  continue;
2186     for (DUIterator_Fast jmax, j = cmp->fast_outs(jmax); j < jmax; j++) {
2187       Node* bol = cmp->fast_out(j);
2188       if (!bol->is_Bool())  continue;
2189       BoolTest::mask btest = bol->as_Bool()->_test._test;
2190       if (btest == BoolTest::eq || btest == BoolTest::ne)  continue;
2191       if (cmp->in(1) == ykey)   btest = BoolTest(btest).commute();
2192       if (bol->outcnt() > (best_bol == NULL ? 0 : best_bol->outcnt())) {
2193         best_bol   = bol->as_Bool();
2194         best_btest = btest;
2195       }
2196     }
2197   }
2198 
2199   Node* answer_if_true  = NULL;
2200   Node* answer_if_false = NULL;
2201   switch (best_btest) {
2202   default:
2203     if (cmpxy == NULL)
2204       cmpxy = ideal_cmpxy;
2205     best_bol = _gvn.transform(new(C) BoolNode(cmpxy, BoolTest::lt));
2206     // and fall through:
2207   case BoolTest::lt:          // x < y
2208   case BoolTest::le:          // x <= y
2209     answer_if_true  = (want_max ? yvalue : xvalue);
2210     answer_if_false = (want_max ? xvalue : yvalue);
2211     break;
2212   case BoolTest::gt:          // x > y
2213   case BoolTest::ge:          // x >= y
2214     answer_if_true  = (want_max ? xvalue : yvalue);
2215     answer_if_false = (want_max ? yvalue : xvalue);
2216     break;
2217   }
2218 
2219   jint hi, lo;
2220   if (want_max) {
2221     // We can sharpen the minimum.
2222     hi = MAX2(txvalue->_hi, tyvalue->_hi);
2223     lo = MAX2(txvalue->_lo, tyvalue->_lo);
2224   } else {
2225     // We can sharpen the maximum.
2226     hi = MIN2(txvalue->_hi, tyvalue->_hi);
2227     lo = MIN2(txvalue->_lo, tyvalue->_lo);
2228   }
2229 
2230   // Use a flow-free graph structure, to avoid creating excess control edges
2231   // which could hinder other optimizations.
2232   // Since Math.min/max is often used with arraycopy, we want
2233   // tightly_coupled_allocation to be able to see beyond min/max expressions.
2234   Node* cmov = CMoveNode::make(C, NULL, best_bol,
2235                                answer_if_false, answer_if_true,
2236                                TypeInt::make(lo, hi, widen));
2237 
2238   return _gvn.transform(cmov);
2239 
2240   /*
2241   // This is not as desirable as it may seem, since Min and Max
2242   // nodes do not have a full set of optimizations.
2243   // And they would interfere, anyway, with 'if' optimizations
2244   // and with CMoveI canonical forms.
2245   switch (id) {
2246   case vmIntrinsics::_min:
2247     result_val = _gvn.transform(new (C, 3) MinINode(x,y)); break;
2248   case vmIntrinsics::_max:
2249     result_val = _gvn.transform(new (C, 3) MaxINode(x,y)); break;
2250   default:
2251     ShouldNotReachHere();
2252   }
2253   */
2254 }
2255 
2256 inline int
2257 LibraryCallKit::classify_unsafe_addr(Node* &base, Node* &offset) {
2258   const TypePtr* base_type = TypePtr::NULL_PTR;
2259   if (base != NULL)  base_type = _gvn.type(base)->isa_ptr();
2260   if (base_type == NULL) {
2261     // Unknown type.
2262     return Type::AnyPtr;
2263   } else if (base_type == TypePtr::NULL_PTR) {
2264     // Since this is a NULL+long form, we have to switch to a rawptr.
2265     base   = _gvn.transform(new (C) CastX2PNode(offset));
2266     offset = MakeConX(0);
2267     return Type::RawPtr;
2268   } else if (base_type->base() == Type::RawPtr) {
2269     return Type::RawPtr;
2270   } else if (base_type->isa_oopptr()) {
2271     // Base is never null => always a heap address.
2272     if (base_type->ptr() == TypePtr::NotNull) {
2273       return Type::OopPtr;
2274     }
2275     // Offset is small => always a heap address.
2276     const TypeX* offset_type = _gvn.type(offset)->isa_intptr_t();
2277     if (offset_type != NULL &&
2278         base_type->offset() == 0 &&     // (should always be?)
2279         offset_type->_lo >= 0 &&
2280         !MacroAssembler::needs_explicit_null_check(offset_type->_hi)) {
2281       return Type::OopPtr;
2282     }
2283     // Otherwise, it might either be oop+off or NULL+addr.
2284     return Type::AnyPtr;
2285   } else {
2286     // No information:
2287     return Type::AnyPtr;
2288   }
2289 }
2290 
2291 inline Node* LibraryCallKit::make_unsafe_address(Node* base, Node* offset) {
2292   int kind = classify_unsafe_addr(base, offset);
2293   if (kind == Type::RawPtr) {
2294     return basic_plus_adr(top(), base, offset);
2295   } else {
2296     return basic_plus_adr(base, offset);
2297   }
2298 }
2299 
2300 //--------------------------inline_number_methods-----------------------------
2301 // inline int     Integer.numberOfLeadingZeros(int)
2302 // inline int        Long.numberOfLeadingZeros(long)
2303 //
2304 // inline int     Integer.numberOfTrailingZeros(int)
2305 // inline int        Long.numberOfTrailingZeros(long)
2306 //
2307 // inline int     Integer.bitCount(int)
2308 // inline int        Long.bitCount(long)
2309 //
2310 // inline char  Character.reverseBytes(char)
2311 // inline short     Short.reverseBytes(short)
2312 // inline int     Integer.reverseBytes(int)
2313 // inline long       Long.reverseBytes(long)
2314 bool LibraryCallKit::inline_number_methods(vmIntrinsics::ID id) {
2315   Node* arg = argument(0);
2316   Node* n;
2317   switch (id) {
2318   case vmIntrinsics::_numberOfLeadingZeros_i:   n = new (C) CountLeadingZerosINode( arg);  break;
2319   case vmIntrinsics::_numberOfLeadingZeros_l:   n = new (C) CountLeadingZerosLNode( arg);  break;
2320   case vmIntrinsics::_numberOfTrailingZeros_i:  n = new (C) CountTrailingZerosINode(arg);  break;
2321   case vmIntrinsics::_numberOfTrailingZeros_l:  n = new (C) CountTrailingZerosLNode(arg);  break;
2322   case vmIntrinsics::_bitCount_i:               n = new (C) PopCountINode(          arg);  break;
2323   case vmIntrinsics::_bitCount_l:               n = new (C) PopCountLNode(          arg);  break;
2324   case vmIntrinsics::_reverseBytes_c:           n = new (C) ReverseBytesUSNode(0,   arg);  break;
2325   case vmIntrinsics::_reverseBytes_s:           n = new (C) ReverseBytesSNode( 0,   arg);  break;
2326   case vmIntrinsics::_reverseBytes_i:           n = new (C) ReverseBytesINode( 0,   arg);  break;
2327   case vmIntrinsics::_reverseBytes_l:           n = new (C) ReverseBytesLNode( 0,   arg);  break;
2328   default:  fatal_unexpected_iid(id);  break;
2329   }
2330   set_result(_gvn.transform(n));
2331   return true;
2332 }
2333 
2334 //----------------------------inline_unsafe_access----------------------------
2335 
2336 const static BasicType T_ADDRESS_HOLDER = T_LONG;
2337 
2338 // Helper that guards and inserts a pre-barrier.
2339 void LibraryCallKit::insert_pre_barrier(Node* base_oop, Node* offset,
2340                                         Node* pre_val, bool need_mem_bar) {
2341   // We could be accessing the referent field of a reference object. If so, when G1
2342   // is enabled, we need to log the value in the referent field in an SATB buffer.
2343   // This routine performs some compile time filters and generates suitable
2344   // runtime filters that guard the pre-barrier code.
2345   // Also add memory barrier for non volatile load from the referent field
2346   // to prevent commoning of loads across safepoint.
2347   if (!UseG1GC && !need_mem_bar)
2348     return;
2349 
2350   // Some compile time checks.
2351 
2352   // If offset is a constant, is it java_lang_ref_Reference::_reference_offset?
2353   const TypeX* otype = offset->find_intptr_t_type();
2354   if (otype != NULL && otype->is_con() &&
2355       otype->get_con() != java_lang_ref_Reference::referent_offset) {
2356     // Constant offset but not the reference_offset so just return
2357     return;
2358   }
2359 
2360   // We only need to generate the runtime guards for instances.
2361   const TypeOopPtr* btype = base_oop->bottom_type()->isa_oopptr();
2362   if (btype != NULL) {
2363     if (btype->isa_aryptr()) {
2364       // Array type so nothing to do
2365       return;
2366     }
2367 
2368     const TypeInstPtr* itype = btype->isa_instptr();
2369     if (itype != NULL) {
2370       // Can the klass of base_oop be statically determined to be
2371       // _not_ a sub-class of Reference and _not_ Object?
2372       ciKlass* klass = itype->klass();
2373       if ( klass->is_loaded() &&
2374           !klass->is_subtype_of(env()->Reference_klass()) &&
2375           !env()->Object_klass()->is_subtype_of(klass)) {
2376         return;
2377       }
2378     }
2379   }
2380 
2381   // The compile time filters did not reject base_oop/offset so
2382   // we need to generate the following runtime filters
2383   //
2384   // if (offset == java_lang_ref_Reference::_reference_offset) {
2385   //   if (instance_of(base, java.lang.ref.Reference)) {
2386   //     pre_barrier(_, pre_val, ...);
2387   //   }
2388   // }
2389 
2390   float likely   = PROB_LIKELY(  0.999);
2391   float unlikely = PROB_UNLIKELY(0.999);
2392 
2393   IdealKit ideal(this);
2394 #define __ ideal.
2395 
2396   Node* referent_off = __ ConX(java_lang_ref_Reference::referent_offset);
2397 
2398   __ if_then(offset, BoolTest::eq, referent_off, unlikely); {
2399       // Update graphKit memory and control from IdealKit.
2400       sync_kit(ideal);
2401 
2402       Node* ref_klass_con = makecon(TypeKlassPtr::make(env()->Reference_klass()));
2403       Node* is_instof = gen_instanceof(base_oop, ref_klass_con);
2404 
2405       // Update IdealKit memory and control from graphKit.
2406       __ sync_kit(this);
2407 
2408       Node* one = __ ConI(1);
2409       // is_instof == 0 if base_oop == NULL
2410       __ if_then(is_instof, BoolTest::eq, one, unlikely); {
2411 
2412         // Update graphKit from IdeakKit.
2413         sync_kit(ideal);
2414 
2415         // Use the pre-barrier to record the value in the referent field
2416         pre_barrier(false /* do_load */,
2417                     __ ctrl(),
2418                     NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
2419                     pre_val /* pre_val */,
2420                     T_OBJECT);
2421         if (need_mem_bar) {
2422           // Add memory barrier to prevent commoning reads from this field
2423           // across safepoint since GC can change its value.
2424           insert_mem_bar(Op_MemBarCPUOrder);
2425         }
2426         // Update IdealKit from graphKit.
2427         __ sync_kit(this);
2428 
2429       } __ end_if(); // _ref_type != ref_none
2430   } __ end_if(); // offset == referent_offset
2431 
2432   // Final sync IdealKit and GraphKit.
2433   final_sync(ideal);
2434 #undef __
2435 }
2436 
2437 
2438 // Interpret Unsafe.fieldOffset cookies correctly:
2439 extern jlong Unsafe_field_offset_to_byte_offset(jlong field_offset);
2440 
2441 const TypeOopPtr* LibraryCallKit::sharpen_unsafe_type(Compile::AliasType* alias_type, const TypePtr *adr_type, bool is_native_ptr) {
2442   // Attempt to infer a sharper value type from the offset and base type.
2443   ciKlass* sharpened_klass = NULL;
2444 
2445   // See if it is an instance field, with an object type.
2446   if (alias_type->field() != NULL) {
2447     assert(!is_native_ptr, "native pointer op cannot use a java address");
2448     if (alias_type->field()->type()->is_klass()) {
2449       sharpened_klass = alias_type->field()->type()->as_klass();
2450     }
2451   }
2452 
2453   // See if it is a narrow oop array.
2454   if (adr_type->isa_aryptr()) {
2455     if (adr_type->offset() >= objArrayOopDesc::base_offset_in_bytes()) {
2456       const TypeOopPtr *elem_type = adr_type->is_aryptr()->elem()->isa_oopptr();
2457       if (elem_type != NULL) {
2458         sharpened_klass = elem_type->klass();
2459       }
2460     }
2461   }
2462 
2463   // The sharpened class might be unloaded if there is no class loader
2464   // contraint in place.
2465   if (sharpened_klass != NULL && sharpened_klass->is_loaded()) {
2466     const TypeOopPtr* tjp = TypeOopPtr::make_from_klass(sharpened_klass);
2467 
2468 #ifndef PRODUCT
2469     if (C->print_intrinsics() || C->print_inlining()) {
2470       tty->print("  from base type: ");  adr_type->dump();
2471       tty->print("  sharpened value: ");  tjp->dump();
2472     }
2473 #endif
2474     // Sharpen the value type.
2475     return tjp;
2476   }
2477   return NULL;
2478 }
2479 
2480 bool LibraryCallKit::inline_unsafe_access(bool is_native_ptr, bool is_store, BasicType type, bool is_volatile) {
2481   if (callee()->is_static())  return false;  // caller must have the capability!
2482 
2483 #ifndef PRODUCT
2484   {
2485     ResourceMark rm;
2486     // Check the signatures.
2487     ciSignature* sig = callee()->signature();
2488 #ifdef ASSERT
2489     if (!is_store) {
2490       // Object getObject(Object base, int/long offset), etc.
2491       BasicType rtype = sig->return_type()->basic_type();
2492       if (rtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::getAddress_name())
2493           rtype = T_ADDRESS;  // it is really a C void*
2494       assert(rtype == type, "getter must return the expected value");
2495       if (!is_native_ptr) {
2496         assert(sig->count() == 2, "oop getter has 2 arguments");
2497         assert(sig->type_at(0)->basic_type() == T_OBJECT, "getter base is object");
2498         assert(sig->type_at(1)->basic_type() == T_LONG, "getter offset is correct");
2499       } else {
2500         assert(sig->count() == 1, "native getter has 1 argument");
2501         assert(sig->type_at(0)->basic_type() == T_LONG, "getter base is long");
2502       }
2503     } else {
2504       // void putObject(Object base, int/long offset, Object x), etc.
2505       assert(sig->return_type()->basic_type() == T_VOID, "putter must not return a value");
2506       if (!is_native_ptr) {
2507         assert(sig->count() == 3, "oop putter has 3 arguments");
2508         assert(sig->type_at(0)->basic_type() == T_OBJECT, "putter base is object");
2509         assert(sig->type_at(1)->basic_type() == T_LONG, "putter offset is correct");
2510       } else {
2511         assert(sig->count() == 2, "native putter has 2 arguments");
2512         assert(sig->type_at(0)->basic_type() == T_LONG, "putter base is long");
2513       }
2514       BasicType vtype = sig->type_at(sig->count()-1)->basic_type();
2515       if (vtype == T_ADDRESS_HOLDER && callee()->name() == ciSymbol::putAddress_name())
2516         vtype = T_ADDRESS;  // it is really a C void*
2517       assert(vtype == type, "putter must accept the expected value");
2518     }
2519 #endif // ASSERT
2520  }
2521 #endif //PRODUCT
2522 
2523   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2524 
2525   Node* receiver = argument(0);  // type: oop
2526 
2527   // Build address expression.  See the code in inline_unsafe_prefetch.
2528   Node* adr;
2529   Node* heap_base_oop = top();
2530   Node* offset = top();
2531   Node* val;
2532 
2533   if (!is_native_ptr) {
2534     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2535     Node* base = argument(1);  // type: oop
2536     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2537     offset = argument(2);  // type: long
2538     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2539     // to be plain byte offsets, which are also the same as those accepted
2540     // by oopDesc::field_base.
2541     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2542            "fieldOffset must be byte-scaled");
2543     // 32-bit machines ignore the high half!
2544     offset = ConvL2X(offset);
2545     adr = make_unsafe_address(base, offset);
2546     heap_base_oop = base;
2547     val = is_store ? argument(4) : NULL;
2548   } else {
2549     Node* ptr = argument(1);  // type: long
2550     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2551     adr = make_unsafe_address(NULL, ptr);
2552     val = is_store ? argument(3) : NULL;
2553   }
2554 
2555   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2556 
2557   // First guess at the value type.
2558   const Type *value_type = Type::get_const_basic_type(type);
2559 
2560   // Try to categorize the address.  If it comes up as TypeJavaPtr::BOTTOM,
2561   // there was not enough information to nail it down.
2562   Compile::AliasType* alias_type = C->alias_type(adr_type);
2563   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2564 
2565   // We will need memory barriers unless we can determine a unique
2566   // alias category for this reference.  (Note:  If for some reason
2567   // the barriers get omitted and the unsafe reference begins to "pollute"
2568   // the alias analysis of the rest of the graph, either Compile::can_alias
2569   // or Compile::must_alias will throw a diagnostic assert.)
2570   bool need_mem_bar = (alias_type->adr_type() == TypeOopPtr::BOTTOM);
2571 
2572   // If we are reading the value of the referent field of a Reference
2573   // object (either by using Unsafe directly or through reflection)
2574   // then, if G1 is enabled, we need to record the referent in an
2575   // SATB log buffer using the pre-barrier mechanism.
2576   // Also we need to add memory barrier to prevent commoning reads
2577   // from this field across safepoint since GC can change its value.
2578   bool need_read_barrier = !is_native_ptr && !is_store &&
2579                            offset != top() && heap_base_oop != top();
2580 
2581   if (!is_store && type == T_OBJECT) {
2582     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type, is_native_ptr);
2583     if (tjp != NULL) {
2584       value_type = tjp;
2585     }
2586   }
2587 
2588   receiver = null_check(receiver);
2589   if (stopped()) {
2590     return true;
2591   }
2592   // Heap pointers get a null-check from the interpreter,
2593   // as a courtesy.  However, this is not guaranteed by Unsafe,
2594   // and it is not possible to fully distinguish unintended nulls
2595   // from intended ones in this API.
2596 
2597   if (is_volatile) {
2598     // We need to emit leading and trailing CPU membars (see below) in
2599     // addition to memory membars when is_volatile. This is a little
2600     // too strong, but avoids the need to insert per-alias-type
2601     // volatile membars (for stores; compare Parse::do_put_xxx), which
2602     // we cannot do effectively here because we probably only have a
2603     // rough approximation of type.
2604     need_mem_bar = true;
2605     // For Stores, place a memory ordering barrier now.
2606     if (is_store) {
2607       insert_mem_bar(Op_MemBarRelease);
2608     } else {
2609       if (support_IRIW_for_not_multiple_copy_atomic_cpu) {
2610         insert_mem_bar(Op_MemBarVolatile);
2611       }
2612     }
2613   }
2614 
2615   // Memory barrier to prevent normal and 'unsafe' accesses from
2616   // bypassing each other.  Happens after null checks, so the
2617   // exception paths do not take memory state from the memory barrier,
2618   // so there's no problems making a strong assert about mixing users
2619   // of safe & unsafe memory.  Otherwise fails in a CTW of rt.jar
2620   // around 5701, class sun/reflect/UnsafeBooleanFieldAccessorImpl.
2621   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2622 
2623   if (!is_store) {
2624     Node* p = make_load(control(), adr, value_type, type, adr_type, MemNode::unordered, is_volatile);
2625     // load value
2626     switch (type) {
2627     case T_BOOLEAN:
2628     case T_CHAR:
2629     case T_BYTE:
2630     case T_SHORT:
2631     case T_INT:
2632     case T_LONG:
2633     case T_FLOAT:
2634     case T_DOUBLE:
2635       break;
2636     case T_OBJECT:
2637       if (need_read_barrier) {
2638         insert_pre_barrier(heap_base_oop, offset, p, !(is_volatile || need_mem_bar));
2639       }
2640       break;
2641     case T_ADDRESS:
2642       // Cast to an int type.
2643       p = _gvn.transform(new (C) CastP2XNode(NULL, p));
2644       p = ConvX2UL(p);
2645       break;
2646     default:
2647       fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2648       break;
2649     }
2650     // The load node has the control of the preceding MemBarCPUOrder.  All
2651     // following nodes will have the control of the MemBarCPUOrder inserted at
2652     // the end of this method.  So, pushing the load onto the stack at a later
2653     // point is fine.
2654     set_result(p);
2655   } else {
2656     // place effect of store into memory
2657     switch (type) {
2658     case T_DOUBLE:
2659       val = dstore_rounding(val);
2660       break;
2661     case T_ADDRESS:
2662       // Repackage the long as a pointer.
2663       val = ConvL2X(val);
2664       val = _gvn.transform(new (C) CastX2PNode(val));
2665       break;
2666     }
2667 
2668     MemNode::MemOrd mo = is_volatile ? MemNode::release : MemNode::unordered;
2669     if (type != T_OBJECT ) {
2670       (void) store_to_memory(control(), adr, val, type, adr_type, mo, is_volatile);
2671     } else {
2672       // Possibly an oop being stored to Java heap or native memory
2673       if (!TypePtr::NULL_PTR->higher_equal(_gvn.type(heap_base_oop))) {
2674         // oop to Java heap.
2675         (void) store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2676       } else {
2677         // We can't tell at compile time if we are storing in the Java heap or outside
2678         // of it. So we need to emit code to conditionally do the proper type of
2679         // store.
2680 
2681         IdealKit ideal(this);
2682 #define __ ideal.
2683         // QQQ who knows what probability is here??
2684         __ if_then(heap_base_oop, BoolTest::ne, null(), PROB_UNLIKELY(0.999)); {
2685           // Sync IdealKit and graphKit.
2686           sync_kit(ideal);
2687           Node* st = store_oop_to_unknown(control(), heap_base_oop, adr, adr_type, val, type, mo);
2688           // Update IdealKit memory.
2689           __ sync_kit(this);
2690         } __ else_(); {
2691           __ store(__ ctrl(), adr, val, type, alias_type->index(), mo, is_volatile);
2692         } __ end_if();
2693         // Final sync IdealKit and GraphKit.
2694         final_sync(ideal);
2695 #undef __
2696       }
2697     }
2698   }
2699 
2700   if (is_volatile) {
2701     if (!is_store) {
2702       insert_mem_bar(Op_MemBarAcquire);
2703     } else {
2704       if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
2705         insert_mem_bar(Op_MemBarVolatile);
2706       }
2707     }
2708   }
2709 
2710   if (need_mem_bar) insert_mem_bar(Op_MemBarCPUOrder);
2711 
2712   return true;
2713 }
2714 
2715 //----------------------------inline_unsafe_prefetch----------------------------
2716 
2717 bool LibraryCallKit::inline_unsafe_prefetch(bool is_native_ptr, bool is_store, bool is_static) {
2718 #ifndef PRODUCT
2719   {
2720     ResourceMark rm;
2721     // Check the signatures.
2722     ciSignature* sig = callee()->signature();
2723 #ifdef ASSERT
2724     // Object getObject(Object base, int/long offset), etc.
2725     BasicType rtype = sig->return_type()->basic_type();
2726     if (!is_native_ptr) {
2727       assert(sig->count() == 2, "oop prefetch has 2 arguments");
2728       assert(sig->type_at(0)->basic_type() == T_OBJECT, "prefetch base is object");
2729       assert(sig->type_at(1)->basic_type() == T_LONG, "prefetcha offset is correct");
2730     } else {
2731       assert(sig->count() == 1, "native prefetch has 1 argument");
2732       assert(sig->type_at(0)->basic_type() == T_LONG, "prefetch base is long");
2733     }
2734 #endif // ASSERT
2735   }
2736 #endif // !PRODUCT
2737 
2738   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2739 
2740   const int idx = is_static ? 0 : 1;
2741   if (!is_static) {
2742     null_check_receiver();
2743     if (stopped()) {
2744       return true;
2745     }
2746   }
2747 
2748   // Build address expression.  See the code in inline_unsafe_access.
2749   Node *adr;
2750   if (!is_native_ptr) {
2751     // The base is either a Java object or a value produced by Unsafe.staticFieldBase
2752     Node* base   = argument(idx + 0);  // type: oop
2753     // The offset is a value produced by Unsafe.staticFieldOffset or Unsafe.objectFieldOffset
2754     Node* offset = argument(idx + 1);  // type: long
2755     // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2756     // to be plain byte offsets, which are also the same as those accepted
2757     // by oopDesc::field_base.
2758     assert(Unsafe_field_offset_to_byte_offset(11) == 11,
2759            "fieldOffset must be byte-scaled");
2760     // 32-bit machines ignore the high half!
2761     offset = ConvL2X(offset);
2762     adr = make_unsafe_address(base, offset);
2763   } else {
2764     Node* ptr = argument(idx + 0);  // type: long
2765     ptr = ConvL2X(ptr);  // adjust Java long to machine word
2766     adr = make_unsafe_address(NULL, ptr);
2767   }
2768 
2769   // Generate the read or write prefetch
2770   Node *prefetch;
2771   if (is_store) {
2772     prefetch = new (C) PrefetchWriteNode(i_o(), adr);
2773   } else {
2774     prefetch = new (C) PrefetchReadNode(i_o(), adr);
2775   }
2776   prefetch->init_req(0, control());
2777   set_i_o(_gvn.transform(prefetch));
2778 
2779   return true;
2780 }
2781 
2782 //----------------------------inline_unsafe_load_store----------------------------
2783 // This method serves a couple of different customers (depending on LoadStoreKind):
2784 //
2785 // LS_cmpxchg:
2786 //   public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x);
2787 //   public final native boolean compareAndSwapInt(   Object o, long offset, int    expected, int    x);
2788 //   public final native boolean compareAndSwapLong(  Object o, long offset, long   expected, long   x);
2789 //
2790 // LS_xadd:
2791 //   public int  getAndAddInt( Object o, long offset, int  delta)
2792 //   public long getAndAddLong(Object o, long offset, long delta)
2793 //
2794 // LS_xchg:
2795 //   int    getAndSet(Object o, long offset, int    newValue)
2796 //   long   getAndSet(Object o, long offset, long   newValue)
2797 //   Object getAndSet(Object o, long offset, Object newValue)
2798 //
2799 bool LibraryCallKit::inline_unsafe_load_store(BasicType type, LoadStoreKind kind) {
2800   // This basic scheme here is the same as inline_unsafe_access, but
2801   // differs in enough details that combining them would make the code
2802   // overly confusing.  (This is a true fact! I originally combined
2803   // them, but even I was confused by it!) As much code/comments as
2804   // possible are retained from inline_unsafe_access though to make
2805   // the correspondences clearer. - dl
2806 
2807   if (callee()->is_static())  return false;  // caller must have the capability!
2808 
2809 #ifndef PRODUCT
2810   BasicType rtype;
2811   {
2812     ResourceMark rm;
2813     // Check the signatures.
2814     ciSignature* sig = callee()->signature();
2815     rtype = sig->return_type()->basic_type();
2816     if (kind == LS_xadd || kind == LS_xchg) {
2817       // Check the signatures.
2818 #ifdef ASSERT
2819       assert(rtype == type, "get and set must return the expected type");
2820       assert(sig->count() == 3, "get and set has 3 arguments");
2821       assert(sig->type_at(0)->basic_type() == T_OBJECT, "get and set base is object");
2822       assert(sig->type_at(1)->basic_type() == T_LONG, "get and set offset is long");
2823       assert(sig->type_at(2)->basic_type() == type, "get and set must take expected type as new value/delta");
2824 #endif // ASSERT
2825     } else if (kind == LS_cmpxchg) {
2826       // Check the signatures.
2827 #ifdef ASSERT
2828       assert(rtype == T_BOOLEAN, "CAS must return boolean");
2829       assert(sig->count() == 4, "CAS has 4 arguments");
2830       assert(sig->type_at(0)->basic_type() == T_OBJECT, "CAS base is object");
2831       assert(sig->type_at(1)->basic_type() == T_LONG, "CAS offset is long");
2832 #endif // ASSERT
2833     } else {
2834       ShouldNotReachHere();
2835     }
2836   }
2837 #endif //PRODUCT
2838 
2839   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
2840 
2841   // Get arguments:
2842   Node* receiver = NULL;
2843   Node* base     = NULL;
2844   Node* offset   = NULL;
2845   Node* oldval   = NULL;
2846   Node* newval   = NULL;
2847   if (kind == LS_cmpxchg) {
2848     const bool two_slot_type = type2size[type] == 2;
2849     receiver = argument(0);  // type: oop
2850     base     = argument(1);  // type: oop
2851     offset   = argument(2);  // type: long
2852     oldval   = argument(4);  // type: oop, int, or long
2853     newval   = argument(two_slot_type ? 6 : 5);  // type: oop, int, or long
2854   } else if (kind == LS_xadd || kind == LS_xchg){
2855     receiver = argument(0);  // type: oop
2856     base     = argument(1);  // type: oop
2857     offset   = argument(2);  // type: long
2858     oldval   = NULL;
2859     newval   = argument(4);  // type: oop, int, or long
2860   }
2861 
2862   // Null check receiver.
2863   receiver = null_check(receiver);
2864   if (stopped()) {
2865     return true;
2866   }
2867 
2868   // Build field offset expression.
2869   // We currently rely on the cookies produced by Unsafe.xxxFieldOffset
2870   // to be plain byte offsets, which are also the same as those accepted
2871   // by oopDesc::field_base.
2872   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
2873   // 32-bit machines ignore the high half of long offsets
2874   offset = ConvL2X(offset);
2875   Node* adr = make_unsafe_address(base, offset);
2876   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
2877 
2878   // For CAS, unlike inline_unsafe_access, there seems no point in
2879   // trying to refine types. Just use the coarse types here.
2880   const Type *value_type = Type::get_const_basic_type(type);
2881   Compile::AliasType* alias_type = C->alias_type(adr_type);
2882   assert(alias_type->index() != Compile::AliasIdxBot, "no bare pointers here");
2883 
2884   if (kind == LS_xchg && type == T_OBJECT) {
2885     const TypeOopPtr* tjp = sharpen_unsafe_type(alias_type, adr_type);
2886     if (tjp != NULL) {
2887       value_type = tjp;
2888     }
2889   }
2890 
2891   int alias_idx = C->get_alias_index(adr_type);
2892 
2893   // Memory-model-wise, a LoadStore acts like a little synchronized
2894   // block, so needs barriers on each side.  These don't translate
2895   // into actual barriers on most machines, but we still need rest of
2896   // compiler to respect ordering.
2897 
2898   insert_mem_bar(Op_MemBarRelease);
2899   insert_mem_bar(Op_MemBarCPUOrder);
2900 
2901   // 4984716: MemBars must be inserted before this
2902   //          memory node in order to avoid a false
2903   //          dependency which will confuse the scheduler.
2904   Node *mem = memory(alias_idx);
2905 
2906   // For now, we handle only those cases that actually exist: ints,
2907   // longs, and Object. Adding others should be straightforward.
2908   Node* load_store;
2909   switch(type) {
2910   case T_INT:
2911     if (kind == LS_xadd) {
2912       load_store = _gvn.transform(new (C) GetAndAddINode(control(), mem, adr, newval, adr_type));
2913     } else if (kind == LS_xchg) {
2914       load_store = _gvn.transform(new (C) GetAndSetINode(control(), mem, adr, newval, adr_type));
2915     } else if (kind == LS_cmpxchg) {
2916       load_store = _gvn.transform(new (C) CompareAndSwapINode(control(), mem, adr, newval, oldval));
2917     } else {
2918       ShouldNotReachHere();
2919     }
2920     break;
2921   case T_LONG:
2922     if (kind == LS_xadd) {
2923       load_store = _gvn.transform(new (C) GetAndAddLNode(control(), mem, adr, newval, adr_type));
2924     } else if (kind == LS_xchg) {
2925       load_store = _gvn.transform(new (C) GetAndSetLNode(control(), mem, adr, newval, adr_type));
2926     } else if (kind == LS_cmpxchg) {
2927       load_store = _gvn.transform(new (C) CompareAndSwapLNode(control(), mem, adr, newval, oldval));
2928     } else {
2929       ShouldNotReachHere();
2930     }
2931     break;
2932   case T_OBJECT:
2933     // Transformation of a value which could be NULL pointer (CastPP #NULL)
2934     // could be delayed during Parse (for example, in adjust_map_after_if()).
2935     // Execute transformation here to avoid barrier generation in such case.
2936     if (_gvn.type(newval) == TypePtr::NULL_PTR)
2937       newval = _gvn.makecon(TypePtr::NULL_PTR);
2938 
2939     // Reference stores need a store barrier.
2940     if (kind == LS_xchg) {
2941       // If pre-barrier must execute before the oop store, old value will require do_load here.
2942       if (!can_move_pre_barrier()) {
2943         pre_barrier(true /* do_load*/,
2944                     control(), base, adr, alias_idx, newval, value_type->make_oopptr(),
2945                     NULL /* pre_val*/,
2946                     T_OBJECT);
2947       } // Else move pre_barrier to use load_store value, see below.
2948     } else if (kind == LS_cmpxchg) {
2949       // Same as for newval above:
2950       if (_gvn.type(oldval) == TypePtr::NULL_PTR) {
2951         oldval = _gvn.makecon(TypePtr::NULL_PTR);
2952       }
2953       // The only known value which might get overwritten is oldval.
2954       pre_barrier(false /* do_load */,
2955                   control(), NULL, NULL, max_juint, NULL, NULL,
2956                   oldval /* pre_val */,
2957                   T_OBJECT);
2958     } else {
2959       ShouldNotReachHere();
2960     }
2961 
2962 #ifdef _LP64
2963     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
2964       Node *newval_enc = _gvn.transform(new (C) EncodePNode(newval, newval->bottom_type()->make_narrowoop()));
2965       if (kind == LS_xchg) {
2966         load_store = _gvn.transform(new (C) GetAndSetNNode(control(), mem, adr,
2967                                                            newval_enc, adr_type, value_type->make_narrowoop()));
2968       } else {
2969         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2970         Node *oldval_enc = _gvn.transform(new (C) EncodePNode(oldval, oldval->bottom_type()->make_narrowoop()));
2971         load_store = _gvn.transform(new (C) CompareAndSwapNNode(control(), mem, adr,
2972                                                                 newval_enc, oldval_enc));
2973       }
2974     } else
2975 #endif
2976     {
2977       if (kind == LS_xchg) {
2978         load_store = _gvn.transform(new (C) GetAndSetPNode(control(), mem, adr, newval, adr_type, value_type->is_oopptr()));
2979       } else {
2980         assert(kind == LS_cmpxchg, "wrong LoadStore operation");
2981         load_store = _gvn.transform(new (C) CompareAndSwapPNode(control(), mem, adr, newval, oldval));
2982       }
2983     }
2984     post_barrier(control(), load_store, base, adr, alias_idx, newval, T_OBJECT, true);
2985     break;
2986   default:
2987     fatal(err_msg_res("unexpected type %d: %s", type, type2name(type)));
2988     break;
2989   }
2990 
2991   // SCMemProjNodes represent the memory state of a LoadStore. Their
2992   // main role is to prevent LoadStore nodes from being optimized away
2993   // when their results aren't used.
2994   Node* proj = _gvn.transform(new (C) SCMemProjNode(load_store));
2995   set_memory(proj, alias_idx);
2996 
2997   if (type == T_OBJECT && kind == LS_xchg) {
2998 #ifdef _LP64
2999     if (adr->bottom_type()->is_ptr_to_narrowoop()) {
3000       load_store = _gvn.transform(new (C) DecodeNNode(load_store, load_store->get_ptr_type()));
3001     }
3002 #endif
3003     if (can_move_pre_barrier()) {
3004       // Don't need to load pre_val. The old value is returned by load_store.
3005       // The pre_barrier can execute after the xchg as long as no safepoint
3006       // gets inserted between them.
3007       pre_barrier(false /* do_load */,
3008                   control(), NULL, NULL, max_juint, NULL, NULL,
3009                   load_store /* pre_val */,
3010                   T_OBJECT);
3011     }
3012   }
3013 
3014   // Add the trailing membar surrounding the access
3015   insert_mem_bar(Op_MemBarCPUOrder);
3016   insert_mem_bar(Op_MemBarAcquire);
3017 
3018   assert(type2size[load_store->bottom_type()->basic_type()] == type2size[rtype], "result type should match");
3019   set_result(load_store);
3020   return true;
3021 }
3022 
3023 //----------------------------inline_unsafe_ordered_store----------------------
3024 // public native void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x);
3025 // public native void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x);
3026 // public native void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x);
3027 bool LibraryCallKit::inline_unsafe_ordered_store(BasicType type) {
3028   // This is another variant of inline_unsafe_access, differing in
3029   // that it always issues store-store ("release") barrier and ensures
3030   // store-atomicity (which only matters for "long").
3031 
3032   if (callee()->is_static())  return false;  // caller must have the capability!
3033 
3034 #ifndef PRODUCT
3035   {
3036     ResourceMark rm;
3037     // Check the signatures.
3038     ciSignature* sig = callee()->signature();
3039 #ifdef ASSERT
3040     BasicType rtype = sig->return_type()->basic_type();
3041     assert(rtype == T_VOID, "must return void");
3042     assert(sig->count() == 3, "has 3 arguments");
3043     assert(sig->type_at(0)->basic_type() == T_OBJECT, "base is object");
3044     assert(sig->type_at(1)->basic_type() == T_LONG, "offset is long");
3045 #endif // ASSERT
3046   }
3047 #endif //PRODUCT
3048 
3049   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
3050 
3051   // Get arguments:
3052   Node* receiver = argument(0);  // type: oop
3053   Node* base     = argument(1);  // type: oop
3054   Node* offset   = argument(2);  // type: long
3055   Node* val      = argument(4);  // type: oop, int, or long
3056 
3057   // Null check receiver.
3058   receiver = null_check(receiver);
3059   if (stopped()) {
3060     return true;
3061   }
3062 
3063   // Build field offset expression.
3064   assert(Unsafe_field_offset_to_byte_offset(11) == 11, "fieldOffset must be byte-scaled");
3065   // 32-bit machines ignore the high half of long offsets
3066   offset = ConvL2X(offset);
3067   Node* adr = make_unsafe_address(base, offset);
3068   const TypePtr *adr_type = _gvn.type(adr)->isa_ptr();
3069   const Type *value_type = Type::get_const_basic_type(type);
3070   Compile::AliasType* alias_type = C->alias_type(adr_type);
3071 
3072   insert_mem_bar(Op_MemBarRelease);
3073   insert_mem_bar(Op_MemBarCPUOrder);
3074   // Ensure that the store is atomic for longs:
3075   const bool require_atomic_access = true;
3076   Node* store;
3077   if (type == T_OBJECT) // reference stores need a store barrier.
3078     store = store_oop_to_unknown(control(), base, adr, adr_type, val, type, MemNode::release);
3079   else {
3080     store = store_to_memory(control(), adr, val, type, adr_type, MemNode::release, require_atomic_access);
3081   }
3082   insert_mem_bar(Op_MemBarCPUOrder);
3083   return true;
3084 }
3085 
3086 bool LibraryCallKit::inline_unsafe_fence(vmIntrinsics::ID id) {
3087   // Regardless of form, don't allow previous ld/st to move down,
3088   // then issue acquire, release, or volatile mem_bar.
3089   insert_mem_bar(Op_MemBarCPUOrder);
3090   switch(id) {
3091     case vmIntrinsics::_loadFence:
3092       insert_mem_bar(Op_LoadFence);
3093       return true;
3094     case vmIntrinsics::_storeFence:
3095       insert_mem_bar(Op_StoreFence);
3096       return true;
3097     case vmIntrinsics::_fullFence:
3098       insert_mem_bar(Op_MemBarVolatile);
3099       return true;
3100     default:
3101       fatal_unexpected_iid(id);
3102       return false;
3103   }
3104 }
3105 
3106 bool LibraryCallKit::klass_needs_init_guard(Node* kls) {
3107   if (!kls->is_Con()) {
3108     return true;
3109   }
3110   const TypeKlassPtr* klsptr = kls->bottom_type()->isa_klassptr();
3111   if (klsptr == NULL) {
3112     return true;
3113   }
3114   ciInstanceKlass* ik = klsptr->klass()->as_instance_klass();
3115   // don't need a guard for a klass that is already initialized
3116   return !ik->is_initialized();
3117 }
3118 
3119 //----------------------------inline_unsafe_allocate---------------------------
3120 // public native Object sun.misc.Unsafe.allocateInstance(Class<?> cls);
3121 bool LibraryCallKit::inline_unsafe_allocate() {
3122   if (callee()->is_static())  return false;  // caller must have the capability!
3123 
3124   null_check_receiver();  // null-check, then ignore
3125   Node* cls = null_check(argument(1));
3126   if (stopped())  return true;
3127 
3128   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3129   kls = null_check(kls);
3130   if (stopped())  return true;  // argument was like int.class
3131 
3132   Node* test = NULL;
3133   if (LibraryCallKit::klass_needs_init_guard(kls)) {
3134     // Note:  The argument might still be an illegal value like
3135     // Serializable.class or Object[].class.   The runtime will handle it.
3136     // But we must make an explicit check for initialization.
3137     Node* insp = basic_plus_adr(kls, in_bytes(InstanceKlass::init_state_offset()));
3138     // Use T_BOOLEAN for InstanceKlass::_init_state so the compiler
3139     // can generate code to load it as unsigned byte.
3140     Node* inst = make_load(NULL, insp, TypeInt::UBYTE, T_BOOLEAN, MemNode::unordered);
3141     Node* bits = intcon(InstanceKlass::fully_initialized);
3142     test = _gvn.transform(new (C) SubINode(inst, bits));
3143     // The 'test' is non-zero if we need to take a slow path.
3144   }
3145 
3146   Node* obj = new_instance(kls, test);
3147   set_result(obj);
3148   return true;
3149 }
3150 
3151 #ifdef TRACE_HAVE_INTRINSICS
3152 /*
3153  * oop -> myklass
3154  * myklass->trace_id |= USED
3155  * return myklass->trace_id & ~0x3
3156  */
3157 bool LibraryCallKit::inline_native_classID() {
3158   null_check_receiver();  // null-check, then ignore
3159   Node* cls = null_check(argument(1), T_OBJECT);
3160   Node* kls = load_klass_from_mirror(cls, false, NULL, 0);
3161   kls = null_check(kls, T_OBJECT);
3162   ByteSize offset = TRACE_ID_OFFSET;
3163   Node* insp = basic_plus_adr(kls, in_bytes(offset));
3164   Node* tvalue = make_load(NULL, insp, TypeLong::LONG, T_LONG, MemNode::unordered);
3165   Node* bits = longcon(~0x03l); // ignore bit 0 & 1
3166   Node* andl = _gvn.transform(new (C) AndLNode(tvalue, bits));
3167   Node* clsused = longcon(0x01l); // set the class bit
3168   Node* orl = _gvn.transform(new (C) OrLNode(tvalue, clsused));
3169 
3170   const TypePtr *adr_type = _gvn.type(insp)->isa_ptr();
3171   store_to_memory(control(), insp, orl, T_LONG, adr_type, MemNode::unordered);
3172   set_result(andl);
3173   return true;
3174 }
3175 
3176 bool LibraryCallKit::inline_native_threadID() {
3177   Node* tls_ptr = NULL;
3178   Node* cur_thr = generate_current_thread(tls_ptr);
3179   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3180   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3181   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::thread_id_offset()));
3182 
3183   Node* threadid = NULL;
3184   size_t thread_id_size = OSThread::thread_id_size();
3185   if (thread_id_size == (size_t) BytesPerLong) {
3186     threadid = ConvL2I(make_load(control(), p, TypeLong::LONG, T_LONG, MemNode::unordered));
3187   } else if (thread_id_size == (size_t) BytesPerInt) {
3188     threadid = make_load(control(), p, TypeInt::INT, T_INT, MemNode::unordered);
3189   } else {
3190     ShouldNotReachHere();
3191   }
3192   set_result(threadid);
3193   return true;
3194 }
3195 #endif
3196 
3197 //------------------------inline_native_time_funcs--------------
3198 // inline code for System.currentTimeMillis() and System.nanoTime()
3199 // these have the same type and signature
3200 bool LibraryCallKit::inline_native_time_funcs(address funcAddr, const char* funcName) {
3201   const TypeFunc* tf = OptoRuntime::void_long_Type();
3202   const TypePtr* no_memory_effects = NULL;
3203   Node* time = make_runtime_call(RC_LEAF, tf, funcAddr, funcName, no_memory_effects);
3204   Node* value = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+0));
3205 #ifdef ASSERT
3206   Node* value_top = _gvn.transform(new (C) ProjNode(time, TypeFunc::Parms+1));
3207   assert(value_top == top(), "second value must be top");
3208 #endif
3209   set_result(value);
3210   return true;
3211 }
3212 
3213 //------------------------inline_native_currentThread------------------
3214 bool LibraryCallKit::inline_native_currentThread() {
3215   Node* junk = NULL;
3216   set_result(generate_current_thread(junk));
3217   return true;
3218 }
3219 
3220 //------------------------inline_native_isInterrupted------------------
3221 // private native boolean java.lang.Thread.isInterrupted(boolean ClearInterrupted);
3222 bool LibraryCallKit::inline_native_isInterrupted() {
3223   // Add a fast path to t.isInterrupted(clear_int):
3224   //   (t == Thread.current() &&
3225   //    (!TLS._osthread._interrupted || WINDOWS_ONLY(false) NOT_WINDOWS(!clear_int)))
3226   //   ? TLS._osthread._interrupted : /*slow path:*/ t.isInterrupted(clear_int)
3227   // So, in the common case that the interrupt bit is false,
3228   // we avoid making a call into the VM.  Even if the interrupt bit
3229   // is true, if the clear_int argument is false, we avoid the VM call.
3230   // However, if the receiver is not currentThread, we must call the VM,
3231   // because there must be some locking done around the operation.
3232 
3233   // We only go to the fast case code if we pass two guards.
3234   // Paths which do not pass are accumulated in the slow_region.
3235 
3236   enum {
3237     no_int_result_path   = 1, // t == Thread.current() && !TLS._osthread._interrupted
3238     no_clear_result_path = 2, // t == Thread.current() &&  TLS._osthread._interrupted && !clear_int
3239     slow_result_path     = 3, // slow path: t.isInterrupted(clear_int)
3240     PATH_LIMIT
3241   };
3242 
3243   // Ensure that it's not possible to move the load of TLS._osthread._interrupted flag
3244   // out of the function.
3245   insert_mem_bar(Op_MemBarCPUOrder);
3246 
3247   RegionNode* result_rgn = new (C) RegionNode(PATH_LIMIT);
3248   PhiNode*    result_val = new (C) PhiNode(result_rgn, TypeInt::BOOL);
3249 
3250   RegionNode* slow_region = new (C) RegionNode(1);
3251   record_for_igvn(slow_region);
3252 
3253   // (a) Receiving thread must be the current thread.
3254   Node* rec_thr = argument(0);
3255   Node* tls_ptr = NULL;
3256   Node* cur_thr = generate_current_thread(tls_ptr);
3257   Node* cmp_thr = _gvn.transform(new (C) CmpPNode(cur_thr, rec_thr));
3258   Node* bol_thr = _gvn.transform(new (C) BoolNode(cmp_thr, BoolTest::ne));
3259 
3260   generate_slow_guard(bol_thr, slow_region);
3261 
3262   // (b) Interrupt bit on TLS must be false.
3263   Node* p = basic_plus_adr(top()/*!oop*/, tls_ptr, in_bytes(JavaThread::osthread_offset()));
3264   Node* osthread = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3265   p = basic_plus_adr(top()/*!oop*/, osthread, in_bytes(OSThread::interrupted_offset()));
3266 
3267   // Set the control input on the field _interrupted read to prevent it floating up.
3268   Node* int_bit = make_load(control(), p, TypeInt::BOOL, T_INT, MemNode::unordered);
3269   Node* cmp_bit = _gvn.transform(new (C) CmpINode(int_bit, intcon(0)));
3270   Node* bol_bit = _gvn.transform(new (C) BoolNode(cmp_bit, BoolTest::ne));
3271 
3272   IfNode* iff_bit = create_and_map_if(control(), bol_bit, PROB_UNLIKELY_MAG(3), COUNT_UNKNOWN);
3273 
3274   // First fast path:  if (!TLS._interrupted) return false;
3275   Node* false_bit = _gvn.transform(new (C) IfFalseNode(iff_bit));
3276   result_rgn->init_req(no_int_result_path, false_bit);
3277   result_val->init_req(no_int_result_path, intcon(0));
3278 
3279   // drop through to next case
3280   set_control( _gvn.transform(new (C) IfTrueNode(iff_bit)));
3281 
3282 #ifndef TARGET_OS_FAMILY_windows
3283   // (c) Or, if interrupt bit is set and clear_int is false, use 2nd fast path.
3284   Node* clr_arg = argument(1);
3285   Node* cmp_arg = _gvn.transform(new (C) CmpINode(clr_arg, intcon(0)));
3286   Node* bol_arg = _gvn.transform(new (C) BoolNode(cmp_arg, BoolTest::ne));
3287   IfNode* iff_arg = create_and_map_if(control(), bol_arg, PROB_FAIR, COUNT_UNKNOWN);
3288 
3289   // Second fast path:  ... else if (!clear_int) return true;
3290   Node* false_arg = _gvn.transform(new (C) IfFalseNode(iff_arg));
3291   result_rgn->init_req(no_clear_result_path, false_arg);
3292   result_val->init_req(no_clear_result_path, intcon(1));
3293 
3294   // drop through to next case
3295   set_control( _gvn.transform(new (C) IfTrueNode(iff_arg)));
3296 #else
3297   // To return true on Windows you must read the _interrupted field
3298   // and check the the event state i.e. take the slow path.
3299 #endif // TARGET_OS_FAMILY_windows
3300 
3301   // (d) Otherwise, go to the slow path.
3302   slow_region->add_req(control());
3303   set_control( _gvn.transform(slow_region));
3304 
3305   if (stopped()) {
3306     // There is no slow path.
3307     result_rgn->init_req(slow_result_path, top());
3308     result_val->init_req(slow_result_path, top());
3309   } else {
3310     // non-virtual because it is a private non-static
3311     CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_isInterrupted);
3312 
3313     Node* slow_val = set_results_for_java_call(slow_call);
3314     // this->control() comes from set_results_for_java_call
3315 
3316     Node* fast_io  = slow_call->in(TypeFunc::I_O);
3317     Node* fast_mem = slow_call->in(TypeFunc::Memory);
3318 
3319     // These two phis are pre-filled with copies of of the fast IO and Memory
3320     PhiNode* result_mem  = PhiNode::make(result_rgn, fast_mem, Type::MEMORY, TypePtr::BOTTOM);
3321     PhiNode* result_io   = PhiNode::make(result_rgn, fast_io,  Type::ABIO);
3322 
3323     result_rgn->init_req(slow_result_path, control());
3324     result_io ->init_req(slow_result_path, i_o());
3325     result_mem->init_req(slow_result_path, reset_memory());
3326     result_val->init_req(slow_result_path, slow_val);
3327 
3328     set_all_memory(_gvn.transform(result_mem));
3329     set_i_o(       _gvn.transform(result_io));
3330   }
3331 
3332   C->set_has_split_ifs(true); // Has chance for split-if optimization
3333   set_result(result_rgn, result_val);
3334   return true;
3335 }
3336 
3337 //---------------------------load_mirror_from_klass----------------------------
3338 // Given a klass oop, load its java mirror (a java.lang.Class oop).
3339 Node* LibraryCallKit::load_mirror_from_klass(Node* klass) {
3340   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
3341   return make_load(NULL, p, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3342 }
3343 
3344 //-----------------------load_klass_from_mirror_common-------------------------
3345 // Given a java mirror (a java.lang.Class oop), load its corresponding klass oop.
3346 // Test the klass oop for null (signifying a primitive Class like Integer.TYPE),
3347 // and branch to the given path on the region.
3348 // If never_see_null, take an uncommon trap on null, so we can optimistically
3349 // compile for the non-null case.
3350 // If the region is NULL, force never_see_null = true.
3351 Node* LibraryCallKit::load_klass_from_mirror_common(Node* mirror,
3352                                                     bool never_see_null,
3353                                                     RegionNode* region,
3354                                                     int null_path,
3355                                                     int offset) {
3356   if (region == NULL)  never_see_null = true;
3357   Node* p = basic_plus_adr(mirror, offset);
3358   const TypeKlassPtr*  kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3359   Node* kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, kls_type));
3360   Node* null_ctl = top();
3361   kls = null_check_oop(kls, &null_ctl, never_see_null);
3362   if (region != NULL) {
3363     // Set region->in(null_path) if the mirror is a primitive (e.g, int.class).
3364     region->init_req(null_path, null_ctl);
3365   } else {
3366     assert(null_ctl == top(), "no loose ends");
3367   }
3368   return kls;
3369 }
3370 
3371 //--------------------(inline_native_Class_query helpers)---------------------
3372 // Use this for JVM_ACC_INTERFACE, JVM_ACC_IS_CLONEABLE, JVM_ACC_HAS_FINALIZER.
3373 // Fall through if (mods & mask) == bits, take the guard otherwise.
3374 Node* LibraryCallKit::generate_access_flags_guard(Node* kls, int modifier_mask, int modifier_bits, RegionNode* region) {
3375   // Branch around if the given klass has the given modifier bit set.
3376   // Like generate_guard, adds a new path onto the region.
3377   Node* modp = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3378   Node* mods = make_load(NULL, modp, TypeInt::INT, T_INT, MemNode::unordered);
3379   Node* mask = intcon(modifier_mask);
3380   Node* bits = intcon(modifier_bits);
3381   Node* mbit = _gvn.transform(new (C) AndINode(mods, mask));
3382   Node* cmp  = _gvn.transform(new (C) CmpINode(mbit, bits));
3383   Node* bol  = _gvn.transform(new (C) BoolNode(cmp, BoolTest::ne));
3384   return generate_fair_guard(bol, region);
3385 }
3386 Node* LibraryCallKit::generate_interface_guard(Node* kls, RegionNode* region) {
3387   return generate_access_flags_guard(kls, JVM_ACC_INTERFACE, 0, region);
3388 }
3389 
3390 //-------------------------inline_native_Class_query-------------------
3391 bool LibraryCallKit::inline_native_Class_query(vmIntrinsics::ID id) {
3392   const Type* return_type = TypeInt::BOOL;
3393   Node* prim_return_value = top();  // what happens if it's a primitive class?
3394   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3395   bool expect_prim = false;     // most of these guys expect to work on refs
3396 
3397   enum { _normal_path = 1, _prim_path = 2, PATH_LIMIT };
3398 
3399   Node* mirror = argument(0);
3400   Node* obj    = top();
3401 
3402   switch (id) {
3403   case vmIntrinsics::_isInstance:
3404     // nothing is an instance of a primitive type
3405     prim_return_value = intcon(0);
3406     obj = argument(1);
3407     break;
3408   case vmIntrinsics::_getModifiers:
3409     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3410     assert(is_power_of_2((int)JVM_ACC_WRITTEN_FLAGS+1), "change next line");
3411     return_type = TypeInt::make(0, JVM_ACC_WRITTEN_FLAGS, Type::WidenMin);
3412     break;
3413   case vmIntrinsics::_isInterface:
3414     prim_return_value = intcon(0);
3415     break;
3416   case vmIntrinsics::_isArray:
3417     prim_return_value = intcon(0);
3418     expect_prim = true;  // cf. ObjectStreamClass.getClassSignature
3419     break;
3420   case vmIntrinsics::_isPrimitive:
3421     prim_return_value = intcon(1);
3422     expect_prim = true;  // obviously
3423     break;
3424   case vmIntrinsics::_getSuperclass:
3425     prim_return_value = null();
3426     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3427     break;
3428   case vmIntrinsics::_getComponentType:
3429     prim_return_value = null();
3430     return_type = TypeInstPtr::MIRROR->cast_to_ptr_type(TypePtr::BotPTR);
3431     break;
3432   case vmIntrinsics::_getClassAccessFlags:
3433     prim_return_value = intcon(JVM_ACC_ABSTRACT | JVM_ACC_FINAL | JVM_ACC_PUBLIC);
3434     return_type = TypeInt::INT;  // not bool!  6297094
3435     break;
3436   default:
3437     fatal_unexpected_iid(id);
3438     break;
3439   }
3440 
3441   const TypeInstPtr* mirror_con = _gvn.type(mirror)->isa_instptr();
3442   if (mirror_con == NULL)  return false;  // cannot happen?
3443 
3444 #ifndef PRODUCT
3445   if (C->print_intrinsics() || C->print_inlining()) {
3446     ciType* k = mirror_con->java_mirror_type();
3447     if (k) {
3448       tty->print("Inlining %s on constant Class ", vmIntrinsics::name_at(intrinsic_id()));
3449       k->print_name();
3450       tty->cr();
3451     }
3452   }
3453 #endif
3454 
3455   // Null-check the mirror, and the mirror's klass ptr (in case it is a primitive).
3456   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3457   record_for_igvn(region);
3458   PhiNode* phi = new (C) PhiNode(region, return_type);
3459 
3460   // The mirror will never be null of Reflection.getClassAccessFlags, however
3461   // it may be null for Class.isInstance or Class.getModifiers. Throw a NPE
3462   // if it is. See bug 4774291.
3463 
3464   // For Reflection.getClassAccessFlags(), the null check occurs in
3465   // the wrong place; see inline_unsafe_access(), above, for a similar
3466   // situation.
3467   mirror = null_check(mirror);
3468   // If mirror or obj is dead, only null-path is taken.
3469   if (stopped())  return true;
3470 
3471   if (expect_prim)  never_see_null = false;  // expect nulls (meaning prims)
3472 
3473   // Now load the mirror's klass metaobject, and null-check it.
3474   // Side-effects region with the control path if the klass is null.
3475   Node* kls = load_klass_from_mirror(mirror, never_see_null, region, _prim_path);
3476   // If kls is null, we have a primitive mirror.
3477   phi->init_req(_prim_path, prim_return_value);
3478   if (stopped()) { set_result(region, phi); return true; }
3479   bool safe_for_replace = (region->in(_prim_path) == top());
3480 
3481   Node* p;  // handy temp
3482   Node* null_ctl;
3483 
3484   // Now that we have the non-null klass, we can perform the real query.
3485   // For constant classes, the query will constant-fold in LoadNode::Value.
3486   Node* query_value = top();
3487   switch (id) {
3488   case vmIntrinsics::_isInstance:
3489     // nothing is an instance of a primitive type
3490     query_value = gen_instanceof(obj, kls, safe_for_replace);
3491     break;
3492 
3493   case vmIntrinsics::_getModifiers:
3494     p = basic_plus_adr(kls, in_bytes(Klass::modifier_flags_offset()));
3495     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3496     break;
3497 
3498   case vmIntrinsics::_isInterface:
3499     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3500     if (generate_interface_guard(kls, region) != NULL)
3501       // A guard was added.  If the guard is taken, it was an interface.
3502       phi->add_req(intcon(1));
3503     // If we fall through, it's a plain class.
3504     query_value = intcon(0);
3505     break;
3506 
3507   case vmIntrinsics::_isArray:
3508     // (To verify this code sequence, check the asserts in JVM_IsArrayClass.)
3509     if (generate_array_guard(kls, region) != NULL)
3510       // A guard was added.  If the guard is taken, it was an array.
3511       phi->add_req(intcon(1));
3512     // If we fall through, it's a plain class.
3513     query_value = intcon(0);
3514     break;
3515 
3516   case vmIntrinsics::_isPrimitive:
3517     query_value = intcon(0); // "normal" path produces false
3518     break;
3519 
3520   case vmIntrinsics::_getSuperclass:
3521     // The rules here are somewhat unfortunate, but we can still do better
3522     // with random logic than with a JNI call.
3523     // Interfaces store null or Object as _super, but must report null.
3524     // Arrays store an intermediate super as _super, but must report Object.
3525     // Other types can report the actual _super.
3526     // (To verify this code sequence, check the asserts in JVM_IsInterface.)
3527     if (generate_interface_guard(kls, region) != NULL)
3528       // A guard was added.  If the guard is taken, it was an interface.
3529       phi->add_req(null());
3530     if (generate_array_guard(kls, region) != NULL)
3531       // A guard was added.  If the guard is taken, it was an array.
3532       phi->add_req(makecon(TypeInstPtr::make(env()->Object_klass()->java_mirror())));
3533     // If we fall through, it's a plain class.  Get its _super.
3534     p = basic_plus_adr(kls, in_bytes(Klass::super_offset()));
3535     kls = _gvn.transform( LoadKlassNode::make(_gvn, immutable_memory(), p, TypeRawPtr::BOTTOM, TypeKlassPtr::OBJECT_OR_NULL));
3536     null_ctl = top();
3537     kls = null_check_oop(kls, &null_ctl);
3538     if (null_ctl != top()) {
3539       // If the guard is taken, Object.superClass is null (both klass and mirror).
3540       region->add_req(null_ctl);
3541       phi   ->add_req(null());
3542     }
3543     if (!stopped()) {
3544       query_value = load_mirror_from_klass(kls);
3545     }
3546     break;
3547 
3548   case vmIntrinsics::_getComponentType:
3549     if (generate_array_guard(kls, region) != NULL) {
3550       // Be sure to pin the oop load to the guard edge just created:
3551       Node* is_array_ctrl = region->in(region->req()-1);
3552       Node* cma = basic_plus_adr(kls, in_bytes(ArrayKlass::component_mirror_offset()));
3553       Node* cmo = make_load(is_array_ctrl, cma, TypeInstPtr::MIRROR, T_OBJECT, MemNode::unordered);
3554       phi->add_req(cmo);
3555     }
3556     query_value = null();  // non-array case is null
3557     break;
3558 
3559   case vmIntrinsics::_getClassAccessFlags:
3560     p = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3561     query_value = make_load(NULL, p, TypeInt::INT, T_INT, MemNode::unordered);
3562     break;
3563 
3564   default:
3565     fatal_unexpected_iid(id);
3566     break;
3567   }
3568 
3569   // Fall-through is the normal case of a query to a real class.
3570   phi->init_req(1, query_value);
3571   region->init_req(1, control());
3572 
3573   C->set_has_split_ifs(true); // Has chance for split-if optimization
3574   set_result(region, phi);
3575   return true;
3576 }
3577 
3578 //--------------------------inline_native_subtype_check------------------------
3579 // This intrinsic takes the JNI calls out of the heart of
3580 // UnsafeFieldAccessorImpl.set, which improves Field.set, readObject, etc.
3581 bool LibraryCallKit::inline_native_subtype_check() {
3582   // Pull both arguments off the stack.
3583   Node* args[2];                // two java.lang.Class mirrors: superc, subc
3584   args[0] = argument(0);
3585   args[1] = argument(1);
3586   Node* klasses[2];             // corresponding Klasses: superk, subk
3587   klasses[0] = klasses[1] = top();
3588 
3589   enum {
3590     // A full decision tree on {superc is prim, subc is prim}:
3591     _prim_0_path = 1,           // {P,N} => false
3592                                 // {P,P} & superc!=subc => false
3593     _prim_same_path,            // {P,P} & superc==subc => true
3594     _prim_1_path,               // {N,P} => false
3595     _ref_subtype_path,          // {N,N} & subtype check wins => true
3596     _both_ref_path,             // {N,N} & subtype check loses => false
3597     PATH_LIMIT
3598   };
3599 
3600   RegionNode* region = new (C) RegionNode(PATH_LIMIT);
3601   Node*       phi    = new (C) PhiNode(region, TypeInt::BOOL);
3602   record_for_igvn(region);
3603 
3604   const TypePtr* adr_type = TypeRawPtr::BOTTOM;   // memory type of loads
3605   const TypeKlassPtr* kls_type = TypeKlassPtr::OBJECT_OR_NULL;
3606   int class_klass_offset = java_lang_Class::klass_offset_in_bytes();
3607 
3608   // First null-check both mirrors and load each mirror's klass metaobject.
3609   int which_arg;
3610   for (which_arg = 0; which_arg <= 1; which_arg++) {
3611     Node* arg = args[which_arg];
3612     arg = null_check(arg);
3613     if (stopped())  break;
3614     args[which_arg] = arg;
3615 
3616     Node* p = basic_plus_adr(arg, class_klass_offset);
3617     Node* kls = LoadKlassNode::make(_gvn, immutable_memory(), p, adr_type, kls_type);
3618     klasses[which_arg] = _gvn.transform(kls);
3619   }
3620 
3621   // Having loaded both klasses, test each for null.
3622   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3623   for (which_arg = 0; which_arg <= 1; which_arg++) {
3624     Node* kls = klasses[which_arg];
3625     Node* null_ctl = top();
3626     kls = null_check_oop(kls, &null_ctl, never_see_null);
3627     int prim_path = (which_arg == 0 ? _prim_0_path : _prim_1_path);
3628     region->init_req(prim_path, null_ctl);
3629     if (stopped())  break;
3630     klasses[which_arg] = kls;
3631   }
3632 
3633   if (!stopped()) {
3634     // now we have two reference types, in klasses[0..1]
3635     Node* subk   = klasses[1];  // the argument to isAssignableFrom
3636     Node* superk = klasses[0];  // the receiver
3637     region->set_req(_both_ref_path, gen_subtype_check(subk, superk));
3638     // now we have a successful reference subtype check
3639     region->set_req(_ref_subtype_path, control());
3640   }
3641 
3642   // If both operands are primitive (both klasses null), then
3643   // we must return true when they are identical primitives.
3644   // It is convenient to test this after the first null klass check.
3645   set_control(region->in(_prim_0_path)); // go back to first null check
3646   if (!stopped()) {
3647     // Since superc is primitive, make a guard for the superc==subc case.
3648     Node* cmp_eq = _gvn.transform(new (C) CmpPNode(args[0], args[1]));
3649     Node* bol_eq = _gvn.transform(new (C) BoolNode(cmp_eq, BoolTest::eq));
3650     generate_guard(bol_eq, region, PROB_FAIR);
3651     if (region->req() == PATH_LIMIT+1) {
3652       // A guard was added.  If the added guard is taken, superc==subc.
3653       region->swap_edges(PATH_LIMIT, _prim_same_path);
3654       region->del_req(PATH_LIMIT);
3655     }
3656     region->set_req(_prim_0_path, control()); // Not equal after all.
3657   }
3658 
3659   // these are the only paths that produce 'true':
3660   phi->set_req(_prim_same_path,   intcon(1));
3661   phi->set_req(_ref_subtype_path, intcon(1));
3662 
3663   // pull together the cases:
3664   assert(region->req() == PATH_LIMIT, "sane region");
3665   for (uint i = 1; i < region->req(); i++) {
3666     Node* ctl = region->in(i);
3667     if (ctl == NULL || ctl == top()) {
3668       region->set_req(i, top());
3669       phi   ->set_req(i, top());
3670     } else if (phi->in(i) == NULL) {
3671       phi->set_req(i, intcon(0)); // all other paths produce 'false'
3672     }
3673   }
3674 
3675   set_control(_gvn.transform(region));
3676   set_result(_gvn.transform(phi));
3677   return true;
3678 }
3679 
3680 //---------------------generate_array_guard_common------------------------
3681 Node* LibraryCallKit::generate_array_guard_common(Node* kls, RegionNode* region,
3682                                                   bool obj_array, bool not_array) {
3683   // If obj_array/non_array==false/false:
3684   // Branch around if the given klass is in fact an array (either obj or prim).
3685   // If obj_array/non_array==false/true:
3686   // Branch around if the given klass is not an array klass of any kind.
3687   // If obj_array/non_array==true/true:
3688   // Branch around if the kls is not an oop array (kls is int[], String, etc.)
3689   // If obj_array/non_array==true/false:
3690   // Branch around if the kls is an oop array (Object[] or subtype)
3691   //
3692   // Like generate_guard, adds a new path onto the region.
3693   jint  layout_con = 0;
3694   Node* layout_val = get_layout_helper(kls, layout_con);
3695   if (layout_val == NULL) {
3696     bool query = (obj_array
3697                   ? Klass::layout_helper_is_objArray(layout_con)
3698                   : Klass::layout_helper_is_array(layout_con));
3699     if (query == not_array) {
3700       return NULL;                       // never a branch
3701     } else {                             // always a branch
3702       Node* always_branch = control();
3703       if (region != NULL)
3704         region->add_req(always_branch);
3705       set_control(top());
3706       return always_branch;
3707     }
3708   }
3709   // Now test the correct condition.
3710   jint  nval = (obj_array
3711                 ? ((jint)Klass::_lh_array_tag_type_value
3712                    <<    Klass::_lh_array_tag_shift)
3713                 : Klass::_lh_neutral_value);
3714   Node* cmp = _gvn.transform(new(C) CmpINode(layout_val, intcon(nval)));
3715   BoolTest::mask btest = BoolTest::lt;  // correct for testing is_[obj]array
3716   // invert the test if we are looking for a non-array
3717   if (not_array)  btest = BoolTest(btest).negate();
3718   Node* bol = _gvn.transform(new(C) BoolNode(cmp, btest));
3719   return generate_fair_guard(bol, region);
3720 }
3721 
3722 
3723 //-----------------------inline_native_newArray--------------------------
3724 // private static native Object java.lang.reflect.newArray(Class<?> componentType, int length);
3725 bool LibraryCallKit::inline_native_newArray() {
3726   Node* mirror    = argument(0);
3727   Node* count_val = argument(1);
3728 
3729   mirror = null_check(mirror);
3730   // If mirror or obj is dead, only null-path is taken.
3731   if (stopped())  return true;
3732 
3733   enum { _normal_path = 1, _slow_path = 2, PATH_LIMIT };
3734   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
3735   PhiNode*    result_val = new(C) PhiNode(result_reg,
3736                                           TypeInstPtr::NOTNULL);
3737   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
3738   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
3739                                           TypePtr::BOTTOM);
3740 
3741   bool never_see_null = !too_many_traps(Deoptimization::Reason_null_check);
3742   Node* klass_node = load_array_klass_from_mirror(mirror, never_see_null,
3743                                                   result_reg, _slow_path);
3744   Node* normal_ctl   = control();
3745   Node* no_array_ctl = result_reg->in(_slow_path);
3746 
3747   // Generate code for the slow case.  We make a call to newArray().
3748   set_control(no_array_ctl);
3749   if (!stopped()) {
3750     // Either the input type is void.class, or else the
3751     // array klass has not yet been cached.  Either the
3752     // ensuing call will throw an exception, or else it
3753     // will cache the array klass for next time.
3754     PreserveJVMState pjvms(this);
3755     CallJavaNode* slow_call = generate_method_call_static(vmIntrinsics::_newArray);
3756     Node* slow_result = set_results_for_java_call(slow_call);
3757     // this->control() comes from set_results_for_java_call
3758     result_reg->set_req(_slow_path, control());
3759     result_val->set_req(_slow_path, slow_result);
3760     result_io ->set_req(_slow_path, i_o());
3761     result_mem->set_req(_slow_path, reset_memory());
3762   }
3763 
3764   set_control(normal_ctl);
3765   if (!stopped()) {
3766     // Normal case:  The array type has been cached in the java.lang.Class.
3767     // The following call works fine even if the array type is polymorphic.
3768     // It could be a dynamic mix of int[], boolean[], Object[], etc.
3769     Node* obj = new_array(klass_node, count_val, 0);  // no arguments to push
3770     result_reg->init_req(_normal_path, control());
3771     result_val->init_req(_normal_path, obj);
3772     result_io ->init_req(_normal_path, i_o());
3773     result_mem->init_req(_normal_path, reset_memory());
3774   }
3775 
3776   // Return the combined state.
3777   set_i_o(        _gvn.transform(result_io)  );
3778   set_all_memory( _gvn.transform(result_mem));
3779 
3780   C->set_has_split_ifs(true); // Has chance for split-if optimization
3781   set_result(result_reg, result_val);
3782   return true;
3783 }
3784 
3785 //----------------------inline_native_getLength--------------------------
3786 // public static native int java.lang.reflect.Array.getLength(Object array);
3787 bool LibraryCallKit::inline_native_getLength() {
3788   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3789 
3790   Node* array = null_check(argument(0));
3791   // If array is dead, only null-path is taken.
3792   if (stopped())  return true;
3793 
3794   // Deoptimize if it is a non-array.
3795   Node* non_array = generate_non_array_guard(load_object_klass(array), NULL);
3796 
3797   if (non_array != NULL) {
3798     PreserveJVMState pjvms(this);
3799     set_control(non_array);
3800     uncommon_trap(Deoptimization::Reason_intrinsic,
3801                   Deoptimization::Action_maybe_recompile);
3802   }
3803 
3804   // If control is dead, only non-array-path is taken.
3805   if (stopped())  return true;
3806 
3807   // The works fine even if the array type is polymorphic.
3808   // It could be a dynamic mix of int[], boolean[], Object[], etc.
3809   Node* result = load_array_length(array);
3810 
3811   C->set_has_split_ifs(true);  // Has chance for split-if optimization
3812   set_result(result);
3813   return true;
3814 }
3815 
3816 //------------------------inline_array_copyOf----------------------------
3817 // public static <T,U> T[] java.util.Arrays.copyOf(     U[] original, int newLength,         Class<? extends T[]> newType);
3818 // public static <T,U> T[] java.util.Arrays.copyOfRange(U[] original, int from,      int to, Class<? extends T[]> newType);
3819 bool LibraryCallKit::inline_array_copyOf(bool is_copyOfRange) {
3820   if (too_many_traps(Deoptimization::Reason_intrinsic))  return false;
3821 
3822   // Get the arguments.
3823   Node* original          = argument(0);
3824   Node* start             = is_copyOfRange? argument(1): intcon(0);
3825   Node* end               = is_copyOfRange? argument(2): argument(1);
3826   Node* array_type_mirror = is_copyOfRange? argument(3): argument(2);
3827 
3828   Node* newcopy;
3829 
3830   // Set the original stack and the reexecute bit for the interpreter to reexecute
3831   // the bytecode that invokes Arrays.copyOf if deoptimization happens.
3832   { PreserveReexecuteState preexecs(this);
3833     jvms()->set_should_reexecute(true);
3834 
3835     array_type_mirror = null_check(array_type_mirror);
3836     original          = null_check(original);
3837 
3838     // Check if a null path was taken unconditionally.
3839     if (stopped())  return true;
3840 
3841     Node* orig_length = load_array_length(original);
3842 
3843     Node* klass_node = load_klass_from_mirror(array_type_mirror, false, NULL, 0);
3844     klass_node = null_check(klass_node);
3845 
3846     RegionNode* bailout = new (C) RegionNode(1);
3847     record_for_igvn(bailout);
3848 
3849     // Despite the generic type of Arrays.copyOf, the mirror might be int, int[], etc.
3850     // Bail out if that is so.
3851     Node* not_objArray = generate_non_objArray_guard(klass_node, bailout);
3852     if (not_objArray != NULL) {
3853       // Improve the klass node's type from the new optimistic assumption:
3854       ciKlass* ak = ciArrayKlass::make(env()->Object_klass());
3855       const Type* akls = TypeKlassPtr::make(TypePtr::NotNull, ak, 0/*offset*/);
3856       Node* cast = new (C) CastPPNode(klass_node, akls);
3857       cast->init_req(0, control());
3858       klass_node = _gvn.transform(cast);
3859     }
3860 
3861     // Bail out if either start or end is negative.
3862     generate_negative_guard(start, bailout, &start);
3863     generate_negative_guard(end,   bailout, &end);
3864 
3865     Node* length = end;
3866     if (_gvn.type(start) != TypeInt::ZERO) {
3867       length = _gvn.transform(new (C) SubINode(end, start));
3868     }
3869 
3870     // Bail out if length is negative.
3871     // Without this the new_array would throw
3872     // NegativeArraySizeException but IllegalArgumentException is what
3873     // should be thrown
3874     generate_negative_guard(length, bailout, &length);
3875 
3876     if (bailout->req() > 1) {
3877       PreserveJVMState pjvms(this);
3878       set_control(_gvn.transform(bailout));
3879       uncommon_trap(Deoptimization::Reason_intrinsic,
3880                     Deoptimization::Action_maybe_recompile);
3881     }
3882 
3883     if (!stopped()) {
3884       // How many elements will we copy from the original?
3885       // The answer is MinI(orig_length - start, length).
3886       Node* orig_tail = _gvn.transform(new (C) SubINode(orig_length, start));
3887       Node* moved = generate_min_max(vmIntrinsics::_min, orig_tail, length);
3888 
3889       newcopy = new_array(klass_node, length, 0);  // no argments to push
3890 
3891       // Generate a direct call to the right arraycopy function(s).
3892       // We know the copy is disjoint but we might not know if the
3893       // oop stores need checking.
3894       // Extreme case:  Arrays.copyOf((Integer[])x, 10, String[].class).
3895       // This will fail a store-check if x contains any non-nulls.
3896       bool disjoint_bases = true;
3897       // if start > orig_length then the length of the copy may be
3898       // negative.
3899       bool length_never_negative = !is_copyOfRange;
3900       generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
3901                          original, start, newcopy, intcon(0), moved,
3902                          disjoint_bases, length_never_negative);
3903     }
3904   } // original reexecute is set back here
3905 
3906   C->set_has_split_ifs(true); // Has chance for split-if optimization
3907   if (!stopped()) {
3908     set_result(newcopy);
3909   }
3910   return true;
3911 }
3912 
3913 
3914 //----------------------generate_virtual_guard---------------------------
3915 // Helper for hashCode and clone.  Peeks inside the vtable to avoid a call.
3916 Node* LibraryCallKit::generate_virtual_guard(Node* obj_klass,
3917                                              RegionNode* slow_region) {
3918   ciMethod* method = callee();
3919   int vtable_index = method->vtable_index();
3920   assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3921          err_msg_res("bad index %d", vtable_index));
3922   // Get the Method* out of the appropriate vtable entry.
3923   int entry_offset  = (InstanceKlass::vtable_start_offset() +
3924                      vtable_index*vtableEntry::size()) * wordSize +
3925                      vtableEntry::method_offset_in_bytes();
3926   Node* entry_addr  = basic_plus_adr(obj_klass, entry_offset);
3927   Node* target_call = make_load(NULL, entry_addr, TypePtr::NOTNULL, T_ADDRESS, MemNode::unordered);
3928 
3929   // Compare the target method with the expected method (e.g., Object.hashCode).
3930   const TypePtr* native_call_addr = TypeMetadataPtr::make(method);
3931 
3932   Node* native_call = makecon(native_call_addr);
3933   Node* chk_native  = _gvn.transform(new(C) CmpPNode(target_call, native_call));
3934   Node* test_native = _gvn.transform(new(C) BoolNode(chk_native, BoolTest::ne));
3935 
3936   return generate_slow_guard(test_native, slow_region);
3937 }
3938 
3939 //-----------------------generate_method_call----------------------------
3940 // Use generate_method_call to make a slow-call to the real
3941 // method if the fast path fails.  An alternative would be to
3942 // use a stub like OptoRuntime::slow_arraycopy_Java.
3943 // This only works for expanding the current library call,
3944 // not another intrinsic.  (E.g., don't use this for making an
3945 // arraycopy call inside of the copyOf intrinsic.)
3946 CallJavaNode*
3947 LibraryCallKit::generate_method_call(vmIntrinsics::ID method_id, bool is_virtual, bool is_static) {
3948   // When compiling the intrinsic method itself, do not use this technique.
3949   guarantee(callee() != C->method(), "cannot make slow-call to self");
3950 
3951   ciMethod* method = callee();
3952   // ensure the JVMS we have will be correct for this call
3953   guarantee(method_id == method->intrinsic_id(), "must match");
3954 
3955   const TypeFunc* tf = TypeFunc::make(method);
3956   CallJavaNode* slow_call;
3957   if (is_static) {
3958     assert(!is_virtual, "");
3959     slow_call = new(C) CallStaticJavaNode(C, tf,
3960                            SharedRuntime::get_resolve_static_call_stub(),
3961                            method, bci());
3962   } else if (is_virtual) {
3963     null_check_receiver();
3964     int vtable_index = Method::invalid_vtable_index;
3965     if (UseInlineCaches) {
3966       // Suppress the vtable call
3967     } else {
3968       // hashCode and clone are not a miranda methods,
3969       // so the vtable index is fixed.
3970       // No need to use the linkResolver to get it.
3971        vtable_index = method->vtable_index();
3972        assert(vtable_index >= 0 || vtable_index == Method::nonvirtual_vtable_index,
3973               err_msg_res("bad index %d", vtable_index));
3974     }
3975     slow_call = new(C) CallDynamicJavaNode(tf,
3976                           SharedRuntime::get_resolve_virtual_call_stub(),
3977                           method, vtable_index, bci());
3978   } else {  // neither virtual nor static:  opt_virtual
3979     null_check_receiver();
3980     slow_call = new(C) CallStaticJavaNode(C, tf,
3981                                 SharedRuntime::get_resolve_opt_virtual_call_stub(),
3982                                 method, bci());
3983     slow_call->set_optimized_virtual(true);
3984   }
3985   set_arguments_for_java_call(slow_call);
3986   set_edges_for_java_call(slow_call);
3987   return slow_call;
3988 }
3989 
3990 
3991 //------------------------------inline_native_hashcode--------------------
3992 // Build special case code for calls to hashCode on an object.
3993 bool LibraryCallKit::inline_native_hashcode(bool is_virtual, bool is_static) {
3994   assert(is_static == callee()->is_static(), "correct intrinsic selection");
3995   assert(!(is_virtual && is_static), "either virtual, special, or static");
3996 
3997   enum { _slow_path = 1, _fast_path, _null_path, PATH_LIMIT };
3998 
3999   RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4000   PhiNode*    result_val = new(C) PhiNode(result_reg,
4001                                           TypeInt::INT);
4002   PhiNode*    result_io  = new(C) PhiNode(result_reg, Type::ABIO);
4003   PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4004                                           TypePtr::BOTTOM);
4005   Node* obj = NULL;
4006   if (!is_static) {
4007     // Check for hashing null object
4008     obj = null_check_receiver();
4009     if (stopped())  return true;        // unconditionally null
4010     result_reg->init_req(_null_path, top());
4011     result_val->init_req(_null_path, top());
4012   } else {
4013     // Do a null check, and return zero if null.
4014     // System.identityHashCode(null) == 0
4015     obj = argument(0);
4016     Node* null_ctl = top();
4017     obj = null_check_oop(obj, &null_ctl);
4018     result_reg->init_req(_null_path, null_ctl);
4019     result_val->init_req(_null_path, _gvn.intcon(0));
4020   }
4021 
4022   // Unconditionally null?  Then return right away.
4023   if (stopped()) {
4024     set_control( result_reg->in(_null_path));
4025     if (!stopped())
4026       set_result(result_val->in(_null_path));
4027     return true;
4028   }
4029 
4030   // After null check, get the object's klass.
4031   Node* obj_klass = load_object_klass(obj);
4032 
4033   // This call may be virtual (invokevirtual) or bound (invokespecial).
4034   // For each case we generate slightly different code.
4035 
4036   // We only go to the fast case code if we pass a number of guards.  The
4037   // paths which do not pass are accumulated in the slow_region.
4038   RegionNode* slow_region = new (C) RegionNode(1);
4039   record_for_igvn(slow_region);
4040 
4041   // If this is a virtual call, we generate a funny guard.  We pull out
4042   // the vtable entry corresponding to hashCode() from the target object.
4043   // If the target method which we are calling happens to be the native
4044   // Object hashCode() method, we pass the guard.  We do not need this
4045   // guard for non-virtual calls -- the caller is known to be the native
4046   // Object hashCode().
4047   if (is_virtual) {
4048     generate_virtual_guard(obj_klass, slow_region);
4049   }
4050 
4051   // Get the header out of the object, use LoadMarkNode when available
4052   Node* header_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
4053   Node* header = make_load(control(), header_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
4054 
4055   // Test the header to see if it is unlocked.
4056   Node *lock_mask      = _gvn.MakeConX(markOopDesc::biased_lock_mask_in_place);
4057   Node *lmasked_header = _gvn.transform(new (C) AndXNode(header, lock_mask));
4058   Node *unlocked_val   = _gvn.MakeConX(markOopDesc::unlocked_value);
4059   Node *chk_unlocked   = _gvn.transform(new (C) CmpXNode( lmasked_header, unlocked_val));
4060   Node *test_unlocked  = _gvn.transform(new (C) BoolNode( chk_unlocked, BoolTest::ne));
4061 
4062   generate_slow_guard(test_unlocked, slow_region);
4063 
4064   // Get the hash value and check to see that it has been properly assigned.
4065   // We depend on hash_mask being at most 32 bits and avoid the use of
4066   // hash_mask_in_place because it could be larger than 32 bits in a 64-bit
4067   // vm: see markOop.hpp.
4068   Node *hash_mask      = _gvn.intcon(markOopDesc::hash_mask);
4069   Node *hash_shift     = _gvn.intcon(markOopDesc::hash_shift);
4070   Node *hshifted_header= _gvn.transform(new (C) URShiftXNode(header, hash_shift));
4071   // This hack lets the hash bits live anywhere in the mark object now, as long
4072   // as the shift drops the relevant bits into the low 32 bits.  Note that
4073   // Java spec says that HashCode is an int so there's no point in capturing
4074   // an 'X'-sized hashcode (32 in 32-bit build or 64 in 64-bit build).
4075   hshifted_header      = ConvX2I(hshifted_header);
4076   Node *hash_val       = _gvn.transform(new (C) AndINode(hshifted_header, hash_mask));
4077 
4078   Node *no_hash_val    = _gvn.intcon(markOopDesc::no_hash);
4079   Node *chk_assigned   = _gvn.transform(new (C) CmpINode( hash_val, no_hash_val));
4080   Node *test_assigned  = _gvn.transform(new (C) BoolNode( chk_assigned, BoolTest::eq));
4081 
4082   generate_slow_guard(test_assigned, slow_region);
4083 
4084   Node* init_mem = reset_memory();
4085   // fill in the rest of the null path:
4086   result_io ->init_req(_null_path, i_o());
4087   result_mem->init_req(_null_path, init_mem);
4088 
4089   result_val->init_req(_fast_path, hash_val);
4090   result_reg->init_req(_fast_path, control());
4091   result_io ->init_req(_fast_path, i_o());
4092   result_mem->init_req(_fast_path, init_mem);
4093 
4094   // Generate code for the slow case.  We make a call to hashCode().
4095   set_control(_gvn.transform(slow_region));
4096   if (!stopped()) {
4097     // No need for PreserveJVMState, because we're using up the present state.
4098     set_all_memory(init_mem);
4099     vmIntrinsics::ID hashCode_id = is_static ? vmIntrinsics::_identityHashCode : vmIntrinsics::_hashCode;
4100     CallJavaNode* slow_call = generate_method_call(hashCode_id, is_virtual, is_static);
4101     Node* slow_result = set_results_for_java_call(slow_call);
4102     // this->control() comes from set_results_for_java_call
4103     result_reg->init_req(_slow_path, control());
4104     result_val->init_req(_slow_path, slow_result);
4105     result_io  ->set_req(_slow_path, i_o());
4106     result_mem ->set_req(_slow_path, reset_memory());
4107   }
4108 
4109   // Return the combined state.
4110   set_i_o(        _gvn.transform(result_io)  );
4111   set_all_memory( _gvn.transform(result_mem));
4112 
4113   set_result(result_reg, result_val);
4114   return true;
4115 }
4116 
4117 //---------------------------inline_native_getClass----------------------------
4118 // public final native Class<?> java.lang.Object.getClass();
4119 //
4120 // Build special case code for calls to getClass on an object.
4121 bool LibraryCallKit::inline_native_getClass() {
4122   Node* obj = null_check_receiver();
4123   if (stopped())  return true;
4124   set_result(load_mirror_from_klass(load_object_klass(obj)));
4125   return true;
4126 }
4127 
4128 //-----------------inline_native_Reflection_getCallerClass---------------------
4129 // public static native Class<?> sun.reflect.Reflection.getCallerClass();
4130 //
4131 // In the presence of deep enough inlining, getCallerClass() becomes a no-op.
4132 //
4133 // NOTE: This code must perform the same logic as JVM_GetCallerClass
4134 // in that it must skip particular security frames and checks for
4135 // caller sensitive methods.
4136 bool LibraryCallKit::inline_native_Reflection_getCallerClass() {
4137 #ifndef PRODUCT
4138   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4139     tty->print_cr("Attempting to inline sun.reflect.Reflection.getCallerClass");
4140   }
4141 #endif
4142 
4143   if (!jvms()->has_method()) {
4144 #ifndef PRODUCT
4145     if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4146       tty->print_cr("  Bailing out because intrinsic was inlined at top level");
4147     }
4148 #endif
4149     return false;
4150   }
4151 
4152   // Walk back up the JVM state to find the caller at the required
4153   // depth.
4154   JVMState* caller_jvms = jvms();
4155 
4156   // Cf. JVM_GetCallerClass
4157   // NOTE: Start the loop at depth 1 because the current JVM state does
4158   // not include the Reflection.getCallerClass() frame.
4159   for (int n = 1; caller_jvms != NULL; caller_jvms = caller_jvms->caller(), n++) {
4160     ciMethod* m = caller_jvms->method();
4161     switch (n) {
4162     case 0:
4163       fatal("current JVM state does not include the Reflection.getCallerClass frame");
4164       break;
4165     case 1:
4166       // Frame 0 and 1 must be caller sensitive (see JVM_GetCallerClass).
4167       if (!m->caller_sensitive()) {
4168 #ifndef PRODUCT
4169         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4170           tty->print_cr("  Bailing out: CallerSensitive annotation expected at frame %d", n);
4171         }
4172 #endif
4173         return false;  // bail-out; let JVM_GetCallerClass do the work
4174       }
4175       break;
4176     default:
4177       if (!m->is_ignored_by_security_stack_walk()) {
4178         // We have reached the desired frame; return the holder class.
4179         // Acquire method holder as java.lang.Class and push as constant.
4180         ciInstanceKlass* caller_klass = caller_jvms->method()->holder();
4181         ciInstance* caller_mirror = caller_klass->java_mirror();
4182         set_result(makecon(TypeInstPtr::make(caller_mirror)));
4183 
4184 #ifndef PRODUCT
4185         if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4186           tty->print_cr("  Succeeded: caller = %d) %s.%s, JVMS depth = %d", n, caller_klass->name()->as_utf8(), caller_jvms->method()->name()->as_utf8(), jvms()->depth());
4187           tty->print_cr("  JVM state at this point:");
4188           for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4189             ciMethod* m = jvms()->of_depth(i)->method();
4190             tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4191           }
4192         }
4193 #endif
4194         return true;
4195       }
4196       break;
4197     }
4198   }
4199 
4200 #ifndef PRODUCT
4201   if ((C->print_intrinsics() || C->print_inlining()) && Verbose) {
4202     tty->print_cr("  Bailing out because caller depth exceeded inlining depth = %d", jvms()->depth());
4203     tty->print_cr("  JVM state at this point:");
4204     for (int i = jvms()->depth(), n = 1; i >= 1; i--, n++) {
4205       ciMethod* m = jvms()->of_depth(i)->method();
4206       tty->print_cr("   %d) %s.%s", n, m->holder()->name()->as_utf8(), m->name()->as_utf8());
4207     }
4208   }
4209 #endif
4210 
4211   return false;  // bail-out; let JVM_GetCallerClass do the work
4212 }
4213 
4214 bool LibraryCallKit::inline_fp_conversions(vmIntrinsics::ID id) {
4215   Node* arg = argument(0);
4216   Node* result;
4217 
4218   switch (id) {
4219   case vmIntrinsics::_floatToRawIntBits:    result = new (C) MoveF2INode(arg);  break;
4220   case vmIntrinsics::_intBitsToFloat:       result = new (C) MoveI2FNode(arg);  break;
4221   case vmIntrinsics::_doubleToRawLongBits:  result = new (C) MoveD2LNode(arg);  break;
4222   case vmIntrinsics::_longBitsToDouble:     result = new (C) MoveL2DNode(arg);  break;
4223 
4224   case vmIntrinsics::_doubleToLongBits: {
4225     // two paths (plus control) merge in a wood
4226     RegionNode *r = new (C) RegionNode(3);
4227     Node *phi = new (C) PhiNode(r, TypeLong::LONG);
4228 
4229     Node *cmpisnan = _gvn.transform(new (C) CmpDNode(arg, arg));
4230     // Build the boolean node
4231     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4232 
4233     // Branch either way.
4234     // NaN case is less traveled, which makes all the difference.
4235     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4236     Node *opt_isnan = _gvn.transform(ifisnan);
4237     assert( opt_isnan->is_If(), "Expect an IfNode");
4238     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4239     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4240 
4241     set_control(iftrue);
4242 
4243     static const jlong nan_bits = CONST64(0x7ff8000000000000);
4244     Node *slow_result = longcon(nan_bits); // return NaN
4245     phi->init_req(1, _gvn.transform( slow_result ));
4246     r->init_req(1, iftrue);
4247 
4248     // Else fall through
4249     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4250     set_control(iffalse);
4251 
4252     phi->init_req(2, _gvn.transform(new (C) MoveD2LNode(arg)));
4253     r->init_req(2, iffalse);
4254 
4255     // Post merge
4256     set_control(_gvn.transform(r));
4257     record_for_igvn(r);
4258 
4259     C->set_has_split_ifs(true); // Has chance for split-if optimization
4260     result = phi;
4261     assert(result->bottom_type()->isa_long(), "must be");
4262     break;
4263   }
4264 
4265   case vmIntrinsics::_floatToIntBits: {
4266     // two paths (plus control) merge in a wood
4267     RegionNode *r = new (C) RegionNode(3);
4268     Node *phi = new (C) PhiNode(r, TypeInt::INT);
4269 
4270     Node *cmpisnan = _gvn.transform(new (C) CmpFNode(arg, arg));
4271     // Build the boolean node
4272     Node *bolisnan = _gvn.transform(new (C) BoolNode(cmpisnan, BoolTest::ne));
4273 
4274     // Branch either way.
4275     // NaN case is less traveled, which makes all the difference.
4276     IfNode *ifisnan = create_and_xform_if(control(), bolisnan, PROB_STATIC_FREQUENT, COUNT_UNKNOWN);
4277     Node *opt_isnan = _gvn.transform(ifisnan);
4278     assert( opt_isnan->is_If(), "Expect an IfNode");
4279     IfNode *opt_ifisnan = (IfNode*)opt_isnan;
4280     Node *iftrue = _gvn.transform(new (C) IfTrueNode(opt_ifisnan));
4281 
4282     set_control(iftrue);
4283 
4284     static const jint nan_bits = 0x7fc00000;
4285     Node *slow_result = makecon(TypeInt::make(nan_bits)); // return NaN
4286     phi->init_req(1, _gvn.transform( slow_result ));
4287     r->init_req(1, iftrue);
4288 
4289     // Else fall through
4290     Node *iffalse = _gvn.transform(new (C) IfFalseNode(opt_ifisnan));
4291     set_control(iffalse);
4292 
4293     phi->init_req(2, _gvn.transform(new (C) MoveF2INode(arg)));
4294     r->init_req(2, iffalse);
4295 
4296     // Post merge
4297     set_control(_gvn.transform(r));
4298     record_for_igvn(r);
4299 
4300     C->set_has_split_ifs(true); // Has chance for split-if optimization
4301     result = phi;
4302     assert(result->bottom_type()->isa_int(), "must be");
4303     break;
4304   }
4305 
4306   default:
4307     fatal_unexpected_iid(id);
4308     break;
4309   }
4310   set_result(_gvn.transform(result));
4311   return true;
4312 }
4313 
4314 #ifdef _LP64
4315 #define XTOP ,top() /*additional argument*/
4316 #else  //_LP64
4317 #define XTOP        /*no additional argument*/
4318 #endif //_LP64
4319 
4320 //----------------------inline_unsafe_copyMemory-------------------------
4321 // public native void sun.misc.Unsafe.copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes);
4322 bool LibraryCallKit::inline_unsafe_copyMemory() {
4323   if (callee()->is_static())  return false;  // caller must have the capability!
4324   null_check_receiver();  // null-check receiver
4325   if (stopped())  return true;
4326 
4327   C->set_has_unsafe_access(true);  // Mark eventual nmethod as "unsafe".
4328 
4329   Node* src_ptr =         argument(1);   // type: oop
4330   Node* src_off = ConvL2X(argument(2));  // type: long
4331   Node* dst_ptr =         argument(4);   // type: oop
4332   Node* dst_off = ConvL2X(argument(5));  // type: long
4333   Node* size    = ConvL2X(argument(7));  // type: long
4334 
4335   assert(Unsafe_field_offset_to_byte_offset(11) == 11,
4336          "fieldOffset must be byte-scaled");
4337 
4338   Node* src = make_unsafe_address(src_ptr, src_off);
4339   Node* dst = make_unsafe_address(dst_ptr, dst_off);
4340 
4341   // Conservatively insert a memory barrier on all memory slices.
4342   // Do not let writes of the copy source or destination float below the copy.
4343   insert_mem_bar(Op_MemBarCPUOrder);
4344 
4345   // Call it.  Note that the length argument is not scaled.
4346   make_runtime_call(RC_LEAF|RC_NO_FP,
4347                     OptoRuntime::fast_arraycopy_Type(),
4348                     StubRoutines::unsafe_arraycopy(),
4349                     "unsafe_arraycopy",
4350                     TypeRawPtr::BOTTOM,
4351                     src, dst, size XTOP);
4352 
4353   // Do not let reads of the copy destination float above the copy.
4354   insert_mem_bar(Op_MemBarCPUOrder);
4355 
4356   return true;
4357 }
4358 
4359 //------------------------clone_coping-----------------------------------
4360 // Helper function for inline_native_clone.
4361 void LibraryCallKit::copy_to_clone(Node* obj, Node* alloc_obj, Node* obj_size, bool is_array, bool card_mark) {
4362   assert(obj_size != NULL, "");
4363   Node* raw_obj = alloc_obj->in(1);
4364   assert(alloc_obj->is_CheckCastPP() && raw_obj->is_Proj() && raw_obj->in(0)->is_Allocate(), "");
4365 
4366   AllocateNode* alloc = NULL;
4367   if (ReduceBulkZeroing) {
4368     // We will be completely responsible for initializing this object -
4369     // mark Initialize node as complete.
4370     alloc = AllocateNode::Ideal_allocation(alloc_obj, &_gvn);
4371     // The object was just allocated - there should be no any stores!
4372     guarantee(alloc != NULL && alloc->maybe_set_complete(&_gvn), "");
4373     // Mark as complete_with_arraycopy so that on AllocateNode
4374     // expansion, we know this AllocateNode is initialized by an array
4375     // copy and a StoreStore barrier exists after the array copy.
4376     alloc->initialization()->set_complete_with_arraycopy();
4377   }
4378 
4379   // Copy the fastest available way.
4380   // TODO: generate fields copies for small objects instead.
4381   Node* src  = obj;
4382   Node* dest = alloc_obj;
4383   Node* size = _gvn.transform(obj_size);
4384 
4385   // Exclude the header but include array length to copy by 8 bytes words.
4386   // Can't use base_offset_in_bytes(bt) since basic type is unknown.
4387   int base_off = is_array ? arrayOopDesc::length_offset_in_bytes() :
4388                             instanceOopDesc::base_offset_in_bytes();
4389   // base_off:
4390   // 8  - 32-bit VM
4391   // 12 - 64-bit VM, compressed klass
4392   // 16 - 64-bit VM, normal klass
4393   if (base_off % BytesPerLong != 0) {
4394     assert(UseCompressedClassPointers, "");
4395     if (is_array) {
4396       // Exclude length to copy by 8 bytes words.
4397       base_off += sizeof(int);
4398     } else {
4399       // Include klass to copy by 8 bytes words.
4400       base_off = instanceOopDesc::klass_offset_in_bytes();
4401     }
4402     assert(base_off % BytesPerLong == 0, "expect 8 bytes alignment");
4403   }
4404   src  = basic_plus_adr(src,  base_off);
4405   dest = basic_plus_adr(dest, base_off);
4406 
4407   // Compute the length also, if needed:
4408   Node* countx = size;
4409   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(base_off)));
4410   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong) ));
4411 
4412   const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4413   bool disjoint_bases = true;
4414   generate_unchecked_arraycopy(raw_adr_type, T_LONG, disjoint_bases,
4415                                src, NULL, dest, NULL, countx,
4416                                /*dest_uninitialized*/true);
4417 
4418   // If necessary, emit some card marks afterwards.  (Non-arrays only.)
4419   if (card_mark) {
4420     assert(!is_array, "");
4421     // Put in store barrier for any and all oops we are sticking
4422     // into this object.  (We could avoid this if we could prove
4423     // that the object type contains no oop fields at all.)
4424     Node* no_particular_value = NULL;
4425     Node* no_particular_field = NULL;
4426     int raw_adr_idx = Compile::AliasIdxRaw;
4427     post_barrier(control(),
4428                  memory(raw_adr_type),
4429                  alloc_obj,
4430                  no_particular_field,
4431                  raw_adr_idx,
4432                  no_particular_value,
4433                  T_OBJECT,
4434                  false);
4435   }
4436 
4437   // Do not let reads from the cloned object float above the arraycopy.
4438   if (alloc != NULL) {
4439     // Do not let stores that initialize this object be reordered with
4440     // a subsequent store that would make this object accessible by
4441     // other threads.
4442     // Record what AllocateNode this StoreStore protects so that
4443     // escape analysis can go from the MemBarStoreStoreNode to the
4444     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
4445     // based on the escape status of the AllocateNode.
4446     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
4447   } else {
4448     insert_mem_bar(Op_MemBarCPUOrder);
4449   }
4450 }
4451 
4452 //------------------------inline_native_clone----------------------------
4453 // protected native Object java.lang.Object.clone();
4454 //
4455 // Here are the simple edge cases:
4456 //  null receiver => normal trap
4457 //  virtual and clone was overridden => slow path to out-of-line clone
4458 //  not cloneable or finalizer => slow path to out-of-line Object.clone
4459 //
4460 // The general case has two steps, allocation and copying.
4461 // Allocation has two cases, and uses GraphKit::new_instance or new_array.
4462 //
4463 // Copying also has two cases, oop arrays and everything else.
4464 // Oop arrays use arrayof_oop_arraycopy (same as System.arraycopy).
4465 // Everything else uses the tight inline loop supplied by CopyArrayNode.
4466 //
4467 // These steps fold up nicely if and when the cloned object's klass
4468 // can be sharply typed as an object array, a type array, or an instance.
4469 //
4470 bool LibraryCallKit::inline_native_clone(bool is_virtual) {
4471   PhiNode* result_val;
4472 
4473   // Set the reexecute bit for the interpreter to reexecute
4474   // the bytecode that invokes Object.clone if deoptimization happens.
4475   { PreserveReexecuteState preexecs(this);
4476     jvms()->set_should_reexecute(true);
4477 
4478     Node* obj = null_check_receiver();
4479     if (stopped())  return true;
4480 
4481     Node* obj_klass = load_object_klass(obj);
4482     const TypeKlassPtr* tklass = _gvn.type(obj_klass)->isa_klassptr();
4483     const TypeOopPtr*   toop   = ((tklass != NULL)
4484                                 ? tklass->as_instance_type()
4485                                 : TypeInstPtr::NOTNULL);
4486 
4487     // Conservatively insert a memory barrier on all memory slices.
4488     // Do not let writes into the original float below the clone.
4489     insert_mem_bar(Op_MemBarCPUOrder);
4490 
4491     // paths into result_reg:
4492     enum {
4493       _slow_path = 1,     // out-of-line call to clone method (virtual or not)
4494       _objArray_path,     // plain array allocation, plus arrayof_oop_arraycopy
4495       _array_path,        // plain array allocation, plus arrayof_long_arraycopy
4496       _instance_path,     // plain instance allocation, plus arrayof_long_arraycopy
4497       PATH_LIMIT
4498     };
4499     RegionNode* result_reg = new(C) RegionNode(PATH_LIMIT);
4500     result_val             = new(C) PhiNode(result_reg,
4501                                             TypeInstPtr::NOTNULL);
4502     PhiNode*    result_i_o = new(C) PhiNode(result_reg, Type::ABIO);
4503     PhiNode*    result_mem = new(C) PhiNode(result_reg, Type::MEMORY,
4504                                             TypePtr::BOTTOM);
4505     record_for_igvn(result_reg);
4506 
4507     const TypePtr* raw_adr_type = TypeRawPtr::BOTTOM;
4508     int raw_adr_idx = Compile::AliasIdxRaw;
4509 
4510     Node* array_ctl = generate_array_guard(obj_klass, (RegionNode*)NULL);
4511     if (array_ctl != NULL) {
4512       // It's an array.
4513       PreserveJVMState pjvms(this);
4514       set_control(array_ctl);
4515       Node* obj_length = load_array_length(obj);
4516       Node* obj_size  = NULL;
4517       Node* alloc_obj = new_array(obj_klass, obj_length, 0, &obj_size);  // no arguments to push
4518 
4519       if (!use_ReduceInitialCardMarks()) {
4520         // If it is an oop array, it requires very special treatment,
4521         // because card marking is required on each card of the array.
4522         Node* is_obja = generate_objArray_guard(obj_klass, (RegionNode*)NULL);
4523         if (is_obja != NULL) {
4524           PreserveJVMState pjvms2(this);
4525           set_control(is_obja);
4526           // Generate a direct call to the right arraycopy function(s).
4527           bool disjoint_bases = true;
4528           bool length_never_negative = true;
4529           generate_arraycopy(TypeAryPtr::OOPS, T_OBJECT,
4530                              obj, intcon(0), alloc_obj, intcon(0),
4531                              obj_length,
4532                              disjoint_bases, length_never_negative);
4533           result_reg->init_req(_objArray_path, control());
4534           result_val->init_req(_objArray_path, alloc_obj);
4535           result_i_o ->set_req(_objArray_path, i_o());
4536           result_mem ->set_req(_objArray_path, reset_memory());
4537         }
4538       }
4539       // Otherwise, there are no card marks to worry about.
4540       // (We can dispense with card marks if we know the allocation
4541       //  comes out of eden (TLAB)...  In fact, ReduceInitialCardMarks
4542       //  causes the non-eden paths to take compensating steps to
4543       //  simulate a fresh allocation, so that no further
4544       //  card marks are required in compiled code to initialize
4545       //  the object.)
4546 
4547       if (!stopped()) {
4548         copy_to_clone(obj, alloc_obj, obj_size, true, false);
4549 
4550         // Present the results of the copy.
4551         result_reg->init_req(_array_path, control());
4552         result_val->init_req(_array_path, alloc_obj);
4553         result_i_o ->set_req(_array_path, i_o());
4554         result_mem ->set_req(_array_path, reset_memory());
4555       }
4556     }
4557 
4558     // We only go to the instance fast case code if we pass a number of guards.
4559     // The paths which do not pass are accumulated in the slow_region.
4560     RegionNode* slow_region = new (C) RegionNode(1);
4561     record_for_igvn(slow_region);
4562     if (!stopped()) {
4563       // It's an instance (we did array above).  Make the slow-path tests.
4564       // If this is a virtual call, we generate a funny guard.  We grab
4565       // the vtable entry corresponding to clone() from the target object.
4566       // If the target method which we are calling happens to be the
4567       // Object clone() method, we pass the guard.  We do not need this
4568       // guard for non-virtual calls; the caller is known to be the native
4569       // Object clone().
4570       if (is_virtual) {
4571         generate_virtual_guard(obj_klass, slow_region);
4572       }
4573 
4574       // The object must be cloneable and must not have a finalizer.
4575       // Both of these conditions may be checked in a single test.
4576       // We could optimize the cloneable test further, but we don't care.
4577       generate_access_flags_guard(obj_klass,
4578                                   // Test both conditions:
4579                                   JVM_ACC_IS_CLONEABLE | JVM_ACC_HAS_FINALIZER,
4580                                   // Must be cloneable but not finalizer:
4581                                   JVM_ACC_IS_CLONEABLE,
4582                                   slow_region);
4583     }
4584 
4585     if (!stopped()) {
4586       // It's an instance, and it passed the slow-path tests.
4587       PreserveJVMState pjvms(this);
4588       Node* obj_size  = NULL;
4589       Node* alloc_obj = new_instance(obj_klass, NULL, &obj_size);
4590 
4591       copy_to_clone(obj, alloc_obj, obj_size, false, !use_ReduceInitialCardMarks());
4592 
4593       // Present the results of the slow call.
4594       result_reg->init_req(_instance_path, control());
4595       result_val->init_req(_instance_path, alloc_obj);
4596       result_i_o ->set_req(_instance_path, i_o());
4597       result_mem ->set_req(_instance_path, reset_memory());
4598     }
4599 
4600     // Generate code for the slow case.  We make a call to clone().
4601     set_control(_gvn.transform(slow_region));
4602     if (!stopped()) {
4603       PreserveJVMState pjvms(this);
4604       CallJavaNode* slow_call = generate_method_call(vmIntrinsics::_clone, is_virtual);
4605       Node* slow_result = set_results_for_java_call(slow_call);
4606       // this->control() comes from set_results_for_java_call
4607       result_reg->init_req(_slow_path, control());
4608       result_val->init_req(_slow_path, slow_result);
4609       result_i_o ->set_req(_slow_path, i_o());
4610       result_mem ->set_req(_slow_path, reset_memory());
4611     }
4612 
4613     // Return the combined state.
4614     set_control(    _gvn.transform(result_reg));
4615     set_i_o(        _gvn.transform(result_i_o));
4616     set_all_memory( _gvn.transform(result_mem));
4617   } // original reexecute is set back here
4618 
4619   set_result(_gvn.transform(result_val));
4620   return true;
4621 }
4622 
4623 //------------------------------basictype2arraycopy----------------------------
4624 address LibraryCallKit::basictype2arraycopy(BasicType t,
4625                                             Node* src_offset,
4626                                             Node* dest_offset,
4627                                             bool disjoint_bases,
4628                                             const char* &name,
4629                                             bool dest_uninitialized) {
4630   const TypeInt* src_offset_inttype  = gvn().find_int_type(src_offset);;
4631   const TypeInt* dest_offset_inttype = gvn().find_int_type(dest_offset);;
4632 
4633   bool aligned = false;
4634   bool disjoint = disjoint_bases;
4635 
4636   // if the offsets are the same, we can treat the memory regions as
4637   // disjoint, because either the memory regions are in different arrays,
4638   // or they are identical (which we can treat as disjoint.)  We can also
4639   // treat a copy with a destination index  less that the source index
4640   // as disjoint since a low->high copy will work correctly in this case.
4641   if (src_offset_inttype != NULL && src_offset_inttype->is_con() &&
4642       dest_offset_inttype != NULL && dest_offset_inttype->is_con()) {
4643     // both indices are constants
4644     int s_offs = src_offset_inttype->get_con();
4645     int d_offs = dest_offset_inttype->get_con();
4646     int element_size = type2aelembytes(t);
4647     aligned = ((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
4648               ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0);
4649     if (s_offs >= d_offs)  disjoint = true;
4650   } else if (src_offset == dest_offset && src_offset != NULL) {
4651     // This can occur if the offsets are identical non-constants.
4652     disjoint = true;
4653   }
4654 
4655   return StubRoutines::select_arraycopy_function(t, aligned, disjoint, name, dest_uninitialized);
4656 }
4657 
4658 
4659 //------------------------------inline_arraycopy-----------------------
4660 // public static native void java.lang.System.arraycopy(Object src,  int  srcPos,
4661 //                                                      Object dest, int destPos,
4662 //                                                      int length);
4663 bool LibraryCallKit::inline_arraycopy() {
4664   // Get the arguments.
4665   Node* src         = argument(0);  // type: oop
4666   Node* src_offset  = argument(1);  // type: int
4667   Node* dest        = argument(2);  // type: oop
4668   Node* dest_offset = argument(3);  // type: int
4669   Node* length      = argument(4);  // type: int
4670 
4671   // Compile time checks.  If any of these checks cannot be verified at compile time,
4672   // we do not make a fast path for this call.  Instead, we let the call remain as it
4673   // is.  The checks we choose to mandate at compile time are:
4674   //
4675   // (1) src and dest are arrays.
4676   const Type* src_type  = src->Value(&_gvn);
4677   const Type* dest_type = dest->Value(&_gvn);
4678   const TypeAryPtr* top_src  = src_type->isa_aryptr();
4679   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
4680 
4681   // Do we have the type of src?
4682   bool has_src = (top_src != NULL && top_src->klass() != NULL);
4683   // Do we have the type of dest?
4684   bool has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4685   // Is the type for src from speculation?
4686   bool src_spec = false;
4687   // Is the type for dest from speculation?
4688   bool dest_spec = false;
4689 
4690   if (!has_src || !has_dest) {
4691     // We don't have sufficient type information, let's see if
4692     // speculative types can help. We need to have types for both src
4693     // and dest so that it pays off.
4694 
4695     // Do we already have or could we have type information for src
4696     bool could_have_src = has_src;
4697     // Do we already have or could we have type information for dest
4698     bool could_have_dest = has_dest;
4699 
4700     ciKlass* src_k = NULL;
4701     if (!has_src) {
4702       src_k = src_type->speculative_type_not_null();
4703       if (src_k != NULL && src_k->is_array_klass()) {
4704         could_have_src = true;
4705       }
4706     }
4707 
4708     ciKlass* dest_k = NULL;
4709     if (!has_dest) {
4710       dest_k = dest_type->speculative_type_not_null();
4711       if (dest_k != NULL && dest_k->is_array_klass()) {
4712         could_have_dest = true;
4713       }
4714     }
4715 
4716     if (could_have_src && could_have_dest) {
4717       // This is going to pay off so emit the required guards
4718       if (!has_src) {
4719         src = maybe_cast_profiled_obj(src, src_k);
4720         src_type  = _gvn.type(src);
4721         top_src  = src_type->isa_aryptr();
4722         has_src = (top_src != NULL && top_src->klass() != NULL);
4723         src_spec = true;
4724       }
4725       if (!has_dest) {
4726         dest = maybe_cast_profiled_obj(dest, dest_k);
4727         dest_type  = _gvn.type(dest);
4728         top_dest  = dest_type->isa_aryptr();
4729         has_dest = (top_dest != NULL && top_dest->klass() != NULL);
4730         dest_spec = true;
4731       }
4732     }
4733   }
4734 
4735   if (!has_src || !has_dest) {
4736     // Conservatively insert a memory barrier on all memory slices.
4737     // Do not let writes into the source float below the arraycopy.
4738     insert_mem_bar(Op_MemBarCPUOrder);
4739 
4740     // Call StubRoutines::generic_arraycopy stub.
4741     generate_arraycopy(TypeRawPtr::BOTTOM, T_CONFLICT,
4742                        src, src_offset, dest, dest_offset, length);
4743 
4744     // Do not let reads from the destination float above the arraycopy.
4745     // Since we cannot type the arrays, we don't know which slices
4746     // might be affected.  We could restrict this barrier only to those
4747     // memory slices which pertain to array elements--but don't bother.
4748     if (!InsertMemBarAfterArraycopy)
4749       // (If InsertMemBarAfterArraycopy, there is already one in place.)
4750       insert_mem_bar(Op_MemBarCPUOrder);
4751     return true;
4752   }
4753 
4754   // (2) src and dest arrays must have elements of the same BasicType
4755   // Figure out the size and type of the elements we will be copying.
4756   BasicType src_elem  =  top_src->klass()->as_array_klass()->element_type()->basic_type();
4757   BasicType dest_elem = top_dest->klass()->as_array_klass()->element_type()->basic_type();
4758   if (src_elem  == T_ARRAY)  src_elem  = T_OBJECT;
4759   if (dest_elem == T_ARRAY)  dest_elem = T_OBJECT;
4760 
4761   if (src_elem != dest_elem || dest_elem == T_VOID) {
4762     // The component types are not the same or are not recognized.  Punt.
4763     // (But, avoid the native method wrapper to JVM_ArrayCopy.)
4764     generate_slow_arraycopy(TypePtr::BOTTOM,
4765                             src, src_offset, dest, dest_offset, length,
4766                             /*dest_uninitialized*/false);
4767     return true;
4768   }
4769 
4770   if (src_elem == T_OBJECT) {
4771     // If both arrays are object arrays then having the exact types
4772     // for both will remove the need for a subtype check at runtime
4773     // before the call and may make it possible to pick a faster copy
4774     // routine (without a subtype check on every element)
4775     // Do we have the exact type of src?
4776     bool could_have_src = src_spec;
4777     // Do we have the exact type of dest?
4778     bool could_have_dest = dest_spec;
4779     ciKlass* src_k = top_src->klass();
4780     ciKlass* dest_k = top_dest->klass();
4781     if (!src_spec) {
4782       src_k = src_type->speculative_type_not_null();
4783       if (src_k != NULL && src_k->is_array_klass()) {
4784           could_have_src = true;
4785       }
4786     }
4787     if (!dest_spec) {
4788       dest_k = dest_type->speculative_type_not_null();
4789       if (dest_k != NULL && dest_k->is_array_klass()) {
4790         could_have_dest = true;
4791       }
4792     }
4793     if (could_have_src && could_have_dest) {
4794       // If we can have both exact types, emit the missing guards
4795       if (could_have_src && !src_spec) {
4796         src = maybe_cast_profiled_obj(src, src_k);
4797       }
4798       if (could_have_dest && !dest_spec) {
4799         dest = maybe_cast_profiled_obj(dest, dest_k);
4800       }
4801     }
4802   }
4803 
4804   //---------------------------------------------------------------------------
4805   // We will make a fast path for this call to arraycopy.
4806 
4807   // We have the following tests left to perform:
4808   //
4809   // (3) src and dest must not be null.
4810   // (4) src_offset must not be negative.
4811   // (5) dest_offset must not be negative.
4812   // (6) length must not be negative.
4813   // (7) src_offset + length must not exceed length of src.
4814   // (8) dest_offset + length must not exceed length of dest.
4815   // (9) each element of an oop array must be assignable
4816 
4817   RegionNode* slow_region = new (C) RegionNode(1);
4818   record_for_igvn(slow_region);
4819 
4820   // (3) operands must not be null
4821   // We currently perform our null checks with the null_check routine.
4822   // This means that the null exceptions will be reported in the caller
4823   // rather than (correctly) reported inside of the native arraycopy call.
4824   // This should be corrected, given time.  We do our null check with the
4825   // stack pointer restored.
4826   src  = null_check(src,  T_ARRAY);
4827   dest = null_check(dest, T_ARRAY);
4828 
4829   // (4) src_offset must not be negative.
4830   generate_negative_guard(src_offset, slow_region);
4831 
4832   // (5) dest_offset must not be negative.
4833   generate_negative_guard(dest_offset, slow_region);
4834 
4835   // (6) length must not be negative (moved to generate_arraycopy()).
4836   // generate_negative_guard(length, slow_region);
4837 
4838   // (7) src_offset + length must not exceed length of src.
4839   generate_limit_guard(src_offset, length,
4840                        load_array_length(src),
4841                        slow_region);
4842 
4843   // (8) dest_offset + length must not exceed length of dest.
4844   generate_limit_guard(dest_offset, length,
4845                        load_array_length(dest),
4846                        slow_region);
4847 
4848   // (9) each element of an oop array must be assignable
4849   // The generate_arraycopy subroutine checks this.
4850 
4851   // This is where the memory effects are placed:
4852   const TypePtr* adr_type = TypeAryPtr::get_array_body_type(dest_elem);
4853   generate_arraycopy(adr_type, dest_elem,
4854                      src, src_offset, dest, dest_offset, length,
4855                      false, false, slow_region);
4856 
4857   return true;
4858 }
4859 
4860 //-----------------------------generate_arraycopy----------------------
4861 // Generate an optimized call to arraycopy.
4862 // Caller must guard against non-arrays.
4863 // Caller must determine a common array basic-type for both arrays.
4864 // Caller must validate offsets against array bounds.
4865 // The slow_region has already collected guard failure paths
4866 // (such as out of bounds length or non-conformable array types).
4867 // The generated code has this shape, in general:
4868 //
4869 //     if (length == 0)  return   // via zero_path
4870 //     slowval = -1
4871 //     if (types unknown) {
4872 //       slowval = call generic copy loop
4873 //       if (slowval == 0)  return  // via checked_path
4874 //     } else if (indexes in bounds) {
4875 //       if ((is object array) && !(array type check)) {
4876 //         slowval = call checked copy loop
4877 //         if (slowval == 0)  return  // via checked_path
4878 //       } else {
4879 //         call bulk copy loop
4880 //         return  // via fast_path
4881 //       }
4882 //     }
4883 //     // adjust params for remaining work:
4884 //     if (slowval != -1) {
4885 //       n = -1^slowval; src_offset += n; dest_offset += n; length -= n
4886 //     }
4887 //   slow_region:
4888 //     call slow arraycopy(src, src_offset, dest, dest_offset, length)
4889 //     return  // via slow_call_path
4890 //
4891 // This routine is used from several intrinsics:  System.arraycopy,
4892 // Object.clone (the array subcase), and Arrays.copyOf[Range].
4893 //
4894 void
4895 LibraryCallKit::generate_arraycopy(const TypePtr* adr_type,
4896                                    BasicType basic_elem_type,
4897                                    Node* src,  Node* src_offset,
4898                                    Node* dest, Node* dest_offset,
4899                                    Node* copy_length,
4900                                    bool disjoint_bases,
4901                                    bool length_never_negative,
4902                                    RegionNode* slow_region) {
4903 
4904   if (slow_region == NULL) {
4905     slow_region = new(C) RegionNode(1);
4906     record_for_igvn(slow_region);
4907   }
4908 
4909   Node* original_dest      = dest;
4910   AllocateArrayNode* alloc = NULL;  // used for zeroing, if needed
4911   bool  dest_uninitialized = false;
4912 
4913   // See if this is the initialization of a newly-allocated array.
4914   // If so, we will take responsibility here for initializing it to zero.
4915   // (Note:  Because tightly_coupled_allocation performs checks on the
4916   // out-edges of the dest, we need to avoid making derived pointers
4917   // from it until we have checked its uses.)
4918   if (ReduceBulkZeroing
4919       && !ZeroTLAB              // pointless if already zeroed
4920       && basic_elem_type != T_CONFLICT // avoid corner case
4921       && !src->eqv_uncast(dest)
4922       && ((alloc = tightly_coupled_allocation(dest, slow_region))
4923           != NULL)
4924       && _gvn.find_int_con(alloc->in(AllocateNode::ALength), 1) > 0
4925       && alloc->maybe_set_complete(&_gvn)) {
4926     // "You break it, you buy it."
4927     InitializeNode* init = alloc->initialization();
4928     assert(init->is_complete(), "we just did this");
4929     init->set_complete_with_arraycopy();
4930     assert(dest->is_CheckCastPP(), "sanity");
4931     assert(dest->in(0)->in(0) == init, "dest pinned");
4932     adr_type = TypeRawPtr::BOTTOM;  // all initializations are into raw memory
4933     // From this point on, every exit path is responsible for
4934     // initializing any non-copied parts of the object to zero.
4935     // Also, if this flag is set we make sure that arraycopy interacts properly
4936     // with G1, eliding pre-barriers. See CR 6627983.
4937     dest_uninitialized = true;
4938   } else {
4939     // No zeroing elimination here.
4940     alloc             = NULL;
4941     //original_dest   = dest;
4942     //dest_uninitialized = false;
4943   }
4944 
4945   // Results are placed here:
4946   enum { fast_path        = 1,  // normal void-returning assembly stub
4947          checked_path     = 2,  // special assembly stub with cleanup
4948          slow_call_path   = 3,  // something went wrong; call the VM
4949          zero_path        = 4,  // bypass when length of copy is zero
4950          bcopy_path       = 5,  // copy primitive array by 64-bit blocks
4951          PATH_LIMIT       = 6
4952   };
4953   RegionNode* result_region = new(C) RegionNode(PATH_LIMIT);
4954   PhiNode*    result_i_o    = new(C) PhiNode(result_region, Type::ABIO);
4955   PhiNode*    result_memory = new(C) PhiNode(result_region, Type::MEMORY, adr_type);
4956   record_for_igvn(result_region);
4957   _gvn.set_type_bottom(result_i_o);
4958   _gvn.set_type_bottom(result_memory);
4959   assert(adr_type != TypePtr::BOTTOM, "must be RawMem or a T[] slice");
4960 
4961   // The slow_control path:
4962   Node* slow_control;
4963   Node* slow_i_o = i_o();
4964   Node* slow_mem = memory(adr_type);
4965   debug_only(slow_control = (Node*) badAddress);
4966 
4967   // Checked control path:
4968   Node* checked_control = top();
4969   Node* checked_mem     = NULL;
4970   Node* checked_i_o     = NULL;
4971   Node* checked_value   = NULL;
4972 
4973   if (basic_elem_type == T_CONFLICT) {
4974     assert(!dest_uninitialized, "");
4975     Node* cv = generate_generic_arraycopy(adr_type,
4976                                           src, src_offset, dest, dest_offset,
4977                                           copy_length, dest_uninitialized);
4978     if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
4979     checked_control = control();
4980     checked_i_o     = i_o();
4981     checked_mem     = memory(adr_type);
4982     checked_value   = cv;
4983     set_control(top());         // no fast path
4984   }
4985 
4986   Node* not_pos = generate_nonpositive_guard(copy_length, length_never_negative);
4987   if (not_pos != NULL) {
4988     PreserveJVMState pjvms(this);
4989     set_control(not_pos);
4990 
4991     // (6) length must not be negative.
4992     if (!length_never_negative) {
4993       generate_negative_guard(copy_length, slow_region);
4994     }
4995 
4996     // copy_length is 0.
4997     if (!stopped() && dest_uninitialized) {
4998       Node* dest_length = alloc->in(AllocateNode::ALength);
4999       if (copy_length->eqv_uncast(dest_length)
5000           || _gvn.find_int_con(dest_length, 1) <= 0) {
5001         // There is no zeroing to do. No need for a secondary raw memory barrier.
5002       } else {
5003         // Clear the whole thing since there are no source elements to copy.
5004         generate_clear_array(adr_type, dest, basic_elem_type,
5005                              intcon(0), NULL,
5006                              alloc->in(AllocateNode::AllocSize));
5007         // Use a secondary InitializeNode as raw memory barrier.
5008         // Currently it is needed only on this path since other
5009         // paths have stub or runtime calls as raw memory barriers.
5010         InitializeNode* init = insert_mem_bar_volatile(Op_Initialize,
5011                                                        Compile::AliasIdxRaw,
5012                                                        top())->as_Initialize();
5013         init->set_complete(&_gvn);  // (there is no corresponding AllocateNode)
5014       }
5015     }
5016 
5017     // Present the results of the fast call.
5018     result_region->init_req(zero_path, control());
5019     result_i_o   ->init_req(zero_path, i_o());
5020     result_memory->init_req(zero_path, memory(adr_type));
5021   }
5022 
5023   if (!stopped() && dest_uninitialized) {
5024     // We have to initialize the *uncopied* part of the array to zero.
5025     // The copy destination is the slice dest[off..off+len].  The other slices
5026     // are dest_head = dest[0..off] and dest_tail = dest[off+len..dest.length].
5027     Node* dest_size   = alloc->in(AllocateNode::AllocSize);
5028     Node* dest_length = alloc->in(AllocateNode::ALength);
5029     Node* dest_tail   = _gvn.transform(new(C) AddINode(dest_offset,
5030                                                           copy_length));
5031 
5032     // If there is a head section that needs zeroing, do it now.
5033     if (find_int_con(dest_offset, -1) != 0) {
5034       generate_clear_array(adr_type, dest, basic_elem_type,
5035                            intcon(0), dest_offset,
5036                            NULL);
5037     }
5038 
5039     // Next, perform a dynamic check on the tail length.
5040     // It is often zero, and we can win big if we prove this.
5041     // There are two wins:  Avoid generating the ClearArray
5042     // with its attendant messy index arithmetic, and upgrade
5043     // the copy to a more hardware-friendly word size of 64 bits.
5044     Node* tail_ctl = NULL;
5045     if (!stopped() && !dest_tail->eqv_uncast(dest_length)) {
5046       Node* cmp_lt   = _gvn.transform(new(C) CmpINode(dest_tail, dest_length));
5047       Node* bol_lt   = _gvn.transform(new(C) BoolNode(cmp_lt, BoolTest::lt));
5048       tail_ctl = generate_slow_guard(bol_lt, NULL);
5049       assert(tail_ctl != NULL || !stopped(), "must be an outcome");
5050     }
5051 
5052     // At this point, let's assume there is no tail.
5053     if (!stopped() && alloc != NULL && basic_elem_type != T_OBJECT) {
5054       // There is no tail.  Try an upgrade to a 64-bit copy.
5055       bool didit = false;
5056       { PreserveJVMState pjvms(this);
5057         didit = generate_block_arraycopy(adr_type, basic_elem_type, alloc,
5058                                          src, src_offset, dest, dest_offset,
5059                                          dest_size, dest_uninitialized);
5060         if (didit) {
5061           // Present the results of the block-copying fast call.
5062           result_region->init_req(bcopy_path, control());
5063           result_i_o   ->init_req(bcopy_path, i_o());
5064           result_memory->init_req(bcopy_path, memory(adr_type));
5065         }
5066       }
5067       if (didit)
5068         set_control(top());     // no regular fast path
5069     }
5070 
5071     // Clear the tail, if any.
5072     if (tail_ctl != NULL) {
5073       Node* notail_ctl = stopped() ? NULL : control();
5074       set_control(tail_ctl);
5075       if (notail_ctl == NULL) {
5076         generate_clear_array(adr_type, dest, basic_elem_type,
5077                              dest_tail, NULL,
5078                              dest_size);
5079       } else {
5080         // Make a local merge.
5081         Node* done_ctl = new(C) RegionNode(3);
5082         Node* done_mem = new(C) PhiNode(done_ctl, Type::MEMORY, adr_type);
5083         done_ctl->init_req(1, notail_ctl);
5084         done_mem->init_req(1, memory(adr_type));
5085         generate_clear_array(adr_type, dest, basic_elem_type,
5086                              dest_tail, NULL,
5087                              dest_size);
5088         done_ctl->init_req(2, control());
5089         done_mem->init_req(2, memory(adr_type));
5090         set_control( _gvn.transform(done_ctl));
5091         set_memory(  _gvn.transform(done_mem), adr_type );
5092       }
5093     }
5094   }
5095 
5096   BasicType copy_type = basic_elem_type;
5097   assert(basic_elem_type != T_ARRAY, "caller must fix this");
5098   if (!stopped() && copy_type == T_OBJECT) {
5099     // If src and dest have compatible element types, we can copy bits.
5100     // Types S[] and D[] are compatible if D is a supertype of S.
5101     //
5102     // If they are not, we will use checked_oop_disjoint_arraycopy,
5103     // which performs a fast optimistic per-oop check, and backs off
5104     // further to JVM_ArrayCopy on the first per-oop check that fails.
5105     // (Actually, we don't move raw bits only; the GC requires card marks.)
5106 
5107     // Get the Klass* for both src and dest
5108     Node* src_klass  = load_object_klass(src);
5109     Node* dest_klass = load_object_klass(dest);
5110 
5111     // Generate the subtype check.
5112     // This might fold up statically, or then again it might not.
5113     //
5114     // Non-static example:  Copying List<String>.elements to a new String[].
5115     // The backing store for a List<String> is always an Object[],
5116     // but its elements are always type String, if the generic types
5117     // are correct at the source level.
5118     //
5119     // Test S[] against D[], not S against D, because (probably)
5120     // the secondary supertype cache is less busy for S[] than S.
5121     // This usually only matters when D is an interface.
5122     Node* not_subtype_ctrl = gen_subtype_check(src_klass, dest_klass);
5123     // Plug failing path into checked_oop_disjoint_arraycopy
5124     if (not_subtype_ctrl != top()) {
5125       PreserveJVMState pjvms(this);
5126       set_control(not_subtype_ctrl);
5127       // (At this point we can assume disjoint_bases, since types differ.)
5128       int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
5129       Node* p1 = basic_plus_adr(dest_klass, ek_offset);
5130       Node* n1 = LoadKlassNode::make(_gvn, immutable_memory(), p1, TypeRawPtr::BOTTOM);
5131       Node* dest_elem_klass = _gvn.transform(n1);
5132       Node* cv = generate_checkcast_arraycopy(adr_type,
5133                                               dest_elem_klass,
5134                                               src, src_offset, dest, dest_offset,
5135                                               ConvI2X(copy_length), dest_uninitialized);
5136       if (cv == NULL)  cv = intcon(-1);  // failure (no stub available)
5137       checked_control = control();
5138       checked_i_o     = i_o();
5139       checked_mem     = memory(adr_type);
5140       checked_value   = cv;
5141     }
5142     // At this point we know we do not need type checks on oop stores.
5143 
5144     // Let's see if we need card marks:
5145     if (alloc != NULL && use_ReduceInitialCardMarks()) {
5146       // If we do not need card marks, copy using the jint or jlong stub.
5147       copy_type = LP64_ONLY(UseCompressedOops ? T_INT : T_LONG) NOT_LP64(T_INT);
5148       assert(type2aelembytes(basic_elem_type) == type2aelembytes(copy_type),
5149              "sizes agree");
5150     }
5151   }
5152 
5153   if (!stopped()) {
5154     // Generate the fast path, if possible.
5155     PreserveJVMState pjvms(this);
5156     generate_unchecked_arraycopy(adr_type, copy_type, disjoint_bases,
5157                                  src, src_offset, dest, dest_offset,
5158                                  ConvI2X(copy_length), dest_uninitialized);
5159 
5160     // Present the results of the fast call.
5161     result_region->init_req(fast_path, control());
5162     result_i_o   ->init_req(fast_path, i_o());
5163     result_memory->init_req(fast_path, memory(adr_type));
5164   }
5165 
5166   // Here are all the slow paths up to this point, in one bundle:
5167   slow_control = top();
5168   if (slow_region != NULL)
5169     slow_control = _gvn.transform(slow_region);
5170   DEBUG_ONLY(slow_region = (RegionNode*)badAddress);
5171 
5172   set_control(checked_control);
5173   if (!stopped()) {
5174     // Clean up after the checked call.
5175     // The returned value is either 0 or -1^K,
5176     // where K = number of partially transferred array elements.
5177     Node* cmp = _gvn.transform(new(C) CmpINode(checked_value, intcon(0)));
5178     Node* bol = _gvn.transform(new(C) BoolNode(cmp, BoolTest::eq));
5179     IfNode* iff = create_and_map_if(control(), bol, PROB_MAX, COUNT_UNKNOWN);
5180 
5181     // If it is 0, we are done, so transfer to the end.
5182     Node* checks_done = _gvn.transform(new(C) IfTrueNode(iff));
5183     result_region->init_req(checked_path, checks_done);
5184     result_i_o   ->init_req(checked_path, checked_i_o);
5185     result_memory->init_req(checked_path, checked_mem);
5186 
5187     // If it is not zero, merge into the slow call.
5188     set_control( _gvn.transform(new(C) IfFalseNode(iff) ));
5189     RegionNode* slow_reg2 = new(C) RegionNode(3);
5190     PhiNode*    slow_i_o2 = new(C) PhiNode(slow_reg2, Type::ABIO);
5191     PhiNode*    slow_mem2 = new(C) PhiNode(slow_reg2, Type::MEMORY, adr_type);
5192     record_for_igvn(slow_reg2);
5193     slow_reg2  ->init_req(1, slow_control);
5194     slow_i_o2  ->init_req(1, slow_i_o);
5195     slow_mem2  ->init_req(1, slow_mem);
5196     slow_reg2  ->init_req(2, control());
5197     slow_i_o2  ->init_req(2, checked_i_o);
5198     slow_mem2  ->init_req(2, checked_mem);
5199 
5200     slow_control = _gvn.transform(slow_reg2);
5201     slow_i_o     = _gvn.transform(slow_i_o2);
5202     slow_mem     = _gvn.transform(slow_mem2);
5203 
5204     if (alloc != NULL) {
5205       // We'll restart from the very beginning, after zeroing the whole thing.
5206       // This can cause double writes, but that's OK since dest is brand new.
5207       // So we ignore the low 31 bits of the value returned from the stub.
5208     } else {
5209       // We must continue the copy exactly where it failed, or else
5210       // another thread might see the wrong number of writes to dest.
5211       Node* checked_offset = _gvn.transform(new(C) XorINode(checked_value, intcon(-1)));
5212       Node* slow_offset    = new(C) PhiNode(slow_reg2, TypeInt::INT);
5213       slow_offset->init_req(1, intcon(0));
5214       slow_offset->init_req(2, checked_offset);
5215       slow_offset  = _gvn.transform(slow_offset);
5216 
5217       // Adjust the arguments by the conditionally incoming offset.
5218       Node* src_off_plus  = _gvn.transform(new(C) AddINode(src_offset,  slow_offset));
5219       Node* dest_off_plus = _gvn.transform(new(C) AddINode(dest_offset, slow_offset));
5220       Node* length_minus  = _gvn.transform(new(C) SubINode(copy_length, slow_offset));
5221 
5222       // Tweak the node variables to adjust the code produced below:
5223       src_offset  = src_off_plus;
5224       dest_offset = dest_off_plus;
5225       copy_length = length_minus;
5226     }
5227   }
5228 
5229   set_control(slow_control);
5230   if (!stopped()) {
5231     // Generate the slow path, if needed.
5232     PreserveJVMState pjvms(this);   // replace_in_map may trash the map
5233 
5234     set_memory(slow_mem, adr_type);
5235     set_i_o(slow_i_o);
5236 
5237     if (dest_uninitialized) {
5238       generate_clear_array(adr_type, dest, basic_elem_type,
5239                            intcon(0), NULL,
5240                            alloc->in(AllocateNode::AllocSize));
5241     }
5242 
5243     generate_slow_arraycopy(adr_type,
5244                             src, src_offset, dest, dest_offset,
5245                             copy_length, /*dest_uninitialized*/false);
5246 
5247     result_region->init_req(slow_call_path, control());
5248     result_i_o   ->init_req(slow_call_path, i_o());
5249     result_memory->init_req(slow_call_path, memory(adr_type));
5250   }
5251 
5252   // Remove unused edges.
5253   for (uint i = 1; i < result_region->req(); i++) {
5254     if (result_region->in(i) == NULL)
5255       result_region->init_req(i, top());
5256   }
5257 
5258   // Finished; return the combined state.
5259   set_control( _gvn.transform(result_region));
5260   set_i_o(     _gvn.transform(result_i_o)    );
5261   set_memory(  _gvn.transform(result_memory), adr_type );
5262 
5263   // The memory edges above are precise in order to model effects around
5264   // array copies accurately to allow value numbering of field loads around
5265   // arraycopy.  Such field loads, both before and after, are common in Java
5266   // collections and similar classes involving header/array data structures.
5267   //
5268   // But with low number of register or when some registers are used or killed
5269   // by arraycopy calls it causes registers spilling on stack. See 6544710.
5270   // The next memory barrier is added to avoid it. If the arraycopy can be
5271   // optimized away (which it can, sometimes) then we can manually remove
5272   // the membar also.
5273   //
5274   // Do not let reads from the cloned object float above the arraycopy.
5275   if (alloc != NULL) {
5276     // Do not let stores that initialize this object be reordered with
5277     // a subsequent store that would make this object accessible by
5278     // other threads.
5279     // Record what AllocateNode this StoreStore protects so that
5280     // escape analysis can go from the MemBarStoreStoreNode to the
5281     // AllocateNode and eliminate the MemBarStoreStoreNode if possible
5282     // based on the escape status of the AllocateNode.
5283     insert_mem_bar(Op_MemBarStoreStore, alloc->proj_out(AllocateNode::RawAddress));
5284   } else if (InsertMemBarAfterArraycopy)
5285     insert_mem_bar(Op_MemBarCPUOrder);
5286 }
5287 
5288 
5289 // Helper function which determines if an arraycopy immediately follows
5290 // an allocation, with no intervening tests or other escapes for the object.
5291 AllocateArrayNode*
5292 LibraryCallKit::tightly_coupled_allocation(Node* ptr,
5293                                            RegionNode* slow_region) {
5294   if (stopped())             return NULL;  // no fast path
5295   if (C->AliasLevel() == 0)  return NULL;  // no MergeMems around
5296 
5297   AllocateArrayNode* alloc = AllocateArrayNode::Ideal_array_allocation(ptr, &_gvn);
5298   if (alloc == NULL)  return NULL;
5299 
5300   Node* rawmem = memory(Compile::AliasIdxRaw);
5301   // Is the allocation's memory state untouched?
5302   if (!(rawmem->is_Proj() && rawmem->in(0)->is_Initialize())) {
5303     // Bail out if there have been raw-memory effects since the allocation.
5304     // (Example:  There might have been a call or safepoint.)
5305     return NULL;
5306   }
5307   rawmem = rawmem->in(0)->as_Initialize()->memory(Compile::AliasIdxRaw);
5308   if (!(rawmem->is_Proj() && rawmem->in(0) == alloc)) {
5309     return NULL;
5310   }
5311 
5312   // There must be no unexpected observers of this allocation.
5313   for (DUIterator_Fast imax, i = ptr->fast_outs(imax); i < imax; i++) {
5314     Node* obs = ptr->fast_out(i);
5315     if (obs != this->map()) {
5316       return NULL;
5317     }
5318   }
5319 
5320   // This arraycopy must unconditionally follow the allocation of the ptr.
5321   Node* alloc_ctl = ptr->in(0);
5322   assert(just_allocated_object(alloc_ctl) == ptr, "most recent allo");
5323 
5324   Node* ctl = control();
5325   while (ctl != alloc_ctl) {
5326     // There may be guards which feed into the slow_region.
5327     // Any other control flow means that we might not get a chance
5328     // to finish initializing the allocated object.
5329     if ((ctl->is_IfFalse() || ctl->is_IfTrue()) && ctl->in(0)->is_If()) {
5330       IfNode* iff = ctl->in(0)->as_If();
5331       Node* not_ctl = iff->proj_out(1 - ctl->as_Proj()->_con);
5332       assert(not_ctl != NULL && not_ctl != ctl, "found alternate");
5333       if (slow_region != NULL && slow_region->find_edge(not_ctl) >= 1) {
5334         ctl = iff->in(0);       // This test feeds the known slow_region.
5335         continue;
5336       }
5337       // One more try:  Various low-level checks bottom out in
5338       // uncommon traps.  If the debug-info of the trap omits
5339       // any reference to the allocation, as we've already
5340       // observed, then there can be no objection to the trap.
5341       bool found_trap = false;
5342       for (DUIterator_Fast jmax, j = not_ctl->fast_outs(jmax); j < jmax; j++) {
5343         Node* obs = not_ctl->fast_out(j);
5344         if (obs->in(0) == not_ctl && obs->is_Call() &&
5345             (obs->as_Call()->entry_point() == SharedRuntime::uncommon_trap_blob()->entry_point())) {
5346           found_trap = true; break;
5347         }
5348       }
5349       if (found_trap) {
5350         ctl = iff->in(0);       // This test feeds a harmless uncommon trap.
5351         continue;
5352       }
5353     }
5354     return NULL;
5355   }
5356 
5357   // If we get this far, we have an allocation which immediately
5358   // precedes the arraycopy, and we can take over zeroing the new object.
5359   // The arraycopy will finish the initialization, and provide
5360   // a new control state to which we will anchor the destination pointer.
5361 
5362   return alloc;
5363 }
5364 
5365 // Helper for initialization of arrays, creating a ClearArray.
5366 // It writes zero bits in [start..end), within the body of an array object.
5367 // The memory effects are all chained onto the 'adr_type' alias category.
5368 //
5369 // Since the object is otherwise uninitialized, we are free
5370 // to put a little "slop" around the edges of the cleared area,
5371 // as long as it does not go back into the array's header,
5372 // or beyond the array end within the heap.
5373 //
5374 // The lower edge can be rounded down to the nearest jint and the
5375 // upper edge can be rounded up to the nearest MinObjAlignmentInBytes.
5376 //
5377 // Arguments:
5378 //   adr_type           memory slice where writes are generated
5379 //   dest               oop of the destination array
5380 //   basic_elem_type    element type of the destination
5381 //   slice_idx          array index of first element to store
5382 //   slice_len          number of elements to store (or NULL)
5383 //   dest_size          total size in bytes of the array object
5384 //
5385 // Exactly one of slice_len or dest_size must be non-NULL.
5386 // If dest_size is non-NULL, zeroing extends to the end of the object.
5387 // If slice_len is non-NULL, the slice_idx value must be a constant.
5388 void
5389 LibraryCallKit::generate_clear_array(const TypePtr* adr_type,
5390                                      Node* dest,
5391                                      BasicType basic_elem_type,
5392                                      Node* slice_idx,
5393                                      Node* slice_len,
5394                                      Node* dest_size) {
5395   // one or the other but not both of slice_len and dest_size:
5396   assert((slice_len != NULL? 1: 0) + (dest_size != NULL? 1: 0) == 1, "");
5397   if (slice_len == NULL)  slice_len = top();
5398   if (dest_size == NULL)  dest_size = top();
5399 
5400   // operate on this memory slice:
5401   Node* mem = memory(adr_type); // memory slice to operate on
5402 
5403   // scaling and rounding of indexes:
5404   int scale = exact_log2(type2aelembytes(basic_elem_type));
5405   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5406   int clear_low = (-1 << scale) & (BytesPerInt  - 1);
5407   int bump_bit  = (-1 << scale) & BytesPerInt;
5408 
5409   // determine constant starts and ends
5410   const intptr_t BIG_NEG = -128;
5411   assert(BIG_NEG + 2*abase < 0, "neg enough");
5412   intptr_t slice_idx_con = (intptr_t) find_int_con(slice_idx, BIG_NEG);
5413   intptr_t slice_len_con = (intptr_t) find_int_con(slice_len, BIG_NEG);
5414   if (slice_len_con == 0) {
5415     return;                     // nothing to do here
5416   }
5417   intptr_t start_con = (abase + (slice_idx_con << scale)) & ~clear_low;
5418   intptr_t end_con   = find_intptr_t_con(dest_size, -1);
5419   if (slice_idx_con >= 0 && slice_len_con >= 0) {
5420     assert(end_con < 0, "not two cons");
5421     end_con = round_to(abase + ((slice_idx_con + slice_len_con) << scale),
5422                        BytesPerLong);
5423   }
5424 
5425   if (start_con >= 0 && end_con >= 0) {
5426     // Constant start and end.  Simple.
5427     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5428                                        start_con, end_con, &_gvn);
5429   } else if (start_con >= 0 && dest_size != top()) {
5430     // Constant start, pre-rounded end after the tail of the array.
5431     Node* end = dest_size;
5432     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5433                                        start_con, end, &_gvn);
5434   } else if (start_con >= 0 && slice_len != top()) {
5435     // Constant start, non-constant end.  End needs rounding up.
5436     // End offset = round_up(abase + ((slice_idx_con + slice_len) << scale), 8)
5437     intptr_t end_base  = abase + (slice_idx_con << scale);
5438     int      end_round = (-1 << scale) & (BytesPerLong  - 1);
5439     Node*    end       = ConvI2X(slice_len);
5440     if (scale != 0)
5441       end = _gvn.transform(new(C) LShiftXNode(end, intcon(scale) ));
5442     end_base += end_round;
5443     end = _gvn.transform(new(C) AddXNode(end, MakeConX(end_base)));
5444     end = _gvn.transform(new(C) AndXNode(end, MakeConX(~end_round)));
5445     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5446                                        start_con, end, &_gvn);
5447   } else if (start_con < 0 && dest_size != top()) {
5448     // Non-constant start, pre-rounded end after the tail of the array.
5449     // This is almost certainly a "round-to-end" operation.
5450     Node* start = slice_idx;
5451     start = ConvI2X(start);
5452     if (scale != 0)
5453       start = _gvn.transform(new(C) LShiftXNode( start, intcon(scale) ));
5454     start = _gvn.transform(new(C) AddXNode(start, MakeConX(abase)));
5455     if ((bump_bit | clear_low) != 0) {
5456       int to_clear = (bump_bit | clear_low);
5457       // Align up mod 8, then store a jint zero unconditionally
5458       // just before the mod-8 boundary.
5459       if (((abase + bump_bit) & ~to_clear) - bump_bit
5460           < arrayOopDesc::length_offset_in_bytes() + BytesPerInt) {
5461         bump_bit = 0;
5462         assert((abase & to_clear) == 0, "array base must be long-aligned");
5463       } else {
5464         // Bump 'start' up to (or past) the next jint boundary:
5465         start = _gvn.transform(new(C) AddXNode(start, MakeConX(bump_bit)));
5466         assert((abase & clear_low) == 0, "array base must be int-aligned");
5467       }
5468       // Round bumped 'start' down to jlong boundary in body of array.
5469       start = _gvn.transform(new(C) AndXNode(start, MakeConX(~to_clear)));
5470       if (bump_bit != 0) {
5471         // Store a zero to the immediately preceding jint:
5472         Node* x1 = _gvn.transform(new(C) AddXNode(start, MakeConX(-bump_bit)));
5473         Node* p1 = basic_plus_adr(dest, x1);
5474         mem = StoreNode::make(_gvn, control(), mem, p1, adr_type, intcon(0), T_INT, MemNode::unordered);
5475         mem = _gvn.transform(mem);
5476       }
5477     }
5478     Node* end = dest_size; // pre-rounded
5479     mem = ClearArrayNode::clear_memory(control(), mem, dest,
5480                                        start, end, &_gvn);
5481   } else {
5482     // Non-constant start, unrounded non-constant end.
5483     // (Nobody zeroes a random midsection of an array using this routine.)
5484     ShouldNotReachHere();       // fix caller
5485   }
5486 
5487   // Done.
5488   set_memory(mem, adr_type);
5489 }
5490 
5491 
5492 bool
5493 LibraryCallKit::generate_block_arraycopy(const TypePtr* adr_type,
5494                                          BasicType basic_elem_type,
5495                                          AllocateNode* alloc,
5496                                          Node* src,  Node* src_offset,
5497                                          Node* dest, Node* dest_offset,
5498                                          Node* dest_size, bool dest_uninitialized) {
5499   // See if there is an advantage from block transfer.
5500   int scale = exact_log2(type2aelembytes(basic_elem_type));
5501   if (scale >= LogBytesPerLong)
5502     return false;               // it is already a block transfer
5503 
5504   // Look at the alignment of the starting offsets.
5505   int abase = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
5506 
5507   intptr_t src_off_con  = (intptr_t) find_int_con(src_offset, -1);
5508   intptr_t dest_off_con = (intptr_t) find_int_con(dest_offset, -1);
5509   if (src_off_con < 0 || dest_off_con < 0)
5510     // At present, we can only understand constants.
5511     return false;
5512 
5513   intptr_t src_off  = abase + (src_off_con  << scale);
5514   intptr_t dest_off = abase + (dest_off_con << scale);
5515 
5516   if (((src_off | dest_off) & (BytesPerLong-1)) != 0) {
5517     // Non-aligned; too bad.
5518     // One more chance:  Pick off an initial 32-bit word.
5519     // This is a common case, since abase can be odd mod 8.
5520     if (((src_off | dest_off) & (BytesPerLong-1)) == BytesPerInt &&
5521         ((src_off ^ dest_off) & (BytesPerLong-1)) == 0) {
5522       Node* sptr = basic_plus_adr(src,  src_off);
5523       Node* dptr = basic_plus_adr(dest, dest_off);
5524       Node* sval = make_load(control(), sptr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);
5525       store_to_memory(control(), dptr, sval, T_INT, adr_type, MemNode::unordered);
5526       src_off += BytesPerInt;
5527       dest_off += BytesPerInt;
5528     } else {
5529       return false;
5530     }
5531   }
5532   assert(src_off % BytesPerLong == 0, "");
5533   assert(dest_off % BytesPerLong == 0, "");
5534 
5535   // Do this copy by giant steps.
5536   Node* sptr  = basic_plus_adr(src,  src_off);
5537   Node* dptr  = basic_plus_adr(dest, dest_off);
5538   Node* countx = dest_size;
5539   countx = _gvn.transform(new (C) SubXNode(countx, MakeConX(dest_off)));
5540   countx = _gvn.transform(new (C) URShiftXNode(countx, intcon(LogBytesPerLong)));
5541 
5542   bool disjoint_bases = true;   // since alloc != NULL
5543   generate_unchecked_arraycopy(adr_type, T_LONG, disjoint_bases,
5544                                sptr, NULL, dptr, NULL, countx, dest_uninitialized);
5545 
5546   return true;
5547 }
5548 
5549 
5550 // Helper function; generates code for the slow case.
5551 // We make a call to a runtime method which emulates the native method,
5552 // but without the native wrapper overhead.
5553 void
5554 LibraryCallKit::generate_slow_arraycopy(const TypePtr* adr_type,
5555                                         Node* src,  Node* src_offset,
5556                                         Node* dest, Node* dest_offset,
5557                                         Node* copy_length, bool dest_uninitialized) {
5558   assert(!dest_uninitialized, "Invariant");
5559   Node* call = make_runtime_call(RC_NO_LEAF | RC_UNCOMMON,
5560                                  OptoRuntime::slow_arraycopy_Type(),
5561                                  OptoRuntime::slow_arraycopy_Java(),
5562                                  "slow_arraycopy", adr_type,
5563                                  src, src_offset, dest, dest_offset,
5564                                  copy_length);
5565 
5566   // Handle exceptions thrown by this fellow:
5567   make_slow_call_ex(call, env()->Throwable_klass(), false);
5568 }
5569 
5570 // Helper function; generates code for cases requiring runtime checks.
5571 Node*
5572 LibraryCallKit::generate_checkcast_arraycopy(const TypePtr* adr_type,
5573                                              Node* dest_elem_klass,
5574                                              Node* src,  Node* src_offset,
5575                                              Node* dest, Node* dest_offset,
5576                                              Node* copy_length, bool dest_uninitialized) {
5577   if (stopped())  return NULL;
5578 
5579   address copyfunc_addr = StubRoutines::checkcast_arraycopy(dest_uninitialized);
5580   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5581     return NULL;
5582   }
5583 
5584   // Pick out the parameters required to perform a store-check
5585   // for the target array.  This is an optimistic check.  It will
5586   // look in each non-null element's class, at the desired klass's
5587   // super_check_offset, for the desired klass.
5588   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5589   Node* p3 = basic_plus_adr(dest_elem_klass, sco_offset);
5590   Node* n3 = new(C) LoadINode(NULL, memory(p3), p3, _gvn.type(p3)->is_ptr(), TypeInt::INT, MemNode::unordered);
5591   Node* check_offset = ConvI2X(_gvn.transform(n3));
5592   Node* check_value  = dest_elem_klass;
5593 
5594   Node* src_start  = array_element_address(src,  src_offset,  T_OBJECT);
5595   Node* dest_start = array_element_address(dest, dest_offset, T_OBJECT);
5596 
5597   // (We know the arrays are never conjoint, because their types differ.)
5598   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5599                                  OptoRuntime::checkcast_arraycopy_Type(),
5600                                  copyfunc_addr, "checkcast_arraycopy", adr_type,
5601                                  // five arguments, of which two are
5602                                  // intptr_t (jlong in LP64)
5603                                  src_start, dest_start,
5604                                  copy_length XTOP,
5605                                  check_offset XTOP,
5606                                  check_value);
5607 
5608   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5609 }
5610 
5611 
5612 // Helper function; generates code for cases requiring runtime checks.
5613 Node*
5614 LibraryCallKit::generate_generic_arraycopy(const TypePtr* adr_type,
5615                                            Node* src,  Node* src_offset,
5616                                            Node* dest, Node* dest_offset,
5617                                            Node* copy_length, bool dest_uninitialized) {
5618   assert(!dest_uninitialized, "Invariant");
5619   if (stopped())  return NULL;
5620   address copyfunc_addr = StubRoutines::generic_arraycopy();
5621   if (copyfunc_addr == NULL) { // Stub was not generated, go slow path.
5622     return NULL;
5623   }
5624 
5625   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP,
5626                     OptoRuntime::generic_arraycopy_Type(),
5627                     copyfunc_addr, "generic_arraycopy", adr_type,
5628                     src, src_offset, dest, dest_offset, copy_length);
5629 
5630   return _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5631 }
5632 
5633 // Helper function; generates the fast out-of-line call to an arraycopy stub.
5634 void
5635 LibraryCallKit::generate_unchecked_arraycopy(const TypePtr* adr_type,
5636                                              BasicType basic_elem_type,
5637                                              bool disjoint_bases,
5638                                              Node* src,  Node* src_offset,
5639                                              Node* dest, Node* dest_offset,
5640                                              Node* copy_length, bool dest_uninitialized) {
5641   if (stopped())  return;               // nothing to do
5642 
5643   Node* src_start  = src;
5644   Node* dest_start = dest;
5645   if (src_offset != NULL || dest_offset != NULL) {
5646     assert(src_offset != NULL && dest_offset != NULL, "");
5647     src_start  = array_element_address(src,  src_offset,  basic_elem_type);
5648     dest_start = array_element_address(dest, dest_offset, basic_elem_type);
5649   }
5650 
5651   // Figure out which arraycopy runtime method to call.
5652   const char* copyfunc_name = "arraycopy";
5653   address     copyfunc_addr =
5654       basictype2arraycopy(basic_elem_type, src_offset, dest_offset,
5655                           disjoint_bases, copyfunc_name, dest_uninitialized);
5656 
5657   // Call it.  Note that the count_ix value is not scaled to a byte-size.
5658   make_runtime_call(RC_LEAF|RC_NO_FP,
5659                     OptoRuntime::fast_arraycopy_Type(),
5660                     copyfunc_addr, copyfunc_name, adr_type,
5661                     src_start, dest_start, copy_length XTOP);
5662 }
5663 
5664 //-------------inline_encodeISOArray-----------------------------------
5665 // encode char[] to byte[] in ISO_8859_1
5666 bool LibraryCallKit::inline_encodeISOArray() {
5667   assert(callee()->signature()->size() == 5, "encodeISOArray has 5 parameters");
5668   // no receiver since it is static method
5669   Node *src         = argument(0);
5670   Node *src_offset  = argument(1);
5671   Node *dst         = argument(2);
5672   Node *dst_offset  = argument(3);
5673   Node *length      = argument(4);
5674 
5675   const Type* src_type = src->Value(&_gvn);
5676   const Type* dst_type = dst->Value(&_gvn);
5677   const TypeAryPtr* top_src = src_type->isa_aryptr();
5678   const TypeAryPtr* top_dest = dst_type->isa_aryptr();
5679   if (top_src  == NULL || top_src->klass()  == NULL ||
5680       top_dest == NULL || top_dest->klass() == NULL) {
5681     // failed array check
5682     return false;
5683   }
5684 
5685   // Figure out the size and type of the elements we will be copying.
5686   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5687   BasicType dst_elem = dst_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5688   if (src_elem != T_CHAR || dst_elem != T_BYTE) {
5689     return false;
5690   }
5691   Node* src_start = array_element_address(src, src_offset, src_elem);
5692   Node* dst_start = array_element_address(dst, dst_offset, dst_elem);
5693   // 'src_start' points to src array + scaled offset
5694   // 'dst_start' points to dst array + scaled offset
5695 
5696   const TypeAryPtr* mtype = TypeAryPtr::BYTES;
5697   Node* enc = new (C) EncodeISOArrayNode(control(), memory(mtype), src_start, dst_start, length);
5698   enc = _gvn.transform(enc);
5699   Node* res_mem = _gvn.transform(new (C) SCMemProjNode(enc));
5700   set_memory(res_mem, mtype);
5701   set_result(enc);
5702   return true;
5703 }
5704 
5705 /**
5706  * Calculate CRC32 for byte.
5707  * int java.util.zip.CRC32.update(int crc, int b)
5708  */
5709 bool LibraryCallKit::inline_updateCRC32() {
5710   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5711   assert(callee()->signature()->size() == 2, "update has 2 parameters");
5712   // no receiver since it is static method
5713   Node* crc  = argument(0); // type: int
5714   Node* b    = argument(1); // type: int
5715 
5716   /*
5717    *    int c = ~ crc;
5718    *    b = timesXtoThe32[(b ^ c) & 0xFF];
5719    *    b = b ^ (c >>> 8);
5720    *    crc = ~b;
5721    */
5722 
5723   Node* M1 = intcon(-1);
5724   crc = _gvn.transform(new (C) XorINode(crc, M1));
5725   Node* result = _gvn.transform(new (C) XorINode(crc, b));
5726   result = _gvn.transform(new (C) AndINode(result, intcon(0xFF)));
5727 
5728   Node* base = makecon(TypeRawPtr::make(StubRoutines::crc_table_addr()));
5729   Node* offset = _gvn.transform(new (C) LShiftINode(result, intcon(0x2)));
5730   Node* adr = basic_plus_adr(top(), base, ConvI2X(offset));
5731   result = make_load(control(), adr, TypeInt::INT, T_INT, MemNode::unordered);
5732 
5733   crc = _gvn.transform(new (C) URShiftINode(crc, intcon(8)));
5734   result = _gvn.transform(new (C) XorINode(crc, result));
5735   result = _gvn.transform(new (C) XorINode(result, M1));
5736   set_result(result);
5737   return true;
5738 }
5739 
5740 /**
5741  * Calculate CRC32 for byte[] array.
5742  * int java.util.zip.CRC32.updateBytes(int crc, byte[] buf, int off, int len)
5743  */
5744 bool LibraryCallKit::inline_updateBytesCRC32() {
5745   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5746   assert(callee()->signature()->size() == 4, "updateBytes has 4 parameters");
5747   // no receiver since it is static method
5748   Node* crc     = argument(0); // type: int
5749   Node* src     = argument(1); // type: oop
5750   Node* offset  = argument(2); // type: int
5751   Node* length  = argument(3); // type: int
5752 
5753   const Type* src_type = src->Value(&_gvn);
5754   const TypeAryPtr* top_src = src_type->isa_aryptr();
5755   if (top_src  == NULL || top_src->klass()  == NULL) {
5756     // failed array check
5757     return false;
5758   }
5759 
5760   // Figure out the size and type of the elements we will be copying.
5761   BasicType src_elem = src_type->isa_aryptr()->klass()->as_array_klass()->element_type()->basic_type();
5762   if (src_elem != T_BYTE) {
5763     return false;
5764   }
5765 
5766   // 'src_start' points to src array + scaled offset
5767   Node* src_start = array_element_address(src, offset, src_elem);
5768 
5769   // We assume that range check is done by caller.
5770   // TODO: generate range check (offset+length < src.length) in debug VM.
5771 
5772   // Call the stub.
5773   address stubAddr = StubRoutines::updateBytesCRC32();
5774   const char *stubName = "updateBytesCRC32";
5775 
5776   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5777                                  stubAddr, stubName, TypePtr::BOTTOM,
5778                                  crc, src_start, length);
5779   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5780   set_result(result);
5781   return true;
5782 }
5783 
5784 /**
5785  * Calculate CRC32 for ByteBuffer.
5786  * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
5787  */
5788 bool LibraryCallKit::inline_updateByteBufferCRC32() {
5789   assert(UseCRC32Intrinsics, "need AVX and LCMUL instructions support");
5790   assert(callee()->signature()->size() == 5, "updateByteBuffer has 4 parameters and one is long");
5791   // no receiver since it is static method
5792   Node* crc     = argument(0); // type: int
5793   Node* src     = argument(1); // type: long
5794   Node* offset  = argument(3); // type: int
5795   Node* length  = argument(4); // type: int
5796 
5797   src = ConvL2X(src);  // adjust Java long to machine word
5798   Node* base = _gvn.transform(new (C) CastX2PNode(src));
5799   offset = ConvI2X(offset);
5800 
5801   // 'src_start' points to src array + scaled offset
5802   Node* src_start = basic_plus_adr(top(), base, offset);
5803 
5804   // Call the stub.
5805   address stubAddr = StubRoutines::updateBytesCRC32();
5806   const char *stubName = "updateBytesCRC32";
5807 
5808   Node* call = make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::updateBytesCRC32_Type(),
5809                                  stubAddr, stubName, TypePtr::BOTTOM,
5810                                  crc, src_start, length);
5811   Node* result = _gvn.transform(new (C) ProjNode(call, TypeFunc::Parms));
5812   set_result(result);
5813   return true;
5814 }
5815 
5816 //----------------------------inline_reference_get----------------------------
5817 // public T java.lang.ref.Reference.get();
5818 bool LibraryCallKit::inline_reference_get() {
5819   const int referent_offset = java_lang_ref_Reference::referent_offset;
5820   guarantee(referent_offset > 0, "should have already been set");
5821 
5822   // Get the argument:
5823   Node* reference_obj = null_check_receiver();
5824   if (stopped()) return true;
5825 
5826   Node* adr = basic_plus_adr(reference_obj, reference_obj, referent_offset);
5827 
5828   ciInstanceKlass* klass = env()->Object_klass();
5829   const TypeOopPtr* object_type = TypeOopPtr::make_from_klass(klass);
5830 
5831   Node* no_ctrl = NULL;
5832   Node* result = make_load(no_ctrl, adr, object_type, T_OBJECT, MemNode::unordered);
5833 
5834   // Use the pre-barrier to record the value in the referent field
5835   pre_barrier(false /* do_load */,
5836               control(),
5837               NULL /* obj */, NULL /* adr */, max_juint /* alias_idx */, NULL /* val */, NULL /* val_type */,
5838               result /* pre_val */,
5839               T_OBJECT);
5840 
5841   // Add memory barrier to prevent commoning reads from this field
5842   // across safepoint since GC can change its value.
5843   insert_mem_bar(Op_MemBarCPUOrder);
5844 
5845   set_result(result);
5846   return true;
5847 }
5848 
5849 
5850 Node * LibraryCallKit::load_field_from_object(Node * fromObj, const char * fieldName, const char * fieldTypeString,
5851                                               bool is_exact=true, bool is_static=false) {
5852 
5853   const TypeInstPtr* tinst = _gvn.type(fromObj)->isa_instptr();
5854   assert(tinst != NULL, "obj is null");
5855   assert(tinst->klass()->is_loaded(), "obj is not loaded");
5856   assert(!is_exact || tinst->klass_is_exact(), "klass not exact");
5857 
5858   ciField* field = tinst->klass()->as_instance_klass()->get_field_by_name(ciSymbol::make(fieldName),
5859                                                                           ciSymbol::make(fieldTypeString),
5860                                                                           is_static);
5861   if (field == NULL) return (Node *) NULL;
5862   assert (field != NULL, "undefined field");
5863 
5864   // Next code  copied from Parse::do_get_xxx():
5865 
5866   // Compute address and memory type.
5867   int offset  = field->offset_in_bytes();
5868   bool is_vol = field->is_volatile();
5869   ciType* field_klass = field->type();
5870   assert(field_klass->is_loaded(), "should be loaded");
5871   const TypePtr* adr_type = C->alias_type(field)->adr_type();
5872   Node *adr = basic_plus_adr(fromObj, fromObj, offset);
5873   BasicType bt = field->layout_type();
5874 
5875   // Build the resultant type of the load
5876   const Type *type = TypeOopPtr::make_from_klass(field_klass->as_klass());
5877 
5878   // Build the load.
5879   Node* loadedField = make_load(NULL, adr, type, bt, adr_type, MemNode::unordered, is_vol);
5880   return loadedField;
5881 }
5882 
5883 
5884 //------------------------------inline_aescrypt_Block-----------------------
5885 bool LibraryCallKit::inline_aescrypt_Block(vmIntrinsics::ID id) {
5886   address stubAddr;
5887   const char *stubName;
5888   assert(UseAES, "need AES instruction support");
5889 
5890   switch(id) {
5891   case vmIntrinsics::_aescrypt_encryptBlock:
5892     stubAddr = StubRoutines::aescrypt_encryptBlock();
5893     stubName = "aescrypt_encryptBlock";
5894     break;
5895   case vmIntrinsics::_aescrypt_decryptBlock:
5896     stubAddr = StubRoutines::aescrypt_decryptBlock();
5897     stubName = "aescrypt_decryptBlock";
5898     break;
5899   }
5900   if (stubAddr == NULL) return false;
5901 
5902   Node* aescrypt_object = argument(0);
5903   Node* src             = argument(1);
5904   Node* src_offset      = argument(2);
5905   Node* dest            = argument(3);
5906   Node* dest_offset     = argument(4);
5907 
5908   // (1) src and dest are arrays.
5909   const Type* src_type = src->Value(&_gvn);
5910   const Type* dest_type = dest->Value(&_gvn);
5911   const TypeAryPtr* top_src = src_type->isa_aryptr();
5912   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5913   assert (top_src  != NULL && top_src->klass()  != NULL &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5914 
5915   // for the quick and dirty code we will skip all the checks.
5916   // we are just trying to get the call to be generated.
5917   Node* src_start  = src;
5918   Node* dest_start = dest;
5919   if (src_offset != NULL || dest_offset != NULL) {
5920     assert(src_offset != NULL && dest_offset != NULL, "");
5921     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5922     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5923   }
5924 
5925   // now need to get the start of its expanded key array
5926   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5927   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
5928   if (k_start == NULL) return false;
5929 
5930   if (Matcher::pass_original_key_for_aes()) {
5931     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
5932     // compatibility issues between Java key expansion and SPARC crypto instructions
5933     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
5934     if (original_k_start == NULL) return false;
5935 
5936     // Call the stub.
5937     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5938                       stubAddr, stubName, TypePtr::BOTTOM,
5939                       src_start, dest_start, k_start, original_k_start);
5940   } else {
5941     // Call the stub.
5942     make_runtime_call(RC_LEAF|RC_NO_FP, OptoRuntime::aescrypt_block_Type(),
5943                       stubAddr, stubName, TypePtr::BOTTOM,
5944                       src_start, dest_start, k_start);
5945   }
5946 
5947   return true;
5948 }
5949 
5950 //------------------------------inline_cipherBlockChaining_AESCrypt-----------------------
5951 bool LibraryCallKit::inline_cipherBlockChaining_AESCrypt(vmIntrinsics::ID id) {
5952   address stubAddr;
5953   const char *stubName;
5954 
5955   assert(UseAES, "need AES instruction support");
5956 
5957   switch(id) {
5958   case vmIntrinsics::_cipherBlockChaining_encryptAESCrypt:
5959     stubAddr = StubRoutines::cipherBlockChaining_encryptAESCrypt();
5960     stubName = "cipherBlockChaining_encryptAESCrypt";
5961     break;
5962   case vmIntrinsics::_cipherBlockChaining_decryptAESCrypt:
5963     stubAddr = StubRoutines::cipherBlockChaining_decryptAESCrypt();
5964     stubName = "cipherBlockChaining_decryptAESCrypt";
5965     break;
5966   }
5967   if (stubAddr == NULL) return false;
5968 
5969   Node* cipherBlockChaining_object = argument(0);
5970   Node* src                        = argument(1);
5971   Node* src_offset                 = argument(2);
5972   Node* len                        = argument(3);
5973   Node* dest                       = argument(4);
5974   Node* dest_offset                = argument(5);
5975 
5976   // (1) src and dest are arrays.
5977   const Type* src_type = src->Value(&_gvn);
5978   const Type* dest_type = dest->Value(&_gvn);
5979   const TypeAryPtr* top_src = src_type->isa_aryptr();
5980   const TypeAryPtr* top_dest = dest_type->isa_aryptr();
5981   assert (top_src  != NULL && top_src->klass()  != NULL
5982           &&  top_dest != NULL && top_dest->klass() != NULL, "args are strange");
5983 
5984   // checks are the responsibility of the caller
5985   Node* src_start  = src;
5986   Node* dest_start = dest;
5987   if (src_offset != NULL || dest_offset != NULL) {
5988     assert(src_offset != NULL && dest_offset != NULL, "");
5989     src_start  = array_element_address(src,  src_offset,  T_BYTE);
5990     dest_start = array_element_address(dest, dest_offset, T_BYTE);
5991   }
5992 
5993   // if we are in this set of code, we "know" the embeddedCipher is an AESCrypt object
5994   // (because of the predicated logic executed earlier).
5995   // so we cast it here safely.
5996   // this requires a newer class file that has this array as littleEndian ints, otherwise we revert to java
5997 
5998   Node* embeddedCipherObj = load_field_from_object(cipherBlockChaining_object, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
5999   if (embeddedCipherObj == NULL) return false;
6000 
6001   // cast it to what we know it will be at runtime
6002   const TypeInstPtr* tinst = _gvn.type(cipherBlockChaining_object)->isa_instptr();
6003   assert(tinst != NULL, "CBC obj is null");
6004   assert(tinst->klass()->is_loaded(), "CBC obj is not loaded");
6005   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6006   if (!klass_AESCrypt->is_loaded()) return false;
6007 
6008   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6009   const TypeKlassPtr* aklass = TypeKlassPtr::make(instklass_AESCrypt);
6010   const TypeOopPtr* xtype = aklass->as_instance_type();
6011   Node* aescrypt_object = new(C) CheckCastPPNode(control(), embeddedCipherObj, xtype);
6012   aescrypt_object = _gvn.transform(aescrypt_object);
6013 
6014   // we need to get the start of the aescrypt_object's expanded key array
6015   Node* k_start = get_key_start_from_aescrypt_object(aescrypt_object);
6016   if (k_start == NULL) return false;
6017 
6018   // similarly, get the start address of the r vector
6019   Node* objRvec = load_field_from_object(cipherBlockChaining_object, "r", "[B", /*is_exact*/ false);
6020   if (objRvec == NULL) return false;
6021   Node* r_start = array_element_address(objRvec, intcon(0), T_BYTE);
6022 
6023   Node* cbcCrypt;
6024   if (Matcher::pass_original_key_for_aes()) {
6025     // on SPARC we need to pass the original key since key expansion needs to happen in intrinsics due to
6026     // compatibility issues between Java key expansion and SPARC crypto instructions
6027     Node* original_k_start = get_original_key_start_from_aescrypt_object(aescrypt_object);
6028     if (original_k_start == NULL) return false;
6029 
6030     // Call the stub, passing src_start, dest_start, k_start, r_start, src_len and original_k_start
6031     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6032                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6033                                  stubAddr, stubName, TypePtr::BOTTOM,
6034                                  src_start, dest_start, k_start, r_start, len, original_k_start);
6035   } else {
6036     // Call the stub, passing src_start, dest_start, k_start, r_start and src_len
6037     cbcCrypt = make_runtime_call(RC_LEAF|RC_NO_FP,
6038                                  OptoRuntime::cipherBlockChaining_aescrypt_Type(),
6039                                  stubAddr, stubName, TypePtr::BOTTOM,
6040                                  src_start, dest_start, k_start, r_start, len);
6041   }
6042 
6043   // return cipher length (int)
6044   Node* retvalue = _gvn.transform(new (C) ProjNode(cbcCrypt, TypeFunc::Parms));
6045   set_result(retvalue);
6046   return true;
6047 }
6048 
6049 //------------------------------get_key_start_from_aescrypt_object-----------------------
6050 Node * LibraryCallKit::get_key_start_from_aescrypt_object(Node *aescrypt_object) {
6051   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "K", "[I", /*is_exact*/ false);
6052   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6053   if (objAESCryptKey == NULL) return (Node *) NULL;
6054 
6055   // now have the array, need to get the start address of the K array
6056   Node* k_start = array_element_address(objAESCryptKey, intcon(0), T_INT);
6057   return k_start;
6058 }
6059 
6060 //------------------------------get_original_key_start_from_aescrypt_object-----------------------
6061 Node * LibraryCallKit::get_original_key_start_from_aescrypt_object(Node *aescrypt_object) {
6062   Node* objAESCryptKey = load_field_from_object(aescrypt_object, "lastKey", "[B", /*is_exact*/ false);
6063   assert (objAESCryptKey != NULL, "wrong version of com.sun.crypto.provider.AESCrypt");
6064   if (objAESCryptKey == NULL) return (Node *) NULL;
6065 
6066   // now have the array, need to get the start address of the lastKey array
6067   Node* original_k_start = array_element_address(objAESCryptKey, intcon(0), T_BYTE);
6068   return original_k_start;
6069 }
6070 
6071 //----------------------------inline_cipherBlockChaining_AESCrypt_predicate----------------------------
6072 // Return node representing slow path of predicate check.
6073 // the pseudo code we want to emulate with this predicate is:
6074 // for encryption:
6075 //    if (embeddedCipherObj instanceof AESCrypt) do_intrinsic, else do_javapath
6076 // for decryption:
6077 //    if ((embeddedCipherObj instanceof AESCrypt) && (cipher!=plain)) do_intrinsic, else do_javapath
6078 //    note cipher==plain is more conservative than the original java code but that's OK
6079 //
6080 Node* LibraryCallKit::inline_cipherBlockChaining_AESCrypt_predicate(bool decrypting) {
6081   // First, check receiver for NULL since it is virtual method.
6082   Node* objCBC = argument(0);
6083   objCBC = null_check(objCBC);
6084 
6085   if (stopped()) return NULL; // Always NULL
6086 
6087   // Load embeddedCipher field of CipherBlockChaining object.
6088   Node* embeddedCipherObj = load_field_from_object(objCBC, "embeddedCipher", "Lcom/sun/crypto/provider/SymmetricCipher;", /*is_exact*/ false);
6089 
6090   // get AESCrypt klass for instanceOf check
6091   // AESCrypt might not be loaded yet if some other SymmetricCipher got us to this compile point
6092   // will have same classloader as CipherBlockChaining object
6093   const TypeInstPtr* tinst = _gvn.type(objCBC)->isa_instptr();
6094   assert(tinst != NULL, "CBCobj is null");
6095   assert(tinst->klass()->is_loaded(), "CBCobj is not loaded");
6096 
6097   // we want to do an instanceof comparison against the AESCrypt class
6098   ciKlass* klass_AESCrypt = tinst->klass()->as_instance_klass()->find_klass(ciSymbol::make("com/sun/crypto/provider/AESCrypt"));
6099   if (!klass_AESCrypt->is_loaded()) {
6100     // if AESCrypt is not even loaded, we never take the intrinsic fast path
6101     Node* ctrl = control();
6102     set_control(top()); // no regular fast path
6103     return ctrl;
6104   }
6105   ciInstanceKlass* instklass_AESCrypt = klass_AESCrypt->as_instance_klass();
6106 
6107   Node* instof = gen_instanceof(embeddedCipherObj, makecon(TypeKlassPtr::make(instklass_AESCrypt)));
6108   Node* cmp_instof  = _gvn.transform(new (C) CmpINode(instof, intcon(1)));
6109   Node* bool_instof  = _gvn.transform(new (C) BoolNode(cmp_instof, BoolTest::ne));
6110 
6111   Node* instof_false = generate_guard(bool_instof, NULL, PROB_MIN);
6112 
6113   // for encryption, we are done
6114   if (!decrypting)
6115     return instof_false;  // even if it is NULL
6116 
6117   // for decryption, we need to add a further check to avoid
6118   // taking the intrinsic path when cipher and plain are the same
6119   // see the original java code for why.
6120   RegionNode* region = new(C) RegionNode(3);
6121   region->init_req(1, instof_false);
6122   Node* src = argument(1);
6123   Node* dest = argument(4);
6124   Node* cmp_src_dest = _gvn.transform(new (C) CmpPNode(src, dest));
6125   Node* bool_src_dest = _gvn.transform(new (C) BoolNode(cmp_src_dest, BoolTest::eq));
6126   Node* src_dest_conjoint = generate_guard(bool_src_dest, NULL, PROB_MIN);
6127   region->init_req(2, src_dest_conjoint);
6128 
6129   record_for_igvn(region);
6130   return _gvn.transform(region);
6131 }