1 /*
   2  * Copyright (c) 1997, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "opto/addnode.hpp"
  37 #include "opto/block.hpp"
  38 #include "opto/c2compiler.hpp"
  39 #include "opto/callGenerator.hpp"
  40 #include "opto/callnode.hpp"
  41 #include "opto/cfgnode.hpp"
  42 #include "opto/chaitin.hpp"
  43 #include "opto/compile.hpp"
  44 #include "opto/connode.hpp"
  45 #include "opto/divnode.hpp"
  46 #include "opto/escape.hpp"
  47 #include "opto/idealGraphPrinter.hpp"
  48 #include "opto/loopnode.hpp"
  49 #include "opto/machnode.hpp"
  50 #include "opto/macro.hpp"
  51 #include "opto/matcher.hpp"
  52 #include "opto/mathexactnode.hpp"
  53 #include "opto/memnode.hpp"
  54 #include "opto/mulnode.hpp"
  55 #include "opto/narrowptrnode.hpp"
  56 #include "opto/node.hpp"
  57 #include "opto/opcodes.hpp"
  58 #include "opto/output.hpp"
  59 #include "opto/parse.hpp"
  60 #include "opto/phaseX.hpp"
  61 #include "opto/rootnode.hpp"
  62 #include "opto/runtime.hpp"
  63 #include "opto/stringopts.hpp"
  64 #include "opto/type.hpp"
  65 #include "opto/vectornode.hpp"
  66 #include "runtime/arguments.hpp"
  67 #include "runtime/signature.hpp"
  68 #include "runtime/stubRoutines.hpp"
  69 #include "runtime/timer.hpp"
  70 #include "trace/tracing.hpp"
  71 #include "utilities/copy.hpp"
  72 
  73 
  74 // -------------------- Compile::mach_constant_base_node -----------------------
  75 // Constant table base node singleton.
  76 MachConstantBaseNode* Compile::mach_constant_base_node() {
  77   if (_mach_constant_base_node == NULL) {
  78     _mach_constant_base_node = new MachConstantBaseNode();
  79     _mach_constant_base_node->add_req(C->root());
  80   }
  81   return _mach_constant_base_node;
  82 }
  83 
  84 
  85 /// Support for intrinsics.
  86 
  87 // Return the index at which m must be inserted (or already exists).
  88 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
  89 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
  90 #ifdef ASSERT
  91   for (int i = 1; i < _intrinsics->length(); i++) {
  92     CallGenerator* cg1 = _intrinsics->at(i-1);
  93     CallGenerator* cg2 = _intrinsics->at(i);
  94     assert(cg1->method() != cg2->method()
  95            ? cg1->method()     < cg2->method()
  96            : cg1->is_virtual() < cg2->is_virtual(),
  97            "compiler intrinsics list must stay sorted");
  98   }
  99 #endif
 100   // Binary search sorted list, in decreasing intervals [lo, hi].
 101   int lo = 0, hi = _intrinsics->length()-1;
 102   while (lo <= hi) {
 103     int mid = (uint)(hi + lo) / 2;
 104     ciMethod* mid_m = _intrinsics->at(mid)->method();
 105     if (m < mid_m) {
 106       hi = mid-1;
 107     } else if (m > mid_m) {
 108       lo = mid+1;
 109     } else {
 110       // look at minor sort key
 111       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 112       if (is_virtual < mid_virt) {
 113         hi = mid-1;
 114       } else if (is_virtual > mid_virt) {
 115         lo = mid+1;
 116       } else {
 117         return mid;  // exact match
 118       }
 119     }
 120   }
 121   return lo;  // inexact match
 122 }
 123 
 124 void Compile::register_intrinsic(CallGenerator* cg) {
 125   if (_intrinsics == NULL) {
 126     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 127   }
 128   // This code is stolen from ciObjectFactory::insert.
 129   // Really, GrowableArray should have methods for
 130   // insert_at, remove_at, and binary_search.
 131   int len = _intrinsics->length();
 132   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 133   if (index == len) {
 134     _intrinsics->append(cg);
 135   } else {
 136 #ifdef ASSERT
 137     CallGenerator* oldcg = _intrinsics->at(index);
 138     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 139 #endif
 140     _intrinsics->append(_intrinsics->at(len-1));
 141     int pos;
 142     for (pos = len-2; pos >= index; pos--) {
 143       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 144     }
 145     _intrinsics->at_put(index, cg);
 146   }
 147   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 148 }
 149 
 150 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 151   assert(m->is_loaded(), "don't try this on unloaded methods");
 152   if (_intrinsics != NULL) {
 153     int index = intrinsic_insertion_index(m, is_virtual);
 154     if (index < _intrinsics->length()
 155         && _intrinsics->at(index)->method() == m
 156         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 157       return _intrinsics->at(index);
 158     }
 159   }
 160   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 161   if (m->intrinsic_id() != vmIntrinsics::_none &&
 162       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 163     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 164     if (cg != NULL) {
 165       // Save it for next time:
 166       register_intrinsic(cg);
 167       return cg;
 168     } else {
 169       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 170     }
 171   }
 172   return NULL;
 173 }
 174 
 175 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 176 // in library_call.cpp.
 177 
 178 
 179 #ifndef PRODUCT
 180 // statistics gathering...
 181 
 182 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 183 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 184 
 185 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 186   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 187   int oflags = _intrinsic_hist_flags[id];
 188   assert(flags != 0, "what happened?");
 189   if (is_virtual) {
 190     flags |= _intrinsic_virtual;
 191   }
 192   bool changed = (flags != oflags);
 193   if ((flags & _intrinsic_worked) != 0) {
 194     juint count = (_intrinsic_hist_count[id] += 1);
 195     if (count == 1) {
 196       changed = true;           // first time
 197     }
 198     // increment the overall count also:
 199     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 200   }
 201   if (changed) {
 202     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 203       // Something changed about the intrinsic's virtuality.
 204       if ((flags & _intrinsic_virtual) != 0) {
 205         // This is the first use of this intrinsic as a virtual call.
 206         if (oflags != 0) {
 207           // We already saw it as a non-virtual, so note both cases.
 208           flags |= _intrinsic_both;
 209         }
 210       } else if ((oflags & _intrinsic_both) == 0) {
 211         // This is the first use of this intrinsic as a non-virtual
 212         flags |= _intrinsic_both;
 213       }
 214     }
 215     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 216   }
 217   // update the overall flags also:
 218   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 219   return changed;
 220 }
 221 
 222 static char* format_flags(int flags, char* buf) {
 223   buf[0] = 0;
 224   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 225   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 226   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 227   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 228   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 229   if (buf[0] == 0)  strcat(buf, ",");
 230   assert(buf[0] == ',', "must be");
 231   return &buf[1];
 232 }
 233 
 234 void Compile::print_intrinsic_statistics() {
 235   char flagsbuf[100];
 236   ttyLocker ttyl;
 237   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 238   tty->print_cr("Compiler intrinsic usage:");
 239   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 240   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 241   #define PRINT_STAT_LINE(name, c, f) \
 242     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 243   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 244     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 245     int   flags = _intrinsic_hist_flags[id];
 246     juint count = _intrinsic_hist_count[id];
 247     if ((flags | count) != 0) {
 248       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 249     }
 250   }
 251   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 252   if (xtty != NULL)  xtty->tail("statistics");
 253 }
 254 
 255 void Compile::print_statistics() {
 256   { ttyLocker ttyl;
 257     if (xtty != NULL)  xtty->head("statistics type='opto'");
 258     Parse::print_statistics();
 259     PhaseCCP::print_statistics();
 260     PhaseRegAlloc::print_statistics();
 261     Scheduling::print_statistics();
 262     PhasePeephole::print_statistics();
 263     PhaseIdealLoop::print_statistics();
 264     if (xtty != NULL)  xtty->tail("statistics");
 265   }
 266   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 267     // put this under its own <statistics> element.
 268     print_intrinsic_statistics();
 269   }
 270 }
 271 #endif //PRODUCT
 272 
 273 // Support for bundling info
 274 Bundle* Compile::node_bundling(const Node *n) {
 275   assert(valid_bundle_info(n), "oob");
 276   return &_node_bundling_base[n->_idx];
 277 }
 278 
 279 bool Compile::valid_bundle_info(const Node *n) {
 280   return (_node_bundling_limit > n->_idx);
 281 }
 282 
 283 
 284 void Compile::gvn_replace_by(Node* n, Node* nn) {
 285   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 286     Node* use = n->last_out(i);
 287     bool is_in_table = initial_gvn()->hash_delete(use);
 288     uint uses_found = 0;
 289     for (uint j = 0; j < use->len(); j++) {
 290       if (use->in(j) == n) {
 291         if (j < use->req())
 292           use->set_req(j, nn);
 293         else
 294           use->set_prec(j, nn);
 295         uses_found++;
 296       }
 297     }
 298     if (is_in_table) {
 299       // reinsert into table
 300       initial_gvn()->hash_find_insert(use);
 301     }
 302     record_for_igvn(use);
 303     i -= uses_found;    // we deleted 1 or more copies of this edge
 304   }
 305 }
 306 
 307 
 308 static inline bool not_a_node(const Node* n) {
 309   if (n == NULL)                   return true;
 310   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 311   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 312   return false;
 313 }
 314 
 315 // Identify all nodes that are reachable from below, useful.
 316 // Use breadth-first pass that records state in a Unique_Node_List,
 317 // recursive traversal is slower.
 318 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 319   int estimated_worklist_size = unique();
 320   useful.map( estimated_worklist_size, NULL );  // preallocate space
 321 
 322   // Initialize worklist
 323   if (root() != NULL)     { useful.push(root()); }
 324   // If 'top' is cached, declare it useful to preserve cached node
 325   if( cached_top_node() ) { useful.push(cached_top_node()); }
 326 
 327   // Push all useful nodes onto the list, breadthfirst
 328   for( uint next = 0; next < useful.size(); ++next ) {
 329     assert( next < unique(), "Unique useful nodes < total nodes");
 330     Node *n  = useful.at(next);
 331     uint max = n->len();
 332     for( uint i = 0; i < max; ++i ) {
 333       Node *m = n->in(i);
 334       if (not_a_node(m))  continue;
 335       useful.push(m);
 336     }
 337   }
 338 }
 339 
 340 // Update dead_node_list with any missing dead nodes using useful
 341 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 342 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 343   uint max_idx = unique();
 344   VectorSet& useful_node_set = useful.member_set();
 345 
 346   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 347     // If node with index node_idx is not in useful set,
 348     // mark it as dead in dead node list.
 349     if (! useful_node_set.test(node_idx) ) {
 350       record_dead_node(node_idx);
 351     }
 352   }
 353 }
 354 
 355 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 356   int shift = 0;
 357   for (int i = 0; i < inlines->length(); i++) {
 358     CallGenerator* cg = inlines->at(i);
 359     CallNode* call = cg->call_node();
 360     if (shift > 0) {
 361       inlines->at_put(i-shift, cg);
 362     }
 363     if (!useful.member(call)) {
 364       shift++;
 365     }
 366   }
 367   inlines->trunc_to(inlines->length()-shift);
 368 }
 369 
 370 // Disconnect all useless nodes by disconnecting those at the boundary.
 371 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 372   uint next = 0;
 373   while (next < useful.size()) {
 374     Node *n = useful.at(next++);
 375     if (n->is_SafePoint()) {
 376       // We're done with a parsing phase. Replaced nodes are not valid
 377       // beyond that point.
 378       n->as_SafePoint()->delete_replaced_nodes();
 379     }
 380     // Use raw traversal of out edges since this code removes out edges
 381     int max = n->outcnt();
 382     for (int j = 0; j < max; ++j) {
 383       Node* child = n->raw_out(j);
 384       if (! useful.member(child)) {
 385         assert(!child->is_top() || child != top(),
 386                "If top is cached in Compile object it is in useful list");
 387         // Only need to remove this out-edge to the useless node
 388         n->raw_del_out(j);
 389         --j;
 390         --max;
 391       }
 392     }
 393     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 394       record_for_igvn(n->unique_out());
 395     }
 396   }
 397   // Remove useless macro and predicate opaq nodes
 398   for (int i = C->macro_count()-1; i >= 0; i--) {
 399     Node* n = C->macro_node(i);
 400     if (!useful.member(n)) {
 401       remove_macro_node(n);
 402     }
 403   }
 404   // Remove useless expensive node
 405   for (int i = C->expensive_count()-1; i >= 0; i--) {
 406     Node* n = C->expensive_node(i);
 407     if (!useful.member(n)) {
 408       remove_expensive_node(n);
 409     }
 410   }
 411   // clean up the late inline lists
 412   remove_useless_late_inlines(&_string_late_inlines, useful);
 413   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 414   remove_useless_late_inlines(&_late_inlines, useful);
 415   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 416 }
 417 
 418 //------------------------------frame_size_in_words-----------------------------
 419 // frame_slots in units of words
 420 int Compile::frame_size_in_words() const {
 421   // shift is 0 in LP32 and 1 in LP64
 422   const int shift = (LogBytesPerWord - LogBytesPerInt);
 423   int words = _frame_slots >> shift;
 424   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 425   return words;
 426 }
 427 
 428 // To bang the stack of this compiled method we use the stack size
 429 // that the interpreter would need in case of a deoptimization. This
 430 // removes the need to bang the stack in the deoptimization blob which
 431 // in turn simplifies stack overflow handling.
 432 int Compile::bang_size_in_bytes() const {
 433   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 434 }
 435 
 436 // ============================================================================
 437 //------------------------------CompileWrapper---------------------------------
 438 class CompileWrapper : public StackObj {
 439   Compile *const _compile;
 440  public:
 441   CompileWrapper(Compile* compile);
 442 
 443   ~CompileWrapper();
 444 };
 445 
 446 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 447   // the Compile* pointer is stored in the current ciEnv:
 448   ciEnv* env = compile->env();
 449   assert(env == ciEnv::current(), "must already be a ciEnv active");
 450   assert(env->compiler_data() == NULL, "compile already active?");
 451   env->set_compiler_data(compile);
 452   assert(compile == Compile::current(), "sanity");
 453 
 454   compile->set_type_dict(NULL);
 455   compile->set_type_hwm(NULL);
 456   compile->set_type_last_size(0);
 457   compile->set_last_tf(NULL, NULL);
 458   compile->set_indexSet_arena(NULL);
 459   compile->set_indexSet_free_block_list(NULL);
 460   compile->init_type_arena();
 461   Type::Initialize(compile);
 462   _compile->set_scratch_buffer_blob(NULL);
 463   _compile->begin_method();
 464 }
 465 CompileWrapper::~CompileWrapper() {
 466   _compile->end_method();
 467   if (_compile->scratch_buffer_blob() != NULL)
 468     BufferBlob::free(_compile->scratch_buffer_blob());
 469   _compile->env()->set_compiler_data(NULL);
 470 }
 471 
 472 
 473 //----------------------------print_compile_messages---------------------------
 474 void Compile::print_compile_messages() {
 475 #ifndef PRODUCT
 476   // Check if recompiling
 477   if (_subsume_loads == false && PrintOpto) {
 478     // Recompiling without allowing machine instructions to subsume loads
 479     tty->print_cr("*********************************************************");
 480     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 481     tty->print_cr("*********************************************************");
 482   }
 483   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 484     // Recompiling without escape analysis
 485     tty->print_cr("*********************************************************");
 486     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 487     tty->print_cr("*********************************************************");
 488   }
 489   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 490     // Recompiling without boxing elimination
 491     tty->print_cr("*********************************************************");
 492     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 493     tty->print_cr("*********************************************************");
 494   }
 495   if (env()->break_at_compile()) {
 496     // Open the debugger when compiling this method.
 497     tty->print("### Breaking when compiling: ");
 498     method()->print_short_name();
 499     tty->cr();
 500     BREAKPOINT;
 501   }
 502 
 503   if( PrintOpto ) {
 504     if (is_osr_compilation()) {
 505       tty->print("[OSR]%3d", _compile_id);
 506     } else {
 507       tty->print("%3d", _compile_id);
 508     }
 509   }
 510 #endif
 511 }
 512 
 513 
 514 //-----------------------init_scratch_buffer_blob------------------------------
 515 // Construct a temporary BufferBlob and cache it for this compile.
 516 void Compile::init_scratch_buffer_blob(int const_size) {
 517   // If there is already a scratch buffer blob allocated and the
 518   // constant section is big enough, use it.  Otherwise free the
 519   // current and allocate a new one.
 520   BufferBlob* blob = scratch_buffer_blob();
 521   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 522     // Use the current blob.
 523   } else {
 524     if (blob != NULL) {
 525       BufferBlob::free(blob);
 526     }
 527 
 528     ResourceMark rm;
 529     _scratch_const_size = const_size;
 530     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 531     blob = BufferBlob::create("Compile::scratch_buffer", size);
 532     // Record the buffer blob for next time.
 533     set_scratch_buffer_blob(blob);
 534     // Have we run out of code space?
 535     if (scratch_buffer_blob() == NULL) {
 536       // Let CompilerBroker disable further compilations.
 537       record_failure("Not enough space for scratch buffer in CodeCache");
 538       CompileBroker::handle_full_code_cache(CodeBlobType::NonNMethod);
 539       return;
 540     }
 541   }
 542 
 543   // Initialize the relocation buffers
 544   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 545   set_scratch_locs_memory(locs_buf);
 546 }
 547 
 548 
 549 //-----------------------scratch_emit_size-------------------------------------
 550 // Helper function that computes size by emitting code
 551 uint Compile::scratch_emit_size(const Node* n) {
 552   // Start scratch_emit_size section.
 553   set_in_scratch_emit_size(true);
 554 
 555   // Emit into a trash buffer and count bytes emitted.
 556   // This is a pretty expensive way to compute a size,
 557   // but it works well enough if seldom used.
 558   // All common fixed-size instructions are given a size
 559   // method by the AD file.
 560   // Note that the scratch buffer blob and locs memory are
 561   // allocated at the beginning of the compile task, and
 562   // may be shared by several calls to scratch_emit_size.
 563   // The allocation of the scratch buffer blob is particularly
 564   // expensive, since it has to grab the code cache lock.
 565   BufferBlob* blob = this->scratch_buffer_blob();
 566   assert(blob != NULL, "Initialize BufferBlob at start");
 567   assert(blob->size() > MAX_inst_size, "sanity");
 568   relocInfo* locs_buf = scratch_locs_memory();
 569   address blob_begin = blob->content_begin();
 570   address blob_end   = (address)locs_buf;
 571   assert(blob->content_contains(blob_end), "sanity");
 572   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 573   buf.initialize_consts_size(_scratch_const_size);
 574   buf.initialize_stubs_size(MAX_stubs_size);
 575   assert(locs_buf != NULL, "sanity");
 576   int lsize = MAX_locs_size / 3;
 577   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 578   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 579   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 580 
 581   // Do the emission.
 582 
 583   Label fakeL; // Fake label for branch instructions.
 584   Label*   saveL = NULL;
 585   uint save_bnum = 0;
 586   bool is_branch = n->is_MachBranch();
 587   if (is_branch) {
 588     MacroAssembler masm(&buf);
 589     masm.bind(fakeL);
 590     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 591     n->as_MachBranch()->label_set(&fakeL, 0);
 592   }
 593   n->emit(buf, this->regalloc());
 594   if (is_branch) // Restore label.
 595     n->as_MachBranch()->label_set(saveL, save_bnum);
 596 
 597   // End scratch_emit_size section.
 598   set_in_scratch_emit_size(false);
 599 
 600   return buf.insts_size();
 601 }
 602 
 603 
 604 // ============================================================================
 605 //------------------------------Compile standard-------------------------------
 606 debug_only( int Compile::_debug_idx = 100000; )
 607 
 608 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 609 // the continuation bci for on stack replacement.
 610 
 611 
 612 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 613                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing )
 614                 : Phase(Compiler),
 615                   _env(ci_env),
 616                   _log(ci_env->log()),
 617                   _compile_id(ci_env->compile_id()),
 618                   _save_argument_registers(false),
 619                   _stub_name(NULL),
 620                   _stub_function(NULL),
 621                   _stub_entry_point(NULL),
 622                   _method(target),
 623                   _entry_bci(osr_bci),
 624                   _initial_gvn(NULL),
 625                   _for_igvn(NULL),
 626                   _warm_calls(NULL),
 627                   _subsume_loads(subsume_loads),
 628                   _do_escape_analysis(do_escape_analysis),
 629                   _eliminate_boxing(eliminate_boxing),
 630                   _failure_reason(NULL),
 631                   _code_buffer("Compile::Fill_buffer"),
 632                   _orig_pc_slot(0),
 633                   _orig_pc_slot_offset_in_bytes(0),
 634                   _has_method_handle_invokes(false),
 635                   _mach_constant_base_node(NULL),
 636                   _node_bundling_limit(0),
 637                   _node_bundling_base(NULL),
 638                   _java_calls(0),
 639                   _inner_loops(0),
 640                   _scratch_const_size(-1),
 641                   _in_scratch_emit_size(false),
 642                   _dead_node_list(comp_arena()),
 643                   _dead_node_count(0),
 644 #ifndef PRODUCT
 645                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 646                   _in_dump_cnt(0),
 647                   _printer(IdealGraphPrinter::printer()),
 648 #endif
 649                   _congraph(NULL),
 650                   _comp_arena(mtCompiler),
 651                   _node_arena(mtCompiler),
 652                   _old_arena(mtCompiler),
 653                   _Compile_types(mtCompiler),
 654                   _replay_inline_data(NULL),
 655                   _late_inlines(comp_arena(), 2, 0, NULL),
 656                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 657                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 658                   _late_inlines_pos(0),
 659                   _number_of_mh_late_inlines(0),
 660                   _inlining_progress(false),
 661                   _inlining_incrementally(false),
 662                   _print_inlining_list(NULL),
 663                   _print_inlining_stream(NULL),
 664                   _print_inlining_idx(0),
 665                   _print_inlining_output(NULL),
 666                   _interpreter_frame_size(0) {
 667   C = this;
 668 
 669   CompileWrapper cw(this);
 670 
 671   if (CITimeVerbose) {
 672     tty->print(" ");
 673     target->holder()->name()->print();
 674     tty->print(".");
 675     target->print_short_name();
 676     tty->print("  ");
 677   }
 678   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 679   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 680 
 681 #ifndef PRODUCT
 682   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 683   if (!print_opto_assembly) {
 684     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 685     if (print_assembly && !Disassembler::can_decode()) {
 686       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 687       print_opto_assembly = true;
 688     }
 689   }
 690   set_print_assembly(print_opto_assembly);
 691   set_parsed_irreducible_loop(false);
 692 
 693   if (method()->has_option("ReplayInline")) {
 694     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 695   }
 696 #endif
 697   set_print_inlining(PrintInlining || method()->has_option("PrintInlining") NOT_PRODUCT( || PrintOptoInlining));
 698   set_print_intrinsics(PrintIntrinsics || method()->has_option("PrintIntrinsics"));
 699   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 700 
 701   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 702     // Make sure the method being compiled gets its own MDO,
 703     // so we can at least track the decompile_count().
 704     // Need MDO to record RTM code generation state.
 705     method()->ensure_method_data();
 706   }
 707 
 708   Init(::AliasLevel);
 709 
 710 
 711   print_compile_messages();
 712 
 713   _ilt = InlineTree::build_inline_tree_root();
 714 
 715   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 716   assert(num_alias_types() >= AliasIdxRaw, "");
 717 
 718 #define MINIMUM_NODE_HASH  1023
 719   // Node list that Iterative GVN will start with
 720   Unique_Node_List for_igvn(comp_arena());
 721   set_for_igvn(&for_igvn);
 722 
 723   // GVN that will be run immediately on new nodes
 724   uint estimated_size = method()->code_size()*4+64;
 725   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 726   PhaseGVN gvn(node_arena(), estimated_size);
 727   set_initial_gvn(&gvn);
 728 
 729   print_inlining_init();
 730   { // Scope for timing the parser
 731     TracePhase tp("parse", &timers[_t_parser]);
 732 
 733     // Put top into the hash table ASAP.
 734     initial_gvn()->transform_no_reclaim(top());
 735 
 736     // Set up tf(), start(), and find a CallGenerator.
 737     CallGenerator* cg = NULL;
 738     if (is_osr_compilation()) {
 739       const TypeTuple *domain = StartOSRNode::osr_domain();
 740       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 741       init_tf(TypeFunc::make(domain, range));
 742       StartNode* s = new StartOSRNode(root(), domain);
 743       initial_gvn()->set_type_bottom(s);
 744       init_start(s);
 745       cg = CallGenerator::for_osr(method(), entry_bci());
 746     } else {
 747       // Normal case.
 748       init_tf(TypeFunc::make(method()));
 749       StartNode* s = new StartNode(root(), tf()->domain());
 750       initial_gvn()->set_type_bottom(s);
 751       init_start(s);
 752       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 753         // With java.lang.ref.reference.get() we must go through the
 754         // intrinsic when G1 is enabled - even when get() is the root
 755         // method of the compile - so that, if necessary, the value in
 756         // the referent field of the reference object gets recorded by
 757         // the pre-barrier code.
 758         // Specifically, if G1 is enabled, the value in the referent
 759         // field is recorded by the G1 SATB pre barrier. This will
 760         // result in the referent being marked live and the reference
 761         // object removed from the list of discovered references during
 762         // reference processing.
 763         cg = find_intrinsic(method(), false);
 764       }
 765       if (cg == NULL) {
 766         float past_uses = method()->interpreter_invocation_count();
 767         float expected_uses = past_uses;
 768         cg = CallGenerator::for_inline(method(), expected_uses);
 769       }
 770     }
 771     if (failing())  return;
 772     if (cg == NULL) {
 773       record_method_not_compilable_all_tiers("cannot parse method");
 774       return;
 775     }
 776     JVMState* jvms = build_start_state(start(), tf());
 777     if ((jvms = cg->generate(jvms)) == NULL) {
 778       record_method_not_compilable("method parse failed");
 779       return;
 780     }
 781     GraphKit kit(jvms);
 782 
 783     if (!kit.stopped()) {
 784       // Accept return values, and transfer control we know not where.
 785       // This is done by a special, unique ReturnNode bound to root.
 786       return_values(kit.jvms());
 787     }
 788 
 789     if (kit.has_exceptions()) {
 790       // Any exceptions that escape from this call must be rethrown
 791       // to whatever caller is dynamically above us on the stack.
 792       // This is done by a special, unique RethrowNode bound to root.
 793       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 794     }
 795 
 796     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 797 
 798     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 799       inline_string_calls(true);
 800     }
 801 
 802     if (failing())  return;
 803 
 804     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 805 
 806     // Remove clutter produced by parsing.
 807     if (!failing()) {
 808       ResourceMark rm;
 809       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 810     }
 811   }
 812 
 813   // Note:  Large methods are capped off in do_one_bytecode().
 814   if (failing())  return;
 815 
 816   // After parsing, node notes are no longer automagic.
 817   // They must be propagated by register_new_node_with_optimizer(),
 818   // clone(), or the like.
 819   set_default_node_notes(NULL);
 820 
 821   for (;;) {
 822     int successes = Inline_Warm();
 823     if (failing())  return;
 824     if (successes == 0)  break;
 825   }
 826 
 827   // Drain the list.
 828   Finish_Warm();
 829 #ifndef PRODUCT
 830   if (_printer) {
 831     _printer->print_inlining(this);
 832   }
 833 #endif
 834 
 835   if (failing())  return;
 836   NOT_PRODUCT( verify_graph_edges(); )
 837 
 838   // Now optimize
 839   Optimize();
 840   if (failing())  return;
 841   NOT_PRODUCT( verify_graph_edges(); )
 842 
 843 #ifndef PRODUCT
 844   if (PrintIdeal) {
 845     ttyLocker ttyl;  // keep the following output all in one block
 846     // This output goes directly to the tty, not the compiler log.
 847     // To enable tools to match it up with the compilation activity,
 848     // be sure to tag this tty output with the compile ID.
 849     if (xtty != NULL) {
 850       xtty->head("ideal compile_id='%d'%s", compile_id(),
 851                  is_osr_compilation()    ? " compile_kind='osr'" :
 852                  "");
 853     }
 854     root()->dump(9999);
 855     if (xtty != NULL) {
 856       xtty->tail("ideal");
 857     }
 858   }
 859 #endif
 860 
 861   NOT_PRODUCT( verify_barriers(); )
 862 
 863   // Dump compilation data to replay it.
 864   if (method()->has_option("DumpReplay")) {
 865     env()->dump_replay_data(_compile_id);
 866   }
 867   if (method()->has_option("DumpInline") && (ilt() != NULL)) {
 868     env()->dump_inline_data(_compile_id);
 869   }
 870 
 871   // Now that we know the size of all the monitors we can add a fixed slot
 872   // for the original deopt pc.
 873 
 874   _orig_pc_slot =  fixed_slots();
 875   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 876   set_fixed_slots(next_slot);
 877 
 878   // Compute when to use implicit null checks. Used by matching trap based
 879   // nodes and NullCheck optimization.
 880   set_allowed_deopt_reasons();
 881 
 882   // Now generate code
 883   Code_Gen();
 884   if (failing())  return;
 885 
 886   // Check if we want to skip execution of all compiled code.
 887   {
 888 #ifndef PRODUCT
 889     if (OptoNoExecute) {
 890       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 891       return;
 892     }
 893 #endif
 894     TracePhase tp("install_code", &timers[_t_registerMethod]);
 895 
 896     if (is_osr_compilation()) {
 897       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 898       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 899     } else {
 900       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 901       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 902     }
 903 
 904     env()->register_method(_method, _entry_bci,
 905                            &_code_offsets,
 906                            _orig_pc_slot_offset_in_bytes,
 907                            code_buffer(),
 908                            frame_size_in_words(), _oop_map_set,
 909                            &_handler_table, &_inc_table,
 910                            compiler,
 911                            env()->comp_level(),
 912                            has_unsafe_access(),
 913                            SharedRuntime::is_wide_vector(max_vector_size()),
 914                            rtm_state()
 915                            );
 916 
 917     if (log() != NULL) // Print code cache state into compiler log
 918       log()->code_cache_state();
 919   }
 920 }
 921 
 922 //------------------------------Compile----------------------------------------
 923 // Compile a runtime stub
 924 Compile::Compile( ciEnv* ci_env,
 925                   TypeFunc_generator generator,
 926                   address stub_function,
 927                   const char *stub_name,
 928                   int is_fancy_jump,
 929                   bool pass_tls,
 930                   bool save_arg_registers,
 931                   bool return_pc )
 932   : Phase(Compiler),
 933     _env(ci_env),
 934     _log(ci_env->log()),
 935     _compile_id(0),
 936     _save_argument_registers(save_arg_registers),
 937     _method(NULL),
 938     _stub_name(stub_name),
 939     _stub_function(stub_function),
 940     _stub_entry_point(NULL),
 941     _entry_bci(InvocationEntryBci),
 942     _initial_gvn(NULL),
 943     _for_igvn(NULL),
 944     _warm_calls(NULL),
 945     _orig_pc_slot(0),
 946     _orig_pc_slot_offset_in_bytes(0),
 947     _subsume_loads(true),
 948     _do_escape_analysis(false),
 949     _eliminate_boxing(false),
 950     _failure_reason(NULL),
 951     _code_buffer("Compile::Fill_buffer"),
 952     _has_method_handle_invokes(false),
 953     _mach_constant_base_node(NULL),
 954     _node_bundling_limit(0),
 955     _node_bundling_base(NULL),
 956     _java_calls(0),
 957     _inner_loops(0),
 958 #ifndef PRODUCT
 959     _trace_opto_output(TraceOptoOutput),
 960     _in_dump_cnt(0),
 961     _printer(NULL),
 962 #endif
 963     _comp_arena(mtCompiler),
 964     _node_arena(mtCompiler),
 965     _old_arena(mtCompiler),
 966     _Compile_types(mtCompiler),
 967     _dead_node_list(comp_arena()),
 968     _dead_node_count(0),
 969     _congraph(NULL),
 970     _replay_inline_data(NULL),
 971     _number_of_mh_late_inlines(0),
 972     _inlining_progress(false),
 973     _inlining_incrementally(false),
 974     _print_inlining_list(NULL),
 975     _print_inlining_stream(NULL),
 976     _print_inlining_idx(0),
 977     _print_inlining_output(NULL),
 978     _allowed_reasons(0),
 979     _interpreter_frame_size(0) {
 980   C = this;
 981 
 982   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
 983   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
 984 
 985 #ifndef PRODUCT
 986   set_print_assembly(PrintFrameConverterAssembly);
 987   set_parsed_irreducible_loop(false);
 988 #endif
 989   set_has_irreducible_loop(false); // no loops
 990 
 991   CompileWrapper cw(this);
 992   Init(/*AliasLevel=*/ 0);
 993   init_tf((*generator)());
 994 
 995   {
 996     // The following is a dummy for the sake of GraphKit::gen_stub
 997     Unique_Node_List for_igvn(comp_arena());
 998     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 999     PhaseGVN gvn(Thread::current()->resource_area(),255);
1000     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1001     gvn.transform_no_reclaim(top());
1002 
1003     GraphKit kit;
1004     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1005   }
1006 
1007   NOT_PRODUCT( verify_graph_edges(); )
1008   Code_Gen();
1009   if (failing())  return;
1010 
1011 
1012   // Entry point will be accessed using compile->stub_entry_point();
1013   if (code_buffer() == NULL) {
1014     Matcher::soft_match_failure();
1015   } else {
1016     if (PrintAssembly && (WizardMode || Verbose))
1017       tty->print_cr("### Stub::%s", stub_name);
1018 
1019     if (!failing()) {
1020       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1021 
1022       // Make the NMethod
1023       // For now we mark the frame as never safe for profile stackwalking
1024       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1025                                                       code_buffer(),
1026                                                       CodeOffsets::frame_never_safe,
1027                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1028                                                       frame_size_in_words(),
1029                                                       _oop_map_set,
1030                                                       save_arg_registers);
1031       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1032 
1033       _stub_entry_point = rs->entry_point();
1034     }
1035   }
1036 }
1037 
1038 //------------------------------Init-------------------------------------------
1039 // Prepare for a single compilation
1040 void Compile::Init(int aliaslevel) {
1041   _unique  = 0;
1042   _regalloc = NULL;
1043 
1044   _tf      = NULL;  // filled in later
1045   _top     = NULL;  // cached later
1046   _matcher = NULL;  // filled in later
1047   _cfg     = NULL;  // filled in later
1048 
1049   set_24_bit_selection_and_mode(Use24BitFP, false);
1050 
1051   _node_note_array = NULL;
1052   _default_node_notes = NULL;
1053   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1054 
1055   _immutable_memory = NULL; // filled in at first inquiry
1056 
1057   // Globally visible Nodes
1058   // First set TOP to NULL to give safe behavior during creation of RootNode
1059   set_cached_top_node(NULL);
1060   set_root(new RootNode());
1061   // Now that you have a Root to point to, create the real TOP
1062   set_cached_top_node( new ConNode(Type::TOP) );
1063   set_recent_alloc(NULL, NULL);
1064 
1065   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1066   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1067   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1068   env()->set_dependencies(new Dependencies(env()));
1069 
1070   _fixed_slots = 0;
1071   set_has_split_ifs(false);
1072   set_has_loops(has_method() && method()->has_loops()); // first approximation
1073   set_has_stringbuilder(false);
1074   set_has_boxed_value(false);
1075   _trap_can_recompile = false;  // no traps emitted yet
1076   _major_progress = true; // start out assuming good things will happen
1077   set_has_unsafe_access(false);
1078   set_max_vector_size(0);
1079   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1080   set_decompile_count(0);
1081 
1082   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
1083   set_num_loop_opts(LoopOptsCount);
1084   set_do_inlining(Inline);
1085   set_max_inline_size(MaxInlineSize);
1086   set_freq_inline_size(FreqInlineSize);
1087   set_do_scheduling(OptoScheduling);
1088   set_do_count_invocations(false);
1089   set_do_method_data_update(false);
1090   set_age_code(has_method() && method()->profile_aging());
1091   set_rtm_state(NoRTM); // No RTM lock eliding by default
1092 #if INCLUDE_RTM_OPT
1093   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1094     int rtm_state = method()->method_data()->rtm_state();
1095     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1096       // Don't generate RTM lock eliding code.
1097       set_rtm_state(NoRTM);
1098     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1099       // Generate RTM lock eliding code without abort ratio calculation code.
1100       set_rtm_state(UseRTM);
1101     } else if (UseRTMDeopt) {
1102       // Generate RTM lock eliding code and include abort ratio calculation
1103       // code if UseRTMDeopt is on.
1104       set_rtm_state(ProfileRTM);
1105     }
1106   }
1107 #endif
1108   if (debug_info()->recording_non_safepoints()) {
1109     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1110                         (comp_arena(), 8, 0, NULL));
1111     set_default_node_notes(Node_Notes::make(this));
1112   }
1113 
1114   // // -- Initialize types before each compile --
1115   // // Update cached type information
1116   // if( _method && _method->constants() )
1117   //   Type::update_loaded_types(_method, _method->constants());
1118 
1119   // Init alias_type map.
1120   if (!_do_escape_analysis && aliaslevel == 3)
1121     aliaslevel = 2;  // No unique types without escape analysis
1122   _AliasLevel = aliaslevel;
1123   const int grow_ats = 16;
1124   _max_alias_types = grow_ats;
1125   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1126   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1127   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1128   {
1129     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1130   }
1131   // Initialize the first few types.
1132   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1133   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1134   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1135   _num_alias_types = AliasIdxRaw+1;
1136   // Zero out the alias type cache.
1137   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1138   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1139   probe_alias_cache(NULL)->_index = AliasIdxTop;
1140 
1141   _intrinsics = NULL;
1142   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1143   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1144   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1145   register_library_intrinsics();
1146 }
1147 
1148 //---------------------------init_start----------------------------------------
1149 // Install the StartNode on this compile object.
1150 void Compile::init_start(StartNode* s) {
1151   if (failing())
1152     return; // already failing
1153   assert(s == start(), "");
1154 }
1155 
1156 /**
1157  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1158  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1159  * the ideal graph.
1160  */
1161 StartNode* Compile::start() const {
1162   assert (!failing(), err_msg_res("Must not have pending failure. Reason is: %s", failure_reason()));
1163   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1164     Node* start = root()->fast_out(i);
1165     if (start->is_Start()) {
1166       return start->as_Start();
1167     }
1168   }
1169   fatal("Did not find Start node!");
1170   return NULL;
1171 }
1172 
1173 //-------------------------------immutable_memory-------------------------------------
1174 // Access immutable memory
1175 Node* Compile::immutable_memory() {
1176   if (_immutable_memory != NULL) {
1177     return _immutable_memory;
1178   }
1179   StartNode* s = start();
1180   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1181     Node *p = s->fast_out(i);
1182     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1183       _immutable_memory = p;
1184       return _immutable_memory;
1185     }
1186   }
1187   ShouldNotReachHere();
1188   return NULL;
1189 }
1190 
1191 //----------------------set_cached_top_node------------------------------------
1192 // Install the cached top node, and make sure Node::is_top works correctly.
1193 void Compile::set_cached_top_node(Node* tn) {
1194   if (tn != NULL)  verify_top(tn);
1195   Node* old_top = _top;
1196   _top = tn;
1197   // Calling Node::setup_is_top allows the nodes the chance to adjust
1198   // their _out arrays.
1199   if (_top != NULL)     _top->setup_is_top();
1200   if (old_top != NULL)  old_top->setup_is_top();
1201   assert(_top == NULL || top()->is_top(), "");
1202 }
1203 
1204 #ifdef ASSERT
1205 uint Compile::count_live_nodes_by_graph_walk() {
1206   Unique_Node_List useful(comp_arena());
1207   // Get useful node list by walking the graph.
1208   identify_useful_nodes(useful);
1209   return useful.size();
1210 }
1211 
1212 void Compile::print_missing_nodes() {
1213 
1214   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1215   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1216     return;
1217   }
1218 
1219   // This is an expensive function. It is executed only when the user
1220   // specifies VerifyIdealNodeCount option or otherwise knows the
1221   // additional work that needs to be done to identify reachable nodes
1222   // by walking the flow graph and find the missing ones using
1223   // _dead_node_list.
1224 
1225   Unique_Node_List useful(comp_arena());
1226   // Get useful node list by walking the graph.
1227   identify_useful_nodes(useful);
1228 
1229   uint l_nodes = C->live_nodes();
1230   uint l_nodes_by_walk = useful.size();
1231 
1232   if (l_nodes != l_nodes_by_walk) {
1233     if (_log != NULL) {
1234       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1235       _log->stamp();
1236       _log->end_head();
1237     }
1238     VectorSet& useful_member_set = useful.member_set();
1239     int last_idx = l_nodes_by_walk;
1240     for (int i = 0; i < last_idx; i++) {
1241       if (useful_member_set.test(i)) {
1242         if (_dead_node_list.test(i)) {
1243           if (_log != NULL) {
1244             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1245           }
1246           if (PrintIdealNodeCount) {
1247             // Print the log message to tty
1248               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1249               useful.at(i)->dump();
1250           }
1251         }
1252       }
1253       else if (! _dead_node_list.test(i)) {
1254         if (_log != NULL) {
1255           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1256         }
1257         if (PrintIdealNodeCount) {
1258           // Print the log message to tty
1259           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1260         }
1261       }
1262     }
1263     if (_log != NULL) {
1264       _log->tail("mismatched_nodes");
1265     }
1266   }
1267 }
1268 void Compile::record_modified_node(Node* n) {
1269   if (_modified_nodes != NULL && !_inlining_incrementally &&
1270       n->outcnt() != 0 && !n->is_Con()) {
1271     _modified_nodes->push(n);
1272   }
1273 }
1274 
1275 void Compile::remove_modified_node(Node* n) {
1276   if (_modified_nodes != NULL) {
1277     _modified_nodes->remove(n);
1278   }
1279 }
1280 #endif
1281 
1282 #ifndef PRODUCT
1283 void Compile::verify_top(Node* tn) const {
1284   if (tn != NULL) {
1285     assert(tn->is_Con(), "top node must be a constant");
1286     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1287     assert(tn->in(0) != NULL, "must have live top node");
1288   }
1289 }
1290 #endif
1291 
1292 
1293 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1294 
1295 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1296   guarantee(arr != NULL, "");
1297   int num_blocks = arr->length();
1298   if (grow_by < num_blocks)  grow_by = num_blocks;
1299   int num_notes = grow_by * _node_notes_block_size;
1300   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1301   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1302   while (num_notes > 0) {
1303     arr->append(notes);
1304     notes     += _node_notes_block_size;
1305     num_notes -= _node_notes_block_size;
1306   }
1307   assert(num_notes == 0, "exact multiple, please");
1308 }
1309 
1310 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1311   if (source == NULL || dest == NULL)  return false;
1312 
1313   if (dest->is_Con())
1314     return false;               // Do not push debug info onto constants.
1315 
1316 #ifdef ASSERT
1317   // Leave a bread crumb trail pointing to the original node:
1318   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1319     dest->set_debug_orig(source);
1320   }
1321 #endif
1322 
1323   if (node_note_array() == NULL)
1324     return false;               // Not collecting any notes now.
1325 
1326   // This is a copy onto a pre-existing node, which may already have notes.
1327   // If both nodes have notes, do not overwrite any pre-existing notes.
1328   Node_Notes* source_notes = node_notes_at(source->_idx);
1329   if (source_notes == NULL || source_notes->is_clear())  return false;
1330   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1331   if (dest_notes == NULL || dest_notes->is_clear()) {
1332     return set_node_notes_at(dest->_idx, source_notes);
1333   }
1334 
1335   Node_Notes merged_notes = (*source_notes);
1336   // The order of operations here ensures that dest notes will win...
1337   merged_notes.update_from(dest_notes);
1338   return set_node_notes_at(dest->_idx, &merged_notes);
1339 }
1340 
1341 
1342 //--------------------------allow_range_check_smearing-------------------------
1343 // Gating condition for coalescing similar range checks.
1344 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1345 // single covering check that is at least as strong as any of them.
1346 // If the optimization succeeds, the simplified (strengthened) range check
1347 // will always succeed.  If it fails, we will deopt, and then give up
1348 // on the optimization.
1349 bool Compile::allow_range_check_smearing() const {
1350   // If this method has already thrown a range-check,
1351   // assume it was because we already tried range smearing
1352   // and it failed.
1353   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1354   return !already_trapped;
1355 }
1356 
1357 
1358 //------------------------------flatten_alias_type-----------------------------
1359 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1360   int offset = tj->offset();
1361   TypePtr::PTR ptr = tj->ptr();
1362 
1363   // Known instance (scalarizable allocation) alias only with itself.
1364   bool is_known_inst = tj->isa_oopptr() != NULL &&
1365                        tj->is_oopptr()->is_known_instance();
1366 
1367   // Process weird unsafe references.
1368   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1369     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1370     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1371     tj = TypeOopPtr::BOTTOM;
1372     ptr = tj->ptr();
1373     offset = tj->offset();
1374   }
1375 
1376   // Array pointers need some flattening
1377   const TypeAryPtr *ta = tj->isa_aryptr();
1378   if (ta && ta->is_stable()) {
1379     // Erase stability property for alias analysis.
1380     tj = ta = ta->cast_to_stable(false);
1381   }
1382   if( ta && is_known_inst ) {
1383     if ( offset != Type::OffsetBot &&
1384          offset > arrayOopDesc::length_offset_in_bytes() ) {
1385       offset = Type::OffsetBot; // Flatten constant access into array body only
1386       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1387     }
1388   } else if( ta && _AliasLevel >= 2 ) {
1389     // For arrays indexed by constant indices, we flatten the alias
1390     // space to include all of the array body.  Only the header, klass
1391     // and array length can be accessed un-aliased.
1392     if( offset != Type::OffsetBot ) {
1393       if( ta->const_oop() ) { // MethodData* or Method*
1394         offset = Type::OffsetBot;   // Flatten constant access into array body
1395         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1396       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1397         // range is OK as-is.
1398         tj = ta = TypeAryPtr::RANGE;
1399       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1400         tj = TypeInstPtr::KLASS; // all klass loads look alike
1401         ta = TypeAryPtr::RANGE; // generic ignored junk
1402         ptr = TypePtr::BotPTR;
1403       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1404         tj = TypeInstPtr::MARK;
1405         ta = TypeAryPtr::RANGE; // generic ignored junk
1406         ptr = TypePtr::BotPTR;
1407       } else {                  // Random constant offset into array body
1408         offset = Type::OffsetBot;   // Flatten constant access into array body
1409         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1410       }
1411     }
1412     // Arrays of fixed size alias with arrays of unknown size.
1413     if (ta->size() != TypeInt::POS) {
1414       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1415       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1416     }
1417     // Arrays of known objects become arrays of unknown objects.
1418     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1419       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1420       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1421     }
1422     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1423       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1424       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1425     }
1426     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1427     // cannot be distinguished by bytecode alone.
1428     if (ta->elem() == TypeInt::BOOL) {
1429       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1430       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1431       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1432     }
1433     // During the 2nd round of IterGVN, NotNull castings are removed.
1434     // Make sure the Bottom and NotNull variants alias the same.
1435     // Also, make sure exact and non-exact variants alias the same.
1436     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1437       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1438     }
1439   }
1440 
1441   // Oop pointers need some flattening
1442   const TypeInstPtr *to = tj->isa_instptr();
1443   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1444     ciInstanceKlass *k = to->klass()->as_instance_klass();
1445     if( ptr == TypePtr::Constant ) {
1446       if (to->klass() != ciEnv::current()->Class_klass() ||
1447           offset < k->size_helper() * wordSize) {
1448         // No constant oop pointers (such as Strings); they alias with
1449         // unknown strings.
1450         assert(!is_known_inst, "not scalarizable allocation");
1451         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1452       }
1453     } else if( is_known_inst ) {
1454       tj = to; // Keep NotNull and klass_is_exact for instance type
1455     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1456       // During the 2nd round of IterGVN, NotNull castings are removed.
1457       // Make sure the Bottom and NotNull variants alias the same.
1458       // Also, make sure exact and non-exact variants alias the same.
1459       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1460     }
1461     if (to->speculative() != NULL) {
1462       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1463     }
1464     // Canonicalize the holder of this field
1465     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1466       // First handle header references such as a LoadKlassNode, even if the
1467       // object's klass is unloaded at compile time (4965979).
1468       if (!is_known_inst) { // Do it only for non-instance types
1469         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1470       }
1471     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1472       // Static fields are in the space above the normal instance
1473       // fields in the java.lang.Class instance.
1474       if (to->klass() != ciEnv::current()->Class_klass()) {
1475         to = NULL;
1476         tj = TypeOopPtr::BOTTOM;
1477         offset = tj->offset();
1478       }
1479     } else {
1480       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1481       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1482         if( is_known_inst ) {
1483           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1484         } else {
1485           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1486         }
1487       }
1488     }
1489   }
1490 
1491   // Klass pointers to object array klasses need some flattening
1492   const TypeKlassPtr *tk = tj->isa_klassptr();
1493   if( tk ) {
1494     // If we are referencing a field within a Klass, we need
1495     // to assume the worst case of an Object.  Both exact and
1496     // inexact types must flatten to the same alias class so
1497     // use NotNull as the PTR.
1498     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1499 
1500       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1501                                    TypeKlassPtr::OBJECT->klass(),
1502                                    offset);
1503     }
1504 
1505     ciKlass* klass = tk->klass();
1506     if( klass->is_obj_array_klass() ) {
1507       ciKlass* k = TypeAryPtr::OOPS->klass();
1508       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1509         k = TypeInstPtr::BOTTOM->klass();
1510       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1511     }
1512 
1513     // Check for precise loads from the primary supertype array and force them
1514     // to the supertype cache alias index.  Check for generic array loads from
1515     // the primary supertype array and also force them to the supertype cache
1516     // alias index.  Since the same load can reach both, we need to merge
1517     // these 2 disparate memories into the same alias class.  Since the
1518     // primary supertype array is read-only, there's no chance of confusion
1519     // where we bypass an array load and an array store.
1520     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1521     if (offset == Type::OffsetBot ||
1522         (offset >= primary_supers_offset &&
1523          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1524         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1525       offset = in_bytes(Klass::secondary_super_cache_offset());
1526       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1527     }
1528   }
1529 
1530   // Flatten all Raw pointers together.
1531   if (tj->base() == Type::RawPtr)
1532     tj = TypeRawPtr::BOTTOM;
1533 
1534   if (tj->base() == Type::AnyPtr)
1535     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1536 
1537   // Flatten all to bottom for now
1538   switch( _AliasLevel ) {
1539   case 0:
1540     tj = TypePtr::BOTTOM;
1541     break;
1542   case 1:                       // Flatten to: oop, static, field or array
1543     switch (tj->base()) {
1544     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1545     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1546     case Type::AryPtr:   // do not distinguish arrays at all
1547     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1548     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1549     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1550     default: ShouldNotReachHere();
1551     }
1552     break;
1553   case 2:                       // No collapsing at level 2; keep all splits
1554   case 3:                       // No collapsing at level 3; keep all splits
1555     break;
1556   default:
1557     Unimplemented();
1558   }
1559 
1560   offset = tj->offset();
1561   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1562 
1563   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1564           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1565           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1566           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1567           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1568           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1569           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1570           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1571   assert( tj->ptr() != TypePtr::TopPTR &&
1572           tj->ptr() != TypePtr::AnyNull &&
1573           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1574 //    assert( tj->ptr() != TypePtr::Constant ||
1575 //            tj->base() == Type::RawPtr ||
1576 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1577 
1578   return tj;
1579 }
1580 
1581 void Compile::AliasType::Init(int i, const TypePtr* at) {
1582   _index = i;
1583   _adr_type = at;
1584   _field = NULL;
1585   _element = NULL;
1586   _is_rewritable = true; // default
1587   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1588   if (atoop != NULL && atoop->is_known_instance()) {
1589     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1590     _general_index = Compile::current()->get_alias_index(gt);
1591   } else {
1592     _general_index = 0;
1593   }
1594 }
1595 
1596 //---------------------------------print_on------------------------------------
1597 #ifndef PRODUCT
1598 void Compile::AliasType::print_on(outputStream* st) {
1599   if (index() < 10)
1600         st->print("@ <%d> ", index());
1601   else  st->print("@ <%d>",  index());
1602   st->print(is_rewritable() ? "   " : " RO");
1603   int offset = adr_type()->offset();
1604   if (offset == Type::OffsetBot)
1605         st->print(" +any");
1606   else  st->print(" +%-3d", offset);
1607   st->print(" in ");
1608   adr_type()->dump_on(st);
1609   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1610   if (field() != NULL && tjp) {
1611     if (tjp->klass()  != field()->holder() ||
1612         tjp->offset() != field()->offset_in_bytes()) {
1613       st->print(" != ");
1614       field()->print();
1615       st->print(" ***");
1616     }
1617   }
1618 }
1619 
1620 void print_alias_types() {
1621   Compile* C = Compile::current();
1622   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1623   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1624     C->alias_type(idx)->print_on(tty);
1625     tty->cr();
1626   }
1627 }
1628 #endif
1629 
1630 
1631 //----------------------------probe_alias_cache--------------------------------
1632 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1633   intptr_t key = (intptr_t) adr_type;
1634   key ^= key >> logAliasCacheSize;
1635   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1636 }
1637 
1638 
1639 //-----------------------------grow_alias_types--------------------------------
1640 void Compile::grow_alias_types() {
1641   const int old_ats  = _max_alias_types; // how many before?
1642   const int new_ats  = old_ats;          // how many more?
1643   const int grow_ats = old_ats+new_ats;  // how many now?
1644   _max_alias_types = grow_ats;
1645   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1646   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1647   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1648   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1649 }
1650 
1651 
1652 //--------------------------------find_alias_type------------------------------
1653 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1654   if (_AliasLevel == 0)
1655     return alias_type(AliasIdxBot);
1656 
1657   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1658   if (ace->_adr_type == adr_type) {
1659     return alias_type(ace->_index);
1660   }
1661 
1662   // Handle special cases.
1663   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1664   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1665 
1666   // Do it the slow way.
1667   const TypePtr* flat = flatten_alias_type(adr_type);
1668 
1669 #ifdef ASSERT
1670   assert(flat == flatten_alias_type(flat), "idempotent");
1671   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1672   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1673     const TypeOopPtr* foop = flat->is_oopptr();
1674     // Scalarizable allocations have exact klass always.
1675     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1676     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1677     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1678   }
1679   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1680 #endif
1681 
1682   int idx = AliasIdxTop;
1683   for (int i = 0; i < num_alias_types(); i++) {
1684     if (alias_type(i)->adr_type() == flat) {
1685       idx = i;
1686       break;
1687     }
1688   }
1689 
1690   if (idx == AliasIdxTop) {
1691     if (no_create)  return NULL;
1692     // Grow the array if necessary.
1693     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1694     // Add a new alias type.
1695     idx = _num_alias_types++;
1696     _alias_types[idx]->Init(idx, flat);
1697     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1698     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1699     if (flat->isa_instptr()) {
1700       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1701           && flat->is_instptr()->klass() == env()->Class_klass())
1702         alias_type(idx)->set_rewritable(false);
1703     }
1704     if (flat->isa_aryptr()) {
1705 #ifdef ASSERT
1706       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1707       // (T_BYTE has the weakest alignment and size restrictions...)
1708       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1709 #endif
1710       if (flat->offset() == TypePtr::OffsetBot) {
1711         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1712       }
1713     }
1714     if (flat->isa_klassptr()) {
1715       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1716         alias_type(idx)->set_rewritable(false);
1717       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1718         alias_type(idx)->set_rewritable(false);
1719       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1720         alias_type(idx)->set_rewritable(false);
1721       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1722         alias_type(idx)->set_rewritable(false);
1723     }
1724     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1725     // but the base pointer type is not distinctive enough to identify
1726     // references into JavaThread.)
1727 
1728     // Check for final fields.
1729     const TypeInstPtr* tinst = flat->isa_instptr();
1730     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1731       ciField* field;
1732       if (tinst->const_oop() != NULL &&
1733           tinst->klass() == ciEnv::current()->Class_klass() &&
1734           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1735         // static field
1736         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1737         field = k->get_field_by_offset(tinst->offset(), true);
1738       } else {
1739         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1740         field = k->get_field_by_offset(tinst->offset(), false);
1741       }
1742       assert(field == NULL ||
1743              original_field == NULL ||
1744              (field->holder() == original_field->holder() &&
1745               field->offset() == original_field->offset() &&
1746               field->is_static() == original_field->is_static()), "wrong field?");
1747       // Set field() and is_rewritable() attributes.
1748       if (field != NULL)  alias_type(idx)->set_field(field);
1749     }
1750   }
1751 
1752   // Fill the cache for next time.
1753   ace->_adr_type = adr_type;
1754   ace->_index    = idx;
1755   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1756 
1757   // Might as well try to fill the cache for the flattened version, too.
1758   AliasCacheEntry* face = probe_alias_cache(flat);
1759   if (face->_adr_type == NULL) {
1760     face->_adr_type = flat;
1761     face->_index    = idx;
1762     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1763   }
1764 
1765   return alias_type(idx);
1766 }
1767 
1768 
1769 Compile::AliasType* Compile::alias_type(ciField* field) {
1770   const TypeOopPtr* t;
1771   if (field->is_static())
1772     t = TypeInstPtr::make(field->holder()->java_mirror());
1773   else
1774     t = TypeOopPtr::make_from_klass_raw(field->holder());
1775   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1776   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1777   return atp;
1778 }
1779 
1780 
1781 //------------------------------have_alias_type--------------------------------
1782 bool Compile::have_alias_type(const TypePtr* adr_type) {
1783   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1784   if (ace->_adr_type == adr_type) {
1785     return true;
1786   }
1787 
1788   // Handle special cases.
1789   if (adr_type == NULL)             return true;
1790   if (adr_type == TypePtr::BOTTOM)  return true;
1791 
1792   return find_alias_type(adr_type, true, NULL) != NULL;
1793 }
1794 
1795 //-----------------------------must_alias--------------------------------------
1796 // True if all values of the given address type are in the given alias category.
1797 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1798   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1799   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1800   if (alias_idx == AliasIdxTop)         return false; // the empty category
1801   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1802 
1803   // the only remaining possible overlap is identity
1804   int adr_idx = get_alias_index(adr_type);
1805   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1806   assert(adr_idx == alias_idx ||
1807          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1808           && adr_type                       != TypeOopPtr::BOTTOM),
1809          "should not be testing for overlap with an unsafe pointer");
1810   return adr_idx == alias_idx;
1811 }
1812 
1813 //------------------------------can_alias--------------------------------------
1814 // True if any values of the given address type are in the given alias category.
1815 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1816   if (alias_idx == AliasIdxTop)         return false; // the empty category
1817   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1818   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1819   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1820 
1821   // the only remaining possible overlap is identity
1822   int adr_idx = get_alias_index(adr_type);
1823   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1824   return adr_idx == alias_idx;
1825 }
1826 
1827 
1828 
1829 //---------------------------pop_warm_call-------------------------------------
1830 WarmCallInfo* Compile::pop_warm_call() {
1831   WarmCallInfo* wci = _warm_calls;
1832   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1833   return wci;
1834 }
1835 
1836 //----------------------------Inline_Warm--------------------------------------
1837 int Compile::Inline_Warm() {
1838   // If there is room, try to inline some more warm call sites.
1839   // %%% Do a graph index compaction pass when we think we're out of space?
1840   if (!InlineWarmCalls)  return 0;
1841 
1842   int calls_made_hot = 0;
1843   int room_to_grow   = NodeCountInliningCutoff - unique();
1844   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1845   int amount_grown   = 0;
1846   WarmCallInfo* call;
1847   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1848     int est_size = (int)call->size();
1849     if (est_size > (room_to_grow - amount_grown)) {
1850       // This one won't fit anyway.  Get rid of it.
1851       call->make_cold();
1852       continue;
1853     }
1854     call->make_hot();
1855     calls_made_hot++;
1856     amount_grown   += est_size;
1857     amount_to_grow -= est_size;
1858   }
1859 
1860   if (calls_made_hot > 0)  set_major_progress();
1861   return calls_made_hot;
1862 }
1863 
1864 
1865 //----------------------------Finish_Warm--------------------------------------
1866 void Compile::Finish_Warm() {
1867   if (!InlineWarmCalls)  return;
1868   if (failing())  return;
1869   if (warm_calls() == NULL)  return;
1870 
1871   // Clean up loose ends, if we are out of space for inlining.
1872   WarmCallInfo* call;
1873   while ((call = pop_warm_call()) != NULL) {
1874     call->make_cold();
1875   }
1876 }
1877 
1878 //---------------------cleanup_loop_predicates-----------------------
1879 // Remove the opaque nodes that protect the predicates so that all unused
1880 // checks and uncommon_traps will be eliminated from the ideal graph
1881 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1882   if (predicate_count()==0) return;
1883   for (int i = predicate_count(); i > 0; i--) {
1884     Node * n = predicate_opaque1_node(i-1);
1885     assert(n->Opcode() == Op_Opaque1, "must be");
1886     igvn.replace_node(n, n->in(1));
1887   }
1888   assert(predicate_count()==0, "should be clean!");
1889 }
1890 
1891 // StringOpts and late inlining of string methods
1892 void Compile::inline_string_calls(bool parse_time) {
1893   {
1894     // remove useless nodes to make the usage analysis simpler
1895     ResourceMark rm;
1896     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
1897   }
1898 
1899   {
1900     ResourceMark rm;
1901     print_method(PHASE_BEFORE_STRINGOPTS, 3);
1902     PhaseStringOpts pso(initial_gvn(), for_igvn());
1903     print_method(PHASE_AFTER_STRINGOPTS, 3);
1904   }
1905 
1906   // now inline anything that we skipped the first time around
1907   if (!parse_time) {
1908     _late_inlines_pos = _late_inlines.length();
1909   }
1910 
1911   while (_string_late_inlines.length() > 0) {
1912     CallGenerator* cg = _string_late_inlines.pop();
1913     cg->do_late_inline();
1914     if (failing())  return;
1915   }
1916   _string_late_inlines.trunc_to(0);
1917 }
1918 
1919 // Late inlining of boxing methods
1920 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
1921   if (_boxing_late_inlines.length() > 0) {
1922     assert(has_boxed_value(), "inconsistent");
1923 
1924     PhaseGVN* gvn = initial_gvn();
1925     set_inlining_incrementally(true);
1926 
1927     assert( igvn._worklist.size() == 0, "should be done with igvn" );
1928     for_igvn()->clear();
1929     gvn->replace_with(&igvn);
1930 
1931     _late_inlines_pos = _late_inlines.length();
1932 
1933     while (_boxing_late_inlines.length() > 0) {
1934       CallGenerator* cg = _boxing_late_inlines.pop();
1935       cg->do_late_inline();
1936       if (failing())  return;
1937     }
1938     _boxing_late_inlines.trunc_to(0);
1939 
1940     {
1941       ResourceMark rm;
1942       PhaseRemoveUseless pru(gvn, for_igvn());
1943     }
1944 
1945     igvn = PhaseIterGVN(gvn);
1946     igvn.optimize();
1947 
1948     set_inlining_progress(false);
1949     set_inlining_incrementally(false);
1950   }
1951 }
1952 
1953 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
1954   assert(IncrementalInline, "incremental inlining should be on");
1955   PhaseGVN* gvn = initial_gvn();
1956 
1957   set_inlining_progress(false);
1958   for_igvn()->clear();
1959   gvn->replace_with(&igvn);
1960 
1961   {
1962     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
1963     int i = 0;
1964     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
1965       CallGenerator* cg = _late_inlines.at(i);
1966       _late_inlines_pos = i+1;
1967       cg->do_late_inline();
1968       if (failing())  return;
1969     }
1970     int j = 0;
1971     for (; i < _late_inlines.length(); i++, j++) {
1972       _late_inlines.at_put(j, _late_inlines.at(i));
1973     }
1974     _late_inlines.trunc_to(j);
1975   }
1976 
1977   {
1978     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
1979     ResourceMark rm;
1980     PhaseRemoveUseless pru(gvn, for_igvn());
1981   }
1982 
1983   {
1984     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
1985     igvn = PhaseIterGVN(gvn);
1986   }
1987 }
1988 
1989 // Perform incremental inlining until bound on number of live nodes is reached
1990 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
1991   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
1992 
1993   PhaseGVN* gvn = initial_gvn();
1994 
1995   set_inlining_incrementally(true);
1996   set_inlining_progress(true);
1997   uint low_live_nodes = 0;
1998 
1999   while(inlining_progress() && _late_inlines.length() > 0) {
2000 
2001     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2002       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2003         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2004         // PhaseIdealLoop is expensive so we only try it once we are
2005         // out of live nodes and we only try it again if the previous
2006         // helped got the number of nodes down significantly
2007         PhaseIdealLoop ideal_loop( igvn, false, true );
2008         if (failing())  return;
2009         low_live_nodes = live_nodes();
2010         _major_progress = true;
2011       }
2012 
2013       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2014         break;
2015       }
2016     }
2017 
2018     inline_incrementally_one(igvn);
2019 
2020     if (failing())  return;
2021 
2022     {
2023       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2024       igvn.optimize();
2025     }
2026 
2027     if (failing())  return;
2028   }
2029 
2030   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2031 
2032   if (_string_late_inlines.length() > 0) {
2033     assert(has_stringbuilder(), "inconsistent");
2034     for_igvn()->clear();
2035     initial_gvn()->replace_with(&igvn);
2036 
2037     inline_string_calls(false);
2038 
2039     if (failing())  return;
2040 
2041     {
2042       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2043       ResourceMark rm;
2044       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2045     }
2046 
2047     {
2048       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2049       igvn = PhaseIterGVN(gvn);
2050       igvn.optimize();
2051     }
2052   }
2053 
2054   set_inlining_incrementally(false);
2055 }
2056 
2057 
2058 //------------------------------Optimize---------------------------------------
2059 // Given a graph, optimize it.
2060 void Compile::Optimize() {
2061   TracePhase tp("optimizer", &timers[_t_optimizer]);
2062 
2063 #ifndef PRODUCT
2064   if (env()->break_at_compile()) {
2065     BREAKPOINT;
2066   }
2067 
2068 #endif
2069 
2070   ResourceMark rm;
2071   int          loop_opts_cnt;
2072 
2073   print_inlining_reinit();
2074 
2075   NOT_PRODUCT( verify_graph_edges(); )
2076 
2077   print_method(PHASE_AFTER_PARSING);
2078 
2079  {
2080   // Iterative Global Value Numbering, including ideal transforms
2081   // Initialize IterGVN with types and values from parse-time GVN
2082   PhaseIterGVN igvn(initial_gvn());
2083 #ifdef ASSERT
2084   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2085 #endif
2086   {
2087     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2088     igvn.optimize();
2089   }
2090 
2091   print_method(PHASE_ITER_GVN1, 2);
2092 
2093   if (failing())  return;
2094 
2095   inline_incrementally(igvn);
2096 
2097   print_method(PHASE_INCREMENTAL_INLINE, 2);
2098 
2099   if (failing())  return;
2100 
2101   if (eliminate_boxing()) {
2102     // Inline valueOf() methods now.
2103     inline_boxing_calls(igvn);
2104 
2105     if (AlwaysIncrementalInline) {
2106       inline_incrementally(igvn);
2107     }
2108 
2109     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2110 
2111     if (failing())  return;
2112   }
2113 
2114   // Remove the speculative part of types and clean up the graph from
2115   // the extra CastPP nodes whose only purpose is to carry them. Do
2116   // that early so that optimizations are not disrupted by the extra
2117   // CastPP nodes.
2118   remove_speculative_types(igvn);
2119 
2120   // No more new expensive nodes will be added to the list from here
2121   // so keep only the actual candidates for optimizations.
2122   cleanup_expensive_nodes(igvn);
2123 
2124   // Perform escape analysis
2125   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2126     if (has_loops()) {
2127       // Cleanup graph (remove dead nodes).
2128       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2129       PhaseIdealLoop ideal_loop( igvn, false, true );
2130       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2131       if (failing())  return;
2132     }
2133     ConnectionGraph::do_analysis(this, &igvn);
2134 
2135     if (failing())  return;
2136 
2137     // Optimize out fields loads from scalar replaceable allocations.
2138     igvn.optimize();
2139     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2140 
2141     if (failing())  return;
2142 
2143     if (congraph() != NULL && macro_count() > 0) {
2144       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2145       PhaseMacroExpand mexp(igvn);
2146       mexp.eliminate_macro_nodes();
2147       igvn.set_delay_transform(false);
2148 
2149       igvn.optimize();
2150       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2151 
2152       if (failing())  return;
2153     }
2154   }
2155 
2156   // Loop transforms on the ideal graph.  Range Check Elimination,
2157   // peeling, unrolling, etc.
2158 
2159   // Set loop opts counter
2160   loop_opts_cnt = num_loop_opts();
2161   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2162     {
2163       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2164       PhaseIdealLoop ideal_loop( igvn, true );
2165       loop_opts_cnt--;
2166       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2167       if (failing())  return;
2168     }
2169     // Loop opts pass if partial peeling occurred in previous pass
2170     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2171       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2172       PhaseIdealLoop ideal_loop( igvn, false );
2173       loop_opts_cnt--;
2174       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2175       if (failing())  return;
2176     }
2177     // Loop opts pass for loop-unrolling before CCP
2178     if(major_progress() && (loop_opts_cnt > 0)) {
2179       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2180       PhaseIdealLoop ideal_loop( igvn, false );
2181       loop_opts_cnt--;
2182       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2183     }
2184     if (!failing()) {
2185       // Verify that last round of loop opts produced a valid graph
2186       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2187       PhaseIdealLoop::verify(igvn);
2188     }
2189   }
2190   if (failing())  return;
2191 
2192   // Conditional Constant Propagation;
2193   PhaseCCP ccp( &igvn );
2194   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2195   {
2196     TracePhase tp("ccp", &timers[_t_ccp]);
2197     ccp.do_transform();
2198   }
2199   print_method(PHASE_CPP1, 2);
2200 
2201   assert( true, "Break here to ccp.dump_old2new_map()");
2202 
2203   // Iterative Global Value Numbering, including ideal transforms
2204   {
2205     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2206     igvn = ccp;
2207     igvn.optimize();
2208   }
2209 
2210   print_method(PHASE_ITER_GVN2, 2);
2211 
2212   if (failing())  return;
2213 
2214   // Loop transforms on the ideal graph.  Range Check Elimination,
2215   // peeling, unrolling, etc.
2216   if(loop_opts_cnt > 0) {
2217     debug_only( int cnt = 0; );
2218     while(major_progress() && (loop_opts_cnt > 0)) {
2219       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2220       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2221       PhaseIdealLoop ideal_loop( igvn, true);
2222       loop_opts_cnt--;
2223       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2224       if (failing())  return;
2225     }
2226   }
2227 
2228   {
2229     // Verify that all previous optimizations produced a valid graph
2230     // at least to this point, even if no loop optimizations were done.
2231     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2232     PhaseIdealLoop::verify(igvn);
2233   }
2234 
2235   {
2236     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2237     PhaseMacroExpand  mex(igvn);
2238     if (mex.expand_macro_nodes()) {
2239       assert(failing(), "must bail out w/ explicit message");
2240       return;
2241     }
2242   }
2243 
2244   DEBUG_ONLY( _modified_nodes = NULL; )
2245  } // (End scope of igvn; run destructor if necessary for asserts.)
2246 
2247   process_print_inlining();
2248   // A method with only infinite loops has no edges entering loops from root
2249   {
2250     TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2251     if (final_graph_reshaping()) {
2252       assert(failing(), "must bail out w/ explicit message");
2253       return;
2254     }
2255   }
2256 
2257   print_method(PHASE_OPTIMIZE_FINISHED, 2);
2258 }
2259 
2260 
2261 //------------------------------Code_Gen---------------------------------------
2262 // Given a graph, generate code for it
2263 void Compile::Code_Gen() {
2264   if (failing()) {
2265     return;
2266   }
2267 
2268   // Perform instruction selection.  You might think we could reclaim Matcher
2269   // memory PDQ, but actually the Matcher is used in generating spill code.
2270   // Internals of the Matcher (including some VectorSets) must remain live
2271   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2272   // set a bit in reclaimed memory.
2273 
2274   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2275   // nodes.  Mapping is only valid at the root of each matched subtree.
2276   NOT_PRODUCT( verify_graph_edges(); )
2277 
2278   Matcher matcher;
2279   _matcher = &matcher;
2280   {
2281     TracePhase tp("matcher", &timers[_t_matcher]);
2282     matcher.match();
2283   }
2284   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2285   // nodes.  Mapping is only valid at the root of each matched subtree.
2286   NOT_PRODUCT( verify_graph_edges(); )
2287 
2288   // If you have too many nodes, or if matching has failed, bail out
2289   check_node_count(0, "out of nodes matching instructions");
2290   if (failing()) {
2291     return;
2292   }
2293 
2294   // Build a proper-looking CFG
2295   PhaseCFG cfg(node_arena(), root(), matcher);
2296   _cfg = &cfg;
2297   {
2298     TracePhase tp("scheduler", &timers[_t_scheduler]);
2299     bool success = cfg.do_global_code_motion();
2300     if (!success) {
2301       return;
2302     }
2303 
2304     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2305     NOT_PRODUCT( verify_graph_edges(); )
2306     debug_only( cfg.verify(); )
2307   }
2308 
2309   PhaseChaitin regalloc(unique(), cfg, matcher);
2310   _regalloc = &regalloc;
2311   {
2312     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2313     // Perform register allocation.  After Chaitin, use-def chains are
2314     // no longer accurate (at spill code) and so must be ignored.
2315     // Node->LRG->reg mappings are still accurate.
2316     _regalloc->Register_Allocate();
2317 
2318     // Bail out if the allocator builds too many nodes
2319     if (failing()) {
2320       return;
2321     }
2322   }
2323 
2324   // Prior to register allocation we kept empty basic blocks in case the
2325   // the allocator needed a place to spill.  After register allocation we
2326   // are not adding any new instructions.  If any basic block is empty, we
2327   // can now safely remove it.
2328   {
2329     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2330     cfg.remove_empty_blocks();
2331     if (do_freq_based_layout()) {
2332       PhaseBlockLayout layout(cfg);
2333     } else {
2334       cfg.set_loop_alignment();
2335     }
2336     cfg.fixup_flow();
2337   }
2338 
2339   // Apply peephole optimizations
2340   if( OptoPeephole ) {
2341     TracePhase tp("peephole", &timers[_t_peephole]);
2342     PhasePeephole peep( _regalloc, cfg);
2343     peep.do_transform();
2344   }
2345 
2346   // Do late expand if CPU requires this.
2347   if (Matcher::require_postalloc_expand) {
2348     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2349     cfg.postalloc_expand(_regalloc);
2350   }
2351 
2352   // Convert Nodes to instruction bits in a buffer
2353   {
2354     TraceTime tp("output", &timers[_t_output], CITime);
2355     Output();
2356   }
2357 
2358   print_method(PHASE_FINAL_CODE);
2359 
2360   // He's dead, Jim.
2361   _cfg     = (PhaseCFG*)0xdeadbeef;
2362   _regalloc = (PhaseChaitin*)0xdeadbeef;
2363 }
2364 
2365 
2366 //------------------------------dump_asm---------------------------------------
2367 // Dump formatted assembly
2368 #ifndef PRODUCT
2369 void Compile::dump_asm(int *pcs, uint pc_limit) {
2370   bool cut_short = false;
2371   tty->print_cr("#");
2372   tty->print("#  ");  _tf->dump();  tty->cr();
2373   tty->print_cr("#");
2374 
2375   // For all blocks
2376   int pc = 0x0;                 // Program counter
2377   char starts_bundle = ' ';
2378   _regalloc->dump_frame();
2379 
2380   Node *n = NULL;
2381   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2382     if (VMThread::should_terminate()) {
2383       cut_short = true;
2384       break;
2385     }
2386     Block* block = _cfg->get_block(i);
2387     if (block->is_connector() && !Verbose) {
2388       continue;
2389     }
2390     n = block->head();
2391     if (pcs && n->_idx < pc_limit) {
2392       tty->print("%3.3x   ", pcs[n->_idx]);
2393     } else {
2394       tty->print("      ");
2395     }
2396     block->dump_head(_cfg);
2397     if (block->is_connector()) {
2398       tty->print_cr("        # Empty connector block");
2399     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2400       tty->print_cr("        # Block is sole successor of call");
2401     }
2402 
2403     // For all instructions
2404     Node *delay = NULL;
2405     for (uint j = 0; j < block->number_of_nodes(); j++) {
2406       if (VMThread::should_terminate()) {
2407         cut_short = true;
2408         break;
2409       }
2410       n = block->get_node(j);
2411       if (valid_bundle_info(n)) {
2412         Bundle* bundle = node_bundling(n);
2413         if (bundle->used_in_unconditional_delay()) {
2414           delay = n;
2415           continue;
2416         }
2417         if (bundle->starts_bundle()) {
2418           starts_bundle = '+';
2419         }
2420       }
2421 
2422       if (WizardMode) {
2423         n->dump();
2424       }
2425 
2426       if( !n->is_Region() &&    // Dont print in the Assembly
2427           !n->is_Phi() &&       // a few noisely useless nodes
2428           !n->is_Proj() &&
2429           !n->is_MachTemp() &&
2430           !n->is_SafePointScalarObject() &&
2431           !n->is_Catch() &&     // Would be nice to print exception table targets
2432           !n->is_MergeMem() &&  // Not very interesting
2433           !n->is_top() &&       // Debug info table constants
2434           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2435           ) {
2436         if (pcs && n->_idx < pc_limit)
2437           tty->print("%3.3x", pcs[n->_idx]);
2438         else
2439           tty->print("   ");
2440         tty->print(" %c ", starts_bundle);
2441         starts_bundle = ' ';
2442         tty->print("\t");
2443         n->format(_regalloc, tty);
2444         tty->cr();
2445       }
2446 
2447       // If we have an instruction with a delay slot, and have seen a delay,
2448       // then back up and print it
2449       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2450         assert(delay != NULL, "no unconditional delay instruction");
2451         if (WizardMode) delay->dump();
2452 
2453         if (node_bundling(delay)->starts_bundle())
2454           starts_bundle = '+';
2455         if (pcs && n->_idx < pc_limit)
2456           tty->print("%3.3x", pcs[n->_idx]);
2457         else
2458           tty->print("   ");
2459         tty->print(" %c ", starts_bundle);
2460         starts_bundle = ' ';
2461         tty->print("\t");
2462         delay->format(_regalloc, tty);
2463         tty->cr();
2464         delay = NULL;
2465       }
2466 
2467       // Dump the exception table as well
2468       if( n->is_Catch() && (Verbose || WizardMode) ) {
2469         // Print the exception table for this offset
2470         _handler_table.print_subtable_for(pc);
2471       }
2472     }
2473 
2474     if (pcs && n->_idx < pc_limit)
2475       tty->print_cr("%3.3x", pcs[n->_idx]);
2476     else
2477       tty->cr();
2478 
2479     assert(cut_short || delay == NULL, "no unconditional delay branch");
2480 
2481   } // End of per-block dump
2482   tty->cr();
2483 
2484   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2485 }
2486 #endif
2487 
2488 //------------------------------Final_Reshape_Counts---------------------------
2489 // This class defines counters to help identify when a method
2490 // may/must be executed using hardware with only 24-bit precision.
2491 struct Final_Reshape_Counts : public StackObj {
2492   int  _call_count;             // count non-inlined 'common' calls
2493   int  _float_count;            // count float ops requiring 24-bit precision
2494   int  _double_count;           // count double ops requiring more precision
2495   int  _java_call_count;        // count non-inlined 'java' calls
2496   int  _inner_loop_count;       // count loops which need alignment
2497   VectorSet _visited;           // Visitation flags
2498   Node_List _tests;             // Set of IfNodes & PCTableNodes
2499 
2500   Final_Reshape_Counts() :
2501     _call_count(0), _float_count(0), _double_count(0),
2502     _java_call_count(0), _inner_loop_count(0),
2503     _visited( Thread::current()->resource_area() ) { }
2504 
2505   void inc_call_count  () { _call_count  ++; }
2506   void inc_float_count () { _float_count ++; }
2507   void inc_double_count() { _double_count++; }
2508   void inc_java_call_count() { _java_call_count++; }
2509   void inc_inner_loop_count() { _inner_loop_count++; }
2510 
2511   int  get_call_count  () const { return _call_count  ; }
2512   int  get_float_count () const { return _float_count ; }
2513   int  get_double_count() const { return _double_count; }
2514   int  get_java_call_count() const { return _java_call_count; }
2515   int  get_inner_loop_count() const { return _inner_loop_count; }
2516 };
2517 
2518 #ifdef ASSERT
2519 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2520   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2521   // Make sure the offset goes inside the instance layout.
2522   return k->contains_field_offset(tp->offset());
2523   // Note that OffsetBot and OffsetTop are very negative.
2524 }
2525 #endif
2526 
2527 // Eliminate trivially redundant StoreCMs and accumulate their
2528 // precedence edges.
2529 void Compile::eliminate_redundant_card_marks(Node* n) {
2530   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2531   if (n->in(MemNode::Address)->outcnt() > 1) {
2532     // There are multiple users of the same address so it might be
2533     // possible to eliminate some of the StoreCMs
2534     Node* mem = n->in(MemNode::Memory);
2535     Node* adr = n->in(MemNode::Address);
2536     Node* val = n->in(MemNode::ValueIn);
2537     Node* prev = n;
2538     bool done = false;
2539     // Walk the chain of StoreCMs eliminating ones that match.  As
2540     // long as it's a chain of single users then the optimization is
2541     // safe.  Eliminating partially redundant StoreCMs would require
2542     // cloning copies down the other paths.
2543     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2544       if (adr == mem->in(MemNode::Address) &&
2545           val == mem->in(MemNode::ValueIn)) {
2546         // redundant StoreCM
2547         if (mem->req() > MemNode::OopStore) {
2548           // Hasn't been processed by this code yet.
2549           n->add_prec(mem->in(MemNode::OopStore));
2550         } else {
2551           // Already converted to precedence edge
2552           for (uint i = mem->req(); i < mem->len(); i++) {
2553             // Accumulate any precedence edges
2554             if (mem->in(i) != NULL) {
2555               n->add_prec(mem->in(i));
2556             }
2557           }
2558           // Everything above this point has been processed.
2559           done = true;
2560         }
2561         // Eliminate the previous StoreCM
2562         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2563         assert(mem->outcnt() == 0, "should be dead");
2564         mem->disconnect_inputs(NULL, this);
2565       } else {
2566         prev = mem;
2567       }
2568       mem = prev->in(MemNode::Memory);
2569     }
2570   }
2571 }
2572 
2573 //------------------------------final_graph_reshaping_impl----------------------
2574 // Implement items 1-5 from final_graph_reshaping below.
2575 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2576 
2577   if ( n->outcnt() == 0 ) return; // dead node
2578   uint nop = n->Opcode();
2579 
2580   // Check for 2-input instruction with "last use" on right input.
2581   // Swap to left input.  Implements item (2).
2582   if( n->req() == 3 &&          // two-input instruction
2583       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2584       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2585       n->in(2)->outcnt() == 1 &&// right use IS a last use
2586       !n->in(2)->is_Con() ) {   // right use is not a constant
2587     // Check for commutative opcode
2588     switch( nop ) {
2589     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2590     case Op_MaxI:  case Op_MinI:
2591     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2592     case Op_AndL:  case Op_XorL:  case Op_OrL:
2593     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2594       // Move "last use" input to left by swapping inputs
2595       n->swap_edges(1, 2);
2596       break;
2597     }
2598     default:
2599       break;
2600     }
2601   }
2602 
2603 #ifdef ASSERT
2604   if( n->is_Mem() ) {
2605     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2606     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2607             // oop will be recorded in oop map if load crosses safepoint
2608             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2609                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2610             "raw memory operations should have control edge");
2611   }
2612 #endif
2613   // Count FPU ops and common calls, implements item (3)
2614   switch( nop ) {
2615   // Count all float operations that may use FPU
2616   case Op_AddF:
2617   case Op_SubF:
2618   case Op_MulF:
2619   case Op_DivF:
2620   case Op_NegF:
2621   case Op_ModF:
2622   case Op_ConvI2F:
2623   case Op_ConF:
2624   case Op_CmpF:
2625   case Op_CmpF3:
2626   // case Op_ConvL2F: // longs are split into 32-bit halves
2627     frc.inc_float_count();
2628     break;
2629 
2630   case Op_ConvF2D:
2631   case Op_ConvD2F:
2632     frc.inc_float_count();
2633     frc.inc_double_count();
2634     break;
2635 
2636   // Count all double operations that may use FPU
2637   case Op_AddD:
2638   case Op_SubD:
2639   case Op_MulD:
2640   case Op_DivD:
2641   case Op_NegD:
2642   case Op_ModD:
2643   case Op_ConvI2D:
2644   case Op_ConvD2I:
2645   // case Op_ConvL2D: // handled by leaf call
2646   // case Op_ConvD2L: // handled by leaf call
2647   case Op_ConD:
2648   case Op_CmpD:
2649   case Op_CmpD3:
2650     frc.inc_double_count();
2651     break;
2652   case Op_Opaque1:              // Remove Opaque Nodes before matching
2653   case Op_Opaque2:              // Remove Opaque Nodes before matching
2654   case Op_Opaque3:
2655     n->subsume_by(n->in(1), this);
2656     break;
2657   case Op_CallStaticJava:
2658   case Op_CallJava:
2659   case Op_CallDynamicJava:
2660     frc.inc_java_call_count(); // Count java call site;
2661   case Op_CallRuntime:
2662   case Op_CallLeaf:
2663   case Op_CallLeafNoFP: {
2664     assert( n->is_Call(), "" );
2665     CallNode *call = n->as_Call();
2666     // Count call sites where the FP mode bit would have to be flipped.
2667     // Do not count uncommon runtime calls:
2668     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2669     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2670     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2671       frc.inc_call_count();   // Count the call site
2672     } else {                  // See if uncommon argument is shared
2673       Node *n = call->in(TypeFunc::Parms);
2674       int nop = n->Opcode();
2675       // Clone shared simple arguments to uncommon calls, item (1).
2676       if( n->outcnt() > 1 &&
2677           !n->is_Proj() &&
2678           nop != Op_CreateEx &&
2679           nop != Op_CheckCastPP &&
2680           nop != Op_DecodeN &&
2681           nop != Op_DecodeNKlass &&
2682           !n->is_Mem() ) {
2683         Node *x = n->clone();
2684         call->set_req( TypeFunc::Parms, x );
2685       }
2686     }
2687     break;
2688   }
2689 
2690   case Op_StoreD:
2691   case Op_LoadD:
2692   case Op_LoadD_unaligned:
2693     frc.inc_double_count();
2694     goto handle_mem;
2695   case Op_StoreF:
2696   case Op_LoadF:
2697     frc.inc_float_count();
2698     goto handle_mem;
2699 
2700   case Op_StoreCM:
2701     {
2702       // Convert OopStore dependence into precedence edge
2703       Node* prec = n->in(MemNode::OopStore);
2704       n->del_req(MemNode::OopStore);
2705       n->add_prec(prec);
2706       eliminate_redundant_card_marks(n);
2707     }
2708 
2709     // fall through
2710 
2711   case Op_StoreB:
2712   case Op_StoreC:
2713   case Op_StorePConditional:
2714   case Op_StoreI:
2715   case Op_StoreL:
2716   case Op_StoreIConditional:
2717   case Op_StoreLConditional:
2718   case Op_CompareAndSwapI:
2719   case Op_CompareAndSwapL:
2720   case Op_CompareAndSwapP:
2721   case Op_CompareAndSwapN:
2722   case Op_GetAndAddI:
2723   case Op_GetAndAddL:
2724   case Op_GetAndSetI:
2725   case Op_GetAndSetL:
2726   case Op_GetAndSetP:
2727   case Op_GetAndSetN:
2728   case Op_StoreP:
2729   case Op_StoreN:
2730   case Op_StoreNKlass:
2731   case Op_LoadB:
2732   case Op_LoadUB:
2733   case Op_LoadUS:
2734   case Op_LoadI:
2735   case Op_LoadKlass:
2736   case Op_LoadNKlass:
2737   case Op_LoadL:
2738   case Op_LoadL_unaligned:
2739   case Op_LoadPLocked:
2740   case Op_LoadP:
2741   case Op_LoadN:
2742   case Op_LoadRange:
2743   case Op_LoadS: {
2744   handle_mem:
2745 #ifdef ASSERT
2746     if( VerifyOptoOopOffsets ) {
2747       assert( n->is_Mem(), "" );
2748       MemNode *mem  = (MemNode*)n;
2749       // Check to see if address types have grounded out somehow.
2750       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2751       assert( !tp || oop_offset_is_sane(tp), "" );
2752     }
2753 #endif
2754     break;
2755   }
2756 
2757   case Op_AddP: {               // Assert sane base pointers
2758     Node *addp = n->in(AddPNode::Address);
2759     assert( !addp->is_AddP() ||
2760             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2761             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2762             "Base pointers must match" );
2763 #ifdef _LP64
2764     if ((UseCompressedOops || UseCompressedClassPointers) &&
2765         addp->Opcode() == Op_ConP &&
2766         addp == n->in(AddPNode::Base) &&
2767         n->in(AddPNode::Offset)->is_Con()) {
2768       // Use addressing with narrow klass to load with offset on x86.
2769       // On sparc loading 32-bits constant and decoding it have less
2770       // instructions (4) then load 64-bits constant (7).
2771       // Do this transformation here since IGVN will convert ConN back to ConP.
2772       const Type* t = addp->bottom_type();
2773       if (t->isa_oopptr() || t->isa_klassptr()) {
2774         Node* nn = NULL;
2775 
2776         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2777 
2778         // Look for existing ConN node of the same exact type.
2779         Node* r  = root();
2780         uint cnt = r->outcnt();
2781         for (uint i = 0; i < cnt; i++) {
2782           Node* m = r->raw_out(i);
2783           if (m!= NULL && m->Opcode() == op &&
2784               m->bottom_type()->make_ptr() == t) {
2785             nn = m;
2786             break;
2787           }
2788         }
2789         if (nn != NULL) {
2790           // Decode a narrow oop to match address
2791           // [R12 + narrow_oop_reg<<3 + offset]
2792           if (t->isa_oopptr()) {
2793             nn = new DecodeNNode(nn, t);
2794           } else {
2795             nn = new DecodeNKlassNode(nn, t);
2796           }
2797           n->set_req(AddPNode::Base, nn);
2798           n->set_req(AddPNode::Address, nn);
2799           if (addp->outcnt() == 0) {
2800             addp->disconnect_inputs(NULL, this);
2801           }
2802         }
2803       }
2804     }
2805 #endif
2806     break;
2807   }
2808 
2809 #ifdef _LP64
2810   case Op_CastPP:
2811     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2812       Node* in1 = n->in(1);
2813       const Type* t = n->bottom_type();
2814       Node* new_in1 = in1->clone();
2815       new_in1->as_DecodeN()->set_type(t);
2816 
2817       if (!Matcher::narrow_oop_use_complex_address()) {
2818         //
2819         // x86, ARM and friends can handle 2 adds in addressing mode
2820         // and Matcher can fold a DecodeN node into address by using
2821         // a narrow oop directly and do implicit NULL check in address:
2822         //
2823         // [R12 + narrow_oop_reg<<3 + offset]
2824         // NullCheck narrow_oop_reg
2825         //
2826         // On other platforms (Sparc) we have to keep new DecodeN node and
2827         // use it to do implicit NULL check in address:
2828         //
2829         // decode_not_null narrow_oop_reg, base_reg
2830         // [base_reg + offset]
2831         // NullCheck base_reg
2832         //
2833         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2834         // to keep the information to which NULL check the new DecodeN node
2835         // corresponds to use it as value in implicit_null_check().
2836         //
2837         new_in1->set_req(0, n->in(0));
2838       }
2839 
2840       n->subsume_by(new_in1, this);
2841       if (in1->outcnt() == 0) {
2842         in1->disconnect_inputs(NULL, this);
2843       }
2844     }
2845     break;
2846 
2847   case Op_CmpP:
2848     // Do this transformation here to preserve CmpPNode::sub() and
2849     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2850     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2851       Node* in1 = n->in(1);
2852       Node* in2 = n->in(2);
2853       if (!in1->is_DecodeNarrowPtr()) {
2854         in2 = in1;
2855         in1 = n->in(2);
2856       }
2857       assert(in1->is_DecodeNarrowPtr(), "sanity");
2858 
2859       Node* new_in2 = NULL;
2860       if (in2->is_DecodeNarrowPtr()) {
2861         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2862         new_in2 = in2->in(1);
2863       } else if (in2->Opcode() == Op_ConP) {
2864         const Type* t = in2->bottom_type();
2865         if (t == TypePtr::NULL_PTR) {
2866           assert(in1->is_DecodeN(), "compare klass to null?");
2867           // Don't convert CmpP null check into CmpN if compressed
2868           // oops implicit null check is not generated.
2869           // This will allow to generate normal oop implicit null check.
2870           if (Matcher::gen_narrow_oop_implicit_null_checks())
2871             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
2872           //
2873           // This transformation together with CastPP transformation above
2874           // will generated code for implicit NULL checks for compressed oops.
2875           //
2876           // The original code after Optimize()
2877           //
2878           //    LoadN memory, narrow_oop_reg
2879           //    decode narrow_oop_reg, base_reg
2880           //    CmpP base_reg, NULL
2881           //    CastPP base_reg // NotNull
2882           //    Load [base_reg + offset], val_reg
2883           //
2884           // after these transformations will be
2885           //
2886           //    LoadN memory, narrow_oop_reg
2887           //    CmpN narrow_oop_reg, NULL
2888           //    decode_not_null narrow_oop_reg, base_reg
2889           //    Load [base_reg + offset], val_reg
2890           //
2891           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2892           // since narrow oops can be used in debug info now (see the code in
2893           // final_graph_reshaping_walk()).
2894           //
2895           // At the end the code will be matched to
2896           // on x86:
2897           //
2898           //    Load_narrow_oop memory, narrow_oop_reg
2899           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2900           //    NullCheck narrow_oop_reg
2901           //
2902           // and on sparc:
2903           //
2904           //    Load_narrow_oop memory, narrow_oop_reg
2905           //    decode_not_null narrow_oop_reg, base_reg
2906           //    Load [base_reg + offset], val_reg
2907           //    NullCheck base_reg
2908           //
2909         } else if (t->isa_oopptr()) {
2910           new_in2 = ConNode::make(t->make_narrowoop());
2911         } else if (t->isa_klassptr()) {
2912           new_in2 = ConNode::make(t->make_narrowklass());
2913         }
2914       }
2915       if (new_in2 != NULL) {
2916         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
2917         n->subsume_by(cmpN, this);
2918         if (in1->outcnt() == 0) {
2919           in1->disconnect_inputs(NULL, this);
2920         }
2921         if (in2->outcnt() == 0) {
2922           in2->disconnect_inputs(NULL, this);
2923         }
2924       }
2925     }
2926     break;
2927 
2928   case Op_DecodeN:
2929   case Op_DecodeNKlass:
2930     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2931     // DecodeN could be pinned when it can't be fold into
2932     // an address expression, see the code for Op_CastPP above.
2933     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2934     break;
2935 
2936   case Op_EncodeP:
2937   case Op_EncodePKlass: {
2938     Node* in1 = n->in(1);
2939     if (in1->is_DecodeNarrowPtr()) {
2940       n->subsume_by(in1->in(1), this);
2941     } else if (in1->Opcode() == Op_ConP) {
2942       const Type* t = in1->bottom_type();
2943       if (t == TypePtr::NULL_PTR) {
2944         assert(t->isa_oopptr(), "null klass?");
2945         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
2946       } else if (t->isa_oopptr()) {
2947         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
2948       } else if (t->isa_klassptr()) {
2949         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
2950       }
2951     }
2952     if (in1->outcnt() == 0) {
2953       in1->disconnect_inputs(NULL, this);
2954     }
2955     break;
2956   }
2957 
2958   case Op_Proj: {
2959     if (OptimizeStringConcat) {
2960       ProjNode* p = n->as_Proj();
2961       if (p->_is_io_use) {
2962         // Separate projections were used for the exception path which
2963         // are normally removed by a late inline.  If it wasn't inlined
2964         // then they will hang around and should just be replaced with
2965         // the original one.
2966         Node* proj = NULL;
2967         // Replace with just one
2968         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2969           Node *use = i.get();
2970           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2971             proj = use;
2972             break;
2973           }
2974         }
2975         assert(proj != NULL, "must be found");
2976         p->subsume_by(proj, this);
2977       }
2978     }
2979     break;
2980   }
2981 
2982   case Op_Phi:
2983     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2984       // The EncodeP optimization may create Phi with the same edges
2985       // for all paths. It is not handled well by Register Allocator.
2986       Node* unique_in = n->in(1);
2987       assert(unique_in != NULL, "");
2988       uint cnt = n->req();
2989       for (uint i = 2; i < cnt; i++) {
2990         Node* m = n->in(i);
2991         assert(m != NULL, "");
2992         if (unique_in != m)
2993           unique_in = NULL;
2994       }
2995       if (unique_in != NULL) {
2996         n->subsume_by(unique_in, this);
2997       }
2998     }
2999     break;
3000 
3001 #endif
3002 
3003   case Op_ModI:
3004     if (UseDivMod) {
3005       // Check if a%b and a/b both exist
3006       Node* d = n->find_similar(Op_DivI);
3007       if (d) {
3008         // Replace them with a fused divmod if supported
3009         if (Matcher::has_match_rule(Op_DivModI)) {
3010           DivModINode* divmod = DivModINode::make(n);
3011           d->subsume_by(divmod->div_proj(), this);
3012           n->subsume_by(divmod->mod_proj(), this);
3013         } else {
3014           // replace a%b with a-((a/b)*b)
3015           Node* mult = new MulINode(d, d->in(2));
3016           Node* sub  = new SubINode(d->in(1), mult);
3017           n->subsume_by(sub, this);
3018         }
3019       }
3020     }
3021     break;
3022 
3023   case Op_ModL:
3024     if (UseDivMod) {
3025       // Check if a%b and a/b both exist
3026       Node* d = n->find_similar(Op_DivL);
3027       if (d) {
3028         // Replace them with a fused divmod if supported
3029         if (Matcher::has_match_rule(Op_DivModL)) {
3030           DivModLNode* divmod = DivModLNode::make(n);
3031           d->subsume_by(divmod->div_proj(), this);
3032           n->subsume_by(divmod->mod_proj(), this);
3033         } else {
3034           // replace a%b with a-((a/b)*b)
3035           Node* mult = new MulLNode(d, d->in(2));
3036           Node* sub  = new SubLNode(d->in(1), mult);
3037           n->subsume_by(sub, this);
3038         }
3039       }
3040     }
3041     break;
3042 
3043   case Op_LoadVector:
3044   case Op_StoreVector:
3045     break;
3046 
3047   case Op_PackB:
3048   case Op_PackS:
3049   case Op_PackI:
3050   case Op_PackF:
3051   case Op_PackL:
3052   case Op_PackD:
3053     if (n->req()-1 > 2) {
3054       // Replace many operand PackNodes with a binary tree for matching
3055       PackNode* p = (PackNode*) n;
3056       Node* btp = p->binary_tree_pack(1, n->req());
3057       n->subsume_by(btp, this);
3058     }
3059     break;
3060   case Op_Loop:
3061   case Op_CountedLoop:
3062     if (n->as_Loop()->is_inner_loop()) {
3063       frc.inc_inner_loop_count();
3064     }
3065     break;
3066   case Op_LShiftI:
3067   case Op_RShiftI:
3068   case Op_URShiftI:
3069   case Op_LShiftL:
3070   case Op_RShiftL:
3071   case Op_URShiftL:
3072     if (Matcher::need_masked_shift_count) {
3073       // The cpu's shift instructions don't restrict the count to the
3074       // lower 5/6 bits. We need to do the masking ourselves.
3075       Node* in2 = n->in(2);
3076       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3077       const TypeInt* t = in2->find_int_type();
3078       if (t != NULL && t->is_con()) {
3079         juint shift = t->get_con();
3080         if (shift > mask) { // Unsigned cmp
3081           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3082         }
3083       } else {
3084         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3085           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3086           n->set_req(2, shift);
3087         }
3088       }
3089       if (in2->outcnt() == 0) { // Remove dead node
3090         in2->disconnect_inputs(NULL, this);
3091       }
3092     }
3093     break;
3094   case Op_MemBarStoreStore:
3095   case Op_MemBarRelease:
3096     // Break the link with AllocateNode: it is no longer useful and
3097     // confuses register allocation.
3098     if (n->req() > MemBarNode::Precedent) {
3099       n->set_req(MemBarNode::Precedent, top());
3100     }
3101     break;
3102   default:
3103     assert( !n->is_Call(), "" );
3104     assert( !n->is_Mem(), "" );
3105     break;
3106   }
3107 
3108   // Collect CFG split points
3109   if (n->is_MultiBranch())
3110     frc._tests.push(n);
3111 }
3112 
3113 //------------------------------final_graph_reshaping_walk---------------------
3114 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3115 // requires that the walk visits a node's inputs before visiting the node.
3116 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3117   ResourceArea *area = Thread::current()->resource_area();
3118   Unique_Node_List sfpt(area);
3119 
3120   frc._visited.set(root->_idx); // first, mark node as visited
3121   uint cnt = root->req();
3122   Node *n = root;
3123   uint  i = 0;
3124   while (true) {
3125     if (i < cnt) {
3126       // Place all non-visited non-null inputs onto stack
3127       Node* m = n->in(i);
3128       ++i;
3129       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3130         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3131           // compute worst case interpreter size in case of a deoptimization
3132           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3133 
3134           sfpt.push(m);
3135         }
3136         cnt = m->req();
3137         nstack.push(n, i); // put on stack parent and next input's index
3138         n = m;
3139         i = 0;
3140       }
3141     } else {
3142       // Now do post-visit work
3143       final_graph_reshaping_impl( n, frc );
3144       if (nstack.is_empty())
3145         break;             // finished
3146       n = nstack.node();   // Get node from stack
3147       cnt = n->req();
3148       i = nstack.index();
3149       nstack.pop();        // Shift to the next node on stack
3150     }
3151   }
3152 
3153   // Skip next transformation if compressed oops are not used.
3154   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3155       (!UseCompressedOops && !UseCompressedClassPointers))
3156     return;
3157 
3158   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3159   // It could be done for an uncommon traps or any safepoints/calls
3160   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3161   while (sfpt.size() > 0) {
3162     n = sfpt.pop();
3163     JVMState *jvms = n->as_SafePoint()->jvms();
3164     assert(jvms != NULL, "sanity");
3165     int start = jvms->debug_start();
3166     int end   = n->req();
3167     bool is_uncommon = (n->is_CallStaticJava() &&
3168                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3169     for (int j = start; j < end; j++) {
3170       Node* in = n->in(j);
3171       if (in->is_DecodeNarrowPtr()) {
3172         bool safe_to_skip = true;
3173         if (!is_uncommon ) {
3174           // Is it safe to skip?
3175           for (uint i = 0; i < in->outcnt(); i++) {
3176             Node* u = in->raw_out(i);
3177             if (!u->is_SafePoint() ||
3178                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
3179               safe_to_skip = false;
3180             }
3181           }
3182         }
3183         if (safe_to_skip) {
3184           n->set_req(j, in->in(1));
3185         }
3186         if (in->outcnt() == 0) {
3187           in->disconnect_inputs(NULL, this);
3188         }
3189       }
3190     }
3191   }
3192 }
3193 
3194 //------------------------------final_graph_reshaping--------------------------
3195 // Final Graph Reshaping.
3196 //
3197 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3198 //     and not commoned up and forced early.  Must come after regular
3199 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3200 //     inputs to Loop Phis; these will be split by the allocator anyways.
3201 //     Remove Opaque nodes.
3202 // (2) Move last-uses by commutative operations to the left input to encourage
3203 //     Intel update-in-place two-address operations and better register usage
3204 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3205 //     calls canonicalizing them back.
3206 // (3) Count the number of double-precision FP ops, single-precision FP ops
3207 //     and call sites.  On Intel, we can get correct rounding either by
3208 //     forcing singles to memory (requires extra stores and loads after each
3209 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3210 //     clearing the mode bit around call sites).  The mode bit is only used
3211 //     if the relative frequency of single FP ops to calls is low enough.
3212 //     This is a key transform for SPEC mpeg_audio.
3213 // (4) Detect infinite loops; blobs of code reachable from above but not
3214 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3215 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3216 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3217 //     Detection is by looking for IfNodes where only 1 projection is
3218 //     reachable from below or CatchNodes missing some targets.
3219 // (5) Assert for insane oop offsets in debug mode.
3220 
3221 bool Compile::final_graph_reshaping() {
3222   // an infinite loop may have been eliminated by the optimizer,
3223   // in which case the graph will be empty.
3224   if (root()->req() == 1) {
3225     record_method_not_compilable("trivial infinite loop");
3226     return true;
3227   }
3228 
3229   // Expensive nodes have their control input set to prevent the GVN
3230   // from freely commoning them. There's no GVN beyond this point so
3231   // no need to keep the control input. We want the expensive nodes to
3232   // be freely moved to the least frequent code path by gcm.
3233   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3234   for (int i = 0; i < expensive_count(); i++) {
3235     _expensive_nodes->at(i)->set_req(0, NULL);
3236   }
3237 
3238   Final_Reshape_Counts frc;
3239 
3240   // Visit everybody reachable!
3241   // Allocate stack of size C->unique()/2 to avoid frequent realloc
3242   Node_Stack nstack(unique() >> 1);
3243   final_graph_reshaping_walk(nstack, root(), frc);
3244 
3245   // Check for unreachable (from below) code (i.e., infinite loops).
3246   for( uint i = 0; i < frc._tests.size(); i++ ) {
3247     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3248     // Get number of CFG targets.
3249     // Note that PCTables include exception targets after calls.
3250     uint required_outcnt = n->required_outcnt();
3251     if (n->outcnt() != required_outcnt) {
3252       // Check for a few special cases.  Rethrow Nodes never take the
3253       // 'fall-thru' path, so expected kids is 1 less.
3254       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3255         if (n->in(0)->in(0)->is_Call()) {
3256           CallNode *call = n->in(0)->in(0)->as_Call();
3257           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3258             required_outcnt--;      // Rethrow always has 1 less kid
3259           } else if (call->req() > TypeFunc::Parms &&
3260                      call->is_CallDynamicJava()) {
3261             // Check for null receiver. In such case, the optimizer has
3262             // detected that the virtual call will always result in a null
3263             // pointer exception. The fall-through projection of this CatchNode
3264             // will not be populated.
3265             Node *arg0 = call->in(TypeFunc::Parms);
3266             if (arg0->is_Type() &&
3267                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3268               required_outcnt--;
3269             }
3270           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3271                      call->req() > TypeFunc::Parms+1 &&
3272                      call->is_CallStaticJava()) {
3273             // Check for negative array length. In such case, the optimizer has
3274             // detected that the allocation attempt will always result in an
3275             // exception. There is no fall-through projection of this CatchNode .
3276             Node *arg1 = call->in(TypeFunc::Parms+1);
3277             if (arg1->is_Type() &&
3278                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3279               required_outcnt--;
3280             }
3281           }
3282         }
3283       }
3284       // Recheck with a better notion of 'required_outcnt'
3285       if (n->outcnt() != required_outcnt) {
3286         record_method_not_compilable("malformed control flow");
3287         return true;            // Not all targets reachable!
3288       }
3289     }
3290     // Check that I actually visited all kids.  Unreached kids
3291     // must be infinite loops.
3292     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3293       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3294         record_method_not_compilable("infinite loop");
3295         return true;            // Found unvisited kid; must be unreach
3296       }
3297   }
3298 
3299   // If original bytecodes contained a mixture of floats and doubles
3300   // check if the optimizer has made it homogenous, item (3).
3301   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3302       frc.get_float_count() > 32 &&
3303       frc.get_double_count() == 0 &&
3304       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3305     set_24_bit_selection_and_mode( false,  true );
3306   }
3307 
3308   set_java_calls(frc.get_java_call_count());
3309   set_inner_loops(frc.get_inner_loop_count());
3310 
3311   // No infinite loops, no reason to bail out.
3312   return false;
3313 }
3314 
3315 //-----------------------------too_many_traps----------------------------------
3316 // Report if there are too many traps at the current method and bci.
3317 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3318 bool Compile::too_many_traps(ciMethod* method,
3319                              int bci,
3320                              Deoptimization::DeoptReason reason) {
3321   ciMethodData* md = method->method_data();
3322   if (md->is_empty()) {
3323     // Assume the trap has not occurred, or that it occurred only
3324     // because of a transient condition during start-up in the interpreter.
3325     return false;
3326   }
3327   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3328   if (md->has_trap_at(bci, m, reason) != 0) {
3329     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3330     // Also, if there are multiple reasons, or if there is no per-BCI record,
3331     // assume the worst.
3332     if (log())
3333       log()->elem("observe trap='%s' count='%d'",
3334                   Deoptimization::trap_reason_name(reason),
3335                   md->trap_count(reason));
3336     return true;
3337   } else {
3338     // Ignore method/bci and see if there have been too many globally.
3339     return too_many_traps(reason, md);
3340   }
3341 }
3342 
3343 // Less-accurate variant which does not require a method and bci.
3344 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3345                              ciMethodData* logmd) {
3346   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3347     // Too many traps globally.
3348     // Note that we use cumulative trap_count, not just md->trap_count.
3349     if (log()) {
3350       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3351       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3352                   Deoptimization::trap_reason_name(reason),
3353                   mcount, trap_count(reason));
3354     }
3355     return true;
3356   } else {
3357     // The coast is clear.
3358     return false;
3359   }
3360 }
3361 
3362 //--------------------------too_many_recompiles--------------------------------
3363 // Report if there are too many recompiles at the current method and bci.
3364 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3365 // Is not eager to return true, since this will cause the compiler to use
3366 // Action_none for a trap point, to avoid too many recompilations.
3367 bool Compile::too_many_recompiles(ciMethod* method,
3368                                   int bci,
3369                                   Deoptimization::DeoptReason reason) {
3370   ciMethodData* md = method->method_data();
3371   if (md->is_empty()) {
3372     // Assume the trap has not occurred, or that it occurred only
3373     // because of a transient condition during start-up in the interpreter.
3374     return false;
3375   }
3376   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3377   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3378   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3379   Deoptimization::DeoptReason per_bc_reason
3380     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3381   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3382   if ((per_bc_reason == Deoptimization::Reason_none
3383        || md->has_trap_at(bci, m, reason) != 0)
3384       // The trap frequency measure we care about is the recompile count:
3385       && md->trap_recompiled_at(bci, m)
3386       && md->overflow_recompile_count() >= bc_cutoff) {
3387     // Do not emit a trap here if it has already caused recompilations.
3388     // Also, if there are multiple reasons, or if there is no per-BCI record,
3389     // assume the worst.
3390     if (log())
3391       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3392                   Deoptimization::trap_reason_name(reason),
3393                   md->trap_count(reason),
3394                   md->overflow_recompile_count());
3395     return true;
3396   } else if (trap_count(reason) != 0
3397              && decompile_count() >= m_cutoff) {
3398     // Too many recompiles globally, and we have seen this sort of trap.
3399     // Use cumulative decompile_count, not just md->decompile_count.
3400     if (log())
3401       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3402                   Deoptimization::trap_reason_name(reason),
3403                   md->trap_count(reason), trap_count(reason),
3404                   md->decompile_count(), decompile_count());
3405     return true;
3406   } else {
3407     // The coast is clear.
3408     return false;
3409   }
3410 }
3411 
3412 // Compute when not to trap. Used by matching trap based nodes and
3413 // NullCheck optimization.
3414 void Compile::set_allowed_deopt_reasons() {
3415   _allowed_reasons = 0;
3416   if (is_method_compilation()) {
3417     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3418       assert(rs < BitsPerInt, "recode bit map");
3419       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3420         _allowed_reasons |= nth_bit(rs);
3421       }
3422     }
3423   }
3424 }
3425 
3426 #ifndef PRODUCT
3427 //------------------------------verify_graph_edges---------------------------
3428 // Walk the Graph and verify that there is a one-to-one correspondence
3429 // between Use-Def edges and Def-Use edges in the graph.
3430 void Compile::verify_graph_edges(bool no_dead_code) {
3431   if (VerifyGraphEdges) {
3432     ResourceArea *area = Thread::current()->resource_area();
3433     Unique_Node_List visited(area);
3434     // Call recursive graph walk to check edges
3435     _root->verify_edges(visited);
3436     if (no_dead_code) {
3437       // Now make sure that no visited node is used by an unvisited node.
3438       bool dead_nodes = false;
3439       Unique_Node_List checked(area);
3440       while (visited.size() > 0) {
3441         Node* n = visited.pop();
3442         checked.push(n);
3443         for (uint i = 0; i < n->outcnt(); i++) {
3444           Node* use = n->raw_out(i);
3445           if (checked.member(use))  continue;  // already checked
3446           if (visited.member(use))  continue;  // already in the graph
3447           if (use->is_Con())        continue;  // a dead ConNode is OK
3448           // At this point, we have found a dead node which is DU-reachable.
3449           if (!dead_nodes) {
3450             tty->print_cr("*** Dead nodes reachable via DU edges:");
3451             dead_nodes = true;
3452           }
3453           use->dump(2);
3454           tty->print_cr("---");
3455           checked.push(use);  // No repeats; pretend it is now checked.
3456         }
3457       }
3458       assert(!dead_nodes, "using nodes must be reachable from root");
3459     }
3460   }
3461 }
3462 
3463 // Verify GC barriers consistency
3464 // Currently supported:
3465 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3466 void Compile::verify_barriers() {
3467   if (UseG1GC) {
3468     // Verify G1 pre-barriers
3469     const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() + PtrQueue::byte_offset_of_active());
3470 
3471     ResourceArea *area = Thread::current()->resource_area();
3472     Unique_Node_List visited(area);
3473     Node_List worklist(area);
3474     // We're going to walk control flow backwards starting from the Root
3475     worklist.push(_root);
3476     while (worklist.size() > 0) {
3477       Node* x = worklist.pop();
3478       if (x == NULL || x == top()) continue;
3479       if (visited.member(x)) {
3480         continue;
3481       } else {
3482         visited.push(x);
3483       }
3484 
3485       if (x->is_Region()) {
3486         for (uint i = 1; i < x->req(); i++) {
3487           worklist.push(x->in(i));
3488         }
3489       } else {
3490         worklist.push(x->in(0));
3491         // We are looking for the pattern:
3492         //                            /->ThreadLocal
3493         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3494         //              \->ConI(0)
3495         // We want to verify that the If and the LoadB have the same control
3496         // See GraphKit::g1_write_barrier_pre()
3497         if (x->is_If()) {
3498           IfNode *iff = x->as_If();
3499           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3500             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3501             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3502                 && cmp->in(1)->is_Load()) {
3503               LoadNode* load = cmp->in(1)->as_Load();
3504               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3505                   && load->in(2)->in(3)->is_Con()
3506                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3507 
3508                 Node* if_ctrl = iff->in(0);
3509                 Node* load_ctrl = load->in(0);
3510 
3511                 if (if_ctrl != load_ctrl) {
3512                   // Skip possible CProj->NeverBranch in infinite loops
3513                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3514                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3515                     if_ctrl = if_ctrl->in(0)->in(0);
3516                   }
3517                 }
3518                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3519               }
3520             }
3521           }
3522         }
3523       }
3524     }
3525   }
3526 }
3527 
3528 #endif
3529 
3530 // The Compile object keeps track of failure reasons separately from the ciEnv.
3531 // This is required because there is not quite a 1-1 relation between the
3532 // ciEnv and its compilation task and the Compile object.  Note that one
3533 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3534 // to backtrack and retry without subsuming loads.  Other than this backtracking
3535 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3536 // by the logic in C2Compiler.
3537 void Compile::record_failure(const char* reason) {
3538   if (log() != NULL) {
3539     log()->elem("failure reason='%s' phase='compile'", reason);
3540   }
3541   if (_failure_reason == NULL) {
3542     // Record the first failure reason.
3543     _failure_reason = reason;
3544   }
3545 
3546   EventCompilerFailure event;
3547   if (event.should_commit()) {
3548     event.set_compileID(Compile::compile_id());
3549     event.set_failure(reason);
3550     event.commit();
3551   }
3552 
3553   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3554     C->print_method(PHASE_FAILURE);
3555   }
3556   _root = NULL;  // flush the graph, too
3557 }
3558 
3559 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3560   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3561     _phase_name(name), _dolog(CITimeVerbose)
3562 {
3563   if (_dolog) {
3564     C = Compile::current();
3565     _log = C->log();
3566   } else {
3567     C = NULL;
3568     _log = NULL;
3569   }
3570   if (_log != NULL) {
3571     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3572     _log->stamp();
3573     _log->end_head();
3574   }
3575 }
3576 
3577 Compile::TracePhase::~TracePhase() {
3578 
3579   C = Compile::current();
3580   if (_dolog) {
3581     _log = C->log();
3582   } else {
3583     _log = NULL;
3584   }
3585 
3586 #ifdef ASSERT
3587   if (PrintIdealNodeCount) {
3588     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3589                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3590   }
3591 
3592   if (VerifyIdealNodeCount) {
3593     Compile::current()->print_missing_nodes();
3594   }
3595 #endif
3596 
3597   if (_log != NULL) {
3598     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3599   }
3600 }
3601 
3602 //=============================================================================
3603 // Two Constant's are equal when the type and the value are equal.
3604 bool Compile::Constant::operator==(const Constant& other) {
3605   if (type()          != other.type()         )  return false;
3606   if (can_be_reused() != other.can_be_reused())  return false;
3607   // For floating point values we compare the bit pattern.
3608   switch (type()) {
3609   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3610   case T_LONG:
3611   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3612   case T_OBJECT:
3613   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3614   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3615   case T_METADATA: return (_v._metadata == other._v._metadata);
3616   default: ShouldNotReachHere();
3617   }
3618   return false;
3619 }
3620 
3621 static int type_to_size_in_bytes(BasicType t) {
3622   switch (t) {
3623   case T_LONG:    return sizeof(jlong  );
3624   case T_FLOAT:   return sizeof(jfloat );
3625   case T_DOUBLE:  return sizeof(jdouble);
3626   case T_METADATA: return sizeof(Metadata*);
3627     // We use T_VOID as marker for jump-table entries (labels) which
3628     // need an internal word relocation.
3629   case T_VOID:
3630   case T_ADDRESS:
3631   case T_OBJECT:  return sizeof(jobject);
3632   }
3633 
3634   ShouldNotReachHere();
3635   return -1;
3636 }
3637 
3638 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3639   // sort descending
3640   if (a->freq() > b->freq())  return -1;
3641   if (a->freq() < b->freq())  return  1;
3642   return 0;
3643 }
3644 
3645 void Compile::ConstantTable::calculate_offsets_and_size() {
3646   // First, sort the array by frequencies.
3647   _constants.sort(qsort_comparator);
3648 
3649 #ifdef ASSERT
3650   // Make sure all jump-table entries were sorted to the end of the
3651   // array (they have a negative frequency).
3652   bool found_void = false;
3653   for (int i = 0; i < _constants.length(); i++) {
3654     Constant con = _constants.at(i);
3655     if (con.type() == T_VOID)
3656       found_void = true;  // jump-tables
3657     else
3658       assert(!found_void, "wrong sorting");
3659   }
3660 #endif
3661 
3662   int offset = 0;
3663   for (int i = 0; i < _constants.length(); i++) {
3664     Constant* con = _constants.adr_at(i);
3665 
3666     // Align offset for type.
3667     int typesize = type_to_size_in_bytes(con->type());
3668     offset = align_size_up(offset, typesize);
3669     con->set_offset(offset);   // set constant's offset
3670 
3671     if (con->type() == T_VOID) {
3672       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3673       offset = offset + typesize * n->outcnt();  // expand jump-table
3674     } else {
3675       offset = offset + typesize;
3676     }
3677   }
3678 
3679   // Align size up to the next section start (which is insts; see
3680   // CodeBuffer::align_at_start).
3681   assert(_size == -1, "already set?");
3682   _size = align_size_up(offset, CodeEntryAlignment);
3683 }
3684 
3685 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3686   MacroAssembler _masm(&cb);
3687   for (int i = 0; i < _constants.length(); i++) {
3688     Constant con = _constants.at(i);
3689     address constant_addr;
3690     switch (con.type()) {
3691     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3692     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3693     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3694     case T_OBJECT: {
3695       jobject obj = con.get_jobject();
3696       int oop_index = _masm.oop_recorder()->find_index(obj);
3697       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3698       break;
3699     }
3700     case T_ADDRESS: {
3701       address addr = (address) con.get_jobject();
3702       constant_addr = _masm.address_constant(addr);
3703       break;
3704     }
3705     // We use T_VOID as marker for jump-table entries (labels) which
3706     // need an internal word relocation.
3707     case T_VOID: {
3708       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3709       // Fill the jump-table with a dummy word.  The real value is
3710       // filled in later in fill_jump_table.
3711       address dummy = (address) n;
3712       constant_addr = _masm.address_constant(dummy);
3713       // Expand jump-table
3714       for (uint i = 1; i < n->outcnt(); i++) {
3715         address temp_addr = _masm.address_constant(dummy + i);
3716         assert(temp_addr, "consts section too small");
3717       }
3718       break;
3719     }
3720     case T_METADATA: {
3721       Metadata* obj = con.get_metadata();
3722       int metadata_index = _masm.oop_recorder()->find_index(obj);
3723       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3724       break;
3725     }
3726     default: ShouldNotReachHere();
3727     }
3728     assert(constant_addr, "consts section too small");
3729     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
3730             err_msg_res("must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset())));
3731   }
3732 }
3733 
3734 int Compile::ConstantTable::find_offset(Constant& con) const {
3735   int idx = _constants.find(con);
3736   assert(idx != -1, "constant must be in constant table");
3737   int offset = _constants.at(idx).offset();
3738   assert(offset != -1, "constant table not emitted yet?");
3739   return offset;
3740 }
3741 
3742 void Compile::ConstantTable::add(Constant& con) {
3743   if (con.can_be_reused()) {
3744     int idx = _constants.find(con);
3745     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3746       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3747       return;
3748     }
3749   }
3750   (void) _constants.append(con);
3751 }
3752 
3753 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3754   Block* b = Compile::current()->cfg()->get_block_for_node(n);
3755   Constant con(type, value, b->_freq);
3756   add(con);
3757   return con;
3758 }
3759 
3760 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3761   Constant con(metadata);
3762   add(con);
3763   return con;
3764 }
3765 
3766 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3767   jvalue value;
3768   BasicType type = oper->type()->basic_type();
3769   switch (type) {
3770   case T_LONG:    value.j = oper->constantL(); break;
3771   case T_FLOAT:   value.f = oper->constantF(); break;
3772   case T_DOUBLE:  value.d = oper->constantD(); break;
3773   case T_OBJECT:
3774   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3775   case T_METADATA: return add((Metadata*)oper->constant()); break;
3776   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3777   }
3778   return add(n, type, value);
3779 }
3780 
3781 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3782   jvalue value;
3783   // We can use the node pointer here to identify the right jump-table
3784   // as this method is called from Compile::Fill_buffer right before
3785   // the MachNodes are emitted and the jump-table is filled (means the
3786   // MachNode pointers do not change anymore).
3787   value.l = (jobject) n;
3788   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3789   add(con);
3790   return con;
3791 }
3792 
3793 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3794   // If called from Compile::scratch_emit_size do nothing.
3795   if (Compile::current()->in_scratch_emit_size())  return;
3796 
3797   assert(labels.is_nonempty(), "must be");
3798   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3799 
3800   // Since MachConstantNode::constant_offset() also contains
3801   // table_base_offset() we need to subtract the table_base_offset()
3802   // to get the plain offset into the constant table.
3803   int offset = n->constant_offset() - table_base_offset();
3804 
3805   MacroAssembler _masm(&cb);
3806   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3807 
3808   for (uint i = 0; i < n->outcnt(); i++) {
3809     address* constant_addr = &jump_table_base[i];
3810     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i)));
3811     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3812     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3813   }
3814 }
3815 
3816 //----------------------------static_subtype_check-----------------------------
3817 // Shortcut important common cases when superklass is exact:
3818 // (0) superklass is java.lang.Object (can occur in reflective code)
3819 // (1) subklass is already limited to a subtype of superklass => always ok
3820 // (2) subklass does not overlap with superklass => always fail
3821 // (3) superklass has NO subtypes and we can check with a simple compare.
3822 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
3823   if (StressReflectiveCode) {
3824     return SSC_full_test;       // Let caller generate the general case.
3825   }
3826 
3827   if (superk == env()->Object_klass()) {
3828     return SSC_always_true;     // (0) this test cannot fail
3829   }
3830 
3831   ciType* superelem = superk;
3832   if (superelem->is_array_klass())
3833     superelem = superelem->as_array_klass()->base_element_type();
3834 
3835   if (!subk->is_interface()) {  // cannot trust static interface types yet
3836     if (subk->is_subtype_of(superk)) {
3837       return SSC_always_true;   // (1) false path dead; no dynamic test needed
3838     }
3839     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
3840         !superk->is_subtype_of(subk)) {
3841       return SSC_always_false;
3842     }
3843   }
3844 
3845   // If casting to an instance klass, it must have no subtypes
3846   if (superk->is_interface()) {
3847     // Cannot trust interfaces yet.
3848     // %%% S.B. superk->nof_implementors() == 1
3849   } else if (superelem->is_instance_klass()) {
3850     ciInstanceKlass* ik = superelem->as_instance_klass();
3851     if (!ik->has_subklass() && !ik->is_interface()) {
3852       if (!ik->is_final()) {
3853         // Add a dependency if there is a chance of a later subclass.
3854         dependencies()->assert_leaf_type(ik);
3855       }
3856       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
3857     }
3858   } else {
3859     // A primitive array type has no subtypes.
3860     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
3861   }
3862 
3863   return SSC_full_test;
3864 }
3865 
3866 // The message about the current inlining is accumulated in
3867 // _print_inlining_stream and transfered into the _print_inlining_list
3868 // once we know whether inlining succeeds or not. For regular
3869 // inlining, messages are appended to the buffer pointed by
3870 // _print_inlining_idx in the _print_inlining_list. For late inlining,
3871 // a new buffer is added after _print_inlining_idx in the list. This
3872 // way we can update the inlining message for late inlining call site
3873 // when the inlining is attempted again.
3874 void Compile::print_inlining_init() {
3875   if (print_inlining() || print_intrinsics()) {
3876     _print_inlining_stream = new stringStream();
3877     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
3878   }
3879 }
3880 
3881 void Compile::print_inlining_reinit() {
3882   if (print_inlining() || print_intrinsics()) {
3883     // Re allocate buffer when we change ResourceMark
3884     _print_inlining_stream = new stringStream();
3885   }
3886 }
3887 
3888 void Compile::print_inlining_reset() {
3889   _print_inlining_stream->reset();
3890 }
3891 
3892 void Compile::print_inlining_commit() {
3893   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
3894   // Transfer the message from _print_inlining_stream to the current
3895   // _print_inlining_list buffer and clear _print_inlining_stream.
3896   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
3897   print_inlining_reset();
3898 }
3899 
3900 void Compile::print_inlining_push() {
3901   // Add new buffer to the _print_inlining_list at current position
3902   _print_inlining_idx++;
3903   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
3904 }
3905 
3906 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
3907   return _print_inlining_list->at(_print_inlining_idx);
3908 }
3909 
3910 void Compile::print_inlining_update(CallGenerator* cg) {
3911   if (print_inlining() || print_intrinsics()) {
3912     if (!cg->is_late_inline()) {
3913       if (print_inlining_current().cg() != NULL) {
3914         print_inlining_push();
3915       }
3916       print_inlining_commit();
3917     } else {
3918       if (print_inlining_current().cg() != cg &&
3919           (print_inlining_current().cg() != NULL ||
3920            print_inlining_current().ss()->size() != 0)) {
3921         print_inlining_push();
3922       }
3923       print_inlining_commit();
3924       print_inlining_current().set_cg(cg);
3925     }
3926   }
3927 }
3928 
3929 void Compile::print_inlining_move_to(CallGenerator* cg) {
3930   // We resume inlining at a late inlining call site. Locate the
3931   // corresponding inlining buffer so that we can update it.
3932   if (print_inlining()) {
3933     for (int i = 0; i < _print_inlining_list->length(); i++) {
3934       if (_print_inlining_list->adr_at(i)->cg() == cg) {
3935         _print_inlining_idx = i;
3936         return;
3937       }
3938     }
3939     ShouldNotReachHere();
3940   }
3941 }
3942 
3943 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
3944   if (print_inlining()) {
3945     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
3946     assert(print_inlining_current().cg() == cg, "wrong entry");
3947     // replace message with new message
3948     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
3949     print_inlining_commit();
3950     print_inlining_current().set_cg(cg);
3951   }
3952 }
3953 
3954 void Compile::print_inlining_assert_ready() {
3955   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
3956 }
3957 
3958 void Compile::process_print_inlining() {
3959   bool do_print_inlining = print_inlining() || print_intrinsics();
3960   if (do_print_inlining || log() != NULL) {
3961     // Print inlining message for candidates that we couldn't inline
3962     // for lack of space
3963     for (int i = 0; i < _late_inlines.length(); i++) {
3964       CallGenerator* cg = _late_inlines.at(i);
3965       if (!cg->is_mh_late_inline()) {
3966         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
3967         if (do_print_inlining) {
3968           cg->print_inlining_late(msg);
3969         }
3970         log_late_inline_failure(cg, msg);
3971       }
3972     }
3973   }
3974   if (do_print_inlining) {
3975     ResourceMark rm;
3976     stringStream ss;
3977     for (int i = 0; i < _print_inlining_list->length(); i++) {
3978       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
3979     }
3980     size_t end = ss.size();
3981     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
3982     strncpy(_print_inlining_output, ss.base(), end+1);
3983     _print_inlining_output[end] = 0;
3984   }
3985 }
3986 
3987 void Compile::dump_print_inlining() {
3988   if (_print_inlining_output != NULL) {
3989     tty->print_raw(_print_inlining_output);
3990   }
3991 }
3992 
3993 void Compile::log_late_inline(CallGenerator* cg) {
3994   if (log() != NULL) {
3995     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
3996                 cg->unique_id());
3997     JVMState* p = cg->call_node()->jvms();
3998     while (p != NULL) {
3999       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4000       p = p->caller();
4001     }
4002     log()->tail("late_inline");
4003   }
4004 }
4005 
4006 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4007   log_late_inline(cg);
4008   if (log() != NULL) {
4009     log()->inline_fail(msg);
4010   }
4011 }
4012 
4013 void Compile::log_inline_id(CallGenerator* cg) {
4014   if (log() != NULL) {
4015     // The LogCompilation tool needs a unique way to identify late
4016     // inline call sites. This id must be unique for this call site in
4017     // this compilation. Try to have it unique across compilations as
4018     // well because it can be convenient when grepping through the log
4019     // file.
4020     // Distinguish OSR compilations from others in case CICountOSR is
4021     // on.
4022     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4023     cg->set_unique_id(id);
4024     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4025   }
4026 }
4027 
4028 void Compile::log_inline_failure(const char* msg) {
4029   if (C->log() != NULL) {
4030     C->log()->inline_fail(msg);
4031   }
4032 }
4033 
4034 
4035 // Dump inlining replay data to the stream.
4036 // Don't change thread state and acquire any locks.
4037 void Compile::dump_inline_data(outputStream* out) {
4038   InlineTree* inl_tree = ilt();
4039   if (inl_tree != NULL) {
4040     out->print(" inline %d", inl_tree->count());
4041     inl_tree->dump_replay_data(out);
4042   }
4043 }
4044 
4045 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4046   if (n1->Opcode() < n2->Opcode())      return -1;
4047   else if (n1->Opcode() > n2->Opcode()) return 1;
4048 
4049   assert(n1->req() == n2->req(), err_msg_res("can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req()));
4050   for (uint i = 1; i < n1->req(); i++) {
4051     if (n1->in(i) < n2->in(i))      return -1;
4052     else if (n1->in(i) > n2->in(i)) return 1;
4053   }
4054 
4055   return 0;
4056 }
4057 
4058 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4059   Node* n1 = *n1p;
4060   Node* n2 = *n2p;
4061 
4062   return cmp_expensive_nodes(n1, n2);
4063 }
4064 
4065 void Compile::sort_expensive_nodes() {
4066   if (!expensive_nodes_sorted()) {
4067     _expensive_nodes->sort(cmp_expensive_nodes);
4068   }
4069 }
4070 
4071 bool Compile::expensive_nodes_sorted() const {
4072   for (int i = 1; i < _expensive_nodes->length(); i++) {
4073     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4074       return false;
4075     }
4076   }
4077   return true;
4078 }
4079 
4080 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4081   if (_expensive_nodes->length() == 0) {
4082     return false;
4083   }
4084 
4085   assert(OptimizeExpensiveOps, "optimization off?");
4086 
4087   // Take this opportunity to remove dead nodes from the list
4088   int j = 0;
4089   for (int i = 0; i < _expensive_nodes->length(); i++) {
4090     Node* n = _expensive_nodes->at(i);
4091     if (!n->is_unreachable(igvn)) {
4092       assert(n->is_expensive(), "should be expensive");
4093       _expensive_nodes->at_put(j, n);
4094       j++;
4095     }
4096   }
4097   _expensive_nodes->trunc_to(j);
4098 
4099   // Then sort the list so that similar nodes are next to each other
4100   // and check for at least two nodes of identical kind with same data
4101   // inputs.
4102   sort_expensive_nodes();
4103 
4104   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4105     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4106       return true;
4107     }
4108   }
4109 
4110   return false;
4111 }
4112 
4113 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4114   if (_expensive_nodes->length() == 0) {
4115     return;
4116   }
4117 
4118   assert(OptimizeExpensiveOps, "optimization off?");
4119 
4120   // Sort to bring similar nodes next to each other and clear the
4121   // control input of nodes for which there's only a single copy.
4122   sort_expensive_nodes();
4123 
4124   int j = 0;
4125   int identical = 0;
4126   int i = 0;
4127   bool modified = false;
4128   for (; i < _expensive_nodes->length()-1; i++) {
4129     assert(j <= i, "can't write beyond current index");
4130     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4131       identical++;
4132       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4133       continue;
4134     }
4135     if (identical > 0) {
4136       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4137       identical = 0;
4138     } else {
4139       Node* n = _expensive_nodes->at(i);
4140       igvn.replace_input_of(n, 0, NULL);
4141       igvn.hash_insert(n);
4142       modified = true;
4143     }
4144   }
4145   if (identical > 0) {
4146     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4147   } else if (_expensive_nodes->length() >= 1) {
4148     Node* n = _expensive_nodes->at(i);
4149     igvn.replace_input_of(n, 0, NULL);
4150     igvn.hash_insert(n);
4151     modified = true;
4152   }
4153   _expensive_nodes->trunc_to(j);
4154   if (modified) {
4155     igvn.optimize();
4156   }
4157 }
4158 
4159 void Compile::add_expensive_node(Node * n) {
4160   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4161   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4162   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4163   if (OptimizeExpensiveOps) {
4164     _expensive_nodes->append(n);
4165   } else {
4166     // Clear control input and let IGVN optimize expensive nodes if
4167     // OptimizeExpensiveOps is off.
4168     n->set_req(0, NULL);
4169   }
4170 }
4171 
4172 /**
4173  * Remove the speculative part of types and clean up the graph
4174  */
4175 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4176   if (UseTypeSpeculation) {
4177     Unique_Node_List worklist;
4178     worklist.push(root());
4179     int modified = 0;
4180     // Go over all type nodes that carry a speculative type, drop the
4181     // speculative part of the type and enqueue the node for an igvn
4182     // which may optimize it out.
4183     for (uint next = 0; next < worklist.size(); ++next) {
4184       Node *n  = worklist.at(next);
4185       if (n->is_Type()) {
4186         TypeNode* tn = n->as_Type();
4187         const Type* t = tn->type();
4188         const Type* t_no_spec = t->remove_speculative();
4189         if (t_no_spec != t) {
4190           bool in_hash = igvn.hash_delete(n);
4191           assert(in_hash, "node should be in igvn hash table");
4192           tn->set_type(t_no_spec);
4193           igvn.hash_insert(n);
4194           igvn._worklist.push(n); // give it a chance to go away
4195           modified++;
4196         }
4197       }
4198       uint max = n->len();
4199       for( uint i = 0; i < max; ++i ) {
4200         Node *m = n->in(i);
4201         if (not_a_node(m))  continue;
4202         worklist.push(m);
4203       }
4204     }
4205     // Drop the speculative part of all types in the igvn's type table
4206     igvn.remove_speculative_types();
4207     if (modified > 0) {
4208       igvn.optimize();
4209     }
4210 #ifdef ASSERT
4211     // Verify that after the IGVN is over no speculative type has resurfaced
4212     worklist.clear();
4213     worklist.push(root());
4214     for (uint next = 0; next < worklist.size(); ++next) {
4215       Node *n  = worklist.at(next);
4216       const Type* t = igvn.type_or_null(n);
4217       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4218       if (n->is_Type()) {
4219         t = n->as_Type()->type();
4220         assert(t == t->remove_speculative(), "no more speculative types");
4221       }
4222       uint max = n->len();
4223       for( uint i = 0; i < max; ++i ) {
4224         Node *m = n->in(i);
4225         if (not_a_node(m))  continue;
4226         worklist.push(m);
4227       }
4228     }
4229     igvn.check_no_speculative_types();
4230 #endif
4231   }
4232 }
4233 
4234 // Auxiliary method to support randomized stressing/fuzzing.
4235 //
4236 // This method can be called the arbitrary number of times, with current count
4237 // as the argument. The logic allows selecting a single candidate from the
4238 // running list of candidates as follows:
4239 //    int count = 0;
4240 //    Cand* selected = null;
4241 //    while(cand = cand->next()) {
4242 //      if (randomized_select(++count)) {
4243 //        selected = cand;
4244 //      }
4245 //    }
4246 //
4247 // Including count equalizes the chances any candidate is "selected".
4248 // This is useful when we don't have the complete list of candidates to choose
4249 // from uniformly. In this case, we need to adjust the randomicity of the
4250 // selection, or else we will end up biasing the selection towards the latter
4251 // candidates.
4252 //
4253 // Quick back-envelope calculation shows that for the list of n candidates
4254 // the equal probability for the candidate to persist as "best" can be
4255 // achieved by replacing it with "next" k-th candidate with the probability
4256 // of 1/k. It can be easily shown that by the end of the run, the
4257 // probability for any candidate is converged to 1/n, thus giving the
4258 // uniform distribution among all the candidates.
4259 //
4260 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4261 #define RANDOMIZED_DOMAIN_POW 29
4262 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4263 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4264 bool Compile::randomized_select(int count) {
4265   assert(count > 0, "only positive");
4266   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4267 }