1 /*
   2  * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2019 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // AbstractDisassembler is the base class for
  27 // platform-specific Disassembler classes.
  28 
  29 #include "precompiled.hpp"
  30 #include "asm/assembler.inline.hpp"
  31 #include "compiler/abstractDisassembler.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "utilities/debug.hpp"
  34 #include "utilities/ostream.hpp"
  35 
  36 // Default values for what is being printed as line prefix when disassembling a single instruction.
  37 // Can be overridden by command line parameter PrintAssemblyOptions.
  38 bool AbstractDisassembler::_show_data_hex      = true;
  39 bool AbstractDisassembler::_show_data_int      = false;
  40 bool AbstractDisassembler::_show_data_float    = false;
  41 bool AbstractDisassembler::_align_instr        = false;
  42 bool AbstractDisassembler::_show_pc            = true;
  43 bool AbstractDisassembler::_show_offset        = false;
  44 bool AbstractDisassembler::_show_structs       = false;
  45 bool AbstractDisassembler::_show_comment       = false;
  46 bool AbstractDisassembler::_show_block_comment = false;
  47 #if defined(ARM) || defined(AARCH64)
  48 bool AbstractDisassembler::_show_bytes  = false; // set "true" to see what's in memory bit by bit
  49                                                  // might prove cumbersome because instr_len is hard to find on arm
  50 #endif
  51 #if defined(PPC)
  52 bool AbstractDisassembler::_show_bytes  = false;  // set "true" to see what's in memory bit by bit
  53 #endif
  54 #if defined(S390)
  55 bool AbstractDisassembler::_show_bytes  = false;  // set "true" to see what's in memory bit by bit
  56 #endif
  57 #if defined(SPARC)
  58 bool AbstractDisassembler::_show_bytes  = false; // set "true" to see what's in memory bit by bit
  59 #endif
  60 #if defined(X86)
  61 bool AbstractDisassembler::_show_bytes  = false; // set "true" to see what's in memory bit by bit
  62                                                  // might prove cumbersome because instr_len is hard to find on x86
  63 #endif
  64 #if defined(ZERO)
  65 bool AbstractDisassembler::_show_bytes  = false; // set "true" to see what's in memory bit by bit
  66 #endif
  67 
  68 // Return #bytes printed. Callers may use that for output alignment.
  69 // Print instruction address, and offset from blob begin.
  70 // Offset width (2, 4, 6, 8 bytes) is adapted to size of blob.
  71 // Working assumption: we are at st->bol() upon entry. If not, it's the
  72 //                     caller's responsibility to guarantee proper alignment.
  73 int AbstractDisassembler::print_location(address here, address begin, address end, outputStream* st, bool align, bool print_header) {
  74   const int     pos_0  = st->position();
  75 
  76   if (show_pc() || show_offset()) {
  77     st->print(" ");
  78   }
  79 
  80   if (show_pc()) {
  81     if (print_header) {
  82       st->print(" %*s", 18, "Address");
  83     } else {
  84       st->print(" " PTR_FORMAT, p2i(here));
  85     }
  86   }
  87 
  88   if (show_offset()) {
  89 #ifdef ASSERT
  90     if ((uintptr_t)begin > (uintptr_t)here) st->print(">>begin(" PTR_FORMAT ") > here(" PTR_FORMAT ")<<", p2i(begin), p2i(here));
  91     if ((uintptr_t)end   < (uintptr_t)here) st->print(">>  end(" PTR_FORMAT ") < here(" PTR_FORMAT ")<<", p2i(end),   p2i(here));
  92     assert((uintptr_t)begin <= (uintptr_t)end, "inverted address range");
  93 #endif
  94     const int blob_len = end - begin;
  95     const int offset   = here - begin;
  96     const int width    = (blob_len < (1<< 8)) ? 2 : (blob_len < (1<<16)) ? 4 : (blob_len < (1<<24)) ? 6 : 8;
  97     if (print_header) {
  98       st->print(" %*s", width+5, "offset");
  99     } else {
 100       st->print(" (+0x%*.*x)", width, width, offset);
 101     }
 102   }
 103 
 104   if ((show_pc() || show_offset()) && !print_header) {
 105     st->print(": ");
 106   }
 107 
 108   if (align) {
 109     const uint tabspacing  = 8;
 110     const uint pos         = st->position();
 111     const uint aligned_pos = ((pos+tabspacing-1)/tabspacing)*tabspacing /* - 1 */;
 112     st->fill_to(aligned_pos);
 113   }
 114 
 115   return st->position() - pos_0;
 116 }
 117 
 118 
 119 // Return #bytes printed. Callers may use that for output alignment.
 120 // Print instruction in hexadecimal representation, using 2-byte blocks.
 121 // Used with real disassemblies. Not so useful with abstract disassemblies.
 122 int AbstractDisassembler::print_instruction(address here, int len, int max_len, outputStream* st, bool align, bool print_header) {
 123   if (show_bytes()) {
 124     const int block_bytes = 2;
 125     const int pos_0       = st->position();
 126     address   pos         = here;
 127 
 128     //---<  print instruction bytes in blocks  >---
 129     // must print byte by byte: address might be unaligned.
 130     for (; pos <= here + len - block_bytes; pos += block_bytes) {
 131       for (address byte = pos; byte < pos + block_bytes; byte++) {
 132         st->print("%2.2x", *byte);
 133       }
 134       st->print(" ");
 135     }
 136 
 137     //---<  Print the remaining bytes of the instruction  >---
 138     if ((len & (block_bytes - 1)) != 0) {
 139       for (; pos < here + len; pos++) {
 140         st->print("%2.2x", *pos);
 141       }
 142     }
 143 
 144     //---<  filler for shorter than max_len instructions  >---
 145     for (int i = len+1; i < max_len; i++) {
 146       st->print("  ");
 147     }
 148 
 149     st->print(" "); // separator space.
 150     print_delimiter(st);
 151     return st->position() - pos_0;
 152   }
 153 
 154   if (align) {
 155     const uint tabspacing  = 8;
 156     const uint pos         = st->position();
 157     const uint aligned_pos = ((pos+tabspacing-1)/tabspacing)*tabspacing /* - 1 */;
 158     st->fill_to(aligned_pos);
 159   }
 160 
 161   return 0;
 162 }
 163 
 164 
 165 // Return #bytes printed. Callers may use that for output alignment.
 166 // Print data (e.g. constant pool entries) in hex format.
 167 // Depending on the alignment, short, int, and long entities are printed.
 168 // If selected, data is formatted as int/long and float/double values in addition.
 169 int AbstractDisassembler::print_hexdata(address here, int len, outputStream* st, bool print_header) {
 170   const int tsize = 8;
 171   const int pos_0 = st->position();
 172   int pos   = pos_0;
 173   int align = ((pos+tsize-1)/tsize)*tsize;
 174   st->fill_to(align);
 175 
 176   //---<  printing hex data  >---
 177   if (show_data_hex()) {
 178     switch (len) {
 179       case 1: if (print_header) {
 180                 st->print("hex1");
 181               } else {
 182                 st->print("0x%02x", *here);
 183               }
 184               st->fill_to(align += tsize);
 185       case 2: if (print_header) {
 186                 st->print("  hex2");
 187               } else {
 188                 if (((uintptr_t)(here)&0x01) == 0) {
 189                   st->print("0x%04x",   *((jushort*)here));
 190                 }
 191               }
 192               st->fill_to(align += tsize);
 193       case 4: if (print_header) {
 194                 st->print("      hex4");
 195               } else {
 196                 if (((uintptr_t)(here)&0x03) == 0) {
 197                   st->print("0x%08x",   *((juint*)here));
 198                 }
 199               }
 200               st->fill_to(align += 2*tsize);
 201       case 8: if (print_header) {
 202                 st->print("              hex8");
 203               } else {
 204                 if (((uintptr_t)(here)&0x07) == 0) {
 205                   st->print(PTR_FORMAT, *((uintptr_t*)here));
 206                 }
 207               }
 208               st->fill_to(align += 3*tsize);
 209               break;
 210       default: ;
 211     }
 212     pos   = st->position();
 213     align = ((pos+tsize-1)/tsize)*tsize;
 214     st->fill_to(align);
 215   }
 216 
 217   //---<  printing int/long data  >---
 218   if (show_data_int()) {
 219     switch (len) {
 220       case 4: if (print_header) {
 221                 st->print("         int");
 222               } else {
 223                 if (((uintptr_t)(here)&0x03) == 0) {
 224                   st->print("%12.1d",  *((jint*)here));
 225                 }
 226               }
 227               st->fill_to(align += 2*tsize);
 228       case 8: if (print_header) {
 229                 st->print("                   long");
 230               } else {
 231                 if (((uintptr_t)(here)&0x07) == 0) {
 232                   st->print("%23.1ld", *((jlong*)here));
 233                 }
 234               }
 235               st->fill_to(align += 3*tsize);
 236               break;
 237       default: ;
 238     }
 239     pos   = st->position();
 240     align = ((pos+tsize-1)/tsize)*tsize;
 241     st->fill_to(align);
 242   }
 243 
 244   //---<  printing float/double data  >---
 245   if (show_data_float()) {
 246     switch (len) {
 247       case 4: if (print_header) {
 248                 st->print("          float");
 249               } else {
 250                 if (((uintptr_t)(here)&0x03) == 0) {
 251                   st->print("%15.7e",  (double)*((float*)here));
 252                 }
 253               }
 254               st->fill_to(align += 2*tsize);
 255       case 8: if (print_header) {
 256                 st->print("                 double");
 257               } else {
 258                 if (((uintptr_t)(here)&0x07) == 0) {
 259                   st->print("%23.15e",         *((double*)here));
 260                 }
 261               }
 262               st->fill_to(align += 3*tsize);
 263               break;
 264       default: ;
 265     }
 266   }
 267 
 268   return st->position() - pos_0;
 269 }
 270 
 271 
 272 // Return #bytes printed. Callers may use that for output alignment.
 273 // Print an instruction delimiter.
 274 int AbstractDisassembler::print_delimiter(outputStream* st) {
 275   if (align_instr()) { st->print("| "); return 2; }
 276   else               return 0;
 277 }
 278 
 279 
 280 // Decodes the one instruction at address start in a platform-independent format.
 281 // Returns the start of the next instruction (which is 'start' plus 'instruction_size_in_bytes').
 282 // The parameter max_instr_size_in_bytes is used for output alignment purposes only.
 283 address AbstractDisassembler::decode_instruction_abstract(address start,
 284                                                           outputStream* st,
 285                                                           const int instruction_size_in_bytes,
 286                                                           const int max_instr_size_in_bytes) {
 287   assert(instruction_size_in_bytes > 0, "no zero-size instructions!");
 288   assert(max_instr_size_in_bytes >= instruction_size_in_bytes, "inconsistent call parameters");
 289 
 290   //---<  current instruction is at the start address  >---
 291   unsigned char* current = (unsigned char*) start;
 292   int            filler_limit = align_instr() ? max_instr_size_in_bytes : ((instruction_size_in_bytes+abstract_instruction_bytes_per_block-1)/abstract_instruction_bytes_per_block)
 293                                                                           *abstract_instruction_bytes_per_block;
 294 
 295   //---<  print the instruction's bytes  >---
 296   for (int i = 1; i <= instruction_size_in_bytes; i++) {
 297     st->print("%02x", *current);
 298     ++current;
 299     if (abstract_instruction_bytes_per_block <= max_instr_size_in_bytes) {
 300       if (i%abstract_instruction_bytes_per_block == 0) st->print(" ");
 301     } else {
 302       if (i == instruction_size_in_bytes) st->print(" ");
 303     }
 304   }
 305 
 306   //---<  print some filler spaces to column-align instructions  >---
 307   for (int i = instruction_size_in_bytes+1; i <= filler_limit; i++) {
 308     st->print("  ");
 309     if (abstract_instruction_bytes_per_block <= max_instr_size_in_bytes) {
 310       if (i%abstract_instruction_bytes_per_block == 0) st->print(" ");
 311     } else {
 312       if (i == instruction_size_in_bytes) st->print(" ");
 313     }
 314   }
 315 
 316   //---<  the address of the next instruction  >---
 317   return (address) current;
 318 }
 319 
 320 
 321 // Decodes all instructions in the given range [start..end)
 322 // calling decode_instruction_abstract for each instruction.
 323 // The format is platform dependent only to the extend that
 324 // it respects the actual instruction length where possible.
 325 // Does not print any markers or decorators.
 326 void AbstractDisassembler::decode_range_abstract(address range_start, address range_end,
 327                                                  address start, address end,
 328                                                  outputStream* st,
 329                                                  const int max_instr_size_in_bytes) {
 330   assert(st != NULL, "need an output stream (no default)!");
 331   int     idx = 0;
 332   address pos = range_start;
 333 
 334   while ((pos != NULL) && (pos < range_end)) {
 335     int instr_size_in_bytes = Assembler::instr_len(pos);
 336 
 337     if (idx == 0) print_location(pos, start, end, st, false, false);
 338     else          print_delimiter(st);
 339 
 340     //---<  print the instruction's bytes  >---
 341     // don't access storage beyond end of range
 342     if (pos + instr_size_in_bytes <= range_end) {
 343       pos = decode_instruction_abstract(pos, st, instr_size_in_bytes, max_instr_size_in_bytes);
 344     } else {
 345       // If the range to be decoded contains garbage at the end (e.g. 0xcc initializer bytes),
 346       // instruction size calculation may run out of sync. Just terminate in that case.
 347       pos = range_end;
 348     }
 349 
 350     idx += instr_size_in_bytes;
 351     if (start_newline(idx)) {
 352       st->cr();
 353       idx = 0;
 354     }
 355   }
 356 }
 357 
 358 
 359 // Decodes all instructions in the given range [start..end).
 360 // The output is enclosed in [MachCode] and [/MachCode] tags for later recognition.
 361 // The format is platform dependent only to the extend that
 362 // it respects the actual instruction length where possible.
 363 void AbstractDisassembler::decode_abstract(address start, address end, outputStream* ost,
 364                                            const int max_instr_size_in_bytes) {
 365   int     idx = 0;
 366   address pos = start;
 367 
 368   outputStream* st = (ost == NULL) ? tty : ost;
 369 
 370   //---<  Open the output (Marker for post-mortem disassembler)  >---
 371   st->bol();
 372   st->print_cr("[MachCode]");
 373 
 374   decode_range_abstract(start, end, start, end, st, max_instr_size_in_bytes);
 375 
 376   //---<  Close the output (Marker for post-mortem disassembler)  >---
 377   st->bol();
 378   st->print_cr("[/MachCode]");
 379 }