1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/scopeDesc.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/abstractCompiler.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compilerOracle.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "interpreter/interpreterRuntime.hpp"
  38 #include "memory/gcLocker.inline.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "prims/forte.hpp"
  42 #include "prims/jvmtiExport.hpp"
  43 #include "prims/jvmtiRedefineClassesTrace.hpp"
  44 #include "prims/methodHandles.hpp"
  45 #include "prims/nativeLookup.hpp"
  46 #include "runtime/atomic.inline.hpp"
  47 #include "runtime/arguments.hpp"
  48 #include "runtime/biasedLocking.hpp"
  49 #include "runtime/handles.inline.hpp"
  50 #include "runtime/init.hpp"
  51 #include "runtime/interfaceSupport.hpp"
  52 #include "runtime/javaCalls.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "runtime/vframe.hpp"
  56 #include "runtime/vframeArray.hpp"
  57 #include "utilities/copy.hpp"
  58 #include "utilities/dtrace.hpp"
  59 #include "utilities/events.hpp"
  60 #include "utilities/hashtable.inline.hpp"
  61 #include "utilities/macros.hpp"
  62 #include "utilities/xmlstream.hpp"
  63 #ifdef COMPILER1
  64 #include "c1/c1_Runtime1.hpp"
  65 #endif
  66 
  67 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  68 
  69 // Shared stub locations
  70 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  71 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  72 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  73 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  74 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  75 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  76 
  77 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  78 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  79 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  80 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  81 
  82 #ifdef COMPILER2
  83 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  84 #endif // COMPILER2
  85 
  86 
  87 //----------------------------generate_stubs-----------------------------------
  88 void SharedRuntime::generate_stubs() {
  89   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  90   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  91   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  92   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
  93   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
  94   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
  95 
  96 #ifdef COMPILER2
  97   // Vectors are generated only by C2.
  98   if (is_wide_vector(MaxVectorSize)) {
  99     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 100   }
 101 #endif // COMPILER2
 102   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 103   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 104 
 105   generate_deopt_blob();
 106 
 107 #ifdef COMPILER2
 108   generate_uncommon_trap_blob();
 109 #endif // COMPILER2
 110 }
 111 
 112 #include <math.h>
 113 
 114 // Implementation of SharedRuntime
 115 
 116 #ifndef PRODUCT
 117 // For statistics
 118 int SharedRuntime::_ic_miss_ctr = 0;
 119 int SharedRuntime::_wrong_method_ctr = 0;
 120 int SharedRuntime::_resolve_static_ctr = 0;
 121 int SharedRuntime::_resolve_virtual_ctr = 0;
 122 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 123 int SharedRuntime::_implicit_null_throws = 0;
 124 int SharedRuntime::_implicit_div0_throws = 0;
 125 int SharedRuntime::_throw_null_ctr = 0;
 126 
 127 int SharedRuntime::_nof_normal_calls = 0;
 128 int SharedRuntime::_nof_optimized_calls = 0;
 129 int SharedRuntime::_nof_inlined_calls = 0;
 130 int SharedRuntime::_nof_megamorphic_calls = 0;
 131 int SharedRuntime::_nof_static_calls = 0;
 132 int SharedRuntime::_nof_inlined_static_calls = 0;
 133 int SharedRuntime::_nof_interface_calls = 0;
 134 int SharedRuntime::_nof_optimized_interface_calls = 0;
 135 int SharedRuntime::_nof_inlined_interface_calls = 0;
 136 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 137 int SharedRuntime::_nof_removable_exceptions = 0;
 138 
 139 int SharedRuntime::_new_instance_ctr=0;
 140 int SharedRuntime::_new_array_ctr=0;
 141 int SharedRuntime::_multi1_ctr=0;
 142 int SharedRuntime::_multi2_ctr=0;
 143 int SharedRuntime::_multi3_ctr=0;
 144 int SharedRuntime::_multi4_ctr=0;
 145 int SharedRuntime::_multi5_ctr=0;
 146 int SharedRuntime::_mon_enter_stub_ctr=0;
 147 int SharedRuntime::_mon_exit_stub_ctr=0;
 148 int SharedRuntime::_mon_enter_ctr=0;
 149 int SharedRuntime::_mon_exit_ctr=0;
 150 int SharedRuntime::_partial_subtype_ctr=0;
 151 int SharedRuntime::_jbyte_array_copy_ctr=0;
 152 int SharedRuntime::_jshort_array_copy_ctr=0;
 153 int SharedRuntime::_jint_array_copy_ctr=0;
 154 int SharedRuntime::_jlong_array_copy_ctr=0;
 155 int SharedRuntime::_oop_array_copy_ctr=0;
 156 int SharedRuntime::_checkcast_array_copy_ctr=0;
 157 int SharedRuntime::_unsafe_array_copy_ctr=0;
 158 int SharedRuntime::_generic_array_copy_ctr=0;
 159 int SharedRuntime::_slow_array_copy_ctr=0;
 160 int SharedRuntime::_find_handler_ctr=0;
 161 int SharedRuntime::_rethrow_ctr=0;
 162 
 163 int     SharedRuntime::_ICmiss_index                    = 0;
 164 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 165 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 166 
 167 
 168 void SharedRuntime::trace_ic_miss(address at) {
 169   for (int i = 0; i < _ICmiss_index; i++) {
 170     if (_ICmiss_at[i] == at) {
 171       _ICmiss_count[i]++;
 172       return;
 173     }
 174   }
 175   int index = _ICmiss_index++;
 176   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 177   _ICmiss_at[index] = at;
 178   _ICmiss_count[index] = 1;
 179 }
 180 
 181 void SharedRuntime::print_ic_miss_histogram() {
 182   if (ICMissHistogram) {
 183     tty->print_cr("IC Miss Histogram:");
 184     int tot_misses = 0;
 185     for (int i = 0; i < _ICmiss_index; i++) {
 186       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", _ICmiss_at[i], _ICmiss_count[i]);
 187       tot_misses += _ICmiss_count[i];
 188     }
 189     tty->print_cr("Total IC misses: %7d", tot_misses);
 190   }
 191 }
 192 #endif // PRODUCT
 193 
 194 #if INCLUDE_ALL_GCS
 195 
 196 // G1 write-barrier pre: executed before a pointer store.
 197 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 198   if (orig == NULL) {
 199     assert(false, "should be optimized out");
 200     return;
 201   }
 202   assert(orig->is_oop(true /* ignore mark word */), "Error");
 203   // store the original value that was in the field reference
 204   thread->satb_mark_queue().enqueue(orig);
 205 JRT_END
 206 
 207 // G1 write-barrier post: executed after a pointer store.
 208 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 209   thread->dirty_card_queue().enqueue(card_addr);
 210 JRT_END
 211 
 212 #endif // INCLUDE_ALL_GCS
 213 
 214 
 215 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 216   return x * y;
 217 JRT_END
 218 
 219 
 220 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 221   if (x == min_jlong && y == CONST64(-1)) {
 222     return x;
 223   } else {
 224     return x / y;
 225   }
 226 JRT_END
 227 
 228 
 229 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 230   if (x == min_jlong && y == CONST64(-1)) {
 231     return 0;
 232   } else {
 233     return x % y;
 234   }
 235 JRT_END
 236 
 237 
 238 const juint  float_sign_mask  = 0x7FFFFFFF;
 239 const juint  float_infinity   = 0x7F800000;
 240 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 241 const julong double_infinity  = CONST64(0x7FF0000000000000);
 242 
 243 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 244 #ifdef _WIN64
 245   // 64-bit Windows on amd64 returns the wrong values for
 246   // infinity operands.
 247   union { jfloat f; juint i; } xbits, ybits;
 248   xbits.f = x;
 249   ybits.f = y;
 250   // x Mod Infinity == x unless x is infinity
 251   if (((xbits.i & float_sign_mask) != float_infinity) &&
 252        ((ybits.i & float_sign_mask) == float_infinity) ) {
 253     return x;
 254   }
 255 #endif
 256   return ((jfloat)fmod((double)x,(double)y));
 257 JRT_END
 258 
 259 
 260 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 261 #ifdef _WIN64
 262   union { jdouble d; julong l; } xbits, ybits;
 263   xbits.d = x;
 264   ybits.d = y;
 265   // x Mod Infinity == x unless x is infinity
 266   if (((xbits.l & double_sign_mask) != double_infinity) &&
 267        ((ybits.l & double_sign_mask) == double_infinity) ) {
 268     return x;
 269   }
 270 #endif
 271   return ((jdouble)fmod((double)x,(double)y));
 272 JRT_END
 273 
 274 #ifdef __SOFTFP__
 275 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 276   return x + y;
 277 JRT_END
 278 
 279 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 280   return x - y;
 281 JRT_END
 282 
 283 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 284   return x * y;
 285 JRT_END
 286 
 287 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 288   return x / y;
 289 JRT_END
 290 
 291 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 292   return x + y;
 293 JRT_END
 294 
 295 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 296   return x - y;
 297 JRT_END
 298 
 299 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 300   return x * y;
 301 JRT_END
 302 
 303 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 304   return x / y;
 305 JRT_END
 306 
 307 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 308   return (jfloat)x;
 309 JRT_END
 310 
 311 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 312   return (jdouble)x;
 313 JRT_END
 314 
 315 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 316   return (jdouble)x;
 317 JRT_END
 318 
 319 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 320   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 321 JRT_END
 322 
 323 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 324   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 325 JRT_END
 326 
 327 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 328   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 329 JRT_END
 330 
 331 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 332   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 333 JRT_END
 334 
 335 // Functions to return the opposite of the aeabi functions for nan.
 336 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 337   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 338 JRT_END
 339 
 340 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 341   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 342 JRT_END
 343 
 344 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 345   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 346 JRT_END
 347 
 348 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 349   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 350 JRT_END
 351 
 352 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 353   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 354 JRT_END
 355 
 356 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 357   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 358 JRT_END
 359 
 360 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 361   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 362 JRT_END
 363 
 364 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 365   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 366 JRT_END
 367 
 368 // Intrinsics make gcc generate code for these.
 369 float  SharedRuntime::fneg(float f)   {
 370   return -f;
 371 }
 372 
 373 double SharedRuntime::dneg(double f)  {
 374   return -f;
 375 }
 376 
 377 #endif // __SOFTFP__
 378 
 379 #if defined(__SOFTFP__) || defined(E500V2)
 380 // Intrinsics make gcc generate code for these.
 381 double SharedRuntime::dabs(double f)  {
 382   return (f <= (double)0.0) ? (double)0.0 - f : f;
 383 }
 384 
 385 #endif
 386 
 387 #if defined(__SOFTFP__) || defined(PPC32)
 388 double SharedRuntime::dsqrt(double f) {
 389   return sqrt(f);
 390 }
 391 #endif
 392 
 393 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 394   if (g_isnan(x))
 395     return 0;
 396   if (x >= (jfloat) max_jint)
 397     return max_jint;
 398   if (x <= (jfloat) min_jint)
 399     return min_jint;
 400   return (jint) x;
 401 JRT_END
 402 
 403 
 404 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 405   if (g_isnan(x))
 406     return 0;
 407   if (x >= (jfloat) max_jlong)
 408     return max_jlong;
 409   if (x <= (jfloat) min_jlong)
 410     return min_jlong;
 411   return (jlong) x;
 412 JRT_END
 413 
 414 
 415 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 416   if (g_isnan(x))
 417     return 0;
 418   if (x >= (jdouble) max_jint)
 419     return max_jint;
 420   if (x <= (jdouble) min_jint)
 421     return min_jint;
 422   return (jint) x;
 423 JRT_END
 424 
 425 
 426 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 427   if (g_isnan(x))
 428     return 0;
 429   if (x >= (jdouble) max_jlong)
 430     return max_jlong;
 431   if (x <= (jdouble) min_jlong)
 432     return min_jlong;
 433   return (jlong) x;
 434 JRT_END
 435 
 436 
 437 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 438   return (jfloat)x;
 439 JRT_END
 440 
 441 
 442 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 443   return (jfloat)x;
 444 JRT_END
 445 
 446 
 447 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 448   return (jdouble)x;
 449 JRT_END
 450 
 451 // Exception handling across interpreter/compiler boundaries
 452 //
 453 // exception_handler_for_return_address(...) returns the continuation address.
 454 // The continuation address is the entry point of the exception handler of the
 455 // previous frame depending on the return address.
 456 
 457 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 458   assert(frame::verify_return_pc(return_address), err_msg("must be a return address: " INTPTR_FORMAT, return_address));
 459 
 460   // Reset method handle flag.
 461   thread->set_is_method_handle_return(false);
 462 
 463   // The fastest case first
 464   CodeBlob* blob = CodeCache::find_blob(return_address);
 465   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 466   if (nm != NULL) {
 467     // Set flag if return address is a method handle call site.
 468     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 469     // native nmethods don't have exception handlers
 470     assert(!nm->is_native_method(), "no exception handler");
 471     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 472     if (nm->is_deopt_pc(return_address)) {
 473       // If we come here because of a stack overflow, the stack may be
 474       // unguarded. Reguard the stack otherwise if we return to the
 475       // deopt blob and the stack bang causes a stack overflow we
 476       // crash.
 477       bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
 478       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 479       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 480       return SharedRuntime::deopt_blob()->unpack_with_exception();
 481     } else {
 482       return nm->exception_begin();
 483     }
 484   }
 485 
 486   // Entry code
 487   if (StubRoutines::returns_to_call_stub(return_address)) {
 488     return StubRoutines::catch_exception_entry();
 489   }
 490   // Interpreted code
 491   if (Interpreter::contains(return_address)) {
 492     return Interpreter::rethrow_exception_entry();
 493   }
 494 
 495   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 496   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 497 
 498 #ifndef PRODUCT
 499   { ResourceMark rm;
 500     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", return_address);
 501     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 502     tty->print_cr("b) other problem");
 503   }
 504 #endif // PRODUCT
 505 
 506   ShouldNotReachHere();
 507   return NULL;
 508 }
 509 
 510 
 511 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 512   return raw_exception_handler_for_return_address(thread, return_address);
 513 JRT_END
 514 
 515 
 516 address SharedRuntime::get_poll_stub(address pc) {
 517   address stub;
 518   // Look up the code blob
 519   CodeBlob *cb = CodeCache::find_blob(pc);
 520 
 521   // Should be an nmethod
 522   assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 523 
 524   // Look up the relocation information
 525   assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 526     "safepoint polling: type must be poll");
 527 
 528   assert(((NativeInstruction*)pc)->is_safepoint_poll(),
 529     "Only polling locations are used for safepoint");
 530 
 531   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 532   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 533   if (at_poll_return) {
 534     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 535            "polling page return stub not created yet");
 536     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 537   } else if (has_wide_vectors) {
 538     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 539            "polling page vectors safepoint stub not created yet");
 540     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 541   } else {
 542     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 543            "polling page safepoint stub not created yet");
 544     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 545   }
 546 #ifndef PRODUCT
 547   if (TraceSafepoint) {
 548     char buf[256];
 549     jio_snprintf(buf, sizeof(buf),
 550                  "... found polling page %s exception at pc = "
 551                  INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 552                  at_poll_return ? "return" : "loop",
 553                  (intptr_t)pc, (intptr_t)stub);
 554     tty->print_raw_cr(buf);
 555   }
 556 #endif // PRODUCT
 557   return stub;
 558 }
 559 
 560 
 561 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 562   assert(caller.is_interpreted_frame(), "");
 563   int args_size = ArgumentSizeComputer(sig).size() + 1;
 564   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 565   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 566   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 567   return result;
 568 }
 569 
 570 
 571 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 572   if (JvmtiExport::can_post_on_exceptions()) {
 573     vframeStream vfst(thread, true);
 574     methodHandle method = methodHandle(thread, vfst.method());
 575     address bcp = method()->bcp_from(vfst.bci());
 576     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 577   }
 578   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 579 }
 580 
 581 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 582   Handle h_exception = Exceptions::new_exception(thread, name, message);
 583   throw_and_post_jvmti_exception(thread, h_exception);
 584 }
 585 
 586 // The interpreter code to call this tracing function is only
 587 // called/generated when TraceRedefineClasses has the right bits
 588 // set. Since obsolete methods are never compiled, we don't have
 589 // to modify the compilers to generate calls to this function.
 590 //
 591 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 592     JavaThread* thread, Method* method))
 593   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 594 
 595   if (method->is_obsolete()) {
 596     // We are calling an obsolete method, but this is not necessarily
 597     // an error. Our method could have been redefined just after we
 598     // fetched the Method* from the constant pool.
 599 
 600     // RC_TRACE macro has an embedded ResourceMark
 601     RC_TRACE_WITH_THREAD(0x00001000, thread,
 602                          ("calling obsolete method '%s'",
 603                           method->name_and_sig_as_C_string()));
 604     if (RC_TRACE_ENABLED(0x00002000)) {
 605       // this option is provided to debug calls to obsolete methods
 606       guarantee(false, "faulting at call to an obsolete method.");
 607     }
 608   }
 609   return 0;
 610 JRT_END
 611 
 612 // ret_pc points into caller; we are returning caller's exception handler
 613 // for given exception
 614 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 615                                                     bool force_unwind, bool top_frame_only) {
 616   assert(nm != NULL, "must exist");
 617   ResourceMark rm;
 618 
 619   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 620   // determine handler bci, if any
 621   EXCEPTION_MARK;
 622 
 623   int handler_bci = -1;
 624   int scope_depth = 0;
 625   if (!force_unwind) {
 626     int bci = sd->bci();
 627     bool recursive_exception = false;
 628     do {
 629       bool skip_scope_increment = false;
 630       // exception handler lookup
 631       KlassHandle ek (THREAD, exception->klass());
 632       methodHandle mh(THREAD, sd->method());
 633       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 634       if (HAS_PENDING_EXCEPTION) {
 635         recursive_exception = true;
 636         // We threw an exception while trying to find the exception handler.
 637         // Transfer the new exception to the exception handle which will
 638         // be set into thread local storage, and do another lookup for an
 639         // exception handler for this exception, this time starting at the
 640         // BCI of the exception handler which caused the exception to be
 641         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 642         // argument to ensure that the correct exception is thrown (4870175).
 643         exception = Handle(THREAD, PENDING_EXCEPTION);
 644         CLEAR_PENDING_EXCEPTION;
 645         if (handler_bci >= 0) {
 646           bci = handler_bci;
 647           handler_bci = -1;
 648           skip_scope_increment = true;
 649         }
 650       }
 651       else {
 652         recursive_exception = false;
 653       }
 654       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 655         sd = sd->sender();
 656         if (sd != NULL) {
 657           bci = sd->bci();
 658         }
 659         ++scope_depth;
 660       }
 661     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 662   }
 663 
 664   // found handling method => lookup exception handler
 665   int catch_pco = ret_pc - nm->code_begin();
 666 
 667   ExceptionHandlerTable table(nm);
 668   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 669   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 670     // Allow abbreviated catch tables.  The idea is to allow a method
 671     // to materialize its exceptions without committing to the exact
 672     // routing of exceptions.  In particular this is needed for adding
 673     // a synthetic handler to unlock monitors when inlining
 674     // synchronized methods since the unlock path isn't represented in
 675     // the bytecodes.
 676     t = table.entry_for(catch_pco, -1, 0);
 677   }
 678 
 679 #ifdef COMPILER1
 680   if (t == NULL && nm->is_compiled_by_c1()) {
 681     assert(nm->unwind_handler_begin() != NULL, "");
 682     return nm->unwind_handler_begin();
 683   }
 684 #endif
 685 
 686   if (t == NULL) {
 687     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", ret_pc, handler_bci);
 688     tty->print_cr("   Exception:");
 689     exception->print();
 690     tty->cr();
 691     tty->print_cr(" Compiled exception table :");
 692     table.print();
 693     nm->print_code();
 694     guarantee(false, "missing exception handler");
 695     return NULL;
 696   }
 697 
 698   return nm->code_begin() + t->pco();
 699 }
 700 
 701 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 702   // These errors occur only at call sites
 703   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 704 JRT_END
 705 
 706 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 707   // These errors occur only at call sites
 708   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 709 JRT_END
 710 
 711 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 712   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 713 JRT_END
 714 
 715 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 716   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 717 JRT_END
 718 
 719 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 720   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 721   // cache sites (when the callee activation is not yet set up) so we are at a call site
 722   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 723 JRT_END
 724 
 725 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 726   // We avoid using the normal exception construction in this case because
 727   // it performs an upcall to Java, and we're already out of stack space.
 728   Klass* k = SystemDictionary::StackOverflowError_klass();
 729   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 730   Handle exception (thread, exception_oop);
 731   if (StackTraceInThrowable) {
 732     java_lang_Throwable::fill_in_stack_trace(exception);
 733   }
 734   throw_and_post_jvmti_exception(thread, exception);
 735 JRT_END
 736 
 737 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 738                                                            address pc,
 739                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 740 {
 741   address target_pc = NULL;
 742 
 743   if (Interpreter::contains(pc)) {
 744 #ifdef CC_INTERP
 745     // C++ interpreter doesn't throw implicit exceptions
 746     ShouldNotReachHere();
 747 #else
 748     switch (exception_kind) {
 749       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 750       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 751       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 752       default:                      ShouldNotReachHere();
 753     }
 754 #endif // !CC_INTERP
 755   } else {
 756     switch (exception_kind) {
 757       case STACK_OVERFLOW: {
 758         // Stack overflow only occurs upon frame setup; the callee is
 759         // going to be unwound. Dispatch to a shared runtime stub
 760         // which will cause the StackOverflowError to be fabricated
 761         // and processed.
 762         // Stack overflow should never occur during deoptimization:
 763         // the compiled method bangs the stack by as much as the
 764         // interpreter would need in case of a deoptimization. The
 765         // deoptimization blob and uncommon trap blob bang the stack
 766         // in a debug VM to verify the correctness of the compiled
 767         // method stack banging.
 768         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 769         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, pc);
 770         return StubRoutines::throw_StackOverflowError_entry();
 771       }
 772 
 773       case IMPLICIT_NULL: {
 774         if (VtableStubs::contains(pc)) {
 775           // We haven't yet entered the callee frame. Fabricate an
 776           // exception and begin dispatching it in the caller. Since
 777           // the caller was at a call site, it's safe to destroy all
 778           // caller-saved registers, as these entry points do.
 779           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 780 
 781           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 782           if (vt_stub == NULL) return NULL;
 783 
 784           if (vt_stub->is_abstract_method_error(pc)) {
 785             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 786             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, pc);
 787             return StubRoutines::throw_AbstractMethodError_entry();
 788           } else {
 789             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, pc);
 790             return StubRoutines::throw_NullPointerException_at_call_entry();
 791           }
 792         } else {
 793           CodeBlob* cb = CodeCache::find_blob(pc);
 794 
 795           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 796           if (cb == NULL) return NULL;
 797 
 798           // Exception happened in CodeCache. Must be either:
 799           // 1. Inline-cache check in C2I handler blob,
 800           // 2. Inline-cache check in nmethod, or
 801           // 3. Implicit null exception in nmethod
 802 
 803           if (!cb->is_nmethod()) {
 804             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 805             if (!is_in_blob) {
 806               cb->print();
 807               fatal(err_msg("exception happened outside interpreter, nmethods and vtable stubs at pc " INTPTR_FORMAT, pc));
 808             }
 809             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, pc);
 810             // There is no handler here, so we will simply unwind.
 811             return StubRoutines::throw_NullPointerException_at_call_entry();
 812           }
 813 
 814           // Otherwise, it's an nmethod.  Consult its exception handlers.
 815           nmethod* nm = (nmethod*)cb;
 816           if (nm->inlinecache_check_contains(pc)) {
 817             // exception happened inside inline-cache check code
 818             // => the nmethod is not yet active (i.e., the frame
 819             // is not set up yet) => use return address pushed by
 820             // caller => don't push another return address
 821             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, pc);
 822             return StubRoutines::throw_NullPointerException_at_call_entry();
 823           }
 824 
 825           if (nm->method()->is_method_handle_intrinsic()) {
 826             // exception happened inside MH dispatch code, similar to a vtable stub
 827             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, pc);
 828             return StubRoutines::throw_NullPointerException_at_call_entry();
 829           }
 830 
 831 #ifndef PRODUCT
 832           _implicit_null_throws++;
 833 #endif
 834           target_pc = nm->continuation_for_implicit_exception(pc);
 835           // If there's an unexpected fault, target_pc might be NULL,
 836           // in which case we want to fall through into the normal
 837           // error handling code.
 838         }
 839 
 840         break; // fall through
 841       }
 842 
 843 
 844       case IMPLICIT_DIVIDE_BY_ZERO: {
 845         nmethod* nm = CodeCache::find_nmethod(pc);
 846         guarantee(nm != NULL, "must have containing nmethod for implicit division-by-zero exceptions");
 847 #ifndef PRODUCT
 848         _implicit_div0_throws++;
 849 #endif
 850         target_pc = nm->continuation_for_implicit_exception(pc);
 851         // If there's an unexpected fault, target_pc might be NULL,
 852         // in which case we want to fall through into the normal
 853         // error handling code.
 854         break; // fall through
 855       }
 856 
 857       default: ShouldNotReachHere();
 858     }
 859 
 860     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 861 
 862     // for AbortVMOnException flag
 863     NOT_PRODUCT(Exceptions::debug_check_abort("java.lang.NullPointerException"));
 864     if (exception_kind == IMPLICIT_NULL) {
 865       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 866     } else {
 867       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, pc, target_pc);
 868     }
 869     return target_pc;
 870   }
 871 
 872   ShouldNotReachHere();
 873   return NULL;
 874 }
 875 
 876 
 877 /**
 878  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 879  * installed in the native function entry of all native Java methods before
 880  * they get linked to their actual native methods.
 881  *
 882  * \note
 883  * This method actually never gets called!  The reason is because
 884  * the interpreter's native entries call NativeLookup::lookup() which
 885  * throws the exception when the lookup fails.  The exception is then
 886  * caught and forwarded on the return from NativeLookup::lookup() call
 887  * before the call to the native function.  This might change in the future.
 888  */
 889 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 890 {
 891   // We return a bad value here to make sure that the exception is
 892   // forwarded before we look at the return value.
 893   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 894 }
 895 JNI_END
 896 
 897 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 898   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 899 }
 900 
 901 
 902 #ifndef PRODUCT
 903 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
 904   const frame f = thread->last_frame();
 905   assert(f.is_interpreted_frame(), "must be an interpreted frame");
 906 #ifndef PRODUCT
 907   methodHandle mh(THREAD, f.interpreter_frame_method());
 908   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
 909 #endif // !PRODUCT
 910   return preserve_this_value;
 911 JRT_END
 912 #endif // !PRODUCT
 913 
 914 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 915   assert(obj->is_oop(), "must be a valid oop");
 916   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
 917   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
 918 JRT_END
 919 
 920 
 921 jlong SharedRuntime::get_java_tid(Thread* thread) {
 922   if (thread != NULL) {
 923     if (thread->is_Java_thread()) {
 924       oop obj = ((JavaThread*)thread)->threadObj();
 925       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
 926     }
 927   }
 928   return 0;
 929 }
 930 
 931 /**
 932  * This function ought to be a void function, but cannot be because
 933  * it gets turned into a tail-call on sparc, which runs into dtrace bug
 934  * 6254741.  Once that is fixed we can remove the dummy return value.
 935  */
 936 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
 937   return dtrace_object_alloc_base(Thread::current(), o, size);
 938 }
 939 
 940 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
 941   assert(DTraceAllocProbes, "wrong call");
 942   Klass* klass = o->klass();
 943   Symbol* name = klass->name();
 944   HOTSPOT_OBJECT_ALLOC(
 945                    get_java_tid(thread),
 946                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
 947   return 0;
 948 }
 949 
 950 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
 951     JavaThread* thread, Method* method))
 952   assert(DTraceMethodProbes, "wrong call");
 953   Symbol* kname = method->klass_name();
 954   Symbol* name = method->name();
 955   Symbol* sig = method->signature();
 956   HOTSPOT_METHOD_ENTRY(
 957       get_java_tid(thread),
 958       (char *) kname->bytes(), kname->utf8_length(),
 959       (char *) name->bytes(), name->utf8_length(),
 960       (char *) sig->bytes(), sig->utf8_length());
 961   return 0;
 962 JRT_END
 963 
 964 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
 965     JavaThread* thread, Method* method))
 966   assert(DTraceMethodProbes, "wrong call");
 967   Symbol* kname = method->klass_name();
 968   Symbol* name = method->name();
 969   Symbol* sig = method->signature();
 970   HOTSPOT_METHOD_RETURN(
 971       get_java_tid(thread),
 972       (char *) kname->bytes(), kname->utf8_length(),
 973       (char *) name->bytes(), name->utf8_length(),
 974       (char *) sig->bytes(), sig->utf8_length());
 975   return 0;
 976 JRT_END
 977 
 978 
 979 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
 980 // for a call current in progress, i.e., arguments has been pushed on stack
 981 // put callee has not been invoked yet.  Used by: resolve virtual/static,
 982 // vtable updates, etc.  Caller frame must be compiled.
 983 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
 984   ResourceMark rm(THREAD);
 985 
 986   // last java frame on stack (which includes native call frames)
 987   vframeStream vfst(thread, true);  // Do not skip and javaCalls
 988 
 989   return find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(Handle()));
 990 }
 991 
 992 
 993 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
 994 // for a call current in progress, i.e., arguments has been pushed on stack
 995 // but callee has not been invoked yet.  Caller frame must be compiled.
 996 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
 997                                               vframeStream& vfst,
 998                                               Bytecodes::Code& bc,
 999                                               CallInfo& callinfo, TRAPS) {
1000   Handle receiver;
1001   Handle nullHandle;  //create a handy null handle for exception returns
1002 
1003   assert(!vfst.at_end(), "Java frame must exist");
1004 
1005   // Find caller and bci from vframe
1006   methodHandle caller(THREAD, vfst.method());
1007   int          bci   = vfst.bci();
1008 
1009   // Find bytecode
1010   Bytecode_invoke bytecode(caller, bci);
1011   bc = bytecode.invoke_code();
1012   int bytecode_index = bytecode.index();
1013 
1014   // Find receiver for non-static call
1015   if (bc != Bytecodes::_invokestatic &&
1016       bc != Bytecodes::_invokedynamic &&
1017       bc != Bytecodes::_invokehandle) {
1018     // This register map must be update since we need to find the receiver for
1019     // compiled frames. The receiver might be in a register.
1020     RegisterMap reg_map2(thread);
1021     frame stubFrame   = thread->last_frame();
1022     // Caller-frame is a compiled frame
1023     frame callerFrame = stubFrame.sender(&reg_map2);
1024 
1025     methodHandle callee = bytecode.static_target(CHECK_(nullHandle));
1026     if (callee.is_null()) {
1027       THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1028     }
1029     // Retrieve from a compiled argument list
1030     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1031 
1032     if (receiver.is_null()) {
1033       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1034     }
1035   }
1036 
1037   // Resolve method. This is parameterized by bytecode.
1038   constantPoolHandle constants(THREAD, caller->constants());
1039   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1040   LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_(nullHandle));
1041 
1042 #ifdef ASSERT
1043   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1044   if (bc != Bytecodes::_invokestatic && bc != Bytecodes::_invokedynamic && bc != Bytecodes::_invokehandle) {
1045     assert(receiver.not_null(), "should have thrown exception");
1046     KlassHandle receiver_klass(THREAD, receiver->klass());
1047     Klass* rk = constants->klass_ref_at(bytecode_index, CHECK_(nullHandle));
1048                             // klass is already loaded
1049     KlassHandle static_receiver_klass(THREAD, rk);
1050     // Method handle invokes might have been optimized to a direct call
1051     // so don't check for the receiver class.
1052     // FIXME this weakens the assert too much
1053     methodHandle callee = callinfo.selected_method();
1054     assert(receiver_klass->is_subtype_of(static_receiver_klass()) ||
1055            callee->is_method_handle_intrinsic() ||
1056            callee->is_compiled_lambda_form(),
1057            "actual receiver must be subclass of static receiver klass");
1058     if (receiver_klass->oop_is_instance()) {
1059       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1060         tty->print_cr("ERROR: Klass not yet initialized!!");
1061         receiver_klass()->print();
1062       }
1063       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1064     }
1065   }
1066 #endif
1067 
1068   return receiver;
1069 }
1070 
1071 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1072   ResourceMark rm(THREAD);
1073   // We need first to check if any Java activations (compiled, interpreted)
1074   // exist on the stack since last JavaCall.  If not, we need
1075   // to get the target method from the JavaCall wrapper.
1076   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1077   methodHandle callee_method;
1078   if (vfst.at_end()) {
1079     // No Java frames were found on stack since we did the JavaCall.
1080     // Hence the stack can only contain an entry_frame.  We need to
1081     // find the target method from the stub frame.
1082     RegisterMap reg_map(thread, false);
1083     frame fr = thread->last_frame();
1084     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1085     fr = fr.sender(&reg_map);
1086     assert(fr.is_entry_frame(), "must be");
1087     // fr is now pointing to the entry frame.
1088     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1089     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1090   } else {
1091     Bytecodes::Code bc;
1092     CallInfo callinfo;
1093     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1094     callee_method = callinfo.selected_method();
1095   }
1096   assert(callee_method()->is_method(), "must be");
1097   return callee_method;
1098 }
1099 
1100 // Resolves a call.
1101 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1102                                            bool is_virtual,
1103                                            bool is_optimized, TRAPS) {
1104   methodHandle callee_method;
1105   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1106   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1107     int retry_count = 0;
1108     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1109            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1110       // If has a pending exception then there is no need to re-try to
1111       // resolve this method.
1112       // If the method has been redefined, we need to try again.
1113       // Hack: we have no way to update the vtables of arrays, so don't
1114       // require that java.lang.Object has been updated.
1115 
1116       // It is very unlikely that method is redefined more than 100 times
1117       // in the middle of resolve. If it is looping here more than 100 times
1118       // means then there could be a bug here.
1119       guarantee((retry_count++ < 100),
1120                 "Could not resolve to latest version of redefined method");
1121       // method is redefined in the middle of resolve so re-try.
1122       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1123     }
1124   }
1125   return callee_method;
1126 }
1127 
1128 // Resolves a call.  The compilers generate code for calls that go here
1129 // and are patched with the real destination of the call.
1130 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1131                                            bool is_virtual,
1132                                            bool is_optimized, TRAPS) {
1133 
1134   ResourceMark rm(thread);
1135   RegisterMap cbl_map(thread, false);
1136   frame caller_frame = thread->last_frame().sender(&cbl_map);
1137 
1138   CodeBlob* caller_cb = caller_frame.cb();
1139   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1140   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1141 
1142   // make sure caller is not getting deoptimized
1143   // and removed before we are done with it.
1144   // CLEANUP - with lazy deopt shouldn't need this lock
1145   nmethodLocker caller_lock(caller_nm);
1146 
1147   // determine call info & receiver
1148   // note: a) receiver is NULL for static calls
1149   //       b) an exception is thrown if receiver is NULL for non-static calls
1150   CallInfo call_info;
1151   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1152   Handle receiver = find_callee_info(thread, invoke_code,
1153                                      call_info, CHECK_(methodHandle()));
1154   methodHandle callee_method = call_info.selected_method();
1155 
1156   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1157          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1158          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1159          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1160 
1161   assert(caller_nm->is_alive(), "It should be alive");
1162 
1163 #ifndef PRODUCT
1164   // tracing/debugging/statistics
1165   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1166                 (is_virtual) ? (&_resolve_virtual_ctr) :
1167                                (&_resolve_static_ctr);
1168   Atomic::inc(addr);
1169 
1170   if (TraceCallFixup) {
1171     ResourceMark rm(thread);
1172     tty->print("resolving %s%s (%s) call to",
1173       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1174       Bytecodes::name(invoke_code));
1175     callee_method->print_short_name(tty);
1176     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT, caller_frame.pc(), callee_method->code());
1177   }
1178 #endif
1179 
1180   // JSR 292 key invariant:
1181   // If the resolved method is a MethodHandle invoke target the call
1182   // site must be a MethodHandle call site, because the lambda form might tail-call
1183   // leaving the stack in a state unknown to either caller or callee
1184   // TODO detune for now but we might need it again
1185 //  assert(!callee_method->is_compiled_lambda_form() ||
1186 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1187 
1188   // Compute entry points. This might require generation of C2I converter
1189   // frames, so we cannot be holding any locks here. Furthermore, the
1190   // computation of the entry points is independent of patching the call.  We
1191   // always return the entry-point, but we only patch the stub if the call has
1192   // not been deoptimized.  Return values: For a virtual call this is an
1193   // (cached_oop, destination address) pair. For a static call/optimized
1194   // virtual this is just a destination address.
1195 
1196   StaticCallInfo static_call_info;
1197   CompiledICInfo virtual_call_info;
1198 
1199   // Make sure the callee nmethod does not get deoptimized and removed before
1200   // we are done patching the code.
1201   nmethod* callee_nm = callee_method->code();
1202   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1203     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1204     callee_nm = NULL;
1205   }
1206   nmethodLocker nl_callee(callee_nm);
1207 #ifdef ASSERT
1208   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1209 #endif
1210 
1211   if (is_virtual) {
1212     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1213     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1214     KlassHandle h_klass(THREAD, invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass());
1215     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1216                      is_optimized, static_bound, virtual_call_info,
1217                      CHECK_(methodHandle()));
1218   } else {
1219     // static call
1220     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1221   }
1222 
1223   // grab lock, check for deoptimization and potentially patch caller
1224   {
1225     MutexLocker ml_patch(CompiledIC_lock);
1226 
1227     // Lock blocks for safepoint during which both nmethods can change state.
1228 
1229     // Now that we are ready to patch if the Method* was redefined then
1230     // don't update call site and let the caller retry.
1231     // Don't update call site if callee nmethod was unloaded or deoptimized.
1232     // Don't update call site if callee nmethod was replaced by an other nmethod
1233     // which may happen when multiply alive nmethod (tiered compilation)
1234     // will be supported.
1235     if (!callee_method->is_old() &&
1236         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1237 #ifdef ASSERT
1238       // We must not try to patch to jump to an already unloaded method.
1239       if (dest_entry_point != 0) {
1240         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1241         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1242                "should not call unloaded nmethod");
1243       }
1244 #endif
1245       if (is_virtual) {
1246         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1247         if (inline_cache->is_clean()) {
1248           inline_cache->set_to_monomorphic(virtual_call_info);
1249         }
1250       } else {
1251         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1252         if (ssc->is_clean()) ssc->set(static_call_info);
1253       }
1254     }
1255 
1256   } // unlock CompiledIC_lock
1257 
1258   return callee_method;
1259 }
1260 
1261 
1262 // Inline caches exist only in compiled code
1263 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1264 #ifdef ASSERT
1265   RegisterMap reg_map(thread, false);
1266   frame stub_frame = thread->last_frame();
1267   assert(stub_frame.is_runtime_frame(), "sanity check");
1268   frame caller_frame = stub_frame.sender(&reg_map);
1269   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1270 #endif /* ASSERT */
1271 
1272   methodHandle callee_method;
1273   JRT_BLOCK
1274     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1275     // Return Method* through TLS
1276     thread->set_vm_result_2(callee_method());
1277   JRT_BLOCK_END
1278   // return compiled code entry point after potential safepoints
1279   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1280   return callee_method->verified_code_entry();
1281 JRT_END
1282 
1283 
1284 // Handle call site that has been made non-entrant
1285 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1286   // 6243940 We might end up in here if the callee is deoptimized
1287   // as we race to call it.  We don't want to take a safepoint if
1288   // the caller was interpreted because the caller frame will look
1289   // interpreted to the stack walkers and arguments are now
1290   // "compiled" so it is much better to make this transition
1291   // invisible to the stack walking code. The i2c path will
1292   // place the callee method in the callee_target. It is stashed
1293   // there because if we try and find the callee by normal means a
1294   // safepoint is possible and have trouble gc'ing the compiled args.
1295   RegisterMap reg_map(thread, false);
1296   frame stub_frame = thread->last_frame();
1297   assert(stub_frame.is_runtime_frame(), "sanity check");
1298   frame caller_frame = stub_frame.sender(&reg_map);
1299 
1300   if (caller_frame.is_interpreted_frame() ||
1301       caller_frame.is_entry_frame()) {
1302     Method* callee = thread->callee_target();
1303     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1304     thread->set_vm_result_2(callee);
1305     thread->set_callee_target(NULL);
1306     return callee->get_c2i_entry();
1307   }
1308 
1309   // Must be compiled to compiled path which is safe to stackwalk
1310   methodHandle callee_method;
1311   JRT_BLOCK
1312     // Force resolving of caller (if we called from compiled frame)
1313     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1314     thread->set_vm_result_2(callee_method());
1315   JRT_BLOCK_END
1316   // return compiled code entry point after potential safepoints
1317   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1318   return callee_method->verified_code_entry();
1319 JRT_END
1320 
1321 // Handle abstract method call
1322 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1323   return StubRoutines::throw_AbstractMethodError_entry();
1324 JRT_END
1325 
1326 
1327 // resolve a static call and patch code
1328 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1329   methodHandle callee_method;
1330   JRT_BLOCK
1331     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1332     thread->set_vm_result_2(callee_method());
1333   JRT_BLOCK_END
1334   // return compiled code entry point after potential safepoints
1335   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1336   return callee_method->verified_code_entry();
1337 JRT_END
1338 
1339 
1340 // resolve virtual call and update inline cache to monomorphic
1341 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1342   methodHandle callee_method;
1343   JRT_BLOCK
1344     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1345     thread->set_vm_result_2(callee_method());
1346   JRT_BLOCK_END
1347   // return compiled code entry point after potential safepoints
1348   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1349   return callee_method->verified_code_entry();
1350 JRT_END
1351 
1352 
1353 // Resolve a virtual call that can be statically bound (e.g., always
1354 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1355 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1356   methodHandle callee_method;
1357   JRT_BLOCK
1358     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1359     thread->set_vm_result_2(callee_method());
1360   JRT_BLOCK_END
1361   // return compiled code entry point after potential safepoints
1362   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1363   return callee_method->verified_code_entry();
1364 JRT_END
1365 
1366 
1367 
1368 
1369 
1370 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1371   ResourceMark rm(thread);
1372   CallInfo call_info;
1373   Bytecodes::Code bc;
1374 
1375   // receiver is NULL for static calls. An exception is thrown for NULL
1376   // receivers for non-static calls
1377   Handle receiver = find_callee_info(thread, bc, call_info,
1378                                      CHECK_(methodHandle()));
1379   // Compiler1 can produce virtual call sites that can actually be statically bound
1380   // If we fell thru to below we would think that the site was going megamorphic
1381   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1382   // we'd try and do a vtable dispatch however methods that can be statically bound
1383   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1384   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1385   // plain ic_miss) and the site will be converted to an optimized virtual call site
1386   // never to miss again. I don't believe C2 will produce code like this but if it
1387   // did this would still be the correct thing to do for it too, hence no ifdef.
1388   //
1389   if (call_info.resolved_method()->can_be_statically_bound()) {
1390     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1391     if (TraceCallFixup) {
1392       RegisterMap reg_map(thread, false);
1393       frame caller_frame = thread->last_frame().sender(&reg_map);
1394       ResourceMark rm(thread);
1395       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1396       callee_method->print_short_name(tty);
1397       tty->print_cr(" from pc: " INTPTR_FORMAT, caller_frame.pc());
1398       tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1399     }
1400     return callee_method;
1401   }
1402 
1403   methodHandle callee_method = call_info.selected_method();
1404 
1405   bool should_be_mono = false;
1406 
1407 #ifndef PRODUCT
1408   Atomic::inc(&_ic_miss_ctr);
1409 
1410   // Statistics & Tracing
1411   if (TraceCallFixup) {
1412     ResourceMark rm(thread);
1413     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1414     callee_method->print_short_name(tty);
1415     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1416   }
1417 
1418   if (ICMissHistogram) {
1419     MutexLocker m(VMStatistic_lock);
1420     RegisterMap reg_map(thread, false);
1421     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1422     // produce statistics under the lock
1423     trace_ic_miss(f.pc());
1424   }
1425 #endif
1426 
1427   // install an event collector so that when a vtable stub is created the
1428   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1429   // event can't be posted when the stub is created as locks are held
1430   // - instead the event will be deferred until the event collector goes
1431   // out of scope.
1432   JvmtiDynamicCodeEventCollector event_collector;
1433 
1434   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1435   { MutexLocker ml_patch (CompiledIC_lock);
1436     RegisterMap reg_map(thread, false);
1437     frame caller_frame = thread->last_frame().sender(&reg_map);
1438     CodeBlob* cb = caller_frame.cb();
1439     if (cb->is_nmethod()) {
1440       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1441       bool should_be_mono = false;
1442       if (inline_cache->is_optimized()) {
1443         if (TraceCallFixup) {
1444           ResourceMark rm(thread);
1445           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1446           callee_method->print_short_name(tty);
1447           tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1448         }
1449         should_be_mono = true;
1450       } else if (inline_cache->is_icholder_call()) {
1451         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1452         if (ic_oop != NULL) {
1453 
1454           if (receiver()->klass() == ic_oop->holder_klass()) {
1455             // This isn't a real miss. We must have seen that compiled code
1456             // is now available and we want the call site converted to a
1457             // monomorphic compiled call site.
1458             // We can't assert for callee_method->code() != NULL because it
1459             // could have been deoptimized in the meantime
1460             if (TraceCallFixup) {
1461               ResourceMark rm(thread);
1462               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1463               callee_method->print_short_name(tty);
1464               tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1465             }
1466             should_be_mono = true;
1467           }
1468         }
1469       }
1470 
1471       if (should_be_mono) {
1472 
1473         // We have a path that was monomorphic but was going interpreted
1474         // and now we have (or had) a compiled entry. We correct the IC
1475         // by using a new icBuffer.
1476         CompiledICInfo info;
1477         KlassHandle receiver_klass(THREAD, receiver()->klass());
1478         inline_cache->compute_monomorphic_entry(callee_method,
1479                                                 receiver_klass,
1480                                                 inline_cache->is_optimized(),
1481                                                 false,
1482                                                 info, CHECK_(methodHandle()));
1483         inline_cache->set_to_monomorphic(info);
1484       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1485         // Potential change to megamorphic
1486         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1487         if (!successful) {
1488           inline_cache->set_to_clean();
1489         }
1490       } else {
1491         // Either clean or megamorphic
1492       }
1493     }
1494   } // Release CompiledIC_lock
1495 
1496   return callee_method;
1497 }
1498 
1499 //
1500 // Resets a call-site in compiled code so it will get resolved again.
1501 // This routines handles both virtual call sites, optimized virtual call
1502 // sites, and static call sites. Typically used to change a call sites
1503 // destination from compiled to interpreted.
1504 //
1505 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1506   ResourceMark rm(thread);
1507   RegisterMap reg_map(thread, false);
1508   frame stub_frame = thread->last_frame();
1509   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1510   frame caller = stub_frame.sender(&reg_map);
1511 
1512   // Do nothing if the frame isn't a live compiled frame.
1513   // nmethod could be deoptimized by the time we get here
1514   // so no update to the caller is needed.
1515 
1516   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1517 
1518     address pc = caller.pc();
1519 
1520     // Default call_addr is the location of the "basic" call.
1521     // Determine the address of the call we a reresolving. With
1522     // Inline Caches we will always find a recognizable call.
1523     // With Inline Caches disabled we may or may not find a
1524     // recognizable call. We will always find a call for static
1525     // calls and for optimized virtual calls. For vanilla virtual
1526     // calls it depends on the state of the UseInlineCaches switch.
1527     //
1528     // With Inline Caches disabled we can get here for a virtual call
1529     // for two reasons:
1530     //   1 - calling an abstract method. The vtable for abstract methods
1531     //       will run us thru handle_wrong_method and we will eventually
1532     //       end up in the interpreter to throw the ame.
1533     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1534     //       call and between the time we fetch the entry address and
1535     //       we jump to it the target gets deoptimized. Similar to 1
1536     //       we will wind up in the interprter (thru a c2i with c2).
1537     //
1538     address call_addr = NULL;
1539     {
1540       // Get call instruction under lock because another thread may be
1541       // busy patching it.
1542       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1543       // Location of call instruction
1544       if (NativeCall::is_call_before(pc)) {
1545         NativeCall *ncall = nativeCall_before(pc);
1546         call_addr = ncall->instruction_address();
1547       }
1548     }
1549 
1550     // Check for static or virtual call
1551     bool is_static_call = false;
1552     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1553     // Make sure nmethod doesn't get deoptimized and removed until
1554     // this is done with it.
1555     // CLEANUP - with lazy deopt shouldn't need this lock
1556     nmethodLocker nmlock(caller_nm);
1557 
1558     if (call_addr != NULL) {
1559       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1560       int ret = iter.next(); // Get item
1561       if (ret) {
1562         assert(iter.addr() == call_addr, "must find call");
1563         if (iter.type() == relocInfo::static_call_type) {
1564           is_static_call = true;
1565         } else {
1566           assert(iter.type() == relocInfo::virtual_call_type ||
1567                  iter.type() == relocInfo::opt_virtual_call_type
1568                 , "unexpected relocInfo. type");
1569         }
1570       } else {
1571         assert(!UseInlineCaches, "relocation info. must exist for this address");
1572       }
1573 
1574       // Cleaning the inline cache will force a new resolve. This is more robust
1575       // than directly setting it to the new destination, since resolving of calls
1576       // is always done through the same code path. (experience shows that it
1577       // leads to very hard to track down bugs, if an inline cache gets updated
1578       // to a wrong method). It should not be performance critical, since the
1579       // resolve is only done once.
1580 
1581       MutexLocker ml(CompiledIC_lock);
1582       if (is_static_call) {
1583         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1584         ssc->set_to_clean();
1585       } else {
1586         // compiled, dispatched call (which used to call an interpreted method)
1587         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1588         inline_cache->set_to_clean();
1589       }
1590     }
1591 
1592   }
1593 
1594   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1595 
1596 
1597 #ifndef PRODUCT
1598   Atomic::inc(&_wrong_method_ctr);
1599 
1600   if (TraceCallFixup) {
1601     ResourceMark rm(thread);
1602     tty->print("handle_wrong_method reresolving call to");
1603     callee_method->print_short_name(tty);
1604     tty->print_cr(" code: " INTPTR_FORMAT, callee_method->code());
1605   }
1606 #endif
1607 
1608   return callee_method;
1609 }
1610 
1611 #ifdef ASSERT
1612 void SharedRuntime::check_member_name_argument_is_last_argument(methodHandle method,
1613                                                                 const BasicType* sig_bt,
1614                                                                 const VMRegPair* regs) {
1615   ResourceMark rm;
1616   const int total_args_passed = method->size_of_parameters();
1617   const VMRegPair*    regs_with_member_name = regs;
1618         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1619 
1620   const int member_arg_pos = total_args_passed - 1;
1621   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1622   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1623 
1624   const bool is_outgoing = method->is_method_handle_intrinsic();
1625   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1626 
1627   for (int i = 0; i < member_arg_pos; i++) {
1628     VMReg a =    regs_with_member_name[i].first();
1629     VMReg b = regs_without_member_name[i].first();
1630     assert(a->value() == b->value(), err_msg_res("register allocation mismatch: a=%d, b=%d", a->value(), b->value()));
1631   }
1632   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1633 }
1634 #endif
1635 
1636 // ---------------------------------------------------------------------------
1637 // We are calling the interpreter via a c2i. Normally this would mean that
1638 // we were called by a compiled method. However we could have lost a race
1639 // where we went int -> i2c -> c2i and so the caller could in fact be
1640 // interpreted. If the caller is compiled we attempt to patch the caller
1641 // so he no longer calls into the interpreter.
1642 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1643   Method* moop(method);
1644 
1645   address entry_point = moop->from_compiled_entry();
1646 
1647   // It's possible that deoptimization can occur at a call site which hasn't
1648   // been resolved yet, in which case this function will be called from
1649   // an nmethod that has been patched for deopt and we can ignore the
1650   // request for a fixup.
1651   // Also it is possible that we lost a race in that from_compiled_entry
1652   // is now back to the i2c in that case we don't need to patch and if
1653   // we did we'd leap into space because the callsite needs to use
1654   // "to interpreter" stub in order to load up the Method*. Don't
1655   // ask me how I know this...
1656 
1657   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1658   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1659     return;
1660   }
1661 
1662   // The check above makes sure this is a nmethod.
1663   nmethod* nm = cb->as_nmethod_or_null();
1664   assert(nm, "must be");
1665 
1666   // Get the return PC for the passed caller PC.
1667   address return_pc = caller_pc + frame::pc_return_offset;
1668 
1669   // There is a benign race here. We could be attempting to patch to a compiled
1670   // entry point at the same time the callee is being deoptimized. If that is
1671   // the case then entry_point may in fact point to a c2i and we'd patch the
1672   // call site with the same old data. clear_code will set code() to NULL
1673   // at the end of it. If we happen to see that NULL then we can skip trying
1674   // to patch. If we hit the window where the callee has a c2i in the
1675   // from_compiled_entry and the NULL isn't present yet then we lose the race
1676   // and patch the code with the same old data. Asi es la vida.
1677 
1678   if (moop->code() == NULL) return;
1679 
1680   if (nm->is_in_use()) {
1681 
1682     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1683     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1684     if (NativeCall::is_call_before(return_pc)) {
1685       NativeCall *call = nativeCall_before(return_pc);
1686       //
1687       // bug 6281185. We might get here after resolving a call site to a vanilla
1688       // virtual call. Because the resolvee uses the verified entry it may then
1689       // see compiled code and attempt to patch the site by calling us. This would
1690       // then incorrectly convert the call site to optimized and its downhill from
1691       // there. If you're lucky you'll get the assert in the bugid, if not you've
1692       // just made a call site that could be megamorphic into a monomorphic site
1693       // for the rest of its life! Just another racing bug in the life of
1694       // fixup_callers_callsite ...
1695       //
1696       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1697       iter.next();
1698       assert(iter.has_current(), "must have a reloc at java call site");
1699       relocInfo::relocType typ = iter.reloc()->type();
1700       if (typ != relocInfo::static_call_type &&
1701            typ != relocInfo::opt_virtual_call_type &&
1702            typ != relocInfo::static_stub_type) {
1703         return;
1704       }
1705       address destination = call->destination();
1706       if (destination != entry_point) {
1707         CodeBlob* callee = CodeCache::find_blob(destination);
1708         // callee == cb seems weird. It means calling interpreter thru stub.
1709         if (callee == cb || callee->is_adapter_blob()) {
1710           // static call or optimized virtual
1711           if (TraceCallFixup) {
1712             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", caller_pc);
1713             moop->print_short_name(tty);
1714             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1715           }
1716           call->set_destination_mt_safe(entry_point);
1717         } else {
1718           if (TraceCallFixup) {
1719             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1720             moop->print_short_name(tty);
1721             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1722           }
1723           // assert is too strong could also be resolve destinations.
1724           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1725         }
1726       } else {
1727           if (TraceCallFixup) {
1728             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", caller_pc);
1729             moop->print_short_name(tty);
1730             tty->print_cr(" to " INTPTR_FORMAT, entry_point);
1731           }
1732       }
1733     }
1734   }
1735 IRT_END
1736 
1737 
1738 // same as JVM_Arraycopy, but called directly from compiled code
1739 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1740                                                 oopDesc* dest, jint dest_pos,
1741                                                 jint length,
1742                                                 JavaThread* thread)) {
1743 #ifndef PRODUCT
1744   _slow_array_copy_ctr++;
1745 #endif
1746   // Check if we have null pointers
1747   if (src == NULL || dest == NULL) {
1748     THROW(vmSymbols::java_lang_NullPointerException());
1749   }
1750   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1751   // even though the copy_array API also performs dynamic checks to ensure
1752   // that src and dest are truly arrays (and are conformable).
1753   // The copy_array mechanism is awkward and could be removed, but
1754   // the compilers don't call this function except as a last resort,
1755   // so it probably doesn't matter.
1756   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1757                                         (arrayOopDesc*)dest, dest_pos,
1758                                         length, thread);
1759 }
1760 JRT_END
1761 
1762 char* SharedRuntime::generate_class_cast_message(
1763     JavaThread* thread, const char* objName) {
1764 
1765   // Get target class name from the checkcast instruction
1766   vframeStream vfst(thread, true);
1767   assert(!vfst.at_end(), "Java frame must exist");
1768   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1769   Klass* targetKlass = vfst.method()->constants()->klass_at(
1770     cc.index(), thread);
1771   return generate_class_cast_message(objName, targetKlass->external_name());
1772 }
1773 
1774 char* SharedRuntime::generate_class_cast_message(
1775     const char* objName, const char* targetKlassName, const char* desc) {
1776   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1777 
1778   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1779   if (NULL == message) {
1780     // Shouldn't happen, but don't cause even more problems if it does
1781     message = const_cast<char*>(objName);
1782   } else {
1783     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1784   }
1785   return message;
1786 }
1787 
1788 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1789   (void) JavaThread::current()->reguard_stack();
1790 JRT_END
1791 
1792 
1793 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1794 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1795   oop obj(_obj);
1796   if (PrintBiasedLockingStatistics) {
1797     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1798   }
1799   Handle h_obj(THREAD, obj);
1800   if (UseBiasedLocking) {
1801     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1802     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1803   } else {
1804     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1805   }
1806   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1807 JRT_END
1808 
1809 // Handles the uncommon cases of monitor unlocking in compiled code
1810 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock))
1811    oop obj(_obj);
1812   Thread* THREAD = JavaThread::current();
1813   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1814   // testing was unable to ever fire the assert that guarded it so I have removed it.
1815   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1816 #undef MIGHT_HAVE_PENDING
1817 #ifdef MIGHT_HAVE_PENDING
1818   // Save and restore any pending_exception around the exception mark.
1819   // While the slow_exit must not throw an exception, we could come into
1820   // this routine with one set.
1821   oop pending_excep = NULL;
1822   const char* pending_file;
1823   int pending_line;
1824   if (HAS_PENDING_EXCEPTION) {
1825     pending_excep = PENDING_EXCEPTION;
1826     pending_file  = THREAD->exception_file();
1827     pending_line  = THREAD->exception_line();
1828     CLEAR_PENDING_EXCEPTION;
1829   }
1830 #endif /* MIGHT_HAVE_PENDING */
1831 
1832   {
1833     // Exit must be non-blocking, and therefore no exceptions can be thrown.
1834     EXCEPTION_MARK;
1835     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
1836   }
1837 
1838 #ifdef MIGHT_HAVE_PENDING
1839   if (pending_excep != NULL) {
1840     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
1841   }
1842 #endif /* MIGHT_HAVE_PENDING */
1843 JRT_END
1844 
1845 #ifndef PRODUCT
1846 
1847 void SharedRuntime::print_statistics() {
1848   ttyLocker ttyl;
1849   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
1850 
1851   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
1852 
1853   SharedRuntime::print_ic_miss_histogram();
1854 
1855   if (CountRemovableExceptions) {
1856     if (_nof_removable_exceptions > 0) {
1857       Unimplemented(); // this counter is not yet incremented
1858       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
1859     }
1860   }
1861 
1862   // Dump the JRT_ENTRY counters
1863   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
1864   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
1865   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
1866   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
1867   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
1868   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
1869   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
1870 
1871   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
1872   tty->print_cr("%5d wrong method", _wrong_method_ctr);
1873   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
1874   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
1875   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
1876 
1877   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
1878   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
1879   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
1880   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
1881   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
1882   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
1883   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
1884   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
1885   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
1886   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
1887   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
1888   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
1889   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
1890   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
1891   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
1892   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
1893 
1894   AdapterHandlerLibrary::print_statistics();
1895 
1896   if (xtty != NULL)  xtty->tail("statistics");
1897 }
1898 
1899 inline double percent(int x, int y) {
1900   return 100.0 * x / MAX2(y, 1);
1901 }
1902 
1903 class MethodArityHistogram {
1904  public:
1905   enum { MAX_ARITY = 256 };
1906  private:
1907   static int _arity_histogram[MAX_ARITY];     // histogram of #args
1908   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
1909   static int _max_arity;                      // max. arity seen
1910   static int _max_size;                       // max. arg size seen
1911 
1912   static void add_method_to_histogram(nmethod* nm) {
1913     Method* m = nm->method();
1914     ArgumentCount args(m->signature());
1915     int arity   = args.size() + (m->is_static() ? 0 : 1);
1916     int argsize = m->size_of_parameters();
1917     arity   = MIN2(arity, MAX_ARITY-1);
1918     argsize = MIN2(argsize, MAX_ARITY-1);
1919     int count = nm->method()->compiled_invocation_count();
1920     _arity_histogram[arity]  += count;
1921     _size_histogram[argsize] += count;
1922     _max_arity = MAX2(_max_arity, arity);
1923     _max_size  = MAX2(_max_size, argsize);
1924   }
1925 
1926   void print_histogram_helper(int n, int* histo, const char* name) {
1927     const int N = MIN2(5, n);
1928     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1929     double sum = 0;
1930     double weighted_sum = 0;
1931     int i;
1932     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
1933     double rest = sum;
1934     double percent = sum / 100;
1935     for (i = 0; i <= N; i++) {
1936       rest -= histo[i];
1937       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
1938     }
1939     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
1940     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
1941   }
1942 
1943   void print_histogram() {
1944     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
1945     print_histogram_helper(_max_arity, _arity_histogram, "arity");
1946     tty->print_cr("\nSame for parameter size (in words):");
1947     print_histogram_helper(_max_size, _size_histogram, "size");
1948     tty->cr();
1949   }
1950 
1951  public:
1952   MethodArityHistogram() {
1953     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1954     _max_arity = _max_size = 0;
1955     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
1956     CodeCache::nmethods_do(add_method_to_histogram);
1957     print_histogram();
1958   }
1959 };
1960 
1961 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
1962 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
1963 int MethodArityHistogram::_max_arity;
1964 int MethodArityHistogram::_max_size;
1965 
1966 void SharedRuntime::print_call_statistics(int comp_total) {
1967   tty->print_cr("Calls from compiled code:");
1968   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
1969   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
1970   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
1971   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
1972   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
1973   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
1974   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
1975   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
1976   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
1977   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
1978   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
1979   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
1980   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
1981   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
1982   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
1983   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
1984   tty->cr();
1985   tty->print_cr("Note 1: counter updates are not MT-safe.");
1986   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
1987   tty->print_cr("        %% in nested categories are relative to their category");
1988   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
1989   tty->cr();
1990 
1991   MethodArityHistogram h;
1992 }
1993 #endif
1994 
1995 
1996 // A simple wrapper class around the calling convention information
1997 // that allows sharing of adapters for the same calling convention.
1998 class AdapterFingerPrint : public CHeapObj<mtCode> {
1999  private:
2000   enum {
2001     _basic_type_bits = 4,
2002     _basic_type_mask = right_n_bits(_basic_type_bits),
2003     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2004     _compact_int_count = 3
2005   };
2006   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2007   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2008 
2009   union {
2010     int  _compact[_compact_int_count];
2011     int* _fingerprint;
2012   } _value;
2013   int _length; // A negative length indicates the fingerprint is in the compact form,
2014                // Otherwise _value._fingerprint is the array.
2015 
2016   // Remap BasicTypes that are handled equivalently by the adapters.
2017   // These are correct for the current system but someday it might be
2018   // necessary to make this mapping platform dependent.
2019   static int adapter_encoding(BasicType in) {
2020     switch (in) {
2021       case T_BOOLEAN:
2022       case T_BYTE:
2023       case T_SHORT:
2024       case T_CHAR:
2025         // There are all promoted to T_INT in the calling convention
2026         return T_INT;
2027 
2028       case T_OBJECT:
2029       case T_ARRAY:
2030         // In other words, we assume that any register good enough for
2031         // an int or long is good enough for a managed pointer.
2032 #ifdef _LP64
2033         return T_LONG;
2034 #else
2035         return T_INT;
2036 #endif
2037 
2038       case T_INT:
2039       case T_LONG:
2040       case T_FLOAT:
2041       case T_DOUBLE:
2042       case T_VOID:
2043         return in;
2044 
2045       default:
2046         ShouldNotReachHere();
2047         return T_CONFLICT;
2048     }
2049   }
2050 
2051  public:
2052   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2053     // The fingerprint is based on the BasicType signature encoded
2054     // into an array of ints with eight entries per int.
2055     int* ptr;
2056     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2057     if (len <= _compact_int_count) {
2058       assert(_compact_int_count == 3, "else change next line");
2059       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2060       // Storing the signature encoded as signed chars hits about 98%
2061       // of the time.
2062       _length = -len;
2063       ptr = _value._compact;
2064     } else {
2065       _length = len;
2066       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2067       ptr = _value._fingerprint;
2068     }
2069 
2070     // Now pack the BasicTypes with 8 per int
2071     int sig_index = 0;
2072     for (int index = 0; index < len; index++) {
2073       int value = 0;
2074       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2075         int bt = ((sig_index < total_args_passed)
2076                   ? adapter_encoding(sig_bt[sig_index++])
2077                   : 0);
2078         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2079         value = (value << _basic_type_bits) | bt;
2080       }
2081       ptr[index] = value;
2082     }
2083   }
2084 
2085   ~AdapterFingerPrint() {
2086     if (_length > 0) {
2087       FREE_C_HEAP_ARRAY(int, _value._fingerprint, mtCode);
2088     }
2089   }
2090 
2091   int value(int index) {
2092     if (_length < 0) {
2093       return _value._compact[index];
2094     }
2095     return _value._fingerprint[index];
2096   }
2097   int length() {
2098     if (_length < 0) return -_length;
2099     return _length;
2100   }
2101 
2102   bool is_compact() {
2103     return _length <= 0;
2104   }
2105 
2106   unsigned int compute_hash() {
2107     int hash = 0;
2108     for (int i = 0; i < length(); i++) {
2109       int v = value(i);
2110       hash = (hash << 8) ^ v ^ (hash >> 5);
2111     }
2112     return (unsigned int)hash;
2113   }
2114 
2115   const char* as_string() {
2116     stringStream st;
2117     st.print("0x");
2118     for (int i = 0; i < length(); i++) {
2119       st.print("%08x", value(i));
2120     }
2121     return st.as_string();
2122   }
2123 
2124   bool equals(AdapterFingerPrint* other) {
2125     if (other->_length != _length) {
2126       return false;
2127     }
2128     if (_length < 0) {
2129       assert(_compact_int_count == 3, "else change next line");
2130       return _value._compact[0] == other->_value._compact[0] &&
2131              _value._compact[1] == other->_value._compact[1] &&
2132              _value._compact[2] == other->_value._compact[2];
2133     } else {
2134       for (int i = 0; i < _length; i++) {
2135         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2136           return false;
2137         }
2138       }
2139     }
2140     return true;
2141   }
2142 };
2143 
2144 
2145 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2146 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2147   friend class AdapterHandlerTableIterator;
2148 
2149  private:
2150 
2151 #ifndef PRODUCT
2152   static int _lookups; // number of calls to lookup
2153   static int _buckets; // number of buckets checked
2154   static int _equals;  // number of buckets checked with matching hash
2155   static int _hits;    // number of successful lookups
2156   static int _compact; // number of equals calls with compact signature
2157 #endif
2158 
2159   AdapterHandlerEntry* bucket(int i) {
2160     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2161   }
2162 
2163  public:
2164   AdapterHandlerTable()
2165     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2166 
2167   // Create a new entry suitable for insertion in the table
2168   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2169     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2170     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2171     return entry;
2172   }
2173 
2174   // Insert an entry into the table
2175   void add(AdapterHandlerEntry* entry) {
2176     int index = hash_to_index(entry->hash());
2177     add_entry(index, entry);
2178   }
2179 
2180   void free_entry(AdapterHandlerEntry* entry) {
2181     entry->deallocate();
2182     BasicHashtable<mtCode>::free_entry(entry);
2183   }
2184 
2185   // Find a entry with the same fingerprint if it exists
2186   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2187     NOT_PRODUCT(_lookups++);
2188     AdapterFingerPrint fp(total_args_passed, sig_bt);
2189     unsigned int hash = fp.compute_hash();
2190     int index = hash_to_index(hash);
2191     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2192       NOT_PRODUCT(_buckets++);
2193       if (e->hash() == hash) {
2194         NOT_PRODUCT(_equals++);
2195         if (fp.equals(e->fingerprint())) {
2196 #ifndef PRODUCT
2197           if (fp.is_compact()) _compact++;
2198           _hits++;
2199 #endif
2200           return e;
2201         }
2202       }
2203     }
2204     return NULL;
2205   }
2206 
2207 #ifndef PRODUCT
2208   void print_statistics() {
2209     ResourceMark rm;
2210     int longest = 0;
2211     int empty = 0;
2212     int total = 0;
2213     int nonempty = 0;
2214     for (int index = 0; index < table_size(); index++) {
2215       int count = 0;
2216       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2217         count++;
2218       }
2219       if (count != 0) nonempty++;
2220       if (count == 0) empty++;
2221       if (count > longest) longest = count;
2222       total += count;
2223     }
2224     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2225                   empty, longest, total, total / (double)nonempty);
2226     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2227                   _lookups, _buckets, _equals, _hits, _compact);
2228   }
2229 #endif
2230 };
2231 
2232 
2233 #ifndef PRODUCT
2234 
2235 int AdapterHandlerTable::_lookups;
2236 int AdapterHandlerTable::_buckets;
2237 int AdapterHandlerTable::_equals;
2238 int AdapterHandlerTable::_hits;
2239 int AdapterHandlerTable::_compact;
2240 
2241 #endif
2242 
2243 class AdapterHandlerTableIterator : public StackObj {
2244  private:
2245   AdapterHandlerTable* _table;
2246   int _index;
2247   AdapterHandlerEntry* _current;
2248 
2249   void scan() {
2250     while (_index < _table->table_size()) {
2251       AdapterHandlerEntry* a = _table->bucket(_index);
2252       _index++;
2253       if (a != NULL) {
2254         _current = a;
2255         return;
2256       }
2257     }
2258   }
2259 
2260  public:
2261   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2262     scan();
2263   }
2264   bool has_next() {
2265     return _current != NULL;
2266   }
2267   AdapterHandlerEntry* next() {
2268     if (_current != NULL) {
2269       AdapterHandlerEntry* result = _current;
2270       _current = _current->next();
2271       if (_current == NULL) scan();
2272       return result;
2273     } else {
2274       return NULL;
2275     }
2276   }
2277 };
2278 
2279 
2280 // ---------------------------------------------------------------------------
2281 // Implementation of AdapterHandlerLibrary
2282 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2283 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2284 const int AdapterHandlerLibrary_size = 16*K;
2285 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2286 
2287 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2288   // Should be called only when AdapterHandlerLibrary_lock is active.
2289   if (_buffer == NULL) // Initialize lazily
2290       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2291   return _buffer;
2292 }
2293 
2294 void AdapterHandlerLibrary::initialize() {
2295   if (_adapters != NULL) return;
2296   _adapters = new AdapterHandlerTable();
2297 
2298   // Create a special handler for abstract methods.  Abstract methods
2299   // are never compiled so an i2c entry is somewhat meaningless, but
2300   // throw AbstractMethodError just in case.
2301   // Pass wrong_method_abstract for the c2i transitions to return
2302   // AbstractMethodError for invalid invocations.
2303   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2304   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2305                                                               StubRoutines::throw_AbstractMethodError_entry(),
2306                                                               wrong_method_abstract, wrong_method_abstract);
2307 }
2308 
2309 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2310                                                       address i2c_entry,
2311                                                       address c2i_entry,
2312                                                       address c2i_unverified_entry) {
2313   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2314 }
2315 
2316 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(methodHandle method) {
2317   // Use customized signature handler.  Need to lock around updates to
2318   // the AdapterHandlerTable (it is not safe for concurrent readers
2319   // and a single writer: this could be fixed if it becomes a
2320   // problem).
2321 
2322   // Get the address of the ic_miss handlers before we grab the
2323   // AdapterHandlerLibrary_lock. This fixes bug 6236259 which
2324   // was caused by the initialization of the stubs happening
2325   // while we held the lock and then notifying jvmti while
2326   // holding it. This just forces the initialization to be a little
2327   // earlier.
2328   address ic_miss = SharedRuntime::get_ic_miss_stub();
2329   assert(ic_miss != NULL, "must have handler");
2330 
2331   ResourceMark rm;
2332 
2333   NOT_PRODUCT(int insts_size);
2334   AdapterBlob* new_adapter = NULL;
2335   AdapterHandlerEntry* entry = NULL;
2336   AdapterFingerPrint* fingerprint = NULL;
2337   {
2338     MutexLocker mu(AdapterHandlerLibrary_lock);
2339     // make sure data structure is initialized
2340     initialize();
2341 
2342     if (method->is_abstract()) {
2343       return _abstract_method_handler;
2344     }
2345 
2346     // Fill in the signature array, for the calling-convention call.
2347     int total_args_passed = method->size_of_parameters(); // All args on stack
2348 
2349     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2350     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2351     int i = 0;
2352     if (!method->is_static())  // Pass in receiver first
2353       sig_bt[i++] = T_OBJECT;
2354     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2355       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2356       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2357         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2358     }
2359     assert(i == total_args_passed, "");
2360 
2361     // Lookup method signature's fingerprint
2362     entry = _adapters->lookup(total_args_passed, sig_bt);
2363 
2364 #ifdef ASSERT
2365     AdapterHandlerEntry* shared_entry = NULL;
2366     // Start adapter sharing verification only after the VM is booted.
2367     if (VerifyAdapterSharing && (entry != NULL)) {
2368       shared_entry = entry;
2369       entry = NULL;
2370     }
2371 #endif
2372 
2373     if (entry != NULL) {
2374       return entry;
2375     }
2376 
2377     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2378     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2379 
2380     // Make a C heap allocated version of the fingerprint to store in the adapter
2381     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2382 
2383     // StubRoutines::code2() is initialized after this function can be called. As a result,
2384     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2385     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2386     // stub that ensure that an I2C stub is called from an interpreter frame.
2387     bool contains_all_checks = StubRoutines::code2() != NULL;
2388 
2389     // Create I2C & C2I handlers
2390     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2391     if (buf != NULL) {
2392       CodeBuffer buffer(buf);
2393       short buffer_locs[20];
2394       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2395                                              sizeof(buffer_locs)/sizeof(relocInfo));
2396 
2397       MacroAssembler _masm(&buffer);
2398       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2399                                                      total_args_passed,
2400                                                      comp_args_on_stack,
2401                                                      sig_bt,
2402                                                      regs,
2403                                                      fingerprint);
2404 #ifdef ASSERT
2405       if (VerifyAdapterSharing) {
2406         if (shared_entry != NULL) {
2407           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2408           // Release the one just created and return the original
2409           _adapters->free_entry(entry);
2410           return shared_entry;
2411         } else  {
2412           entry->save_code(buf->code_begin(), buffer.insts_size());
2413         }
2414       }
2415 #endif
2416 
2417       new_adapter = AdapterBlob::create(&buffer);
2418       NOT_PRODUCT(insts_size = buffer.insts_size());
2419     }
2420     if (new_adapter == NULL) {
2421       // CodeCache is full, disable compilation
2422       // Ought to log this but compile log is only per compile thread
2423       // and we're some non descript Java thread.
2424       return NULL; // Out of CodeCache space
2425     }
2426     entry->relocate(new_adapter->content_begin());
2427 #ifndef PRODUCT
2428     // debugging suppport
2429     if (PrintAdapterHandlers || PrintStubCode) {
2430       ttyLocker ttyl;
2431       entry->print_adapter_on(tty);
2432       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2433                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2434                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2435       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2436       if (Verbose || PrintStubCode) {
2437         address first_pc = entry->base_address();
2438         if (first_pc != NULL) {
2439           Disassembler::decode(first_pc, first_pc + insts_size);
2440           tty->cr();
2441         }
2442       }
2443     }
2444 #endif
2445     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2446     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2447     if (contains_all_checks || !VerifyAdapterCalls) {
2448       _adapters->add(entry);
2449     }
2450   }
2451   // Outside of the lock
2452   if (new_adapter != NULL) {
2453     char blob_id[256];
2454     jio_snprintf(blob_id,
2455                  sizeof(blob_id),
2456                  "%s(%s)@" PTR_FORMAT,
2457                  new_adapter->name(),
2458                  fingerprint->as_string(),
2459                  new_adapter->content_begin());
2460     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2461 
2462     if (JvmtiExport::should_post_dynamic_code_generated()) {
2463       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2464     }
2465   }
2466   return entry;
2467 }
2468 
2469 address AdapterHandlerEntry::base_address() {
2470   address base = _i2c_entry;
2471   if (base == NULL)  base = _c2i_entry;
2472   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2473   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2474   return base;
2475 }
2476 
2477 void AdapterHandlerEntry::relocate(address new_base) {
2478   address old_base = base_address();
2479   assert(old_base != NULL, "");
2480   ptrdiff_t delta = new_base - old_base;
2481   if (_i2c_entry != NULL)
2482     _i2c_entry += delta;
2483   if (_c2i_entry != NULL)
2484     _c2i_entry += delta;
2485   if (_c2i_unverified_entry != NULL)
2486     _c2i_unverified_entry += delta;
2487   assert(base_address() == new_base, "");
2488 }
2489 
2490 
2491 void AdapterHandlerEntry::deallocate() {
2492   delete _fingerprint;
2493 #ifdef ASSERT
2494   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code, mtCode);
2495 #endif
2496 }
2497 
2498 
2499 #ifdef ASSERT
2500 // Capture the code before relocation so that it can be compared
2501 // against other versions.  If the code is captured after relocation
2502 // then relative instructions won't be equivalent.
2503 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2504   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2505   _saved_code_length = length;
2506   memcpy(_saved_code, buffer, length);
2507 }
2508 
2509 
2510 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2511   if (length != _saved_code_length) {
2512     return false;
2513   }
2514 
2515   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2516 }
2517 #endif
2518 
2519 
2520 /**
2521  * Create a native wrapper for this native method.  The wrapper converts the
2522  * Java-compiled calling convention to the native convention, handles
2523  * arguments, and transitions to native.  On return from the native we transition
2524  * back to java blocking if a safepoint is in progress.
2525  */
2526 void AdapterHandlerLibrary::create_native_wrapper(methodHandle method) {
2527   ResourceMark rm;
2528   nmethod* nm = NULL;
2529 
2530   assert(method->is_native(), "must be native");
2531   assert(method->is_method_handle_intrinsic() ||
2532          method->has_native_function(), "must have something valid to call!");
2533 
2534   {
2535     // Perform the work while holding the lock, but perform any printing outside the lock
2536     MutexLocker mu(AdapterHandlerLibrary_lock);
2537     // See if somebody beat us to it
2538     nm = method->code();
2539     if (nm != NULL) {
2540       return;
2541     }
2542 
2543     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2544     assert(compile_id > 0, "Must generate native wrapper");
2545 
2546 
2547     ResourceMark rm;
2548     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2549     if (buf != NULL) {
2550       CodeBuffer buffer(buf);
2551       double locs_buf[20];
2552       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2553       MacroAssembler _masm(&buffer);
2554 
2555       // Fill in the signature array, for the calling-convention call.
2556       const int total_args_passed = method->size_of_parameters();
2557 
2558       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2559       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2560       int i=0;
2561       if (!method->is_static())  // Pass in receiver first
2562         sig_bt[i++] = T_OBJECT;
2563       SignatureStream ss(method->signature());
2564       for (; !ss.at_return_type(); ss.next()) {
2565         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2566         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2567           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2568       }
2569       assert(i == total_args_passed, "");
2570       BasicType ret_type = ss.type();
2571 
2572       // Now get the compiled-Java layout as input (or output) arguments.
2573       // NOTE: Stubs for compiled entry points of method handle intrinsics
2574       // are just trampolines so the argument registers must be outgoing ones.
2575       const bool is_outgoing = method->is_method_handle_intrinsic();
2576       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2577 
2578       // Generate the compiled-to-native wrapper code
2579       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2580 
2581       if (nm != NULL) {
2582         method->set_code(method, nm);
2583       }
2584     }
2585   } // Unlock AdapterHandlerLibrary_lock
2586 
2587 
2588   // Install the generated code.
2589   if (nm != NULL) {
2590     if (PrintCompilation) {
2591       ttyLocker ttyl;
2592       CompileTask::print_compilation(tty, nm, method->is_static() ? "(static)" : "");
2593     }
2594     nm->post_compiled_method_load_event();
2595   }
2596 }
2597 
2598 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2599   assert(thread == JavaThread::current(), "must be");
2600   // The code is about to enter a JNI lazy critical native method and
2601   // _needs_gc is true, so if this thread is already in a critical
2602   // section then just return, otherwise this thread should block
2603   // until needs_gc has been cleared.
2604   if (thread->in_critical()) {
2605     return;
2606   }
2607   // Lock and unlock a critical section to give the system a chance to block
2608   GC_locker::lock_critical(thread);
2609   GC_locker::unlock_critical(thread);
2610 JRT_END
2611 
2612 #ifdef HAVE_DTRACE_H
2613 /**
2614  * Create a dtrace nmethod for this method.  The wrapper converts the
2615  * Java-compiled calling convention to the native convention, makes a dummy call
2616  * (actually nops for the size of the call instruction, which become a trap if
2617  * probe is enabled), and finally returns to the caller. Since this all looks like a
2618  * leaf, no thread transition is needed.
2619  */
2620 nmethod *AdapterHandlerLibrary::create_dtrace_nmethod(methodHandle method) {
2621   ResourceMark rm;
2622   nmethod* nm = NULL;
2623 
2624   if (PrintCompilation) {
2625     ttyLocker ttyl;
2626     tty->print("---   n  ");
2627     method->print_short_name(tty);
2628     if (method->is_static()) {
2629       tty->print(" (static)");
2630     }
2631     tty->cr();
2632   }
2633 
2634   {
2635     // perform the work while holding the lock, but perform any printing
2636     // outside the lock
2637     MutexLocker mu(AdapterHandlerLibrary_lock);
2638     // See if somebody beat us to it
2639     nm = method->code();
2640     if (nm) {
2641       return nm;
2642     }
2643 
2644     ResourceMark rm;
2645 
2646     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2647     if (buf != NULL) {
2648       CodeBuffer buffer(buf);
2649       // Need a few relocation entries
2650       double locs_buf[20];
2651       buffer.insts()->initialize_shared_locs(
2652         (relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2653       MacroAssembler _masm(&buffer);
2654 
2655       // Generate the compiled-to-native wrapper code
2656       nm = SharedRuntime::generate_dtrace_nmethod(&_masm, method);
2657     }
2658   }
2659   return nm;
2660 }
2661 
2662 // the dtrace method needs to convert java lang string to utf8 string.
2663 void SharedRuntime::get_utf(oopDesc* src, address dst) {
2664   typeArrayOop jlsValue  = java_lang_String::value(src);
2665   int          jlsOffset = java_lang_String::offset(src);
2666   int          jlsLen    = java_lang_String::length(src);
2667   jchar*       jlsPos    = (jlsLen == 0) ? NULL :
2668                                            jlsValue->char_at_addr(jlsOffset);
2669   assert(TypeArrayKlass::cast(jlsValue->klass())->element_type() == T_CHAR, "compressed string");
2670   (void) UNICODE::as_utf8(jlsPos, jlsLen, (char *)dst, max_dtrace_string_size);
2671 }
2672 #endif // ndef HAVE_DTRACE_H
2673 
2674 int SharedRuntime::convert_ints_to_longints_argcnt(int in_args_count, BasicType* in_sig_bt) {
2675   int argcnt = in_args_count;
2676   if (CCallingConventionRequiresIntsAsLongs) {
2677     for (int in = 0; in < in_args_count; in++) {
2678       BasicType bt = in_sig_bt[in];
2679       switch (bt) {
2680         case T_BOOLEAN:
2681         case T_CHAR:
2682         case T_BYTE:
2683         case T_SHORT:
2684         case T_INT:
2685           argcnt++;
2686           break;
2687         default:
2688           break;
2689       }
2690     }
2691   } else {
2692     assert(0, "This should not be needed on this platform");
2693   }
2694 
2695   return argcnt;
2696 }
2697 
2698 void SharedRuntime::convert_ints_to_longints(int i2l_argcnt, int& in_args_count,
2699                                              BasicType*& in_sig_bt, VMRegPair*& in_regs) {
2700   if (CCallingConventionRequiresIntsAsLongs) {
2701     VMRegPair *new_in_regs   = NEW_RESOURCE_ARRAY(VMRegPair, i2l_argcnt);
2702     BasicType *new_in_sig_bt = NEW_RESOURCE_ARRAY(BasicType, i2l_argcnt);
2703 
2704     int argcnt = 0;
2705     for (int in = 0; in < in_args_count; in++, argcnt++) {
2706       BasicType bt  = in_sig_bt[in];
2707       VMRegPair reg = in_regs[in];
2708       switch (bt) {
2709         case T_BOOLEAN:
2710         case T_CHAR:
2711         case T_BYTE:
2712         case T_SHORT:
2713         case T_INT:
2714           // Convert (bt) to (T_LONG,bt).
2715           new_in_sig_bt[argcnt] = T_LONG;
2716           new_in_sig_bt[argcnt+1] = bt;
2717           assert(reg.first()->is_valid() && !reg.second()->is_valid(), "");
2718           new_in_regs[argcnt].set2(reg.first());
2719           new_in_regs[argcnt+1].set_bad();
2720           argcnt++;
2721           break;
2722         default:
2723           // No conversion needed.
2724           new_in_sig_bt[argcnt] = bt;
2725           new_in_regs[argcnt]   = reg;
2726           break;
2727       }
2728     }
2729     assert(argcnt == i2l_argcnt, "must match");
2730 
2731     in_regs = new_in_regs;
2732     in_sig_bt = new_in_sig_bt;
2733     in_args_count = i2l_argcnt;
2734   } else {
2735     assert(0, "This should not be needed on this platform");
2736   }
2737 }
2738 
2739 // -------------------------------------------------------------------------
2740 // Java-Java calling convention
2741 // (what you use when Java calls Java)
2742 
2743 //------------------------------name_for_receiver----------------------------------
2744 // For a given signature, return the VMReg for parameter 0.
2745 VMReg SharedRuntime::name_for_receiver() {
2746   VMRegPair regs;
2747   BasicType sig_bt = T_OBJECT;
2748   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2749   // Return argument 0 register.  In the LP64 build pointers
2750   // take 2 registers, but the VM wants only the 'main' name.
2751   return regs.first();
2752 }
2753 
2754 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2755   // This method is returning a data structure allocating as a
2756   // ResourceObject, so do not put any ResourceMarks in here.
2757   char *s = sig->as_C_string();
2758   int len = (int)strlen(s);
2759   s++; len--;                   // Skip opening paren
2760   char *t = s+len;
2761   while (*(--t) != ')');      // Find close paren
2762 
2763   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2764   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2765   int cnt = 0;
2766   if (has_receiver) {
2767     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2768   }
2769 
2770   while (s < t) {
2771     switch (*s++) {            // Switch on signature character
2772     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2773     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2774     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2775     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2776     case 'I': sig_bt[cnt++] = T_INT;     break;
2777     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2778     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2779     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2780     case 'V': sig_bt[cnt++] = T_VOID;    break;
2781     case 'L':                   // Oop
2782       while (*s++ != ';');   // Skip signature
2783       sig_bt[cnt++] = T_OBJECT;
2784       break;
2785     case '[': {                 // Array
2786       do {                      // Skip optional size
2787         while (*s >= '0' && *s <= '9') s++;
2788       } while (*s++ == '[');   // Nested arrays?
2789       // Skip element type
2790       if (s[-1] == 'L')
2791         while (*s++ != ';'); // Skip signature
2792       sig_bt[cnt++] = T_ARRAY;
2793       break;
2794     }
2795     default : ShouldNotReachHere();
2796     }
2797   }
2798 
2799   if (has_appendix) {
2800     sig_bt[cnt++] = T_OBJECT;
2801   }
2802 
2803   assert(cnt < 256, "grow table size");
2804 
2805   int comp_args_on_stack;
2806   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2807 
2808   // the calling convention doesn't count out_preserve_stack_slots so
2809   // we must add that in to get "true" stack offsets.
2810 
2811   if (comp_args_on_stack) {
2812     for (int i = 0; i < cnt; i++) {
2813       VMReg reg1 = regs[i].first();
2814       if (reg1->is_stack()) {
2815         // Yuck
2816         reg1 = reg1->bias(out_preserve_stack_slots());
2817       }
2818       VMReg reg2 = regs[i].second();
2819       if (reg2->is_stack()) {
2820         // Yuck
2821         reg2 = reg2->bias(out_preserve_stack_slots());
2822       }
2823       regs[i].set_pair(reg2, reg1);
2824     }
2825   }
2826 
2827   // results
2828   *arg_size = cnt;
2829   return regs;
2830 }
2831 
2832 // OSR Migration Code
2833 //
2834 // This code is used convert interpreter frames into compiled frames.  It is
2835 // called from very start of a compiled OSR nmethod.  A temp array is
2836 // allocated to hold the interesting bits of the interpreter frame.  All
2837 // active locks are inflated to allow them to move.  The displaced headers and
2838 // active interpreter locals are copied into the temp buffer.  Then we return
2839 // back to the compiled code.  The compiled code then pops the current
2840 // interpreter frame off the stack and pushes a new compiled frame.  Then it
2841 // copies the interpreter locals and displaced headers where it wants.
2842 // Finally it calls back to free the temp buffer.
2843 //
2844 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
2845 
2846 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
2847 
2848   //
2849   // This code is dependent on the memory layout of the interpreter local
2850   // array and the monitors. On all of our platforms the layout is identical
2851   // so this code is shared. If some platform lays the their arrays out
2852   // differently then this code could move to platform specific code or
2853   // the code here could be modified to copy items one at a time using
2854   // frame accessor methods and be platform independent.
2855 
2856   frame fr = thread->last_frame();
2857   assert(fr.is_interpreted_frame(), "");
2858   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
2859 
2860   // Figure out how many monitors are active.
2861   int active_monitor_count = 0;
2862   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
2863        kptr < fr.interpreter_frame_monitor_begin();
2864        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
2865     if (kptr->obj() != NULL) active_monitor_count++;
2866   }
2867 
2868   // QQQ we could place number of active monitors in the array so that compiled code
2869   // could double check it.
2870 
2871   Method* moop = fr.interpreter_frame_method();
2872   int max_locals = moop->max_locals();
2873   // Allocate temp buffer, 1 word per local & 2 per active monitor
2874   int buf_size_words = max_locals + active_monitor_count*2;
2875   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
2876 
2877   // Copy the locals.  Order is preserved so that loading of longs works.
2878   // Since there's no GC I can copy the oops blindly.
2879   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
2880   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
2881                        (HeapWord*)&buf[0],
2882                        max_locals);
2883 
2884   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
2885   int i = max_locals;
2886   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
2887        kptr2 < fr.interpreter_frame_monitor_begin();
2888        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
2889     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
2890       BasicLock *lock = kptr2->lock();
2891       // Inflate so the displaced header becomes position-independent
2892       if (lock->displaced_header()->is_unlocked())
2893         ObjectSynchronizer::inflate_helper(kptr2->obj());
2894       // Now the displaced header is free to move
2895       buf[i++] = (intptr_t)lock->displaced_header();
2896       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
2897     }
2898   }
2899   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
2900 
2901   return buf;
2902 JRT_END
2903 
2904 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
2905   FREE_C_HEAP_ARRAY(intptr_t, buf, mtCode);
2906 JRT_END
2907 
2908 bool AdapterHandlerLibrary::contains(CodeBlob* b) {
2909   AdapterHandlerTableIterator iter(_adapters);
2910   while (iter.has_next()) {
2911     AdapterHandlerEntry* a = iter.next();
2912     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
2913   }
2914   return false;
2915 }
2916 
2917 void AdapterHandlerLibrary::print_handler_on(outputStream* st, CodeBlob* b) {
2918   AdapterHandlerTableIterator iter(_adapters);
2919   while (iter.has_next()) {
2920     AdapterHandlerEntry* a = iter.next();
2921     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
2922       st->print("Adapter for signature: ");
2923       a->print_adapter_on(tty);
2924       return;
2925     }
2926   }
2927   assert(false, "Should have found handler");
2928 }
2929 
2930 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
2931   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
2932                (intptr_t) this, fingerprint()->as_string(),
2933                get_i2c_entry(), get_c2i_entry(), get_c2i_unverified_entry());
2934 
2935 }
2936 
2937 #ifndef PRODUCT
2938 
2939 void AdapterHandlerLibrary::print_statistics() {
2940   _adapters->print_statistics();
2941 }
2942 
2943 #endif /* PRODUCT */