1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/chaitin.hpp"
  43 #include "opto/compile.hpp"
  44 #include "opto/connode.hpp"
  45 #include "opto/divnode.hpp"
  46 #include "opto/escape.hpp"
  47 #include "opto/idealGraphPrinter.hpp"
  48 #include "opto/loopnode.hpp"
  49 #include "opto/machnode.hpp"
  50 #include "opto/macro.hpp"
  51 #include "opto/matcher.hpp"
  52 #include "opto/mathexactnode.hpp"
  53 #include "opto/memnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/narrowptrnode.hpp"
  56 #include "opto/node.hpp"
  57 #include "opto/opcodes.hpp"
  58 #include "opto/output.hpp"
  59 #include "opto/parse.hpp"
  60 #include "opto/phaseX.hpp"
  61 #include "opto/rootnode.hpp"
  62 #include "opto/runtime.hpp"
  63 #include "opto/stringopts.hpp"
  64 #include "opto/type.hpp"
  65 #include "opto/vectornode.hpp"
  66 #include "runtime/arguments.hpp"
  67 #include "runtime/signature.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "trace/tracing.hpp"
  71 #include "utilities/copy.hpp"
  72 
  73 
  74 // -------------------- Compile::mach_constant_base_node -----------------------
  75 // Constant table base node singleton.
  76 MachConstantBaseNode* Compile::mach_constant_base_node() {
  77   if (_mach_constant_base_node == NULL) {
  78     _mach_constant_base_node = new MachConstantBaseNode();
  79     _mach_constant_base_node->add_req(C->root());
  80   }
  81   return _mach_constant_base_node;
  82 }
  83 
  84 
  85 /// Support for intrinsics.
  86 
  87 // Return the index at which m must be inserted (or already exists).
  88 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  89 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  90 #ifdef ASSERT
  91   for (int i = 1; i < _intrinsics->length(); i++) {
  92     CallGenerator* cg1 = _intrinsics->at(i-1);
  93     CallGenerator* cg2 = _intrinsics->at(i);
  94     assert(cg1->method() != cg2->method()
  95            ? cg1->method()     < cg2->method()
  96            : cg1->is_virtual() < cg2->is_virtual(),
  97            "compiler intrinsics list must stay sorted");
  98   }
  99 #endif
 100   // Binary search sorted list, in decreasing intervals [lo, hi].
 101   int lo = 0, hi = _intrinsics->length()-1;
 102   while (lo <= hi) {
 103     int mid = (uint)(hi + lo) / 2;
 104     ciMethod* mid_m = _intrinsics->at(mid)->method();
 105     if (m < mid_m) {
 106       hi = mid-1;
 107     } else if (m > mid_m) {
 108       lo = mid+1;
 109     } else {
 110       // look at minor sort key
 111       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 112       if (is_virtual < mid_virt) {
 113         hi = mid-1;
 114       } else if (is_virtual > mid_virt) {
 115         lo = mid+1;
 116       } else {
 117         return mid;  // exact match
 118       }
 119     }
 120   }
 121   return lo;  // inexact match
 122 }
 123 
 124 void Compile::register_intrinsic(CallGenerator* cg) {
 125   if (_intrinsics == NULL) {
 126     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 127   }
 128   // This code is stolen from ciObjectFactory::insert.
 129   // Really, GrowableArray should have methods for
 130   // insert_at, remove_at, and binary_search.
 131   int len = _intrinsics->length();
 132   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 133   if (index == len) {
 134     _intrinsics->append(cg);
 135   } else {
 136 #ifdef ASSERT
 137     CallGenerator* oldcg = _intrinsics->at(index);
 138     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 139 #endif
 140     _intrinsics->append(_intrinsics->at(len-1));
 141     int pos;
 142     for (pos = len-2; pos >= index; pos--) {
 143       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 144     }
 145     _intrinsics->at_put(index, cg);
 146   }
 147   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 148 }
 149 
 150 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 151   assert(m->is_loaded(), "don't try this on unloaded methods");
 152   if (_intrinsics != NULL) {
 153     int index = intrinsic_insertion_index(m, is_virtual);
 154     if (index < _intrinsics->length()
 155         && _intrinsics->at(index)->method() == m
 156         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 157       return _intrinsics->at(index);
 158     }
 159   }
 160   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 161   if (m->intrinsic_id() != vmIntrinsics::_none &&
 162       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 163     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 164     if (cg != NULL) {
 165       // Save it for next time:
 166       register_intrinsic(cg);
 167       return cg;
 168     } else {
 169       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 170     }
 171   }
 172   return NULL;
 173 }
 174 
 175 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 176 // in library_call.cpp.
 177 
 178 
 179 #ifndef PRODUCT
 180 // statistics gathering...
 181 
 182 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 183 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 184 
 185 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 186   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 187   int oflags = _intrinsic_hist_flags[id];
 188   assert(flags != 0, "what happened?");
 189   if (is_virtual) {
 190     flags |= _intrinsic_virtual;
 191   }
 192   bool changed = (flags != oflags);
 193   if ((flags & _intrinsic_worked) != 0) {
 194     juint count = (_intrinsic_hist_count[id] += 1);
 195     if (count == 1) {
 196       changed = true;           // first time
 197     }
 198     // increment the overall count also:
 199     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 200   }
 201   if (changed) {
 202     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 203       // Something changed about the intrinsic's virtuality.
 204       if ((flags & _intrinsic_virtual) != 0) {
 205         // This is the first use of this intrinsic as a virtual call.
 206         if (oflags != 0) {
 207           // We already saw it as a non-virtual, so note both cases.
 208           flags |= _intrinsic_both;
 209         }
 210       } else if ((oflags & _intrinsic_both) == 0) {
 211         // This is the first use of this intrinsic as a non-virtual
 212         flags |= _intrinsic_both;
 213       }
 214     }
 215     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 216   }
 217   // update the overall flags also:
 218   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 219   return changed;
 220 }
 221 
 222 static char* format_flags(int flags, char* buf) {
 223   buf[0] = 0;
 224   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 225   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 226   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 227   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 228   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 229   if (buf[0] == 0)  strcat(buf, ",");
 230   assert(buf[0] == ',', "must be");
 231   return &buf[1];
 232 }
 233 
 234 void Compile::print_intrinsic_statistics() {
 235   char flagsbuf[100];
 236   ttyLocker ttyl;
 237   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 238   tty->print_cr("Compiler intrinsic usage:");
 239   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 240   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 241   #define PRINT_STAT_LINE(name, c, f) \
 242     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 243   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 244     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 245     int   flags = _intrinsic_hist_flags[id];
 246     juint count = _intrinsic_hist_count[id];
 247     if ((flags | count) != 0) {
 248       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 249     }
 250   }
 251   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 252   if (xtty != NULL)  xtty->tail("statistics");
 253 }
 254 
 255 void Compile::print_statistics() {
 256   { ttyLocker ttyl;
 257     if (xtty != NULL)  xtty->head("statistics type='opto'");
 258     Parse::print_statistics();
 259     PhaseCCP::print_statistics();
 260     PhaseRegAlloc::print_statistics();
 261     Scheduling::print_statistics();
 262     PhasePeephole::print_statistics();
 263     PhaseIdealLoop::print_statistics();
 264     if (xtty != NULL)  xtty->tail("statistics");
 265   }
 266   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 267     // put this under its own <statistics> element.
 268     print_intrinsic_statistics();
 269   }
 270 }
 271 #endif //PRODUCT
 272 
 273 // Support for bundling info
 274 Bundle* Compile::node_bundling(const Node *n) {
 275   assert(valid_bundle_info(n), "oob");
 276   return &_node_bundling_base[n->_idx];
 277 }
 278 
 279 bool Compile::valid_bundle_info(const Node *n) {
 280   return (_node_bundling_limit > n->_idx);
 281 }
 282 
 283 
 284 void Compile::gvn_replace_by(Node* n, Node* nn) {
 285   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 286     Node* use = n->last_out(i);
 287     bool is_in_table = initial_gvn()->hash_delete(use);
 288     uint uses_found = 0;
 289     for (uint j = 0; j < use->len(); j++) {
 290       if (use->in(j) == n) {
 291         if (j < use->req())
 292           use->set_req(j, nn);
 293         else
 294           use->set_prec(j, nn);
 295         uses_found++;
 296       }
 297     }
 298     if (is_in_table) {
 299       // reinsert into table
 300       initial_gvn()->hash_find_insert(use);
 301     }
 302     record_for_igvn(use);
 303     i -= uses_found;    // we deleted 1 or more copies of this edge
 304   }
 305 }
 306 
 307 
 308 static inline bool not_a_node(const Node* n) {
 309   if (n == NULL)                   return true;
 310   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 311   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 312   return false;
 313 }
 314 
 315 // Identify all nodes that are reachable from below, useful.
 316 // Use breadth-first pass that records state in a Unique_Node_List,
 317 // recursive traversal is slower.
 318 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 319   int estimated_worklist_size = unique();
 320   useful.map( estimated_worklist_size, NULL );  // preallocate space
 321 
 322   // Initialize worklist
 323   if (root() != NULL)     { useful.push(root()); }
 324   // If 'top' is cached, declare it useful to preserve cached node
 325   if( cached_top_node() ) { useful.push(cached_top_node()); }
 326 
 327   // Push all useful nodes onto the list, breadthfirst
 328   for( uint next = 0; next < useful.size(); ++next ) {
 329     assert( next < unique(), "Unique useful nodes < total nodes");
 330     Node *n  = useful.at(next);
 331     uint max = n->len();
 332     for( uint i = 0; i < max; ++i ) {
 333       Node *m = n->in(i);
 334       if (not_a_node(m))  continue;
 335       useful.push(m);
 336     }
 337   }
 338 }
 339 
 340 // Update dead_node_list with any missing dead nodes using useful
 341 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 342 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 343   uint max_idx = unique();
 344   VectorSet& useful_node_set = useful.member_set();
 345 
 346   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 347     // If node with index node_idx is not in useful set,
 348     // mark it as dead in dead node list.
 349     if (! useful_node_set.test(node_idx) ) {
 350       record_dead_node(node_idx);
 351     }
 352   }
 353 }
 354 
 355 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 356   int shift = 0;
 357   for (int i = 0; i < inlines->length(); i++) {
 358     CallGenerator* cg = inlines->at(i);
 359     CallNode* call = cg->call_node();
 360     if (shift > 0) {
 361       inlines->at_put(i-shift, cg);
 362     }
 363     if (!useful.member(call)) {
 364       shift++;
 365     }
 366   }
 367   inlines->trunc_to(inlines->length()-shift);
 368 }
 369 
 370 // Disconnect all useless nodes by disconnecting those at the boundary.
 371 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 372   uint next = 0;
 373   while (next < useful.size()) {
 374     Node *n = useful.at(next++);
 375     if (n->is_SafePoint()) {
 376       // We're done with a parsing phase. Replaced nodes are not valid
 377       // beyond that point.
 378       n->as_SafePoint()->delete_replaced_nodes();
 379     }
 380     // Use raw traversal of out edges since this code removes out edges
 381     int max = n->outcnt();
 382     for (int j = 0; j < max; ++j) {
 383       Node* child = n->raw_out(j);
 384       if (! useful.member(child)) {
 385         assert(!child->is_top() || child != top(),
 386                "If top is cached in Compile object it is in useful list");
 387         // Only need to remove this out-edge to the useless node
 388         n->raw_del_out(j);
 389         --j;
 390         --max;
 391       }
 392     }
 393     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 394       record_for_igvn(n->unique_out());
 395     }
 396   }
 397   // Remove useless macro and predicate opaq nodes
 398   for (int i = C->macro_count()-1; i >= 0; i--) {
 399     Node* n = C->macro_node(i);
 400     if (!useful.member(n)) {
 401       remove_macro_node(n);
 402     }
 403   }
 404   // Remove useless expensive node
 405   for (int i = C->expensive_count()-1; i >= 0; i--) {
 406     Node* n = C->expensive_node(i);
 407     if (!useful.member(n)) {
 408       remove_expensive_node(n);
 409     }
 410   }
 411   // clean up the late inline lists
 412   remove_useless_late_inlines(&_string_late_inlines, useful);
 413   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 414   remove_useless_late_inlines(&_late_inlines, useful);
 415   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 416 }
 417 
 418 //------------------------------frame_size_in_words-----------------------------
 419 // frame_slots in units of words
 420 int Compile::frame_size_in_words() const {
 421   // shift is 0 in LP32 and 1 in LP64
 422   const int shift = (LogBytesPerWord - LogBytesPerInt);
 423   int words = _frame_slots >> shift;
 424   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 425   return words;
 426 }
 427 
 428 // To bang the stack of this compiled method we use the stack size
 429 // that the interpreter would need in case of a deoptimization. This
 430 // removes the need to bang the stack in the deoptimization blob which
 431 // in turn simplifies stack overflow handling.
 432 int Compile::bang_size_in_bytes() const {
 433   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 434 }
 435 
 436 // ============================================================================
 437 //------------------------------CompileWrapper---------------------------------
 438 class CompileWrapper : public StackObj {
 439   Compile *const _compile;
 440  public:
 441   CompileWrapper(Compile* compile);
 442 
 443   ~CompileWrapper();
 444 };
 445 
 446 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 447   // the Compile* pointer is stored in the current ciEnv:
 448   ciEnv* env = compile->env();
 449   assert(env == ciEnv::current(), "must already be a ciEnv active");
 450   assert(env->compiler_data() == NULL, "compile already active?");
 451   env->set_compiler_data(compile);
 452   assert(compile == Compile::current(), "sanity");
 453 
 454   compile->set_type_dict(NULL);
 455   compile->set_type_hwm(NULL);
 456   compile->set_type_last_size(0);
 457   compile->set_last_tf(NULL, NULL);
 458   compile->set_indexSet_arena(NULL);
 459   compile->set_indexSet_free_block_list(NULL);
 460   compile->init_type_arena();
 461   Type::Initialize(compile);
 462   _compile->set_scratch_buffer_blob(NULL);
 463   _compile->begin_method();
 464 }
 465 CompileWrapper::~CompileWrapper() {
 466   _compile->end_method();
 467   if (_compile->scratch_buffer_blob() != NULL)
 468     BufferBlob::free(_compile->scratch_buffer_blob());
 469   _compile->env()->set_compiler_data(NULL);
 470 }
 471 
 472 
 473 //----------------------------print_compile_messages---------------------------
 474 void Compile::print_compile_messages() {
 475 #ifndef PRODUCT
 476   // Check if recompiling
 477   if (_subsume_loads == false && PrintOpto) {
 478     // Recompiling without allowing machine instructions to subsume loads
 479     tty->print_cr("*********************************************************");
 480     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 481     tty->print_cr("*********************************************************");
 482   }
 483   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 484     // Recompiling without escape analysis
 485     tty->print_cr("*********************************************************");
 486     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 487     tty->print_cr("*********************************************************");
 488   }
 489   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 490     // Recompiling without boxing elimination
 491     tty->print_cr("*********************************************************");
 492     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 493     tty->print_cr("*********************************************************");
 494   }
 495   if (env()->break_at_compile()) {
 496     // Open the debugger when compiling this method.
 497     tty->print("### Breaking when compiling: ");
 498     method()->print_short_name();
 499     tty->cr();
 500     BREAKPOINT;
 501   }
 502 
 503   if( PrintOpto ) {
 504     if (is_osr_compilation()) {
 505       tty->print("[OSR]%3d", _compile_id);
 506     } else {
 507       tty->print("%3d", _compile_id);
 508     }
 509   }
 510 #endif
 511 }
 512 
 513 
 514 //-----------------------init_scratch_buffer_blob------------------------------
 515 // Construct a temporary BufferBlob and cache it for this compile.
 516 void Compile::init_scratch_buffer_blob(int const_size) {
 517   // If there is already a scratch buffer blob allocated and the
 518   // constant section is big enough, use it.  Otherwise free the
 519   // current and allocate a new one.
 520   BufferBlob* blob = scratch_buffer_blob();
 521   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 522     // Use the current blob.
 523   } else {
 524     if (blob != NULL) {
 525       BufferBlob::free(blob);
 526     }
 527 
 528     ResourceMark rm;
 529     _scratch_const_size = const_size;
 530     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 531     blob = BufferBlob::create("Compile::scratch_buffer", size);
 532     // Record the buffer blob for next time.
 533     set_scratch_buffer_blob(blob);
 534     // Have we run out of code space?
 535     if (scratch_buffer_blob() == NULL) {
 536       // Let CompilerBroker disable further compilations.
 537       record_failure("Not enough space for scratch buffer in CodeCache");
 538       return;
 539     }
 540   }
 541 
 542   // Initialize the relocation buffers
 543   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 544   set_scratch_locs_memory(locs_buf);
 545 }
 546 
 547 
 548 //-----------------------scratch_emit_size-------------------------------------
 549 // Helper function that computes size by emitting code
 550 uint Compile::scratch_emit_size(const Node* n) {
 551   // Start scratch_emit_size section.
 552   set_in_scratch_emit_size(true);
 553 
 554   // Emit into a trash buffer and count bytes emitted.
 555   // This is a pretty expensive way to compute a size,
 556   // but it works well enough if seldom used.
 557   // All common fixed-size instructions are given a size
 558   // method by the AD file.
 559   // Note that the scratch buffer blob and locs memory are
 560   // allocated at the beginning of the compile task, and
 561   // may be shared by several calls to scratch_emit_size.
 562   // The allocation of the scratch buffer blob is particularly
 563   // expensive, since it has to grab the code cache lock.
 564   BufferBlob* blob = this->scratch_buffer_blob();
 565   assert(blob != NULL, "Initialize BufferBlob at start");
 566   assert(blob->size() > MAX_inst_size, "sanity");
 567   relocInfo* locs_buf = scratch_locs_memory();
 568   address blob_begin = blob->content_begin();
 569   address blob_end   = (address)locs_buf;
 570   assert(blob->content_contains(blob_end), "sanity");
 571   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 572   buf.initialize_consts_size(_scratch_const_size);
 573   buf.initialize_stubs_size(MAX_stubs_size);
 574   assert(locs_buf != NULL, "sanity");
 575   int lsize = MAX_locs_size / 3;
 576   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 577   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 578   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 579 
 580   // Do the emission.
 581 
 582   Label fakeL; // Fake label for branch instructions.
 583   Label*   saveL = NULL;
 584   uint save_bnum = 0;
 585   bool is_branch = n->is_MachBranch();
 586   if (is_branch) {
 587     MacroAssembler masm(&buf);
 588     masm.bind(fakeL);
 589     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 590     n->as_MachBranch()->label_set(&fakeL, 0);
 591   }
 592   n->emit(buf, this->regalloc());
 593   if (is_branch) // Restore label.
 594     n->as_MachBranch()->label_set(saveL, save_bnum);
 595 
 596   // End scratch_emit_size section.
 597   set_in_scratch_emit_size(false);
 598 
 599   return buf.insts_size();
 600 }
 601 
 602 
 603 // ============================================================================
 604 //------------------------------Compile standard-------------------------------
 605 debug_only( int Compile::_debug_idx = 100000; )
 606 
 607 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 608 // the continuation bci for on stack replacement.
 609 
 610 
 611 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 612                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 613                 : Phase(Compiler),
 614                   _env(ci_env),
 615                   _log(ci_env->log()),
 616                   _compile_id(ci_env->compile_id()),
 617                   _save_argument_registers(false),
 618                   _stub_name(NULL),
 619                   _stub_function(NULL),
 620                   _stub_entry_point(NULL),
 621                   _method(target),
 622                   _entry_bci(osr_bci),
 623                   _initial_gvn(NULL),
 624                   _for_igvn(NULL),
 625                   _warm_calls(NULL),
 626                   _subsume_loads(subsume_loads),
 627                   _do_escape_analysis(do_escape_analysis),
 628                   _eliminate_boxing(eliminate_boxing),
 629                   _failure_reason(NULL),
 630                   _code_buffer("Compile::Fill_buffer"),
 631                   _orig_pc_slot(0),
 632                   _orig_pc_slot_offset_in_bytes(0),
 633                   _has_method_handle_invokes(false),
 634                   _mach_constant_base_node(NULL),
 635                   _node_bundling_limit(0),
 636                   _node_bundling_base(NULL),
 637                   _java_calls(0),
 638                   _inner_loops(0),
 639                   _scratch_const_size(-1),
 640                   _in_scratch_emit_size(false),
 641                   _dead_node_list(comp_arena()),
 642                   _dead_node_count(0),
 643 #ifndef PRODUCT
 644                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 645                   _in_dump_cnt(0),
 646                   _printer(IdealGraphPrinter::printer()),
 647 #endif
 648                   _congraph(NULL),
 649                   _comp_arena(mtCompiler),
 650                   _node_arena(mtCompiler),
 651                   _old_arena(mtCompiler),
 652                   _Compile_types(mtCompiler),
 653                   _replay_inline_data(NULL),
 654                   _late_inlines(comp_arena(), 2, 0, NULL),
 655                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 656                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 657                   _late_inlines_pos(0),
 658                   _number_of_mh_late_inlines(0),
 659                   _inlining_progress(false),
 660                   _inlining_incrementally(false),
 661                   _print_inlining_list(NULL),
 662                   _print_inlining_stream(NULL),
 663                   _print_inlining_idx(0),
 664                   _print_inlining_output(NULL),
 665                   _interpreter_frame_size(0) {
 666   C = this;
 667 
 668   CompileWrapper cw(this);
 669 
 670   if (CITimeVerbose) {
 671     tty->print(" ");
 672     target->holder()->name()->print();
 673     tty->print(".");
 674     target->print_short_name();
 675     tty->print("  ");
 676   }
 677   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 678   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 679 
 680 #ifndef PRODUCT
 681   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 682   if (!print_opto_assembly) {
 683     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 684     if (print_assembly && !Disassembler::can_decode()) {
 685       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 686       print_opto_assembly = true;
 687     }
 688   }
 689   set_print_assembly(print_opto_assembly);
 690   set_parsed_irreducible_loop(false);
 691 
 692   if (method()->has_option("ReplayInline")) {
 693     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 694   }
 695 #endif
 696   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 697   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 698   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 699 
 700   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 701     // Make sure the method being compiled gets its own MDO,
 702     // so we can at least track the decompile_count().
 703     // Need MDO to record RTM code generation state.
 704     method()->ensure_method_data();
 705   }
 706 
 707   Init(::AliasLevel);
 708 
 709 
 710   print_compile_messages();
 711 
 712   _ilt = InlineTree::build_inline_tree_root();
 713 
 714   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 715   assert(num_alias_types() >= AliasIdxRaw, "");
 716 
 717 #define MINIMUM_NODE_HASH  1023
 718   // Node list that Iterative GVN will start with
 719   Unique_Node_List for_igvn(comp_arena());
 720   set_for_igvn(&for_igvn);
 721 
 722   // GVN that will be run immediately on new nodes
 723   uint estimated_size = method()->code_size()*4+64;
 724   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 725   PhaseGVN gvn(node_arena(), estimated_size);
 726   set_initial_gvn(&gvn);
 727 
 728   print_inlining_init();
 729   { // Scope for timing the parser
 730     TracePhase tp("parse", &timers[_t_parser]);
 731 
 732     // Put top into the hash table ASAP.
 733     initial_gvn()->transform_no_reclaim(top());
 734 
 735     // Set up tf(), start(), and find a CallGenerator.
 736     CallGenerator* cg = NULL;
 737     if (is_osr_compilation()) {
 738       const TypeTuple *domain = StartOSRNode::osr_domain();
 739       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 740       init_tf(TypeFunc::make(domain, range));
 741       StartNode* s = new StartOSRNode(root(), domain);
 742       initial_gvn()->set_type_bottom(s);
 743       init_start(s);
 744       cg = CallGenerator::for_osr(method(), entry_bci());
 745     } else {
 746       // Normal case.
 747       init_tf(TypeFunc::make(method()));
 748       StartNode* s = new StartNode(root(), tf()->domain());
 749       initial_gvn()->set_type_bottom(s);
 750       init_start(s);
 751       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 752         // With java.lang.ref.reference.get() we must go through the
 753         // intrinsic when G1 is enabled - even when get() is the root
 754         // method of the compile - so that, if necessary, the value in
 755         // the referent field of the reference object gets recorded by
 756         // the pre-barrier code.
 757         // Specifically, if G1 is enabled, the value in the referent
 758         // field is recorded by the G1 SATB pre barrier. This will
 759         // result in the referent being marked live and the reference
 760         // object removed from the list of discovered references during
 761         // reference processing.
 762         cg = find_intrinsic(method(), false);
 763       }
 764       if (cg == NULL) {
 765         float past_uses = method()->interpreter_invocation_count();
 766         float expected_uses = past_uses;
 767         cg = CallGenerator::for_inline(method(), expected_uses);
 768       }
 769     }
 770     if (failing())  return;
 771     if (cg == NULL) {
 772       record_method_not_compilable_all_tiers("cannot parse method");
 773       return;
 774     }
 775     JVMState* jvms = build_start_state(start(), tf());
 776     if ((jvms = cg->generate(jvms)) == NULL) {
 777       record_method_not_compilable("method parse failed");
 778       return;
 779     }
 780     GraphKit kit(jvms);
 781 
 782     if (!kit.stopped()) {
 783       // Accept return values, and transfer control we know not where.
 784       // This is done by a special, unique ReturnNode bound to root.
 785       return_values(kit.jvms());
 786     }
 787 
 788     if (kit.has_exceptions()) {
 789       // Any exceptions that escape from this call must be rethrown
 790       // to whatever caller is dynamically above us on the stack.
 791       // This is done by a special, unique RethrowNode bound to root.
 792       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 793     }
 794 
 795     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 796 
 797     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 798       inline_string_calls(true);
 799     }
 800 
 801     if (failing())  return;
 802 
 803     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 804 
 805     // Remove clutter produced by parsing.
 806     if (!failing()) {
 807       ResourceMark rm;
 808       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 809     }
 810   }
 811 
 812   // Note:  Large methods are capped off in do_one_bytecode().
 813   if (failing())  return;
 814 
 815   // After parsing, node notes are no longer automagic.
 816   // They must be propagated by register_new_node_with_optimizer(),
 817   // clone(), or the like.
 818   set_default_node_notes(NULL);
 819 
 820   for (;;) {
 821     int successes = Inline_Warm();
 822     if (failing())  return;
 823     if (successes == 0)  break;
 824   }
 825 
 826   // Drain the list.
 827   Finish_Warm();
 828 #ifndef PRODUCT
 829   if (_printer) {
 830     _printer->print_inlining(this);
 831   }
 832 #endif
 833 
 834   if (failing())  return;
 835   NOT_PRODUCT( verify_graph_edges(); )
 836 
 837   // Now optimize
 838   Optimize();
 839   if (failing())  return;
 840   NOT_PRODUCT( verify_graph_edges(); )
 841 
 842 #ifndef PRODUCT
 843   if (PrintIdeal) {
 844     ttyLocker ttyl;  // keep the following output all in one block
 845     // This output goes directly to the tty, not the compiler log.
 846     // To enable tools to match it up with the compilation activity,
 847     // be sure to tag this tty output with the compile ID.
 848     if (xtty != NULL) {
 849       xtty->head("ideal compile_id='%d'%s", compile_id(),
 850                  is_osr_compilation()    ? " compile_kind='osr'" :
 851                  "");
 852     }
 853     root()->dump(9999);
 854     if (xtty != NULL) {
 855       xtty->tail("ideal");
 856     }
 857   }
 858 #endif
 859 
 860   NOT_PRODUCT( verify_barriers(); )
 861 
 862   // Dump compilation data to replay it.
 863   if (method()->has_option("DumpReplay")) {
 864     env()->dump_replay_data(_compile_id);
 865   }
 866   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 867     env()->dump_inline_data(_compile_id);
 868   }
 869 
 870   // Now that we know the size of all the monitors we can add a fixed slot
 871   // for the original deopt pc.
 872 
 873   _orig_pc_slot =  fixed_slots();
 874   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 875   set_fixed_slots(next_slot);
 876 
 877   // Compute when to use implicit null checks. Used by matching trap based
 878   // nodes and NullCheck optimization.
 879   set_allowed_deopt_reasons();
 880 
 881   // Now generate code
 882   Code_Gen();
 883   if (failing())  return;
 884 
 885   // Check if we want to skip execution of all compiled code.
 886   {
 887 #ifndef PRODUCT
 888     if (OptoNoExecute) {
 889       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 890       return;
 891     }
 892 #endif
 893     TracePhase tp("install_code", &timers[_t_registerMethod]);
 894 
 895     if (is_osr_compilation()) {
 896       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 897       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 898     } else {
 899       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 900       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 901     }
 902 
 903     env()->register_method(_method, _entry_bci,
 904                            &_code_offsets,
 905                            _orig_pc_slot_offset_in_bytes,
 906                            code_buffer(),
 907                            frame_size_in_words(), _oop_map_set,
 908                            &_handler_table, &_inc_table,
 909                            compiler,
 910                            env()->comp_level(),
 911                            has_unsafe_access(),
 912                            SharedRuntime::is_wide_vector(max_vector_size()),
 913                            rtm_state()
 914                            );
 915 
 916     if (log() != NULL) // Print code cache state into compiler log
 917       log()->code_cache_state();
 918   }
 919 }
 920 
 921 //------------------------------Compile----------------------------------------
 922 // Compile a runtime stub
 923 Compile::Compile( ciEnv* ci_env,
 924                   TypeFunc_generator generator,
 925                   address stub_function,
 926                   const char *stub_name,
 927                   int is_fancy_jump,
 928                   bool pass_tls,
 929                   bool save_arg_registers,
 930                   bool return_pc )
 931   : Phase(Compiler),
 932     _env(ci_env),
 933     _log(ci_env->log()),
 934     _compile_id(0),
 935     _save_argument_registers(save_arg_registers),
 936     _method(NULL),
 937     _stub_name(stub_name),
 938     _stub_function(stub_function),
 939     _stub_entry_point(NULL),
 940     _entry_bci(InvocationEntryBci),
 941     _initial_gvn(NULL),
 942     _for_igvn(NULL),
 943     _warm_calls(NULL),
 944     _orig_pc_slot(0),
 945     _orig_pc_slot_offset_in_bytes(0),
 946     _subsume_loads(true),
 947     _do_escape_analysis(false),
 948     _eliminate_boxing(false),
 949     _failure_reason(NULL),
 950     _code_buffer("Compile::Fill_buffer"),
 951     _has_method_handle_invokes(false),
 952     _mach_constant_base_node(NULL),
 953     _node_bundling_limit(0),
 954     _node_bundling_base(NULL),
 955     _java_calls(0),
 956     _inner_loops(0),
 957 #ifndef PRODUCT
 958     _trace_opto_output(TraceOptoOutput),
 959     _in_dump_cnt(0),
 960     _printer(NULL),
 961 #endif
 962     _comp_arena(mtCompiler),
 963     _node_arena(mtCompiler),
 964     _old_arena(mtCompiler),
 965     _Compile_types(mtCompiler),
 966     _dead_node_list(comp_arena()),
 967     _dead_node_count(0),
 968     _congraph(NULL),
 969     _replay_inline_data(NULL),
 970     _number_of_mh_late_inlines(0),
 971     _inlining_progress(false),
 972     _inlining_incrementally(false),
 973     _print_inlining_list(NULL),
 974     _print_inlining_stream(NULL),
 975     _print_inlining_idx(0),
 976     _print_inlining_output(NULL),
 977     _allowed_reasons(0),
 978     _interpreter_frame_size(0) {
 979   C = this;
 980 
 981   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
 982   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
 983 
 984 #ifndef PRODUCT
 985   set_print_assembly(PrintFrameConverterAssembly);
 986   set_parsed_irreducible_loop(false);
 987 #endif
 988   set_has_irreducible_loop(false); // no loops
 989 
 990   CompileWrapper cw(this);
 991   Init(/*AliasLevel=*/ 0);
 992   init_tf((*generator)());
 993 
 994   {
 995     // The following is a dummy for the sake of GraphKit::gen_stub
 996     Unique_Node_List for_igvn(comp_arena());
 997     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 998     PhaseGVN gvn(Thread::current()->resource_area(),255);
 999     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1000     gvn.transform_no_reclaim(top());
1001 
1002     GraphKit kit;
1003     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1004   }
1005 
1006   NOT_PRODUCT( verify_graph_edges(); )
1007   Code_Gen();
1008   if (failing())  return;
1009 
1010 
1011   // Entry point will be accessed using compile->stub_entry_point();
1012   if (code_buffer() == NULL) {
1013     Matcher::soft_match_failure();
1014   } else {
1015     if (PrintAssembly && (WizardMode || Verbose))
1016       tty->print_cr("### Stub::%s", stub_name);
1017 
1018     if (!failing()) {
1019       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1020 
1021       // Make the NMethod
1022       // For now we mark the frame as never safe for profile stackwalking
1023       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1024                                                       code_buffer(),
1025                                                       CodeOffsets::frame_never_safe,
1026                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1027                                                       frame_size_in_words(),
1028                                                       _oop_map_set,
1029                                                       save_arg_registers);
1030       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1031 
1032       _stub_entry_point = rs->entry_point();
1033     }
1034   }
1035 }
1036 
1037 //------------------------------Init-------------------------------------------
1038 // Prepare for a single compilation
1039 void Compile::Init(int aliaslevel) {
1040   _unique  = 0;
1041   _regalloc = NULL;
1042 
1043   _tf      = NULL;  // filled in later
1044   _top     = NULL;  // cached later
1045   _matcher = NULL;  // filled in later
1046   _cfg     = NULL;  // filled in later
1047 
1048   set_24_bit_selection_and_mode(Use24BitFP, false);
1049 
1050   _node_note_array = NULL;
1051   _default_node_notes = NULL;
1052   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1053 
1054   _immutable_memory = NULL; // filled in at first inquiry
1055 
1056   // Globally visible Nodes
1057   // First set TOP to NULL to give safe behavior during creation of RootNode
1058   set_cached_top_node(NULL);
1059   set_root(new RootNode());
1060   // Now that you have a Root to point to, create the real TOP
1061   set_cached_top_node( new ConNode(Type::TOP) );
1062   set_recent_alloc(NULL, NULL);
1063 
1064   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1065   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1066   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1067   env()->set_dependencies(new Dependencies(env()));
1068 
1069   _fixed_slots = 0;
1070   set_has_split_ifs(false);
1071   set_has_loops(has_method() && method()->has_loops()); // first approximation
1072   set_has_stringbuilder(false);
1073   set_has_boxed_value(false);
1074   _trap_can_recompile = false;  // no traps emitted yet
1075   _major_progress = true; // start out assuming good things will happen
1076   set_has_unsafe_access(false);
1077   set_max_vector_size(0);
1078   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1079   set_decompile_count(0);
1080 
1081   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1082   set_num_loop_opts(LoopOptsCount);
1083   set_do_inlining(Inline);
1084   set_max_inline_size(MaxInlineSize);
1085   set_freq_inline_size(FreqInlineSize);
1086   set_do_scheduling(OptoScheduling);
1087   set_do_count_invocations(false);
1088   set_do_method_data_update(false);
1089   set_age_code(has_method() && method()->profile_aging());
1090   set_rtm_state(NoRTM); // No RTM lock eliding by default
1091 #if INCLUDE_RTM_OPT
1092   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1093     int rtm_state = method()->method_data()->rtm_state();
1094     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1095       // Don't generate RTM lock eliding code.
1096       set_rtm_state(NoRTM);
1097     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1098       // Generate RTM lock eliding code without abort ratio calculation code.
1099       set_rtm_state(UseRTM);
1100     } else if (UseRTMDeopt) {
1101       // Generate RTM lock eliding code and include abort ratio calculation
1102       // code if UseRTMDeopt is on.
1103       set_rtm_state(ProfileRTM);
1104     }
1105   }
1106 #endif
1107   if (debug_info()->recording_non_safepoints()) {
1108     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1109                         (comp_arena(), 8, 0, NULL));
1110     set_default_node_notes(Node_Notes::make(this));
1111   }
1112 
1113   // // -- Initialize types before each compile --
1114   // // Update cached type information
1115   // if( _method && _method->constants() )
1116   //   Type::update_loaded_types(_method, _method->constants());
1117 
1118   // Init alias_type map.
1119   if (!_do_escape_analysis && aliaslevel == 3)
1120     aliaslevel = 2;  // No unique types without escape analysis
1121   _AliasLevel = aliaslevel;
1122   const int grow_ats = 16;
1123   _max_alias_types = grow_ats;
1124   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1125   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1126   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1127   {
1128     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1129   }
1130   // Initialize the first few types.
1131   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1132   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1133   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1134   _num_alias_types = AliasIdxRaw+1;
1135   // Zero out the alias type cache.
1136   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1137   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1138   probe_alias_cache(NULL)->_index = AliasIdxTop;
1139 
1140   _intrinsics = NULL;
1141   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1142   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1143   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1144   register_library_intrinsics();
1145 }
1146 
1147 //---------------------------init_start----------------------------------------
1148 // Install the StartNode on this compile object.
1149 void Compile::init_start(StartNode* s) {
1150   if (failing())
1151     return; // already failing
1152   assert(s == start(), "");
1153 }
1154 
1155 StartNode* Compile::start() const {
1156   assert(!failing(), "");
1157   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1158     Node* start = root()->fast_out(i);
1159     if( start->is_Start() )
1160       return start->as_Start();
1161   }
1162   fatal("Did not find Start node!");
1163   return NULL;
1164 }
1165 
1166 //-------------------------------immutable_memory-------------------------------------
1167 // Access immutable memory
1168 Node* Compile::immutable_memory() {
1169   if (_immutable_memory != NULL) {
1170     return _immutable_memory;
1171   }
1172   StartNode* s = start();
1173   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1174     Node *p = s->fast_out(i);
1175     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1176       _immutable_memory = p;
1177       return _immutable_memory;
1178     }
1179   }
1180   ShouldNotReachHere();
1181   return NULL;
1182 }
1183 
1184 //----------------------set_cached_top_node------------------------------------
1185 // Install the cached top node, and make sure Node::is_top works correctly.
1186 void Compile::set_cached_top_node(Node* tn) {
1187   if (tn != NULL)  verify_top(tn);
1188   Node* old_top = _top;
1189   _top = tn;
1190   // Calling Node::setup_is_top allows the nodes the chance to adjust
1191   // their _out arrays.
1192   if (_top != NULL)     _top->setup_is_top();
1193   if (old_top != NULL)  old_top->setup_is_top();
1194   assert(_top == NULL || top()->is_top(), "");
1195 }
1196 
1197 #ifdef ASSERT
1198 uint Compile::count_live_nodes_by_graph_walk() {
1199   Unique_Node_List useful(comp_arena());
1200   // Get useful node list by walking the graph.
1201   identify_useful_nodes(useful);
1202   return useful.size();
1203 }
1204 
1205 void Compile::print_missing_nodes() {
1206 
1207   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1208   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1209     return;
1210   }
1211 
1212   // This is an expensive function. It is executed only when the user
1213   // specifies VerifyIdealNodeCount option or otherwise knows the
1214   // additional work that needs to be done to identify reachable nodes
1215   // by walking the flow graph and find the missing ones using
1216   // _dead_node_list.
1217 
1218   Unique_Node_List useful(comp_arena());
1219   // Get useful node list by walking the graph.
1220   identify_useful_nodes(useful);
1221 
1222   uint l_nodes = C->live_nodes();
1223   uint l_nodes_by_walk = useful.size();
1224 
1225   if (l_nodes != l_nodes_by_walk) {
1226     if (_log != NULL) {
1227       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1228       _log->stamp();
1229       _log->end_head();
1230     }
1231     VectorSet& useful_member_set = useful.member_set();
1232     int last_idx = l_nodes_by_walk;
1233     for (int i = 0; i < last_idx; i++) {
1234       if (useful_member_set.test(i)) {
1235         if (_dead_node_list.test(i)) {
1236           if (_log != NULL) {
1237             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1238           }
1239           if (PrintIdealNodeCount) {
1240             // Print the log message to tty
1241               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1242               useful.at(i)->dump();
1243           }
1244         }
1245       }
1246       else if (! _dead_node_list.test(i)) {
1247         if (_log != NULL) {
1248           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1249         }
1250         if (PrintIdealNodeCount) {
1251           // Print the log message to tty
1252           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1253         }
1254       }
1255     }
1256     if (_log != NULL) {
1257       _log->tail("mismatched_nodes");
1258     }
1259   }
1260 }
1261 void Compile::record_modified_node(Node* n) {
1262   if (_modified_nodes != NULL && !_inlining_incrementally &&
1263       n->outcnt() != 0 && !n->is_Con()) {
1264     _modified_nodes->push(n);
1265   }
1266 }
1267 
1268 void Compile::remove_modified_node(Node* n) {
1269   if (_modified_nodes != NULL) {
1270     _modified_nodes->remove(n);
1271   }
1272 }
1273 #endif
1274 
1275 #ifndef PRODUCT
1276 void Compile::verify_top(Node* tn) const {
1277   if (tn != NULL) {
1278     assert(tn->is_Con(), "top node must be a constant");
1279     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1280     assert(tn->in(0) != NULL, "must have live top node");
1281   }
1282 }
1283 #endif
1284 
1285 
1286 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1287 
1288 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1289   guarantee(arr != NULL, "");
1290   int num_blocks = arr->length();
1291   if (grow_by < num_blocks)  grow_by = num_blocks;
1292   int num_notes = grow_by * _node_notes_block_size;
1293   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1294   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1295   while (num_notes > 0) {
1296     arr->append(notes);
1297     notes     += _node_notes_block_size;
1298     num_notes -= _node_notes_block_size;
1299   }
1300   assert(num_notes == 0, "exact multiple, please");
1301 }
1302 
1303 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1304   if (source == NULL || dest == NULL)  return false;
1305 
1306   if (dest->is_Con())
1307     return false;               // Do not push debug info onto constants.
1308 
1309 #ifdef ASSERT
1310   // Leave a bread crumb trail pointing to the original node:
1311   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1312     dest->set_debug_orig(source);
1313   }
1314 #endif
1315 
1316   if (node_note_array() == NULL)
1317     return false;               // Not collecting any notes now.
1318 
1319   // This is a copy onto a pre-existing node, which may already have notes.
1320   // If both nodes have notes, do not overwrite any pre-existing notes.
1321   Node_Notes* source_notes = node_notes_at(source->_idx);
1322   if (source_notes == NULL || source_notes->is_clear())  return false;
1323   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1324   if (dest_notes == NULL || dest_notes->is_clear()) {
1325     return set_node_notes_at(dest->_idx, source_notes);
1326   }
1327 
1328   Node_Notes merged_notes = (*source_notes);
1329   // The order of operations here ensures that dest notes will win...
1330   merged_notes.update_from(dest_notes);
1331   return set_node_notes_at(dest->_idx, &merged_notes);
1332 }
1333 
1334 
1335 //--------------------------allow_range_check_smearing-------------------------
1336 // Gating condition for coalescing similar range checks.
1337 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1338 // single covering check that is at least as strong as any of them.
1339 // If the optimization succeeds, the simplified (strengthened) range check
1340 // will always succeed.  If it fails, we will deopt, and then give up
1341 // on the optimization.
1342 bool Compile::allow_range_check_smearing() const {
1343   // If this method has already thrown a range-check,
1344   // assume it was because we already tried range smearing
1345   // and it failed.
1346   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1347   return !already_trapped;
1348 }
1349 
1350 
1351 //------------------------------flatten_alias_type-----------------------------
1352 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1353   int offset = tj->offset();
1354   TypePtr::PTR ptr = tj->ptr();
1355 
1356   // Known instance (scalarizable allocation) alias only with itself.
1357   bool is_known_inst = tj->isa_oopptr() != NULL &&
1358                        tj->is_oopptr()->is_known_instance();
1359 
1360   // Process weird unsafe references.
1361   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1362     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1363     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1364     tj = TypeOopPtr::BOTTOM;
1365     ptr = tj->ptr();
1366     offset = tj->offset();
1367   }
1368 
1369   // Array pointers need some flattening
1370   const TypeAryPtr *ta = tj->isa_aryptr();
1371   if (ta && ta->is_stable()) {
1372     // Erase stability property for alias analysis.
1373     tj = ta = ta->cast_to_stable(false);
1374   }
1375   if( ta && is_known_inst ) {
1376     if ( offset != Type::OffsetBot &&
1377          offset > arrayOopDesc::length_offset_in_bytes() ) {
1378       offset = Type::OffsetBot; // Flatten constant access into array body only
1379       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1380     }
1381   } else if( ta && _AliasLevel >= 2 ) {
1382     // For arrays indexed by constant indices, we flatten the alias
1383     // space to include all of the array body.  Only the header, klass
1384     // and array length can be accessed un-aliased.
1385     if( offset != Type::OffsetBot ) {
1386       if( ta->const_oop() ) { // MethodData* or Method*
1387         offset = Type::OffsetBot;   // Flatten constant access into array body
1388         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1389       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1390         // range is OK as-is.
1391         tj = ta = TypeAryPtr::RANGE;
1392       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1393         tj = TypeInstPtr::KLASS; // all klass loads look alike
1394         ta = TypeAryPtr::RANGE; // generic ignored junk
1395         ptr = TypePtr::BotPTR;
1396       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1397         tj = TypeInstPtr::MARK;
1398         ta = TypeAryPtr::RANGE; // generic ignored junk
1399         ptr = TypePtr::BotPTR;
1400       } else {                  // Random constant offset into array body
1401         offset = Type::OffsetBot;   // Flatten constant access into array body
1402         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1403       }
1404     }
1405     // Arrays of fixed size alias with arrays of unknown size.
1406     if (ta->size() != TypeInt::POS) {
1407       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1408       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1409     }
1410     // Arrays of known objects become arrays of unknown objects.
1411     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1412       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1413       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1414     }
1415     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1416       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1417       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1418     }
1419     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1420     // cannot be distinguished by bytecode alone.
1421     if (ta->elem() == TypeInt::BOOL) {
1422       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1423       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1424       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1425     }
1426     // During the 2nd round of IterGVN, NotNull castings are removed.
1427     // Make sure the Bottom and NotNull variants alias the same.
1428     // Also, make sure exact and non-exact variants alias the same.
1429     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1430       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1431     }
1432   }
1433 
1434   // Oop pointers need some flattening
1435   const TypeInstPtr *to = tj->isa_instptr();
1436   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1437     ciInstanceKlass *k = to->klass()->as_instance_klass();
1438     if( ptr == TypePtr::Constant ) {
1439       if (to->klass() != ciEnv::current()->Class_klass() ||
1440           offset < k->size_helper() * wordSize) {
1441         // No constant oop pointers (such as Strings); they alias with
1442         // unknown strings.
1443         assert(!is_known_inst, "not scalarizable allocation");
1444         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1445       }
1446     } else if( is_known_inst ) {
1447       tj = to; // Keep NotNull and klass_is_exact for instance type
1448     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1449       // During the 2nd round of IterGVN, NotNull castings are removed.
1450       // Make sure the Bottom and NotNull variants alias the same.
1451       // Also, make sure exact and non-exact variants alias the same.
1452       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1453     }
1454     if (to->speculative() != NULL) {
1455       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1456     }
1457     // Canonicalize the holder of this field
1458     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1459       // First handle header references such as a LoadKlassNode, even if the
1460       // object's klass is unloaded at compile time (4965979).
1461       if (!is_known_inst) { // Do it only for non-instance types
1462         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1463       }
1464     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1465       // Static fields are in the space above the normal instance
1466       // fields in the java.lang.Class instance.
1467       if (to->klass() != ciEnv::current()->Class_klass()) {
1468         to = NULL;
1469         tj = TypeOopPtr::BOTTOM;
1470         offset = tj->offset();
1471       }
1472     } else {
1473       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1474       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1475         if( is_known_inst ) {
1476           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1477         } else {
1478           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1479         }
1480       }
1481     }
1482   }
1483 
1484   // Klass pointers to object array klasses need some flattening
1485   const TypeKlassPtr *tk = tj->isa_klassptr();
1486   if( tk ) {
1487     // If we are referencing a field within a Klass, we need
1488     // to assume the worst case of an Object.  Both exact and
1489     // inexact types must flatten to the same alias class so
1490     // use NotNull as the PTR.
1491     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1492 
1493       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1494                                    TypeKlassPtr::OBJECT->klass(),
1495                                    offset);
1496     }
1497 
1498     ciKlass* klass = tk->klass();
1499     if( klass->is_obj_array_klass() ) {
1500       ciKlass* k = TypeAryPtr::OOPS->klass();
1501       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1502         k = TypeInstPtr::BOTTOM->klass();
1503       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1504     }
1505 
1506     // Check for precise loads from the primary supertype array and force them
1507     // to the supertype cache alias index.  Check for generic array loads from
1508     // the primary supertype array and also force them to the supertype cache
1509     // alias index.  Since the same load can reach both, we need to merge
1510     // these 2 disparate memories into the same alias class.  Since the
1511     // primary supertype array is read-only, there's no chance of confusion
1512     // where we bypass an array load and an array store.
1513     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1514     if (offset == Type::OffsetBot ||
1515         (offset >= primary_supers_offset &&
1516          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1517         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1518       offset = in_bytes(Klass::secondary_super_cache_offset());
1519       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1520     }
1521   }
1522 
1523   // Flatten all Raw pointers together.
1524   if (tj->base() == Type::RawPtr)
1525     tj = TypeRawPtr::BOTTOM;
1526 
1527   if (tj->base() == Type::AnyPtr)
1528     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1529 
1530   // Flatten all to bottom for now
1531   switch( _AliasLevel ) {
1532   case 0:
1533     tj = TypePtr::BOTTOM;
1534     break;
1535   case 1:                       // Flatten to: oop, static, field or array
1536     switch (tj->base()) {
1537     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1538     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1539     case Type::AryPtr:   // do not distinguish arrays at all
1540     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1541     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1542     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1543     default: ShouldNotReachHere();
1544     }
1545     break;
1546   case 2:                       // No collapsing at level 2; keep all splits
1547   case 3:                       // No collapsing at level 3; keep all splits
1548     break;
1549   default:
1550     Unimplemented();
1551   }
1552 
1553   offset = tj->offset();
1554   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1555 
1556   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1557           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1558           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1559           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1560           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1561           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1562           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1563           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1564   assert( tj->ptr() != TypePtr::TopPTR &&
1565           tj->ptr() != TypePtr::AnyNull &&
1566           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1567 //    assert( tj->ptr() != TypePtr::Constant ||
1568 //            tj->base() == Type::RawPtr ||
1569 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1570 
1571   return tj;
1572 }
1573 
1574 void Compile::AliasType::Init(int i, const TypePtr* at) {
1575   _index = i;
1576   _adr_type = at;
1577   _field = NULL;
1578   _element = NULL;
1579   _is_rewritable = true; // default
1580   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1581   if (atoop != NULL && atoop->is_known_instance()) {
1582     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1583     _general_index = Compile::current()->get_alias_index(gt);
1584   } else {
1585     _general_index = 0;
1586   }
1587 }
1588 
1589 //---------------------------------print_on------------------------------------
1590 #ifndef PRODUCT
1591 void Compile::AliasType::print_on(outputStream* st) {
1592   if (index() < 10)
1593         st->print("@ <%d> ", index());
1594   else  st->print("@ <%d>",  index());
1595   st->print(is_rewritable() ? "   " : " RO");
1596   int offset = adr_type()->offset();
1597   if (offset == Type::OffsetBot)
1598         st->print(" +any");
1599   else  st->print(" +%-3d", offset);
1600   st->print(" in ");
1601   adr_type()->dump_on(st);
1602   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1603   if (field() != NULL && tjp) {
1604     if (tjp->klass()  != field()->holder() ||
1605         tjp->offset() != field()->offset_in_bytes()) {
1606       st->print(" != ");
1607       field()->print();
1608       st->print(" ***");
1609     }
1610   }
1611 }
1612 
1613 void print_alias_types() {
1614   Compile* C = Compile::current();
1615   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1616   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1617     C->alias_type(idx)->print_on(tty);
1618     tty->cr();
1619   }
1620 }
1621 #endif
1622 
1623 
1624 //----------------------------probe_alias_cache--------------------------------
1625 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1626   intptr_t key = (intptr_t) adr_type;
1627   key ^= key >> logAliasCacheSize;
1628   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1629 }
1630 
1631 
1632 //-----------------------------grow_alias_types--------------------------------
1633 void Compile::grow_alias_types() {
1634   const int old_ats  = _max_alias_types; // how many before?
1635   const int new_ats  = old_ats;          // how many more?
1636   const int grow_ats = old_ats+new_ats;  // how many now?
1637   _max_alias_types = grow_ats;
1638   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1639   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1640   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1641   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1642 }
1643 
1644 
1645 //--------------------------------find_alias_type------------------------------
1646 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1647   if (_AliasLevel == 0)
1648     return alias_type(AliasIdxBot);
1649 
1650   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1651   if (ace->_adr_type == adr_type) {
1652     return alias_type(ace->_index);
1653   }
1654 
1655   // Handle special cases.
1656   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1657   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1658 
1659   // Do it the slow way.
1660   const TypePtr* flat = flatten_alias_type(adr_type);
1661 
1662 #ifdef ASSERT
1663   assert(flat == flatten_alias_type(flat), "idempotent");
1664   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1665   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1666     const TypeOopPtr* foop = flat->is_oopptr();
1667     // Scalarizable allocations have exact klass always.
1668     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1669     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1670     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1671   }
1672   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1673 #endif
1674 
1675   int idx = AliasIdxTop;
1676   for (int i = 0; i < num_alias_types(); i++) {
1677     if (alias_type(i)->adr_type() == flat) {
1678       idx = i;
1679       break;
1680     }
1681   }
1682 
1683   if (idx == AliasIdxTop) {
1684     if (no_create)  return NULL;
1685     // Grow the array if necessary.
1686     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1687     // Add a new alias type.
1688     idx = _num_alias_types++;
1689     _alias_types[idx]->Init(idx, flat);
1690     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1691     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1692     if (flat->isa_instptr()) {
1693       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1694           && flat->is_instptr()->klass() == env()->Class_klass())
1695         alias_type(idx)->set_rewritable(false);
1696     }
1697     if (flat->isa_aryptr()) {
1698 #ifdef ASSERT
1699       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1700       // (T_BYTE has the weakest alignment and size restrictions...)
1701       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1702 #endif
1703       if (flat->offset() == TypePtr::OffsetBot) {
1704         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1705       }
1706     }
1707     if (flat->isa_klassptr()) {
1708       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1709         alias_type(idx)->set_rewritable(false);
1710       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1711         alias_type(idx)->set_rewritable(false);
1712       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1713         alias_type(idx)->set_rewritable(false);
1714       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1715         alias_type(idx)->set_rewritable(false);
1716     }
1717     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1718     // but the base pointer type is not distinctive enough to identify
1719     // references into JavaThread.)
1720 
1721     // Check for final fields.
1722     const TypeInstPtr* tinst = flat->isa_instptr();
1723     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1724       ciField* field;
1725       if (tinst->const_oop() != NULL &&
1726           tinst->klass() == ciEnv::current()->Class_klass() &&
1727           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1728         // static field
1729         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1730         field = k->get_field_by_offset(tinst->offset(), true);
1731       } else {
1732         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1733         field = k->get_field_by_offset(tinst->offset(), false);
1734       }
1735       assert(field == NULL ||
1736              original_field == NULL ||
1737              (field->holder() == original_field->holder() &&
1738               field->offset() == original_field->offset() &&
1739               field->is_static() == original_field->is_static()), "wrong field?");
1740       // Set field() and is_rewritable() attributes.
1741       if (field != NULL)  alias_type(idx)->set_field(field);
1742     }
1743   }
1744 
1745   // Fill the cache for next time.
1746   ace->_adr_type = adr_type;
1747   ace->_index    = idx;
1748   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1749 
1750   // Might as well try to fill the cache for the flattened version, too.
1751   AliasCacheEntry* face = probe_alias_cache(flat);
1752   if (face->_adr_type == NULL) {
1753     face->_adr_type = flat;
1754     face->_index    = idx;
1755     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1756   }
1757 
1758   return alias_type(idx);
1759 }
1760 
1761 
1762 Compile::AliasType* Compile::alias_type(ciField* field) {
1763   const TypeOopPtr* t;
1764   if (field->is_static())
1765     t = TypeInstPtr::make(field->holder()->java_mirror());
1766   else
1767     t = TypeOopPtr::make_from_klass_raw(field->holder());
1768   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1769   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1770   return atp;
1771 }
1772 
1773 
1774 //------------------------------have_alias_type--------------------------------
1775 bool Compile::have_alias_type(const TypePtr* adr_type) {
1776   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1777   if (ace->_adr_type == adr_type) {
1778     return true;
1779   }
1780 
1781   // Handle special cases.
1782   if (adr_type == NULL)             return true;
1783   if (adr_type == TypePtr::BOTTOM)  return true;
1784 
1785   return find_alias_type(adr_type, true, NULL) != NULL;
1786 }
1787 
1788 //-----------------------------must_alias--------------------------------------
1789 // True if all values of the given address type are in the given alias category.
1790 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1791   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1792   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1793   if (alias_idx == AliasIdxTop)         return false; // the empty category
1794   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1795 
1796   // the only remaining possible overlap is identity
1797   int adr_idx = get_alias_index(adr_type);
1798   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1799   assert(adr_idx == alias_idx ||
1800          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1801           && adr_type                       != TypeOopPtr::BOTTOM),
1802          "should not be testing for overlap with an unsafe pointer");
1803   return adr_idx == alias_idx;
1804 }
1805 
1806 //------------------------------can_alias--------------------------------------
1807 // True if any values of the given address type are in the given alias category.
1808 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1809   if (alias_idx == AliasIdxTop)         return false; // the empty category
1810   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1811   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1812   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1813 
1814   // the only remaining possible overlap is identity
1815   int adr_idx = get_alias_index(adr_type);
1816   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1817   return adr_idx == alias_idx;
1818 }
1819 
1820 
1821 
1822 //---------------------------pop_warm_call-------------------------------------
1823 WarmCallInfo* Compile::pop_warm_call() {
1824   WarmCallInfo* wci = _warm_calls;
1825   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1826   return wci;
1827 }
1828 
1829 //----------------------------Inline_Warm--------------------------------------
1830 int Compile::Inline_Warm() {
1831   // If there is room, try to inline some more warm call sites.
1832   // %%% Do a graph index compaction pass when we think we're out of space?
1833   if (!InlineWarmCalls)  return 0;
1834 
1835   int calls_made_hot = 0;
1836   int room_to_grow   = NodeCountInliningCutoff - unique();
1837   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1838   int amount_grown   = 0;
1839   WarmCallInfo* call;
1840   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1841     int est_size = (int)call->size();
1842     if (est_size > (room_to_grow - amount_grown)) {
1843       // This one won't fit anyway.  Get rid of it.
1844       call->make_cold();
1845       continue;
1846     }
1847     call->make_hot();
1848     calls_made_hot++;
1849     amount_grown   += est_size;
1850     amount_to_grow -= est_size;
1851   }
1852 
1853   if (calls_made_hot > 0)  set_major_progress();
1854   return calls_made_hot;
1855 }
1856 
1857 
1858 //----------------------------Finish_Warm--------------------------------------
1859 void Compile::Finish_Warm() {
1860   if (!InlineWarmCalls)  return;
1861   if (failing())  return;
1862   if (warm_calls() == NULL)  return;
1863 
1864   // Clean up loose ends, if we are out of space for inlining.
1865   WarmCallInfo* call;
1866   while ((call = pop_warm_call()) != NULL) {
1867     call->make_cold();
1868   }
1869 }
1870 
1871 //---------------------cleanup_loop_predicates-----------------------
1872 // Remove the opaque nodes that protect the predicates so that all unused
1873 // checks and uncommon_traps will be eliminated from the ideal graph
1874 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1875   if (predicate_count()==0) return;
1876   for (int i = predicate_count(); i > 0; i--) {
1877     Node * n = predicate_opaque1_node(i-1);
1878     assert(n->Opcode() == Op_Opaque1, "must be");
1879     igvn.replace_node(n, n->in(1));
1880   }
1881   assert(predicate_count()==0, "should be clean!");
1882 }
1883 
1884 // StringOpts and late inlining of string methods
1885 void Compile::inline_string_calls(bool parse_time) {
1886   {
1887     // remove useless nodes to make the usage analysis simpler
1888     ResourceMark rm;
1889     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1890   }
1891 
1892   {
1893     ResourceMark rm;
1894     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1895     PhaseStringOpts pso(initial_gvn(), for_igvn());
1896     print_method(PHASE_AFTER_STRINGOPTS, 3);
1897   }
1898 
1899   // now inline anything that we skipped the first time around
1900   if (!parse_time) {
1901     _late_inlines_pos = _late_inlines.length();
1902   }
1903 
1904   while (_string_late_inlines.length() > 0) {
1905     CallGenerator* cg = _string_late_inlines.pop();
1906     cg->do_late_inline();
1907     if (failing())  return;
1908   }
1909   _string_late_inlines.trunc_to(0);
1910 }
1911 
1912 // Late inlining of boxing methods
1913 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1914   if (_boxing_late_inlines.length() > 0) {
1915     assert(has_boxed_value(), "inconsistent");
1916 
1917     PhaseGVN* gvn = initial_gvn();
1918     set_inlining_incrementally(true);
1919 
1920     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1921     for_igvn()->clear();
1922     gvn->replace_with(&igvn);
1923 
1924     _late_inlines_pos = _late_inlines.length();
1925 
1926     while (_boxing_late_inlines.length() > 0) {
1927       CallGenerator* cg = _boxing_late_inlines.pop();
1928       cg->do_late_inline();
1929       if (failing())  return;
1930     }
1931     _boxing_late_inlines.trunc_to(0);
1932 
1933     {
1934       ResourceMark rm;
1935       PhaseRemoveUseless pru(gvn, for_igvn());
1936     }
1937 
1938     igvn = PhaseIterGVN(gvn);
1939     igvn.optimize();
1940 
1941     set_inlining_progress(false);
1942     set_inlining_incrementally(false);
1943   }
1944 }
1945 
1946 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1947   assert(IncrementalInline, "incremental inlining should be on");
1948   PhaseGVN* gvn = initial_gvn();
1949 
1950   set_inlining_progress(false);
1951   for_igvn()->clear();
1952   gvn->replace_with(&igvn);
1953 
1954   {
1955     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
1956     int i = 0;
1957     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1958       CallGenerator* cg = _late_inlines.at(i);
1959       _late_inlines_pos = i+1;
1960       cg->do_late_inline();
1961       if (failing())  return;
1962     }
1963     int j = 0;
1964     for (; i < _late_inlines.length(); i++, j++) {
1965       _late_inlines.at_put(j, _late_inlines.at(i));
1966     }
1967     _late_inlines.trunc_to(j);
1968   }
1969 
1970   {
1971     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
1972     ResourceMark rm;
1973     PhaseRemoveUseless pru(gvn, for_igvn());
1974   }
1975 
1976   {
1977     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
1978     igvn = PhaseIterGVN(gvn);
1979   }
1980 }
1981 
1982 // Perform incremental inlining until bound on number of live nodes is reached
1983 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1984   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
1985 
1986   PhaseGVN* gvn = initial_gvn();
1987 
1988   set_inlining_incrementally(true);
1989   set_inlining_progress(true);
1990   uint low_live_nodes = 0;
1991 
1992   while(inlining_progress() && _late_inlines.length() > 0) {
1993 
1994     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
1995       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
1996         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
1997         // PhaseIdealLoop is expensive so we only try it once we are
1998         // out of live nodes and we only try it again if the previous
1999         // helped got the number of nodes down significantly
2000         PhaseIdealLoop ideal_loop( igvn, false, true );
2001         if (failing())  return;
2002         low_live_nodes = live_nodes();
2003         _major_progress = true;
2004       }
2005 
2006       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2007         break;
2008       }
2009     }
2010 
2011     inline_incrementally_one(igvn);
2012 
2013     if (failing())  return;
2014 
2015     {
2016       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2017       igvn.optimize();
2018     }
2019 
2020     if (failing())  return;
2021   }
2022 
2023   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2024 
2025   if (_string_late_inlines.length() > 0) {
2026     assert(has_stringbuilder(), "inconsistent");
2027     for_igvn()->clear();
2028     initial_gvn()->replace_with(&igvn);
2029 
2030     inline_string_calls(false);
2031 
2032     if (failing())  return;
2033 
2034     {
2035       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2036       ResourceMark rm;
2037       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2038     }
2039 
2040     {
2041       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2042       igvn = PhaseIterGVN(gvn);
2043       igvn.optimize();
2044     }
2045   }
2046 
2047   set_inlining_incrementally(false);
2048 }
2049 
2050 
2051 //------------------------------Optimize---------------------------------------
2052 // Given a graph, optimize it.
2053 void Compile::Optimize() {
2054   TracePhase tp("optimizer", &timers[_t_optimizer]);
2055 
2056 #ifndef PRODUCT
2057   if (env()->break_at_compile()) {
2058     BREAKPOINT;
2059   }
2060 
2061 #endif
2062 
2063   ResourceMark rm;
2064   int          loop_opts_cnt;
2065 
2066   print_inlining_reinit();
2067 
2068   NOT_PRODUCT( verify_graph_edges(); )
2069 
2070   print_method(PHASE_AFTER_PARSING);
2071 
2072  {
2073   // Iterative Global Value Numbering, including ideal transforms
2074   // Initialize IterGVN with types and values from parse-time GVN
2075   PhaseIterGVN igvn(initial_gvn());
2076 #ifdef ASSERT
2077   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2078 #endif
2079   {
2080     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2081     igvn.optimize();
2082   }
2083 
2084   print_method(PHASE_ITER_GVN1, 2);
2085 
2086   if (failing())  return;
2087 
2088   inline_incrementally(igvn);
2089 
2090   print_method(PHASE_INCREMENTAL_INLINE, 2);
2091 
2092   if (failing())  return;
2093 
2094   if (eliminate_boxing()) {
2095     // Inline valueOf() methods now.
2096     inline_boxing_calls(igvn);
2097 
2098     if (AlwaysIncrementalInline) {
2099       inline_incrementally(igvn);
2100     }
2101 
2102     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2103 
2104     if (failing())  return;
2105   }
2106 
2107   // Remove the speculative part of types and clean up the graph from
2108   // the extra CastPP nodes whose only purpose is to carry them. Do
2109   // that early so that optimizations are not disrupted by the extra
2110   // CastPP nodes.
2111   remove_speculative_types(igvn);
2112 
2113   // No more new expensive nodes will be added to the list from here
2114   // so keep only the actual candidates for optimizations.
2115   cleanup_expensive_nodes(igvn);
2116 
2117   // Perform escape analysis
2118   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2119     if (has_loops()) {
2120       // Cleanup graph (remove dead nodes).
2121       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2122       PhaseIdealLoop ideal_loop( igvn, false, true );
2123       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2124       if (failing())  return;
2125     }
2126     ConnectionGraph::do_analysis(this, &igvn);
2127 
2128     if (failing())  return;
2129 
2130     // Optimize out fields loads from scalar replaceable allocations.
2131     igvn.optimize();
2132     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2133 
2134     if (failing())  return;
2135 
2136     if (congraph() != NULL && macro_count() > 0) {
2137       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2138       PhaseMacroExpand mexp(igvn);
2139       mexp.eliminate_macro_nodes();
2140       igvn.set_delay_transform(false);
2141 
2142       igvn.optimize();
2143       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2144 
2145       if (failing())  return;
2146     }
2147   }
2148 
2149   // Loop transforms on the ideal graph.  Range Check Elimination,
2150   // peeling, unrolling, etc.
2151 
2152   // Set loop opts counter
2153   loop_opts_cnt = num_loop_opts();
2154   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2155     {
2156       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2157       PhaseIdealLoop ideal_loop( igvn, true );
2158       loop_opts_cnt--;
2159       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2160       if (failing())  return;
2161     }
2162     // Loop opts pass if partial peeling occurred in previous pass
2163     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2164       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2165       PhaseIdealLoop ideal_loop( igvn, false );
2166       loop_opts_cnt--;
2167       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2168       if (failing())  return;
2169     }
2170     // Loop opts pass for loop-unrolling before CCP
2171     if(major_progress() && (loop_opts_cnt > 0)) {
2172       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2173       PhaseIdealLoop ideal_loop( igvn, false );
2174       loop_opts_cnt--;
2175       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2176     }
2177     if (!failing()) {
2178       // Verify that last round of loop opts produced a valid graph
2179       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2180       PhaseIdealLoop::verify(igvn);
2181     }
2182   }
2183   if (failing())  return;
2184 
2185   // Conditional Constant Propagation;
2186   PhaseCCP ccp( &igvn );
2187   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2188   {
2189     TracePhase tp("ccp", &timers[_t_ccp]);
2190     ccp.do_transform();
2191   }
2192   print_method(PHASE_CPP1, 2);
2193 
2194   assert( true, "Break here to ccp.dump_old2new_map()");
2195 
2196   // Iterative Global Value Numbering, including ideal transforms
2197   {
2198     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2199     igvn = ccp;
2200     igvn.optimize();
2201   }
2202 
2203   print_method(PHASE_ITER_GVN2, 2);
2204 
2205   if (failing())  return;
2206 
2207   // Loop transforms on the ideal graph.  Range Check Elimination,
2208   // peeling, unrolling, etc.
2209   if(loop_opts_cnt > 0) {
2210     debug_only( int cnt = 0; );
2211     while(major_progress() && (loop_opts_cnt > 0)) {
2212       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2213       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2214       PhaseIdealLoop ideal_loop( igvn, true);
2215       loop_opts_cnt--;
2216       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2217       if (failing())  return;
2218     }
2219   }
2220 
2221   {
2222     // Verify that all previous optimizations produced a valid graph
2223     // at least to this point, even if no loop optimizations were done.
2224     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2225     PhaseIdealLoop::verify(igvn);
2226   }
2227 
2228   {
2229     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2230     PhaseMacroExpand  mex(igvn);
2231     if (mex.expand_macro_nodes()) {
2232       assert(failing(), "must bail out w/ explicit message");
2233       return;
2234     }
2235   }
2236 
2237   DEBUG_ONLY( _modified_nodes = NULL; )
2238  } // (End scope of igvn; run destructor if necessary for asserts.)
2239 
2240   process_print_inlining();
2241   // A method with only infinite loops has no edges entering loops from root
2242   {
2243     TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2244     if (final_graph_reshaping()) {
2245       assert(failing(), "must bail out w/ explicit message");
2246       return;
2247     }
2248   }
2249 
2250   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2251 }
2252 
2253 
2254 //------------------------------Code_Gen---------------------------------------
2255 // Given a graph, generate code for it
2256 void Compile::Code_Gen() {
2257   if (failing()) {
2258     return;
2259   }
2260 
2261   // Perform instruction selection.  You might think we could reclaim Matcher
2262   // memory PDQ, but actually the Matcher is used in generating spill code.
2263   // Internals of the Matcher (including some VectorSets) must remain live
2264   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2265   // set a bit in reclaimed memory.
2266 
2267   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2268   // nodes.  Mapping is only valid at the root of each matched subtree.
2269   NOT_PRODUCT( verify_graph_edges(); )
2270 
2271   Matcher matcher;
2272   _matcher = &matcher;
2273   {
2274     TracePhase tp("matcher", &timers[_t_matcher]);
2275     matcher.match();
2276   }
2277   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2278   // nodes.  Mapping is only valid at the root of each matched subtree.
2279   NOT_PRODUCT( verify_graph_edges(); )
2280 
2281   // If you have too many nodes, or if matching has failed, bail out
2282   check_node_count(0, "out of nodes matching instructions");
2283   if (failing()) {
2284     return;
2285   }
2286 
2287   // Build a proper-looking CFG
2288   PhaseCFG cfg(node_arena(), root(), matcher);
2289   _cfg = &cfg;
2290   {
2291     TracePhase tp("scheduler", &timers[_t_scheduler]);
2292     bool success = cfg.do_global_code_motion();
2293     if (!success) {
2294       return;
2295     }
2296 
2297     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2298     NOT_PRODUCT( verify_graph_edges(); )
2299     debug_only( cfg.verify(); )
2300   }
2301 
2302   PhaseChaitin regalloc(unique(), cfg, matcher);
2303   _regalloc = &regalloc;
2304   {
2305     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2306     // Perform register allocation.  After Chaitin, use-def chains are
2307     // no longer accurate (at spill code) and so must be ignored.
2308     // Node->LRG->reg mappings are still accurate.
2309     _regalloc->Register_Allocate();
2310 
2311     // Bail out if the allocator builds too many nodes
2312     if (failing()) {
2313       return;
2314     }
2315   }
2316 
2317   // Prior to register allocation we kept empty basic blocks in case the
2318   // the allocator needed a place to spill.  After register allocation we
2319   // are not adding any new instructions.  If any basic block is empty, we
2320   // can now safely remove it.
2321   {
2322     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2323     cfg.remove_empty_blocks();
2324     if (do_freq_based_layout()) {
2325       PhaseBlockLayout layout(cfg);
2326     } else {
2327       cfg.set_loop_alignment();
2328     }
2329     cfg.fixup_flow();
2330   }
2331 
2332   // Apply peephole optimizations
2333   if( OptoPeephole ) {
2334     TracePhase tp("peephole", &timers[_t_peephole]);
2335     PhasePeephole peep( _regalloc, cfg);
2336     peep.do_transform();
2337   }
2338 
2339   // Do late expand if CPU requires this.
2340   if (Matcher::require_postalloc_expand) {
2341     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2342     cfg.postalloc_expand(_regalloc);
2343   }
2344 
2345   // Convert Nodes to instruction bits in a buffer
2346   {
2347     TraceTime tp("output", &timers[_t_output], CITime);
2348     Output();
2349   }
2350 
2351   print_method(PHASE_FINAL_CODE);
2352 
2353   // He's dead, Jim.
2354   _cfg     = (PhaseCFG*)0xdeadbeef;
2355   _regalloc = (PhaseChaitin*)0xdeadbeef;
2356 }
2357 
2358 
2359 //------------------------------dump_asm---------------------------------------
2360 // Dump formatted assembly
2361 #ifndef PRODUCT
2362 void Compile::dump_asm(int *pcs, uint pc_limit) {
2363   bool cut_short = false;
2364   tty->print_cr("#");
2365   tty->print("#  ");  _tf->dump();  tty->cr();
2366   tty->print_cr("#");
2367 
2368   // For all blocks
2369   int pc = 0x0;                 // Program counter
2370   char starts_bundle = ' ';
2371   _regalloc->dump_frame();
2372 
2373   Node *n = NULL;
2374   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2375     if (VMThread::should_terminate()) {
2376       cut_short = true;
2377       break;
2378     }
2379     Block* block = _cfg->get_block(i);
2380     if (block->is_connector() && !Verbose) {
2381       continue;
2382     }
2383     n = block->head();
2384     if (pcs && n->_idx < pc_limit) {
2385       tty->print("%3.3x   ", pcs[n->_idx]);
2386     } else {
2387       tty->print("      ");
2388     }
2389     block->dump_head(_cfg);
2390     if (block->is_connector()) {
2391       tty->print_cr("        # Empty connector block");
2392     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2393       tty->print_cr("        # Block is sole successor of call");
2394     }
2395 
2396     // For all instructions
2397     Node *delay = NULL;
2398     for (uint j = 0; j < block->number_of_nodes(); j++) {
2399       if (VMThread::should_terminate()) {
2400         cut_short = true;
2401         break;
2402       }
2403       n = block->get_node(j);
2404       if (valid_bundle_info(n)) {
2405         Bundle* bundle = node_bundling(n);
2406         if (bundle->used_in_unconditional_delay()) {
2407           delay = n;
2408           continue;
2409         }
2410         if (bundle->starts_bundle()) {
2411           starts_bundle = '+';
2412         }
2413       }
2414 
2415       if (WizardMode) {
2416         n->dump();
2417       }
2418 
2419       if( !n->is_Region() &&    // Dont print in the Assembly
2420           !n->is_Phi() &&       // a few noisely useless nodes
2421           !n->is_Proj() &&
2422           !n->is_MachTemp() &&
2423           !n->is_SafePointScalarObject() &&
2424           !n->is_Catch() &&     // Would be nice to print exception table targets
2425           !n->is_MergeMem() &&  // Not very interesting
2426           !n->is_top() &&       // Debug info table constants
2427           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2428           ) {
2429         if (pcs && n->_idx < pc_limit)
2430           tty->print("%3.3x", pcs[n->_idx]);
2431         else
2432           tty->print("   ");
2433         tty->print(" %c ", starts_bundle);
2434         starts_bundle = ' ';
2435         tty->print("\t");
2436         n->format(_regalloc, tty);
2437         tty->cr();
2438       }
2439 
2440       // If we have an instruction with a delay slot, and have seen a delay,
2441       // then back up and print it
2442       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2443         assert(delay != NULL, "no unconditional delay instruction");
2444         if (WizardMode) delay->dump();
2445 
2446         if (node_bundling(delay)->starts_bundle())
2447           starts_bundle = '+';
2448         if (pcs && n->_idx < pc_limit)
2449           tty->print("%3.3x", pcs[n->_idx]);
2450         else
2451           tty->print("   ");
2452         tty->print(" %c ", starts_bundle);
2453         starts_bundle = ' ';
2454         tty->print("\t");
2455         delay->format(_regalloc, tty);
2456         tty->cr();
2457         delay = NULL;
2458       }
2459 
2460       // Dump the exception table as well
2461       if( n->is_Catch() && (Verbose || WizardMode) ) {
2462         // Print the exception table for this offset
2463         _handler_table.print_subtable_for(pc);
2464       }
2465     }
2466 
2467     if (pcs && n->_idx < pc_limit)
2468       tty->print_cr("%3.3x", pcs[n->_idx]);
2469     else
2470       tty->cr();
2471 
2472     assert(cut_short || delay == NULL, "no unconditional delay branch");
2473 
2474   } // End of per-block dump
2475   tty->cr();
2476 
2477   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2478 }
2479 #endif
2480 
2481 //------------------------------Final_Reshape_Counts---------------------------
2482 // This class defines counters to help identify when a method
2483 // may/must be executed using hardware with only 24-bit precision.
2484 struct Final_Reshape_Counts : public StackObj {
2485   int  _call_count;             // count non-inlined 'common' calls
2486   int  _float_count;            // count float ops requiring 24-bit precision
2487   int  _double_count;           // count double ops requiring more precision
2488   int  _java_call_count;        // count non-inlined 'java' calls
2489   int  _inner_loop_count;       // count loops which need alignment
2490   VectorSet _visited;           // Visitation flags
2491   Node_List _tests;             // Set of IfNodes & PCTableNodes
2492 
2493   Final_Reshape_Counts() :
2494     _call_count(0), _float_count(0), _double_count(0),
2495     _java_call_count(0), _inner_loop_count(0),
2496     _visited( Thread::current()->resource_area() ) { }
2497 
2498   void inc_call_count  () { _call_count  ++; }
2499   void inc_float_count () { _float_count ++; }
2500   void inc_double_count() { _double_count++; }
2501   void inc_java_call_count() { _java_call_count++; }
2502   void inc_inner_loop_count() { _inner_loop_count++; }
2503 
2504   int  get_call_count  () const { return _call_count  ; }
2505   int  get_float_count () const { return _float_count ; }
2506   int  get_double_count() const { return _double_count; }
2507   int  get_java_call_count() const { return _java_call_count; }
2508   int  get_inner_loop_count() const { return _inner_loop_count; }
2509 };
2510 
2511 #ifdef ASSERT
2512 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2513   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2514   // Make sure the offset goes inside the instance layout.
2515   return k->contains_field_offset(tp->offset());
2516   // Note that OffsetBot and OffsetTop are very negative.
2517 }
2518 #endif
2519 
2520 // Eliminate trivially redundant StoreCMs and accumulate their
2521 // precedence edges.
2522 void Compile::eliminate_redundant_card_marks(Node* n) {
2523   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2524   if (n->in(MemNode::Address)->outcnt() > 1) {
2525     // There are multiple users of the same address so it might be
2526     // possible to eliminate some of the StoreCMs
2527     Node* mem = n->in(MemNode::Memory);
2528     Node* adr = n->in(MemNode::Address);
2529     Node* val = n->in(MemNode::ValueIn);
2530     Node* prev = n;
2531     bool done = false;
2532     // Walk the chain of StoreCMs eliminating ones that match.  As
2533     // long as it's a chain of single users then the optimization is
2534     // safe.  Eliminating partially redundant StoreCMs would require
2535     // cloning copies down the other paths.
2536     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2537       if (adr == mem->in(MemNode::Address) &&
2538           val == mem->in(MemNode::ValueIn)) {
2539         // redundant StoreCM
2540         if (mem->req() > MemNode::OopStore) {
2541           // Hasn't been processed by this code yet.
2542           n->add_prec(mem->in(MemNode::OopStore));
2543         } else {
2544           // Already converted to precedence edge
2545           for (uint i = mem->req(); i < mem->len(); i++) {
2546             // Accumulate any precedence edges
2547             if (mem->in(i) != NULL) {
2548               n->add_prec(mem->in(i));
2549             }
2550           }
2551           // Everything above this point has been processed.
2552           done = true;
2553         }
2554         // Eliminate the previous StoreCM
2555         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2556         assert(mem->outcnt() == 0, "should be dead");
2557         mem->disconnect_inputs(NULL, this);
2558       } else {
2559         prev = mem;
2560       }
2561       mem = prev->in(MemNode::Memory);
2562     }
2563   }
2564 }
2565 
2566 //------------------------------final_graph_reshaping_impl----------------------
2567 // Implement items 1-5 from final_graph_reshaping below.
2568 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2569 
2570   if ( n->outcnt() == 0 ) return; // dead node
2571   uint nop = n->Opcode();
2572 
2573   // Check for 2-input instruction with "last use" on right input.
2574   // Swap to left input.  Implements item (2).
2575   if( n->req() == 3 &&          // two-input instruction
2576       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2577       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2578       n->in(2)->outcnt() == 1 &&// right use IS a last use
2579       !n->in(2)->is_Con() ) {   // right use is not a constant
2580     // Check for commutative opcode
2581     switch( nop ) {
2582     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2583     case Op_MaxI:  case Op_MinI:
2584     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2585     case Op_AndL:  case Op_XorL:  case Op_OrL:
2586     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2587       // Move "last use" input to left by swapping inputs
2588       n->swap_edges(1, 2);
2589       break;
2590     }
2591     default:
2592       break;
2593     }
2594   }
2595 
2596 #ifdef ASSERT
2597   if( n->is_Mem() ) {
2598     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2599     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2600             // oop will be recorded in oop map if load crosses safepoint
2601             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2602                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2603             "raw memory operations should have control edge");
2604   }
2605 #endif
2606   // Count FPU ops and common calls, implements item (3)
2607   switch( nop ) {
2608   // Count all float operations that may use FPU
2609   case Op_AddF:
2610   case Op_SubF:
2611   case Op_MulF:
2612   case Op_DivF:
2613   case Op_NegF:
2614   case Op_ModF:
2615   case Op_ConvI2F:
2616   case Op_ConF:
2617   case Op_CmpF:
2618   case Op_CmpF3:
2619   // case Op_ConvL2F: // longs are split into 32-bit halves
2620     frc.inc_float_count();
2621     break;
2622 
2623   case Op_ConvF2D:
2624   case Op_ConvD2F:
2625     frc.inc_float_count();
2626     frc.inc_double_count();
2627     break;
2628 
2629   // Count all double operations that may use FPU
2630   case Op_AddD:
2631   case Op_SubD:
2632   case Op_MulD:
2633   case Op_DivD:
2634   case Op_NegD:
2635   case Op_ModD:
2636   case Op_ConvI2D:
2637   case Op_ConvD2I:
2638   // case Op_ConvL2D: // handled by leaf call
2639   // case Op_ConvD2L: // handled by leaf call
2640   case Op_ConD:
2641   case Op_CmpD:
2642   case Op_CmpD3:
2643     frc.inc_double_count();
2644     break;
2645   case Op_Opaque1:              // Remove Opaque Nodes before matching
2646   case Op_Opaque2:              // Remove Opaque Nodes before matching
2647   case Op_Opaque3:
2648     n->subsume_by(n->in(1), this);
2649     break;
2650   case Op_CallStaticJava:
2651   case Op_CallJava:
2652   case Op_CallDynamicJava:
2653     frc.inc_java_call_count(); // Count java call site;
2654   case Op_CallRuntime:
2655   case Op_CallLeaf:
2656   case Op_CallLeafNoFP: {
2657     assert( n->is_Call(), "" );
2658     CallNode *call = n->as_Call();
2659     // Count call sites where the FP mode bit would have to be flipped.
2660     // Do not count uncommon runtime calls:
2661     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2662     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2663     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2664       frc.inc_call_count();   // Count the call site
2665     } else {                  // See if uncommon argument is shared
2666       Node *n = call->in(TypeFunc::Parms);
2667       int nop = n->Opcode();
2668       // Clone shared simple arguments to uncommon calls, item (1).
2669       if( n->outcnt() > 1 &&
2670           !n->is_Proj() &&
2671           nop != Op_CreateEx &&
2672           nop != Op_CheckCastPP &&
2673           nop != Op_DecodeN &&
2674           nop != Op_DecodeNKlass &&
2675           !n->is_Mem() ) {
2676         Node *x = n->clone();
2677         call->set_req( TypeFunc::Parms, x );
2678       }
2679     }
2680     break;
2681   }
2682 
2683   case Op_StoreD:
2684   case Op_LoadD:
2685   case Op_LoadD_unaligned:
2686     frc.inc_double_count();
2687     goto handle_mem;
2688   case Op_StoreF:
2689   case Op_LoadF:
2690     frc.inc_float_count();
2691     goto handle_mem;
2692 
2693   case Op_StoreCM:
2694     {
2695       // Convert OopStore dependence into precedence edge
2696       Node* prec = n->in(MemNode::OopStore);
2697       n->del_req(MemNode::OopStore);
2698       n->add_prec(prec);
2699       eliminate_redundant_card_marks(n);
2700     }
2701 
2702     // fall through
2703 
2704   case Op_StoreB:
2705   case Op_StoreC:
2706   case Op_StorePConditional:
2707   case Op_StoreI:
2708   case Op_StoreL:
2709   case Op_StoreIConditional:
2710   case Op_StoreLConditional:
2711   case Op_CompareAndSwapI:
2712   case Op_CompareAndSwapL:
2713   case Op_CompareAndSwapP:
2714   case Op_CompareAndSwapN:
2715   case Op_GetAndAddI:
2716   case Op_GetAndAddL:
2717   case Op_GetAndSetI:
2718   case Op_GetAndSetL:
2719   case Op_GetAndSetP:
2720   case Op_GetAndSetN:
2721   case Op_StoreP:
2722   case Op_StoreN:
2723   case Op_StoreNKlass:
2724   case Op_LoadB:
2725   case Op_LoadUB:
2726   case Op_LoadUS:
2727   case Op_LoadI:
2728   case Op_LoadKlass:
2729   case Op_LoadNKlass:
2730   case Op_LoadL:
2731   case Op_LoadL_unaligned:
2732   case Op_LoadPLocked:
2733   case Op_LoadP:
2734   case Op_LoadN:
2735   case Op_LoadRange:
2736   case Op_LoadS: {
2737   handle_mem:
2738 #ifdef ASSERT
2739     if( VerifyOptoOopOffsets ) {
2740       assert( n->is_Mem(), "" );
2741       MemNode *mem  = (MemNode*)n;
2742       // Check to see if address types have grounded out somehow.
2743       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2744       assert( !tp || oop_offset_is_sane(tp), "" );
2745     }
2746 #endif
2747     break;
2748   }
2749 
2750   case Op_AddP: {               // Assert sane base pointers
2751     Node *addp = n->in(AddPNode::Address);
2752     assert( !addp->is_AddP() ||
2753             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2754             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2755             "Base pointers must match" );
2756 #ifdef _LP64
2757     if ((UseCompressedOops || UseCompressedClassPointers) &&
2758         addp->Opcode() == Op_ConP &&
2759         addp == n->in(AddPNode::Base) &&
2760         n->in(AddPNode::Offset)->is_Con()) {
2761       // Use addressing with narrow klass to load with offset on x86.
2762       // On sparc loading 32-bits constant and decoding it have less
2763       // instructions (4) then load 64-bits constant (7).
2764       // Do this transformation here since IGVN will convert ConN back to ConP.
2765       const Type* t = addp->bottom_type();
2766       if (t->isa_oopptr() || t->isa_klassptr()) {
2767         Node* nn = NULL;
2768 
2769         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2770 
2771         // Look for existing ConN node of the same exact type.
2772         Node* r  = root();
2773         uint cnt = r->outcnt();
2774         for (uint i = 0; i < cnt; i++) {
2775           Node* m = r->raw_out(i);
2776           if (m!= NULL && m->Opcode() == op &&
2777               m->bottom_type()->make_ptr() == t) {
2778             nn = m;
2779             break;
2780           }
2781         }
2782         if (nn != NULL) {
2783           // Decode a narrow oop to match address
2784           // [R12 + narrow_oop_reg<<3 + offset]
2785           if (t->isa_oopptr()) {
2786             nn = new DecodeNNode(nn, t);
2787           } else {
2788             nn = new DecodeNKlassNode(nn, t);
2789           }
2790           n->set_req(AddPNode::Base, nn);
2791           n->set_req(AddPNode::Address, nn);
2792           if (addp->outcnt() == 0) {
2793             addp->disconnect_inputs(NULL, this);
2794           }
2795         }
2796       }
2797     }
2798 #endif
2799     break;
2800   }
2801 
2802 #ifdef _LP64
2803   case Op_CastPP:
2804     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2805       Node* in1 = n->in(1);
2806       const Type* t = n->bottom_type();
2807       Node* new_in1 = in1->clone();
2808       new_in1->as_DecodeN()->set_type(t);
2809 
2810       if (!Matcher::narrow_oop_use_complex_address()) {
2811         //
2812         // x86, ARM and friends can handle 2 adds in addressing mode
2813         // and Matcher can fold a DecodeN node into address by using
2814         // a narrow oop directly and do implicit NULL check in address:
2815         //
2816         // [R12 + narrow_oop_reg<<3 + offset]
2817         // NullCheck narrow_oop_reg
2818         //
2819         // On other platforms (Sparc) we have to keep new DecodeN node and
2820         // use it to do implicit NULL check in address:
2821         //
2822         // decode_not_null narrow_oop_reg, base_reg
2823         // [base_reg + offset]
2824         // NullCheck base_reg
2825         //
2826         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2827         // to keep the information to which NULL check the new DecodeN node
2828         // corresponds to use it as value in implicit_null_check().
2829         //
2830         new_in1->set_req(0, n->in(0));
2831       }
2832 
2833       n->subsume_by(new_in1, this);
2834       if (in1->outcnt() == 0) {
2835         in1->disconnect_inputs(NULL, this);
2836       }
2837     }
2838     break;
2839 
2840   case Op_CmpP:
2841     // Do this transformation here to preserve CmpPNode::sub() and
2842     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2843     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2844       Node* in1 = n->in(1);
2845       Node* in2 = n->in(2);
2846       if (!in1->is_DecodeNarrowPtr()) {
2847         in2 = in1;
2848         in1 = n->in(2);
2849       }
2850       assert(in1->is_DecodeNarrowPtr(), "sanity");
2851 
2852       Node* new_in2 = NULL;
2853       if (in2->is_DecodeNarrowPtr()) {
2854         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2855         new_in2 = in2->in(1);
2856       } else if (in2->Opcode() == Op_ConP) {
2857         const Type* t = in2->bottom_type();
2858         if (t == TypePtr::NULL_PTR) {
2859           assert(in1->is_DecodeN(), "compare klass to null?");
2860           // Don't convert CmpP null check into CmpN if compressed
2861           // oops implicit null check is not generated.
2862           // This will allow to generate normal oop implicit null check.
2863           if (Matcher::gen_narrow_oop_implicit_null_checks())
2864             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
2865           //
2866           // This transformation together with CastPP transformation above
2867           // will generated code for implicit NULL checks for compressed oops.
2868           //
2869           // The original code after Optimize()
2870           //
2871           //    LoadN memory, narrow_oop_reg
2872           //    decode narrow_oop_reg, base_reg
2873           //    CmpP base_reg, NULL
2874           //    CastPP base_reg // NotNull
2875           //    Load [base_reg + offset], val_reg
2876           //
2877           // after these transformations will be
2878           //
2879           //    LoadN memory, narrow_oop_reg
2880           //    CmpN narrow_oop_reg, NULL
2881           //    decode_not_null narrow_oop_reg, base_reg
2882           //    Load [base_reg + offset], val_reg
2883           //
2884           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2885           // since narrow oops can be used in debug info now (see the code in
2886           // final_graph_reshaping_walk()).
2887           //
2888           // At the end the code will be matched to
2889           // on x86:
2890           //
2891           //    Load_narrow_oop memory, narrow_oop_reg
2892           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2893           //    NullCheck narrow_oop_reg
2894           //
2895           // and on sparc:
2896           //
2897           //    Load_narrow_oop memory, narrow_oop_reg
2898           //    decode_not_null narrow_oop_reg, base_reg
2899           //    Load [base_reg + offset], val_reg
2900           //    NullCheck base_reg
2901           //
2902         } else if (t->isa_oopptr()) {
2903           new_in2 = ConNode::make(t->make_narrowoop());
2904         } else if (t->isa_klassptr()) {
2905           new_in2 = ConNode::make(t->make_narrowklass());
2906         }
2907       }
2908       if (new_in2 != NULL) {
2909         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
2910         n->subsume_by(cmpN, this);
2911         if (in1->outcnt() == 0) {
2912           in1->disconnect_inputs(NULL, this);
2913         }
2914         if (in2->outcnt() == 0) {
2915           in2->disconnect_inputs(NULL, this);
2916         }
2917       }
2918     }
2919     break;
2920 
2921   case Op_DecodeN:
2922   case Op_DecodeNKlass:
2923     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2924     // DecodeN could be pinned when it can't be fold into
2925     // an address expression, see the code for Op_CastPP above.
2926     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2927     break;
2928 
2929   case Op_EncodeP:
2930   case Op_EncodePKlass: {
2931     Node* in1 = n->in(1);
2932     if (in1->is_DecodeNarrowPtr()) {
2933       n->subsume_by(in1->in(1), this);
2934     } else if (in1->Opcode() == Op_ConP) {
2935       const Type* t = in1->bottom_type();
2936       if (t == TypePtr::NULL_PTR) {
2937         assert(t->isa_oopptr(), "null klass?");
2938         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
2939       } else if (t->isa_oopptr()) {
2940         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
2941       } else if (t->isa_klassptr()) {
2942         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
2943       }
2944     }
2945     if (in1->outcnt() == 0) {
2946       in1->disconnect_inputs(NULL, this);
2947     }
2948     break;
2949   }
2950 
2951   case Op_Proj: {
2952     if (OptimizeStringConcat) {
2953       ProjNode* p = n->as_Proj();
2954       if (p->_is_io_use) {
2955         // Separate projections were used for the exception path which
2956         // are normally removed by a late inline.  If it wasn't inlined
2957         // then they will hang around and should just be replaced with
2958         // the original one.
2959         Node* proj = NULL;
2960         // Replace with just one
2961         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2962           Node *use = i.get();
2963           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2964             proj = use;
2965             break;
2966           }
2967         }
2968         assert(proj != NULL, "must be found");
2969         p->subsume_by(proj, this);
2970       }
2971     }
2972     break;
2973   }
2974 
2975   case Op_Phi:
2976     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2977       // The EncodeP optimization may create Phi with the same edges
2978       // for all paths. It is not handled well by Register Allocator.
2979       Node* unique_in = n->in(1);
2980       assert(unique_in != NULL, "");
2981       uint cnt = n->req();
2982       for (uint i = 2; i < cnt; i++) {
2983         Node* m = n->in(i);
2984         assert(m != NULL, "");
2985         if (unique_in != m)
2986           unique_in = NULL;
2987       }
2988       if (unique_in != NULL) {
2989         n->subsume_by(unique_in, this);
2990       }
2991     }
2992     break;
2993 
2994 #endif
2995 
2996   case Op_ModI:
2997     if (UseDivMod) {
2998       // Check if a%b and a/b both exist
2999       Node* d = n->find_similar(Op_DivI);
3000       if (d) {
3001         // Replace them with a fused divmod if supported
3002         if (Matcher::has_match_rule(Op_DivModI)) {
3003           DivModINode* divmod = DivModINode::make(n);
3004           d->subsume_by(divmod->div_proj(), this);
3005           n->subsume_by(divmod->mod_proj(), this);
3006         } else {
3007           // replace a%b with a-((a/b)*b)
3008           Node* mult = new MulINode(d, d->in(2));
3009           Node* sub  = new SubINode(d->in(1), mult);
3010           n->subsume_by(sub, this);
3011         }
3012       }
3013     }
3014     break;
3015 
3016   case Op_ModL:
3017     if (UseDivMod) {
3018       // Check if a%b and a/b both exist
3019       Node* d = n->find_similar(Op_DivL);
3020       if (d) {
3021         // Replace them with a fused divmod if supported
3022         if (Matcher::has_match_rule(Op_DivModL)) {
3023           DivModLNode* divmod = DivModLNode::make(n);
3024           d->subsume_by(divmod->div_proj(), this);
3025           n->subsume_by(divmod->mod_proj(), this);
3026         } else {
3027           // replace a%b with a-((a/b)*b)
3028           Node* mult = new MulLNode(d, d->in(2));
3029           Node* sub  = new SubLNode(d->in(1), mult);
3030           n->subsume_by(sub, this);
3031         }
3032       }
3033     }
3034     break;
3035 
3036   case Op_LoadVector:
3037   case Op_StoreVector:
3038     break;
3039 
3040   case Op_PackB:
3041   case Op_PackS:
3042   case Op_PackI:
3043   case Op_PackF:
3044   case Op_PackL:
3045   case Op_PackD:
3046     if (n->req()-1 > 2) {
3047       // Replace many operand PackNodes with a binary tree for matching
3048       PackNode* p = (PackNode*) n;
3049       Node* btp = p->binary_tree_pack(1, n->req());
3050       n->subsume_by(btp, this);
3051     }
3052     break;
3053   case Op_Loop:
3054   case Op_CountedLoop:
3055     if (n->as_Loop()->is_inner_loop()) {
3056       frc.inc_inner_loop_count();
3057     }
3058     break;
3059   case Op_LShiftI:
3060   case Op_RShiftI:
3061   case Op_URShiftI:
3062   case Op_LShiftL:
3063   case Op_RShiftL:
3064   case Op_URShiftL:
3065     if (Matcher::need_masked_shift_count) {
3066       // The cpu's shift instructions don't restrict the count to the
3067       // lower 5/6 bits. We need to do the masking ourselves.
3068       Node* in2 = n->in(2);
3069       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3070       const TypeInt* t = in2->find_int_type();
3071       if (t != NULL && t->is_con()) {
3072         juint shift = t->get_con();
3073         if (shift > mask) { // Unsigned cmp
3074           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3075         }
3076       } else {
3077         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3078           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3079           n->set_req(2, shift);
3080         }
3081       }
3082       if (in2->outcnt() == 0) { // Remove dead node
3083         in2->disconnect_inputs(NULL, this);
3084       }
3085     }
3086     break;
3087   case Op_MemBarStoreStore:
3088   case Op_MemBarRelease:
3089     // Break the link with AllocateNode: it is no longer useful and
3090     // confuses register allocation.
3091     if (n->req() > MemBarNode::Precedent) {
3092       n->set_req(MemBarNode::Precedent, top());
3093     }
3094     break;
3095   default:
3096     assert( !n->is_Call(), "" );
3097     assert( !n->is_Mem(), "" );
3098     break;
3099   }
3100 
3101   // Collect CFG split points
3102   if (n->is_MultiBranch())
3103     frc._tests.push(n);
3104 }
3105 
3106 //------------------------------final_graph_reshaping_walk---------------------
3107 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3108 // requires that the walk visits a node's inputs before visiting the node.
3109 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3110   ResourceArea *area = Thread::current()->resource_area();
3111   Unique_Node_List sfpt(area);
3112 
3113   frc._visited.set(root->_idx); // first, mark node as visited
3114   uint cnt = root->req();
3115   Node *n = root;
3116   uint  i = 0;
3117   while (true) {
3118     if (i < cnt) {
3119       // Place all non-visited non-null inputs onto stack
3120       Node* m = n->in(i);
3121       ++i;
3122       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3123         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3124           // compute worst case interpreter size in case of a deoptimization
3125           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3126 
3127           sfpt.push(m);
3128         }
3129         cnt = m->req();
3130         nstack.push(n, i); // put on stack parent and next input's index
3131         n = m;
3132         i = 0;
3133       }
3134     } else {
3135       // Now do post-visit work
3136       final_graph_reshaping_impl( n, frc );
3137       if (nstack.is_empty())
3138         break;             // finished
3139       n = nstack.node();   // Get node from stack
3140       cnt = n->req();
3141       i = nstack.index();
3142       nstack.pop();        // Shift to the next node on stack
3143     }
3144   }
3145 
3146   // Skip next transformation if compressed oops are not used.
3147   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3148       (!UseCompressedOops && !UseCompressedClassPointers))
3149     return;
3150 
3151   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3152   // It could be done for an uncommon traps or any safepoints/calls
3153   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3154   while (sfpt.size() > 0) {
3155     n = sfpt.pop();
3156     JVMState *jvms = n->as_SafePoint()->jvms();
3157     assert(jvms != NULL, "sanity");
3158     int start = jvms->debug_start();
3159     int end   = n->req();
3160     bool is_uncommon = (n->is_CallStaticJava() &&
3161                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3162     for (int j = start; j < end; j++) {
3163       Node* in = n->in(j);
3164       if (in->is_DecodeNarrowPtr()) {
3165         bool safe_to_skip = true;
3166         if (!is_uncommon ) {
3167           // Is it safe to skip?
3168           for (uint i = 0; i < in->outcnt(); i++) {
3169             Node* u = in->raw_out(i);
3170             if (!u->is_SafePoint() ||
3171                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3172               safe_to_skip = false;
3173             }
3174           }
3175         }
3176         if (safe_to_skip) {
3177           n->set_req(j, in->in(1));
3178         }
3179         if (in->outcnt() == 0) {
3180           in->disconnect_inputs(NULL, this);
3181         }
3182       }
3183     }
3184   }
3185 }
3186 
3187 //------------------------------final_graph_reshaping--------------------------
3188 // Final Graph Reshaping.
3189 //
3190 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3191 //     and not commoned up and forced early.  Must come after regular
3192 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3193 //     inputs to Loop Phis; these will be split by the allocator anyways.
3194 //     Remove Opaque nodes.
3195 // (2) Move last-uses by commutative operations to the left input to encourage
3196 //     Intel update-in-place two-address operations and better register usage
3197 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3198 //     calls canonicalizing them back.
3199 // (3) Count the number of double-precision FP ops, single-precision FP ops
3200 //     and call sites.  On Intel, we can get correct rounding either by
3201 //     forcing singles to memory (requires extra stores and loads after each
3202 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3203 //     clearing the mode bit around call sites).  The mode bit is only used
3204 //     if the relative frequency of single FP ops to calls is low enough.
3205 //     This is a key transform for SPEC mpeg_audio.
3206 // (4) Detect infinite loops; blobs of code reachable from above but not
3207 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3208 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3209 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3210 //     Detection is by looking for IfNodes where only 1 projection is
3211 //     reachable from below or CatchNodes missing some targets.
3212 // (5) Assert for insane oop offsets in debug mode.
3213 
3214 bool Compile::final_graph_reshaping() {
3215   // an infinite loop may have been eliminated by the optimizer,
3216   // in which case the graph will be empty.
3217   if (root()->req() == 1) {
3218     record_method_not_compilable("trivial infinite loop");
3219     return true;
3220   }
3221 
3222   // Expensive nodes have their control input set to prevent the GVN
3223   // from freely commoning them. There's no GVN beyond this point so
3224   // no need to keep the control input. We want the expensive nodes to
3225   // be freely moved to the least frequent code path by gcm.
3226   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3227   for (int i = 0; i < expensive_count(); i++) {
3228     _expensive_nodes->at(i)->set_req(0, NULL);
3229   }
3230 
3231   Final_Reshape_Counts frc;
3232 
3233   // Visit everybody reachable!
3234   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3235   Node_Stack nstack(unique() >> 1);
3236   final_graph_reshaping_walk(nstack, root(), frc);
3237 
3238   // Check for unreachable (from below) code (i.e., infinite loops).
3239   for( uint i = 0; i < frc._tests.size(); i++ ) {
3240     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3241     // Get number of CFG targets.
3242     // Note that PCTables include exception targets after calls.
3243     uint required_outcnt = n->required_outcnt();
3244     if (n->outcnt() != required_outcnt) {
3245       // Check for a few special cases.  Rethrow Nodes never take the
3246       // 'fall-thru' path, so expected kids is 1 less.
3247       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3248         if (n->in(0)->in(0)->is_Call()) {
3249           CallNode *call = n->in(0)->in(0)->as_Call();
3250           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3251             required_outcnt--;      // Rethrow always has 1 less kid
3252           } else if (call->req() > TypeFunc::Parms &&
3253                      call->is_CallDynamicJava()) {
3254             // Check for null receiver. In such case, the optimizer has
3255             // detected that the virtual call will always result in a null
3256             // pointer exception. The fall-through projection of this CatchNode
3257             // will not be populated.
3258             Node *arg0 = call->in(TypeFunc::Parms);
3259             if (arg0->is_Type() &&
3260                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3261               required_outcnt--;
3262             }
3263           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3264                      call->req() > TypeFunc::Parms+1 &&
3265                      call->is_CallStaticJava()) {
3266             // Check for negative array length. In such case, the optimizer has
3267             // detected that the allocation attempt will always result in an
3268             // exception. There is no fall-through projection of this CatchNode .
3269             Node *arg1 = call->in(TypeFunc::Parms+1);
3270             if (arg1->is_Type() &&
3271                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3272               required_outcnt--;
3273             }
3274           }
3275         }
3276       }
3277       // Recheck with a better notion of 'required_outcnt'
3278       if (n->outcnt() != required_outcnt) {
3279         record_method_not_compilable("malformed control flow");
3280         return true;            // Not all targets reachable!
3281       }
3282     }
3283     // Check that I actually visited all kids.  Unreached kids
3284     // must be infinite loops.
3285     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3286       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3287         record_method_not_compilable("infinite loop");
3288         return true;            // Found unvisited kid; must be unreach
3289       }
3290   }
3291 
3292   // If original bytecodes contained a mixture of floats and doubles
3293   // check if the optimizer has made it homogenous, item (3).
3294   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3295       frc.get_float_count() > 32 &&
3296       frc.get_double_count() == 0 &&
3297       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3298     set_24_bit_selection_and_mode( false,  true );
3299   }
3300 
3301   set_java_calls(frc.get_java_call_count());
3302   set_inner_loops(frc.get_inner_loop_count());
3303 
3304   // No infinite loops, no reason to bail out.
3305   return false;
3306 }
3307 
3308 //-----------------------------too_many_traps----------------------------------
3309 // Report if there are too many traps at the current method and bci.
3310 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3311 bool Compile::too_many_traps(ciMethod* method,
3312                              int bci,
3313                              Deoptimization::DeoptReason reason) {
3314   ciMethodData* md = method->method_data();
3315   if (md->is_empty()) {
3316     // Assume the trap has not occurred, or that it occurred only
3317     // because of a transient condition during start-up in the interpreter.
3318     return false;
3319   }
3320   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3321   if (md->has_trap_at(bci, m, reason) != 0) {
3322     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3323     // Also, if there are multiple reasons, or if there is no per-BCI record,
3324     // assume the worst.
3325     if (log())
3326       log()->elem("observe trap='%s' count='%d'",
3327                   Deoptimization::trap_reason_name(reason),
3328                   md->trap_count(reason));
3329     return true;
3330   } else {
3331     // Ignore method/bci and see if there have been too many globally.
3332     return too_many_traps(reason, md);
3333   }
3334 }
3335 
3336 // Less-accurate variant which does not require a method and bci.
3337 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3338                              ciMethodData* logmd) {
3339   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3340     // Too many traps globally.
3341     // Note that we use cumulative trap_count, not just md->trap_count.
3342     if (log()) {
3343       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3344       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3345                   Deoptimization::trap_reason_name(reason),
3346                   mcount, trap_count(reason));
3347     }
3348     return true;
3349   } else {
3350     // The coast is clear.
3351     return false;
3352   }
3353 }
3354 
3355 //--------------------------too_many_recompiles--------------------------------
3356 // Report if there are too many recompiles at the current method and bci.
3357 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3358 // Is not eager to return true, since this will cause the compiler to use
3359 // Action_none for a trap point, to avoid too many recompilations.
3360 bool Compile::too_many_recompiles(ciMethod* method,
3361                                   int bci,
3362                                   Deoptimization::DeoptReason reason) {
3363   ciMethodData* md = method->method_data();
3364   if (md->is_empty()) {
3365     // Assume the trap has not occurred, or that it occurred only
3366     // because of a transient condition during start-up in the interpreter.
3367     return false;
3368   }
3369   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3370   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3371   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3372   Deoptimization::DeoptReason per_bc_reason
3373     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3374   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3375   if ((per_bc_reason == Deoptimization::Reason_none
3376        || md->has_trap_at(bci, m, reason) != 0)
3377       // The trap frequency measure we care about is the recompile count:
3378       && md->trap_recompiled_at(bci, m)
3379       && md->overflow_recompile_count() >= bc_cutoff) {
3380     // Do not emit a trap here if it has already caused recompilations.
3381     // Also, if there are multiple reasons, or if there is no per-BCI record,
3382     // assume the worst.
3383     if (log())
3384       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3385                   Deoptimization::trap_reason_name(reason),
3386                   md->trap_count(reason),
3387                   md->overflow_recompile_count());
3388     return true;
3389   } else if (trap_count(reason) != 0
3390              && decompile_count() >= m_cutoff) {
3391     // Too many recompiles globally, and we have seen this sort of trap.
3392     // Use cumulative decompile_count, not just md->decompile_count.
3393     if (log())
3394       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3395                   Deoptimization::trap_reason_name(reason),
3396                   md->trap_count(reason), trap_count(reason),
3397                   md->decompile_count(), decompile_count());
3398     return true;
3399   } else {
3400     // The coast is clear.
3401     return false;
3402   }
3403 }
3404 
3405 // Compute when not to trap. Used by matching trap based nodes and
3406 // NullCheck optimization.
3407 void Compile::set_allowed_deopt_reasons() {
3408   _allowed_reasons = 0;
3409   if (is_method_compilation()) {
3410     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3411       assert(rs < BitsPerInt, "recode bit map");
3412       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3413         _allowed_reasons |= nth_bit(rs);
3414       }
3415     }
3416   }
3417 }
3418 
3419 #ifndef PRODUCT
3420 //------------------------------verify_graph_edges---------------------------
3421 // Walk the Graph and verify that there is a one-to-one correspondence
3422 // between Use-Def edges and Def-Use edges in the graph.
3423 void Compile::verify_graph_edges(bool no_dead_code) {
3424   if (VerifyGraphEdges) {
3425     ResourceArea *area = Thread::current()->resource_area();
3426     Unique_Node_List visited(area);
3427     // Call recursive graph walk to check edges
3428     _root->verify_edges(visited);
3429     if (no_dead_code) {
3430       // Now make sure that no visited node is used by an unvisited node.
3431       bool dead_nodes = false;
3432       Unique_Node_List checked(area);
3433       while (visited.size() > 0) {
3434         Node* n = visited.pop();
3435         checked.push(n);
3436         for (uint i = 0; i < n->outcnt(); i++) {
3437           Node* use = n->raw_out(i);
3438           if (checked.member(use))  continue;  // already checked
3439           if (visited.member(use))  continue;  // already in the graph
3440           if (use->is_Con())        continue;  // a dead ConNode is OK
3441           // At this point, we have found a dead node which is DU-reachable.
3442           if (!dead_nodes) {
3443             tty->print_cr("*** Dead nodes reachable via DU edges:");
3444             dead_nodes = true;
3445           }
3446           use->dump(2);
3447           tty->print_cr("---");
3448           checked.push(use);  // No repeats; pretend it is now checked.
3449         }
3450       }
3451       assert(!dead_nodes, "using nodes must be reachable from root");
3452     }
3453   }
3454 }
3455 
3456 // Verify GC barriers consistency
3457 // Currently supported:
3458 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3459 void Compile::verify_barriers() {
3460   if (UseG1GC) {
3461     // Verify G1 pre-barriers
3462     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3463 
3464     ResourceArea *area = Thread::current()->resource_area();
3465     Unique_Node_List visited(area);
3466     Node_List worklist(area);
3467     // We're going to walk control flow backwards starting from the Root
3468     worklist.push(_root);
3469     while (worklist.size() > 0) {
3470       Node* x = worklist.pop();
3471       if (x == NULL || x == top()) continue;
3472       if (visited.member(x)) {
3473         continue;
3474       } else {
3475         visited.push(x);
3476       }
3477 
3478       if (x->is_Region()) {
3479         for (uint i = 1; i < x->req(); i++) {
3480           worklist.push(x->in(i));
3481         }
3482       } else {
3483         worklist.push(x->in(0));
3484         // We are looking for the pattern:
3485         //                            /->ThreadLocal
3486         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3487         //              \->ConI(0)
3488         // We want to verify that the If and the LoadB have the same control
3489         // See GraphKit::g1_write_barrier_pre()
3490         if (x->is_If()) {
3491           IfNode *iff = x->as_If();
3492           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3493             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3494             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3495                 && cmp->in(1)->is_Load()) {
3496               LoadNode* load = cmp->in(1)->as_Load();
3497               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3498                   && load->in(2)->in(3)->is_Con()
3499                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3500 
3501                 Node* if_ctrl = iff->in(0);
3502                 Node* load_ctrl = load->in(0);
3503 
3504                 if (if_ctrl != load_ctrl) {
3505                   // Skip possible CProj->NeverBranch in infinite loops
3506                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3507                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3508                     if_ctrl = if_ctrl->in(0)->in(0);
3509                   }
3510                 }
3511                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3512               }
3513             }
3514           }
3515         }
3516       }
3517     }
3518   }
3519 }
3520 
3521 #endif
3522 
3523 // The Compile object keeps track of failure reasons separately from the ciEnv.
3524 // This is required because there is not quite a 1-1 relation between the
3525 // ciEnv and its compilation task and the Compile object.  Note that one
3526 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3527 // to backtrack and retry without subsuming loads.  Other than this backtracking
3528 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3529 // by the logic in C2Compiler.
3530 void Compile::record_failure(const char* reason) {
3531   if (log() != NULL) {
3532     log()->elem("failure reason='%s' phase='compile'", reason);
3533   }
3534   if (_failure_reason == NULL) {
3535     // Record the first failure reason.
3536     _failure_reason = reason;
3537   }
3538 
3539   EventCompilerFailure event;
3540   if (event.should_commit()) {
3541     event.set_compileID(Compile::compile_id());
3542     event.set_failure(reason);
3543     event.commit();
3544   }
3545 
3546   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3547     C->print_method(PHASE_FAILURE);
3548   }
3549   _root = NULL;  // flush the graph, too
3550 }
3551 
3552 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3553   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3554     _phase_name(name), _dolog(CITimeVerbose)
3555 {
3556   if (_dolog) {
3557     C = Compile::current();
3558     _log = C->log();
3559   } else {
3560     C = NULL;
3561     _log = NULL;
3562   }
3563   if (_log != NULL) {
3564     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3565     _log->stamp();
3566     _log->end_head();
3567   }
3568 }
3569 
3570 Compile::TracePhase::~TracePhase() {
3571 
3572   C = Compile::current();
3573   if (_dolog) {
3574     _log = C->log();
3575   } else {
3576     _log = NULL;
3577   }
3578 
3579 #ifdef ASSERT
3580   if (PrintIdealNodeCount) {
3581     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3582                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3583   }
3584 
3585   if (VerifyIdealNodeCount) {
3586     Compile::current()->print_missing_nodes();
3587   }
3588 #endif
3589 
3590   if (_log != NULL) {
3591     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3592   }
3593 }
3594 
3595 //=============================================================================
3596 // Two Constant's are equal when the type and the value are equal.
3597 bool Compile::Constant::operator==(const Constant& other) {
3598   if (type()          != other.type()         )  return false;
3599   if (can_be_reused() != other.can_be_reused())  return false;
3600   // For floating point values we compare the bit pattern.
3601   switch (type()) {
3602   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3603   case T_LONG:
3604   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3605   case T_OBJECT:
3606   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3607   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3608   case T_METADATA: return (_v._metadata == other._v._metadata);
3609   default: ShouldNotReachHere();
3610   }
3611   return false;
3612 }
3613 
3614 static int type_to_size_in_bytes(BasicType t) {
3615   switch (t) {
3616   case T_LONG:    return sizeof(jlong  );
3617   case T_FLOAT:   return sizeof(jfloat );
3618   case T_DOUBLE:  return sizeof(jdouble);
3619   case T_METADATA: return sizeof(Metadata*);
3620     // We use T_VOID as marker for jump-table entries (labels) which
3621     // need an internal word relocation.
3622   case T_VOID:
3623   case T_ADDRESS:
3624   case T_OBJECT:  return sizeof(jobject);
3625   }
3626 
3627   ShouldNotReachHere();
3628   return -1;
3629 }
3630 
3631 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3632   // sort descending
3633   if (a->freq() > b->freq())  return -1;
3634   if (a->freq() < b->freq())  return  1;
3635   return 0;
3636 }
3637 
3638 void Compile::ConstantTable::calculate_offsets_and_size() {
3639   // First, sort the array by frequencies.
3640   _constants.sort(qsort_comparator);
3641 
3642 #ifdef ASSERT
3643   // Make sure all jump-table entries were sorted to the end of the
3644   // array (they have a negative frequency).
3645   bool found_void = false;
3646   for (int i = 0; i < _constants.length(); i++) {
3647     Constant con = _constants.at(i);
3648     if (con.type() == T_VOID)
3649       found_void = true;  // jump-tables
3650     else
3651       assert(!found_void, "wrong sorting");
3652   }
3653 #endif
3654 
3655   int offset = 0;
3656   for (int i = 0; i < _constants.length(); i++) {
3657     Constant* con = _constants.adr_at(i);
3658 
3659     // Align offset for type.
3660     int typesize = type_to_size_in_bytes(con->type());
3661     offset = align_size_up(offset, typesize);
3662     con->set_offset(offset);   // set constant's offset
3663 
3664     if (con->type() == T_VOID) {
3665       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3666       offset = offset + typesize * n->outcnt();  // expand jump-table
3667     } else {
3668       offset = offset + typesize;
3669     }
3670   }
3671 
3672   // Align size up to the next section start (which is insts; see
3673   // CodeBuffer::align_at_start).
3674   assert(_size == -1, "already set?");
3675   _size = align_size_up(offset, CodeEntryAlignment);
3676 }
3677 
3678 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3679   MacroAssembler _masm(&cb);
3680   for (int i = 0; i < _constants.length(); i++) {
3681     Constant con = _constants.at(i);
3682     address constant_addr;
3683     switch (con.type()) {
3684     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3685     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3686     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3687     case T_OBJECT: {
3688       jobject obj = con.get_jobject();
3689       int oop_index = _masm.oop_recorder()->find_index(obj);
3690       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3691       break;
3692     }
3693     case T_ADDRESS: {
3694       address addr = (address) con.get_jobject();
3695       constant_addr = _masm.address_constant(addr);
3696       break;
3697     }
3698     // We use T_VOID as marker for jump-table entries (labels) which
3699     // need an internal word relocation.
3700     case T_VOID: {
3701       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3702       // Fill the jump-table with a dummy word.  The real value is
3703       // filled in later in fill_jump_table.
3704       address dummy = (address) n;
3705       constant_addr = _masm.address_constant(dummy);
3706       // Expand jump-table
3707       for (uint i = 1; i < n->outcnt(); i++) {
3708         address temp_addr = _masm.address_constant(dummy + i);
3709         assert(temp_addr, "consts section too small");
3710       }
3711       break;
3712     }
3713     case T_METADATA: {
3714       Metadata* obj = con.get_metadata();
3715       int metadata_index = _masm.oop_recorder()->find_index(obj);
3716       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3717       break;
3718     }
3719     default: ShouldNotReachHere();
3720     }
3721     assert(constant_addr, "consts section too small");
3722     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3723             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3724   }
3725 }
3726 
3727 int Compile::ConstantTable::find_offset(Constant& con) const {
3728   int idx = _constants.find(con);
3729   assert(idx != -1, "constant must be in constant table");
3730   int offset = _constants.at(idx).offset();
3731   assert(offset != -1, "constant table not emitted yet?");
3732   return offset;
3733 }
3734 
3735 void Compile::ConstantTable::add(Constant& con) {
3736   if (con.can_be_reused()) {
3737     int idx = _constants.find(con);
3738     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3739       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3740       return;
3741     }
3742   }
3743   (void) _constants.append(con);
3744 }
3745 
3746 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3747   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3748   Constant con(type, value, b->_freq);
3749   add(con);
3750   return con;
3751 }
3752 
3753 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3754   Constant con(metadata);
3755   add(con);
3756   return con;
3757 }
3758 
3759 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3760   jvalue value;
3761   BasicType type = oper->type()->basic_type();
3762   switch (type) {
3763   case T_LONG:    value.j = oper->constantL(); break;
3764   case T_FLOAT:   value.f = oper->constantF(); break;
3765   case T_DOUBLE:  value.d = oper->constantD(); break;
3766   case T_OBJECT:
3767   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3768   case T_METADATA: return add((Metadata*)oper->constant()); break;
3769   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3770   }
3771   return add(n, type, value);
3772 }
3773 
3774 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3775   jvalue value;
3776   // We can use the node pointer here to identify the right jump-table
3777   // as this method is called from Compile::Fill_buffer right before
3778   // the MachNodes are emitted and the jump-table is filled (means the
3779   // MachNode pointers do not change anymore).
3780   value.l = (jobject) n;
3781   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3782   add(con);
3783   return con;
3784 }
3785 
3786 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3787   // If called from Compile::scratch_emit_size do nothing.
3788   if (Compile::current()->in_scratch_emit_size())  return;
3789 
3790   assert(labels.is_nonempty(), "must be");
3791   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3792 
3793   // Since MachConstantNode::constant_offset() also contains
3794   // table_base_offset() we need to subtract the table_base_offset()
3795   // to get the plain offset into the constant table.
3796   int offset = n->constant_offset() - table_base_offset();
3797 
3798   MacroAssembler _masm(&cb);
3799   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3800 
3801   for (uint i = 0; i < n->outcnt(); i++) {
3802     address* constant_addr = &jump_table_base[i];
3803     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3804     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3805     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3806   }
3807 }
3808 
3809 //----------------------------static_subtype_check-----------------------------
3810 // Shortcut important common cases when superklass is exact:
3811 // (0) superklass is java.lang.Object (can occur in reflective code)
3812 // (1) subklass is already limited to a subtype of superklass => always ok
3813 // (2) subklass does not overlap with superklass => always fail
3814 // (3) superklass has NO subtypes and we can check with a simple compare.
3815 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3816   if (StressReflectiveCode) {
3817     return SSC_full_test;       // Let caller generate the general case.
3818   }
3819 
3820   if (superk == env()->Object_klass()) {
3821     return SSC_always_true;     // (0) this test cannot fail
3822   }
3823 
3824   ciType* superelem = superk;
3825   if (superelem->is_array_klass())
3826     superelem = superelem->as_array_klass()->base_element_type();
3827 
3828   if (!subk->is_interface()) {  // cannot trust static interface types yet
3829     if (subk->is_subtype_of(superk)) {
3830       return SSC_always_true;   // (1) false path dead; no dynamic test needed
3831     }
3832     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3833         !superk->is_subtype_of(subk)) {
3834       return SSC_always_false;
3835     }
3836   }
3837 
3838   // If casting to an instance klass, it must have no subtypes
3839   if (superk->is_interface()) {
3840     // Cannot trust interfaces yet.
3841     // %%% S.B. superk->nof_implementors() == 1
3842   } else if (superelem->is_instance_klass()) {
3843     ciInstanceKlass* ik = superelem->as_instance_klass();
3844     if (!ik->has_subklass() && !ik->is_interface()) {
3845       if (!ik->is_final()) {
3846         // Add a dependency if there is a chance of a later subclass.
3847         dependencies()->assert_leaf_type(ik);
3848       }
3849       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
3850     }
3851   } else {
3852     // A primitive array type has no subtypes.
3853     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
3854   }
3855 
3856   return SSC_full_test;
3857 }
3858 
3859 // The message about the current inlining is accumulated in
3860 // _print_inlining_stream and transfered into the _print_inlining_list
3861 // once we know whether inlining succeeds or not. For regular
3862 // inlining, messages are appended to the buffer pointed by
3863 // _print_inlining_idx in the _print_inlining_list. For late inlining,
3864 // a new buffer is added after _print_inlining_idx in the list. This
3865 // way we can update the inlining message for late inlining call site
3866 // when the inlining is attempted again.
3867 void Compile::print_inlining_init() {
3868   if (print_inlining() || print_intrinsics()) {
3869     _print_inlining_stream = new stringStream();
3870     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3871   }
3872 }
3873 
3874 void Compile::print_inlining_reinit() {
3875   if (print_inlining() || print_intrinsics()) {
3876     // Re allocate buffer when we change ResourceMark
3877     _print_inlining_stream = new stringStream();
3878   }
3879 }
3880 
3881 void Compile::print_inlining_reset() {
3882   _print_inlining_stream->reset();
3883 }
3884 
3885 void Compile::print_inlining_commit() {
3886   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3887   // Transfer the message from _print_inlining_stream to the current
3888   // _print_inlining_list buffer and clear _print_inlining_stream.
3889   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3890   print_inlining_reset();
3891 }
3892 
3893 void Compile::print_inlining_push() {
3894   // Add new buffer to the _print_inlining_list at current position
3895   _print_inlining_idx++;
3896   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
3897 }
3898 
3899 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
3900   return _print_inlining_list->at(_print_inlining_idx);
3901 }
3902 
3903 void Compile::print_inlining_update(CallGenerator* cg) {
3904   if (print_inlining() || print_intrinsics()) {
3905     if (!cg->is_late_inline()) {
3906       if (print_inlining_current().cg() != NULL) {
3907         print_inlining_push();
3908       }
3909       print_inlining_commit();
3910     } else {
3911       if (print_inlining_current().cg() != cg &&
3912           (print_inlining_current().cg() != NULL ||
3913            print_inlining_current().ss()->size() != 0)) {
3914         print_inlining_push();
3915       }
3916       print_inlining_commit();
3917       print_inlining_current().set_cg(cg);
3918     }
3919   }
3920 }
3921 
3922 void Compile::print_inlining_move_to(CallGenerator* cg) {
3923   // We resume inlining at a late inlining call site. Locate the
3924   // corresponding inlining buffer so that we can update it.
3925   if (print_inlining()) {
3926     for (int i = 0; i < _print_inlining_list->length(); i++) {
3927       if (_print_inlining_list->adr_at(i)->cg() == cg) {
3928         _print_inlining_idx = i;
3929         return;
3930       }
3931     }
3932     ShouldNotReachHere();
3933   }
3934 }
3935 
3936 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
3937   if (print_inlining()) {
3938     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
3939     assert(print_inlining_current().cg() == cg, "wrong entry");
3940     // replace message with new message
3941     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
3942     print_inlining_commit();
3943     print_inlining_current().set_cg(cg);
3944   }
3945 }
3946 
3947 void Compile::print_inlining_assert_ready() {
3948   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
3949 }
3950 
3951 void Compile::process_print_inlining() {
3952   bool do_print_inlining = print_inlining() || print_intrinsics();
3953   if (do_print_inlining || log() != NULL) {
3954     // Print inlining message for candidates that we couldn't inline
3955     // for lack of space
3956     for (int i = 0; i < _late_inlines.length(); i++) {
3957       CallGenerator* cg = _late_inlines.at(i);
3958       if (!cg->is_mh_late_inline()) {
3959         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
3960         if (do_print_inlining) {
3961           cg->print_inlining_late(msg);
3962         }
3963         log_late_inline_failure(cg, msg);
3964       }
3965     }
3966   }
3967   if (do_print_inlining) {
3968     ResourceMark rm;
3969     stringStream ss;
3970     for (int i = 0; i < _print_inlining_list->length(); i++) {
3971       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3972     }
3973     size_t end = ss.size();
3974     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
3975     strncpy(_print_inlining_output, ss.base(), end+1);
3976     _print_inlining_output[end] = 0;
3977   }
3978 }
3979 
3980 void Compile::dump_print_inlining() {
3981   if (_print_inlining_output != NULL) {
3982     tty->print_raw(_print_inlining_output);
3983   }
3984 }
3985 
3986 void Compile::log_late_inline(CallGenerator* cg) {
3987   if (log() != NULL) {
3988     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
3989                 cg->unique_id());
3990     JVMState* p = cg->call_node()->jvms();
3991     while (p != NULL) {
3992       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
3993       p = p->caller();
3994     }
3995     log()->tail("late_inline");
3996   }
3997 }
3998 
3999 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4000   log_late_inline(cg);
4001   if (log() != NULL) {
4002     log()->inline_fail(msg);
4003   }
4004 }
4005 
4006 void Compile::log_inline_id(CallGenerator* cg) {
4007   if (log() != NULL) {
4008     // The LogCompilation tool needs a unique way to identify late
4009     // inline call sites. This id must be unique for this call site in
4010     // this compilation. Try to have it unique across compilations as
4011     // well because it can be convenient when grepping through the log
4012     // file.
4013     // Distinguish OSR compilations from others in case CICountOSR is
4014     // on.
4015     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4016     cg->set_unique_id(id);
4017     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4018   }
4019 }
4020 
4021 void Compile::log_inline_failure(const char* msg) {
4022   if (C->log() != NULL) {
4023     C->log()->inline_fail(msg);
4024   }
4025 }
4026 
4027 
4028 // Dump inlining replay data to the stream.
4029 // Don't change thread state and acquire any locks.
4030 void Compile::dump_inline_data(outputStream* out) {
4031   InlineTree* inl_tree = ilt();
4032   if (inl_tree != NULL) {
4033     out->print(" inline %d", inl_tree->count());
4034     inl_tree->dump_replay_data(out);
4035   }
4036 }
4037 
4038 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4039   if (n1->Opcode() < n2->Opcode())      return -1;
4040   else if (n1->Opcode() > n2->Opcode()) return 1;
4041 
4042   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
4043   for (uint i = 1; i < n1->req(); i++) {
4044     if (n1->in(i) < n2->in(i))      return -1;
4045     else if (n1->in(i) > n2->in(i)) return 1;
4046   }
4047 
4048   return 0;
4049 }
4050 
4051 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4052   Node* n1 = *n1p;
4053   Node* n2 = *n2p;
4054 
4055   return cmp_expensive_nodes(n1, n2);
4056 }
4057 
4058 void Compile::sort_expensive_nodes() {
4059   if (!expensive_nodes_sorted()) {
4060     _expensive_nodes->sort(cmp_expensive_nodes);
4061   }
4062 }
4063 
4064 bool Compile::expensive_nodes_sorted() const {
4065   for (int i = 1; i < _expensive_nodes->length(); i++) {
4066     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4067       return false;
4068     }
4069   }
4070   return true;
4071 }
4072 
4073 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4074   if (_expensive_nodes->length() == 0) {
4075     return false;
4076   }
4077 
4078   assert(OptimizeExpensiveOps, "optimization off?");
4079 
4080   // Take this opportunity to remove dead nodes from the list
4081   int j = 0;
4082   for (int i = 0; i < _expensive_nodes->length(); i++) {
4083     Node* n = _expensive_nodes->at(i);
4084     if (!n->is_unreachable(igvn)) {
4085       assert(n->is_expensive(), "should be expensive");
4086       _expensive_nodes->at_put(j, n);
4087       j++;
4088     }
4089   }
4090   _expensive_nodes->trunc_to(j);
4091 
4092   // Then sort the list so that similar nodes are next to each other
4093   // and check for at least two nodes of identical kind with same data
4094   // inputs.
4095   sort_expensive_nodes();
4096 
4097   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4098     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4099       return true;
4100     }
4101   }
4102 
4103   return false;
4104 }
4105 
4106 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4107   if (_expensive_nodes->length() == 0) {
4108     return;
4109   }
4110 
4111   assert(OptimizeExpensiveOps, "optimization off?");
4112 
4113   // Sort to bring similar nodes next to each other and clear the
4114   // control input of nodes for which there's only a single copy.
4115   sort_expensive_nodes();
4116 
4117   int j = 0;
4118   int identical = 0;
4119   int i = 0;
4120   bool modified = false;
4121   for (; i < _expensive_nodes->length()-1; i++) {
4122     assert(j <= i, "can't write beyond current index");
4123     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4124       identical++;
4125       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4126       continue;
4127     }
4128     if (identical > 0) {
4129       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4130       identical = 0;
4131     } else {
4132       Node* n = _expensive_nodes->at(i);
4133       igvn.replace_input_of(n, 0, NULL);
4134       igvn.hash_insert(n);
4135       modified = true;
4136     }
4137   }
4138   if (identical > 0) {
4139     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4140   } else if (_expensive_nodes->length() >= 1) {
4141     Node* n = _expensive_nodes->at(i);
4142     igvn.replace_input_of(n, 0, NULL);
4143     igvn.hash_insert(n);
4144     modified = true;
4145   }
4146   _expensive_nodes->trunc_to(j);
4147   if (modified) {
4148     igvn.optimize();
4149   }
4150 }
4151 
4152 void Compile::add_expensive_node(Node * n) {
4153   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4154   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4155   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4156   if (OptimizeExpensiveOps) {
4157     _expensive_nodes->append(n);
4158   } else {
4159     // Clear control input and let IGVN optimize expensive nodes if
4160     // OptimizeExpensiveOps is off.
4161     n->set_req(0, NULL);
4162   }
4163 }
4164 
4165 /**
4166  * Remove the speculative part of types and clean up the graph
4167  */
4168 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4169   if (UseTypeSpeculation) {
4170     Unique_Node_List worklist;
4171     worklist.push(root());
4172     int modified = 0;
4173     // Go over all type nodes that carry a speculative type, drop the
4174     // speculative part of the type and enqueue the node for an igvn
4175     // which may optimize it out.
4176     for (uint next = 0; next < worklist.size(); ++next) {
4177       Node *n  = worklist.at(next);
4178       if (n->is_Type()) {
4179         TypeNode* tn = n->as_Type();
4180         const Type* t = tn->type();
4181         const Type* t_no_spec = t->remove_speculative();
4182         if (t_no_spec != t) {
4183           bool in_hash = igvn.hash_delete(n);
4184           assert(in_hash, "node should be in igvn hash table");
4185           tn->set_type(t_no_spec);
4186           igvn.hash_insert(n);
4187           igvn._worklist.push(n); // give it a chance to go away
4188           modified++;
4189         }
4190       }
4191       uint max = n->len();
4192       for( uint i = 0; i < max; ++i ) {
4193         Node *m = n->in(i);
4194         if (not_a_node(m))  continue;
4195         worklist.push(m);
4196       }
4197     }
4198     // Drop the speculative part of all types in the igvn's type table
4199     igvn.remove_speculative_types();
4200     if (modified > 0) {
4201       igvn.optimize();
4202     }
4203 #ifdef ASSERT
4204     // Verify that after the IGVN is over no speculative type has resurfaced
4205     worklist.clear();
4206     worklist.push(root());
4207     for (uint next = 0; next < worklist.size(); ++next) {
4208       Node *n  = worklist.at(next);
4209       const Type* t = igvn.type_or_null(n);
4210       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4211       if (n->is_Type()) {
4212         t = n->as_Type()->type();
4213         assert(t == t->remove_speculative(), "no more speculative types");
4214       }
4215       uint max = n->len();
4216       for( uint i = 0; i < max; ++i ) {
4217         Node *m = n->in(i);
4218         if (not_a_node(m))  continue;
4219         worklist.push(m);
4220       }
4221     }
4222     igvn.check_no_speculative_types();
4223 #endif
4224   }
4225 }
4226 
4227 // Auxiliary method to support randomized stressing/fuzzing.
4228 //
4229 // This method can be called the arbitrary number of times, with current count
4230 // as the argument. The logic allows selecting a single candidate from the
4231 // running list of candidates as follows:
4232 //    int count = 0;
4233 //    Cand* selected = null;
4234 //    while(cand = cand->next()) {
4235 //      if (randomized_select(++count)) {
4236 //        selected = cand;
4237 //      }
4238 //    }
4239 //
4240 // Including count equalizes the chances any candidate is "selected".
4241 // This is useful when we don't have the complete list of candidates to choose
4242 // from uniformly. In this case, we need to adjust the randomicity of the
4243 // selection, or else we will end up biasing the selection towards the latter
4244 // candidates.
4245 //
4246 // Quick back-envelope calculation shows that for the list of n candidates
4247 // the equal probability for the candidate to persist as "best" can be
4248 // achieved by replacing it with "next" k-th candidate with the probability
4249 // of 1/k. It can be easily shown that by the end of the run, the
4250 // probability for any candidate is converged to 1/n, thus giving the
4251 // uniform distribution among all the candidates.
4252 //
4253 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4254 #define RANDOMIZED_DOMAIN_POW 29
4255 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4256 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4257 bool Compile::randomized_select(int count) {
4258   assert(count > 0, "only positive");
4259   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4260 }