1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/javaClasses.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/linkResolver.hpp"
  35 #include "interpreter/oopMapCache.hpp"
  36 #include "jvmtifiles/jvmtiEnv.hpp"
  37 #include "memory/gcLocker.inline.hpp"
  38 #include "memory/metaspaceShared.hpp"
  39 #include "memory/oopFactory.hpp"
  40 #include "memory/universe.inline.hpp"
  41 #include "oops/instanceKlass.hpp"
  42 #include "oops/objArrayOop.hpp"
  43 #include "oops/oop.inline.hpp"
  44 #include "oops/symbol.hpp"
  45 #include "prims/jvm_misc.hpp"
  46 #include "prims/jvmtiExport.hpp"
  47 #include "prims/jvmtiThreadState.hpp"
  48 #include "prims/privilegedStack.hpp"
  49 #include "runtime/arguments.hpp"
  50 #include "runtime/atomic.inline.hpp"
  51 #include "runtime/biasedLocking.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/fprofiler.hpp"
  54 #include "runtime/frame.inline.hpp"
  55 #include "runtime/init.hpp"
  56 #include "runtime/interfaceSupport.hpp"
  57 #include "runtime/java.hpp"
  58 #include "runtime/javaCalls.hpp"
  59 #include "runtime/jniPeriodicChecker.hpp"
  60 #include "runtime/memprofiler.hpp"
  61 #include "runtime/mutexLocker.hpp"
  62 #include "runtime/objectMonitor.hpp"
  63 #include "runtime/orderAccess.inline.hpp"
  64 #include "runtime/osThread.hpp"
  65 #include "runtime/safepoint.hpp"
  66 #include "runtime/sharedRuntime.hpp"
  67 #include "runtime/statSampler.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/sweeper.hpp"
  70 #include "runtime/task.hpp"
  71 #include "runtime/thread.inline.hpp"
  72 #include "runtime/threadCritical.hpp"
  73 #include "runtime/threadLocalStorage.hpp"
  74 #include "runtime/vframe.hpp"
  75 #include "runtime/vframeArray.hpp"
  76 #include "runtime/vframe_hp.hpp"
  77 #include "runtime/vmThread.hpp"
  78 #include "runtime/vm_operations.hpp"
  79 #include "runtime/vm_version.hpp"
  80 #include "services/attachListener.hpp"
  81 #include "services/management.hpp"
  82 #include "services/memTracker.hpp"
  83 #include "services/threadService.hpp"
  84 #include "trace/tracing.hpp"
  85 #include "trace/traceMacros.hpp"
  86 #include "utilities/defaultStream.hpp"
  87 #include "utilities/dtrace.hpp"
  88 #include "utilities/events.hpp"
  89 #include "utilities/preserveException.hpp"
  90 #include "utilities/macros.hpp"
  91 #if INCLUDE_ALL_GCS
  92 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  93 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  94 #include "gc_implementation/parallelScavenge/pcTasks.hpp"
  95 #endif // INCLUDE_ALL_GCS
  96 #ifdef COMPILER1
  97 #include "c1/c1_Compiler.hpp"
  98 #endif
  99 #ifdef COMPILER2
 100 #include "opto/c2compiler.hpp"
 101 #include "opto/idealGraphPrinter.hpp"
 102 #endif
 103 #if INCLUDE_RTM_OPT
 104 #include "runtime/rtmLocking.hpp"
 105 #endif
 106 
 107 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
 108 
 109 #ifdef DTRACE_ENABLED
 110 
 111 // Only bother with this argument setup if dtrace is available
 112 
 113   #define HOTSPOT_THREAD_PROBE_start HOTSPOT_THREAD_START
 114   #define HOTSPOT_THREAD_PROBE_stop HOTSPOT_THREAD_STOP
 115 
 116   #define DTRACE_THREAD_PROBE(probe, javathread)                           \
 117     {                                                                      \
 118       ResourceMark rm(this);                                               \
 119       int len = 0;                                                         \
 120       const char* name = (javathread)->get_thread_name();                  \
 121       len = strlen(name);                                                  \
 122       HOTSPOT_THREAD_PROBE_##probe(/* probe = start, stop */               \
 123         (char *) name, len,                                                \
 124         java_lang_Thread::thread_id((javathread)->threadObj()),            \
 125         (uintptr_t) (javathread)->osthread()->thread_id(),                 \
 126         java_lang_Thread::is_daemon((javathread)->threadObj()));           \
 127     }
 128 
 129 #else //  ndef DTRACE_ENABLED
 130 
 131   #define DTRACE_THREAD_PROBE(probe, javathread)
 132 
 133 #endif // ndef DTRACE_ENABLED
 134 
 135 
 136 // Class hierarchy
 137 // - Thread
 138 //   - VMThread
 139 //   - WatcherThread
 140 //   - ConcurrentMarkSweepThread
 141 //   - JavaThread
 142 //     - CompilerThread
 143 
 144 // ======= Thread ========
 145 // Support for forcing alignment of thread objects for biased locking
 146 void* Thread::allocate(size_t size, bool throw_excpt, MEMFLAGS flags) {
 147   if (UseBiasedLocking) {
 148     const int alignment = markOopDesc::biased_lock_alignment;
 149     size_t aligned_size = size + (alignment - sizeof(intptr_t));
 150     void* real_malloc_addr = throw_excpt? AllocateHeap(aligned_size, flags, CURRENT_PC)
 151                                           : AllocateHeap(aligned_size, flags, CURRENT_PC,
 152                                                          AllocFailStrategy::RETURN_NULL);
 153     void* aligned_addr     = (void*) align_size_up((intptr_t) real_malloc_addr, alignment);
 154     assert(((uintptr_t) aligned_addr + (uintptr_t) size) <=
 155            ((uintptr_t) real_malloc_addr + (uintptr_t) aligned_size),
 156            "JavaThread alignment code overflowed allocated storage");
 157     if (TraceBiasedLocking) {
 158       if (aligned_addr != real_malloc_addr) {
 159         tty->print_cr("Aligned thread " INTPTR_FORMAT " to " INTPTR_FORMAT,
 160                       real_malloc_addr, aligned_addr);
 161       }
 162     }
 163     ((Thread*) aligned_addr)->_real_malloc_address = real_malloc_addr;
 164     return aligned_addr;
 165   } else {
 166     return throw_excpt? AllocateHeap(size, flags, CURRENT_PC)
 167                        : AllocateHeap(size, flags, CURRENT_PC, AllocFailStrategy::RETURN_NULL);
 168   }
 169 }
 170 
 171 void Thread::operator delete(void* p) {
 172   if (UseBiasedLocking) {
 173     void* real_malloc_addr = ((Thread*) p)->_real_malloc_address;
 174     FreeHeap(real_malloc_addr, mtThread);
 175   } else {
 176     FreeHeap(p, mtThread);
 177   }
 178 }
 179 
 180 
 181 // Base class for all threads: VMThread, WatcherThread, ConcurrentMarkSweepThread,
 182 // JavaThread
 183 
 184 
 185 Thread::Thread() {
 186   // stack and get_thread
 187   set_stack_base(NULL);
 188   set_stack_size(0);
 189   set_self_raw_id(0);
 190   set_lgrp_id(-1);
 191 
 192   // allocated data structures
 193   set_osthread(NULL);
 194   set_resource_area(new (mtThread)ResourceArea());
 195   DEBUG_ONLY(_current_resource_mark = NULL;)
 196   set_handle_area(new (mtThread) HandleArea(NULL));
 197   set_metadata_handles(new (ResourceObj::C_HEAP, mtClass) GrowableArray<Metadata*>(30, true));
 198   set_active_handles(NULL);
 199   set_free_handle_block(NULL);
 200   set_last_handle_mark(NULL);
 201 
 202   // This initial value ==> never claimed.
 203   _oops_do_parity = 0;
 204 
 205   // the handle mark links itself to last_handle_mark
 206   new HandleMark(this);
 207 
 208   // plain initialization
 209   debug_only(_owned_locks = NULL;)
 210   debug_only(_allow_allocation_count = 0;)
 211   NOT_PRODUCT(_allow_safepoint_count = 0;)
 212   NOT_PRODUCT(_skip_gcalot = false;)
 213   _jvmti_env_iteration_count = 0;
 214   set_allocated_bytes(0);
 215   _vm_operation_started_count = 0;
 216   _vm_operation_completed_count = 0;
 217   _current_pending_monitor = NULL;
 218   _current_pending_monitor_is_from_java = true;
 219   _current_waiting_monitor = NULL;
 220   _num_nested_signal = 0;
 221   omFreeList = NULL;
 222   omFreeCount = 0;
 223   omFreeProvision = 32;
 224   omInUseList = NULL;
 225   omInUseCount = 0;
 226 
 227 #ifdef ASSERT
 228   _visited_for_critical_count = false;
 229 #endif
 230 
 231   _SR_lock = new Monitor(Mutex::suspend_resume, "SR_lock", true);
 232   _suspend_flags = 0;
 233 
 234   // thread-specific hashCode stream generator state - Marsaglia shift-xor form
 235   _hashStateX = os::random();
 236   _hashStateY = 842502087;
 237   _hashStateZ = 0x8767;    // (int)(3579807591LL & 0xffff) ;
 238   _hashStateW = 273326509;
 239 
 240   _OnTrap   = 0;
 241   _schedctl = NULL;
 242   _Stalled  = 0;
 243   _TypeTag  = 0x2BAD;
 244 
 245   // Many of the following fields are effectively final - immutable
 246   // Note that nascent threads can't use the Native Monitor-Mutex
 247   // construct until the _MutexEvent is initialized ...
 248   // CONSIDER: instead of using a fixed set of purpose-dedicated ParkEvents
 249   // we might instead use a stack of ParkEvents that we could provision on-demand.
 250   // The stack would act as a cache to avoid calls to ParkEvent::Allocate()
 251   // and ::Release()
 252   _ParkEvent   = ParkEvent::Allocate(this);
 253   _SleepEvent  = ParkEvent::Allocate(this);
 254   _MutexEvent  = ParkEvent::Allocate(this);
 255   _MuxEvent    = ParkEvent::Allocate(this);
 256 
 257 #ifdef CHECK_UNHANDLED_OOPS
 258   if (CheckUnhandledOops) {
 259     _unhandled_oops = new UnhandledOops(this);
 260   }
 261 #endif // CHECK_UNHANDLED_OOPS
 262 #ifdef ASSERT
 263   if (UseBiasedLocking) {
 264     assert((((uintptr_t) this) & (markOopDesc::biased_lock_alignment - 1)) == 0, "forced alignment of thread object failed");
 265     assert(this == _real_malloc_address ||
 266            this == (void*) align_size_up((intptr_t) _real_malloc_address, markOopDesc::biased_lock_alignment),
 267            "bug in forced alignment of thread objects");
 268   }
 269 #endif // ASSERT
 270 }
 271 
 272 void Thread::initialize_thread_local_storage() {
 273   // Note: Make sure this method only calls
 274   // non-blocking operations. Otherwise, it might not work
 275   // with the thread-startup/safepoint interaction.
 276 
 277   // During Java thread startup, safepoint code should allow this
 278   // method to complete because it may need to allocate memory to
 279   // store information for the new thread.
 280 
 281   // initialize structure dependent on thread local storage
 282   ThreadLocalStorage::set_thread(this);
 283 }
 284 
 285 void Thread::record_stack_base_and_size() {
 286   set_stack_base(os::current_stack_base());
 287   set_stack_size(os::current_stack_size());
 288   if (is_Java_thread()) {
 289     ((JavaThread*) this)->set_stack_overflow_limit();
 290   }
 291   // CR 7190089: on Solaris, primordial thread's stack is adjusted
 292   // in initialize_thread(). Without the adjustment, stack size is
 293   // incorrect if stack is set to unlimited (ulimit -s unlimited).
 294   // So far, only Solaris has real implementation of initialize_thread().
 295   //
 296   // set up any platform-specific state.
 297   os::initialize_thread(this);
 298 
 299 #if INCLUDE_NMT
 300   // record thread's native stack, stack grows downward
 301   address stack_low_addr = stack_base() - stack_size();
 302   MemTracker::record_thread_stack(stack_low_addr, stack_size());
 303 #endif // INCLUDE_NMT
 304 }
 305 
 306 
 307 Thread::~Thread() {
 308   // Reclaim the objectmonitors from the omFreeList of the moribund thread.
 309   ObjectSynchronizer::omFlush(this);
 310 
 311   EVENT_THREAD_DESTRUCT(this);
 312 
 313   // stack_base can be NULL if the thread is never started or exited before
 314   // record_stack_base_and_size called. Although, we would like to ensure
 315   // that all started threads do call record_stack_base_and_size(), there is
 316   // not proper way to enforce that.
 317 #if INCLUDE_NMT
 318   if (_stack_base != NULL) {
 319     address low_stack_addr = stack_base() - stack_size();
 320     MemTracker::release_thread_stack(low_stack_addr, stack_size());
 321 #ifdef ASSERT
 322     set_stack_base(NULL);
 323 #endif
 324   }
 325 #endif // INCLUDE_NMT
 326 
 327   // deallocate data structures
 328   delete resource_area();
 329   // since the handle marks are using the handle area, we have to deallocated the root
 330   // handle mark before deallocating the thread's handle area,
 331   assert(last_handle_mark() != NULL, "check we have an element");
 332   delete last_handle_mark();
 333   assert(last_handle_mark() == NULL, "check we have reached the end");
 334 
 335   // It's possible we can encounter a null _ParkEvent, etc., in stillborn threads.
 336   // We NULL out the fields for good hygiene.
 337   ParkEvent::Release(_ParkEvent); _ParkEvent   = NULL;
 338   ParkEvent::Release(_SleepEvent); _SleepEvent  = NULL;
 339   ParkEvent::Release(_MutexEvent); _MutexEvent  = NULL;
 340   ParkEvent::Release(_MuxEvent); _MuxEvent    = NULL;
 341 
 342   delete handle_area();
 343   delete metadata_handles();
 344 
 345   // osthread() can be NULL, if creation of thread failed.
 346   if (osthread() != NULL) os::free_thread(osthread());
 347 
 348   delete _SR_lock;
 349 
 350   // clear thread local storage if the Thread is deleting itself
 351   if (this == Thread::current()) {
 352     ThreadLocalStorage::set_thread(NULL);
 353   } else {
 354     // In the case where we're not the current thread, invalidate all the
 355     // caches in case some code tries to get the current thread or the
 356     // thread that was destroyed, and gets stale information.
 357     ThreadLocalStorage::invalidate_all();
 358   }
 359   CHECK_UNHANDLED_OOPS_ONLY(if (CheckUnhandledOops) delete unhandled_oops();)
 360 }
 361 
 362 // NOTE: dummy function for assertion purpose.
 363 void Thread::run() {
 364   ShouldNotReachHere();
 365 }
 366 
 367 #ifdef ASSERT
 368 // Private method to check for dangling thread pointer
 369 void check_for_dangling_thread_pointer(Thread *thread) {
 370   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
 371          "possibility of dangling Thread pointer");
 372 }
 373 #endif
 374 
 375 
 376 #ifndef PRODUCT
 377 // Tracing method for basic thread operations
 378 void Thread::trace(const char* msg, const Thread* const thread) {
 379   if (!TraceThreadEvents) return;
 380   ResourceMark rm;
 381   ThreadCritical tc;
 382   const char *name = "non-Java thread";
 383   int prio = -1;
 384   if (thread->is_Java_thread()
 385       && !thread->is_Compiler_thread()) {
 386     // The Threads_lock must be held to get information about
 387     // this thread but may not be in some situations when
 388     // tracing  thread events.
 389     bool release_Threads_lock = false;
 390     if (!Threads_lock->owned_by_self()) {
 391       Threads_lock->lock();
 392       release_Threads_lock = true;
 393     }
 394     JavaThread* jt = (JavaThread *)thread;
 395     name = (char *)jt->get_thread_name();
 396     oop thread_oop = jt->threadObj();
 397     if (thread_oop != NULL) {
 398       prio = java_lang_Thread::priority(thread_oop);
 399     }
 400     if (release_Threads_lock) {
 401       Threads_lock->unlock();
 402     }
 403   }
 404   tty->print_cr("Thread::%s " INTPTR_FORMAT " [%lx] %s (prio: %d)", msg, thread, thread->osthread()->thread_id(), name, prio);
 405 }
 406 #endif
 407 
 408 
 409 ThreadPriority Thread::get_priority(const Thread* const thread) {
 410   trace("get priority", thread);
 411   ThreadPriority priority;
 412   // Can return an error!
 413   (void)os::get_priority(thread, priority);
 414   assert(MinPriority <= priority && priority <= MaxPriority, "non-Java priority found");
 415   return priority;
 416 }
 417 
 418 void Thread::set_priority(Thread* thread, ThreadPriority priority) {
 419   trace("set priority", thread);
 420   debug_only(check_for_dangling_thread_pointer(thread);)
 421   // Can return an error!
 422   (void)os::set_priority(thread, priority);
 423 }
 424 
 425 
 426 void Thread::start(Thread* thread) {
 427   trace("start", thread);
 428   // Start is different from resume in that its safety is guaranteed by context or
 429   // being called from a Java method synchronized on the Thread object.
 430   if (!DisableStartThread) {
 431     if (thread->is_Java_thread()) {
 432       // Initialize the thread state to RUNNABLE before starting this thread.
 433       // Can not set it after the thread started because we do not know the
 434       // exact thread state at that time. It could be in MONITOR_WAIT or
 435       // in SLEEPING or some other state.
 436       java_lang_Thread::set_thread_status(((JavaThread*)thread)->threadObj(),
 437                                           java_lang_Thread::RUNNABLE);
 438     }
 439     os::start_thread(thread);
 440   }
 441 }
 442 
 443 // Enqueue a VM_Operation to do the job for us - sometime later
 444 void Thread::send_async_exception(oop java_thread, oop java_throwable) {
 445   VM_ThreadStop* vm_stop = new VM_ThreadStop(java_thread, java_throwable);
 446   VMThread::execute(vm_stop);
 447 }
 448 
 449 
 450 // Check if an external suspend request has completed (or has been
 451 // cancelled). Returns true if the thread is externally suspended and
 452 // false otherwise.
 453 //
 454 // The bits parameter returns information about the code path through
 455 // the routine. Useful for debugging:
 456 //
 457 // set in is_ext_suspend_completed():
 458 // 0x00000001 - routine was entered
 459 // 0x00000010 - routine return false at end
 460 // 0x00000100 - thread exited (return false)
 461 // 0x00000200 - suspend request cancelled (return false)
 462 // 0x00000400 - thread suspended (return true)
 463 // 0x00001000 - thread is in a suspend equivalent state (return true)
 464 // 0x00002000 - thread is native and walkable (return true)
 465 // 0x00004000 - thread is native_trans and walkable (needed retry)
 466 //
 467 // set in wait_for_ext_suspend_completion():
 468 // 0x00010000 - routine was entered
 469 // 0x00020000 - suspend request cancelled before loop (return false)
 470 // 0x00040000 - thread suspended before loop (return true)
 471 // 0x00080000 - suspend request cancelled in loop (return false)
 472 // 0x00100000 - thread suspended in loop (return true)
 473 // 0x00200000 - suspend not completed during retry loop (return false)
 474 
 475 // Helper class for tracing suspend wait debug bits.
 476 //
 477 // 0x00000100 indicates that the target thread exited before it could
 478 // self-suspend which is not a wait failure. 0x00000200, 0x00020000 and
 479 // 0x00080000 each indicate a cancelled suspend request so they don't
 480 // count as wait failures either.
 481 #define DEBUG_FALSE_BITS (0x00000010 | 0x00200000)
 482 
 483 class TraceSuspendDebugBits : public StackObj {
 484  private:
 485   JavaThread * jt;
 486   bool         is_wait;
 487   bool         called_by_wait;  // meaningful when !is_wait
 488   uint32_t *   bits;
 489 
 490  public:
 491   TraceSuspendDebugBits(JavaThread *_jt, bool _is_wait, bool _called_by_wait,
 492                         uint32_t *_bits) {
 493     jt             = _jt;
 494     is_wait        = _is_wait;
 495     called_by_wait = _called_by_wait;
 496     bits           = _bits;
 497   }
 498 
 499   ~TraceSuspendDebugBits() {
 500     if (!is_wait) {
 501 #if 1
 502       // By default, don't trace bits for is_ext_suspend_completed() calls.
 503       // That trace is very chatty.
 504       return;
 505 #else
 506       if (!called_by_wait) {
 507         // If tracing for is_ext_suspend_completed() is enabled, then only
 508         // trace calls to it from wait_for_ext_suspend_completion()
 509         return;
 510       }
 511 #endif
 512     }
 513 
 514     if (AssertOnSuspendWaitFailure || TraceSuspendWaitFailures) {
 515       if (bits != NULL && (*bits & DEBUG_FALSE_BITS) != 0) {
 516         MutexLocker ml(Threads_lock);  // needed for get_thread_name()
 517         ResourceMark rm;
 518 
 519         tty->print_cr(
 520                       "Failed wait_for_ext_suspend_completion(thread=%s, debug_bits=%x)",
 521                       jt->get_thread_name(), *bits);
 522 
 523         guarantee(!AssertOnSuspendWaitFailure, "external suspend wait failed");
 524       }
 525     }
 526   }
 527 };
 528 #undef DEBUG_FALSE_BITS
 529 
 530 
 531 bool JavaThread::is_ext_suspend_completed(bool called_by_wait, int delay,
 532                                           uint32_t *bits) {
 533   TraceSuspendDebugBits tsdb(this, false /* !is_wait */, called_by_wait, bits);
 534 
 535   bool did_trans_retry = false;  // only do thread_in_native_trans retry once
 536   bool do_trans_retry;           // flag to force the retry
 537 
 538   *bits |= 0x00000001;
 539 
 540   do {
 541     do_trans_retry = false;
 542 
 543     if (is_exiting()) {
 544       // Thread is in the process of exiting. This is always checked
 545       // first to reduce the risk of dereferencing a freed JavaThread.
 546       *bits |= 0x00000100;
 547       return false;
 548     }
 549 
 550     if (!is_external_suspend()) {
 551       // Suspend request is cancelled. This is always checked before
 552       // is_ext_suspended() to reduce the risk of a rogue resume
 553       // confusing the thread that made the suspend request.
 554       *bits |= 0x00000200;
 555       return false;
 556     }
 557 
 558     if (is_ext_suspended()) {
 559       // thread is suspended
 560       *bits |= 0x00000400;
 561       return true;
 562     }
 563 
 564     // Now that we no longer do hard suspends of threads running
 565     // native code, the target thread can be changing thread state
 566     // while we are in this routine:
 567     //
 568     //   _thread_in_native -> _thread_in_native_trans -> _thread_blocked
 569     //
 570     // We save a copy of the thread state as observed at this moment
 571     // and make our decision about suspend completeness based on the
 572     // copy. This closes the race where the thread state is seen as
 573     // _thread_in_native_trans in the if-thread_blocked check, but is
 574     // seen as _thread_blocked in if-thread_in_native_trans check.
 575     JavaThreadState save_state = thread_state();
 576 
 577     if (save_state == _thread_blocked && is_suspend_equivalent()) {
 578       // If the thread's state is _thread_blocked and this blocking
 579       // condition is known to be equivalent to a suspend, then we can
 580       // consider the thread to be externally suspended. This means that
 581       // the code that sets _thread_blocked has been modified to do
 582       // self-suspension if the blocking condition releases. We also
 583       // used to check for CONDVAR_WAIT here, but that is now covered by
 584       // the _thread_blocked with self-suspension check.
 585       //
 586       // Return true since we wouldn't be here unless there was still an
 587       // external suspend request.
 588       *bits |= 0x00001000;
 589       return true;
 590     } else if (save_state == _thread_in_native && frame_anchor()->walkable()) {
 591       // Threads running native code will self-suspend on native==>VM/Java
 592       // transitions. If its stack is walkable (should always be the case
 593       // unless this function is called before the actual java_suspend()
 594       // call), then the wait is done.
 595       *bits |= 0x00002000;
 596       return true;
 597     } else if (!called_by_wait && !did_trans_retry &&
 598                save_state == _thread_in_native_trans &&
 599                frame_anchor()->walkable()) {
 600       // The thread is transitioning from thread_in_native to another
 601       // thread state. check_safepoint_and_suspend_for_native_trans()
 602       // will force the thread to self-suspend. If it hasn't gotten
 603       // there yet we may have caught the thread in-between the native
 604       // code check above and the self-suspend. Lucky us. If we were
 605       // called by wait_for_ext_suspend_completion(), then it
 606       // will be doing the retries so we don't have to.
 607       //
 608       // Since we use the saved thread state in the if-statement above,
 609       // there is a chance that the thread has already transitioned to
 610       // _thread_blocked by the time we get here. In that case, we will
 611       // make a single unnecessary pass through the logic below. This
 612       // doesn't hurt anything since we still do the trans retry.
 613 
 614       *bits |= 0x00004000;
 615 
 616       // Once the thread leaves thread_in_native_trans for another
 617       // thread state, we break out of this retry loop. We shouldn't
 618       // need this flag to prevent us from getting back here, but
 619       // sometimes paranoia is good.
 620       did_trans_retry = true;
 621 
 622       // We wait for the thread to transition to a more usable state.
 623       for (int i = 1; i <= SuspendRetryCount; i++) {
 624         // We used to do an "os::yield_all(i)" call here with the intention
 625         // that yielding would increase on each retry. However, the parameter
 626         // is ignored on Linux which means the yield didn't scale up. Waiting
 627         // on the SR_lock below provides a much more predictable scale up for
 628         // the delay. It also provides a simple/direct point to check for any
 629         // safepoint requests from the VMThread
 630 
 631         // temporarily drops SR_lock while doing wait with safepoint check
 632         // (if we're a JavaThread - the WatcherThread can also call this)
 633         // and increase delay with each retry
 634         SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 635 
 636         // check the actual thread state instead of what we saved above
 637         if (thread_state() != _thread_in_native_trans) {
 638           // the thread has transitioned to another thread state so
 639           // try all the checks (except this one) one more time.
 640           do_trans_retry = true;
 641           break;
 642         }
 643       } // end retry loop
 644 
 645 
 646     }
 647   } while (do_trans_retry);
 648 
 649   *bits |= 0x00000010;
 650   return false;
 651 }
 652 
 653 // Wait for an external suspend request to complete (or be cancelled).
 654 // Returns true if the thread is externally suspended and false otherwise.
 655 //
 656 bool JavaThread::wait_for_ext_suspend_completion(int retries, int delay,
 657                                                  uint32_t *bits) {
 658   TraceSuspendDebugBits tsdb(this, true /* is_wait */,
 659                              false /* !called_by_wait */, bits);
 660 
 661   // local flag copies to minimize SR_lock hold time
 662   bool is_suspended;
 663   bool pending;
 664   uint32_t reset_bits;
 665 
 666   // set a marker so is_ext_suspend_completed() knows we are the caller
 667   *bits |= 0x00010000;
 668 
 669   // We use reset_bits to reinitialize the bits value at the top of
 670   // each retry loop. This allows the caller to make use of any
 671   // unused bits for their own marking purposes.
 672   reset_bits = *bits;
 673 
 674   {
 675     MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
 676     is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 677                                             delay, bits);
 678     pending = is_external_suspend();
 679   }
 680   // must release SR_lock to allow suspension to complete
 681 
 682   if (!pending) {
 683     // A cancelled suspend request is the only false return from
 684     // is_ext_suspend_completed() that keeps us from entering the
 685     // retry loop.
 686     *bits |= 0x00020000;
 687     return false;
 688   }
 689 
 690   if (is_suspended) {
 691     *bits |= 0x00040000;
 692     return true;
 693   }
 694 
 695   for (int i = 1; i <= retries; i++) {
 696     *bits = reset_bits;  // reinit to only track last retry
 697 
 698     // We used to do an "os::yield_all(i)" call here with the intention
 699     // that yielding would increase on each retry. However, the parameter
 700     // is ignored on Linux which means the yield didn't scale up. Waiting
 701     // on the SR_lock below provides a much more predictable scale up for
 702     // the delay. It also provides a simple/direct point to check for any
 703     // safepoint requests from the VMThread
 704 
 705     {
 706       MutexLocker ml(SR_lock());
 707       // wait with safepoint check (if we're a JavaThread - the WatcherThread
 708       // can also call this)  and increase delay with each retry
 709       SR_lock()->wait(!Thread::current()->is_Java_thread(), i * delay);
 710 
 711       is_suspended = is_ext_suspend_completed(true /* called_by_wait */,
 712                                               delay, bits);
 713 
 714       // It is possible for the external suspend request to be cancelled
 715       // (by a resume) before the actual suspend operation is completed.
 716       // Refresh our local copy to see if we still need to wait.
 717       pending = is_external_suspend();
 718     }
 719 
 720     if (!pending) {
 721       // A cancelled suspend request is the only false return from
 722       // is_ext_suspend_completed() that keeps us from staying in the
 723       // retry loop.
 724       *bits |= 0x00080000;
 725       return false;
 726     }
 727 
 728     if (is_suspended) {
 729       *bits |= 0x00100000;
 730       return true;
 731     }
 732   } // end retry loop
 733 
 734   // thread did not suspend after all our retries
 735   *bits |= 0x00200000;
 736   return false;
 737 }
 738 
 739 #ifndef PRODUCT
 740 void JavaThread::record_jump(address target, address instr, const char* file,
 741                              int line) {
 742 
 743   // This should not need to be atomic as the only way for simultaneous
 744   // updates is via interrupts. Even then this should be rare or non-existent
 745   // and we don't care that much anyway.
 746 
 747   int index = _jmp_ring_index;
 748   _jmp_ring_index = (index + 1) & (jump_ring_buffer_size - 1);
 749   _jmp_ring[index]._target = (intptr_t) target;
 750   _jmp_ring[index]._instruction = (intptr_t) instr;
 751   _jmp_ring[index]._file = file;
 752   _jmp_ring[index]._line = line;
 753 }
 754 #endif // PRODUCT
 755 
 756 // Called by flat profiler
 757 // Callers have already called wait_for_ext_suspend_completion
 758 // The assertion for that is currently too complex to put here:
 759 bool JavaThread::profile_last_Java_frame(frame* _fr) {
 760   bool gotframe = false;
 761   // self suspension saves needed state.
 762   if (has_last_Java_frame() && _anchor.walkable()) {
 763     *_fr = pd_last_frame();
 764     gotframe = true;
 765   }
 766   return gotframe;
 767 }
 768 
 769 void Thread::interrupt(Thread* thread) {
 770   trace("interrupt", thread);
 771   debug_only(check_for_dangling_thread_pointer(thread);)
 772   os::interrupt(thread);
 773 }
 774 
 775 bool Thread::is_interrupted(Thread* thread, bool clear_interrupted) {
 776   trace("is_interrupted", thread);
 777   debug_only(check_for_dangling_thread_pointer(thread);)
 778   // Note:  If clear_interrupted==false, this simply fetches and
 779   // returns the value of the field osthread()->interrupted().
 780   return os::is_interrupted(thread, clear_interrupted);
 781 }
 782 
 783 
 784 // GC Support
 785 bool Thread::claim_oops_do_par_case(int strong_roots_parity) {
 786   jint thread_parity = _oops_do_parity;
 787   if (thread_parity != strong_roots_parity) {
 788     jint res = Atomic::cmpxchg(strong_roots_parity, &_oops_do_parity, thread_parity);
 789     if (res == thread_parity) {
 790       return true;
 791     } else {
 792       guarantee(res == strong_roots_parity, "Or else what?");
 793       assert(SharedHeap::heap()->workers()->active_workers() > 0,
 794              "Should only fail when parallel.");
 795       return false;
 796     }
 797   }
 798   assert(SharedHeap::heap()->workers()->active_workers() > 0,
 799          "Should only fail when parallel.");
 800   return false;
 801 }
 802 
 803 void Thread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
 804   active_handles()->oops_do(f);
 805   // Do oop for ThreadShadow
 806   f->do_oop((oop*)&_pending_exception);
 807   handle_area()->oops_do(f);
 808 }
 809 
 810 void Thread::nmethods_do(CodeBlobClosure* cf) {
 811   // no nmethods in a generic thread...
 812 }
 813 
 814 void Thread::metadata_do(void f(Metadata*)) {
 815   if (metadata_handles() != NULL) {
 816     for (int i = 0; i< metadata_handles()->length(); i++) {
 817       f(metadata_handles()->at(i));
 818     }
 819   }
 820 }
 821 
 822 void Thread::print_on(outputStream* st) const {
 823   // get_priority assumes osthread initialized
 824   if (osthread() != NULL) {
 825     int os_prio;
 826     if (os::get_native_priority(this, &os_prio) == OS_OK) {
 827       st->print("os_prio=%d ", os_prio);
 828     }
 829     st->print("tid=" INTPTR_FORMAT " ", this);
 830     ext().print_on(st);
 831     osthread()->print_on(st);
 832   }
 833   debug_only(if (WizardMode) print_owned_locks_on(st);)
 834 }
 835 
 836 // Thread::print_on_error() is called by fatal error handler. Don't use
 837 // any lock or allocate memory.
 838 void Thread::print_on_error(outputStream* st, char* buf, int buflen) const {
 839   if (is_VM_thread())                 st->print("VMThread");
 840   else if (is_Compiler_thread())      st->print("CompilerThread");
 841   else if (is_Java_thread())          st->print("JavaThread");
 842   else if (is_GC_task_thread())       st->print("GCTaskThread");
 843   else if (is_Watcher_thread())       st->print("WatcherThread");
 844   else if (is_ConcurrentGC_thread())  st->print("ConcurrentGCThread");
 845   else                                st->print("Thread");
 846 
 847   st->print(" [stack: " PTR_FORMAT "," PTR_FORMAT "]",
 848             _stack_base - _stack_size, _stack_base);
 849 
 850   if (osthread()) {
 851     st->print(" [id=%d]", osthread()->thread_id());
 852   }
 853 }
 854 
 855 #ifdef ASSERT
 856 void Thread::print_owned_locks_on(outputStream* st) const {
 857   Monitor *cur = _owned_locks;
 858   if (cur == NULL) {
 859     st->print(" (no locks) ");
 860   } else {
 861     st->print_cr(" Locks owned:");
 862     while (cur) {
 863       cur->print_on(st);
 864       cur = cur->next();
 865     }
 866   }
 867 }
 868 
 869 static int ref_use_count  = 0;
 870 
 871 bool Thread::owns_locks_but_compiled_lock() const {
 872   for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 873     if (cur != Compile_lock) return true;
 874   }
 875   return false;
 876 }
 877 
 878 
 879 #endif
 880 
 881 #ifndef PRODUCT
 882 
 883 // The flag: potential_vm_operation notifies if this particular safepoint state could potential
 884 // invoke the vm-thread (i.e., and oop allocation). In that case, we also have to make sure that
 885 // no threads which allow_vm_block's are held
 886 void Thread::check_for_valid_safepoint_state(bool potential_vm_operation) {
 887   // Check if current thread is allowed to block at a safepoint
 888   if (!(_allow_safepoint_count == 0)) {
 889     fatal("Possible safepoint reached by thread that does not allow it");
 890   }
 891   if (is_Java_thread() && ((JavaThread*)this)->thread_state() != _thread_in_vm) {
 892     fatal("LEAF method calling lock?");
 893   }
 894 
 895 #ifdef ASSERT
 896   if (potential_vm_operation && is_Java_thread()
 897       && !Universe::is_bootstrapping()) {
 898     // Make sure we do not hold any locks that the VM thread also uses.
 899     // This could potentially lead to deadlocks
 900     for (Monitor *cur = _owned_locks; cur; cur = cur->next()) {
 901       // Threads_lock is special, since the safepoint synchronization will not start before this is
 902       // acquired. Hence, a JavaThread cannot be holding it at a safepoint. So is VMOperationRequest_lock,
 903       // since it is used to transfer control between JavaThreads and the VMThread
 904       // Do not *exclude* any locks unless you are absolutely sure it is correct. Ask someone else first!
 905       if ((cur->allow_vm_block() &&
 906            cur != Threads_lock &&
 907            cur != Compile_lock &&               // Temporary: should not be necessary when we get separate compilation
 908            cur != VMOperationRequest_lock &&
 909            cur != VMOperationQueue_lock) ||
 910            cur->rank() == Mutex::special) {
 911         fatal(err_msg("Thread holding lock at safepoint that vm can block on: %s", cur->name()));
 912       }
 913     }
 914   }
 915 
 916   if (GCALotAtAllSafepoints) {
 917     // We could enter a safepoint here and thus have a gc
 918     InterfaceSupport::check_gc_alot();
 919   }
 920 #endif
 921 }
 922 #endif
 923 
 924 bool Thread::is_in_stack(address adr) const {
 925   assert(Thread::current() == this, "is_in_stack can only be called from current thread");
 926   address end = os::current_stack_pointer();
 927   // Allow non Java threads to call this without stack_base
 928   if (_stack_base == NULL) return true;
 929   if (stack_base() >= adr && adr >= end) return true;
 930 
 931   return false;
 932 }
 933 
 934 
 935 bool Thread::is_in_usable_stack(address adr) const {
 936   size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
 937   size_t usable_stack_size = _stack_size - stack_guard_size;
 938 
 939   return ((adr < stack_base()) && (adr >= stack_base() - usable_stack_size));
 940 }
 941 
 942 
 943 // We had to move these methods here, because vm threads get into ObjectSynchronizer::enter
 944 // However, there is a note in JavaThread::is_lock_owned() about the VM threads not being
 945 // used for compilation in the future. If that change is made, the need for these methods
 946 // should be revisited, and they should be removed if possible.
 947 
 948 bool Thread::is_lock_owned(address adr) const {
 949   return on_local_stack(adr);
 950 }
 951 
 952 bool Thread::set_as_starting_thread() {
 953   // NOTE: this must be called inside the main thread.
 954   return os::create_main_thread((JavaThread*)this);
 955 }
 956 
 957 static void initialize_class(Symbol* class_name, TRAPS) {
 958   Klass* klass = SystemDictionary::resolve_or_fail(class_name, true, CHECK);
 959   InstanceKlass::cast(klass)->initialize(CHECK);
 960 }
 961 
 962 
 963 // Creates the initial ThreadGroup
 964 static Handle create_initial_thread_group(TRAPS) {
 965   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_ThreadGroup(), true, CHECK_NH);
 966   instanceKlassHandle klass (THREAD, k);
 967 
 968   Handle system_instance = klass->allocate_instance_handle(CHECK_NH);
 969   {
 970     JavaValue result(T_VOID);
 971     JavaCalls::call_special(&result,
 972                             system_instance,
 973                             klass,
 974                             vmSymbols::object_initializer_name(),
 975                             vmSymbols::void_method_signature(),
 976                             CHECK_NH);
 977   }
 978   Universe::set_system_thread_group(system_instance());
 979 
 980   Handle main_instance = klass->allocate_instance_handle(CHECK_NH);
 981   {
 982     JavaValue result(T_VOID);
 983     Handle string = java_lang_String::create_from_str("main", CHECK_NH);
 984     JavaCalls::call_special(&result,
 985                             main_instance,
 986                             klass,
 987                             vmSymbols::object_initializer_name(),
 988                             vmSymbols::threadgroup_string_void_signature(),
 989                             system_instance,
 990                             string,
 991                             CHECK_NH);
 992   }
 993   return main_instance;
 994 }
 995 
 996 // Creates the initial Thread
 997 static oop create_initial_thread(Handle thread_group, JavaThread* thread,
 998                                  TRAPS) {
 999   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK_NULL);
1000   instanceKlassHandle klass (THREAD, k);
1001   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK_NULL);
1002 
1003   java_lang_Thread::set_thread(thread_oop(), thread);
1004   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1005   thread->set_threadObj(thread_oop());
1006 
1007   Handle string = java_lang_String::create_from_str("main", CHECK_NULL);
1008 
1009   JavaValue result(T_VOID);
1010   JavaCalls::call_special(&result, thread_oop,
1011                           klass,
1012                           vmSymbols::object_initializer_name(),
1013                           vmSymbols::threadgroup_string_void_signature(),
1014                           thread_group,
1015                           string,
1016                           CHECK_NULL);
1017   return thread_oop();
1018 }
1019 
1020 static void call_initializeSystemClass(TRAPS) {
1021   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1022   instanceKlassHandle klass (THREAD, k);
1023 
1024   JavaValue result(T_VOID);
1025   JavaCalls::call_static(&result, klass, vmSymbols::initializeSystemClass_name(),
1026                          vmSymbols::void_method_signature(), CHECK);
1027 }
1028 
1029 char java_runtime_name[128] = "";
1030 char java_runtime_version[128] = "";
1031 
1032 // extract the JRE name from sun.misc.Version.java_runtime_name
1033 static const char* get_java_runtime_name(TRAPS) {
1034   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1035                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1036   fieldDescriptor fd;
1037   bool found = k != NULL &&
1038                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_name_name(),
1039                                                         vmSymbols::string_signature(), &fd);
1040   if (found) {
1041     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1042     if (name_oop == NULL) {
1043       return NULL;
1044     }
1045     const char* name = java_lang_String::as_utf8_string(name_oop,
1046                                                         java_runtime_name,
1047                                                         sizeof(java_runtime_name));
1048     return name;
1049   } else {
1050     return NULL;
1051   }
1052 }
1053 
1054 // extract the JRE version from sun.misc.Version.java_runtime_version
1055 static const char* get_java_runtime_version(TRAPS) {
1056   Klass* k = SystemDictionary::find(vmSymbols::sun_misc_Version(),
1057                                     Handle(), Handle(), CHECK_AND_CLEAR_NULL);
1058   fieldDescriptor fd;
1059   bool found = k != NULL &&
1060                InstanceKlass::cast(k)->find_local_field(vmSymbols::java_runtime_version_name(),
1061                                                         vmSymbols::string_signature(), &fd);
1062   if (found) {
1063     oop name_oop = k->java_mirror()->obj_field(fd.offset());
1064     if (name_oop == NULL) {
1065       return NULL;
1066     }
1067     const char* name = java_lang_String::as_utf8_string(name_oop,
1068                                                         java_runtime_version,
1069                                                         sizeof(java_runtime_version));
1070     return name;
1071   } else {
1072     return NULL;
1073   }
1074 }
1075 
1076 // General purpose hook into Java code, run once when the VM is initialized.
1077 // The Java library method itself may be changed independently from the VM.
1078 static void call_postVMInitHook(TRAPS) {
1079   Klass* k = SystemDictionary::resolve_or_null(vmSymbols::sun_misc_PostVMInitHook(), THREAD);
1080   instanceKlassHandle klass (THREAD, k);
1081   if (klass.not_null()) {
1082     JavaValue result(T_VOID);
1083     JavaCalls::call_static(&result, klass, vmSymbols::run_method_name(),
1084                            vmSymbols::void_method_signature(),
1085                            CHECK);
1086   }
1087 }
1088 
1089 static void reset_vm_info_property(TRAPS) {
1090   // the vm info string
1091   ResourceMark rm(THREAD);
1092   const char *vm_info = VM_Version::vm_info_string();
1093 
1094   // java.lang.System class
1095   Klass* k =  SystemDictionary::resolve_or_fail(vmSymbols::java_lang_System(), true, CHECK);
1096   instanceKlassHandle klass (THREAD, k);
1097 
1098   // setProperty arguments
1099   Handle key_str    = java_lang_String::create_from_str("java.vm.info", CHECK);
1100   Handle value_str  = java_lang_String::create_from_str(vm_info, CHECK);
1101 
1102   // return value
1103   JavaValue r(T_OBJECT);
1104 
1105   // public static String setProperty(String key, String value);
1106   JavaCalls::call_static(&r,
1107                          klass,
1108                          vmSymbols::setProperty_name(),
1109                          vmSymbols::string_string_string_signature(),
1110                          key_str,
1111                          value_str,
1112                          CHECK);
1113 }
1114 
1115 
1116 void JavaThread::allocate_threadObj(Handle thread_group, char* thread_name,
1117                                     bool daemon, TRAPS) {
1118   assert(thread_group.not_null(), "thread group should be specified");
1119   assert(threadObj() == NULL, "should only create Java thread object once");
1120 
1121   Klass* k = SystemDictionary::resolve_or_fail(vmSymbols::java_lang_Thread(), true, CHECK);
1122   instanceKlassHandle klass (THREAD, k);
1123   instanceHandle thread_oop = klass->allocate_instance_handle(CHECK);
1124 
1125   java_lang_Thread::set_thread(thread_oop(), this);
1126   java_lang_Thread::set_priority(thread_oop(), NormPriority);
1127   set_threadObj(thread_oop());
1128 
1129   JavaValue result(T_VOID);
1130   if (thread_name != NULL) {
1131     Handle name = java_lang_String::create_from_str(thread_name, CHECK);
1132     // Thread gets assigned specified name and null target
1133     JavaCalls::call_special(&result,
1134                             thread_oop,
1135                             klass,
1136                             vmSymbols::object_initializer_name(),
1137                             vmSymbols::threadgroup_string_void_signature(),
1138                             thread_group, // Argument 1
1139                             name,         // Argument 2
1140                             THREAD);
1141   } else {
1142     // Thread gets assigned name "Thread-nnn" and null target
1143     // (java.lang.Thread doesn't have a constructor taking only a ThreadGroup argument)
1144     JavaCalls::call_special(&result,
1145                             thread_oop,
1146                             klass,
1147                             vmSymbols::object_initializer_name(),
1148                             vmSymbols::threadgroup_runnable_void_signature(),
1149                             thread_group, // Argument 1
1150                             Handle(),     // Argument 2
1151                             THREAD);
1152   }
1153 
1154 
1155   if (daemon) {
1156     java_lang_Thread::set_daemon(thread_oop());
1157   }
1158 
1159   if (HAS_PENDING_EXCEPTION) {
1160     return;
1161   }
1162 
1163   KlassHandle group(this, SystemDictionary::ThreadGroup_klass());
1164   Handle threadObj(this, this->threadObj());
1165 
1166   JavaCalls::call_special(&result,
1167                           thread_group,
1168                           group,
1169                           vmSymbols::add_method_name(),
1170                           vmSymbols::thread_void_signature(),
1171                           threadObj,          // Arg 1
1172                           THREAD);
1173 
1174 
1175 }
1176 
1177 // NamedThread --  non-JavaThread subclasses with multiple
1178 // uniquely named instances should derive from this.
1179 NamedThread::NamedThread() : Thread() {
1180   _name = NULL;
1181   _processed_thread = NULL;
1182 }
1183 
1184 NamedThread::~NamedThread() {
1185   if (_name != NULL) {
1186     FREE_C_HEAP_ARRAY(char, _name, mtThread);
1187     _name = NULL;
1188   }
1189 }
1190 
1191 void NamedThread::set_name(const char* format, ...) {
1192   guarantee(_name == NULL, "Only get to set name once.");
1193   _name = NEW_C_HEAP_ARRAY(char, max_name_len, mtThread);
1194   guarantee(_name != NULL, "alloc failure");
1195   va_list ap;
1196   va_start(ap, format);
1197   jio_vsnprintf(_name, max_name_len, format, ap);
1198   va_end(ap);
1199 }
1200 
1201 void NamedThread::print_on(outputStream* st) const {
1202   st->print("\"%s\" ", name());
1203   Thread::print_on(st);
1204   st->cr();
1205 }
1206 
1207 
1208 // ======= WatcherThread ========
1209 
1210 // The watcher thread exists to simulate timer interrupts.  It should
1211 // be replaced by an abstraction over whatever native support for
1212 // timer interrupts exists on the platform.
1213 
1214 WatcherThread* WatcherThread::_watcher_thread   = NULL;
1215 bool WatcherThread::_startable = false;
1216 volatile bool  WatcherThread::_should_terminate = false;
1217 
1218 WatcherThread::WatcherThread() : Thread(), _crash_protection(NULL) {
1219   assert(watcher_thread() == NULL, "we can only allocate one WatcherThread");
1220   if (os::create_thread(this, os::watcher_thread)) {
1221     _watcher_thread = this;
1222 
1223     // Set the watcher thread to the highest OS priority which should not be
1224     // used, unless a Java thread with priority java.lang.Thread.MAX_PRIORITY
1225     // is created. The only normal thread using this priority is the reference
1226     // handler thread, which runs for very short intervals only.
1227     // If the VMThread's priority is not lower than the WatcherThread profiling
1228     // will be inaccurate.
1229     os::set_priority(this, MaxPriority);
1230     if (!DisableStartThread) {
1231       os::start_thread(this);
1232     }
1233   }
1234 }
1235 
1236 int WatcherThread::sleep() const {
1237   MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1238 
1239   // remaining will be zero if there are no tasks,
1240   // causing the WatcherThread to sleep until a task is
1241   // enrolled
1242   int remaining = PeriodicTask::time_to_wait();
1243   int time_slept = 0;
1244 
1245   // we expect this to timeout - we only ever get unparked when
1246   // we should terminate or when a new task has been enrolled
1247   OSThreadWaitState osts(this->osthread(), false /* not Object.wait() */);
1248 
1249   jlong time_before_loop = os::javaTimeNanos();
1250 
1251   for (;;) {
1252     bool timedout = PeriodicTask_lock->wait(Mutex::_no_safepoint_check_flag, remaining);
1253     jlong now = os::javaTimeNanos();
1254 
1255     if (remaining == 0) {
1256       // if we didn't have any tasks we could have waited for a long time
1257       // consider the time_slept zero and reset time_before_loop
1258       time_slept = 0;
1259       time_before_loop = now;
1260     } else {
1261       // need to recalculate since we might have new tasks in _tasks
1262       time_slept = (int) ((now - time_before_loop) / 1000000);
1263     }
1264 
1265     // Change to task list or spurious wakeup of some kind
1266     if (timedout || _should_terminate) {
1267       break;
1268     }
1269 
1270     remaining = PeriodicTask::time_to_wait();
1271     if (remaining == 0) {
1272       // Last task was just disenrolled so loop around and wait until
1273       // another task gets enrolled
1274       continue;
1275     }
1276 
1277     remaining -= time_slept;
1278     if (remaining <= 0) {
1279       break;
1280     }
1281   }
1282 
1283   return time_slept;
1284 }
1285 
1286 void WatcherThread::run() {
1287   assert(this == watcher_thread(), "just checking");
1288 
1289   this->record_stack_base_and_size();
1290   this->initialize_thread_local_storage();
1291   this->set_active_handles(JNIHandleBlock::allocate_block());
1292   while (!_should_terminate) {
1293     assert(watcher_thread() == Thread::current(), "thread consistency check");
1294     assert(watcher_thread() == this, "thread consistency check");
1295 
1296     // Calculate how long it'll be until the next PeriodicTask work
1297     // should be done, and sleep that amount of time.
1298     int time_waited = sleep();
1299 
1300     if (is_error_reported()) {
1301       // A fatal error has happened, the error handler(VMError::report_and_die)
1302       // should abort JVM after creating an error log file. However in some
1303       // rare cases, the error handler itself might deadlock. Here we try to
1304       // kill JVM if the fatal error handler fails to abort in 2 minutes.
1305       //
1306       // This code is in WatcherThread because WatcherThread wakes up
1307       // periodically so the fatal error handler doesn't need to do anything;
1308       // also because the WatcherThread is less likely to crash than other
1309       // threads.
1310 
1311       for (;;) {
1312         if (!ShowMessageBoxOnError
1313             && (OnError == NULL || OnError[0] == '\0')
1314             && Arguments::abort_hook() == NULL) {
1315           os::sleep(this, 2 * 60 * 1000, false);
1316           fdStream err(defaultStream::output_fd());
1317           err.print_raw_cr("# [ timer expired, abort... ]");
1318           // skip atexit/vm_exit/vm_abort hooks
1319           os::die();
1320         }
1321 
1322         // Wake up 5 seconds later, the fatal handler may reset OnError or
1323         // ShowMessageBoxOnError when it is ready to abort.
1324         os::sleep(this, 5 * 1000, false);
1325       }
1326     }
1327 
1328     PeriodicTask::real_time_tick(time_waited);
1329   }
1330 
1331   // Signal that it is terminated
1332   {
1333     MutexLockerEx mu(Terminator_lock, Mutex::_no_safepoint_check_flag);
1334     _watcher_thread = NULL;
1335     Terminator_lock->notify();
1336   }
1337 
1338   // Thread destructor usually does this..
1339   ThreadLocalStorage::set_thread(NULL);
1340 }
1341 
1342 void WatcherThread::start() {
1343   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1344 
1345   if (watcher_thread() == NULL && _startable) {
1346     _should_terminate = false;
1347     // Create the single instance of WatcherThread
1348     new WatcherThread();
1349   }
1350 }
1351 
1352 void WatcherThread::make_startable() {
1353   assert(PeriodicTask_lock->owned_by_self(), "PeriodicTask_lock required");
1354   _startable = true;
1355 }
1356 
1357 void WatcherThread::stop() {
1358   // Get the PeriodicTask_lock if we can. If we cannot, then the
1359   // WatcherThread is using it and we don't want to block on that lock
1360   // here because that might cause a safepoint deadlock depending on
1361   // what the current WatcherThread tasks are doing.
1362   bool have_lock = PeriodicTask_lock->try_lock();
1363 
1364   _should_terminate = true;
1365   OrderAccess::fence();  // ensure WatcherThread sees update in main loop
1366 
1367   if (have_lock) {
1368     WatcherThread* watcher = watcher_thread();
1369     if (watcher != NULL) {
1370       // If we managed to get the lock, then we should unpark the
1371       // WatcherThread so that it can see we want it to stop.
1372       watcher->unpark();
1373     }
1374 
1375     PeriodicTask_lock->unlock();
1376   }
1377 
1378   // it is ok to take late safepoints here, if needed
1379   MutexLocker mu(Terminator_lock);
1380 
1381   while (watcher_thread() != NULL) {
1382     // This wait should make safepoint checks, wait without a timeout,
1383     // and wait as a suspend-equivalent condition.
1384     //
1385     // Note: If the FlatProfiler is running, then this thread is waiting
1386     // for the WatcherThread to terminate and the WatcherThread, via the
1387     // FlatProfiler task, is waiting for the external suspend request on
1388     // this thread to complete. wait_for_ext_suspend_completion() will
1389     // eventually timeout, but that takes time. Making this wait a
1390     // suspend-equivalent condition solves that timeout problem.
1391     //
1392     Terminator_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
1393                           Mutex::_as_suspend_equivalent_flag);
1394   }
1395 }
1396 
1397 void WatcherThread::unpark() {
1398   MutexLockerEx ml(PeriodicTask_lock->owned_by_self()
1399                    ? NULL
1400                    : PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
1401   PeriodicTask_lock->notify();
1402 }
1403 
1404 void WatcherThread::print_on(outputStream* st) const {
1405   st->print("\"%s\" ", name());
1406   Thread::print_on(st);
1407   st->cr();
1408 }
1409 
1410 // ======= JavaThread ========
1411 
1412 // A JavaThread is a normal Java thread
1413 
1414 void JavaThread::initialize() {
1415   // Initialize fields
1416 
1417   // Set the claimed par_id to UINT_MAX (ie not claiming any par_ids)
1418   set_claimed_par_id(UINT_MAX);
1419 
1420   set_saved_exception_pc(NULL);
1421   set_threadObj(NULL);
1422   _anchor.clear();
1423   set_entry_point(NULL);
1424   set_jni_functions(jni_functions());
1425   set_callee_target(NULL);
1426   set_vm_result(NULL);
1427   set_vm_result_2(NULL);
1428   set_vframe_array_head(NULL);
1429   set_vframe_array_last(NULL);
1430   set_deferred_locals(NULL);
1431   set_deopt_mark(NULL);
1432   set_deopt_nmethod(NULL);
1433   clear_must_deopt_id();
1434   set_monitor_chunks(NULL);
1435   set_next(NULL);
1436   set_thread_state(_thread_new);
1437   _terminated = _not_terminated;
1438   _privileged_stack_top = NULL;
1439   _array_for_gc = NULL;
1440   _suspend_equivalent = false;
1441   _in_deopt_handler = 0;
1442   _doing_unsafe_access = false;
1443   _stack_guard_state = stack_guard_unused;
1444   (void)const_cast<oop&>(_exception_oop = oop(NULL));
1445   _exception_pc  = 0;
1446   _exception_handler_pc = 0;
1447   _is_method_handle_return = 0;
1448   _jvmti_thread_state= NULL;
1449   _should_post_on_exceptions_flag = JNI_FALSE;
1450   _jvmti_get_loaded_classes_closure = NULL;
1451   _interp_only_mode    = 0;
1452   _special_runtime_exit_condition = _no_async_condition;
1453   _pending_async_exception = NULL;
1454   _thread_stat = NULL;
1455   _thread_stat = new ThreadStatistics();
1456   _blocked_on_compilation = false;
1457   _jni_active_critical = 0;
1458   _pending_jni_exception_check_fn = NULL;
1459   _do_not_unlock_if_synchronized = false;
1460   _cached_monitor_info = NULL;
1461   _parker = Parker::Allocate(this);
1462 
1463 #ifndef PRODUCT
1464   _jmp_ring_index = 0;
1465   for (int ji = 0; ji < jump_ring_buffer_size; ji++) {
1466     record_jump(NULL, NULL, NULL, 0);
1467   }
1468 #endif // PRODUCT
1469 
1470   set_thread_profiler(NULL);
1471   if (FlatProfiler::is_active()) {
1472     // This is where we would decide to either give each thread it's own profiler
1473     // or use one global one from FlatProfiler,
1474     // or up to some count of the number of profiled threads, etc.
1475     ThreadProfiler* pp = new ThreadProfiler();
1476     pp->engage();
1477     set_thread_profiler(pp);
1478   }
1479 
1480   // Setup safepoint state info for this thread
1481   ThreadSafepointState::create(this);
1482 
1483   debug_only(_java_call_counter = 0);
1484 
1485   // JVMTI PopFrame support
1486   _popframe_condition = popframe_inactive;
1487   _popframe_preserved_args = NULL;
1488   _popframe_preserved_args_size = 0;
1489 
1490   pd_initialize();
1491 }
1492 
1493 #if INCLUDE_ALL_GCS
1494 SATBMarkQueueSet JavaThread::_satb_mark_queue_set;
1495 DirtyCardQueueSet JavaThread::_dirty_card_queue_set;
1496 #endif // INCLUDE_ALL_GCS
1497 
1498 JavaThread::JavaThread(bool is_attaching_via_jni) :
1499                        Thread()
1500 #if INCLUDE_ALL_GCS
1501                        , _satb_mark_queue(&_satb_mark_queue_set),
1502                        _dirty_card_queue(&_dirty_card_queue_set)
1503 #endif // INCLUDE_ALL_GCS
1504 {
1505   initialize();
1506   if (is_attaching_via_jni) {
1507     _jni_attach_state = _attaching_via_jni;
1508   } else {
1509     _jni_attach_state = _not_attaching_via_jni;
1510   }
1511   assert(deferred_card_mark().is_empty(), "Default MemRegion ctor");
1512 }
1513 
1514 bool JavaThread::reguard_stack(address cur_sp) {
1515   if (_stack_guard_state != stack_guard_yellow_disabled) {
1516     return true; // Stack already guarded or guard pages not needed.
1517   }
1518 
1519   if (register_stack_overflow()) {
1520     // For those architectures which have separate register and
1521     // memory stacks, we must check the register stack to see if
1522     // it has overflowed.
1523     return false;
1524   }
1525 
1526   // Java code never executes within the yellow zone: the latter is only
1527   // there to provoke an exception during stack banging.  If java code
1528   // is executing there, either StackShadowPages should be larger, or
1529   // some exception code in c1, c2 or the interpreter isn't unwinding
1530   // when it should.
1531   guarantee(cur_sp > stack_yellow_zone_base(), "not enough space to reguard - increase StackShadowPages");
1532 
1533   enable_stack_yellow_zone();
1534   return true;
1535 }
1536 
1537 bool JavaThread::reguard_stack(void) {
1538   return reguard_stack(os::current_stack_pointer());
1539 }
1540 
1541 
1542 void JavaThread::block_if_vm_exited() {
1543   if (_terminated == _vm_exited) {
1544     // _vm_exited is set at safepoint, and Threads_lock is never released
1545     // we will block here forever
1546     Threads_lock->lock_without_safepoint_check();
1547     ShouldNotReachHere();
1548   }
1549 }
1550 
1551 
1552 // Remove this ifdef when C1 is ported to the compiler interface.
1553 static void compiler_thread_entry(JavaThread* thread, TRAPS);
1554 static void sweeper_thread_entry(JavaThread* thread, TRAPS);
1555 
1556 JavaThread::JavaThread(ThreadFunction entry_point, size_t stack_sz) :
1557                        Thread()
1558 #if INCLUDE_ALL_GCS
1559                        , _satb_mark_queue(&_satb_mark_queue_set),
1560                        _dirty_card_queue(&_dirty_card_queue_set)
1561 #endif // INCLUDE_ALL_GCS
1562 {
1563   if (TraceThreadEvents) {
1564     tty->print_cr("creating thread %p", this);
1565   }
1566   initialize();
1567   _jni_attach_state = _not_attaching_via_jni;
1568   set_entry_point(entry_point);
1569   // Create the native thread itself.
1570   // %note runtime_23
1571   os::ThreadType thr_type = os::java_thread;
1572   thr_type = entry_point == &compiler_thread_entry ? os::compiler_thread :
1573                                                      os::java_thread;
1574   os::create_thread(this, thr_type, stack_sz);
1575   // The _osthread may be NULL here because we ran out of memory (too many threads active).
1576   // We need to throw and OutOfMemoryError - however we cannot do this here because the caller
1577   // may hold a lock and all locks must be unlocked before throwing the exception (throwing
1578   // the exception consists of creating the exception object & initializing it, initialization
1579   // will leave the VM via a JavaCall and then all locks must be unlocked).
1580   //
1581   // The thread is still suspended when we reach here. Thread must be explicit started
1582   // by creator! Furthermore, the thread must also explicitly be added to the Threads list
1583   // by calling Threads:add. The reason why this is not done here, is because the thread
1584   // object must be fully initialized (take a look at JVM_Start)
1585 }
1586 
1587 JavaThread::~JavaThread() {
1588   if (TraceThreadEvents) {
1589     tty->print_cr("terminate thread %p", this);
1590   }
1591 
1592   // JSR166 -- return the parker to the free list
1593   Parker::Release(_parker);
1594   _parker = NULL;
1595 
1596   // Free any remaining  previous UnrollBlock
1597   vframeArray* old_array = vframe_array_last();
1598 
1599   if (old_array != NULL) {
1600     Deoptimization::UnrollBlock* old_info = old_array->unroll_block();
1601     old_array->set_unroll_block(NULL);
1602     delete old_info;
1603     delete old_array;
1604   }
1605 
1606   GrowableArray<jvmtiDeferredLocalVariableSet*>* deferred = deferred_locals();
1607   if (deferred != NULL) {
1608     // This can only happen if thread is destroyed before deoptimization occurs.
1609     assert(deferred->length() != 0, "empty array!");
1610     do {
1611       jvmtiDeferredLocalVariableSet* dlv = deferred->at(0);
1612       deferred->remove_at(0);
1613       // individual jvmtiDeferredLocalVariableSet are CHeapObj's
1614       delete dlv;
1615     } while (deferred->length() != 0);
1616     delete deferred;
1617   }
1618 
1619   // All Java related clean up happens in exit
1620   ThreadSafepointState::destroy(this);
1621   if (_thread_profiler != NULL) delete _thread_profiler;
1622   if (_thread_stat != NULL) delete _thread_stat;
1623 }
1624 
1625 
1626 // The first routine called by a new Java thread
1627 void JavaThread::run() {
1628   // initialize thread-local alloc buffer related fields
1629   this->initialize_tlab();
1630 
1631   // used to test validity of stack trace backs
1632   this->record_base_of_stack_pointer();
1633 
1634   // Record real stack base and size.
1635   this->record_stack_base_and_size();
1636 
1637   // Initialize thread local storage; set before calling MutexLocker
1638   this->initialize_thread_local_storage();
1639 
1640   this->create_stack_guard_pages();
1641 
1642   this->cache_global_variables();
1643 
1644   // Thread is now sufficient initialized to be handled by the safepoint code as being
1645   // in the VM. Change thread state from _thread_new to _thread_in_vm
1646   ThreadStateTransition::transition_and_fence(this, _thread_new, _thread_in_vm);
1647 
1648   assert(JavaThread::current() == this, "sanity check");
1649   assert(!Thread::current()->owns_locks(), "sanity check");
1650 
1651   DTRACE_THREAD_PROBE(start, this);
1652 
1653   // This operation might block. We call that after all safepoint checks for a new thread has
1654   // been completed.
1655   this->set_active_handles(JNIHandleBlock::allocate_block());
1656 
1657   if (JvmtiExport::should_post_thread_life()) {
1658     JvmtiExport::post_thread_start(this);
1659   }
1660 
1661   EventThreadStart event;
1662   if (event.should_commit()) {
1663     event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1664     event.commit();
1665   }
1666 
1667   // We call another function to do the rest so we are sure that the stack addresses used
1668   // from there will be lower than the stack base just computed
1669   thread_main_inner();
1670 
1671   // Note, thread is no longer valid at this point!
1672 }
1673 
1674 
1675 void JavaThread::thread_main_inner() {
1676   assert(JavaThread::current() == this, "sanity check");
1677   assert(this->threadObj() != NULL, "just checking");
1678 
1679   // Execute thread entry point unless this thread has a pending exception
1680   // or has been stopped before starting.
1681   // Note: Due to JVM_StopThread we can have pending exceptions already!
1682   if (!this->has_pending_exception() &&
1683       !java_lang_Thread::is_stillborn(this->threadObj())) {
1684     {
1685       ResourceMark rm(this);
1686       this->set_native_thread_name(this->get_thread_name());
1687     }
1688     HandleMark hm(this);
1689     this->entry_point()(this, this);
1690   }
1691 
1692   DTRACE_THREAD_PROBE(stop, this);
1693 
1694   this->exit(false);
1695   delete this;
1696 }
1697 
1698 
1699 static void ensure_join(JavaThread* thread) {
1700   // We do not need to grap the Threads_lock, since we are operating on ourself.
1701   Handle threadObj(thread, thread->threadObj());
1702   assert(threadObj.not_null(), "java thread object must exist");
1703   ObjectLocker lock(threadObj, thread);
1704   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1705   thread->clear_pending_exception();
1706   // Thread is exiting. So set thread_status field in  java.lang.Thread class to TERMINATED.
1707   java_lang_Thread::set_thread_status(threadObj(), java_lang_Thread::TERMINATED);
1708   // Clear the native thread instance - this makes isAlive return false and allows the join()
1709   // to complete once we've done the notify_all below
1710   java_lang_Thread::set_thread(threadObj(), NULL);
1711   lock.notify_all(thread);
1712   // Ignore pending exception (ThreadDeath), since we are exiting anyway
1713   thread->clear_pending_exception();
1714 }
1715 
1716 
1717 // For any new cleanup additions, please check to see if they need to be applied to
1718 // cleanup_failed_attach_current_thread as well.
1719 void JavaThread::exit(bool destroy_vm, ExitType exit_type) {
1720   assert(this == JavaThread::current(), "thread consistency check");
1721 
1722   HandleMark hm(this);
1723   Handle uncaught_exception(this, this->pending_exception());
1724   this->clear_pending_exception();
1725   Handle threadObj(this, this->threadObj());
1726   assert(threadObj.not_null(), "Java thread object should be created");
1727 
1728   if (get_thread_profiler() != NULL) {
1729     get_thread_profiler()->disengage();
1730     ResourceMark rm;
1731     get_thread_profiler()->print(get_thread_name());
1732   }
1733 
1734 
1735   // FIXIT: This code should be moved into else part, when reliable 1.2/1.3 check is in place
1736   {
1737     EXCEPTION_MARK;
1738 
1739     CLEAR_PENDING_EXCEPTION;
1740   }
1741   if (!destroy_vm) {
1742     if (uncaught_exception.not_null()) {
1743       EXCEPTION_MARK;
1744       // Call method Thread.dispatchUncaughtException().
1745       KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1746       JavaValue result(T_VOID);
1747       JavaCalls::call_virtual(&result,
1748                               threadObj, thread_klass,
1749                               vmSymbols::dispatchUncaughtException_name(),
1750                               vmSymbols::throwable_void_signature(),
1751                               uncaught_exception,
1752                               THREAD);
1753       if (HAS_PENDING_EXCEPTION) {
1754         ResourceMark rm(this);
1755         jio_fprintf(defaultStream::error_stream(),
1756                     "\nException: %s thrown from the UncaughtExceptionHandler"
1757                     " in thread \"%s\"\n",
1758                     pending_exception()->klass()->external_name(),
1759                     get_thread_name());
1760         CLEAR_PENDING_EXCEPTION;
1761       }
1762     }
1763 
1764     // Called before the java thread exit since we want to read info
1765     // from java_lang_Thread object
1766     EventThreadEnd event;
1767     if (event.should_commit()) {
1768       event.set_javalangthread(java_lang_Thread::thread_id(this->threadObj()));
1769       event.commit();
1770     }
1771 
1772     // Call after last event on thread
1773     EVENT_THREAD_EXIT(this);
1774 
1775     // Call Thread.exit(). We try 3 times in case we got another Thread.stop during
1776     // the execution of the method. If that is not enough, then we don't really care. Thread.stop
1777     // is deprecated anyhow.
1778     if (!is_Compiler_thread()) {
1779       int count = 3;
1780       while (java_lang_Thread::threadGroup(threadObj()) != NULL && (count-- > 0)) {
1781         EXCEPTION_MARK;
1782         JavaValue result(T_VOID);
1783         KlassHandle thread_klass(THREAD, SystemDictionary::Thread_klass());
1784         JavaCalls::call_virtual(&result,
1785                                 threadObj, thread_klass,
1786                                 vmSymbols::exit_method_name(),
1787                                 vmSymbols::void_method_signature(),
1788                                 THREAD);
1789         CLEAR_PENDING_EXCEPTION;
1790       }
1791     }
1792     // notify JVMTI
1793     if (JvmtiExport::should_post_thread_life()) {
1794       JvmtiExport::post_thread_end(this);
1795     }
1796 
1797     // We have notified the agents that we are exiting, before we go on,
1798     // we must check for a pending external suspend request and honor it
1799     // in order to not surprise the thread that made the suspend request.
1800     while (true) {
1801       {
1802         MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
1803         if (!is_external_suspend()) {
1804           set_terminated(_thread_exiting);
1805           ThreadService::current_thread_exiting(this);
1806           break;
1807         }
1808         // Implied else:
1809         // Things get a little tricky here. We have a pending external
1810         // suspend request, but we are holding the SR_lock so we
1811         // can't just self-suspend. So we temporarily drop the lock
1812         // and then self-suspend.
1813       }
1814 
1815       ThreadBlockInVM tbivm(this);
1816       java_suspend_self();
1817 
1818       // We're done with this suspend request, but we have to loop around
1819       // and check again. Eventually we will get SR_lock without a pending
1820       // external suspend request and will be able to mark ourselves as
1821       // exiting.
1822     }
1823     // no more external suspends are allowed at this point
1824   } else {
1825     // before_exit() has already posted JVMTI THREAD_END events
1826   }
1827 
1828   // Notify waiters on thread object. This has to be done after exit() is called
1829   // on the thread (if the thread is the last thread in a daemon ThreadGroup the
1830   // group should have the destroyed bit set before waiters are notified).
1831   ensure_join(this);
1832   assert(!this->has_pending_exception(), "ensure_join should have cleared");
1833 
1834   // 6282335 JNI DetachCurrentThread spec states that all Java monitors
1835   // held by this thread must be released.  A detach operation must only
1836   // get here if there are no Java frames on the stack.  Therefore, any
1837   // owned monitors at this point MUST be JNI-acquired monitors which are
1838   // pre-inflated and in the monitor cache.
1839   //
1840   // ensure_join() ignores IllegalThreadStateExceptions, and so does this.
1841   if (exit_type == jni_detach && JNIDetachReleasesMonitors) {
1842     assert(!this->has_last_Java_frame(), "detaching with Java frames?");
1843     ObjectSynchronizer::release_monitors_owned_by_thread(this);
1844     assert(!this->has_pending_exception(), "release_monitors should have cleared");
1845   }
1846 
1847   // These things needs to be done while we are still a Java Thread. Make sure that thread
1848   // is in a consistent state, in case GC happens
1849   assert(_privileged_stack_top == NULL, "must be NULL when we get here");
1850 
1851   if (active_handles() != NULL) {
1852     JNIHandleBlock* block = active_handles();
1853     set_active_handles(NULL);
1854     JNIHandleBlock::release_block(block);
1855   }
1856 
1857   if (free_handle_block() != NULL) {
1858     JNIHandleBlock* block = free_handle_block();
1859     set_free_handle_block(NULL);
1860     JNIHandleBlock::release_block(block);
1861   }
1862 
1863   // These have to be removed while this is still a valid thread.
1864   remove_stack_guard_pages();
1865 
1866   if (UseTLAB) {
1867     tlab().make_parsable(true);  // retire TLAB
1868   }
1869 
1870   if (JvmtiEnv::environments_might_exist()) {
1871     JvmtiExport::cleanup_thread(this);
1872   }
1873 
1874   // We must flush any deferred card marks before removing a thread from
1875   // the list of active threads.
1876   Universe::heap()->flush_deferred_store_barrier(this);
1877   assert(deferred_card_mark().is_empty(), "Should have been flushed");
1878 
1879 #if INCLUDE_ALL_GCS
1880   // We must flush the G1-related buffers before removing a thread
1881   // from the list of active threads. We must do this after any deferred
1882   // card marks have been flushed (above) so that any entries that are
1883   // added to the thread's dirty card queue as a result are not lost.
1884   if (UseG1GC) {
1885     flush_barrier_queues();
1886   }
1887 #endif // INCLUDE_ALL_GCS
1888 
1889   // Remove from list of active threads list, and notify VM thread if we are the last non-daemon thread
1890   Threads::remove(this);
1891 }
1892 
1893 #if INCLUDE_ALL_GCS
1894 // Flush G1-related queues.
1895 void JavaThread::flush_barrier_queues() {
1896   satb_mark_queue().flush();
1897   dirty_card_queue().flush();
1898 }
1899 
1900 void JavaThread::initialize_queues() {
1901   assert(!SafepointSynchronize::is_at_safepoint(),
1902          "we should not be at a safepoint");
1903 
1904   ObjPtrQueue& satb_queue = satb_mark_queue();
1905   SATBMarkQueueSet& satb_queue_set = satb_mark_queue_set();
1906   // The SATB queue should have been constructed with its active
1907   // field set to false.
1908   assert(!satb_queue.is_active(), "SATB queue should not be active");
1909   assert(satb_queue.is_empty(), "SATB queue should be empty");
1910   // If we are creating the thread during a marking cycle, we should
1911   // set the active field of the SATB queue to true.
1912   if (satb_queue_set.is_active()) {
1913     satb_queue.set_active(true);
1914   }
1915 
1916   DirtyCardQueue& dirty_queue = dirty_card_queue();
1917   // The dirty card queue should have been constructed with its
1918   // active field set to true.
1919   assert(dirty_queue.is_active(), "dirty card queue should be active");
1920 }
1921 #endif // INCLUDE_ALL_GCS
1922 
1923 void JavaThread::cleanup_failed_attach_current_thread() {
1924   if (get_thread_profiler() != NULL) {
1925     get_thread_profiler()->disengage();
1926     ResourceMark rm;
1927     get_thread_profiler()->print(get_thread_name());
1928   }
1929 
1930   if (active_handles() != NULL) {
1931     JNIHandleBlock* block = active_handles();
1932     set_active_handles(NULL);
1933     JNIHandleBlock::release_block(block);
1934   }
1935 
1936   if (free_handle_block() != NULL) {
1937     JNIHandleBlock* block = free_handle_block();
1938     set_free_handle_block(NULL);
1939     JNIHandleBlock::release_block(block);
1940   }
1941 
1942   // These have to be removed while this is still a valid thread.
1943   remove_stack_guard_pages();
1944 
1945   if (UseTLAB) {
1946     tlab().make_parsable(true);  // retire TLAB, if any
1947   }
1948 
1949 #if INCLUDE_ALL_GCS
1950   if (UseG1GC) {
1951     flush_barrier_queues();
1952   }
1953 #endif // INCLUDE_ALL_GCS
1954 
1955   Threads::remove(this);
1956   delete this;
1957 }
1958 
1959 
1960 
1961 
1962 JavaThread* JavaThread::active() {
1963   Thread* thread = ThreadLocalStorage::thread();
1964   assert(thread != NULL, "just checking");
1965   if (thread->is_Java_thread()) {
1966     return (JavaThread*) thread;
1967   } else {
1968     assert(thread->is_VM_thread(), "this must be a vm thread");
1969     VM_Operation* op = ((VMThread*) thread)->vm_operation();
1970     JavaThread *ret=op == NULL ? NULL : (JavaThread *)op->calling_thread();
1971     assert(ret->is_Java_thread(), "must be a Java thread");
1972     return ret;
1973   }
1974 }
1975 
1976 bool JavaThread::is_lock_owned(address adr) const {
1977   if (Thread::is_lock_owned(adr)) return true;
1978 
1979   for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
1980     if (chunk->contains(adr)) return true;
1981   }
1982 
1983   return false;
1984 }
1985 
1986 
1987 void JavaThread::add_monitor_chunk(MonitorChunk* chunk) {
1988   chunk->set_next(monitor_chunks());
1989   set_monitor_chunks(chunk);
1990 }
1991 
1992 void JavaThread::remove_monitor_chunk(MonitorChunk* chunk) {
1993   guarantee(monitor_chunks() != NULL, "must be non empty");
1994   if (monitor_chunks() == chunk) {
1995     set_monitor_chunks(chunk->next());
1996   } else {
1997     MonitorChunk* prev = monitor_chunks();
1998     while (prev->next() != chunk) prev = prev->next();
1999     prev->set_next(chunk->next());
2000   }
2001 }
2002 
2003 // JVM support.
2004 
2005 // Note: this function shouldn't block if it's called in
2006 // _thread_in_native_trans state (such as from
2007 // check_special_condition_for_native_trans()).
2008 void JavaThread::check_and_handle_async_exceptions(bool check_unsafe_error) {
2009 
2010   if (has_last_Java_frame() && has_async_condition()) {
2011     // If we are at a polling page safepoint (not a poll return)
2012     // then we must defer async exception because live registers
2013     // will be clobbered by the exception path. Poll return is
2014     // ok because the call we a returning from already collides
2015     // with exception handling registers and so there is no issue.
2016     // (The exception handling path kills call result registers but
2017     //  this is ok since the exception kills the result anyway).
2018 
2019     if (is_at_poll_safepoint()) {
2020       // if the code we are returning to has deoptimized we must defer
2021       // the exception otherwise live registers get clobbered on the
2022       // exception path before deoptimization is able to retrieve them.
2023       //
2024       RegisterMap map(this, false);
2025       frame caller_fr = last_frame().sender(&map);
2026       assert(caller_fr.is_compiled_frame(), "what?");
2027       if (caller_fr.is_deoptimized_frame()) {
2028         if (TraceExceptions) {
2029           ResourceMark rm;
2030           tty->print_cr("deferred async exception at compiled safepoint");
2031         }
2032         return;
2033       }
2034     }
2035   }
2036 
2037   JavaThread::AsyncRequests condition = clear_special_runtime_exit_condition();
2038   if (condition == _no_async_condition) {
2039     // Conditions have changed since has_special_runtime_exit_condition()
2040     // was called:
2041     // - if we were here only because of an external suspend request,
2042     //   then that was taken care of above (or cancelled) so we are done
2043     // - if we were here because of another async request, then it has
2044     //   been cleared between the has_special_runtime_exit_condition()
2045     //   and now so again we are done
2046     return;
2047   }
2048 
2049   // Check for pending async. exception
2050   if (_pending_async_exception != NULL) {
2051     // Only overwrite an already pending exception, if it is not a threadDeath.
2052     if (!has_pending_exception() || !pending_exception()->is_a(SystemDictionary::ThreadDeath_klass())) {
2053 
2054       // We cannot call Exceptions::_throw(...) here because we cannot block
2055       set_pending_exception(_pending_async_exception, __FILE__, __LINE__);
2056 
2057       if (TraceExceptions) {
2058         ResourceMark rm;
2059         tty->print("Async. exception installed at runtime exit (" INTPTR_FORMAT ")", this);
2060         if (has_last_Java_frame()) {
2061           frame f = last_frame();
2062           tty->print(" (pc: " INTPTR_FORMAT " sp: " INTPTR_FORMAT " )", f.pc(), f.sp());
2063         }
2064         tty->print_cr(" of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2065       }
2066       _pending_async_exception = NULL;
2067       clear_has_async_exception();
2068     }
2069   }
2070 
2071   if (check_unsafe_error &&
2072       condition == _async_unsafe_access_error && !has_pending_exception()) {
2073     condition = _no_async_condition;  // done
2074     switch (thread_state()) {
2075     case _thread_in_vm: {
2076       JavaThread* THREAD = this;
2077       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2078     }
2079     case _thread_in_native: {
2080       ThreadInVMfromNative tiv(this);
2081       JavaThread* THREAD = this;
2082       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in an unsafe memory access operation");
2083     }
2084     case _thread_in_Java: {
2085       ThreadInVMfromJava tiv(this);
2086       JavaThread* THREAD = this;
2087       THROW_MSG(vmSymbols::java_lang_InternalError(), "a fault occurred in a recent unsafe memory access operation in compiled Java code");
2088     }
2089     default:
2090       ShouldNotReachHere();
2091     }
2092   }
2093 
2094   assert(condition == _no_async_condition || has_pending_exception() ||
2095          (!check_unsafe_error && condition == _async_unsafe_access_error),
2096          "must have handled the async condition, if no exception");
2097 }
2098 
2099 void JavaThread::handle_special_runtime_exit_condition(bool check_asyncs) {
2100   //
2101   // Check for pending external suspend. Internal suspend requests do
2102   // not use handle_special_runtime_exit_condition().
2103   // If JNIEnv proxies are allowed, don't self-suspend if the target
2104   // thread is not the current thread. In older versions of jdbx, jdbx
2105   // threads could call into the VM with another thread's JNIEnv so we
2106   // can be here operating on behalf of a suspended thread (4432884).
2107   bool do_self_suspend = is_external_suspend_with_lock();
2108   if (do_self_suspend && (!AllowJNIEnvProxy || this == JavaThread::current())) {
2109     //
2110     // Because thread is external suspended the safepoint code will count
2111     // thread as at a safepoint. This can be odd because we can be here
2112     // as _thread_in_Java which would normally transition to _thread_blocked
2113     // at a safepoint. We would like to mark the thread as _thread_blocked
2114     // before calling java_suspend_self like all other callers of it but
2115     // we must then observe proper safepoint protocol. (We can't leave
2116     // _thread_blocked with a safepoint in progress). However we can be
2117     // here as _thread_in_native_trans so we can't use a normal transition
2118     // constructor/destructor pair because they assert on that type of
2119     // transition. We could do something like:
2120     //
2121     // JavaThreadState state = thread_state();
2122     // set_thread_state(_thread_in_vm);
2123     // {
2124     //   ThreadBlockInVM tbivm(this);
2125     //   java_suspend_self()
2126     // }
2127     // set_thread_state(_thread_in_vm_trans);
2128     // if (safepoint) block;
2129     // set_thread_state(state);
2130     //
2131     // but that is pretty messy. Instead we just go with the way the
2132     // code has worked before and note that this is the only path to
2133     // java_suspend_self that doesn't put the thread in _thread_blocked
2134     // mode.
2135 
2136     frame_anchor()->make_walkable(this);
2137     java_suspend_self();
2138 
2139     // We might be here for reasons in addition to the self-suspend request
2140     // so check for other async requests.
2141   }
2142 
2143   if (check_asyncs) {
2144     check_and_handle_async_exceptions();
2145   }
2146 }
2147 
2148 void JavaThread::send_thread_stop(oop java_throwable)  {
2149   assert(Thread::current()->is_VM_thread(), "should be in the vm thread");
2150   assert(Threads_lock->is_locked(), "Threads_lock should be locked by safepoint code");
2151   assert(SafepointSynchronize::is_at_safepoint(), "all threads are stopped");
2152 
2153   // Do not throw asynchronous exceptions against the compiler thread
2154   // (the compiler thread should not be a Java thread -- fix in 1.4.2)
2155   if (is_Compiler_thread()) return;
2156 
2157   {
2158     // Actually throw the Throwable against the target Thread - however
2159     // only if there is no thread death exception installed already.
2160     if (_pending_async_exception == NULL || !_pending_async_exception->is_a(SystemDictionary::ThreadDeath_klass())) {
2161       // If the topmost frame is a runtime stub, then we are calling into
2162       // OptoRuntime from compiled code. Some runtime stubs (new, monitor_exit..)
2163       // must deoptimize the caller before continuing, as the compiled  exception handler table
2164       // may not be valid
2165       if (has_last_Java_frame()) {
2166         frame f = last_frame();
2167         if (f.is_runtime_frame() || f.is_safepoint_blob_frame()) {
2168           // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2169           RegisterMap reg_map(this, UseBiasedLocking);
2170           frame compiled_frame = f.sender(&reg_map);
2171           if (!StressCompiledExceptionHandlers && compiled_frame.can_be_deoptimized()) {
2172             Deoptimization::deoptimize(this, compiled_frame, &reg_map);
2173           }
2174         }
2175       }
2176 
2177       // Set async. pending exception in thread.
2178       set_pending_async_exception(java_throwable);
2179 
2180       if (TraceExceptions) {
2181         ResourceMark rm;
2182         tty->print_cr("Pending Async. exception installed of type: %s", InstanceKlass::cast(_pending_async_exception->klass())->external_name());
2183       }
2184       // for AbortVMOnException flag
2185       NOT_PRODUCT(Exceptions::debug_check_abort(InstanceKlass::cast(_pending_async_exception->klass())->external_name()));
2186     }
2187   }
2188 
2189 
2190   // Interrupt thread so it will wake up from a potential wait()
2191   Thread::interrupt(this);
2192 }
2193 
2194 // External suspension mechanism.
2195 //
2196 // Tell the VM to suspend a thread when ever it knows that it does not hold on
2197 // to any VM_locks and it is at a transition
2198 // Self-suspension will happen on the transition out of the vm.
2199 // Catch "this" coming in from JNIEnv pointers when the thread has been freed
2200 //
2201 // Guarantees on return:
2202 //   + Target thread will not execute any new bytecode (that's why we need to
2203 //     force a safepoint)
2204 //   + Target thread will not enter any new monitors
2205 //
2206 void JavaThread::java_suspend() {
2207   { MutexLocker mu(Threads_lock);
2208     if (!Threads::includes(this) || is_exiting() || this->threadObj() == NULL) {
2209       return;
2210     }
2211   }
2212 
2213   { MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2214     if (!is_external_suspend()) {
2215       // a racing resume has cancelled us; bail out now
2216       return;
2217     }
2218 
2219     // suspend is done
2220     uint32_t debug_bits = 0;
2221     // Warning: is_ext_suspend_completed() may temporarily drop the
2222     // SR_lock to allow the thread to reach a stable thread state if
2223     // it is currently in a transient thread state.
2224     if (is_ext_suspend_completed(false /* !called_by_wait */,
2225                                  SuspendRetryDelay, &debug_bits)) {
2226       return;
2227     }
2228   }
2229 
2230   VM_ForceSafepoint vm_suspend;
2231   VMThread::execute(&vm_suspend);
2232 }
2233 
2234 // Part II of external suspension.
2235 // A JavaThread self suspends when it detects a pending external suspend
2236 // request. This is usually on transitions. It is also done in places
2237 // where continuing to the next transition would surprise the caller,
2238 // e.g., monitor entry.
2239 //
2240 // Returns the number of times that the thread self-suspended.
2241 //
2242 // Note: DO NOT call java_suspend_self() when you just want to block current
2243 //       thread. java_suspend_self() is the second stage of cooperative
2244 //       suspension for external suspend requests and should only be used
2245 //       to complete an external suspend request.
2246 //
2247 int JavaThread::java_suspend_self() {
2248   int ret = 0;
2249 
2250   // we are in the process of exiting so don't suspend
2251   if (is_exiting()) {
2252     clear_external_suspend();
2253     return ret;
2254   }
2255 
2256   assert(_anchor.walkable() ||
2257          (is_Java_thread() && !((JavaThread*)this)->has_last_Java_frame()),
2258          "must have walkable stack");
2259 
2260   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2261 
2262   assert(!this->is_ext_suspended(),
2263          "a thread trying to self-suspend should not already be suspended");
2264 
2265   if (this->is_suspend_equivalent()) {
2266     // If we are self-suspending as a result of the lifting of a
2267     // suspend equivalent condition, then the suspend_equivalent
2268     // flag is not cleared until we set the ext_suspended flag so
2269     // that wait_for_ext_suspend_completion() returns consistent
2270     // results.
2271     this->clear_suspend_equivalent();
2272   }
2273 
2274   // A racing resume may have cancelled us before we grabbed SR_lock
2275   // above. Or another external suspend request could be waiting for us
2276   // by the time we return from SR_lock()->wait(). The thread
2277   // that requested the suspension may already be trying to walk our
2278   // stack and if we return now, we can change the stack out from under
2279   // it. This would be a "bad thing (TM)" and cause the stack walker
2280   // to crash. We stay self-suspended until there are no more pending
2281   // external suspend requests.
2282   while (is_external_suspend()) {
2283     ret++;
2284     this->set_ext_suspended();
2285 
2286     // _ext_suspended flag is cleared by java_resume()
2287     while (is_ext_suspended()) {
2288       this->SR_lock()->wait(Mutex::_no_safepoint_check_flag);
2289     }
2290   }
2291 
2292   return ret;
2293 }
2294 
2295 #ifdef ASSERT
2296 // verify the JavaThread has not yet been published in the Threads::list, and
2297 // hence doesn't need protection from concurrent access at this stage
2298 void JavaThread::verify_not_published() {
2299   if (!Threads_lock->owned_by_self()) {
2300     MutexLockerEx ml(Threads_lock,  Mutex::_no_safepoint_check_flag);
2301     assert(!Threads::includes(this),
2302            "java thread shouldn't have been published yet!");
2303   } else {
2304     assert(!Threads::includes(this),
2305            "java thread shouldn't have been published yet!");
2306   }
2307 }
2308 #endif
2309 
2310 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2311 // progress or when _suspend_flags is non-zero.
2312 // Current thread needs to self-suspend if there is a suspend request and/or
2313 // block if a safepoint is in progress.
2314 // Async exception ISN'T checked.
2315 // Note only the ThreadInVMfromNative transition can call this function
2316 // directly and when thread state is _thread_in_native_trans
2317 void JavaThread::check_safepoint_and_suspend_for_native_trans(JavaThread *thread) {
2318   assert(thread->thread_state() == _thread_in_native_trans, "wrong state");
2319 
2320   JavaThread *curJT = JavaThread::current();
2321   bool do_self_suspend = thread->is_external_suspend();
2322 
2323   assert(!curJT->has_last_Java_frame() || curJT->frame_anchor()->walkable(), "Unwalkable stack in native->vm transition");
2324 
2325   // If JNIEnv proxies are allowed, don't self-suspend if the target
2326   // thread is not the current thread. In older versions of jdbx, jdbx
2327   // threads could call into the VM with another thread's JNIEnv so we
2328   // can be here operating on behalf of a suspended thread (4432884).
2329   if (do_self_suspend && (!AllowJNIEnvProxy || curJT == thread)) {
2330     JavaThreadState state = thread->thread_state();
2331 
2332     // We mark this thread_blocked state as a suspend-equivalent so
2333     // that a caller to is_ext_suspend_completed() won't be confused.
2334     // The suspend-equivalent state is cleared by java_suspend_self().
2335     thread->set_suspend_equivalent();
2336 
2337     // If the safepoint code sees the _thread_in_native_trans state, it will
2338     // wait until the thread changes to other thread state. There is no
2339     // guarantee on how soon we can obtain the SR_lock and complete the
2340     // self-suspend request. It would be a bad idea to let safepoint wait for
2341     // too long. Temporarily change the state to _thread_blocked to
2342     // let the VM thread know that this thread is ready for GC. The problem
2343     // of changing thread state is that safepoint could happen just after
2344     // java_suspend_self() returns after being resumed, and VM thread will
2345     // see the _thread_blocked state. We must check for safepoint
2346     // after restoring the state and make sure we won't leave while a safepoint
2347     // is in progress.
2348     thread->set_thread_state(_thread_blocked);
2349     thread->java_suspend_self();
2350     thread->set_thread_state(state);
2351     // Make sure new state is seen by VM thread
2352     if (os::is_MP()) {
2353       if (UseMembar) {
2354         // Force a fence between the write above and read below
2355         OrderAccess::fence();
2356       } else {
2357         // Must use this rather than serialization page in particular on Windows
2358         InterfaceSupport::serialize_memory(thread);
2359       }
2360     }
2361   }
2362 
2363   if (SafepointSynchronize::do_call_back()) {
2364     // If we are safepointing, then block the caller which may not be
2365     // the same as the target thread (see above).
2366     SafepointSynchronize::block(curJT);
2367   }
2368 
2369   if (thread->is_deopt_suspend()) {
2370     thread->clear_deopt_suspend();
2371     RegisterMap map(thread, false);
2372     frame f = thread->last_frame();
2373     while (f.id() != thread->must_deopt_id() && ! f.is_first_frame()) {
2374       f = f.sender(&map);
2375     }
2376     if (f.id() == thread->must_deopt_id()) {
2377       thread->clear_must_deopt_id();
2378       f.deoptimize(thread);
2379     } else {
2380       fatal("missed deoptimization!");
2381     }
2382   }
2383 }
2384 
2385 // Slow path when the native==>VM/Java barriers detect a safepoint is in
2386 // progress or when _suspend_flags is non-zero.
2387 // Current thread needs to self-suspend if there is a suspend request and/or
2388 // block if a safepoint is in progress.
2389 // Also check for pending async exception (not including unsafe access error).
2390 // Note only the native==>VM/Java barriers can call this function and when
2391 // thread state is _thread_in_native_trans.
2392 void JavaThread::check_special_condition_for_native_trans(JavaThread *thread) {
2393   check_safepoint_and_suspend_for_native_trans(thread);
2394 
2395   if (thread->has_async_exception()) {
2396     // We are in _thread_in_native_trans state, don't handle unsafe
2397     // access error since that may block.
2398     thread->check_and_handle_async_exceptions(false);
2399   }
2400 }
2401 
2402 // This is a variant of the normal
2403 // check_special_condition_for_native_trans with slightly different
2404 // semantics for use by critical native wrappers.  It does all the
2405 // normal checks but also performs the transition back into
2406 // thread_in_Java state.  This is required so that critical natives
2407 // can potentially block and perform a GC if they are the last thread
2408 // exiting the GC_locker.
2409 void JavaThread::check_special_condition_for_native_trans_and_transition(JavaThread *thread) {
2410   check_special_condition_for_native_trans(thread);
2411 
2412   // Finish the transition
2413   thread->set_thread_state(_thread_in_Java);
2414 
2415   if (thread->do_critical_native_unlock()) {
2416     ThreadInVMfromJavaNoAsyncException tiv(thread);
2417     GC_locker::unlock_critical(thread);
2418     thread->clear_critical_native_unlock();
2419   }
2420 }
2421 
2422 // We need to guarantee the Threads_lock here, since resumes are not
2423 // allowed during safepoint synchronization
2424 // Can only resume from an external suspension
2425 void JavaThread::java_resume() {
2426   assert_locked_or_safepoint(Threads_lock);
2427 
2428   // Sanity check: thread is gone, has started exiting or the thread
2429   // was not externally suspended.
2430   if (!Threads::includes(this) || is_exiting() || !is_external_suspend()) {
2431     return;
2432   }
2433 
2434   MutexLockerEx ml(SR_lock(), Mutex::_no_safepoint_check_flag);
2435 
2436   clear_external_suspend();
2437 
2438   if (is_ext_suspended()) {
2439     clear_ext_suspended();
2440     SR_lock()->notify_all();
2441   }
2442 }
2443 
2444 void JavaThread::create_stack_guard_pages() {
2445   if (! os::uses_stack_guard_pages() || _stack_guard_state != stack_guard_unused) return;
2446   address low_addr = stack_base() - stack_size();
2447   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2448 
2449   int allocate = os::allocate_stack_guard_pages();
2450   // warning("Guarding at " PTR_FORMAT " for len " SIZE_FORMAT "\n", low_addr, len);
2451 
2452   if (allocate && !os::create_stack_guard_pages((char *) low_addr, len)) {
2453     warning("Attempt to allocate stack guard pages failed.");
2454     return;
2455   }
2456 
2457   if (os::guard_memory((char *) low_addr, len)) {
2458     _stack_guard_state = stack_guard_enabled;
2459   } else {
2460     warning("Attempt to protect stack guard pages failed.");
2461     if (os::uncommit_memory((char *) low_addr, len)) {
2462       warning("Attempt to deallocate stack guard pages failed.");
2463     }
2464   }
2465 }
2466 
2467 void JavaThread::remove_stack_guard_pages() {
2468   assert(Thread::current() == this, "from different thread");
2469   if (_stack_guard_state == stack_guard_unused) return;
2470   address low_addr = stack_base() - stack_size();
2471   size_t len = (StackYellowPages + StackRedPages) * os::vm_page_size();
2472 
2473   if (os::allocate_stack_guard_pages()) {
2474     if (os::remove_stack_guard_pages((char *) low_addr, len)) {
2475       _stack_guard_state = stack_guard_unused;
2476     } else {
2477       warning("Attempt to deallocate stack guard pages failed.");
2478     }
2479   } else {
2480     if (_stack_guard_state == stack_guard_unused) return;
2481     if (os::unguard_memory((char *) low_addr, len)) {
2482       _stack_guard_state = stack_guard_unused;
2483     } else {
2484       warning("Attempt to unprotect stack guard pages failed.");
2485     }
2486   }
2487 }
2488 
2489 void JavaThread::enable_stack_yellow_zone() {
2490   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2491   assert(_stack_guard_state != stack_guard_enabled, "already enabled");
2492 
2493   // The base notation is from the stacks point of view, growing downward.
2494   // We need to adjust it to work correctly with guard_memory()
2495   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2496 
2497   guarantee(base < stack_base(), "Error calculating stack yellow zone");
2498   guarantee(base < os::current_stack_pointer(), "Error calculating stack yellow zone");
2499 
2500   if (os::guard_memory((char *) base, stack_yellow_zone_size())) {
2501     _stack_guard_state = stack_guard_enabled;
2502   } else {
2503     warning("Attempt to guard stack yellow zone failed.");
2504   }
2505   enable_register_stack_guard();
2506 }
2507 
2508 void JavaThread::disable_stack_yellow_zone() {
2509   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2510   assert(_stack_guard_state != stack_guard_yellow_disabled, "already disabled");
2511 
2512   // Simply return if called for a thread that does not use guard pages.
2513   if (_stack_guard_state == stack_guard_unused) return;
2514 
2515   // The base notation is from the stacks point of view, growing downward.
2516   // We need to adjust it to work correctly with guard_memory()
2517   address base = stack_yellow_zone_base() - stack_yellow_zone_size();
2518 
2519   if (os::unguard_memory((char *)base, stack_yellow_zone_size())) {
2520     _stack_guard_state = stack_guard_yellow_disabled;
2521   } else {
2522     warning("Attempt to unguard stack yellow zone failed.");
2523   }
2524   disable_register_stack_guard();
2525 }
2526 
2527 void JavaThread::enable_stack_red_zone() {
2528   // The base notation is from the stacks point of view, growing downward.
2529   // We need to adjust it to work correctly with guard_memory()
2530   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2531   address base = stack_red_zone_base() - stack_red_zone_size();
2532 
2533   guarantee(base < stack_base(), "Error calculating stack red zone");
2534   guarantee(base < os::current_stack_pointer(), "Error calculating stack red zone");
2535 
2536   if (!os::guard_memory((char *) base, stack_red_zone_size())) {
2537     warning("Attempt to guard stack red zone failed.");
2538   }
2539 }
2540 
2541 void JavaThread::disable_stack_red_zone() {
2542   // The base notation is from the stacks point of view, growing downward.
2543   // We need to adjust it to work correctly with guard_memory()
2544   assert(_stack_guard_state != stack_guard_unused, "must be using guard pages.");
2545   address base = stack_red_zone_base() - stack_red_zone_size();
2546   if (!os::unguard_memory((char *)base, stack_red_zone_size())) {
2547     warning("Attempt to unguard stack red zone failed.");
2548   }
2549 }
2550 
2551 void JavaThread::frames_do(void f(frame*, const RegisterMap* map)) {
2552   // ignore is there is no stack
2553   if (!has_last_Java_frame()) return;
2554   // traverse the stack frames. Starts from top frame.
2555   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2556     frame* fr = fst.current();
2557     f(fr, fst.register_map());
2558   }
2559 }
2560 
2561 
2562 #ifndef PRODUCT
2563 // Deoptimization
2564 // Function for testing deoptimization
2565 void JavaThread::deoptimize() {
2566   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2567   StackFrameStream fst(this, UseBiasedLocking);
2568   bool deopt = false;           // Dump stack only if a deopt actually happens.
2569   bool only_at = strlen(DeoptimizeOnlyAt) > 0;
2570   // Iterate over all frames in the thread and deoptimize
2571   for (; !fst.is_done(); fst.next()) {
2572     if (fst.current()->can_be_deoptimized()) {
2573 
2574       if (only_at) {
2575         // Deoptimize only at particular bcis.  DeoptimizeOnlyAt
2576         // consists of comma or carriage return separated numbers so
2577         // search for the current bci in that string.
2578         address pc = fst.current()->pc();
2579         nmethod* nm =  (nmethod*) fst.current()->cb();
2580         ScopeDesc* sd = nm->scope_desc_at(pc);
2581         char buffer[8];
2582         jio_snprintf(buffer, sizeof(buffer), "%d", sd->bci());
2583         size_t len = strlen(buffer);
2584         const char * found = strstr(DeoptimizeOnlyAt, buffer);
2585         while (found != NULL) {
2586           if ((found[len] == ',' || found[len] == '\n' || found[len] == '\0') &&
2587               (found == DeoptimizeOnlyAt || found[-1] == ',' || found[-1] == '\n')) {
2588             // Check that the bci found is bracketed by terminators.
2589             break;
2590           }
2591           found = strstr(found + 1, buffer);
2592         }
2593         if (!found) {
2594           continue;
2595         }
2596       }
2597 
2598       if (DebugDeoptimization && !deopt) {
2599         deopt = true; // One-time only print before deopt
2600         tty->print_cr("[BEFORE Deoptimization]");
2601         trace_frames();
2602         trace_stack();
2603       }
2604       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2605     }
2606   }
2607 
2608   if (DebugDeoptimization && deopt) {
2609     tty->print_cr("[AFTER Deoptimization]");
2610     trace_frames();
2611   }
2612 }
2613 
2614 
2615 // Make zombies
2616 void JavaThread::make_zombies() {
2617   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2618     if (fst.current()->can_be_deoptimized()) {
2619       // it is a Java nmethod
2620       nmethod* nm = CodeCache::find_nmethod(fst.current()->pc());
2621       nm->make_not_entrant();
2622     }
2623   }
2624 }
2625 #endif // PRODUCT
2626 
2627 
2628 void JavaThread::deoptimized_wrt_marked_nmethods() {
2629   if (!has_last_Java_frame()) return;
2630   // BiasedLocking needs an updated RegisterMap for the revoke monitors pass
2631   StackFrameStream fst(this, UseBiasedLocking);
2632   for (; !fst.is_done(); fst.next()) {
2633     if (fst.current()->should_be_deoptimized()) {
2634       if (LogCompilation && xtty != NULL) {
2635         nmethod* nm = fst.current()->cb()->as_nmethod_or_null();
2636         xtty->elem("deoptimized thread='" UINTX_FORMAT "' compile_id='%d'",
2637                    this->name(), nm != NULL ? nm->compile_id() : -1);
2638       }
2639 
2640       Deoptimization::deoptimize(this, *fst.current(), fst.register_map());
2641     }
2642   }
2643 }
2644 
2645 
2646 // If the caller is a NamedThread, then remember, in the current scope,
2647 // the given JavaThread in its _processed_thread field.
2648 class RememberProcessedThread: public StackObj {
2649   NamedThread* _cur_thr;
2650  public:
2651   RememberProcessedThread(JavaThread* jthr) {
2652     Thread* thread = Thread::current();
2653     if (thread->is_Named_thread()) {
2654       _cur_thr = (NamedThread *)thread;
2655       _cur_thr->set_processed_thread(jthr);
2656     } else {
2657       _cur_thr = NULL;
2658     }
2659   }
2660 
2661   ~RememberProcessedThread() {
2662     if (_cur_thr) {
2663       _cur_thr->set_processed_thread(NULL);
2664     }
2665   }
2666 };
2667 
2668 void JavaThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
2669   // Verify that the deferred card marks have been flushed.
2670   assert(deferred_card_mark().is_empty(), "Should be empty during GC");
2671 
2672   // The ThreadProfiler oops_do is done from FlatProfiler::oops_do
2673   // since there may be more than one thread using each ThreadProfiler.
2674 
2675   // Traverse the GCHandles
2676   Thread::oops_do(f, cld_f, cf);
2677 
2678   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2679          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2680 
2681   if (has_last_Java_frame()) {
2682     // Record JavaThread to GC thread
2683     RememberProcessedThread rpt(this);
2684 
2685     // Traverse the privileged stack
2686     if (_privileged_stack_top != NULL) {
2687       _privileged_stack_top->oops_do(f);
2688     }
2689 
2690     // traverse the registered growable array
2691     if (_array_for_gc != NULL) {
2692       for (int index = 0; index < _array_for_gc->length(); index++) {
2693         f->do_oop(_array_for_gc->adr_at(index));
2694       }
2695     }
2696 
2697     // Traverse the monitor chunks
2698     for (MonitorChunk* chunk = monitor_chunks(); chunk != NULL; chunk = chunk->next()) {
2699       chunk->oops_do(f);
2700     }
2701 
2702     // Traverse the execution stack
2703     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2704       fst.current()->oops_do(f, cld_f, cf, fst.register_map());
2705     }
2706   }
2707 
2708   // callee_target is never live across a gc point so NULL it here should
2709   // it still contain a methdOop.
2710 
2711   set_callee_target(NULL);
2712 
2713   assert(vframe_array_head() == NULL, "deopt in progress at a safepoint!");
2714   // If we have deferred set_locals there might be oops waiting to be
2715   // written
2716   GrowableArray<jvmtiDeferredLocalVariableSet*>* list = deferred_locals();
2717   if (list != NULL) {
2718     for (int i = 0; i < list->length(); i++) {
2719       list->at(i)->oops_do(f);
2720     }
2721   }
2722 
2723   // Traverse instance variables at the end since the GC may be moving things
2724   // around using this function
2725   f->do_oop((oop*) &_threadObj);
2726   f->do_oop((oop*) &_vm_result);
2727   f->do_oop((oop*) &_exception_oop);
2728   f->do_oop((oop*) &_pending_async_exception);
2729 
2730   if (jvmti_thread_state() != NULL) {
2731     jvmti_thread_state()->oops_do(f);
2732   }
2733 }
2734 
2735 void JavaThread::nmethods_do(CodeBlobClosure* cf) {
2736   Thread::nmethods_do(cf);  // (super method is a no-op)
2737 
2738   assert((!has_last_Java_frame() && java_call_counter() == 0) ||
2739          (has_last_Java_frame() && java_call_counter() > 0), "wrong java_sp info!");
2740 
2741   if (has_last_Java_frame()) {
2742     // Traverse the execution stack
2743     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2744       fst.current()->nmethods_do(cf);
2745     }
2746   }
2747 }
2748 
2749 void JavaThread::metadata_do(void f(Metadata*)) {
2750   Thread::metadata_do(f);
2751   if (has_last_Java_frame()) {
2752     // Traverse the execution stack to call f() on the methods in the stack
2753     for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
2754       fst.current()->metadata_do(f);
2755     }
2756   } else if (is_Compiler_thread()) {
2757     // need to walk ciMetadata in current compile tasks to keep alive.
2758     CompilerThread* ct = (CompilerThread*)this;
2759     if (ct->env() != NULL) {
2760       ct->env()->metadata_do(f);
2761     }
2762   }
2763 }
2764 
2765 // Printing
2766 const char* _get_thread_state_name(JavaThreadState _thread_state) {
2767   switch (_thread_state) {
2768   case _thread_uninitialized:     return "_thread_uninitialized";
2769   case _thread_new:               return "_thread_new";
2770   case _thread_new_trans:         return "_thread_new_trans";
2771   case _thread_in_native:         return "_thread_in_native";
2772   case _thread_in_native_trans:   return "_thread_in_native_trans";
2773   case _thread_in_vm:             return "_thread_in_vm";
2774   case _thread_in_vm_trans:       return "_thread_in_vm_trans";
2775   case _thread_in_Java:           return "_thread_in_Java";
2776   case _thread_in_Java_trans:     return "_thread_in_Java_trans";
2777   case _thread_blocked:           return "_thread_blocked";
2778   case _thread_blocked_trans:     return "_thread_blocked_trans";
2779   default:                        return "unknown thread state";
2780   }
2781 }
2782 
2783 #ifndef PRODUCT
2784 void JavaThread::print_thread_state_on(outputStream *st) const {
2785   st->print_cr("   JavaThread state: %s", _get_thread_state_name(_thread_state));
2786 };
2787 void JavaThread::print_thread_state() const {
2788   print_thread_state_on(tty);
2789 }
2790 #endif // PRODUCT
2791 
2792 // Called by Threads::print() for VM_PrintThreads operation
2793 void JavaThread::print_on(outputStream *st) const {
2794   st->print("\"%s\" ", get_thread_name());
2795   oop thread_oop = threadObj();
2796   if (thread_oop != NULL) {
2797     st->print("#" INT64_FORMAT " ", java_lang_Thread::thread_id(thread_oop));
2798     if (java_lang_Thread::is_daemon(thread_oop))  st->print("daemon ");
2799     st->print("prio=%d ", java_lang_Thread::priority(thread_oop));
2800   }
2801   Thread::print_on(st);
2802   // print guess for valid stack memory region (assume 4K pages); helps lock debugging
2803   st->print_cr("[" INTPTR_FORMAT "]", (intptr_t)last_Java_sp() & ~right_n_bits(12));
2804   if (thread_oop != NULL) {
2805     st->print_cr("   java.lang.Thread.State: %s", java_lang_Thread::thread_status_name(thread_oop));
2806   }
2807 #ifndef PRODUCT
2808   print_thread_state_on(st);
2809   _safepoint_state->print_on(st);
2810 #endif // PRODUCT
2811 }
2812 
2813 // Called by fatal error handler. The difference between this and
2814 // JavaThread::print() is that we can't grab lock or allocate memory.
2815 void JavaThread::print_on_error(outputStream* st, char *buf, int buflen) const {
2816   st->print("JavaThread \"%s\"", get_thread_name_string(buf, buflen));
2817   oop thread_obj = threadObj();
2818   if (thread_obj != NULL) {
2819     if (java_lang_Thread::is_daemon(thread_obj)) st->print(" daemon");
2820   }
2821   st->print(" [");
2822   st->print("%s", _get_thread_state_name(_thread_state));
2823   if (osthread()) {
2824     st->print(", id=%d", osthread()->thread_id());
2825   }
2826   st->print(", stack(" PTR_FORMAT "," PTR_FORMAT ")",
2827             _stack_base - _stack_size, _stack_base);
2828   st->print("]");
2829   return;
2830 }
2831 
2832 // Verification
2833 
2834 static void frame_verify(frame* f, const RegisterMap *map) { f->verify(map); }
2835 
2836 void JavaThread::verify() {
2837   // Verify oops in the thread.
2838   oops_do(&VerifyOopClosure::verify_oop, NULL, NULL);
2839 
2840   // Verify the stack frames.
2841   frames_do(frame_verify);
2842 }
2843 
2844 // CR 6300358 (sub-CR 2137150)
2845 // Most callers of this method assume that it can't return NULL but a
2846 // thread may not have a name whilst it is in the process of attaching to
2847 // the VM - see CR 6412693, and there are places where a JavaThread can be
2848 // seen prior to having it's threadObj set (eg JNI attaching threads and
2849 // if vm exit occurs during initialization). These cases can all be accounted
2850 // for such that this method never returns NULL.
2851 const char* JavaThread::get_thread_name() const {
2852 #ifdef ASSERT
2853   // early safepoints can hit while current thread does not yet have TLS
2854   if (!SafepointSynchronize::is_at_safepoint()) {
2855     Thread *cur = Thread::current();
2856     if (!(cur->is_Java_thread() && cur == this)) {
2857       // Current JavaThreads are allowed to get their own name without
2858       // the Threads_lock.
2859       assert_locked_or_safepoint(Threads_lock);
2860     }
2861   }
2862 #endif // ASSERT
2863   return get_thread_name_string();
2864 }
2865 
2866 // Returns a non-NULL representation of this thread's name, or a suitable
2867 // descriptive string if there is no set name
2868 const char* JavaThread::get_thread_name_string(char* buf, int buflen) const {
2869   const char* name_str;
2870   oop thread_obj = threadObj();
2871   if (thread_obj != NULL) {
2872     typeArrayOop name = java_lang_Thread::name(thread_obj);
2873     if (name != NULL) {
2874       if (buf == NULL) {
2875         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR),
2876                                     name->length());
2877       } else {
2878         name_str = UNICODE::as_utf8((jchar*) name->base(T_CHAR),
2879                                     name->length(), buf, buflen);
2880       }
2881     } else if (is_attaching_via_jni()) { // workaround for 6412693 - see 6404306
2882       name_str = "<no-name - thread is attaching>";
2883     } else {
2884       name_str = Thread::name();
2885     }
2886   } else {
2887     name_str = Thread::name();
2888   }
2889   assert(name_str != NULL, "unexpected NULL thread name");
2890   return name_str;
2891 }
2892 
2893 
2894 const char* JavaThread::get_threadgroup_name() const {
2895   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2896   oop thread_obj = threadObj();
2897   if (thread_obj != NULL) {
2898     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2899     if (thread_group != NULL) {
2900       typeArrayOop name = java_lang_ThreadGroup::name(thread_group);
2901       // ThreadGroup.name can be null
2902       if (name != NULL) {
2903         const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2904         return str;
2905       }
2906     }
2907   }
2908   return NULL;
2909 }
2910 
2911 const char* JavaThread::get_parent_name() const {
2912   debug_only(if (JavaThread::current() != this) assert_locked_or_safepoint(Threads_lock);)
2913   oop thread_obj = threadObj();
2914   if (thread_obj != NULL) {
2915     oop thread_group = java_lang_Thread::threadGroup(thread_obj);
2916     if (thread_group != NULL) {
2917       oop parent = java_lang_ThreadGroup::parent(thread_group);
2918       if (parent != NULL) {
2919         typeArrayOop name = java_lang_ThreadGroup::name(parent);
2920         // ThreadGroup.name can be null
2921         if (name != NULL) {
2922           const char* str = UNICODE::as_utf8((jchar*) name->base(T_CHAR), name->length());
2923           return str;
2924         }
2925       }
2926     }
2927   }
2928   return NULL;
2929 }
2930 
2931 ThreadPriority JavaThread::java_priority() const {
2932   oop thr_oop = threadObj();
2933   if (thr_oop == NULL) return NormPriority; // Bootstrapping
2934   ThreadPriority priority = java_lang_Thread::priority(thr_oop);
2935   assert(MinPriority <= priority && priority <= MaxPriority, "sanity check");
2936   return priority;
2937 }
2938 
2939 void JavaThread::prepare(jobject jni_thread, ThreadPriority prio) {
2940 
2941   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
2942   // Link Java Thread object <-> C++ Thread
2943 
2944   // Get the C++ thread object (an oop) from the JNI handle (a jthread)
2945   // and put it into a new Handle.  The Handle "thread_oop" can then
2946   // be used to pass the C++ thread object to other methods.
2947 
2948   // Set the Java level thread object (jthread) field of the
2949   // new thread (a JavaThread *) to C++ thread object using the
2950   // "thread_oop" handle.
2951 
2952   // Set the thread field (a JavaThread *) of the
2953   // oop representing the java_lang_Thread to the new thread (a JavaThread *).
2954 
2955   Handle thread_oop(Thread::current(),
2956                     JNIHandles::resolve_non_null(jni_thread));
2957   assert(InstanceKlass::cast(thread_oop->klass())->is_linked(),
2958          "must be initialized");
2959   set_threadObj(thread_oop());
2960   java_lang_Thread::set_thread(thread_oop(), this);
2961 
2962   if (prio == NoPriority) {
2963     prio = java_lang_Thread::priority(thread_oop());
2964     assert(prio != NoPriority, "A valid priority should be present");
2965   }
2966 
2967   // Push the Java priority down to the native thread; needs Threads_lock
2968   Thread::set_priority(this, prio);
2969 
2970   prepare_ext();
2971 
2972   // Add the new thread to the Threads list and set it in motion.
2973   // We must have threads lock in order to call Threads::add.
2974   // It is crucial that we do not block before the thread is
2975   // added to the Threads list for if a GC happens, then the java_thread oop
2976   // will not be visited by GC.
2977   Threads::add(this);
2978 }
2979 
2980 oop JavaThread::current_park_blocker() {
2981   // Support for JSR-166 locks
2982   oop thread_oop = threadObj();
2983   if (thread_oop != NULL &&
2984       JDK_Version::current().supports_thread_park_blocker()) {
2985     return java_lang_Thread::park_blocker(thread_oop);
2986   }
2987   return NULL;
2988 }
2989 
2990 
2991 void JavaThread::print_stack_on(outputStream* st) {
2992   if (!has_last_Java_frame()) return;
2993   ResourceMark rm;
2994   HandleMark   hm;
2995 
2996   RegisterMap reg_map(this);
2997   vframe* start_vf = last_java_vframe(&reg_map);
2998   int count = 0;
2999   for (vframe* f = start_vf; f; f = f->sender()) {
3000     if (f->is_java_frame()) {
3001       javaVFrame* jvf = javaVFrame::cast(f);
3002       java_lang_Throwable::print_stack_element(st, jvf->method(), jvf->bci());
3003 
3004       // Print out lock information
3005       if (JavaMonitorsInStackTrace) {
3006         jvf->print_lock_info_on(st, count);
3007       }
3008     } else {
3009       // Ignore non-Java frames
3010     }
3011 
3012     // Bail-out case for too deep stacks
3013     count++;
3014     if (MaxJavaStackTraceDepth == count) return;
3015   }
3016 }
3017 
3018 
3019 // JVMTI PopFrame support
3020 void JavaThread::popframe_preserve_args(ByteSize size_in_bytes, void* start) {
3021   assert(_popframe_preserved_args == NULL, "should not wipe out old PopFrame preserved arguments");
3022   if (in_bytes(size_in_bytes) != 0) {
3023     _popframe_preserved_args = NEW_C_HEAP_ARRAY(char, in_bytes(size_in_bytes), mtThread);
3024     _popframe_preserved_args_size = in_bytes(size_in_bytes);
3025     Copy::conjoint_jbytes(start, _popframe_preserved_args, _popframe_preserved_args_size);
3026   }
3027 }
3028 
3029 void* JavaThread::popframe_preserved_args() {
3030   return _popframe_preserved_args;
3031 }
3032 
3033 ByteSize JavaThread::popframe_preserved_args_size() {
3034   return in_ByteSize(_popframe_preserved_args_size);
3035 }
3036 
3037 WordSize JavaThread::popframe_preserved_args_size_in_words() {
3038   int sz = in_bytes(popframe_preserved_args_size());
3039   assert(sz % wordSize == 0, "argument size must be multiple of wordSize");
3040   return in_WordSize(sz / wordSize);
3041 }
3042 
3043 void JavaThread::popframe_free_preserved_args() {
3044   assert(_popframe_preserved_args != NULL, "should not free PopFrame preserved arguments twice");
3045   FREE_C_HEAP_ARRAY(char, (char*) _popframe_preserved_args, mtThread);
3046   _popframe_preserved_args = NULL;
3047   _popframe_preserved_args_size = 0;
3048 }
3049 
3050 #ifndef PRODUCT
3051 
3052 void JavaThread::trace_frames() {
3053   tty->print_cr("[Describe stack]");
3054   int frame_no = 1;
3055   for (StackFrameStream fst(this); !fst.is_done(); fst.next()) {
3056     tty->print("  %d. ", frame_no++);
3057     fst.current()->print_value_on(tty, this);
3058     tty->cr();
3059   }
3060 }
3061 
3062 class PrintAndVerifyOopClosure: public OopClosure {
3063  protected:
3064   template <class T> inline void do_oop_work(T* p) {
3065     oop obj = oopDesc::load_decode_heap_oop(p);
3066     if (obj == NULL) return;
3067     tty->print(INTPTR_FORMAT ": ", p);
3068     if (obj->is_oop_or_null()) {
3069       if (obj->is_objArray()) {
3070         tty->print_cr("valid objArray: " INTPTR_FORMAT, (oopDesc*) obj);
3071       } else {
3072         obj->print();
3073       }
3074     } else {
3075       tty->print_cr("invalid oop: " INTPTR_FORMAT, (oopDesc*) obj);
3076     }
3077     tty->cr();
3078   }
3079  public:
3080   virtual void do_oop(oop* p) { do_oop_work(p); }
3081   virtual void do_oop(narrowOop* p)  { do_oop_work(p); }
3082 };
3083 
3084 
3085 static void oops_print(frame* f, const RegisterMap *map) {
3086   PrintAndVerifyOopClosure print;
3087   f->print_value();
3088   f->oops_do(&print, NULL, NULL, (RegisterMap*)map);
3089 }
3090 
3091 // Print our all the locations that contain oops and whether they are
3092 // valid or not.  This useful when trying to find the oldest frame
3093 // where an oop has gone bad since the frame walk is from youngest to
3094 // oldest.
3095 void JavaThread::trace_oops() {
3096   tty->print_cr("[Trace oops]");
3097   frames_do(oops_print);
3098 }
3099 
3100 
3101 #ifdef ASSERT
3102 // Print or validate the layout of stack frames
3103 void JavaThread::print_frame_layout(int depth, bool validate_only) {
3104   ResourceMark rm;
3105   PRESERVE_EXCEPTION_MARK;
3106   FrameValues values;
3107   int frame_no = 0;
3108   for (StackFrameStream fst(this, false); !fst.is_done(); fst.next()) {
3109     fst.current()->describe(values, ++frame_no);
3110     if (depth == frame_no) break;
3111   }
3112   if (validate_only) {
3113     values.validate();
3114   } else {
3115     tty->print_cr("[Describe stack layout]");
3116     values.print(this);
3117   }
3118 }
3119 #endif
3120 
3121 void JavaThread::trace_stack_from(vframe* start_vf) {
3122   ResourceMark rm;
3123   int vframe_no = 1;
3124   for (vframe* f = start_vf; f; f = f->sender()) {
3125     if (f->is_java_frame()) {
3126       javaVFrame::cast(f)->print_activation(vframe_no++);
3127     } else {
3128       f->print();
3129     }
3130     if (vframe_no > StackPrintLimit) {
3131       tty->print_cr("...<more frames>...");
3132       return;
3133     }
3134   }
3135 }
3136 
3137 
3138 void JavaThread::trace_stack() {
3139   if (!has_last_Java_frame()) return;
3140   ResourceMark rm;
3141   HandleMark   hm;
3142   RegisterMap reg_map(this);
3143   trace_stack_from(last_java_vframe(&reg_map));
3144 }
3145 
3146 
3147 #endif // PRODUCT
3148 
3149 
3150 javaVFrame* JavaThread::last_java_vframe(RegisterMap *reg_map) {
3151   assert(reg_map != NULL, "a map must be given");
3152   frame f = last_frame();
3153   for (vframe* vf = vframe::new_vframe(&f, reg_map, this); vf; vf = vf->sender()) {
3154     if (vf->is_java_frame()) return javaVFrame::cast(vf);
3155   }
3156   return NULL;
3157 }
3158 
3159 
3160 Klass* JavaThread::security_get_caller_class(int depth) {
3161   vframeStream vfst(this);
3162   vfst.security_get_caller_frame(depth);
3163   if (!vfst.at_end()) {
3164     return vfst.method()->method_holder();
3165   }
3166   return NULL;
3167 }
3168 
3169 static void compiler_thread_entry(JavaThread* thread, TRAPS) {
3170   assert(thread->is_Compiler_thread(), "must be compiler thread");
3171   CompileBroker::compiler_thread_loop();
3172 }
3173 
3174 static void sweeper_thread_entry(JavaThread* thread, TRAPS) {
3175   NMethodSweeper::sweeper_loop();
3176 }
3177 
3178 // Create a CompilerThread
3179 CompilerThread::CompilerThread(CompileQueue* queue,
3180                                CompilerCounters* counters)
3181                                : JavaThread(&compiler_thread_entry) {
3182   _env   = NULL;
3183   _log   = NULL;
3184   _task  = NULL;
3185   _queue = queue;
3186   _counters = counters;
3187   _buffer_blob = NULL;
3188   _compiler = NULL;
3189 
3190 #ifndef PRODUCT
3191   _ideal_graph_printer = NULL;
3192 #endif
3193 }
3194 
3195 // Create sweeper thread
3196 CodeCacheSweeperThread::CodeCacheSweeperThread()
3197 : JavaThread(&sweeper_thread_entry) {
3198   _scanned_nmethod = NULL;
3199 }
3200 void CodeCacheSweeperThread::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
3201   JavaThread::oops_do(f, cld_f, cf);
3202   if (_scanned_nmethod != NULL && cf != NULL) {
3203     // Safepoints can occur when the sweeper is scanning an nmethod so
3204     // process it here to make sure it isn't unloaded in the middle of
3205     // a scan.
3206     cf->do_code_blob(_scanned_nmethod);
3207   }
3208 }
3209 
3210 
3211 // ======= Threads ========
3212 
3213 // The Threads class links together all active threads, and provides
3214 // operations over all threads.  It is protected by its own Mutex
3215 // lock, which is also used in other contexts to protect thread
3216 // operations from having the thread being operated on from exiting
3217 // and going away unexpectedly (e.g., safepoint synchronization)
3218 
3219 JavaThread* Threads::_thread_list = NULL;
3220 int         Threads::_number_of_threads = 0;
3221 int         Threads::_number_of_non_daemon_threads = 0;
3222 int         Threads::_return_code = 0;
3223 size_t      JavaThread::_stack_size_at_create = 0;
3224 #ifdef ASSERT
3225 bool        Threads::_vm_complete = false;
3226 #endif
3227 
3228 // All JavaThreads
3229 #define ALL_JAVA_THREADS(X) for (JavaThread* X = _thread_list; X; X = X->next())
3230 
3231 // All JavaThreads + all non-JavaThreads (i.e., every thread in the system)
3232 void Threads::threads_do(ThreadClosure* tc) {
3233   assert_locked_or_safepoint(Threads_lock);
3234   // ALL_JAVA_THREADS iterates through all JavaThreads
3235   ALL_JAVA_THREADS(p) {
3236     tc->do_thread(p);
3237   }
3238   // Someday we could have a table or list of all non-JavaThreads.
3239   // For now, just manually iterate through them.
3240   tc->do_thread(VMThread::vm_thread());
3241   Universe::heap()->gc_threads_do(tc);
3242   WatcherThread *wt = WatcherThread::watcher_thread();
3243   // Strictly speaking, the following NULL check isn't sufficient to make sure
3244   // the data for WatcherThread is still valid upon being examined. However,
3245   // considering that WatchThread terminates when the VM is on the way to
3246   // exit at safepoint, the chance of the above is extremely small. The right
3247   // way to prevent termination of WatcherThread would be to acquire
3248   // Terminator_lock, but we can't do that without violating the lock rank
3249   // checking in some cases.
3250   if (wt != NULL) {
3251     tc->do_thread(wt);
3252   }
3253 
3254   // If CompilerThreads ever become non-JavaThreads, add them here
3255 }
3256 
3257 
3258 void Threads::initialize_java_lang_classes(JavaThread* main_thread, TRAPS) {
3259   TraceTime timer("Initialize java.lang classes", TraceStartupTime);
3260 
3261   if (EagerXrunInit && Arguments::init_libraries_at_startup()) {
3262     create_vm_init_libraries();
3263   }
3264 
3265   initialize_class(vmSymbols::java_lang_String(), CHECK);
3266 
3267   // Initialize java_lang.System (needed before creating the thread)
3268   initialize_class(vmSymbols::java_lang_System(), CHECK);
3269   initialize_class(vmSymbols::java_lang_ThreadGroup(), CHECK);
3270   Handle thread_group = create_initial_thread_group(CHECK);
3271   Universe::set_main_thread_group(thread_group());
3272   initialize_class(vmSymbols::java_lang_Thread(), CHECK);
3273   oop thread_object = create_initial_thread(thread_group, main_thread, CHECK);
3274   main_thread->set_threadObj(thread_object);
3275   // Set thread status to running since main thread has
3276   // been started and running.
3277   java_lang_Thread::set_thread_status(thread_object,
3278                                       java_lang_Thread::RUNNABLE);
3279 
3280   // The VM creates & returns objects of this class. Make sure it's initialized.
3281   initialize_class(vmSymbols::java_lang_Class(), CHECK);
3282 
3283   // The VM preresolves methods to these classes. Make sure that they get initialized
3284   initialize_class(vmSymbols::java_lang_reflect_Method(), CHECK);
3285   initialize_class(vmSymbols::java_lang_ref_Finalizer(), CHECK);
3286   call_initializeSystemClass(CHECK);
3287 
3288   // get the Java runtime name after java.lang.System is initialized
3289   JDK_Version::set_runtime_name(get_java_runtime_name(THREAD));
3290   JDK_Version::set_runtime_version(get_java_runtime_version(THREAD));
3291 
3292   // an instance of OutOfMemory exception has been allocated earlier
3293   initialize_class(vmSymbols::java_lang_OutOfMemoryError(), CHECK);
3294   initialize_class(vmSymbols::java_lang_NullPointerException(), CHECK);
3295   initialize_class(vmSymbols::java_lang_ClassCastException(), CHECK);
3296   initialize_class(vmSymbols::java_lang_ArrayStoreException(), CHECK);
3297   initialize_class(vmSymbols::java_lang_ArithmeticException(), CHECK);
3298   initialize_class(vmSymbols::java_lang_StackOverflowError(), CHECK);
3299   initialize_class(vmSymbols::java_lang_IllegalMonitorStateException(), CHECK);
3300   initialize_class(vmSymbols::java_lang_IllegalArgumentException(), CHECK);
3301 }
3302 
3303 void Threads::initialize_jsr292_core_classes(TRAPS) {
3304   initialize_class(vmSymbols::java_lang_invoke_MethodHandle(), CHECK);
3305   initialize_class(vmSymbols::java_lang_invoke_MemberName(), CHECK);
3306   initialize_class(vmSymbols::java_lang_invoke_MethodHandleNatives(), CHECK);
3307 }
3308 
3309 jint Threads::create_vm(JavaVMInitArgs* args, bool* canTryAgain) {
3310   extern void JDK_Version_init();
3311 
3312   // Check version
3313   if (!is_supported_jni_version(args->version)) return JNI_EVERSION;
3314 
3315   // Initialize the output stream module
3316   ostream_init();
3317 
3318   // Process java launcher properties.
3319   Arguments::process_sun_java_launcher_properties(args);
3320 
3321   // Initialize the os module before using TLS
3322   os::init();
3323 
3324   // Initialize system properties.
3325   Arguments::init_system_properties();
3326 
3327   // So that JDK version can be used as a discriminator when parsing arguments
3328   JDK_Version_init();
3329 
3330   // Update/Initialize System properties after JDK version number is known
3331   Arguments::init_version_specific_system_properties();
3332 
3333   // Parse arguments
3334   jint parse_result = Arguments::parse(args);
3335   if (parse_result != JNI_OK) return parse_result;
3336 
3337   os::init_before_ergo();
3338 
3339   jint ergo_result = Arguments::apply_ergo();
3340   if (ergo_result != JNI_OK) return ergo_result;
3341 
3342   if (PauseAtStartup) {
3343     os::pause();
3344   }
3345 
3346   HOTSPOT_VM_INIT_BEGIN();
3347 
3348   // Record VM creation timing statistics
3349   TraceVmCreationTime create_vm_timer;
3350   create_vm_timer.start();
3351 
3352   // Timing (must come after argument parsing)
3353   TraceTime timer("Create VM", TraceStartupTime);
3354 
3355   // Initialize the os module after parsing the args
3356   jint os_init_2_result = os::init_2();
3357   if (os_init_2_result != JNI_OK) return os_init_2_result;
3358 
3359   jint adjust_after_os_result = Arguments::adjust_after_os();
3360   if (adjust_after_os_result != JNI_OK) return adjust_after_os_result;
3361 
3362   // initialize TLS
3363   ThreadLocalStorage::init();
3364 
3365   // Initialize output stream logging
3366   ostream_init_log();
3367 
3368   // Convert -Xrun to -agentlib: if there is no JVM_OnLoad
3369   // Must be before create_vm_init_agents()
3370   if (Arguments::init_libraries_at_startup()) {
3371     convert_vm_init_libraries_to_agents();
3372   }
3373 
3374   // Launch -agentlib/-agentpath and converted -Xrun agents
3375   if (Arguments::init_agents_at_startup()) {
3376     create_vm_init_agents();
3377   }
3378 
3379   // Initialize Threads state
3380   _thread_list = NULL;
3381   _number_of_threads = 0;
3382   _number_of_non_daemon_threads = 0;
3383 
3384   // Initialize global data structures and create system classes in heap
3385   vm_init_globals();
3386 
3387   // Attach the main thread to this os thread
3388   JavaThread* main_thread = new JavaThread();
3389   main_thread->set_thread_state(_thread_in_vm);
3390   // must do this before set_active_handles and initialize_thread_local_storage
3391   // Note: on solaris initialize_thread_local_storage() will (indirectly)
3392   // change the stack size recorded here to one based on the java thread
3393   // stacksize. This adjusted size is what is used to figure the placement
3394   // of the guard pages.
3395   main_thread->record_stack_base_and_size();
3396   main_thread->initialize_thread_local_storage();
3397 
3398   main_thread->set_active_handles(JNIHandleBlock::allocate_block());
3399 
3400   if (!main_thread->set_as_starting_thread()) {
3401     vm_shutdown_during_initialization(
3402                                       "Failed necessary internal allocation. Out of swap space");
3403     delete main_thread;
3404     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3405     return JNI_ENOMEM;
3406   }
3407 
3408   // Enable guard page *after* os::create_main_thread(), otherwise it would
3409   // crash Linux VM, see notes in os_linux.cpp.
3410   main_thread->create_stack_guard_pages();
3411 
3412   // Initialize Java-Level synchronization subsystem
3413   ObjectMonitor::Initialize();
3414 
3415   // Initialize global modules
3416   jint status = init_globals();
3417   if (status != JNI_OK) {
3418     delete main_thread;
3419     *canTryAgain = false; // don't let caller call JNI_CreateJavaVM again
3420     return status;
3421   }
3422 
3423   // Should be done after the heap is fully created
3424   main_thread->cache_global_variables();
3425 
3426   HandleMark hm;
3427 
3428   { MutexLocker mu(Threads_lock);
3429     Threads::add(main_thread);
3430   }
3431 
3432   // Any JVMTI raw monitors entered in onload will transition into
3433   // real raw monitor. VM is setup enough here for raw monitor enter.
3434   JvmtiExport::transition_pending_onload_raw_monitors();
3435 
3436   // Create the VMThread
3437   { TraceTime timer("Start VMThread", TraceStartupTime);
3438     VMThread::create();
3439     Thread* vmthread = VMThread::vm_thread();
3440 
3441     if (!os::create_thread(vmthread, os::vm_thread)) {
3442       vm_exit_during_initialization("Cannot create VM thread. "
3443                                     "Out of system resources.");
3444     }
3445 
3446     // Wait for the VM thread to become ready, and VMThread::run to initialize
3447     // Monitors can have spurious returns, must always check another state flag
3448     {
3449       MutexLocker ml(Notify_lock);
3450       os::start_thread(vmthread);
3451       while (vmthread->active_handles() == NULL) {
3452         Notify_lock->wait();
3453       }
3454     }
3455   }
3456 
3457   assert(Universe::is_fully_initialized(), "not initialized");
3458   if (VerifyDuringStartup) {
3459     // Make sure we're starting with a clean slate.
3460     VM_Verify verify_op;
3461     VMThread::execute(&verify_op);
3462   }
3463 
3464   Thread* THREAD = Thread::current();
3465 
3466   // At this point, the Universe is initialized, but we have not executed
3467   // any byte code.  Now is a good time (the only time) to dump out the
3468   // internal state of the JVM for sharing.
3469   if (DumpSharedSpaces) {
3470     MetaspaceShared::preload_and_dump(CHECK_JNI_ERR);
3471     ShouldNotReachHere();
3472   }
3473 
3474   // Always call even when there are not JVMTI environments yet, since environments
3475   // may be attached late and JVMTI must track phases of VM execution
3476   JvmtiExport::enter_start_phase();
3477 
3478   // Notify JVMTI agents that VM has started (JNI is up) - nop if no agents.
3479   JvmtiExport::post_vm_start();
3480 
3481   initialize_java_lang_classes(main_thread, CHECK_JNI_ERR);
3482 
3483   // We need this for ClassDataSharing - the initial vm.info property is set
3484   // with the default value of CDS "sharing" which may be reset through
3485   // command line options.
3486   reset_vm_info_property(CHECK_JNI_ERR);
3487 
3488   quicken_jni_functions();
3489 
3490   // Must be run after init_ft which initializes ft_enabled
3491   if (TRACE_INITIALIZE() != JNI_OK) {
3492     vm_exit_during_initialization("Failed to initialize tracing backend");
3493   }
3494 
3495   // Set flag that basic initialization has completed. Used by exceptions and various
3496   // debug stuff, that does not work until all basic classes have been initialized.
3497   set_init_completed();
3498 
3499   Metaspace::post_initialize();
3500 
3501   HOTSPOT_VM_INIT_END();
3502 
3503   // record VM initialization completion time
3504 #if INCLUDE_MANAGEMENT
3505   Management::record_vm_init_completed();
3506 #endif // INCLUDE_MANAGEMENT
3507 
3508   // Compute system loader. Note that this has to occur after set_init_completed, since
3509   // valid exceptions may be thrown in the process.
3510   // Note that we do not use CHECK_0 here since we are inside an EXCEPTION_MARK and
3511   // set_init_completed has just been called, causing exceptions not to be shortcut
3512   // anymore. We call vm_exit_during_initialization directly instead.
3513   SystemDictionary::compute_java_system_loader(CHECK_JNI_ERR);
3514 
3515 #if INCLUDE_ALL_GCS
3516   // Support for ConcurrentMarkSweep. This should be cleaned up
3517   // and better encapsulated. The ugly nested if test would go away
3518   // once things are properly refactored. XXX YSR
3519   if (UseConcMarkSweepGC || UseG1GC) {
3520     if (UseConcMarkSweepGC) {
3521       ConcurrentMarkSweepThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3522     } else {
3523       ConcurrentMarkThread::makeSurrogateLockerThread(CHECK_JNI_ERR);
3524     }
3525   }
3526 #endif // INCLUDE_ALL_GCS
3527 
3528   // Always call even when there are not JVMTI environments yet, since environments
3529   // may be attached late and JVMTI must track phases of VM execution
3530   JvmtiExport::enter_live_phase();
3531 
3532   // Signal Dispatcher needs to be started before VMInit event is posted
3533   os::signal_init();
3534 
3535   // Start Attach Listener if +StartAttachListener or it can't be started lazily
3536   if (!DisableAttachMechanism) {
3537     AttachListener::vm_start();
3538     if (StartAttachListener || AttachListener::init_at_startup()) {
3539       AttachListener::init();
3540     }
3541   }
3542 
3543   // Launch -Xrun agents
3544   // Must be done in the JVMTI live phase so that for backward compatibility the JDWP
3545   // back-end can launch with -Xdebug -Xrunjdwp.
3546   if (!EagerXrunInit && Arguments::init_libraries_at_startup()) {
3547     create_vm_init_libraries();
3548   }
3549 
3550   // Notify JVMTI agents that VM initialization is complete - nop if no agents.
3551   JvmtiExport::post_vm_initialized();
3552 
3553   if (TRACE_START() != JNI_OK) {
3554     vm_exit_during_initialization("Failed to start tracing backend.");
3555   }
3556 
3557   if (CleanChunkPoolAsync) {
3558     Chunk::start_chunk_pool_cleaner_task();
3559   }
3560 
3561   // initialize compiler(s)
3562 #if defined(COMPILER1) || defined(COMPILER2) || defined(SHARK)
3563   CompileBroker::compilation_init();
3564 #endif
3565 
3566   // Pre-initialize some JSR292 core classes to avoid deadlock during class loading.
3567   // It is done after compilers are initialized, because otherwise compilations of
3568   // signature polymorphic MH intrinsics can be missed
3569   // (see SystemDictionary::find_method_handle_intrinsic).
3570   initialize_jsr292_core_classes(CHECK_JNI_ERR);
3571 
3572 #if INCLUDE_MANAGEMENT
3573   Management::initialize(THREAD);
3574 
3575   if (HAS_PENDING_EXCEPTION) {
3576     // management agent fails to start possibly due to
3577     // configuration problem and is responsible for printing
3578     // stack trace if appropriate. Simply exit VM.
3579     vm_exit(1);
3580   }
3581 #endif // INCLUDE_MANAGEMENT
3582 
3583   if (Arguments::has_profile())       FlatProfiler::engage(main_thread, true);
3584   if (MemProfiling)                   MemProfiler::engage();
3585   StatSampler::engage();
3586   if (CheckJNICalls)                  JniPeriodicChecker::engage();
3587 
3588   BiasedLocking::init();
3589 
3590 #if INCLUDE_RTM_OPT
3591   RTMLockingCounters::init();
3592 #endif
3593 
3594   if (JDK_Version::current().post_vm_init_hook_enabled()) {
3595     call_postVMInitHook(THREAD);
3596     // The Java side of PostVMInitHook.run must deal with all
3597     // exceptions and provide means of diagnosis.
3598     if (HAS_PENDING_EXCEPTION) {
3599       CLEAR_PENDING_EXCEPTION;
3600     }
3601   }
3602 
3603   {
3604     MutexLockerEx ml(PeriodicTask_lock, Mutex::_no_safepoint_check_flag);
3605     // Make sure the watcher thread can be started by WatcherThread::start()
3606     // or by dynamic enrollment.
3607     WatcherThread::make_startable();
3608     // Start up the WatcherThread if there are any periodic tasks
3609     // NOTE:  All PeriodicTasks should be registered by now. If they
3610     //   aren't, late joiners might appear to start slowly (we might
3611     //   take a while to process their first tick).
3612     if (PeriodicTask::num_tasks() > 0) {
3613       WatcherThread::start();
3614     }
3615   }
3616 
3617   // Give os specific code one last chance to start
3618   os::init_3();
3619 
3620   create_vm_timer.end();
3621 #ifdef ASSERT
3622   _vm_complete = true;
3623 #endif
3624   return JNI_OK;
3625 }
3626 
3627 // type for the Agent_OnLoad and JVM_OnLoad entry points
3628 extern "C" {
3629   typedef jint (JNICALL *OnLoadEntry_t)(JavaVM *, char *, void *);
3630 }
3631 // Find a command line agent library and return its entry point for
3632 //         -agentlib:  -agentpath:   -Xrun
3633 // num_symbol_entries must be passed-in since only the caller knows the number of symbols in the array.
3634 static OnLoadEntry_t lookup_on_load(AgentLibrary* agent,
3635                                     const char *on_load_symbols[],
3636                                     size_t num_symbol_entries) {
3637   OnLoadEntry_t on_load_entry = NULL;
3638   void *library = NULL;
3639 
3640   if (!agent->valid()) {
3641     char buffer[JVM_MAXPATHLEN];
3642     char ebuf[1024];
3643     const char *name = agent->name();
3644     const char *msg = "Could not find agent library ";
3645 
3646     // First check to see if agent is statically linked into executable
3647     if (os::find_builtin_agent(agent, on_load_symbols, num_symbol_entries)) {
3648       library = agent->os_lib();
3649     } else if (agent->is_absolute_path()) {
3650       library = os::dll_load(name, ebuf, sizeof ebuf);
3651       if (library == NULL) {
3652         const char *sub_msg = " in absolute path, with error: ";
3653         size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3654         char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3655         jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3656         // If we can't find the agent, exit.
3657         vm_exit_during_initialization(buf, NULL);
3658         FREE_C_HEAP_ARRAY(char, buf, mtThread);
3659       }
3660     } else {
3661       // Try to load the agent from the standard dll directory
3662       if (os::dll_build_name(buffer, sizeof(buffer), Arguments::get_dll_dir(),
3663                              name)) {
3664         library = os::dll_load(buffer, ebuf, sizeof ebuf);
3665       }
3666       if (library == NULL) { // Try the local directory
3667         char ns[1] = {0};
3668         if (os::dll_build_name(buffer, sizeof(buffer), ns, name)) {
3669           library = os::dll_load(buffer, ebuf, sizeof ebuf);
3670         }
3671         if (library == NULL) {
3672           const char *sub_msg = " on the library path, with error: ";
3673           size_t len = strlen(msg) + strlen(name) + strlen(sub_msg) + strlen(ebuf) + 1;
3674           char *buf = NEW_C_HEAP_ARRAY(char, len, mtThread);
3675           jio_snprintf(buf, len, "%s%s%s%s", msg, name, sub_msg, ebuf);
3676           // If we can't find the agent, exit.
3677           vm_exit_during_initialization(buf, NULL);
3678           FREE_C_HEAP_ARRAY(char, buf, mtThread);
3679         }
3680       }
3681     }
3682     agent->set_os_lib(library);
3683     agent->set_valid();
3684   }
3685 
3686   // Find the OnLoad function.
3687   on_load_entry =
3688     CAST_TO_FN_PTR(OnLoadEntry_t, os::find_agent_function(agent,
3689                                                           false,
3690                                                           on_load_symbols,
3691                                                           num_symbol_entries));
3692   return on_load_entry;
3693 }
3694 
3695 // Find the JVM_OnLoad entry point
3696 static OnLoadEntry_t lookup_jvm_on_load(AgentLibrary* agent) {
3697   const char *on_load_symbols[] = JVM_ONLOAD_SYMBOLS;
3698   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3699 }
3700 
3701 // Find the Agent_OnLoad entry point
3702 static OnLoadEntry_t lookup_agent_on_load(AgentLibrary* agent) {
3703   const char *on_load_symbols[] = AGENT_ONLOAD_SYMBOLS;
3704   return lookup_on_load(agent, on_load_symbols, sizeof(on_load_symbols) / sizeof(char*));
3705 }
3706 
3707 // For backwards compatibility with -Xrun
3708 // Convert libraries with no JVM_OnLoad, but which have Agent_OnLoad to be
3709 // treated like -agentpath:
3710 // Must be called before agent libraries are created
3711 void Threads::convert_vm_init_libraries_to_agents() {
3712   AgentLibrary* agent;
3713   AgentLibrary* next;
3714 
3715   for (agent = Arguments::libraries(); agent != NULL; agent = next) {
3716     next = agent->next();  // cache the next agent now as this agent may get moved off this list
3717     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3718 
3719     // If there is an JVM_OnLoad function it will get called later,
3720     // otherwise see if there is an Agent_OnLoad
3721     if (on_load_entry == NULL) {
3722       on_load_entry = lookup_agent_on_load(agent);
3723       if (on_load_entry != NULL) {
3724         // switch it to the agent list -- so that Agent_OnLoad will be called,
3725         // JVM_OnLoad won't be attempted and Agent_OnUnload will
3726         Arguments::convert_library_to_agent(agent);
3727       } else {
3728         vm_exit_during_initialization("Could not find JVM_OnLoad or Agent_OnLoad function in the library", agent->name());
3729       }
3730     }
3731   }
3732 }
3733 
3734 // Create agents for -agentlib:  -agentpath:  and converted -Xrun
3735 // Invokes Agent_OnLoad
3736 // Called very early -- before JavaThreads exist
3737 void Threads::create_vm_init_agents() {
3738   extern struct JavaVM_ main_vm;
3739   AgentLibrary* agent;
3740 
3741   JvmtiExport::enter_onload_phase();
3742 
3743   for (agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3744     OnLoadEntry_t  on_load_entry = lookup_agent_on_load(agent);
3745 
3746     if (on_load_entry != NULL) {
3747       // Invoke the Agent_OnLoad function
3748       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3749       if (err != JNI_OK) {
3750         vm_exit_during_initialization("agent library failed to init", agent->name());
3751       }
3752     } else {
3753       vm_exit_during_initialization("Could not find Agent_OnLoad function in the agent library", agent->name());
3754     }
3755   }
3756   JvmtiExport::enter_primordial_phase();
3757 }
3758 
3759 extern "C" {
3760   typedef void (JNICALL *Agent_OnUnload_t)(JavaVM *);
3761 }
3762 
3763 void Threads::shutdown_vm_agents() {
3764   // Send any Agent_OnUnload notifications
3765   const char *on_unload_symbols[] = AGENT_ONUNLOAD_SYMBOLS;
3766   size_t num_symbol_entries = ARRAY_SIZE(on_unload_symbols);
3767   extern struct JavaVM_ main_vm;
3768   for (AgentLibrary* agent = Arguments::agents(); agent != NULL; agent = agent->next()) {
3769 
3770     // Find the Agent_OnUnload function.
3771     Agent_OnUnload_t unload_entry = CAST_TO_FN_PTR(Agent_OnUnload_t,
3772                                                    os::find_agent_function(agent,
3773                                                    false,
3774                                                    on_unload_symbols,
3775                                                    num_symbol_entries));
3776 
3777     // Invoke the Agent_OnUnload function
3778     if (unload_entry != NULL) {
3779       JavaThread* thread = JavaThread::current();
3780       ThreadToNativeFromVM ttn(thread);
3781       HandleMark hm(thread);
3782       (*unload_entry)(&main_vm);
3783     }
3784   }
3785 }
3786 
3787 // Called for after the VM is initialized for -Xrun libraries which have not been converted to agent libraries
3788 // Invokes JVM_OnLoad
3789 void Threads::create_vm_init_libraries() {
3790   extern struct JavaVM_ main_vm;
3791   AgentLibrary* agent;
3792 
3793   for (agent = Arguments::libraries(); agent != NULL; agent = agent->next()) {
3794     OnLoadEntry_t on_load_entry = lookup_jvm_on_load(agent);
3795 
3796     if (on_load_entry != NULL) {
3797       // Invoke the JVM_OnLoad function
3798       JavaThread* thread = JavaThread::current();
3799       ThreadToNativeFromVM ttn(thread);
3800       HandleMark hm(thread);
3801       jint err = (*on_load_entry)(&main_vm, agent->options(), NULL);
3802       if (err != JNI_OK) {
3803         vm_exit_during_initialization("-Xrun library failed to init", agent->name());
3804       }
3805     } else {
3806       vm_exit_during_initialization("Could not find JVM_OnLoad function in -Xrun library", agent->name());
3807     }
3808   }
3809 }
3810 
3811 JavaThread* Threads::find_java_thread_from_java_tid(jlong java_tid) {
3812   assert(Threads_lock->owned_by_self(), "Must hold Threads_lock");
3813 
3814   JavaThread* java_thread = NULL;
3815   // Sequential search for now.  Need to do better optimization later.
3816   for (JavaThread* thread = Threads::first(); thread != NULL; thread = thread->next()) {
3817     oop tobj = thread->threadObj();
3818     if (!thread->is_exiting() &&
3819         tobj != NULL &&
3820         java_tid == java_lang_Thread::thread_id(tobj)) {
3821       java_thread = thread;
3822       break;
3823     }
3824   }
3825   return java_thread;
3826 }
3827 
3828 
3829 // Last thread running calls java.lang.Shutdown.shutdown()
3830 void JavaThread::invoke_shutdown_hooks() {
3831   HandleMark hm(this);
3832 
3833   // We could get here with a pending exception, if so clear it now.
3834   if (this->has_pending_exception()) {
3835     this->clear_pending_exception();
3836   }
3837 
3838   EXCEPTION_MARK;
3839   Klass* k =
3840     SystemDictionary::resolve_or_null(vmSymbols::java_lang_Shutdown(),
3841                                       THREAD);
3842   if (k != NULL) {
3843     // SystemDictionary::resolve_or_null will return null if there was
3844     // an exception.  If we cannot load the Shutdown class, just don't
3845     // call Shutdown.shutdown() at all.  This will mean the shutdown hooks
3846     // and finalizers (if runFinalizersOnExit is set) won't be run.
3847     // Note that if a shutdown hook was registered or runFinalizersOnExit
3848     // was called, the Shutdown class would have already been loaded
3849     // (Runtime.addShutdownHook and runFinalizersOnExit will load it).
3850     instanceKlassHandle shutdown_klass (THREAD, k);
3851     JavaValue result(T_VOID);
3852     JavaCalls::call_static(&result,
3853                            shutdown_klass,
3854                            vmSymbols::shutdown_method_name(),
3855                            vmSymbols::void_method_signature(),
3856                            THREAD);
3857   }
3858   CLEAR_PENDING_EXCEPTION;
3859 }
3860 
3861 // Threads::destroy_vm() is normally called from jni_DestroyJavaVM() when
3862 // the program falls off the end of main(). Another VM exit path is through
3863 // vm_exit() when the program calls System.exit() to return a value or when
3864 // there is a serious error in VM. The two shutdown paths are not exactly
3865 // the same, but they share Shutdown.shutdown() at Java level and before_exit()
3866 // and VM_Exit op at VM level.
3867 //
3868 // Shutdown sequence:
3869 //   + Shutdown native memory tracking if it is on
3870 //   + Wait until we are the last non-daemon thread to execute
3871 //     <-- every thing is still working at this moment -->
3872 //   + Call java.lang.Shutdown.shutdown(), which will invoke Java level
3873 //        shutdown hooks, run finalizers if finalization-on-exit
3874 //   + Call before_exit(), prepare for VM exit
3875 //      > run VM level shutdown hooks (they are registered through JVM_OnExit(),
3876 //        currently the only user of this mechanism is File.deleteOnExit())
3877 //      > stop flat profiler, StatSampler, watcher thread, CMS threads,
3878 //        post thread end and vm death events to JVMTI,
3879 //        stop signal thread
3880 //   + Call JavaThread::exit(), it will:
3881 //      > release JNI handle blocks, remove stack guard pages
3882 //      > remove this thread from Threads list
3883 //     <-- no more Java code from this thread after this point -->
3884 //   + Stop VM thread, it will bring the remaining VM to a safepoint and stop
3885 //     the compiler threads at safepoint
3886 //     <-- do not use anything that could get blocked by Safepoint -->
3887 //   + Disable tracing at JNI/JVM barriers
3888 //   + Set _vm_exited flag for threads that are still running native code
3889 //   + Delete this thread
3890 //   + Call exit_globals()
3891 //      > deletes tty
3892 //      > deletes PerfMemory resources
3893 //   + Return to caller
3894 
3895 bool Threads::destroy_vm() {
3896   JavaThread* thread = JavaThread::current();
3897 
3898 #ifdef ASSERT
3899   _vm_complete = false;
3900 #endif
3901   // Wait until we are the last non-daemon thread to execute
3902   { MutexLocker nu(Threads_lock);
3903     while (Threads::number_of_non_daemon_threads() > 1)
3904       // This wait should make safepoint checks, wait without a timeout,
3905       // and wait as a suspend-equivalent condition.
3906       //
3907       // Note: If the FlatProfiler is running and this thread is waiting
3908       // for another non-daemon thread to finish, then the FlatProfiler
3909       // is waiting for the external suspend request on this thread to
3910       // complete. wait_for_ext_suspend_completion() will eventually
3911       // timeout, but that takes time. Making this wait a suspend-
3912       // equivalent condition solves that timeout problem.
3913       //
3914       Threads_lock->wait(!Mutex::_no_safepoint_check_flag, 0,
3915                          Mutex::_as_suspend_equivalent_flag);
3916   }
3917 
3918   // Hang forever on exit if we are reporting an error.
3919   if (ShowMessageBoxOnError && is_error_reported()) {
3920     os::infinite_sleep();
3921   }
3922   os::wait_for_keypress_at_exit();
3923 
3924   // run Java level shutdown hooks
3925   thread->invoke_shutdown_hooks();
3926 
3927   before_exit(thread);
3928 
3929   thread->exit(true);
3930 
3931   // Stop VM thread.
3932   {
3933     // 4945125 The vm thread comes to a safepoint during exit.
3934     // GC vm_operations can get caught at the safepoint, and the
3935     // heap is unparseable if they are caught. Grab the Heap_lock
3936     // to prevent this. The GC vm_operations will not be able to
3937     // queue until after the vm thread is dead. After this point,
3938     // we'll never emerge out of the safepoint before the VM exits.
3939 
3940     MutexLocker ml(Heap_lock);
3941 
3942     VMThread::wait_for_vm_thread_exit();
3943     assert(SafepointSynchronize::is_at_safepoint(), "VM thread should exit at Safepoint");
3944     VMThread::destroy();
3945   }
3946 
3947   // clean up ideal graph printers
3948 #if defined(COMPILER2) && !defined(PRODUCT)
3949   IdealGraphPrinter::clean_up();
3950 #endif
3951 
3952   // Now, all Java threads are gone except daemon threads. Daemon threads
3953   // running Java code or in VM are stopped by the Safepoint. However,
3954   // daemon threads executing native code are still running.  But they
3955   // will be stopped at native=>Java/VM barriers. Note that we can't
3956   // simply kill or suspend them, as it is inherently deadlock-prone.
3957 
3958 #ifndef PRODUCT
3959   // disable function tracing at JNI/JVM barriers
3960   TraceJNICalls = false;
3961   TraceJVMCalls = false;
3962   TraceRuntimeCalls = false;
3963 #endif
3964 
3965   VM_Exit::set_vm_exited();
3966 
3967   notify_vm_shutdown();
3968 
3969   delete thread;
3970 
3971   // exit_globals() will delete tty
3972   exit_globals();
3973 
3974   return true;
3975 }
3976 
3977 
3978 jboolean Threads::is_supported_jni_version_including_1_1(jint version) {
3979   if (version == JNI_VERSION_1_1) return JNI_TRUE;
3980   return is_supported_jni_version(version);
3981 }
3982 
3983 
3984 jboolean Threads::is_supported_jni_version(jint version) {
3985   if (version == JNI_VERSION_1_2) return JNI_TRUE;
3986   if (version == JNI_VERSION_1_4) return JNI_TRUE;
3987   if (version == JNI_VERSION_1_6) return JNI_TRUE;
3988   if (version == JNI_VERSION_1_8) return JNI_TRUE;
3989   return JNI_FALSE;
3990 }
3991 
3992 
3993 void Threads::add(JavaThread* p, bool force_daemon) {
3994   // The threads lock must be owned at this point
3995   assert_locked_or_safepoint(Threads_lock);
3996 
3997   // See the comment for this method in thread.hpp for its purpose and
3998   // why it is called here.
3999   p->initialize_queues();
4000   p->set_next(_thread_list);
4001   _thread_list = p;
4002   _number_of_threads++;
4003   oop threadObj = p->threadObj();
4004   bool daemon = true;
4005   // Bootstrapping problem: threadObj can be null for initial
4006   // JavaThread (or for threads attached via JNI)
4007   if ((!force_daemon) && (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj))) {
4008     _number_of_non_daemon_threads++;
4009     daemon = false;
4010   }
4011 
4012   ThreadService::add_thread(p, daemon);
4013 
4014   // Possible GC point.
4015   Events::log(p, "Thread added: " INTPTR_FORMAT, p);
4016 }
4017 
4018 void Threads::remove(JavaThread* p) {
4019   // Extra scope needed for Thread_lock, so we can check
4020   // that we do not remove thread without safepoint code notice
4021   { MutexLocker ml(Threads_lock);
4022 
4023     assert(includes(p), "p must be present");
4024 
4025     JavaThread* current = _thread_list;
4026     JavaThread* prev    = NULL;
4027 
4028     while (current != p) {
4029       prev    = current;
4030       current = current->next();
4031     }
4032 
4033     if (prev) {
4034       prev->set_next(current->next());
4035     } else {
4036       _thread_list = p->next();
4037     }
4038     _number_of_threads--;
4039     oop threadObj = p->threadObj();
4040     bool daemon = true;
4041     if (threadObj == NULL || !java_lang_Thread::is_daemon(threadObj)) {
4042       _number_of_non_daemon_threads--;
4043       daemon = false;
4044 
4045       // Only one thread left, do a notify on the Threads_lock so a thread waiting
4046       // on destroy_vm will wake up.
4047       if (number_of_non_daemon_threads() == 1) {
4048         Threads_lock->notify_all();
4049       }
4050     }
4051     ThreadService::remove_thread(p, daemon);
4052 
4053     // Make sure that safepoint code disregard this thread. This is needed since
4054     // the thread might mess around with locks after this point. This can cause it
4055     // to do callbacks into the safepoint code. However, the safepoint code is not aware
4056     // of this thread since it is removed from the queue.
4057     p->set_terminated_value();
4058   } // unlock Threads_lock
4059 
4060   // Since Events::log uses a lock, we grab it outside the Threads_lock
4061   Events::log(p, "Thread exited: " INTPTR_FORMAT, p);
4062 }
4063 
4064 // Threads_lock must be held when this is called (or must be called during a safepoint)
4065 bool Threads::includes(JavaThread* p) {
4066   assert(Threads_lock->is_locked(), "sanity check");
4067   ALL_JAVA_THREADS(q) {
4068     if (q == p) {
4069       return true;
4070     }
4071   }
4072   return false;
4073 }
4074 
4075 // Operations on the Threads list for GC.  These are not explicitly locked,
4076 // but the garbage collector must provide a safe context for them to run.
4077 // In particular, these things should never be called when the Threads_lock
4078 // is held by some other thread. (Note: the Safepoint abstraction also
4079 // uses the Threads_lock to guarantee this property. It also makes sure that
4080 // all threads gets blocked when exiting or starting).
4081 
4082 void Threads::oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4083   ALL_JAVA_THREADS(p) {
4084     p->oops_do(f, cld_f, cf);
4085   }
4086   VMThread::vm_thread()->oops_do(f, cld_f, cf);
4087 }
4088 
4089 void Threads::possibly_parallel_oops_do(OopClosure* f, CLDClosure* cld_f, CodeBlobClosure* cf) {
4090   // Introduce a mechanism allowing parallel threads to claim threads as
4091   // root groups.  Overhead should be small enough to use all the time,
4092   // even in sequential code.
4093   SharedHeap* sh = SharedHeap::heap();
4094   // Cannot yet substitute active_workers for n_par_threads
4095   // because of G1CollectedHeap::verify() use of
4096   // SharedHeap::process_roots().  n_par_threads == 0 will
4097   // turn off parallelism in process_roots while active_workers
4098   // is being used for parallelism elsewhere.
4099   bool is_par = sh->n_par_threads() > 0;
4100   assert(!is_par ||
4101          (SharedHeap::heap()->n_par_threads() ==
4102          SharedHeap::heap()->workers()->active_workers()), "Mismatch");
4103   int cp = SharedHeap::heap()->strong_roots_parity();
4104   ALL_JAVA_THREADS(p) {
4105     if (p->claim_oops_do(is_par, cp)) {
4106       p->oops_do(f, cld_f, cf);
4107     }
4108   }
4109   VMThread* vmt = VMThread::vm_thread();
4110   if (vmt->claim_oops_do(is_par, cp)) {
4111     vmt->oops_do(f, cld_f, cf);
4112   }
4113 }
4114 
4115 #if INCLUDE_ALL_GCS
4116 // Used by ParallelScavenge
4117 void Threads::create_thread_roots_tasks(GCTaskQueue* q) {
4118   ALL_JAVA_THREADS(p) {
4119     q->enqueue(new ThreadRootsTask(p));
4120   }
4121   q->enqueue(new ThreadRootsTask(VMThread::vm_thread()));
4122 }
4123 
4124 // Used by Parallel Old
4125 void Threads::create_thread_roots_marking_tasks(GCTaskQueue* q) {
4126   ALL_JAVA_THREADS(p) {
4127     q->enqueue(new ThreadRootsMarkingTask(p));
4128   }
4129   q->enqueue(new ThreadRootsMarkingTask(VMThread::vm_thread()));
4130 }
4131 #endif // INCLUDE_ALL_GCS
4132 
4133 void Threads::nmethods_do(CodeBlobClosure* cf) {
4134   ALL_JAVA_THREADS(p) {
4135     p->nmethods_do(cf);
4136   }
4137   VMThread::vm_thread()->nmethods_do(cf);
4138 }
4139 
4140 void Threads::metadata_do(void f(Metadata*)) {
4141   ALL_JAVA_THREADS(p) {
4142     p->metadata_do(f);
4143   }
4144 }
4145 
4146 void Threads::deoptimized_wrt_marked_nmethods() {
4147   ALL_JAVA_THREADS(p) {
4148     p->deoptimized_wrt_marked_nmethods();
4149   }
4150 }
4151 
4152 
4153 // Get count Java threads that are waiting to enter the specified monitor.
4154 GrowableArray<JavaThread*>* Threads::get_pending_threads(int count,
4155                                                          address monitor,
4156                                                          bool doLock) {
4157   assert(doLock || SafepointSynchronize::is_at_safepoint(),
4158          "must grab Threads_lock or be at safepoint");
4159   GrowableArray<JavaThread*>* result = new GrowableArray<JavaThread*>(count);
4160 
4161   int i = 0;
4162   {
4163     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4164     ALL_JAVA_THREADS(p) {
4165       if (p->is_Compiler_thread()) continue;
4166 
4167       address pending = (address)p->current_pending_monitor();
4168       if (pending == monitor) {             // found a match
4169         if (i < count) result->append(p);   // save the first count matches
4170         i++;
4171       }
4172     }
4173   }
4174   return result;
4175 }
4176 
4177 
4178 JavaThread *Threads::owning_thread_from_monitor_owner(address owner,
4179                                                       bool doLock) {
4180   assert(doLock ||
4181          Threads_lock->owned_by_self() ||
4182          SafepointSynchronize::is_at_safepoint(),
4183          "must grab Threads_lock or be at safepoint");
4184 
4185   // NULL owner means not locked so we can skip the search
4186   if (owner == NULL) return NULL;
4187 
4188   {
4189     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4190     ALL_JAVA_THREADS(p) {
4191       // first, see if owner is the address of a Java thread
4192       if (owner == (address)p) return p;
4193     }
4194   }
4195   // Cannot assert on lack of success here since this function may be
4196   // used by code that is trying to report useful problem information
4197   // like deadlock detection.
4198   if (UseHeavyMonitors) return NULL;
4199 
4200   // If we didn't find a matching Java thread and we didn't force use of
4201   // heavyweight monitors, then the owner is the stack address of the
4202   // Lock Word in the owning Java thread's stack.
4203   //
4204   JavaThread* the_owner = NULL;
4205   {
4206     MutexLockerEx ml(doLock ? Threads_lock : NULL);
4207     ALL_JAVA_THREADS(q) {
4208       if (q->is_lock_owned(owner)) {
4209         the_owner = q;
4210         break;
4211       }
4212     }
4213   }
4214   // cannot assert on lack of success here; see above comment
4215   return the_owner;
4216 }
4217 
4218 // Threads::print_on() is called at safepoint by VM_PrintThreads operation.
4219 void Threads::print_on(outputStream* st, bool print_stacks,
4220                        bool internal_format, bool print_concurrent_locks) {
4221   char buf[32];
4222   st->print_cr("%s", os::local_time_string(buf, sizeof(buf)));
4223 
4224   st->print_cr("Full thread dump %s (%s %s):",
4225                Abstract_VM_Version::vm_name(),
4226                Abstract_VM_Version::vm_release(),
4227                Abstract_VM_Version::vm_info_string());
4228   st->cr();
4229 
4230 #if INCLUDE_ALL_GCS
4231   // Dump concurrent locks
4232   ConcurrentLocksDump concurrent_locks;
4233   if (print_concurrent_locks) {
4234     concurrent_locks.dump_at_safepoint();
4235   }
4236 #endif // INCLUDE_ALL_GCS
4237 
4238   ALL_JAVA_THREADS(p) {
4239     ResourceMark rm;
4240     p->print_on(st);
4241     if (print_stacks) {
4242       if (internal_format) {
4243         p->trace_stack();
4244       } else {
4245         p->print_stack_on(st);
4246       }
4247     }
4248     st->cr();
4249 #if INCLUDE_ALL_GCS
4250     if (print_concurrent_locks) {
4251       concurrent_locks.print_locks_on(p, st);
4252     }
4253 #endif // INCLUDE_ALL_GCS
4254   }
4255 
4256   VMThread::vm_thread()->print_on(st);
4257   st->cr();
4258   Universe::heap()->print_gc_threads_on(st);
4259   WatcherThread* wt = WatcherThread::watcher_thread();
4260   if (wt != NULL) {
4261     wt->print_on(st);
4262     st->cr();
4263   }
4264   CompileBroker::print_compiler_threads_on(st);
4265   st->flush();
4266 }
4267 
4268 // Threads::print_on_error() is called by fatal error handler. It's possible
4269 // that VM is not at safepoint and/or current thread is inside signal handler.
4270 // Don't print stack trace, as the stack may not be walkable. Don't allocate
4271 // memory (even in resource area), it might deadlock the error handler.
4272 void Threads::print_on_error(outputStream* st, Thread* current, char* buf,
4273                              int buflen) {
4274   bool found_current = false;
4275   st->print_cr("Java Threads: ( => current thread )");
4276   ALL_JAVA_THREADS(thread) {
4277     bool is_current = (current == thread);
4278     found_current = found_current || is_current;
4279 
4280     st->print("%s", is_current ? "=>" : "  ");
4281 
4282     st->print(PTR_FORMAT, thread);
4283     st->print(" ");
4284     thread->print_on_error(st, buf, buflen);
4285     st->cr();
4286   }
4287   st->cr();
4288 
4289   st->print_cr("Other Threads:");
4290   if (VMThread::vm_thread()) {
4291     bool is_current = (current == VMThread::vm_thread());
4292     found_current = found_current || is_current;
4293     st->print("%s", current == VMThread::vm_thread() ? "=>" : "  ");
4294 
4295     st->print(PTR_FORMAT, VMThread::vm_thread());
4296     st->print(" ");
4297     VMThread::vm_thread()->print_on_error(st, buf, buflen);
4298     st->cr();
4299   }
4300   WatcherThread* wt = WatcherThread::watcher_thread();
4301   if (wt != NULL) {
4302     bool is_current = (current == wt);
4303     found_current = found_current || is_current;
4304     st->print("%s", is_current ? "=>" : "  ");
4305 
4306     st->print(PTR_FORMAT, wt);
4307     st->print(" ");
4308     wt->print_on_error(st, buf, buflen);
4309     st->cr();
4310   }
4311   if (!found_current) {
4312     st->cr();
4313     st->print("=>" PTR_FORMAT " (exited) ", current);
4314     current->print_on_error(st, buf, buflen);
4315     st->cr();
4316   }
4317 }
4318 
4319 // Internal SpinLock and Mutex
4320 // Based on ParkEvent
4321 
4322 // Ad-hoc mutual exclusion primitives: SpinLock and Mux
4323 //
4324 // We employ SpinLocks _only for low-contention, fixed-length
4325 // short-duration critical sections where we're concerned
4326 // about native mutex_t or HotSpot Mutex:: latency.
4327 // The mux construct provides a spin-then-block mutual exclusion
4328 // mechanism.
4329 //
4330 // Testing has shown that contention on the ListLock guarding gFreeList
4331 // is common.  If we implement ListLock as a simple SpinLock it's common
4332 // for the JVM to devolve to yielding with little progress.  This is true
4333 // despite the fact that the critical sections protected by ListLock are
4334 // extremely short.
4335 //
4336 // TODO-FIXME: ListLock should be of type SpinLock.
4337 // We should make this a 1st-class type, integrated into the lock
4338 // hierarchy as leaf-locks.  Critically, the SpinLock structure
4339 // should have sufficient padding to avoid false-sharing and excessive
4340 // cache-coherency traffic.
4341 
4342 
4343 typedef volatile int SpinLockT;
4344 
4345 void Thread::SpinAcquire(volatile int * adr, const char * LockName) {
4346   if (Atomic::cmpxchg (1, adr, 0) == 0) {
4347     return;   // normal fast-path return
4348   }
4349 
4350   // Slow-path : We've encountered contention -- Spin/Yield/Block strategy.
4351   TEVENT(SpinAcquire - ctx);
4352   int ctr = 0;
4353   int Yields = 0;
4354   for (;;) {
4355     while (*adr != 0) {
4356       ++ctr;
4357       if ((ctr & 0xFFF) == 0 || !os::is_MP()) {
4358         if (Yields > 5) {
4359           os::naked_short_sleep(1);
4360         } else {
4361           os::naked_yield();
4362           ++Yields;
4363         }
4364       } else {
4365         SpinPause();
4366       }
4367     }
4368     if (Atomic::cmpxchg(1, adr, 0) == 0) return;
4369   }
4370 }
4371 
4372 void Thread::SpinRelease(volatile int * adr) {
4373   assert(*adr != 0, "invariant");
4374   OrderAccess::fence();      // guarantee at least release consistency.
4375   // Roach-motel semantics.
4376   // It's safe if subsequent LDs and STs float "up" into the critical section,
4377   // but prior LDs and STs within the critical section can't be allowed
4378   // to reorder or float past the ST that releases the lock.
4379   // Loads and stores in the critical section - which appear in program
4380   // order before the store that releases the lock - must also appear
4381   // before the store that releases the lock in memory visibility order.
4382   // Conceptually we need a #loadstore|#storestore "release" MEMBAR before
4383   // the ST of 0 into the lock-word which releases the lock, so fence
4384   // more than covers this on all platforms.
4385   *adr = 0;
4386 }
4387 
4388 // muxAcquire and muxRelease:
4389 //
4390 // *  muxAcquire and muxRelease support a single-word lock-word construct.
4391 //    The LSB of the word is set IFF the lock is held.
4392 //    The remainder of the word points to the head of a singly-linked list
4393 //    of threads blocked on the lock.
4394 //
4395 // *  The current implementation of muxAcquire-muxRelease uses its own
4396 //    dedicated Thread._MuxEvent instance.  If we're interested in
4397 //    minimizing the peak number of extant ParkEvent instances then
4398 //    we could eliminate _MuxEvent and "borrow" _ParkEvent as long
4399 //    as certain invariants were satisfied.  Specifically, care would need
4400 //    to be taken with regards to consuming unpark() "permits".
4401 //    A safe rule of thumb is that a thread would never call muxAcquire()
4402 //    if it's enqueued (cxq, EntryList, WaitList, etc) and will subsequently
4403 //    park().  Otherwise the _ParkEvent park() operation in muxAcquire() could
4404 //    consume an unpark() permit intended for monitorenter, for instance.
4405 //    One way around this would be to widen the restricted-range semaphore
4406 //    implemented in park().  Another alternative would be to provide
4407 //    multiple instances of the PlatformEvent() for each thread.  One
4408 //    instance would be dedicated to muxAcquire-muxRelease, for instance.
4409 //
4410 // *  Usage:
4411 //    -- Only as leaf locks
4412 //    -- for short-term locking only as muxAcquire does not perform
4413 //       thread state transitions.
4414 //
4415 // Alternatives:
4416 // *  We could implement muxAcquire and muxRelease with MCS or CLH locks
4417 //    but with parking or spin-then-park instead of pure spinning.
4418 // *  Use Taura-Oyama-Yonenzawa locks.
4419 // *  It's possible to construct a 1-0 lock if we encode the lockword as
4420 //    (List,LockByte).  Acquire will CAS the full lockword while Release
4421 //    will STB 0 into the LockByte.  The 1-0 scheme admits stranding, so
4422 //    acquiring threads use timers (ParkTimed) to detect and recover from
4423 //    the stranding window.  Thread/Node structures must be aligned on 256-byte
4424 //    boundaries by using placement-new.
4425 // *  Augment MCS with advisory back-link fields maintained with CAS().
4426 //    Pictorially:  LockWord -> T1 <-> T2 <-> T3 <-> ... <-> Tn <-> Owner.
4427 //    The validity of the backlinks must be ratified before we trust the value.
4428 //    If the backlinks are invalid the exiting thread must back-track through the
4429 //    the forward links, which are always trustworthy.
4430 // *  Add a successor indication.  The LockWord is currently encoded as
4431 //    (List, LOCKBIT:1).  We could also add a SUCCBIT or an explicit _succ variable
4432 //    to provide the usual futile-wakeup optimization.
4433 //    See RTStt for details.
4434 // *  Consider schedctl.sc_nopreempt to cover the critical section.
4435 //
4436 
4437 
4438 typedef volatile intptr_t MutexT;      // Mux Lock-word
4439 enum MuxBits { LOCKBIT = 1 };
4440 
4441 void Thread::muxAcquire(volatile intptr_t * Lock, const char * LockName) {
4442   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4443   if (w == 0) return;
4444   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4445     return;
4446   }
4447 
4448   TEVENT(muxAcquire - Contention);
4449   ParkEvent * const Self = Thread::current()->_MuxEvent;
4450   assert((intptr_t(Self) & LOCKBIT) == 0, "invariant");
4451   for (;;) {
4452     int its = (os::is_MP() ? 100 : 0) + 1;
4453 
4454     // Optional spin phase: spin-then-park strategy
4455     while (--its >= 0) {
4456       w = *Lock;
4457       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4458         return;
4459       }
4460     }
4461 
4462     Self->reset();
4463     Self->OnList = intptr_t(Lock);
4464     // The following fence() isn't _strictly necessary as the subsequent
4465     // CAS() both serializes execution and ratifies the fetched *Lock value.
4466     OrderAccess::fence();
4467     for (;;) {
4468       w = *Lock;
4469       if ((w & LOCKBIT) == 0) {
4470         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4471           Self->OnList = 0;   // hygiene - allows stronger asserts
4472           return;
4473         }
4474         continue;      // Interference -- *Lock changed -- Just retry
4475       }
4476       assert(w & LOCKBIT, "invariant");
4477       Self->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4478       if (Atomic::cmpxchg_ptr(intptr_t(Self)|LOCKBIT, Lock, w) == w) break;
4479     }
4480 
4481     while (Self->OnList != 0) {
4482       Self->park();
4483     }
4484   }
4485 }
4486 
4487 void Thread::muxAcquireW(volatile intptr_t * Lock, ParkEvent * ev) {
4488   intptr_t w = Atomic::cmpxchg_ptr(LOCKBIT, Lock, 0);
4489   if (w == 0) return;
4490   if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4491     return;
4492   }
4493 
4494   TEVENT(muxAcquire - Contention);
4495   ParkEvent * ReleaseAfter = NULL;
4496   if (ev == NULL) {
4497     ev = ReleaseAfter = ParkEvent::Allocate(NULL);
4498   }
4499   assert((intptr_t(ev) & LOCKBIT) == 0, "invariant");
4500   for (;;) {
4501     guarantee(ev->OnList == 0, "invariant");
4502     int its = (os::is_MP() ? 100 : 0) + 1;
4503 
4504     // Optional spin phase: spin-then-park strategy
4505     while (--its >= 0) {
4506       w = *Lock;
4507       if ((w & LOCKBIT) == 0 && Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4508         if (ReleaseAfter != NULL) {
4509           ParkEvent::Release(ReleaseAfter);
4510         }
4511         return;
4512       }
4513     }
4514 
4515     ev->reset();
4516     ev->OnList = intptr_t(Lock);
4517     // The following fence() isn't _strictly necessary as the subsequent
4518     // CAS() both serializes execution and ratifies the fetched *Lock value.
4519     OrderAccess::fence();
4520     for (;;) {
4521       w = *Lock;
4522       if ((w & LOCKBIT) == 0) {
4523         if (Atomic::cmpxchg_ptr (w|LOCKBIT, Lock, w) == w) {
4524           ev->OnList = 0;
4525           // We call ::Release while holding the outer lock, thus
4526           // artificially lengthening the critical section.
4527           // Consider deferring the ::Release() until the subsequent unlock(),
4528           // after we've dropped the outer lock.
4529           if (ReleaseAfter != NULL) {
4530             ParkEvent::Release(ReleaseAfter);
4531           }
4532           return;
4533         }
4534         continue;      // Interference -- *Lock changed -- Just retry
4535       }
4536       assert(w & LOCKBIT, "invariant");
4537       ev->ListNext = (ParkEvent *) (w & ~LOCKBIT);
4538       if (Atomic::cmpxchg_ptr(intptr_t(ev)|LOCKBIT, Lock, w) == w) break;
4539     }
4540 
4541     while (ev->OnList != 0) {
4542       ev->park();
4543     }
4544   }
4545 }
4546 
4547 // Release() must extract a successor from the list and then wake that thread.
4548 // It can "pop" the front of the list or use a detach-modify-reattach (DMR) scheme
4549 // similar to that used by ParkEvent::Allocate() and ::Release().  DMR-based
4550 // Release() would :
4551 // (A) CAS() or swap() null to *Lock, releasing the lock and detaching the list.
4552 // (B) Extract a successor from the private list "in-hand"
4553 // (C) attempt to CAS() the residual back into *Lock over null.
4554 //     If there were any newly arrived threads and the CAS() would fail.
4555 //     In that case Release() would detach the RATs, re-merge the list in-hand
4556 //     with the RATs and repeat as needed.  Alternately, Release() might
4557 //     detach and extract a successor, but then pass the residual list to the wakee.
4558 //     The wakee would be responsible for reattaching and remerging before it
4559 //     competed for the lock.
4560 //
4561 // Both "pop" and DMR are immune from ABA corruption -- there can be
4562 // multiple concurrent pushers, but only one popper or detacher.
4563 // This implementation pops from the head of the list.  This is unfair,
4564 // but tends to provide excellent throughput as hot threads remain hot.
4565 // (We wake recently run threads first).
4566 //
4567 // All paths through muxRelease() will execute a CAS.
4568 // Release consistency -- We depend on the CAS in muxRelease() to provide full
4569 // bidirectional fence/MEMBAR semantics, ensuring that all prior memory operations
4570 // executed within the critical section are complete and globally visible before the
4571 // store (CAS) to the lock-word that releases the lock becomes globally visible.
4572 void Thread::muxRelease(volatile intptr_t * Lock)  {
4573   for (;;) {
4574     const intptr_t w = Atomic::cmpxchg_ptr(0, Lock, LOCKBIT);
4575     assert(w & LOCKBIT, "invariant");
4576     if (w == LOCKBIT) return;
4577     ParkEvent * const List = (ParkEvent *) (w & ~LOCKBIT);
4578     assert(List != NULL, "invariant");
4579     assert(List->OnList == intptr_t(Lock), "invariant");
4580     ParkEvent * const nxt = List->ListNext;
4581     guarantee((intptr_t(nxt) & LOCKBIT) == 0, "invariant");
4582 
4583     // The following CAS() releases the lock and pops the head element.
4584     // The CAS() also ratifies the previously fetched lock-word value.
4585     if (Atomic::cmpxchg_ptr (intptr_t(nxt), Lock, w) != w) {
4586       continue;
4587     }
4588     List->OnList = 0;
4589     OrderAccess::fence();
4590     List->unpark();
4591     return;
4592   }
4593 }
4594 
4595 
4596 void Threads::verify() {
4597   ALL_JAVA_THREADS(p) {
4598     p->verify();
4599   }
4600   VMThread* thread = VMThread::vm_thread();
4601   if (thread != NULL) thread->verify();
4602 }