1 /*
   2  * Copyright (c) 1998, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.inline.hpp"
  27 #include "code/compiledIC.hpp"
  28 #include "code/debugInfo.hpp"
  29 #include "code/debugInfoRec.hpp"
  30 #include "compiler/compileBroker.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "memory/allocation.inline.hpp"
  33 #include "opto/ad.hpp"
  34 #include "opto/callnode.hpp"
  35 #include "opto/cfgnode.hpp"
  36 #include "opto/locknode.hpp"
  37 #include "opto/machnode.hpp"
  38 #include "opto/optoreg.hpp"
  39 #include "opto/output.hpp"
  40 #include "opto/regalloc.hpp"
  41 #include "opto/runtime.hpp"
  42 #include "opto/subnode.hpp"
  43 #include "opto/type.hpp"
  44 #include "runtime/handles.inline.hpp"
  45 #include "utilities/xmlstream.hpp"
  46 
  47 #ifndef PRODUCT
  48 #define DEBUG_ARG(x) , x
  49 #else
  50 #define DEBUG_ARG(x)
  51 #endif
  52 
  53 // Convert Nodes to instruction bits and pass off to the VM
  54 void Compile::Output() {
  55   // RootNode goes
  56   assert( _cfg->get_root_block()->number_of_nodes() == 0, "" );
  57 
  58   // The number of new nodes (mostly MachNop) is proportional to
  59   // the number of java calls and inner loops which are aligned.
  60   if ( C->check_node_count((NodeLimitFudgeFactor + C->java_calls()*3 +
  61                             C->inner_loops()*(OptoLoopAlignment-1)),
  62                            "out of nodes before code generation" ) ) {
  63     return;
  64   }
  65   // Make sure I can find the Start Node
  66   Block *entry = _cfg->get_block(1);
  67   Block *broot = _cfg->get_root_block();
  68 
  69   const StartNode *start = entry->head()->as_Start();
  70 
  71   // Replace StartNode with prolog
  72   MachPrologNode *prolog = new MachPrologNode();
  73   entry->map_node(prolog, 0);
  74   _cfg->map_node_to_block(prolog, entry);
  75   _cfg->unmap_node_from_block(start); // start is no longer in any block
  76 
  77   // Virtual methods need an unverified entry point
  78 
  79   if( is_osr_compilation() ) {
  80     if( PoisonOSREntry ) {
  81       // TODO: Should use a ShouldNotReachHereNode...
  82       _cfg->insert( broot, 0, new MachBreakpointNode() );
  83     }
  84   } else {
  85     if( _method && !_method->flags().is_static() ) {
  86       // Insert unvalidated entry point
  87       _cfg->insert( broot, 0, new MachUEPNode() );
  88     }
  89 
  90   }
  91 
  92 
  93   // Break before main entry point
  94   if( (_method && _method->break_at_execute())
  95 #ifndef PRODUCT
  96     ||(OptoBreakpoint && is_method_compilation())
  97     ||(OptoBreakpointOSR && is_osr_compilation())
  98     ||(OptoBreakpointC2R && !_method)
  99 #endif
 100     ) {
 101     // checking for _method means that OptoBreakpoint does not apply to
 102     // runtime stubs or frame converters
 103     _cfg->insert( entry, 1, new MachBreakpointNode() );
 104   }
 105 
 106   // Insert epilogs before every return
 107   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
 108     Block* block = _cfg->get_block(i);
 109     if (!block->is_connector() && block->non_connector_successor(0) == _cfg->get_root_block()) { // Found a program exit point?
 110       Node* m = block->end();
 111       if (m->is_Mach() && m->as_Mach()->ideal_Opcode() != Op_Halt) {
 112         MachEpilogNode* epilog = new MachEpilogNode(m->as_Mach()->ideal_Opcode() == Op_Return);
 113         block->add_inst(epilog);
 114         _cfg->map_node_to_block(epilog, block);
 115       }
 116     }
 117   }
 118 
 119 # ifdef ENABLE_ZAP_DEAD_LOCALS
 120   if (ZapDeadCompiledLocals) {
 121     Insert_zap_nodes();
 122   }
 123 # endif
 124 
 125   uint* blk_starts = NEW_RESOURCE_ARRAY(uint, _cfg->number_of_blocks() + 1);
 126   blk_starts[0] = 0;
 127 
 128   // Initialize code buffer and process short branches.
 129   CodeBuffer* cb = init_buffer(blk_starts);
 130 
 131   if (cb == NULL || failing()) {
 132     return;
 133   }
 134 
 135   ScheduleAndBundle();
 136 
 137 #ifndef PRODUCT
 138   if (trace_opto_output()) {
 139     tty->print("\n---- After ScheduleAndBundle ----\n");
 140     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
 141       tty->print("\nBB#%03d:\n", i);
 142       Block* block = _cfg->get_block(i);
 143       for (uint j = 0; j < block->number_of_nodes(); j++) {
 144         Node* n = block->get_node(j);
 145         OptoReg::Name reg = _regalloc->get_reg_first(n);
 146         tty->print(" %-6s ", reg >= 0 && reg < REG_COUNT ? Matcher::regName[reg] : "");
 147         n->dump();
 148       }
 149     }
 150   }
 151 #endif
 152 
 153   if (failing()) {
 154     return;
 155   }
 156 
 157   BuildOopMaps();
 158 
 159   if (failing())  {
 160     return;
 161   }
 162 
 163   fill_buffer(cb, blk_starts);
 164 }
 165 
 166 bool Compile::need_stack_bang(int frame_size_in_bytes) const {
 167   // Determine if we need to generate a stack overflow check.
 168   // Do it if the method is not a stub function and
 169   // has java calls or has frame size > vm_page_size/8.
 170   // The debug VM checks that deoptimization doesn't trigger an
 171   // unexpected stack overflow (compiled method stack banging should
 172   // guarantee it doesn't happen) so we always need the stack bang in
 173   // a debug VM.
 174   return (UseStackBanging && stub_function() == NULL &&
 175           (has_java_calls() || frame_size_in_bytes > os::vm_page_size()>>3
 176            DEBUG_ONLY(|| true)));
 177 }
 178 
 179 bool Compile::need_register_stack_bang() const {
 180   // Determine if we need to generate a register stack overflow check.
 181   // This is only used on architectures which have split register
 182   // and memory stacks (ie. IA64).
 183   // Bang if the method is not a stub function and has java calls
 184   return (stub_function() == NULL && has_java_calls());
 185 }
 186 
 187 # ifdef ENABLE_ZAP_DEAD_LOCALS
 188 
 189 
 190 // In order to catch compiler oop-map bugs, we have implemented
 191 // a debugging mode called ZapDeadCompilerLocals.
 192 // This mode causes the compiler to insert a call to a runtime routine,
 193 // "zap_dead_locals", right before each place in compiled code
 194 // that could potentially be a gc-point (i.e., a safepoint or oop map point).
 195 // The runtime routine checks that locations mapped as oops are really
 196 // oops, that locations mapped as values do not look like oops,
 197 // and that locations mapped as dead are not used later
 198 // (by zapping them to an invalid address).
 199 
 200 int Compile::_CompiledZap_count = 0;
 201 
 202 void Compile::Insert_zap_nodes() {
 203   bool skip = false;
 204 
 205 
 206   // Dink with static counts because code code without the extra
 207   // runtime calls is MUCH faster for debugging purposes
 208 
 209        if ( CompileZapFirst  ==  0  ) ; // nothing special
 210   else if ( CompileZapFirst  >  CompiledZap_count() )  skip = true;
 211   else if ( CompileZapFirst  == CompiledZap_count() )
 212     warning("starting zap compilation after skipping");
 213 
 214        if ( CompileZapLast  ==  -1  ) ; // nothing special
 215   else if ( CompileZapLast  <   CompiledZap_count() )  skip = true;
 216   else if ( CompileZapLast  ==  CompiledZap_count() )
 217     warning("about to compile last zap");
 218 
 219   ++_CompiledZap_count; // counts skipped zaps, too
 220 
 221   if ( skip )  return;
 222 
 223 
 224   if ( _method == NULL )
 225     return; // no safepoints/oopmaps emitted for calls in stubs,so we don't care
 226 
 227   // Insert call to zap runtime stub before every node with an oop map
 228   for( uint i=0; i<_cfg->number_of_blocks(); i++ ) {
 229     Block *b = _cfg->get_block(i);
 230     for ( uint j = 0;  j < b->number_of_nodes();  ++j ) {
 231       Node *n = b->get_node(j);
 232 
 233       // Determining if we should insert a zap-a-lot node in output.
 234       // We do that for all nodes that has oopmap info, except for calls
 235       // to allocation.  Calls to allocation passes in the old top-of-eden pointer
 236       // and expect the C code to reset it.  Hence, there can be no safepoints between
 237       // the inlined-allocation and the call to new_Java, etc.
 238       // We also cannot zap monitor calls, as they must hold the microlock
 239       // during the call to Zap, which also wants to grab the microlock.
 240       bool insert = n->is_MachSafePoint() && (n->as_MachSafePoint()->oop_map() != NULL);
 241       if ( insert ) { // it is MachSafePoint
 242         if ( !n->is_MachCall() ) {
 243           insert = false;
 244         } else if ( n->is_MachCall() ) {
 245           MachCallNode* call = n->as_MachCall();
 246           if (call->entry_point() == OptoRuntime::new_instance_Java() ||
 247               call->entry_point() == OptoRuntime::new_array_Java() ||
 248               call->entry_point() == OptoRuntime::multianewarray2_Java() ||
 249               call->entry_point() == OptoRuntime::multianewarray3_Java() ||
 250               call->entry_point() == OptoRuntime::multianewarray4_Java() ||
 251               call->entry_point() == OptoRuntime::multianewarray5_Java() ||
 252               call->entry_point() == OptoRuntime::slow_arraycopy_Java() ||
 253               call->entry_point() == OptoRuntime::complete_monitor_locking_Java()
 254               ) {
 255             insert = false;
 256           }
 257         }
 258         if (insert) {
 259           Node *zap = call_zap_node(n->as_MachSafePoint(), i);
 260           b->insert_node(zap, j);
 261           _cfg->map_node_to_block(zap, b);
 262           ++j;
 263         }
 264       }
 265     }
 266   }
 267 }
 268 
 269 
 270 Node* Compile::call_zap_node(MachSafePointNode* node_to_check, int block_no) {
 271   const TypeFunc *tf = OptoRuntime::zap_dead_locals_Type();
 272   CallStaticJavaNode* ideal_node =
 273     new CallStaticJavaNode( tf,
 274          OptoRuntime::zap_dead_locals_stub(_method->flags().is_native()),
 275                        "call zap dead locals stub", 0, TypePtr::BOTTOM);
 276   // We need to copy the OopMap from the site we're zapping at.
 277   // We have to make a copy, because the zap site might not be
 278   // a call site, and zap_dead is a call site.
 279   OopMap* clone = node_to_check->oop_map()->deep_copy();
 280 
 281   // Add the cloned OopMap to the zap node
 282   ideal_node->set_oop_map(clone);
 283   return _matcher->match_sfpt(ideal_node);
 284 }
 285 
 286 bool Compile::is_node_getting_a_safepoint( Node* n) {
 287   // This code duplicates the logic prior to the call of add_safepoint
 288   // below in this file.
 289   if( n->is_MachSafePoint() ) return true;
 290   return false;
 291 }
 292 
 293 # endif // ENABLE_ZAP_DEAD_LOCALS
 294 
 295 // Compute the size of first NumberOfLoopInstrToAlign instructions at the top
 296 // of a loop. When aligning a loop we need to provide enough instructions
 297 // in cpu's fetch buffer to feed decoders. The loop alignment could be
 298 // avoided if we have enough instructions in fetch buffer at the head of a loop.
 299 // By default, the size is set to 999999 by Block's constructor so that
 300 // a loop will be aligned if the size is not reset here.
 301 //
 302 // Note: Mach instructions could contain several HW instructions
 303 // so the size is estimated only.
 304 //
 305 void Compile::compute_loop_first_inst_sizes() {
 306   // The next condition is used to gate the loop alignment optimization.
 307   // Don't aligned a loop if there are enough instructions at the head of a loop
 308   // or alignment padding is larger then MaxLoopPad. By default, MaxLoopPad
 309   // is equal to OptoLoopAlignment-1 except on new Intel cpus, where it is
 310   // equal to 11 bytes which is the largest address NOP instruction.
 311   if (MaxLoopPad < OptoLoopAlignment - 1) {
 312     uint last_block = _cfg->number_of_blocks() - 1;
 313     for (uint i = 1; i <= last_block; i++) {
 314       Block* block = _cfg->get_block(i);
 315       // Check the first loop's block which requires an alignment.
 316       if (block->loop_alignment() > (uint)relocInfo::addr_unit()) {
 317         uint sum_size = 0;
 318         uint inst_cnt = NumberOfLoopInstrToAlign;
 319         inst_cnt = block->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 320 
 321         // Check subsequent fallthrough blocks if the loop's first
 322         // block(s) does not have enough instructions.
 323         Block *nb = block;
 324         while(inst_cnt > 0 &&
 325               i < last_block &&
 326               !_cfg->get_block(i + 1)->has_loop_alignment() &&
 327               !nb->has_successor(block)) {
 328           i++;
 329           nb = _cfg->get_block(i);
 330           inst_cnt  = nb->compute_first_inst_size(sum_size, inst_cnt, _regalloc);
 331         } // while( inst_cnt > 0 && i < last_block  )
 332 
 333         block->set_first_inst_size(sum_size);
 334       } // f( b->head()->is_Loop() )
 335     } // for( i <= last_block )
 336   } // if( MaxLoopPad < OptoLoopAlignment-1 )
 337 }
 338 
 339 // The architecture description provides short branch variants for some long
 340 // branch instructions. Replace eligible long branches with short branches.
 341 void Compile::shorten_branches(uint* blk_starts, int& code_size, int& reloc_size, int& stub_size) {
 342   // Compute size of each block, method size, and relocation information size
 343   uint nblocks  = _cfg->number_of_blocks();
 344 
 345   uint*      jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
 346   uint*      jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
 347   int*       jmp_nidx   = NEW_RESOURCE_ARRAY(int ,nblocks);
 348 
 349   // Collect worst case block paddings
 350   int* block_worst_case_pad = NEW_RESOURCE_ARRAY(int, nblocks);
 351   memset(block_worst_case_pad, 0, nblocks * sizeof(int));
 352 
 353   DEBUG_ONLY( uint *jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks); )
 354   DEBUG_ONLY( uint *jmp_rule = NEW_RESOURCE_ARRAY(uint,nblocks); )
 355 
 356   bool has_short_branch_candidate = false;
 357 
 358   // Initialize the sizes to 0
 359   code_size  = 0;          // Size in bytes of generated code
 360   stub_size  = 0;          // Size in bytes of all stub entries
 361   // Size in bytes of all relocation entries, including those in local stubs.
 362   // Start with 2-bytes of reloc info for the unvalidated entry point
 363   reloc_size = 1;          // Number of relocation entries
 364 
 365   // Make three passes.  The first computes pessimistic blk_starts,
 366   // relative jmp_offset and reloc_size information.  The second performs
 367   // short branch substitution using the pessimistic sizing.  The
 368   // third inserts nops where needed.
 369 
 370   // Step one, perform a pessimistic sizing pass.
 371   uint last_call_adr = max_juint;
 372   uint last_avoid_back_to_back_adr = max_juint;
 373   uint nop_size = (new MachNopNode())->size(_regalloc);
 374   for (uint i = 0; i < nblocks; i++) { // For all blocks
 375     Block* block = _cfg->get_block(i);
 376 
 377     // During short branch replacement, we store the relative (to blk_starts)
 378     // offset of jump in jmp_offset, rather than the absolute offset of jump.
 379     // This is so that we do not need to recompute sizes of all nodes when
 380     // we compute correct blk_starts in our next sizing pass.
 381     jmp_offset[i] = 0;
 382     jmp_size[i]   = 0;
 383     jmp_nidx[i]   = -1;
 384     DEBUG_ONLY( jmp_target[i] = 0; )
 385     DEBUG_ONLY( jmp_rule[i]   = 0; )
 386 
 387     // Sum all instruction sizes to compute block size
 388     uint last_inst = block->number_of_nodes();
 389     uint blk_size = 0;
 390     for (uint j = 0; j < last_inst; j++) {
 391       Node* nj = block->get_node(j);
 392       // Handle machine instruction nodes
 393       if (nj->is_Mach()) {
 394         MachNode *mach = nj->as_Mach();
 395         blk_size += (mach->alignment_required() - 1) * relocInfo::addr_unit(); // assume worst case padding
 396         reloc_size += mach->reloc();
 397         if (mach->is_MachCall()) {
 398           // add size information for trampoline stub
 399           // class CallStubImpl is platform-specific and defined in the *.ad files.
 400           stub_size  += CallStubImpl::size_call_trampoline();
 401           reloc_size += CallStubImpl::reloc_call_trampoline();
 402 
 403           MachCallNode *mcall = mach->as_MachCall();
 404           // This destination address is NOT PC-relative
 405 
 406           mcall->method_set((intptr_t)mcall->entry_point());
 407 
 408           if (mcall->is_MachCallJava() && mcall->as_MachCallJava()->_method) {
 409             stub_size  += CompiledStaticCall::to_interp_stub_size();
 410             reloc_size += CompiledStaticCall::reloc_to_interp_stub();
 411           }
 412         } else if (mach->is_MachSafePoint()) {
 413           // If call/safepoint are adjacent, account for possible
 414           // nop to disambiguate the two safepoints.
 415           // ScheduleAndBundle() can rearrange nodes in a block,
 416           // check for all offsets inside this block.
 417           if (last_call_adr >= blk_starts[i]) {
 418             blk_size += nop_size;
 419           }
 420         }
 421         if (mach->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 422           // Nop is inserted between "avoid back to back" instructions.
 423           // ScheduleAndBundle() can rearrange nodes in a block,
 424           // check for all offsets inside this block.
 425           if (last_avoid_back_to_back_adr >= blk_starts[i]) {
 426             blk_size += nop_size;
 427           }
 428         }
 429         if (mach->may_be_short_branch()) {
 430           if (!nj->is_MachBranch()) {
 431 #ifndef PRODUCT
 432             nj->dump(3);
 433 #endif
 434             Unimplemented();
 435           }
 436           assert(jmp_nidx[i] == -1, "block should have only one branch");
 437           jmp_offset[i] = blk_size;
 438           jmp_size[i]   = nj->size(_regalloc);
 439           jmp_nidx[i]   = j;
 440           has_short_branch_candidate = true;
 441         }
 442       }
 443       blk_size += nj->size(_regalloc);
 444       // Remember end of call offset
 445       if (nj->is_MachCall() && !nj->is_MachCallLeaf()) {
 446         last_call_adr = blk_starts[i]+blk_size;
 447       }
 448       // Remember end of avoid_back_to_back offset
 449       if (nj->is_Mach() && nj->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
 450         last_avoid_back_to_back_adr = blk_starts[i]+blk_size;
 451       }
 452     }
 453 
 454     // When the next block starts a loop, we may insert pad NOP
 455     // instructions.  Since we cannot know our future alignment,
 456     // assume the worst.
 457     if (i < nblocks - 1) {
 458       Block* nb = _cfg->get_block(i + 1);
 459       int max_loop_pad = nb->code_alignment()-relocInfo::addr_unit();
 460       if (max_loop_pad > 0) {
 461         assert(is_power_of_2(max_loop_pad+relocInfo::addr_unit()), "");
 462         // Adjust last_call_adr and/or last_avoid_back_to_back_adr.
 463         // If either is the last instruction in this block, bump by
 464         // max_loop_pad in lock-step with blk_size, so sizing
 465         // calculations in subsequent blocks still can conservatively
 466         // detect that it may the last instruction in this block.
 467         if (last_call_adr == blk_starts[i]+blk_size) {
 468           last_call_adr += max_loop_pad;
 469         }
 470         if (last_avoid_back_to_back_adr == blk_starts[i]+blk_size) {
 471           last_avoid_back_to_back_adr += max_loop_pad;
 472         }
 473         blk_size += max_loop_pad;
 474         block_worst_case_pad[i + 1] = max_loop_pad;
 475       }
 476     }
 477 
 478     // Save block size; update total method size
 479     blk_starts[i+1] = blk_starts[i]+blk_size;
 480   }
 481 
 482   // Step two, replace eligible long jumps.
 483   bool progress = true;
 484   uint last_may_be_short_branch_adr = max_juint;
 485   while (has_short_branch_candidate && progress) {
 486     progress = false;
 487     has_short_branch_candidate = false;
 488     int adjust_block_start = 0;
 489     for (uint i = 0; i < nblocks; i++) {
 490       Block* block = _cfg->get_block(i);
 491       int idx = jmp_nidx[i];
 492       MachNode* mach = (idx == -1) ? NULL: block->get_node(idx)->as_Mach();
 493       if (mach != NULL && mach->may_be_short_branch()) {
 494 #ifdef ASSERT
 495         assert(jmp_size[i] > 0 && mach->is_MachBranch(), "sanity");
 496         int j;
 497         // Find the branch; ignore trailing NOPs.
 498         for (j = block->number_of_nodes()-1; j>=0; j--) {
 499           Node* n = block->get_node(j);
 500           if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con)
 501             break;
 502         }
 503         assert(j >= 0 && j == idx && block->get_node(j) == (Node*)mach, "sanity");
 504 #endif
 505         int br_size = jmp_size[i];
 506         int br_offs = blk_starts[i] + jmp_offset[i];
 507 
 508         // This requires the TRUE branch target be in succs[0]
 509         uint bnum = block->non_connector_successor(0)->_pre_order;
 510         int offset = blk_starts[bnum] - br_offs;
 511         if (bnum > i) { // adjust following block's offset
 512           offset -= adjust_block_start;
 513         }
 514 
 515         // This block can be a loop header, account for the padding
 516         // in the previous block.
 517         int block_padding = block_worst_case_pad[i];
 518         assert(i == 0 || block_padding == 0 || br_offs >= block_padding, "Should have at least a padding on top");
 519         // In the following code a nop could be inserted before
 520         // the branch which will increase the backward distance.
 521         bool needs_padding = ((uint)(br_offs - block_padding) == last_may_be_short_branch_adr);
 522         assert(!needs_padding || jmp_offset[i] == 0, "padding only branches at the beginning of block");
 523 
 524         if (needs_padding && offset <= 0)
 525           offset -= nop_size;
 526 
 527         if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
 528           // We've got a winner.  Replace this branch.
 529           MachNode* replacement = mach->as_MachBranch()->short_branch_version();
 530 
 531           // Update the jmp_size.
 532           int new_size = replacement->size(_regalloc);
 533           int diff     = br_size - new_size;
 534           assert(diff >= (int)nop_size, "short_branch size should be smaller");
 535           // Conservatively take into account padding between
 536           // avoid_back_to_back branches. Previous branch could be
 537           // converted into avoid_back_to_back branch during next
 538           // rounds.
 539           if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
 540             jmp_offset[i] += nop_size;
 541             diff -= nop_size;
 542           }
 543           adjust_block_start += diff;
 544           block->map_node(replacement, idx);
 545           mach->subsume_by(replacement, C);
 546           mach = replacement;
 547           progress = true;
 548 
 549           jmp_size[i] = new_size;
 550           DEBUG_ONLY( jmp_target[i] = bnum; );
 551           DEBUG_ONLY( jmp_rule[i] = mach->rule(); );
 552         } else {
 553           // The jump distance is not short, try again during next iteration.
 554           has_short_branch_candidate = true;
 555         }
 556       } // (mach->may_be_short_branch())
 557       if (mach != NULL && (mach->may_be_short_branch() ||
 558                            mach->avoid_back_to_back(MachNode::AVOID_AFTER))) {
 559         last_may_be_short_branch_adr = blk_starts[i] + jmp_offset[i] + jmp_size[i];
 560       }
 561       blk_starts[i+1] -= adjust_block_start;
 562     }
 563   }
 564 
 565 #ifdef ASSERT
 566   for (uint i = 0; i < nblocks; i++) { // For all blocks
 567     if (jmp_target[i] != 0) {
 568       int br_size = jmp_size[i];
 569       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
 570       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
 571         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
 572       }
 573       assert(_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset), "Displacement too large for short jmp");
 574     }
 575   }
 576 #endif
 577 
 578   // Step 3, compute the offsets of all blocks, will be done in fill_buffer()
 579   // after ScheduleAndBundle().
 580 
 581   // ------------------
 582   // Compute size for code buffer
 583   code_size = blk_starts[nblocks];
 584 
 585   // Relocation records
 586   reloc_size += 1;              // Relo entry for exception handler
 587 
 588   // Adjust reloc_size to number of record of relocation info
 589   // Min is 2 bytes, max is probably 6 or 8, with a tax up to 25% for
 590   // a relocation index.
 591   // The CodeBuffer will expand the locs array if this estimate is too low.
 592   reloc_size *= 10 / sizeof(relocInfo);
 593 }
 594 
 595 //------------------------------FillLocArray-----------------------------------
 596 // Create a bit of debug info and append it to the array.  The mapping is from
 597 // Java local or expression stack to constant, register or stack-slot.  For
 598 // doubles, insert 2 mappings and return 1 (to tell the caller that the next
 599 // entry has been taken care of and caller should skip it).
 600 static LocationValue *new_loc_value( PhaseRegAlloc *ra, OptoReg::Name regnum, Location::Type l_type ) {
 601   // This should never have accepted Bad before
 602   assert(OptoReg::is_valid(regnum), "location must be valid");
 603   return (OptoReg::is_reg(regnum))
 604     ? new LocationValue(Location::new_reg_loc(l_type, OptoReg::as_VMReg(regnum)) )
 605     : new LocationValue(Location::new_stk_loc(l_type,  ra->reg2offset(regnum)));
 606 }
 607 
 608 
 609 ObjectValue*
 610 Compile::sv_for_node_id(GrowableArray<ScopeValue*> *objs, int id) {
 611   for (int i = 0; i < objs->length(); i++) {
 612     assert(objs->at(i)->is_object(), "corrupt object cache");
 613     ObjectValue* sv = (ObjectValue*) objs->at(i);
 614     if (sv->id() == id) {
 615       return sv;
 616     }
 617   }
 618   // Otherwise..
 619   return NULL;
 620 }
 621 
 622 void Compile::set_sv_for_object_node(GrowableArray<ScopeValue*> *objs,
 623                                      ObjectValue* sv ) {
 624   assert(sv_for_node_id(objs, sv->id()) == NULL, "Precondition");
 625   objs->append(sv);
 626 }
 627 
 628 
 629 void Compile::FillLocArray( int idx, MachSafePointNode* sfpt, Node *local,
 630                             GrowableArray<ScopeValue*> *array,
 631                             GrowableArray<ScopeValue*> *objs ) {
 632   assert( local, "use _top instead of null" );
 633   if (array->length() != idx) {
 634     assert(array->length() == idx + 1, "Unexpected array count");
 635     // Old functionality:
 636     //   return
 637     // New functionality:
 638     //   Assert if the local is not top. In product mode let the new node
 639     //   override the old entry.
 640     assert(local == top(), "LocArray collision");
 641     if (local == top()) {
 642       return;
 643     }
 644     array->pop();
 645   }
 646   const Type *t = local->bottom_type();
 647 
 648   // Is it a safepoint scalar object node?
 649   if (local->is_SafePointScalarObject()) {
 650     SafePointScalarObjectNode* spobj = local->as_SafePointScalarObject();
 651 
 652     ObjectValue* sv = Compile::sv_for_node_id(objs, spobj->_idx);
 653     if (sv == NULL) {
 654       ciKlass* cik = t->is_oopptr()->klass();
 655       assert(cik->is_instance_klass() ||
 656              cik->is_array_klass(), "Not supported allocation.");
 657       sv = new ObjectValue(spobj->_idx,
 658                            new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 659       Compile::set_sv_for_object_node(objs, sv);
 660 
 661       uint first_ind = spobj->first_index(sfpt->jvms());
 662       for (uint i = 0; i < spobj->n_fields(); i++) {
 663         Node* fld_node = sfpt->in(first_ind+i);
 664         (void)FillLocArray(sv->field_values()->length(), sfpt, fld_node, sv->field_values(), objs);
 665       }
 666     }
 667     array->append(sv);
 668     return;
 669   }
 670 
 671   // Grab the register number for the local
 672   OptoReg::Name regnum = _regalloc->get_reg_first(local);
 673   if( OptoReg::is_valid(regnum) ) {// Got a register/stack?
 674     // Record the double as two float registers.
 675     // The register mask for such a value always specifies two adjacent
 676     // float registers, with the lower register number even.
 677     // Normally, the allocation of high and low words to these registers
 678     // is irrelevant, because nearly all operations on register pairs
 679     // (e.g., StoreD) treat them as a single unit.
 680     // Here, we assume in addition that the words in these two registers
 681     // stored "naturally" (by operations like StoreD and double stores
 682     // within the interpreter) such that the lower-numbered register
 683     // is written to the lower memory address.  This may seem like
 684     // a machine dependency, but it is not--it is a requirement on
 685     // the author of the <arch>.ad file to ensure that, for every
 686     // even/odd double-register pair to which a double may be allocated,
 687     // the word in the even single-register is stored to the first
 688     // memory word.  (Note that register numbers are completely
 689     // arbitrary, and are not tied to any machine-level encodings.)
 690 #ifdef _LP64
 691     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon ) {
 692       array->append(new ConstantIntValue(0));
 693       array->append(new_loc_value( _regalloc, regnum, Location::dbl ));
 694     } else if ( t->base() == Type::Long ) {
 695       array->append(new ConstantIntValue(0));
 696       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 697     } else if ( t->base() == Type::RawPtr ) {
 698       // jsr/ret return address which must be restored into a the full
 699       // width 64-bit stack slot.
 700       array->append(new_loc_value( _regalloc, regnum, Location::lng ));
 701     }
 702 #else //_LP64
 703 #ifdef SPARC
 704     if (t->base() == Type::Long && OptoReg::is_reg(regnum)) {
 705       // For SPARC we have to swap high and low words for
 706       // long values stored in a single-register (g0-g7).
 707       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 708       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 709     } else
 710 #endif //SPARC
 711     if( t->base() == Type::DoubleBot || t->base() == Type::DoubleCon || t->base() == Type::Long ) {
 712       // Repack the double/long as two jints.
 713       // The convention the interpreter uses is that the second local
 714       // holds the first raw word of the native double representation.
 715       // This is actually reasonable, since locals and stack arrays
 716       // grow downwards in all implementations.
 717       // (If, on some machine, the interpreter's Java locals or stack
 718       // were to grow upwards, the embedded doubles would be word-swapped.)
 719       array->append(new_loc_value( _regalloc, OptoReg::add(regnum,1), Location::normal ));
 720       array->append(new_loc_value( _regalloc,              regnum   , Location::normal ));
 721     }
 722 #endif //_LP64
 723     else if( (t->base() == Type::FloatBot || t->base() == Type::FloatCon) &&
 724                OptoReg::is_reg(regnum) ) {
 725       array->append(new_loc_value( _regalloc, regnum, Matcher::float_in_double()
 726                                    ? Location::float_in_dbl : Location::normal ));
 727     } else if( t->base() == Type::Int && OptoReg::is_reg(regnum) ) {
 728       array->append(new_loc_value( _regalloc, regnum, Matcher::int_in_long
 729                                    ? Location::int_in_long : Location::normal ));
 730     } else if( t->base() == Type::NarrowOop ) {
 731       array->append(new_loc_value( _regalloc, regnum, Location::narrowoop ));
 732     } else {
 733       array->append(new_loc_value( _regalloc, regnum, _regalloc->is_oop(local) ? Location::oop : Location::normal ));
 734     }
 735     return;
 736   }
 737 
 738   // No register.  It must be constant data.
 739   switch (t->base()) {
 740   case Type::Half:              // Second half of a double
 741     ShouldNotReachHere();       // Caller should skip 2nd halves
 742     break;
 743   case Type::AnyPtr:
 744     array->append(new ConstantOopWriteValue(NULL));
 745     break;
 746   case Type::AryPtr:
 747   case Type::InstPtr:          // fall through
 748     array->append(new ConstantOopWriteValue(t->isa_oopptr()->const_oop()->constant_encoding()));
 749     break;
 750   case Type::NarrowOop:
 751     if (t == TypeNarrowOop::NULL_PTR) {
 752       array->append(new ConstantOopWriteValue(NULL));
 753     } else {
 754       array->append(new ConstantOopWriteValue(t->make_ptr()->isa_oopptr()->const_oop()->constant_encoding()));
 755     }
 756     break;
 757   case Type::Int:
 758     array->append(new ConstantIntValue(t->is_int()->get_con()));
 759     break;
 760   case Type::RawPtr:
 761     // A return address (T_ADDRESS).
 762     assert((intptr_t)t->is_ptr()->get_con() < (intptr_t)0x10000, "must be a valid BCI");
 763 #ifdef _LP64
 764     // Must be restored to the full-width 64-bit stack slot.
 765     array->append(new ConstantLongValue(t->is_ptr()->get_con()));
 766 #else
 767     array->append(new ConstantIntValue(t->is_ptr()->get_con()));
 768 #endif
 769     break;
 770   case Type::FloatCon: {
 771     float f = t->is_float_constant()->getf();
 772     array->append(new ConstantIntValue(jint_cast(f)));
 773     break;
 774   }
 775   case Type::DoubleCon: {
 776     jdouble d = t->is_double_constant()->getd();
 777 #ifdef _LP64
 778     array->append(new ConstantIntValue(0));
 779     array->append(new ConstantDoubleValue(d));
 780 #else
 781     // Repack the double as two jints.
 782     // The convention the interpreter uses is that the second local
 783     // holds the first raw word of the native double representation.
 784     // This is actually reasonable, since locals and stack arrays
 785     // grow downwards in all implementations.
 786     // (If, on some machine, the interpreter's Java locals or stack
 787     // were to grow upwards, the embedded doubles would be word-swapped.)
 788     jlong_accessor acc;
 789     acc.long_value = jlong_cast(d);
 790     array->append(new ConstantIntValue(acc.words[1]));
 791     array->append(new ConstantIntValue(acc.words[0]));
 792 #endif
 793     break;
 794   }
 795   case Type::Long: {
 796     jlong d = t->is_long()->get_con();
 797 #ifdef _LP64
 798     array->append(new ConstantIntValue(0));
 799     array->append(new ConstantLongValue(d));
 800 #else
 801     // Repack the long as two jints.
 802     // The convention the interpreter uses is that the second local
 803     // holds the first raw word of the native double representation.
 804     // This is actually reasonable, since locals and stack arrays
 805     // grow downwards in all implementations.
 806     // (If, on some machine, the interpreter's Java locals or stack
 807     // were to grow upwards, the embedded doubles would be word-swapped.)
 808     jlong_accessor acc;
 809     acc.long_value = d;
 810     array->append(new ConstantIntValue(acc.words[1]));
 811     array->append(new ConstantIntValue(acc.words[0]));
 812 #endif
 813     break;
 814   }
 815   case Type::Top:               // Add an illegal value here
 816     array->append(new LocationValue(Location()));
 817     break;
 818   default:
 819     ShouldNotReachHere();
 820     break;
 821   }
 822 }
 823 
 824 // Determine if this node starts a bundle
 825 bool Compile::starts_bundle(const Node *n) const {
 826   return (_node_bundling_limit > n->_idx &&
 827           _node_bundling_base[n->_idx].starts_bundle());
 828 }
 829 
 830 //--------------------------Process_OopMap_Node--------------------------------
 831 void Compile::Process_OopMap_Node(MachNode *mach, int current_offset) {
 832 
 833   // Handle special safepoint nodes for synchronization
 834   MachSafePointNode *sfn   = mach->as_MachSafePoint();
 835   MachCallNode      *mcall;
 836 
 837 #ifdef ENABLE_ZAP_DEAD_LOCALS
 838   assert( is_node_getting_a_safepoint(mach),  "logic does not match; false negative");
 839 #endif
 840 
 841   int safepoint_pc_offset = current_offset;
 842   bool is_method_handle_invoke = false;
 843   bool return_oop = false;
 844 
 845   // Add the safepoint in the DebugInfoRecorder
 846   if( !mach->is_MachCall() ) {
 847     mcall = NULL;
 848     debug_info()->add_safepoint(safepoint_pc_offset, sfn->_oop_map);
 849   } else {
 850     mcall = mach->as_MachCall();
 851 
 852     // Is the call a MethodHandle call?
 853     if (mcall->is_MachCallJava()) {
 854       if (mcall->as_MachCallJava()->_method_handle_invoke) {
 855         assert(has_method_handle_invokes(), "must have been set during call generation");
 856         is_method_handle_invoke = true;
 857       }
 858     }
 859 
 860     // Check if a call returns an object.
 861     if (mcall->returns_pointer()) {
 862       return_oop = true;
 863     }
 864     safepoint_pc_offset += mcall->ret_addr_offset();
 865     debug_info()->add_safepoint(safepoint_pc_offset, mcall->_oop_map);
 866   }
 867 
 868   // Loop over the JVMState list to add scope information
 869   // Do not skip safepoints with a NULL method, they need monitor info
 870   JVMState* youngest_jvms = sfn->jvms();
 871   int max_depth = youngest_jvms->depth();
 872 
 873   // Allocate the object pool for scalar-replaced objects -- the map from
 874   // small-integer keys (which can be recorded in the local and ostack
 875   // arrays) to descriptions of the object state.
 876   GrowableArray<ScopeValue*> *objs = new GrowableArray<ScopeValue*>();
 877 
 878   // Visit scopes from oldest to youngest.
 879   for (int depth = 1; depth <= max_depth; depth++) {
 880     JVMState* jvms = youngest_jvms->of_depth(depth);
 881     int idx;
 882     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
 883     // Safepoints that do not have method() set only provide oop-map and monitor info
 884     // to support GC; these do not support deoptimization.
 885     int num_locs = (method == NULL) ? 0 : jvms->loc_size();
 886     int num_exps = (method == NULL) ? 0 : jvms->stk_size();
 887     int num_mon  = jvms->nof_monitors();
 888     assert(method == NULL || jvms->bci() < 0 || num_locs == method->max_locals(),
 889            "JVMS local count must match that of the method");
 890 
 891     // Add Local and Expression Stack Information
 892 
 893     // Insert locals into the locarray
 894     GrowableArray<ScopeValue*> *locarray = new GrowableArray<ScopeValue*>(num_locs);
 895     for( idx = 0; idx < num_locs; idx++ ) {
 896       FillLocArray( idx, sfn, sfn->local(jvms, idx), locarray, objs );
 897     }
 898 
 899     // Insert expression stack entries into the exparray
 900     GrowableArray<ScopeValue*> *exparray = new GrowableArray<ScopeValue*>(num_exps);
 901     for( idx = 0; idx < num_exps; idx++ ) {
 902       FillLocArray( idx,  sfn, sfn->stack(jvms, idx), exparray, objs );
 903     }
 904 
 905     // Add in mappings of the monitors
 906     assert( !method ||
 907             !method->is_synchronized() ||
 908             method->is_native() ||
 909             num_mon > 0 ||
 910             !GenerateSynchronizationCode,
 911             "monitors must always exist for synchronized methods");
 912 
 913     // Build the growable array of ScopeValues for exp stack
 914     GrowableArray<MonitorValue*> *monarray = new GrowableArray<MonitorValue*>(num_mon);
 915 
 916     // Loop over monitors and insert into array
 917     for (idx = 0; idx < num_mon; idx++) {
 918       // Grab the node that defines this monitor
 919       Node* box_node = sfn->monitor_box(jvms, idx);
 920       Node* obj_node = sfn->monitor_obj(jvms, idx);
 921 
 922       // Create ScopeValue for object
 923       ScopeValue *scval = NULL;
 924 
 925       if (obj_node->is_SafePointScalarObject()) {
 926         SafePointScalarObjectNode* spobj = obj_node->as_SafePointScalarObject();
 927         scval = Compile::sv_for_node_id(objs, spobj->_idx);
 928         if (scval == NULL) {
 929           const Type *t = spobj->bottom_type();
 930           ciKlass* cik = t->is_oopptr()->klass();
 931           assert(cik->is_instance_klass() ||
 932                  cik->is_array_klass(), "Not supported allocation.");
 933           ObjectValue* sv = new ObjectValue(spobj->_idx,
 934                                             new ConstantOopWriteValue(cik->java_mirror()->constant_encoding()));
 935           Compile::set_sv_for_object_node(objs, sv);
 936 
 937           uint first_ind = spobj->first_index(youngest_jvms);
 938           for (uint i = 0; i < spobj->n_fields(); i++) {
 939             Node* fld_node = sfn->in(first_ind+i);
 940             (void)FillLocArray(sv->field_values()->length(), sfn, fld_node, sv->field_values(), objs);
 941           }
 942           scval = sv;
 943         }
 944       } else if (!obj_node->is_Con()) {
 945         OptoReg::Name obj_reg = _regalloc->get_reg_first(obj_node);
 946         if( obj_node->bottom_type()->base() == Type::NarrowOop ) {
 947           scval = new_loc_value( _regalloc, obj_reg, Location::narrowoop );
 948         } else {
 949           scval = new_loc_value( _regalloc, obj_reg, Location::oop );
 950         }
 951       } else {
 952         const TypePtr *tp = obj_node->get_ptr_type();
 953         scval = new ConstantOopWriteValue(tp->is_oopptr()->const_oop()->constant_encoding());
 954       }
 955 
 956       OptoReg::Name box_reg = BoxLockNode::reg(box_node);
 957       Location basic_lock = Location::new_stk_loc(Location::normal,_regalloc->reg2offset(box_reg));
 958       bool eliminated = (box_node->is_BoxLock() && box_node->as_BoxLock()->is_eliminated());
 959       monarray->append(new MonitorValue(scval, basic_lock, eliminated));
 960     }
 961 
 962     // We dump the object pool first, since deoptimization reads it in first.
 963     debug_info()->dump_object_pool(objs);
 964 
 965     // Build first class objects to pass to scope
 966     DebugToken *locvals = debug_info()->create_scope_values(locarray);
 967     DebugToken *expvals = debug_info()->create_scope_values(exparray);
 968     DebugToken *monvals = debug_info()->create_monitor_values(monarray);
 969 
 970     // Make method available for all Safepoints
 971     ciMethod* scope_method = method ? method : _method;
 972     // Describe the scope here
 973     assert(jvms->bci() >= InvocationEntryBci && jvms->bci() <= 0x10000, "must be a valid or entry BCI");
 974     assert(!jvms->should_reexecute() || depth == max_depth, "reexecute allowed only for the youngest");
 975     // Now we can describe the scope.
 976     debug_info()->describe_scope(safepoint_pc_offset, scope_method, jvms->bci(), jvms->should_reexecute(), is_method_handle_invoke, return_oop, locvals, expvals, monvals);
 977   } // End jvms loop
 978 
 979   // Mark the end of the scope set.
 980   debug_info()->end_safepoint(safepoint_pc_offset);
 981 }
 982 
 983 
 984 
 985 // A simplified version of Process_OopMap_Node, to handle non-safepoints.
 986 class NonSafepointEmitter {
 987   Compile*  C;
 988   JVMState* _pending_jvms;
 989   int       _pending_offset;
 990 
 991   void emit_non_safepoint();
 992 
 993  public:
 994   NonSafepointEmitter(Compile* compile) {
 995     this->C = compile;
 996     _pending_jvms = NULL;
 997     _pending_offset = 0;
 998   }
 999 
1000   void observe_instruction(Node* n, int pc_offset) {
1001     if (!C->debug_info()->recording_non_safepoints())  return;
1002 
1003     Node_Notes* nn = C->node_notes_at(n->_idx);
1004     if (nn == NULL || nn->jvms() == NULL)  return;
1005     if (_pending_jvms != NULL &&
1006         _pending_jvms->same_calls_as(nn->jvms())) {
1007       // Repeated JVMS?  Stretch it up here.
1008       _pending_offset = pc_offset;
1009     } else {
1010       if (_pending_jvms != NULL &&
1011           _pending_offset < pc_offset) {
1012         emit_non_safepoint();
1013       }
1014       _pending_jvms = NULL;
1015       if (pc_offset > C->debug_info()->last_pc_offset()) {
1016         // This is the only way _pending_jvms can become non-NULL:
1017         _pending_jvms = nn->jvms();
1018         _pending_offset = pc_offset;
1019       }
1020     }
1021   }
1022 
1023   // Stay out of the way of real safepoints:
1024   void observe_safepoint(JVMState* jvms, int pc_offset) {
1025     if (_pending_jvms != NULL &&
1026         !_pending_jvms->same_calls_as(jvms) &&
1027         _pending_offset < pc_offset) {
1028       emit_non_safepoint();
1029     }
1030     _pending_jvms = NULL;
1031   }
1032 
1033   void flush_at_end() {
1034     if (_pending_jvms != NULL) {
1035       emit_non_safepoint();
1036     }
1037     _pending_jvms = NULL;
1038   }
1039 };
1040 
1041 void NonSafepointEmitter::emit_non_safepoint() {
1042   JVMState* youngest_jvms = _pending_jvms;
1043   int       pc_offset     = _pending_offset;
1044 
1045   // Clear it now:
1046   _pending_jvms = NULL;
1047 
1048   DebugInformationRecorder* debug_info = C->debug_info();
1049   assert(debug_info->recording_non_safepoints(), "sanity");
1050 
1051   debug_info->add_non_safepoint(pc_offset);
1052   int max_depth = youngest_jvms->depth();
1053 
1054   // Visit scopes from oldest to youngest.
1055   for (int depth = 1; depth <= max_depth; depth++) {
1056     JVMState* jvms = youngest_jvms->of_depth(depth);
1057     ciMethod* method = jvms->has_method() ? jvms->method() : NULL;
1058     assert(!jvms->should_reexecute() || depth==max_depth, "reexecute allowed only for the youngest");
1059     debug_info->describe_scope(pc_offset, method, jvms->bci(), jvms->should_reexecute());
1060   }
1061 
1062   // Mark the end of the scope set.
1063   debug_info->end_non_safepoint(pc_offset);
1064 }
1065 
1066 //------------------------------init_buffer------------------------------------
1067 CodeBuffer* Compile::init_buffer(uint* blk_starts) {
1068 
1069   // Set the initially allocated size
1070   int  code_req   = initial_code_capacity;
1071   int  locs_req   = initial_locs_capacity;
1072   int  stub_req   = TraceJumps ? initial_stub_capacity * 10 : initial_stub_capacity;
1073   int  const_req  = initial_const_capacity;
1074 
1075   int  pad_req    = NativeCall::instruction_size;
1076   // The extra spacing after the code is necessary on some platforms.
1077   // Sometimes we need to patch in a jump after the last instruction,
1078   // if the nmethod has been deoptimized.  (See 4932387, 4894843.)
1079 
1080   // Compute the byte offset where we can store the deopt pc.
1081   if (fixed_slots() != 0) {
1082     _orig_pc_slot_offset_in_bytes = _regalloc->reg2offset(OptoReg::stack2reg(_orig_pc_slot));
1083   }
1084 
1085   // Compute prolog code size
1086   _method_size = 0;
1087   _frame_slots = OptoReg::reg2stack(_matcher->_old_SP)+_regalloc->_framesize;
1088 #if defined(IA64) && !defined(AIX)
1089   if (save_argument_registers()) {
1090     // 4815101: this is a stub with implicit and unknown precision fp args.
1091     // The usual spill mechanism can only generate stfd's in this case, which
1092     // doesn't work if the fp reg to spill contains a single-precision denorm.
1093     // Instead, we hack around the normal spill mechanism using stfspill's and
1094     // ldffill's in the MachProlog and MachEpilog emit methods.  We allocate
1095     // space here for the fp arg regs (f8-f15) we're going to thusly spill.
1096     //
1097     // If we ever implement 16-byte 'registers' == stack slots, we can
1098     // get rid of this hack and have SpillCopy generate stfspill/ldffill
1099     // instead of stfd/stfs/ldfd/ldfs.
1100     _frame_slots += 8*(16/BytesPerInt);
1101   }
1102 #endif
1103   assert(_frame_slots >= 0 && _frame_slots < 1000000, "sanity check");
1104 
1105   if (has_mach_constant_base_node()) {
1106     uint add_size = 0;
1107     // Fill the constant table.
1108     // Note:  This must happen before shorten_branches.
1109     for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1110       Block* b = _cfg->get_block(i);
1111 
1112       for (uint j = 0; j < b->number_of_nodes(); j++) {
1113         Node* n = b->get_node(j);
1114 
1115         // If the node is a MachConstantNode evaluate the constant
1116         // value section.
1117         if (n->is_MachConstant()) {
1118           MachConstantNode* machcon = n->as_MachConstant();
1119           machcon->eval_constant(C);
1120         } else if (n->is_Mach()) {
1121           // On Power there are more nodes that issue constants.
1122           add_size += (n->as_Mach()->ins_num_consts() * 8);
1123         }
1124       }
1125     }
1126 
1127     // Calculate the offsets of the constants and the size of the
1128     // constant table (including the padding to the next section).
1129     constant_table().calculate_offsets_and_size();
1130     const_req = constant_table().size() + add_size;
1131   }
1132 
1133   // Initialize the space for the BufferBlob used to find and verify
1134   // instruction size in MachNode::emit_size()
1135   init_scratch_buffer_blob(const_req);
1136   if (failing())  return NULL; // Out of memory
1137 
1138   // Pre-compute the length of blocks and replace
1139   // long branches with short if machine supports it.
1140   shorten_branches(blk_starts, code_req, locs_req, stub_req);
1141 
1142   // nmethod and CodeBuffer count stubs & constants as part of method's code.
1143   // class HandlerImpl is platform-specific and defined in the *.ad files.
1144   int exception_handler_req = HandlerImpl::size_exception_handler() + MAX_stubs_size; // add marginal slop for handler
1145   int deopt_handler_req     = HandlerImpl::size_deopt_handler()     + MAX_stubs_size; // add marginal slop for handler
1146   stub_req += MAX_stubs_size;   // ensure per-stub margin
1147   code_req += MAX_inst_size;    // ensure per-instruction margin
1148 
1149   if (StressCodeBuffers)
1150     code_req = const_req = stub_req = exception_handler_req = deopt_handler_req = 0x10;  // force expansion
1151 
1152   int total_req =
1153     const_req +
1154     code_req +
1155     pad_req +
1156     stub_req +
1157     exception_handler_req +
1158     deopt_handler_req;               // deopt handler
1159 
1160   if (has_method_handle_invokes())
1161     total_req += deopt_handler_req;  // deopt MH handler
1162 
1163   CodeBuffer* cb = code_buffer();
1164   cb->initialize(total_req, locs_req);
1165 
1166   // Have we run out of code space?
1167   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1168     C->record_failure("CodeCache is full");
1169     CompileBroker::handle_full_code_cache(CodeBlobType::NonNMethod);
1170     return NULL;
1171   }
1172   // Configure the code buffer.
1173   cb->initialize_consts_size(const_req);
1174   cb->initialize_stubs_size(stub_req);
1175   cb->initialize_oop_recorder(env()->oop_recorder());
1176 
1177   // fill in the nop array for bundling computations
1178   MachNode *_nop_list[Bundle::_nop_count];
1179   Bundle::initialize_nops(_nop_list);
1180 
1181   return cb;
1182 }
1183 
1184 //------------------------------fill_buffer------------------------------------
1185 void Compile::fill_buffer(CodeBuffer* cb, uint* blk_starts) {
1186   // blk_starts[] contains offsets calculated during short branches processing,
1187   // offsets should not be increased during following steps.
1188 
1189   // Compute the size of first NumberOfLoopInstrToAlign instructions at head
1190   // of a loop. It is used to determine the padding for loop alignment.
1191   compute_loop_first_inst_sizes();
1192 
1193   // Create oopmap set.
1194   _oop_map_set = new OopMapSet();
1195 
1196   // !!!!! This preserves old handling of oopmaps for now
1197   debug_info()->set_oopmaps(_oop_map_set);
1198 
1199   uint nblocks  = _cfg->number_of_blocks();
1200   // Count and start of implicit null check instructions
1201   uint inct_cnt = 0;
1202   uint *inct_starts = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1203 
1204   // Count and start of calls
1205   uint *call_returns = NEW_RESOURCE_ARRAY(uint, nblocks+1);
1206 
1207   uint  return_offset = 0;
1208   int nop_size = (new MachNopNode())->size(_regalloc);
1209 
1210   int previous_offset = 0;
1211   int current_offset  = 0;
1212   int last_call_offset = -1;
1213   int last_avoid_back_to_back_offset = -1;
1214 #ifdef ASSERT
1215   uint* jmp_target = NEW_RESOURCE_ARRAY(uint,nblocks);
1216   uint* jmp_offset = NEW_RESOURCE_ARRAY(uint,nblocks);
1217   uint* jmp_size   = NEW_RESOURCE_ARRAY(uint,nblocks);
1218   uint* jmp_rule   = NEW_RESOURCE_ARRAY(uint,nblocks);
1219 #endif
1220 
1221   // Create an array of unused labels, one for each basic block, if printing is enabled
1222 #ifndef PRODUCT
1223   int *node_offsets      = NULL;
1224   uint node_offset_limit = unique();
1225 
1226   if (print_assembly())
1227     node_offsets         = NEW_RESOURCE_ARRAY(int, node_offset_limit);
1228 #endif
1229 
1230   NonSafepointEmitter non_safepoints(this);  // emit non-safepoints lazily
1231 
1232   // Emit the constant table.
1233   if (has_mach_constant_base_node()) {
1234     constant_table().emit(*cb);
1235   }
1236 
1237   // Create an array of labels, one for each basic block
1238   Label *blk_labels = NEW_RESOURCE_ARRAY(Label, nblocks+1);
1239   for (uint i=0; i <= nblocks; i++) {
1240     blk_labels[i].init();
1241   }
1242 
1243   // ------------------
1244   // Now fill in the code buffer
1245   Node *delay_slot = NULL;
1246 
1247   for (uint i = 0; i < nblocks; i++) {
1248     Block* block = _cfg->get_block(i);
1249     Node* head = block->head();
1250 
1251     // If this block needs to start aligned (i.e, can be reached other
1252     // than by falling-thru from the previous block), then force the
1253     // start of a new bundle.
1254     if (Pipeline::requires_bundling() && starts_bundle(head)) {
1255       cb->flush_bundle(true);
1256     }
1257 
1258 #ifdef ASSERT
1259     if (!block->is_connector()) {
1260       stringStream st;
1261       block->dump_head(_cfg, &st);
1262       MacroAssembler(cb).block_comment(st.as_string());
1263     }
1264     jmp_target[i] = 0;
1265     jmp_offset[i] = 0;
1266     jmp_size[i]   = 0;
1267     jmp_rule[i]   = 0;
1268 #endif
1269     int blk_offset = current_offset;
1270 
1271     // Define the label at the beginning of the basic block
1272     MacroAssembler(cb).bind(blk_labels[block->_pre_order]);
1273 
1274     uint last_inst = block->number_of_nodes();
1275 
1276     // Emit block normally, except for last instruction.
1277     // Emit means "dump code bits into code buffer".
1278     for (uint j = 0; j<last_inst; j++) {
1279 
1280       // Get the node
1281       Node* n = block->get_node(j);
1282 
1283       // See if delay slots are supported
1284       if (valid_bundle_info(n) &&
1285           node_bundling(n)->used_in_unconditional_delay()) {
1286         assert(delay_slot == NULL, "no use of delay slot node");
1287         assert(n->size(_regalloc) == Pipeline::instr_unit_size(), "delay slot instruction wrong size");
1288 
1289         delay_slot = n;
1290         continue;
1291       }
1292 
1293       // If this starts a new instruction group, then flush the current one
1294       // (but allow split bundles)
1295       if (Pipeline::requires_bundling() && starts_bundle(n))
1296         cb->flush_bundle(false);
1297 
1298       // The following logic is duplicated in the code ifdeffed for
1299       // ENABLE_ZAP_DEAD_LOCALS which appears above in this file.  It
1300       // should be factored out.  Or maybe dispersed to the nodes?
1301 
1302       // Special handling for SafePoint/Call Nodes
1303       bool is_mcall = false;
1304       if (n->is_Mach()) {
1305         MachNode *mach = n->as_Mach();
1306         is_mcall = n->is_MachCall();
1307         bool is_sfn = n->is_MachSafePoint();
1308 
1309         // If this requires all previous instructions be flushed, then do so
1310         if (is_sfn || is_mcall || mach->alignment_required() != 1) {
1311           cb->flush_bundle(true);
1312           current_offset = cb->insts_size();
1313         }
1314 
1315         // A padding may be needed again since a previous instruction
1316         // could be moved to delay slot.
1317 
1318         // align the instruction if necessary
1319         int padding = mach->compute_padding(current_offset);
1320         // Make sure safepoint node for polling is distinct from a call's
1321         // return by adding a nop if needed.
1322         if (is_sfn && !is_mcall && padding == 0 && current_offset == last_call_offset) {
1323           padding = nop_size;
1324         }
1325         if (padding == 0 && mach->avoid_back_to_back(MachNode::AVOID_BEFORE) &&
1326             current_offset == last_avoid_back_to_back_offset) {
1327           // Avoid back to back some instructions.
1328           padding = nop_size;
1329         }
1330 
1331         if(padding > 0) {
1332           assert((padding % nop_size) == 0, "padding is not a multiple of NOP size");
1333           int nops_cnt = padding / nop_size;
1334           MachNode *nop = new MachNopNode(nops_cnt);
1335           block->insert_node(nop, j++);
1336           last_inst++;
1337           _cfg->map_node_to_block(nop, block);
1338           nop->emit(*cb, _regalloc);
1339           cb->flush_bundle(true);
1340           current_offset = cb->insts_size();
1341         }
1342 
1343         // Remember the start of the last call in a basic block
1344         if (is_mcall) {
1345           MachCallNode *mcall = mach->as_MachCall();
1346 
1347           // This destination address is NOT PC-relative
1348           mcall->method_set((intptr_t)mcall->entry_point());
1349 
1350           // Save the return address
1351           call_returns[block->_pre_order] = current_offset + mcall->ret_addr_offset();
1352 
1353           if (mcall->is_MachCallLeaf()) {
1354             is_mcall = false;
1355             is_sfn = false;
1356           }
1357         }
1358 
1359         // sfn will be valid whenever mcall is valid now because of inheritance
1360         if (is_sfn || is_mcall) {
1361 
1362           // Handle special safepoint nodes for synchronization
1363           if (!is_mcall) {
1364             MachSafePointNode *sfn = mach->as_MachSafePoint();
1365             // !!!!! Stubs only need an oopmap right now, so bail out
1366             if (sfn->jvms()->method() == NULL) {
1367               // Write the oopmap directly to the code blob??!!
1368 #             ifdef ENABLE_ZAP_DEAD_LOCALS
1369               assert( !is_node_getting_a_safepoint(sfn),  "logic does not match; false positive");
1370 #             endif
1371               continue;
1372             }
1373           } // End synchronization
1374 
1375           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1376                                            current_offset);
1377           Process_OopMap_Node(mach, current_offset);
1378         } // End if safepoint
1379 
1380         // If this is a null check, then add the start of the previous instruction to the list
1381         else if( mach->is_MachNullCheck() ) {
1382           inct_starts[inct_cnt++] = previous_offset;
1383         }
1384 
1385         // If this is a branch, then fill in the label with the target BB's label
1386         else if (mach->is_MachBranch()) {
1387           // This requires the TRUE branch target be in succs[0]
1388           uint block_num = block->non_connector_successor(0)->_pre_order;
1389 
1390           // Try to replace long branch if delay slot is not used,
1391           // it is mostly for back branches since forward branch's
1392           // distance is not updated yet.
1393           bool delay_slot_is_used = valid_bundle_info(n) &&
1394                                     node_bundling(n)->use_unconditional_delay();
1395           if (!delay_slot_is_used && mach->may_be_short_branch()) {
1396            assert(delay_slot == NULL, "not expecting delay slot node");
1397            int br_size = n->size(_regalloc);
1398             int offset = blk_starts[block_num] - current_offset;
1399             if (block_num >= i) {
1400               // Current and following block's offset are not
1401               // finalized yet, adjust distance by the difference
1402               // between calculated and final offsets of current block.
1403               offset -= (blk_starts[i] - blk_offset);
1404             }
1405             // In the following code a nop could be inserted before
1406             // the branch which will increase the backward distance.
1407             bool needs_padding = (current_offset == last_avoid_back_to_back_offset);
1408             if (needs_padding && offset <= 0)
1409               offset -= nop_size;
1410 
1411             if (_matcher->is_short_branch_offset(mach->rule(), br_size, offset)) {
1412               // We've got a winner.  Replace this branch.
1413               MachNode* replacement = mach->as_MachBranch()->short_branch_version();
1414 
1415               // Update the jmp_size.
1416               int new_size = replacement->size(_regalloc);
1417               assert((br_size - new_size) >= (int)nop_size, "short_branch size should be smaller");
1418               // Insert padding between avoid_back_to_back branches.
1419               if (needs_padding && replacement->avoid_back_to_back(MachNode::AVOID_BEFORE)) {
1420                 MachNode *nop = new MachNopNode();
1421                 block->insert_node(nop, j++);
1422                 _cfg->map_node_to_block(nop, block);
1423                 last_inst++;
1424                 nop->emit(*cb, _regalloc);
1425                 cb->flush_bundle(true);
1426                 current_offset = cb->insts_size();
1427               }
1428 #ifdef ASSERT
1429               jmp_target[i] = block_num;
1430               jmp_offset[i] = current_offset - blk_offset;
1431               jmp_size[i]   = new_size;
1432               jmp_rule[i]   = mach->rule();
1433 #endif
1434               block->map_node(replacement, j);
1435               mach->subsume_by(replacement, C);
1436               n    = replacement;
1437               mach = replacement;
1438             }
1439           }
1440           mach->as_MachBranch()->label_set( &blk_labels[block_num], block_num );
1441         } else if (mach->ideal_Opcode() == Op_Jump) {
1442           for (uint h = 0; h < block->_num_succs; h++) {
1443             Block* succs_block = block->_succs[h];
1444             for (uint j = 1; j < succs_block->num_preds(); j++) {
1445               Node* jpn = succs_block->pred(j);
1446               if (jpn->is_JumpProj() && jpn->in(0) == mach) {
1447                 uint block_num = succs_block->non_connector()->_pre_order;
1448                 Label *blkLabel = &blk_labels[block_num];
1449                 mach->add_case_label(jpn->as_JumpProj()->proj_no(), blkLabel);
1450               }
1451             }
1452           }
1453         }
1454 #ifdef ASSERT
1455         // Check that oop-store precedes the card-mark
1456         else if (mach->ideal_Opcode() == Op_StoreCM) {
1457           uint storeCM_idx = j;
1458           int count = 0;
1459           for (uint prec = mach->req(); prec < mach->len(); prec++) {
1460             Node *oop_store = mach->in(prec);  // Precedence edge
1461             if (oop_store == NULL) continue;
1462             count++;
1463             uint i4;
1464             for (i4 = 0; i4 < last_inst; ++i4) {
1465               if (block->get_node(i4) == oop_store) {
1466                 break;
1467               }
1468             }
1469             // Note: This test can provide a false failure if other precedence
1470             // edges have been added to the storeCMNode.
1471             assert(i4 == last_inst || i4 < storeCM_idx, "CM card-mark executes before oop-store");
1472           }
1473           assert(count > 0, "storeCM expects at least one precedence edge");
1474         }
1475 #endif
1476         else if (!n->is_Proj()) {
1477           // Remember the beginning of the previous instruction, in case
1478           // it's followed by a flag-kill and a null-check.  Happens on
1479           // Intel all the time, with add-to-memory kind of opcodes.
1480           previous_offset = current_offset;
1481         }
1482 
1483         // Not an else-if!
1484         // If this is a trap based cmp then add its offset to the list.
1485         if (mach->is_TrapBasedCheckNode()) {
1486           inct_starts[inct_cnt++] = current_offset;
1487         }
1488       }
1489 
1490       // Verify that there is sufficient space remaining
1491       cb->insts()->maybe_expand_to_ensure_remaining(MAX_inst_size);
1492       if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1493         C->record_failure("CodeCache is full");
1494         CompileBroker::handle_full_code_cache(CodeBlobType::NonNMethod);
1495         return;
1496       }
1497 
1498       // Save the offset for the listing
1499 #ifndef PRODUCT
1500       if (node_offsets && n->_idx < node_offset_limit)
1501         node_offsets[n->_idx] = cb->insts_size();
1502 #endif
1503 
1504       // "Normal" instruction case
1505       DEBUG_ONLY( uint instr_offset = cb->insts_size(); )
1506       n->emit(*cb, _regalloc);
1507       current_offset  = cb->insts_size();
1508 
1509 #ifdef ASSERT
1510       if (n->size(_regalloc) < (current_offset-instr_offset)) {
1511         n->dump();
1512         assert(false, "wrong size of mach node");
1513       }
1514 #endif
1515       non_safepoints.observe_instruction(n, current_offset);
1516 
1517       // mcall is last "call" that can be a safepoint
1518       // record it so we can see if a poll will directly follow it
1519       // in which case we'll need a pad to make the PcDesc sites unique
1520       // see  5010568. This can be slightly inaccurate but conservative
1521       // in the case that return address is not actually at current_offset.
1522       // This is a small price to pay.
1523 
1524       if (is_mcall) {
1525         last_call_offset = current_offset;
1526       }
1527 
1528       if (n->is_Mach() && n->as_Mach()->avoid_back_to_back(MachNode::AVOID_AFTER)) {
1529         // Avoid back to back some instructions.
1530         last_avoid_back_to_back_offset = current_offset;
1531       }
1532 
1533       // See if this instruction has a delay slot
1534       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
1535         assert(delay_slot != NULL, "expecting delay slot node");
1536 
1537         // Back up 1 instruction
1538         cb->set_insts_end(cb->insts_end() - Pipeline::instr_unit_size());
1539 
1540         // Save the offset for the listing
1541 #ifndef PRODUCT
1542         if (node_offsets && delay_slot->_idx < node_offset_limit)
1543           node_offsets[delay_slot->_idx] = cb->insts_size();
1544 #endif
1545 
1546         // Support a SafePoint in the delay slot
1547         if (delay_slot->is_MachSafePoint()) {
1548           MachNode *mach = delay_slot->as_Mach();
1549           // !!!!! Stubs only need an oopmap right now, so bail out
1550           if (!mach->is_MachCall() && mach->as_MachSafePoint()->jvms()->method() == NULL) {
1551             // Write the oopmap directly to the code blob??!!
1552 #           ifdef ENABLE_ZAP_DEAD_LOCALS
1553             assert( !is_node_getting_a_safepoint(mach),  "logic does not match; false positive");
1554 #           endif
1555             delay_slot = NULL;
1556             continue;
1557           }
1558 
1559           int adjusted_offset = current_offset - Pipeline::instr_unit_size();
1560           non_safepoints.observe_safepoint(mach->as_MachSafePoint()->jvms(),
1561                                            adjusted_offset);
1562           // Generate an OopMap entry
1563           Process_OopMap_Node(mach, adjusted_offset);
1564         }
1565 
1566         // Insert the delay slot instruction
1567         delay_slot->emit(*cb, _regalloc);
1568 
1569         // Don't reuse it
1570         delay_slot = NULL;
1571       }
1572 
1573     } // End for all instructions in block
1574 
1575     // If the next block is the top of a loop, pad this block out to align
1576     // the loop top a little. Helps prevent pipe stalls at loop back branches.
1577     if (i < nblocks-1) {
1578       Block *nb = _cfg->get_block(i + 1);
1579       int padding = nb->alignment_padding(current_offset);
1580       if( padding > 0 ) {
1581         MachNode *nop = new MachNopNode(padding / nop_size);
1582         block->insert_node(nop, block->number_of_nodes());
1583         _cfg->map_node_to_block(nop, block);
1584         nop->emit(*cb, _regalloc);
1585         current_offset = cb->insts_size();
1586       }
1587     }
1588     // Verify that the distance for generated before forward
1589     // short branches is still valid.
1590     guarantee((int)(blk_starts[i+1] - blk_starts[i]) >= (current_offset - blk_offset), "shouldn't increase block size");
1591 
1592     // Save new block start offset
1593     blk_starts[i] = blk_offset;
1594   } // End of for all blocks
1595   blk_starts[nblocks] = current_offset;
1596 
1597   non_safepoints.flush_at_end();
1598 
1599   // Offset too large?
1600   if (failing())  return;
1601 
1602   // Define a pseudo-label at the end of the code
1603   MacroAssembler(cb).bind( blk_labels[nblocks] );
1604 
1605   // Compute the size of the first block
1606   _first_block_size = blk_labels[1].loc_pos() - blk_labels[0].loc_pos();
1607 
1608   assert(cb->insts_size() < 500000, "method is unreasonably large");
1609 
1610 #ifdef ASSERT
1611   for (uint i = 0; i < nblocks; i++) { // For all blocks
1612     if (jmp_target[i] != 0) {
1613       int br_size = jmp_size[i];
1614       int offset = blk_starts[jmp_target[i]]-(blk_starts[i] + jmp_offset[i]);
1615       if (!_matcher->is_short_branch_offset(jmp_rule[i], br_size, offset)) {
1616         tty->print_cr("target (%d) - jmp_offset(%d) = offset (%d), jump_size(%d), jmp_block B%d, target_block B%d", blk_starts[jmp_target[i]], blk_starts[i] + jmp_offset[i], offset, br_size, i, jmp_target[i]);
1617         assert(false, "Displacement too large for short jmp");
1618       }
1619     }
1620   }
1621 #endif
1622 
1623 #ifndef PRODUCT
1624   // Information on the size of the method, without the extraneous code
1625   Scheduling::increment_method_size(cb->insts_size());
1626 #endif
1627 
1628   // ------------------
1629   // Fill in exception table entries.
1630   FillExceptionTables(inct_cnt, call_returns, inct_starts, blk_labels);
1631 
1632   // Only java methods have exception handlers and deopt handlers
1633   // class HandlerImpl is platform-specific and defined in the *.ad files.
1634   if (_method) {
1635     // Emit the exception handler code.
1636     _code_offsets.set_value(CodeOffsets::Exceptions, HandlerImpl::emit_exception_handler(*cb));
1637     // Emit the deopt handler code.
1638     _code_offsets.set_value(CodeOffsets::Deopt, HandlerImpl::emit_deopt_handler(*cb));
1639 
1640     // Emit the MethodHandle deopt handler code (if required).
1641     if (has_method_handle_invokes()) {
1642       // We can use the same code as for the normal deopt handler, we
1643       // just need a different entry point address.
1644       _code_offsets.set_value(CodeOffsets::DeoptMH, HandlerImpl::emit_deopt_handler(*cb));
1645     }
1646   }
1647 
1648   // One last check for failed CodeBuffer::expand:
1649   if ((cb->blob() == NULL) || (!CompileBroker::should_compile_new_jobs())) {
1650     C->record_failure("CodeCache is full");
1651     CompileBroker::handle_full_code_cache(CodeBlobType::NonNMethod);
1652     return;
1653   }
1654 
1655 #ifndef PRODUCT
1656   // Dump the assembly code, including basic-block numbers
1657   if (print_assembly()) {
1658     ttyLocker ttyl;  // keep the following output all in one block
1659     if (!VMThread::should_terminate()) {  // test this under the tty lock
1660       // This output goes directly to the tty, not the compiler log.
1661       // To enable tools to match it up with the compilation activity,
1662       // be sure to tag this tty output with the compile ID.
1663       if (xtty != NULL) {
1664         xtty->head("opto_assembly compile_id='%d'%s", compile_id(),
1665                    is_osr_compilation()    ? " compile_kind='osr'" :
1666                    "");
1667       }
1668       if (method() != NULL) {
1669         method()->print_metadata();
1670       }
1671       dump_asm(node_offsets, node_offset_limit);
1672       if (xtty != NULL) {
1673         xtty->tail("opto_assembly");
1674       }
1675     }
1676   }
1677 #endif
1678 
1679 }
1680 
1681 void Compile::FillExceptionTables(uint cnt, uint *call_returns, uint *inct_starts, Label *blk_labels) {
1682   _inc_table.set_size(cnt);
1683 
1684   uint inct_cnt = 0;
1685   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
1686     Block* block = _cfg->get_block(i);
1687     Node *n = NULL;
1688     int j;
1689 
1690     // Find the branch; ignore trailing NOPs.
1691     for (j = block->number_of_nodes() - 1; j >= 0; j--) {
1692       n = block->get_node(j);
1693       if (!n->is_Mach() || n->as_Mach()->ideal_Opcode() != Op_Con) {
1694         break;
1695       }
1696     }
1697 
1698     // If we didn't find anything, continue
1699     if (j < 0) {
1700       continue;
1701     }
1702 
1703     // Compute ExceptionHandlerTable subtable entry and add it
1704     // (skip empty blocks)
1705     if (n->is_Catch()) {
1706 
1707       // Get the offset of the return from the call
1708       uint call_return = call_returns[block->_pre_order];
1709 #ifdef ASSERT
1710       assert( call_return > 0, "no call seen for this basic block" );
1711       while (block->get_node(--j)->is_MachProj()) ;
1712       assert(block->get_node(j)->is_MachCall(), "CatchProj must follow call");
1713 #endif
1714       // last instruction is a CatchNode, find it's CatchProjNodes
1715       int nof_succs = block->_num_succs;
1716       // allocate space
1717       GrowableArray<intptr_t> handler_bcis(nof_succs);
1718       GrowableArray<intptr_t> handler_pcos(nof_succs);
1719       // iterate through all successors
1720       for (int j = 0; j < nof_succs; j++) {
1721         Block* s = block->_succs[j];
1722         bool found_p = false;
1723         for (uint k = 1; k < s->num_preds(); k++) {
1724           Node* pk = s->pred(k);
1725           if (pk->is_CatchProj() && pk->in(0) == n) {
1726             const CatchProjNode* p = pk->as_CatchProj();
1727             found_p = true;
1728             // add the corresponding handler bci & pco information
1729             if (p->_con != CatchProjNode::fall_through_index) {
1730               // p leads to an exception handler (and is not fall through)
1731               assert(s == _cfg->get_block(s->_pre_order), "bad numbering");
1732               // no duplicates, please
1733               if (!handler_bcis.contains(p->handler_bci())) {
1734                 uint block_num = s->non_connector()->_pre_order;
1735                 handler_bcis.append(p->handler_bci());
1736                 handler_pcos.append(blk_labels[block_num].loc_pos());
1737               }
1738             }
1739           }
1740         }
1741         assert(found_p, "no matching predecessor found");
1742         // Note:  Due to empty block removal, one block may have
1743         // several CatchProj inputs, from the same Catch.
1744       }
1745 
1746       // Set the offset of the return from the call
1747       _handler_table.add_subtable(call_return, &handler_bcis, NULL, &handler_pcos);
1748       continue;
1749     }
1750 
1751     // Handle implicit null exception table updates
1752     if (n->is_MachNullCheck()) {
1753       uint block_num = block->non_connector_successor(0)->_pre_order;
1754       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1755       continue;
1756     }
1757     // Handle implicit exception table updates: trap instructions.
1758     if (n->is_Mach() && n->as_Mach()->is_TrapBasedCheckNode()) {
1759       uint block_num = block->non_connector_successor(0)->_pre_order;
1760       _inc_table.append(inct_starts[inct_cnt++], blk_labels[block_num].loc_pos());
1761       continue;
1762     }
1763   } // End of for all blocks fill in exception table entries
1764 }
1765 
1766 // Static Variables
1767 #ifndef PRODUCT
1768 uint Scheduling::_total_nop_size = 0;
1769 uint Scheduling::_total_method_size = 0;
1770 uint Scheduling::_total_branches = 0;
1771 uint Scheduling::_total_unconditional_delays = 0;
1772 uint Scheduling::_total_instructions_per_bundle[Pipeline::_max_instrs_per_cycle+1];
1773 #endif
1774 
1775 // Initializer for class Scheduling
1776 
1777 Scheduling::Scheduling(Arena *arena, Compile &compile)
1778   : _arena(arena),
1779     _cfg(compile.cfg()),
1780     _regalloc(compile.regalloc()),
1781     _reg_node(arena),
1782     _bundle_instr_count(0),
1783     _bundle_cycle_number(0),
1784     _scheduled(arena),
1785     _available(arena),
1786     _next_node(NULL),
1787     _bundle_use(0, 0, resource_count, &_bundle_use_elements[0]),
1788     _pinch_free_list(arena)
1789 #ifndef PRODUCT
1790   , _branches(0)
1791   , _unconditional_delays(0)
1792 #endif
1793 {
1794   // Create a MachNopNode
1795   _nop = new MachNopNode();
1796 
1797   // Now that the nops are in the array, save the count
1798   // (but allow entries for the nops)
1799   _node_bundling_limit = compile.unique();
1800   uint node_max = _regalloc->node_regs_max_index();
1801 
1802   compile.set_node_bundling_limit(_node_bundling_limit);
1803 
1804   // This one is persistent within the Compile class
1805   _node_bundling_base = NEW_ARENA_ARRAY(compile.comp_arena(), Bundle, node_max);
1806 
1807   // Allocate space for fixed-size arrays
1808   _node_latency    = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1809   _uses            = NEW_ARENA_ARRAY(arena, short,          node_max);
1810   _current_latency = NEW_ARENA_ARRAY(arena, unsigned short, node_max);
1811 
1812   // Clear the arrays
1813   memset(_node_bundling_base, 0, node_max * sizeof(Bundle));
1814   memset(_node_latency,       0, node_max * sizeof(unsigned short));
1815   memset(_uses,               0, node_max * sizeof(short));
1816   memset(_current_latency,    0, node_max * sizeof(unsigned short));
1817 
1818   // Clear the bundling information
1819   memcpy(_bundle_use_elements, Pipeline_Use::elaborated_elements, sizeof(Pipeline_Use::elaborated_elements));
1820 
1821   // Get the last node
1822   Block* block = _cfg->get_block(_cfg->number_of_blocks() - 1);
1823 
1824   _next_node = block->get_node(block->number_of_nodes() - 1);
1825 }
1826 
1827 #ifndef PRODUCT
1828 // Scheduling destructor
1829 Scheduling::~Scheduling() {
1830   _total_branches             += _branches;
1831   _total_unconditional_delays += _unconditional_delays;
1832 }
1833 #endif
1834 
1835 // Step ahead "i" cycles
1836 void Scheduling::step(uint i) {
1837 
1838   Bundle *bundle = node_bundling(_next_node);
1839   bundle->set_starts_bundle();
1840 
1841   // Update the bundle record, but leave the flags information alone
1842   if (_bundle_instr_count > 0) {
1843     bundle->set_instr_count(_bundle_instr_count);
1844     bundle->set_resources_used(_bundle_use.resourcesUsed());
1845   }
1846 
1847   // Update the state information
1848   _bundle_instr_count = 0;
1849   _bundle_cycle_number += i;
1850   _bundle_use.step(i);
1851 }
1852 
1853 void Scheduling::step_and_clear() {
1854   Bundle *bundle = node_bundling(_next_node);
1855   bundle->set_starts_bundle();
1856 
1857   // Update the bundle record
1858   if (_bundle_instr_count > 0) {
1859     bundle->set_instr_count(_bundle_instr_count);
1860     bundle->set_resources_used(_bundle_use.resourcesUsed());
1861 
1862     _bundle_cycle_number += 1;
1863   }
1864 
1865   // Clear the bundling information
1866   _bundle_instr_count = 0;
1867   _bundle_use.reset();
1868 
1869   memcpy(_bundle_use_elements,
1870     Pipeline_Use::elaborated_elements,
1871     sizeof(Pipeline_Use::elaborated_elements));
1872 }
1873 
1874 // Perform instruction scheduling and bundling over the sequence of
1875 // instructions in backwards order.
1876 void Compile::ScheduleAndBundle() {
1877 
1878   // Don't optimize this if it isn't a method
1879   if (!_method)
1880     return;
1881 
1882   // Don't optimize this if scheduling is disabled
1883   if (!do_scheduling())
1884     return;
1885 
1886   // Scheduling code works only with pairs (8 bytes) maximum.
1887   if (max_vector_size() > 8)
1888     return;
1889 
1890   TracePhase tp("isched", &timers[_t_instrSched]);
1891 
1892   // Create a data structure for all the scheduling information
1893   Scheduling scheduling(Thread::current()->resource_area(), *this);
1894 
1895   // Walk backwards over each basic block, computing the needed alignment
1896   // Walk over all the basic blocks
1897   scheduling.DoScheduling();
1898 }
1899 
1900 // Compute the latency of all the instructions.  This is fairly simple,
1901 // because we already have a legal ordering.  Walk over the instructions
1902 // from first to last, and compute the latency of the instruction based
1903 // on the latency of the preceding instruction(s).
1904 void Scheduling::ComputeLocalLatenciesForward(const Block *bb) {
1905 #ifndef PRODUCT
1906   if (_cfg->C->trace_opto_output())
1907     tty->print("# -> ComputeLocalLatenciesForward\n");
1908 #endif
1909 
1910   // Walk over all the schedulable instructions
1911   for( uint j=_bb_start; j < _bb_end; j++ ) {
1912 
1913     // This is a kludge, forcing all latency calculations to start at 1.
1914     // Used to allow latency 0 to force an instruction to the beginning
1915     // of the bb
1916     uint latency = 1;
1917     Node *use = bb->get_node(j);
1918     uint nlen = use->len();
1919 
1920     // Walk over all the inputs
1921     for ( uint k=0; k < nlen; k++ ) {
1922       Node *def = use->in(k);
1923       if (!def)
1924         continue;
1925 
1926       uint l = _node_latency[def->_idx] + use->latency(k);
1927       if (latency < l)
1928         latency = l;
1929     }
1930 
1931     _node_latency[use->_idx] = latency;
1932 
1933 #ifndef PRODUCT
1934     if (_cfg->C->trace_opto_output()) {
1935       tty->print("# latency %4d: ", latency);
1936       use->dump();
1937     }
1938 #endif
1939   }
1940 
1941 #ifndef PRODUCT
1942   if (_cfg->C->trace_opto_output())
1943     tty->print("# <- ComputeLocalLatenciesForward\n");
1944 #endif
1945 
1946 } // end ComputeLocalLatenciesForward
1947 
1948 // See if this node fits into the present instruction bundle
1949 bool Scheduling::NodeFitsInBundle(Node *n) {
1950   uint n_idx = n->_idx;
1951 
1952   // If this is the unconditional delay instruction, then it fits
1953   if (n == _unconditional_delay_slot) {
1954 #ifndef PRODUCT
1955     if (_cfg->C->trace_opto_output())
1956       tty->print("#     NodeFitsInBundle [%4d]: TRUE; is in unconditional delay slot\n", n->_idx);
1957 #endif
1958     return (true);
1959   }
1960 
1961   // If the node cannot be scheduled this cycle, skip it
1962   if (_current_latency[n_idx] > _bundle_cycle_number) {
1963 #ifndef PRODUCT
1964     if (_cfg->C->trace_opto_output())
1965       tty->print("#     NodeFitsInBundle [%4d]: FALSE; latency %4d > %d\n",
1966         n->_idx, _current_latency[n_idx], _bundle_cycle_number);
1967 #endif
1968     return (false);
1969   }
1970 
1971   const Pipeline *node_pipeline = n->pipeline();
1972 
1973   uint instruction_count = node_pipeline->instructionCount();
1974   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
1975     instruction_count = 0;
1976   else if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
1977     instruction_count++;
1978 
1979   if (_bundle_instr_count + instruction_count > Pipeline::_max_instrs_per_cycle) {
1980 #ifndef PRODUCT
1981     if (_cfg->C->trace_opto_output())
1982       tty->print("#     NodeFitsInBundle [%4d]: FALSE; too many instructions: %d > %d\n",
1983         n->_idx, _bundle_instr_count + instruction_count, Pipeline::_max_instrs_per_cycle);
1984 #endif
1985     return (false);
1986   }
1987 
1988   // Don't allow non-machine nodes to be handled this way
1989   if (!n->is_Mach() && instruction_count == 0)
1990     return (false);
1991 
1992   // See if there is any overlap
1993   uint delay = _bundle_use.full_latency(0, node_pipeline->resourceUse());
1994 
1995   if (delay > 0) {
1996 #ifndef PRODUCT
1997     if (_cfg->C->trace_opto_output())
1998       tty->print("#     NodeFitsInBundle [%4d]: FALSE; functional units overlap\n", n_idx);
1999 #endif
2000     return false;
2001   }
2002 
2003 #ifndef PRODUCT
2004   if (_cfg->C->trace_opto_output())
2005     tty->print("#     NodeFitsInBundle [%4d]:  TRUE\n", n_idx);
2006 #endif
2007 
2008   return true;
2009 }
2010 
2011 Node * Scheduling::ChooseNodeToBundle() {
2012   uint siz = _available.size();
2013 
2014   if (siz == 0) {
2015 
2016 #ifndef PRODUCT
2017     if (_cfg->C->trace_opto_output())
2018       tty->print("#   ChooseNodeToBundle: NULL\n");
2019 #endif
2020     return (NULL);
2021   }
2022 
2023   // Fast path, if only 1 instruction in the bundle
2024   if (siz == 1) {
2025 #ifndef PRODUCT
2026     if (_cfg->C->trace_opto_output()) {
2027       tty->print("#   ChooseNodeToBundle (only 1): ");
2028       _available[0]->dump();
2029     }
2030 #endif
2031     return (_available[0]);
2032   }
2033 
2034   // Don't bother, if the bundle is already full
2035   if (_bundle_instr_count < Pipeline::_max_instrs_per_cycle) {
2036     for ( uint i = 0; i < siz; i++ ) {
2037       Node *n = _available[i];
2038 
2039       // Skip projections, we'll handle them another way
2040       if (n->is_Proj())
2041         continue;
2042 
2043       // This presupposed that instructions are inserted into the
2044       // available list in a legality order; i.e. instructions that
2045       // must be inserted first are at the head of the list
2046       if (NodeFitsInBundle(n)) {
2047 #ifndef PRODUCT
2048         if (_cfg->C->trace_opto_output()) {
2049           tty->print("#   ChooseNodeToBundle: ");
2050           n->dump();
2051         }
2052 #endif
2053         return (n);
2054       }
2055     }
2056   }
2057 
2058   // Nothing fits in this bundle, choose the highest priority
2059 #ifndef PRODUCT
2060   if (_cfg->C->trace_opto_output()) {
2061     tty->print("#   ChooseNodeToBundle: ");
2062     _available[0]->dump();
2063   }
2064 #endif
2065 
2066   return _available[0];
2067 }
2068 
2069 void Scheduling::AddNodeToAvailableList(Node *n) {
2070   assert( !n->is_Proj(), "projections never directly made available" );
2071 #ifndef PRODUCT
2072   if (_cfg->C->trace_opto_output()) {
2073     tty->print("#   AddNodeToAvailableList: ");
2074     n->dump();
2075   }
2076 #endif
2077 
2078   int latency = _current_latency[n->_idx];
2079 
2080   // Insert in latency order (insertion sort)
2081   uint i;
2082   for ( i=0; i < _available.size(); i++ )
2083     if (_current_latency[_available[i]->_idx] > latency)
2084       break;
2085 
2086   // Special Check for compares following branches
2087   if( n->is_Mach() && _scheduled.size() > 0 ) {
2088     int op = n->as_Mach()->ideal_Opcode();
2089     Node *last = _scheduled[0];
2090     if( last->is_MachIf() && last->in(1) == n &&
2091         ( op == Op_CmpI ||
2092           op == Op_CmpU ||
2093           op == Op_CmpP ||
2094           op == Op_CmpF ||
2095           op == Op_CmpD ||
2096           op == Op_CmpL ) ) {
2097 
2098       // Recalculate position, moving to front of same latency
2099       for ( i=0 ; i < _available.size(); i++ )
2100         if (_current_latency[_available[i]->_idx] >= latency)
2101           break;
2102     }
2103   }
2104 
2105   // Insert the node in the available list
2106   _available.insert(i, n);
2107 
2108 #ifndef PRODUCT
2109   if (_cfg->C->trace_opto_output())
2110     dump_available();
2111 #endif
2112 }
2113 
2114 void Scheduling::DecrementUseCounts(Node *n, const Block *bb) {
2115   for ( uint i=0; i < n->len(); i++ ) {
2116     Node *def = n->in(i);
2117     if (!def) continue;
2118     if( def->is_Proj() )        // If this is a machine projection, then
2119       def = def->in(0);         // propagate usage thru to the base instruction
2120 
2121     if(_cfg->get_block_for_node(def) != bb) { // Ignore if not block-local
2122       continue;
2123     }
2124 
2125     // Compute the latency
2126     uint l = _bundle_cycle_number + n->latency(i);
2127     if (_current_latency[def->_idx] < l)
2128       _current_latency[def->_idx] = l;
2129 
2130     // If this does not have uses then schedule it
2131     if ((--_uses[def->_idx]) == 0)
2132       AddNodeToAvailableList(def);
2133   }
2134 }
2135 
2136 void Scheduling::AddNodeToBundle(Node *n, const Block *bb) {
2137 #ifndef PRODUCT
2138   if (_cfg->C->trace_opto_output()) {
2139     tty->print("#   AddNodeToBundle: ");
2140     n->dump();
2141   }
2142 #endif
2143 
2144   // Remove this from the available list
2145   uint i;
2146   for (i = 0; i < _available.size(); i++)
2147     if (_available[i] == n)
2148       break;
2149   assert(i < _available.size(), "entry in _available list not found");
2150   _available.remove(i);
2151 
2152   // See if this fits in the current bundle
2153   const Pipeline *node_pipeline = n->pipeline();
2154   const Pipeline_Use& node_usage = node_pipeline->resourceUse();
2155 
2156   // Check for instructions to be placed in the delay slot. We
2157   // do this before we actually schedule the current instruction,
2158   // because the delay slot follows the current instruction.
2159   if (Pipeline::_branch_has_delay_slot &&
2160       node_pipeline->hasBranchDelay() &&
2161       !_unconditional_delay_slot) {
2162 
2163     uint siz = _available.size();
2164 
2165     // Conditional branches can support an instruction that
2166     // is unconditionally executed and not dependent by the
2167     // branch, OR a conditionally executed instruction if
2168     // the branch is taken.  In practice, this means that
2169     // the first instruction at the branch target is
2170     // copied to the delay slot, and the branch goes to
2171     // the instruction after that at the branch target
2172     if ( n->is_MachBranch() ) {
2173 
2174       assert( !n->is_MachNullCheck(), "should not look for delay slot for Null Check" );
2175       assert( !n->is_Catch(),         "should not look for delay slot for Catch" );
2176 
2177 #ifndef PRODUCT
2178       _branches++;
2179 #endif
2180 
2181       // At least 1 instruction is on the available list
2182       // that is not dependent on the branch
2183       for (uint i = 0; i < siz; i++) {
2184         Node *d = _available[i];
2185         const Pipeline *avail_pipeline = d->pipeline();
2186 
2187         // Don't allow safepoints in the branch shadow, that will
2188         // cause a number of difficulties
2189         if ( avail_pipeline->instructionCount() == 1 &&
2190             !avail_pipeline->hasMultipleBundles() &&
2191             !avail_pipeline->hasBranchDelay() &&
2192             Pipeline::instr_has_unit_size() &&
2193             d->size(_regalloc) == Pipeline::instr_unit_size() &&
2194             NodeFitsInBundle(d) &&
2195             !node_bundling(d)->used_in_delay()) {
2196 
2197           if (d->is_Mach() && !d->is_MachSafePoint()) {
2198             // A node that fits in the delay slot was found, so we need to
2199             // set the appropriate bits in the bundle pipeline information so
2200             // that it correctly indicates resource usage.  Later, when we
2201             // attempt to add this instruction to the bundle, we will skip
2202             // setting the resource usage.
2203             _unconditional_delay_slot = d;
2204             node_bundling(n)->set_use_unconditional_delay();
2205             node_bundling(d)->set_used_in_unconditional_delay();
2206             _bundle_use.add_usage(avail_pipeline->resourceUse());
2207             _current_latency[d->_idx] = _bundle_cycle_number;
2208             _next_node = d;
2209             ++_bundle_instr_count;
2210 #ifndef PRODUCT
2211             _unconditional_delays++;
2212 #endif
2213             break;
2214           }
2215         }
2216       }
2217     }
2218 
2219     // No delay slot, add a nop to the usage
2220     if (!_unconditional_delay_slot) {
2221       // See if adding an instruction in the delay slot will overflow
2222       // the bundle.
2223       if (!NodeFitsInBundle(_nop)) {
2224 #ifndef PRODUCT
2225         if (_cfg->C->trace_opto_output())
2226           tty->print("#  *** STEP(1 instruction for delay slot) ***\n");
2227 #endif
2228         step(1);
2229       }
2230 
2231       _bundle_use.add_usage(_nop->pipeline()->resourceUse());
2232       _next_node = _nop;
2233       ++_bundle_instr_count;
2234     }
2235 
2236     // See if the instruction in the delay slot requires a
2237     // step of the bundles
2238     if (!NodeFitsInBundle(n)) {
2239 #ifndef PRODUCT
2240         if (_cfg->C->trace_opto_output())
2241           tty->print("#  *** STEP(branch won't fit) ***\n");
2242 #endif
2243         // Update the state information
2244         _bundle_instr_count = 0;
2245         _bundle_cycle_number += 1;
2246         _bundle_use.step(1);
2247     }
2248   }
2249 
2250   // Get the number of instructions
2251   uint instruction_count = node_pipeline->instructionCount();
2252   if (node_pipeline->mayHaveNoCode() && n->size(_regalloc) == 0)
2253     instruction_count = 0;
2254 
2255   // Compute the latency information
2256   uint delay = 0;
2257 
2258   if (instruction_count > 0 || !node_pipeline->mayHaveNoCode()) {
2259     int relative_latency = _current_latency[n->_idx] - _bundle_cycle_number;
2260     if (relative_latency < 0)
2261       relative_latency = 0;
2262 
2263     delay = _bundle_use.full_latency(relative_latency, node_usage);
2264 
2265     // Does not fit in this bundle, start a new one
2266     if (delay > 0) {
2267       step(delay);
2268 
2269 #ifndef PRODUCT
2270       if (_cfg->C->trace_opto_output())
2271         tty->print("#  *** STEP(%d) ***\n", delay);
2272 #endif
2273     }
2274   }
2275 
2276   // If this was placed in the delay slot, ignore it
2277   if (n != _unconditional_delay_slot) {
2278 
2279     if (delay == 0) {
2280       if (node_pipeline->hasMultipleBundles()) {
2281 #ifndef PRODUCT
2282         if (_cfg->C->trace_opto_output())
2283           tty->print("#  *** STEP(multiple instructions) ***\n");
2284 #endif
2285         step(1);
2286       }
2287 
2288       else if (instruction_count + _bundle_instr_count > Pipeline::_max_instrs_per_cycle) {
2289 #ifndef PRODUCT
2290         if (_cfg->C->trace_opto_output())
2291           tty->print("#  *** STEP(%d >= %d instructions) ***\n",
2292             instruction_count + _bundle_instr_count,
2293             Pipeline::_max_instrs_per_cycle);
2294 #endif
2295         step(1);
2296       }
2297     }
2298 
2299     if (node_pipeline->hasBranchDelay() && !_unconditional_delay_slot)
2300       _bundle_instr_count++;
2301 
2302     // Set the node's latency
2303     _current_latency[n->_idx] = _bundle_cycle_number;
2304 
2305     // Now merge the functional unit information
2306     if (instruction_count > 0 || !node_pipeline->mayHaveNoCode())
2307       _bundle_use.add_usage(node_usage);
2308 
2309     // Increment the number of instructions in this bundle
2310     _bundle_instr_count += instruction_count;
2311 
2312     // Remember this node for later
2313     if (n->is_Mach())
2314       _next_node = n;
2315   }
2316 
2317   // It's possible to have a BoxLock in the graph and in the _bbs mapping but
2318   // not in the bb->_nodes array.  This happens for debug-info-only BoxLocks.
2319   // 'Schedule' them (basically ignore in the schedule) but do not insert them
2320   // into the block.  All other scheduled nodes get put in the schedule here.
2321   int op = n->Opcode();
2322   if( (op == Op_Node && n->req() == 0) || // anti-dependence node OR
2323       (op != Op_Node &&         // Not an unused antidepedence node and
2324        // not an unallocated boxlock
2325        (OptoReg::is_valid(_regalloc->get_reg_first(n)) || op != Op_BoxLock)) ) {
2326 
2327     // Push any trailing projections
2328     if( bb->get_node(bb->number_of_nodes()-1) != n ) {
2329       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2330         Node *foi = n->fast_out(i);
2331         if( foi->is_Proj() )
2332           _scheduled.push(foi);
2333       }
2334     }
2335 
2336     // Put the instruction in the schedule list
2337     _scheduled.push(n);
2338   }
2339 
2340 #ifndef PRODUCT
2341   if (_cfg->C->trace_opto_output())
2342     dump_available();
2343 #endif
2344 
2345   // Walk all the definitions, decrementing use counts, and
2346   // if a definition has a 0 use count, place it in the available list.
2347   DecrementUseCounts(n,bb);
2348 }
2349 
2350 // This method sets the use count within a basic block.  We will ignore all
2351 // uses outside the current basic block.  As we are doing a backwards walk,
2352 // any node we reach that has a use count of 0 may be scheduled.  This also
2353 // avoids the problem of cyclic references from phi nodes, as long as phi
2354 // nodes are at the front of the basic block.  This method also initializes
2355 // the available list to the set of instructions that have no uses within this
2356 // basic block.
2357 void Scheduling::ComputeUseCount(const Block *bb) {
2358 #ifndef PRODUCT
2359   if (_cfg->C->trace_opto_output())
2360     tty->print("# -> ComputeUseCount\n");
2361 #endif
2362 
2363   // Clear the list of available and scheduled instructions, just in case
2364   _available.clear();
2365   _scheduled.clear();
2366 
2367   // No delay slot specified
2368   _unconditional_delay_slot = NULL;
2369 
2370 #ifdef ASSERT
2371   for( uint i=0; i < bb->number_of_nodes(); i++ )
2372     assert( _uses[bb->get_node(i)->_idx] == 0, "_use array not clean" );
2373 #endif
2374 
2375   // Force the _uses count to never go to zero for unscheduable pieces
2376   // of the block
2377   for( uint k = 0; k < _bb_start; k++ )
2378     _uses[bb->get_node(k)->_idx] = 1;
2379   for( uint l = _bb_end; l < bb->number_of_nodes(); l++ )
2380     _uses[bb->get_node(l)->_idx] = 1;
2381 
2382   // Iterate backwards over the instructions in the block.  Don't count the
2383   // branch projections at end or the block header instructions.
2384   for( uint j = _bb_end-1; j >= _bb_start; j-- ) {
2385     Node *n = bb->get_node(j);
2386     if( n->is_Proj() ) continue; // Projections handled another way
2387 
2388     // Account for all uses
2389     for ( uint k = 0; k < n->len(); k++ ) {
2390       Node *inp = n->in(k);
2391       if (!inp) continue;
2392       assert(inp != n, "no cycles allowed" );
2393       if (_cfg->get_block_for_node(inp) == bb) { // Block-local use?
2394         if (inp->is_Proj()) { // Skip through Proj's
2395           inp = inp->in(0);
2396         }
2397         ++_uses[inp->_idx];     // Count 1 block-local use
2398       }
2399     }
2400 
2401     // If this instruction has a 0 use count, then it is available
2402     if (!_uses[n->_idx]) {
2403       _current_latency[n->_idx] = _bundle_cycle_number;
2404       AddNodeToAvailableList(n);
2405     }
2406 
2407 #ifndef PRODUCT
2408     if (_cfg->C->trace_opto_output()) {
2409       tty->print("#   uses: %3d: ", _uses[n->_idx]);
2410       n->dump();
2411     }
2412 #endif
2413   }
2414 
2415 #ifndef PRODUCT
2416   if (_cfg->C->trace_opto_output())
2417     tty->print("# <- ComputeUseCount\n");
2418 #endif
2419 }
2420 
2421 // This routine performs scheduling on each basic block in reverse order,
2422 // using instruction latencies and taking into account function unit
2423 // availability.
2424 void Scheduling::DoScheduling() {
2425 #ifndef PRODUCT
2426   if (_cfg->C->trace_opto_output())
2427     tty->print("# -> DoScheduling\n");
2428 #endif
2429 
2430   Block *succ_bb = NULL;
2431   Block *bb;
2432 
2433   // Walk over all the basic blocks in reverse order
2434   for (int i = _cfg->number_of_blocks() - 1; i >= 0; succ_bb = bb, i--) {
2435     bb = _cfg->get_block(i);
2436 
2437 #ifndef PRODUCT
2438     if (_cfg->C->trace_opto_output()) {
2439       tty->print("#  Schedule BB#%03d (initial)\n", i);
2440       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2441         bb->get_node(j)->dump();
2442       }
2443     }
2444 #endif
2445 
2446     // On the head node, skip processing
2447     if (bb == _cfg->get_root_block()) {
2448       continue;
2449     }
2450 
2451     // Skip empty, connector blocks
2452     if (bb->is_connector())
2453       continue;
2454 
2455     // If the following block is not the sole successor of
2456     // this one, then reset the pipeline information
2457     if (bb->_num_succs != 1 || bb->non_connector_successor(0) != succ_bb) {
2458 #ifndef PRODUCT
2459       if (_cfg->C->trace_opto_output()) {
2460         tty->print("*** bundle start of next BB, node %d, for %d instructions\n",
2461                    _next_node->_idx, _bundle_instr_count);
2462       }
2463 #endif
2464       step_and_clear();
2465     }
2466 
2467     // Leave untouched the starting instruction, any Phis, a CreateEx node
2468     // or Top.  bb->get_node(_bb_start) is the first schedulable instruction.
2469     _bb_end = bb->number_of_nodes()-1;
2470     for( _bb_start=1; _bb_start <= _bb_end; _bb_start++ ) {
2471       Node *n = bb->get_node(_bb_start);
2472       // Things not matched, like Phinodes and ProjNodes don't get scheduled.
2473       // Also, MachIdealNodes do not get scheduled
2474       if( !n->is_Mach() ) continue;     // Skip non-machine nodes
2475       MachNode *mach = n->as_Mach();
2476       int iop = mach->ideal_Opcode();
2477       if( iop == Op_CreateEx ) continue; // CreateEx is pinned
2478       if( iop == Op_Con ) continue;      // Do not schedule Top
2479       if( iop == Op_Node &&     // Do not schedule PhiNodes, ProjNodes
2480           mach->pipeline() == MachNode::pipeline_class() &&
2481           !n->is_SpillCopy() )  // Breakpoints, Prolog, etc
2482         continue;
2483       break;                    // Funny loop structure to be sure...
2484     }
2485     // Compute last "interesting" instruction in block - last instruction we
2486     // might schedule.  _bb_end points just after last schedulable inst.  We
2487     // normally schedule conditional branches (despite them being forced last
2488     // in the block), because they have delay slots we can fill.  Calls all
2489     // have their delay slots filled in the template expansions, so we don't
2490     // bother scheduling them.
2491     Node *last = bb->get_node(_bb_end);
2492     // Ignore trailing NOPs.
2493     while (_bb_end > 0 && last->is_Mach() &&
2494            last->as_Mach()->ideal_Opcode() == Op_Con) {
2495       last = bb->get_node(--_bb_end);
2496     }
2497     assert(!last->is_Mach() || last->as_Mach()->ideal_Opcode() != Op_Con, "");
2498     if( last->is_Catch() ||
2499        // Exclude unreachable path case when Halt node is in a separate block.
2500        (_bb_end > 1 && last->is_Mach() && last->as_Mach()->ideal_Opcode() == Op_Halt) ) {
2501       // There must be a prior call.  Skip it.
2502       while( !bb->get_node(--_bb_end)->is_MachCall() ) {
2503         assert( bb->get_node(_bb_end)->is_MachProj(), "skipping projections after expected call" );
2504       }
2505     } else if( last->is_MachNullCheck() ) {
2506       // Backup so the last null-checked memory instruction is
2507       // outside the schedulable range. Skip over the nullcheck,
2508       // projection, and the memory nodes.
2509       Node *mem = last->in(1);
2510       do {
2511         _bb_end--;
2512       } while (mem != bb->get_node(_bb_end));
2513     } else {
2514       // Set _bb_end to point after last schedulable inst.
2515       _bb_end++;
2516     }
2517 
2518     assert( _bb_start <= _bb_end, "inverted block ends" );
2519 
2520     // Compute the register antidependencies for the basic block
2521     ComputeRegisterAntidependencies(bb);
2522     if (_cfg->C->failing())  return;  // too many D-U pinch points
2523 
2524     // Compute intra-bb latencies for the nodes
2525     ComputeLocalLatenciesForward(bb);
2526 
2527     // Compute the usage within the block, and set the list of all nodes
2528     // in the block that have no uses within the block.
2529     ComputeUseCount(bb);
2530 
2531     // Schedule the remaining instructions in the block
2532     while ( _available.size() > 0 ) {
2533       Node *n = ChooseNodeToBundle();
2534       guarantee(n != NULL, "no nodes available");
2535       AddNodeToBundle(n,bb);
2536     }
2537 
2538     assert( _scheduled.size() == _bb_end - _bb_start, "wrong number of instructions" );
2539 #ifdef ASSERT
2540     for( uint l = _bb_start; l < _bb_end; l++ ) {
2541       Node *n = bb->get_node(l);
2542       uint m;
2543       for( m = 0; m < _bb_end-_bb_start; m++ )
2544         if( _scheduled[m] == n )
2545           break;
2546       assert( m < _bb_end-_bb_start, "instruction missing in schedule" );
2547     }
2548 #endif
2549 
2550     // Now copy the instructions (in reverse order) back to the block
2551     for ( uint k = _bb_start; k < _bb_end; k++ )
2552       bb->map_node(_scheduled[_bb_end-k-1], k);
2553 
2554 #ifndef PRODUCT
2555     if (_cfg->C->trace_opto_output()) {
2556       tty->print("#  Schedule BB#%03d (final)\n", i);
2557       uint current = 0;
2558       for (uint j = 0; j < bb->number_of_nodes(); j++) {
2559         Node *n = bb->get_node(j);
2560         if( valid_bundle_info(n) ) {
2561           Bundle *bundle = node_bundling(n);
2562           if (bundle->instr_count() > 0 || bundle->flags() > 0) {
2563             tty->print("*** Bundle: ");
2564             bundle->dump();
2565           }
2566           n->dump();
2567         }
2568       }
2569     }
2570 #endif
2571 #ifdef ASSERT
2572   verify_good_schedule(bb,"after block local scheduling");
2573 #endif
2574   }
2575 
2576 #ifndef PRODUCT
2577   if (_cfg->C->trace_opto_output())
2578     tty->print("# <- DoScheduling\n");
2579 #endif
2580 
2581   // Record final node-bundling array location
2582   _regalloc->C->set_node_bundling_base(_node_bundling_base);
2583 
2584 } // end DoScheduling
2585 
2586 // Verify that no live-range used in the block is killed in the block by a
2587 // wrong DEF.  This doesn't verify live-ranges that span blocks.
2588 
2589 // Check for edge existence.  Used to avoid adding redundant precedence edges.
2590 static bool edge_from_to( Node *from, Node *to ) {
2591   for( uint i=0; i<from->len(); i++ )
2592     if( from->in(i) == to )
2593       return true;
2594   return false;
2595 }
2596 
2597 #ifdef ASSERT
2598 void Scheduling::verify_do_def( Node *n, OptoReg::Name def, const char *msg ) {
2599   // Check for bad kills
2600   if( OptoReg::is_valid(def) ) { // Ignore stores & control flow
2601     Node *prior_use = _reg_node[def];
2602     if( prior_use && !edge_from_to(prior_use,n) ) {
2603       tty->print("%s = ",OptoReg::as_VMReg(def)->name());
2604       n->dump();
2605       tty->print_cr("...");
2606       prior_use->dump();
2607       assert(edge_from_to(prior_use,n),msg);
2608     }
2609     _reg_node.map(def,NULL); // Kill live USEs
2610   }
2611 }
2612 
2613 void Scheduling::verify_good_schedule( Block *b, const char *msg ) {
2614 
2615   // Zap to something reasonable for the verify code
2616   _reg_node.clear();
2617 
2618   // Walk over the block backwards.  Check to make sure each DEF doesn't
2619   // kill a live value (other than the one it's supposed to).  Add each
2620   // USE to the live set.
2621   for( uint i = b->number_of_nodes()-1; i >= _bb_start; i-- ) {
2622     Node *n = b->get_node(i);
2623     int n_op = n->Opcode();
2624     if( n_op == Op_MachProj && n->ideal_reg() == MachProjNode::fat_proj ) {
2625       // Fat-proj kills a slew of registers
2626       RegMask rm = n->out_RegMask();// Make local copy
2627       while( rm.is_NotEmpty() ) {
2628         OptoReg::Name kill = rm.find_first_elem();
2629         rm.Remove(kill);
2630         verify_do_def( n, kill, msg );
2631       }
2632     } else if( n_op != Op_Node ) { // Avoid brand new antidependence nodes
2633       // Get DEF'd registers the normal way
2634       verify_do_def( n, _regalloc->get_reg_first(n), msg );
2635       verify_do_def( n, _regalloc->get_reg_second(n), msg );
2636     }
2637 
2638     // Now make all USEs live
2639     for( uint i=1; i<n->req(); i++ ) {
2640       Node *def = n->in(i);
2641       assert(def != 0, "input edge required");
2642       OptoReg::Name reg_lo = _regalloc->get_reg_first(def);
2643       OptoReg::Name reg_hi = _regalloc->get_reg_second(def);
2644       if( OptoReg::is_valid(reg_lo) ) {
2645         assert(!_reg_node[reg_lo] || edge_from_to(_reg_node[reg_lo],def), msg);
2646         _reg_node.map(reg_lo,n);
2647       }
2648       if( OptoReg::is_valid(reg_hi) ) {
2649         assert(!_reg_node[reg_hi] || edge_from_to(_reg_node[reg_hi],def), msg);
2650         _reg_node.map(reg_hi,n);
2651       }
2652     }
2653 
2654   }
2655 
2656   // Zap to something reasonable for the Antidependence code
2657   _reg_node.clear();
2658 }
2659 #endif
2660 
2661 // Conditionally add precedence edges.  Avoid putting edges on Projs.
2662 static void add_prec_edge_from_to( Node *from, Node *to ) {
2663   if( from->is_Proj() ) {       // Put precedence edge on Proj's input
2664     assert( from->req() == 1 && (from->len() == 1 || from->in(1)==0), "no precedence edges on projections" );
2665     from = from->in(0);
2666   }
2667   if( from != to &&             // No cycles (for things like LD L0,[L0+4] )
2668       !edge_from_to( from, to ) ) // Avoid duplicate edge
2669     from->add_prec(to);
2670 }
2671 
2672 void Scheduling::anti_do_def( Block *b, Node *def, OptoReg::Name def_reg, int is_def ) {
2673   if( !OptoReg::is_valid(def_reg) ) // Ignore stores & control flow
2674     return;
2675 
2676   Node *pinch = _reg_node[def_reg]; // Get pinch point
2677   if ((pinch == NULL) || _cfg->get_block_for_node(pinch) != b || // No pinch-point yet?
2678       is_def ) {    // Check for a true def (not a kill)
2679     _reg_node.map(def_reg,def); // Record def/kill as the optimistic pinch-point
2680     return;
2681   }
2682 
2683   Node *kill = def;             // Rename 'def' to more descriptive 'kill'
2684   debug_only( def = (Node*)0xdeadbeef; )
2685 
2686   // After some number of kills there _may_ be a later def
2687   Node *later_def = NULL;
2688 
2689   // Finding a kill requires a real pinch-point.
2690   // Check for not already having a pinch-point.
2691   // Pinch points are Op_Node's.
2692   if( pinch->Opcode() != Op_Node ) { // Or later-def/kill as pinch-point?
2693     later_def = pinch;            // Must be def/kill as optimistic pinch-point
2694     if ( _pinch_free_list.size() > 0) {
2695       pinch = _pinch_free_list.pop();
2696     } else {
2697       pinch = new Node(1); // Pinch point to-be
2698     }
2699     if (pinch->_idx >= _regalloc->node_regs_max_index()) {
2700       _cfg->C->record_method_not_compilable("too many D-U pinch points");
2701       return;
2702     }
2703     _cfg->map_node_to_block(pinch, b);      // Pretend it's valid in this block (lazy init)
2704     _reg_node.map(def_reg,pinch); // Record pinch-point
2705     //_regalloc->set_bad(pinch->_idx); // Already initialized this way.
2706     if( later_def->outcnt() == 0 || later_def->ideal_reg() == MachProjNode::fat_proj ) { // Distinguish def from kill
2707       pinch->init_req(0, _cfg->C->top());     // set not NULL for the next call
2708       add_prec_edge_from_to(later_def,pinch); // Add edge from kill to pinch
2709       later_def = NULL;           // and no later def
2710     }
2711     pinch->set_req(0,later_def);  // Hook later def so we can find it
2712   } else {                        // Else have valid pinch point
2713     if( pinch->in(0) )            // If there is a later-def
2714       later_def = pinch->in(0);   // Get it
2715   }
2716 
2717   // Add output-dependence edge from later def to kill
2718   if( later_def )               // If there is some original def
2719     add_prec_edge_from_to(later_def,kill); // Add edge from def to kill
2720 
2721   // See if current kill is also a use, and so is forced to be the pinch-point.
2722   if( pinch->Opcode() == Op_Node ) {
2723     Node *uses = kill->is_Proj() ? kill->in(0) : kill;
2724     for( uint i=1; i<uses->req(); i++ ) {
2725       if( _regalloc->get_reg_first(uses->in(i)) == def_reg ||
2726           _regalloc->get_reg_second(uses->in(i)) == def_reg ) {
2727         // Yes, found a use/kill pinch-point
2728         pinch->set_req(0,NULL);  //
2729         pinch->replace_by(kill); // Move anti-dep edges up
2730         pinch = kill;
2731         _reg_node.map(def_reg,pinch);
2732         return;
2733       }
2734     }
2735   }
2736 
2737   // Add edge from kill to pinch-point
2738   add_prec_edge_from_to(kill,pinch);
2739 }
2740 
2741 void Scheduling::anti_do_use( Block *b, Node *use, OptoReg::Name use_reg ) {
2742   if( !OptoReg::is_valid(use_reg) ) // Ignore stores & control flow
2743     return;
2744   Node *pinch = _reg_node[use_reg]; // Get pinch point
2745   // Check for no later def_reg/kill in block
2746   if ((pinch != NULL) && _cfg->get_block_for_node(pinch) == b &&
2747       // Use has to be block-local as well
2748       _cfg->get_block_for_node(use) == b) {
2749     if( pinch->Opcode() == Op_Node && // Real pinch-point (not optimistic?)
2750         pinch->req() == 1 ) {   // pinch not yet in block?
2751       pinch->del_req(0);        // yank pointer to later-def, also set flag
2752       // Insert the pinch-point in the block just after the last use
2753       b->insert_node(pinch, b->find_node(use) + 1);
2754       _bb_end++;                // Increase size scheduled region in block
2755     }
2756 
2757     add_prec_edge_from_to(pinch,use);
2758   }
2759 }
2760 
2761 // We insert antidependences between the reads and following write of
2762 // allocated registers to prevent illegal code motion. Hopefully, the
2763 // number of added references should be fairly small, especially as we
2764 // are only adding references within the current basic block.
2765 void Scheduling::ComputeRegisterAntidependencies(Block *b) {
2766 
2767 #ifdef ASSERT
2768   verify_good_schedule(b,"before block local scheduling");
2769 #endif
2770 
2771   // A valid schedule, for each register independently, is an endless cycle
2772   // of: a def, then some uses (connected to the def by true dependencies),
2773   // then some kills (defs with no uses), finally the cycle repeats with a new
2774   // def.  The uses are allowed to float relative to each other, as are the
2775   // kills.  No use is allowed to slide past a kill (or def).  This requires
2776   // antidependencies between all uses of a single def and all kills that
2777   // follow, up to the next def.  More edges are redundant, because later defs
2778   // & kills are already serialized with true or antidependencies.  To keep
2779   // the edge count down, we add a 'pinch point' node if there's more than
2780   // one use or more than one kill/def.
2781 
2782   // We add dependencies in one bottom-up pass.
2783 
2784   // For each instruction we handle it's DEFs/KILLs, then it's USEs.
2785 
2786   // For each DEF/KILL, we check to see if there's a prior DEF/KILL for this
2787   // register.  If not, we record the DEF/KILL in _reg_node, the
2788   // register-to-def mapping.  If there is a prior DEF/KILL, we insert a
2789   // "pinch point", a new Node that's in the graph but not in the block.
2790   // We put edges from the prior and current DEF/KILLs to the pinch point.
2791   // We put the pinch point in _reg_node.  If there's already a pinch point
2792   // we merely add an edge from the current DEF/KILL to the pinch point.
2793 
2794   // After doing the DEF/KILLs, we handle USEs.  For each used register, we
2795   // put an edge from the pinch point to the USE.
2796 
2797   // To be expedient, the _reg_node array is pre-allocated for the whole
2798   // compilation.  _reg_node is lazily initialized; it either contains a NULL,
2799   // or a valid def/kill/pinch-point, or a leftover node from some prior
2800   // block.  Leftover node from some prior block is treated like a NULL (no
2801   // prior def, so no anti-dependence needed).  Valid def is distinguished by
2802   // it being in the current block.
2803   bool fat_proj_seen = false;
2804   uint last_safept = _bb_end-1;
2805   Node* end_node         = (_bb_end-1 >= _bb_start) ? b->get_node(last_safept) : NULL;
2806   Node* last_safept_node = end_node;
2807   for( uint i = _bb_end-1; i >= _bb_start; i-- ) {
2808     Node *n = b->get_node(i);
2809     int is_def = n->outcnt();   // def if some uses prior to adding precedence edges
2810     if( n->is_MachProj() && n->ideal_reg() == MachProjNode::fat_proj ) {
2811       // Fat-proj kills a slew of registers
2812       // This can add edges to 'n' and obscure whether or not it was a def,
2813       // hence the is_def flag.
2814       fat_proj_seen = true;
2815       RegMask rm = n->out_RegMask();// Make local copy
2816       while( rm.is_NotEmpty() ) {
2817         OptoReg::Name kill = rm.find_first_elem();
2818         rm.Remove(kill);
2819         anti_do_def( b, n, kill, is_def );
2820       }
2821     } else {
2822       // Get DEF'd registers the normal way
2823       anti_do_def( b, n, _regalloc->get_reg_first(n), is_def );
2824       anti_do_def( b, n, _regalloc->get_reg_second(n), is_def );
2825     }
2826 
2827     // Kill projections on a branch should appear to occur on the
2828     // branch, not afterwards, so grab the masks from the projections
2829     // and process them.
2830     if (n->is_MachBranch() || n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_Jump) {
2831       for (DUIterator_Fast imax, i = n->fast_outs(imax); i < imax; i++) {
2832         Node* use = n->fast_out(i);
2833         if (use->is_Proj()) {
2834           RegMask rm = use->out_RegMask();// Make local copy
2835           while( rm.is_NotEmpty() ) {
2836             OptoReg::Name kill = rm.find_first_elem();
2837             rm.Remove(kill);
2838             anti_do_def( b, n, kill, false );
2839           }
2840         }
2841       }
2842     }
2843 
2844     // Check each register used by this instruction for a following DEF/KILL
2845     // that must occur afterward and requires an anti-dependence edge.
2846     for( uint j=0; j<n->req(); j++ ) {
2847       Node *def = n->in(j);
2848       if( def ) {
2849         assert( !def->is_MachProj() || def->ideal_reg() != MachProjNode::fat_proj, "" );
2850         anti_do_use( b, n, _regalloc->get_reg_first(def) );
2851         anti_do_use( b, n, _regalloc->get_reg_second(def) );
2852       }
2853     }
2854     // Do not allow defs of new derived values to float above GC
2855     // points unless the base is definitely available at the GC point.
2856 
2857     Node *m = b->get_node(i);
2858 
2859     // Add precedence edge from following safepoint to use of derived pointer
2860     if( last_safept_node != end_node &&
2861         m != last_safept_node) {
2862       for (uint k = 1; k < m->req(); k++) {
2863         const Type *t = m->in(k)->bottom_type();
2864         if( t->isa_oop_ptr() &&
2865             t->is_ptr()->offset() != 0 ) {
2866           last_safept_node->add_prec( m );
2867           break;
2868         }
2869       }
2870     }
2871 
2872     if( n->jvms() ) {           // Precedence edge from derived to safept
2873       // Check if last_safept_node was moved by pinch-point insertion in anti_do_use()
2874       if( b->get_node(last_safept) != last_safept_node ) {
2875         last_safept = b->find_node(last_safept_node);
2876       }
2877       for( uint j=last_safept; j > i; j-- ) {
2878         Node *mach = b->get_node(j);
2879         if( mach->is_Mach() && mach->as_Mach()->ideal_Opcode() == Op_AddP )
2880           mach->add_prec( n );
2881       }
2882       last_safept = i;
2883       last_safept_node = m;
2884     }
2885   }
2886 
2887   if (fat_proj_seen) {
2888     // Garbage collect pinch nodes that were not consumed.
2889     // They are usually created by a fat kill MachProj for a call.
2890     garbage_collect_pinch_nodes();
2891   }
2892 }
2893 
2894 // Garbage collect pinch nodes for reuse by other blocks.
2895 //
2896 // The block scheduler's insertion of anti-dependence
2897 // edges creates many pinch nodes when the block contains
2898 // 2 or more Calls.  A pinch node is used to prevent a
2899 // combinatorial explosion of edges.  If a set of kills for a
2900 // register is anti-dependent on a set of uses (or defs), rather
2901 // than adding an edge in the graph between each pair of kill
2902 // and use (or def), a pinch is inserted between them:
2903 //
2904 //            use1   use2  use3
2905 //                \   |   /
2906 //                 \  |  /
2907 //                  pinch
2908 //                 /  |  \
2909 //                /   |   \
2910 //            kill1 kill2 kill3
2911 //
2912 // One pinch node is created per register killed when
2913 // the second call is encountered during a backwards pass
2914 // over the block.  Most of these pinch nodes are never
2915 // wired into the graph because the register is never
2916 // used or def'ed in the block.
2917 //
2918 void Scheduling::garbage_collect_pinch_nodes() {
2919 #ifndef PRODUCT
2920     if (_cfg->C->trace_opto_output()) tty->print("Reclaimed pinch nodes:");
2921 #endif
2922     int trace_cnt = 0;
2923     for (uint k = 0; k < _reg_node.Size(); k++) {
2924       Node* pinch = _reg_node[k];
2925       if ((pinch != NULL) && pinch->Opcode() == Op_Node &&
2926           // no predecence input edges
2927           (pinch->req() == pinch->len() || pinch->in(pinch->req()) == NULL) ) {
2928         cleanup_pinch(pinch);
2929         _pinch_free_list.push(pinch);
2930         _reg_node.map(k, NULL);
2931 #ifndef PRODUCT
2932         if (_cfg->C->trace_opto_output()) {
2933           trace_cnt++;
2934           if (trace_cnt > 40) {
2935             tty->print("\n");
2936             trace_cnt = 0;
2937           }
2938           tty->print(" %d", pinch->_idx);
2939         }
2940 #endif
2941       }
2942     }
2943 #ifndef PRODUCT
2944     if (_cfg->C->trace_opto_output()) tty->print("\n");
2945 #endif
2946 }
2947 
2948 // Clean up a pinch node for reuse.
2949 void Scheduling::cleanup_pinch( Node *pinch ) {
2950   assert (pinch && pinch->Opcode() == Op_Node && pinch->req() == 1, "just checking");
2951 
2952   for (DUIterator_Last imin, i = pinch->last_outs(imin); i >= imin; ) {
2953     Node* use = pinch->last_out(i);
2954     uint uses_found = 0;
2955     for (uint j = use->req(); j < use->len(); j++) {
2956       if (use->in(j) == pinch) {
2957         use->rm_prec(j);
2958         uses_found++;
2959       }
2960     }
2961     assert(uses_found > 0, "must be a precedence edge");
2962     i -= uses_found;    // we deleted 1 or more copies of this edge
2963   }
2964   // May have a later_def entry
2965   pinch->set_req(0, NULL);
2966 }
2967 
2968 #ifndef PRODUCT
2969 
2970 void Scheduling::dump_available() const {
2971   tty->print("#Availist  ");
2972   for (uint i = 0; i < _available.size(); i++)
2973     tty->print(" N%d/l%d", _available[i]->_idx,_current_latency[_available[i]->_idx]);
2974   tty->cr();
2975 }
2976 
2977 // Print Scheduling Statistics
2978 void Scheduling::print_statistics() {
2979   // Print the size added by nops for bundling
2980   tty->print("Nops added %d bytes to total of %d bytes",
2981     _total_nop_size, _total_method_size);
2982   if (_total_method_size > 0)
2983     tty->print(", for %.2f%%",
2984       ((double)_total_nop_size) / ((double) _total_method_size) * 100.0);
2985   tty->print("\n");
2986 
2987   // Print the number of branch shadows filled
2988   if (Pipeline::_branch_has_delay_slot) {
2989     tty->print("Of %d branches, %d had unconditional delay slots filled",
2990       _total_branches, _total_unconditional_delays);
2991     if (_total_branches > 0)
2992       tty->print(", for %.2f%%",
2993         ((double)_total_unconditional_delays) / ((double)_total_branches) * 100.0);
2994     tty->print("\n");
2995   }
2996 
2997   uint total_instructions = 0, total_bundles = 0;
2998 
2999   for (uint i = 1; i <= Pipeline::_max_instrs_per_cycle; i++) {
3000     uint bundle_count   = _total_instructions_per_bundle[i];
3001     total_instructions += bundle_count * i;
3002     total_bundles      += bundle_count;
3003   }
3004 
3005   if (total_bundles > 0)
3006     tty->print("Average ILP (excluding nops) is %.2f\n",
3007       ((double)total_instructions) / ((double)total_bundles));
3008 }
3009 #endif