1 /*
2 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
3 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
4 *
5 * This code is free software; you can redistribute it and/or modify it
6 * under the terms of the GNU General Public License version 2 only, as
7 * published by the Free Software Foundation.
8 *
9 * This code is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
12 * version 2 for more details (a copy is included in the LICENSE file that
13 * accompanied this code).
14 *
15 * You should have received a copy of the GNU General Public License version
16 * 2 along with this work; if not, write to the Free Software Foundation,
17 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
18 *
19 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
20 * or visit www.oracle.com if you need additional information or have any
21 * questions.
22 *
23 */
24
25 #include "precompiled.hpp"
26 #include "asm/codeBuffer.hpp"
27 #include "c1/c1_CodeStubs.hpp"
28 #include "c1/c1_Defs.hpp"
29 #include "c1/c1_FrameMap.hpp"
30 #include "c1/c1_LIRAssembler.hpp"
31 #include "c1/c1_MacroAssembler.hpp"
32 #include "c1/c1_Runtime1.hpp"
33 #include "classfile/systemDictionary.hpp"
34 #include "classfile/vmSymbols.hpp"
35 #include "code/codeBlob.hpp"
36 #include "code/compiledIC.hpp"
37 #include "code/pcDesc.hpp"
38 #include "code/scopeDesc.hpp"
39 #include "code/vtableStubs.hpp"
40 #include "compiler/disassembler.hpp"
41 #include "gc_interface/collectedHeap.hpp"
42 #include "interpreter/bytecode.hpp"
43 #include "interpreter/interpreter.hpp"
44 #include "memory/allocation.inline.hpp"
45 #include "memory/barrierSet.hpp"
46 #include "memory/oopFactory.hpp"
47 #include "memory/resourceArea.hpp"
48 #include "oops/objArrayKlass.hpp"
49 #include "oops/oop.inline.hpp"
50 #include "runtime/biasedLocking.hpp"
51 #include "runtime/compilationPolicy.hpp"
52 #include "runtime/interfaceSupport.hpp"
53 #include "runtime/javaCalls.hpp"
54 #include "runtime/sharedRuntime.hpp"
55 #include "runtime/threadCritical.hpp"
56 #include "runtime/vframe.hpp"
57 #include "runtime/vframeArray.hpp"
58 #include "utilities/copy.hpp"
59 #include "utilities/events.hpp"
60
61
62 // Implementation of StubAssembler
63
64 StubAssembler::StubAssembler(CodeBuffer* code, const char * name, int stub_id) : C1_MacroAssembler(code) {
65 _name = name;
66 _must_gc_arguments = false;
67 _frame_size = no_frame_size;
68 _num_rt_args = 0;
69 _stub_id = stub_id;
70 }
71
72
73 void StubAssembler::set_info(const char* name, bool must_gc_arguments) {
74 _name = name;
75 _must_gc_arguments = must_gc_arguments;
76 }
77
78
79 void StubAssembler::set_frame_size(int size) {
80 if (_frame_size == no_frame_size) {
81 _frame_size = size;
82 }
83 assert(_frame_size == size, "can't change the frame size");
84 }
85
86
87 void StubAssembler::set_num_rt_args(int args) {
88 if (_num_rt_args == 0) {
89 _num_rt_args = args;
90 }
91 assert(_num_rt_args == args, "can't change the number of args");
92 }
93
94 // Implementation of Runtime1
95
96 CodeBlob* Runtime1::_blobs[Runtime1::number_of_ids];
97 const char *Runtime1::_blob_names[] = {
98 RUNTIME1_STUBS(STUB_NAME, LAST_STUB_NAME)
99 };
100
101 #ifndef PRODUCT
102 // statistics
103 int Runtime1::_generic_arraycopy_cnt = 0;
104 int Runtime1::_primitive_arraycopy_cnt = 0;
105 int Runtime1::_oop_arraycopy_cnt = 0;
106 int Runtime1::_generic_arraycopystub_cnt = 0;
107 int Runtime1::_arraycopy_slowcase_cnt = 0;
108 int Runtime1::_arraycopy_checkcast_cnt = 0;
109 int Runtime1::_arraycopy_checkcast_attempt_cnt = 0;
110 int Runtime1::_new_type_array_slowcase_cnt = 0;
111 int Runtime1::_new_object_array_slowcase_cnt = 0;
112 int Runtime1::_new_instance_slowcase_cnt = 0;
113 int Runtime1::_new_multi_array_slowcase_cnt = 0;
114 int Runtime1::_monitorenter_slowcase_cnt = 0;
115 int Runtime1::_monitorexit_slowcase_cnt = 0;
116 int Runtime1::_patch_code_slowcase_cnt = 0;
117 int Runtime1::_throw_range_check_exception_count = 0;
118 int Runtime1::_throw_index_exception_count = 0;
119 int Runtime1::_throw_div0_exception_count = 0;
120 int Runtime1::_throw_null_pointer_exception_count = 0;
121 int Runtime1::_throw_class_cast_exception_count = 0;
122 int Runtime1::_throw_incompatible_class_change_error_count = 0;
123 int Runtime1::_throw_array_store_exception_count = 0;
124 int Runtime1::_throw_count = 0;
125
126 static int _byte_arraycopy_cnt = 0;
127 static int _short_arraycopy_cnt = 0;
128 static int _int_arraycopy_cnt = 0;
129 static int _long_arraycopy_cnt = 0;
130 static int _oop_arraycopy_cnt = 0;
131
132 address Runtime1::arraycopy_count_address(BasicType type) {
133 switch (type) {
134 case T_BOOLEAN:
135 case T_BYTE: return (address)&_byte_arraycopy_cnt;
136 case T_CHAR:
137 case T_SHORT: return (address)&_short_arraycopy_cnt;
138 case T_FLOAT:
139 case T_INT: return (address)&_int_arraycopy_cnt;
140 case T_DOUBLE:
141 case T_LONG: return (address)&_long_arraycopy_cnt;
142 case T_ARRAY:
143 case T_OBJECT: return (address)&_oop_arraycopy_cnt;
144 default:
145 ShouldNotReachHere();
146 return NULL;
147 }
148 }
149
150
151 #endif
152
153 // Simple helper to see if the caller of a runtime stub which
154 // entered the VM has been deoptimized
155
156 static bool caller_is_deopted() {
157 JavaThread* thread = JavaThread::current();
158 RegisterMap reg_map(thread, false);
159 frame runtime_frame = thread->last_frame();
160 frame caller_frame = runtime_frame.sender(®_map);
161 assert(caller_frame.is_compiled_frame(), "must be compiled");
162 return caller_frame.is_deoptimized_frame();
163 }
164
165 // Stress deoptimization
166 static void deopt_caller() {
167 if ( !caller_is_deopted()) {
168 JavaThread* thread = JavaThread::current();
169 RegisterMap reg_map(thread, false);
170 frame runtime_frame = thread->last_frame();
171 frame caller_frame = runtime_frame.sender(®_map);
172 Deoptimization::deoptimize_frame(thread, caller_frame.id());
173 assert(caller_is_deopted(), "Must be deoptimized");
174 }
175 }
176
177
178 void Runtime1::generate_blob_for(BufferBlob* buffer_blob, StubID id) {
179 assert(0 <= id && id < number_of_ids, "illegal stub id");
180 ResourceMark rm;
181 // create code buffer for code storage
182 CodeBuffer code(buffer_blob);
183
184 Compilation::setup_code_buffer(&code, 0);
185
186 // create assembler for code generation
187 StubAssembler* sasm = new StubAssembler(&code, name_for(id), id);
188 // generate code for runtime stub
189 OopMapSet* oop_maps;
190 oop_maps = generate_code_for(id, sasm);
191 assert(oop_maps == NULL || sasm->frame_size() != no_frame_size,
192 "if stub has an oop map it must have a valid frame size");
193
194 #ifdef ASSERT
195 // Make sure that stubs that need oopmaps have them
196 switch (id) {
197 // These stubs don't need to have an oopmap
198 case dtrace_object_alloc_id:
199 case g1_pre_barrier_slow_id:
200 case g1_post_barrier_slow_id:
201 case slow_subtype_check_id:
202 case fpu2long_stub_id:
203 case unwind_exception_id:
204 case counter_overflow_id:
205 #if defined(SPARC) || defined(PPC)
206 case handle_exception_nofpu_id: // Unused on sparc
207 #endif
208 break;
209
210 // All other stubs should have oopmaps
211 default:
212 assert(oop_maps != NULL, "must have an oopmap");
213 }
214 #endif
215
216 // align so printing shows nop's instead of random code at the end (SimpleStubs are aligned)
217 sasm->align(BytesPerWord);
218 // make sure all code is in code buffer
219 sasm->flush();
220 // create blob - distinguish a few special cases
221 CodeBlob* blob = RuntimeStub::new_runtime_stub(name_for(id),
222 &code,
223 CodeOffsets::frame_never_safe,
224 sasm->frame_size(),
225 oop_maps,
226 sasm->must_gc_arguments());
227 // install blob
228 assert(blob != NULL, "blob must exist");
229 _blobs[id] = blob;
230 }
231
232
233 void Runtime1::initialize(BufferBlob* blob) {
234 // platform-dependent initialization
235 initialize_pd();
236 // generate stubs
237 for (int id = 0; id < number_of_ids; id++) generate_blob_for(blob, (StubID)id);
238 // printing
239 #ifndef PRODUCT
240 if (PrintSimpleStubs) {
241 ResourceMark rm;
242 for (int id = 0; id < number_of_ids; id++) {
243 _blobs[id]->print();
244 if (_blobs[id]->oop_maps() != NULL) {
245 _blobs[id]->oop_maps()->print();
246 }
247 }
248 }
249 #endif
250 }
251
252
253 CodeBlob* Runtime1::blob_for(StubID id) {
254 assert(0 <= id && id < number_of_ids, "illegal stub id");
255 return _blobs[id];
256 }
257
258
259 const char* Runtime1::name_for(StubID id) {
260 assert(0 <= id && id < number_of_ids, "illegal stub id");
261 return _blob_names[id];
262 }
263
264 const char* Runtime1::name_for_address(address entry) {
265 for (int id = 0; id < number_of_ids; id++) {
266 if (entry == entry_for((StubID)id)) return name_for((StubID)id);
267 }
268
269 #define FUNCTION_CASE(a, f) \
270 if ((intptr_t)a == CAST_FROM_FN_PTR(intptr_t, f)) return #f
271
272 FUNCTION_CASE(entry, os::javaTimeMillis);
273 FUNCTION_CASE(entry, os::javaTimeNanos);
274 FUNCTION_CASE(entry, SharedRuntime::OSR_migration_end);
275 FUNCTION_CASE(entry, SharedRuntime::d2f);
276 FUNCTION_CASE(entry, SharedRuntime::d2i);
277 FUNCTION_CASE(entry, SharedRuntime::d2l);
278 FUNCTION_CASE(entry, SharedRuntime::dcos);
279 FUNCTION_CASE(entry, SharedRuntime::dexp);
280 FUNCTION_CASE(entry, SharedRuntime::dlog);
281 FUNCTION_CASE(entry, SharedRuntime::dlog10);
282 FUNCTION_CASE(entry, SharedRuntime::dpow);
283 FUNCTION_CASE(entry, SharedRuntime::drem);
284 FUNCTION_CASE(entry, SharedRuntime::dsin);
285 FUNCTION_CASE(entry, SharedRuntime::dtan);
286 FUNCTION_CASE(entry, SharedRuntime::f2i);
287 FUNCTION_CASE(entry, SharedRuntime::f2l);
288 FUNCTION_CASE(entry, SharedRuntime::frem);
289 FUNCTION_CASE(entry, SharedRuntime::l2d);
290 FUNCTION_CASE(entry, SharedRuntime::l2f);
291 FUNCTION_CASE(entry, SharedRuntime::ldiv);
292 FUNCTION_CASE(entry, SharedRuntime::lmul);
293 FUNCTION_CASE(entry, SharedRuntime::lrem);
294 FUNCTION_CASE(entry, SharedRuntime::lrem);
295 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_entry);
296 FUNCTION_CASE(entry, SharedRuntime::dtrace_method_exit);
297 FUNCTION_CASE(entry, is_instance_of);
298 FUNCTION_CASE(entry, trace_block_entry);
299 #ifdef TRACE_HAVE_INTRINSICS
300 FUNCTION_CASE(entry, TRACE_TIME_METHOD);
301 #endif
302 FUNCTION_CASE(entry, StubRoutines::updateBytesCRC32());
303
304 #undef FUNCTION_CASE
305
306 // Soft float adds more runtime names.
307 return pd_name_for_address(entry);
308 }
309
310
311 JRT_ENTRY(void, Runtime1::new_instance(JavaThread* thread, Klass* klass))
312 NOT_PRODUCT(_new_instance_slowcase_cnt++;)
313
314 assert(klass->is_klass(), "not a class");
315 instanceKlassHandle h(thread, klass);
316 h->check_valid_for_instantiation(true, CHECK);
317 // make sure klass is initialized
318 h->initialize(CHECK);
319 // allocate instance and return via TLS
320 oop obj = h->allocate_instance(CHECK);
321 thread->set_vm_result(obj);
322 JRT_END
323
324
325 JRT_ENTRY(void, Runtime1::new_type_array(JavaThread* thread, Klass* klass, jint length))
326 NOT_PRODUCT(_new_type_array_slowcase_cnt++;)
327 // Note: no handle for klass needed since they are not used
328 // anymore after new_typeArray() and no GC can happen before.
329 // (This may have to change if this code changes!)
330 assert(klass->is_klass(), "not a class");
331 BasicType elt_type = TypeArrayKlass::cast(klass)->element_type();
332 oop obj = oopFactory::new_typeArray(elt_type, length, CHECK);
333 thread->set_vm_result(obj);
334 // This is pretty rare but this runtime patch is stressful to deoptimization
335 // if we deoptimize here so force a deopt to stress the path.
336 if (DeoptimizeALot) {
337 deopt_caller();
338 }
339
340 JRT_END
341
342
343 JRT_ENTRY(void, Runtime1::new_object_array(JavaThread* thread, Klass* array_klass, jint length))
344 NOT_PRODUCT(_new_object_array_slowcase_cnt++;)
345
346 // Note: no handle for klass needed since they are not used
347 // anymore after new_objArray() and no GC can happen before.
348 // (This may have to change if this code changes!)
349 assert(array_klass->is_klass(), "not a class");
350 Klass* elem_klass = ObjArrayKlass::cast(array_klass)->element_klass();
351 objArrayOop obj = oopFactory::new_objArray(elem_klass, length, CHECK);
352 thread->set_vm_result(obj);
353 // This is pretty rare but this runtime patch is stressful to deoptimization
354 // if we deoptimize here so force a deopt to stress the path.
355 if (DeoptimizeALot) {
356 deopt_caller();
357 }
358 JRT_END
359
360
361 JRT_ENTRY(void, Runtime1::new_multi_array(JavaThread* thread, Klass* klass, int rank, jint* dims))
362 NOT_PRODUCT(_new_multi_array_slowcase_cnt++;)
363
364 assert(klass->is_klass(), "not a class");
365 assert(rank >= 1, "rank must be nonzero");
366 oop obj = ArrayKlass::cast(klass)->multi_allocate(rank, dims, CHECK);
367 thread->set_vm_result(obj);
368 JRT_END
369
370
371 JRT_ENTRY(void, Runtime1::unimplemented_entry(JavaThread* thread, StubID id))
372 tty->print_cr("Runtime1::entry_for(%d) returned unimplemented entry point", id);
373 JRT_END
374
375
376 JRT_ENTRY(void, Runtime1::throw_array_store_exception(JavaThread* thread, oopDesc* obj))
377 ResourceMark rm(thread);
378 const char* klass_name = obj->klass()->external_name();
379 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayStoreException(), klass_name);
380 JRT_END
381
382
383 // counter_overflow() is called from within C1-compiled methods. The enclosing method is the method
384 // associated with the top activation record. The inlinee (that is possibly included in the enclosing
385 // method) method oop is passed as an argument. In order to do that it is embedded in the code as
386 // a constant.
387 static nmethod* counter_overflow_helper(JavaThread* THREAD, int branch_bci, Method* m) {
388 nmethod* osr_nm = NULL;
389 methodHandle method(THREAD, m);
390
391 RegisterMap map(THREAD, false);
392 frame fr = THREAD->last_frame().sender(&map);
393 nmethod* nm = (nmethod*) fr.cb();
394 assert(nm!= NULL && nm->is_nmethod(), "Sanity check");
395 methodHandle enclosing_method(THREAD, nm->method());
396
397 CompLevel level = (CompLevel)nm->comp_level();
398 int bci = InvocationEntryBci;
399 if (branch_bci != InvocationEntryBci) {
400 // Compute desination bci
401 address pc = method()->code_base() + branch_bci;
402 Bytecodes::Code branch = Bytecodes::code_at(method(), pc);
403 int offset = 0;
404 switch (branch) {
405 case Bytecodes::_if_icmplt: case Bytecodes::_iflt:
406 case Bytecodes::_if_icmpgt: case Bytecodes::_ifgt:
407 case Bytecodes::_if_icmple: case Bytecodes::_ifle:
408 case Bytecodes::_if_icmpge: case Bytecodes::_ifge:
409 case Bytecodes::_if_icmpeq: case Bytecodes::_if_acmpeq: case Bytecodes::_ifeq:
410 case Bytecodes::_if_icmpne: case Bytecodes::_if_acmpne: case Bytecodes::_ifne:
411 case Bytecodes::_ifnull: case Bytecodes::_ifnonnull: case Bytecodes::_goto:
412 offset = (int16_t)Bytes::get_Java_u2(pc + 1);
413 break;
414 case Bytecodes::_goto_w:
415 offset = Bytes::get_Java_u4(pc + 1);
416 break;
417 default: ;
418 }
419 bci = branch_bci + offset;
420 }
421 assert(!HAS_PENDING_EXCEPTION, "Should not have any exceptions pending");
422 osr_nm = CompilationPolicy::policy()->event(enclosing_method, method, branch_bci, bci, level, nm, THREAD);
423 assert(!HAS_PENDING_EXCEPTION, "Event handler should not throw any exceptions");
424 return osr_nm;
425 }
426
427 JRT_BLOCK_ENTRY(address, Runtime1::counter_overflow(JavaThread* thread, int bci, Method* method))
428 nmethod* osr_nm;
429 JRT_BLOCK
430 osr_nm = counter_overflow_helper(thread, bci, method);
431 if (osr_nm != NULL) {
432 RegisterMap map(thread, false);
433 frame fr = thread->last_frame().sender(&map);
434 Deoptimization::deoptimize_frame(thread, fr.id());
435 }
436 JRT_BLOCK_END
437 return NULL;
438 JRT_END
439
440 extern void vm_exit(int code);
441
442 // Enter this method from compiled code handler below. This is where we transition
443 // to VM mode. This is done as a helper routine so that the method called directly
444 // from compiled code does not have to transition to VM. This allows the entry
445 // method to see if the nmethod that we have just looked up a handler for has
446 // been deoptimized while we were in the vm. This simplifies the assembly code
447 // cpu directories.
448 //
449 // We are entering here from exception stub (via the entry method below)
450 // If there is a compiled exception handler in this method, we will continue there;
451 // otherwise we will unwind the stack and continue at the caller of top frame method
452 // Note: we enter in Java using a special JRT wrapper. This wrapper allows us to
453 // control the area where we can allow a safepoint. After we exit the safepoint area we can
454 // check to see if the handler we are going to return is now in a nmethod that has
455 // been deoptimized. If that is the case we return the deopt blob
456 // unpack_with_exception entry instead. This makes life for the exception blob easier
457 // because making that same check and diverting is painful from assembly language.
458 JRT_ENTRY_NO_ASYNC(static address, exception_handler_for_pc_helper(JavaThread* thread, oopDesc* ex, address pc, nmethod*& nm))
459 // Reset method handle flag.
460 thread->set_is_method_handle_return(false);
461
462 Handle exception(thread, ex);
463 nm = CodeCache::find_nmethod(pc);
464 assert(nm != NULL, "this is not an nmethod");
465 // Adjust the pc as needed/
466 if (nm->is_deopt_pc(pc)) {
467 RegisterMap map(thread, false);
468 frame exception_frame = thread->last_frame().sender(&map);
469 // if the frame isn't deopted then pc must not correspond to the caller of last_frame
470 assert(exception_frame.is_deoptimized_frame(), "must be deopted");
471 pc = exception_frame.pc();
472 }
473 #ifdef ASSERT
474 assert(exception.not_null(), "NULL exceptions should be handled by throw_exception");
475 assert(exception->is_oop(), "just checking");
476 // Check that exception is a subclass of Throwable, otherwise we have a VerifyError
477 if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
478 if (ExitVMOnVerifyError) vm_exit(-1);
479 ShouldNotReachHere();
480 }
481 #endif
482
483 // Check the stack guard pages and reenable them if necessary and there is
484 // enough space on the stack to do so. Use fast exceptions only if the guard
485 // pages are enabled.
486 bool guard_pages_enabled = thread->stack_yellow_zone_enabled();
487 if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
488
489 if (JvmtiExport::can_post_on_exceptions()) {
490 // To ensure correct notification of exception catches and throws
491 // we have to deoptimize here. If we attempted to notify the
492 // catches and throws during this exception lookup it's possible
493 // we could deoptimize on the way out of the VM and end back in
494 // the interpreter at the throw site. This would result in double
495 // notifications since the interpreter would also notify about
496 // these same catches and throws as it unwound the frame.
497
498 RegisterMap reg_map(thread);
499 frame stub_frame = thread->last_frame();
500 frame caller_frame = stub_frame.sender(®_map);
501
502 // We don't really want to deoptimize the nmethod itself since we
503 // can actually continue in the exception handler ourselves but I
504 // don't see an easy way to have the desired effect.
505 Deoptimization::deoptimize_frame(thread, caller_frame.id());
506 assert(caller_is_deopted(), "Must be deoptimized");
507
508 return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
509 }
510
511 // ExceptionCache is used only for exceptions at call sites and not for implicit exceptions
512 if (guard_pages_enabled) {
513 address fast_continuation = nm->handler_for_exception_and_pc(exception, pc);
514 if (fast_continuation != NULL) {
515 // Set flag if return address is a method handle call site.
516 thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
517 return fast_continuation;
518 }
519 }
520
521 // If the stack guard pages are enabled, check whether there is a handler in
522 // the current method. Otherwise (guard pages disabled), force an unwind and
523 // skip the exception cache update (i.e., just leave continuation==NULL).
524 address continuation = NULL;
525 if (guard_pages_enabled) {
526
527 // New exception handling mechanism can support inlined methods
528 // with exception handlers since the mappings are from PC to PC
529
530 // debugging support
531 // tracing
532 if (TraceExceptions) {
533 ttyLocker ttyl;
534 ResourceMark rm;
535 tty->print_cr("Exception <%s> (" INTPTR_FORMAT ") thrown in compiled method <%s> at PC " INTPTR_FORMAT " for thread " INTPTR_FORMAT "",
536 exception->print_value_string(), p2i((address)exception()), nm->method()->print_value_string(), p2i(pc), p2i(thread));
537 }
538 // for AbortVMOnException flag
539 NOT_PRODUCT(Exceptions::debug_check_abort(exception));
540
541 // Clear out the exception oop and pc since looking up an
542 // exception handler can cause class loading, which might throw an
543 // exception and those fields are expected to be clear during
544 // normal bytecode execution.
545 thread->clear_exception_oop_and_pc();
546
547 Handle original_exception(thread, exception());
548
549 continuation = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, false, false);
550 // If an exception was thrown during exception dispatch, the exception oop may have changed
551 thread->set_exception_oop(exception());
552 thread->set_exception_pc(pc);
553
554 // the exception cache is used only by non-implicit exceptions
555 // Update the exception cache only when there didn't happen
556 // another exception during the computation of the compiled
557 // exception handler.
558 if (continuation != NULL && original_exception() == exception()) {
559 nm->add_handler_for_exception_and_pc(exception, pc, continuation);
560 }
561 }
562
563 thread->set_vm_result(exception());
564 // Set flag if return address is a method handle call site.
565 thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
566
567 if (TraceExceptions) {
568 ttyLocker ttyl;
569 ResourceMark rm;
570 tty->print_cr("Thread " PTR_FORMAT " continuing at PC " PTR_FORMAT " for exception thrown at PC " PTR_FORMAT,
571 p2i(thread), p2i(continuation), p2i(pc));
572 }
573
574 return continuation;
575 JRT_END
576
577 // Enter this method from compiled code only if there is a Java exception handler
578 // in the method handling the exception.
579 // We are entering here from exception stub. We don't do a normal VM transition here.
580 // We do it in a helper. This is so we can check to see if the nmethod we have just
581 // searched for an exception handler has been deoptimized in the meantime.
582 address Runtime1::exception_handler_for_pc(JavaThread* thread) {
583 oop exception = thread->exception_oop();
584 address pc = thread->exception_pc();
585 // Still in Java mode
586 DEBUG_ONLY(ResetNoHandleMark rnhm);
587 nmethod* nm = NULL;
588 address continuation = NULL;
589 {
590 // Enter VM mode by calling the helper
591 ResetNoHandleMark rnhm;
592 continuation = exception_handler_for_pc_helper(thread, exception, pc, nm);
593 }
594 // Back in JAVA, use no oops DON'T safepoint
595
596 // Now check to see if the nmethod we were called from is now deoptimized.
597 // If so we must return to the deopt blob and deoptimize the nmethod
598 if (nm != NULL && caller_is_deopted()) {
599 continuation = SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
600 }
601
602 assert(continuation != NULL, "no handler found");
603 return continuation;
604 }
605
606
607 JRT_ENTRY(void, Runtime1::throw_range_check_exception(JavaThread* thread, int index))
608 NOT_PRODUCT(_throw_range_check_exception_count++;)
609 char message[jintAsStringSize];
610 sprintf(message, "%d", index);
611 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArrayIndexOutOfBoundsException(), message);
612 JRT_END
613
614
615 JRT_ENTRY(void, Runtime1::throw_index_exception(JavaThread* thread, int index))
616 NOT_PRODUCT(_throw_index_exception_count++;)
617 char message[16];
618 sprintf(message, "%d", index);
619 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IndexOutOfBoundsException(), message);
620 JRT_END
621
622
623 JRT_ENTRY(void, Runtime1::throw_div0_exception(JavaThread* thread))
624 NOT_PRODUCT(_throw_div0_exception_count++;)
625 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
626 JRT_END
627
628
629 JRT_ENTRY(void, Runtime1::throw_null_pointer_exception(JavaThread* thread))
630 NOT_PRODUCT(_throw_null_pointer_exception_count++;)
631 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
632 JRT_END
633
634
635 JRT_ENTRY(void, Runtime1::throw_class_cast_exception(JavaThread* thread, oopDesc* object))
636 NOT_PRODUCT(_throw_class_cast_exception_count++;)
637 ResourceMark rm(thread);
638 char* message = SharedRuntime::generate_class_cast_message(
639 thread, object->klass()->external_name());
640 SharedRuntime::throw_and_post_jvmti_exception(
641 thread, vmSymbols::java_lang_ClassCastException(), message);
642 JRT_END
643
644
645 JRT_ENTRY(void, Runtime1::throw_incompatible_class_change_error(JavaThread* thread))
646 NOT_PRODUCT(_throw_incompatible_class_change_error_count++;)
647 ResourceMark rm(thread);
648 SharedRuntime::throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError());
649 JRT_END
650
651
652 JRT_ENTRY_NO_ASYNC(void, Runtime1::monitorenter(JavaThread* thread, oopDesc* obj, BasicObjectLock* lock))
653 NOT_PRODUCT(_monitorenter_slowcase_cnt++;)
654 if (PrintBiasedLockingStatistics) {
655 Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
656 }
657 Handle h_obj(thread, obj);
658 assert(h_obj()->is_oop(), "must be NULL or an object");
659 if (UseBiasedLocking) {
660 // Retry fast entry if bias is revoked to avoid unnecessary inflation
661 ObjectSynchronizer::fast_enter(h_obj, lock->lock(), true, CHECK);
662 } else {
663 if (UseFastLocking) {
664 // When using fast locking, the compiled code has already tried the fast case
665 assert(obj == lock->obj(), "must match");
666 ObjectSynchronizer::slow_enter(h_obj, lock->lock(), THREAD);
667 } else {
668 lock->set_obj(obj);
669 ObjectSynchronizer::fast_enter(h_obj, lock->lock(), false, THREAD);
670 }
671 }
672 JRT_END
673
674
675 JRT_LEAF(void, Runtime1::monitorexit(JavaThread* thread, BasicObjectLock* lock))
676 NOT_PRODUCT(_monitorexit_slowcase_cnt++;)
677 assert(thread == JavaThread::current(), "threads must correspond");
678 assert(thread->last_Java_sp(), "last_Java_sp must be set");
679 // monitorexit is non-blocking (leaf routine) => no exceptions can be thrown
680 EXCEPTION_MARK;
681
682 oop obj = lock->obj();
683 assert(obj->is_oop(), "must be NULL or an object");
684 if (UseFastLocking) {
685 // When using fast locking, the compiled code has already tried the fast case
686 ObjectSynchronizer::slow_exit(obj, lock->lock(), THREAD);
687 } else {
688 ObjectSynchronizer::fast_exit(obj, lock->lock(), THREAD);
689 }
690 JRT_END
691
692 // Cf. OptoRuntime::deoptimize_caller_frame
693 JRT_ENTRY(void, Runtime1::deoptimize(JavaThread* thread))
694 // Called from within the owner thread, so no need for safepoint
695 RegisterMap reg_map(thread, false);
696 frame stub_frame = thread->last_frame();
697 assert(stub_frame.is_runtime_frame(), "sanity check");
698 frame caller_frame = stub_frame.sender(®_map);
699
700 // We are coming from a compiled method; check this is true.
701 assert(CodeCache::find_nmethod(caller_frame.pc()) != NULL, "sanity");
702
703 // Deoptimize the caller frame.
704 Deoptimization::deoptimize_frame(thread, caller_frame.id());
705
706 // Return to the now deoptimized frame.
707 JRT_END
708
709
710 static Klass* resolve_field_return_klass(methodHandle caller, int bci, TRAPS) {
711 Bytecode_field field_access(caller, bci);
712 // This can be static or non-static field access
713 Bytecodes::Code code = field_access.code();
714
715 // We must load class, initialize class and resolvethe field
716 fieldDescriptor result; // initialize class if needed
717 constantPoolHandle constants(THREAD, caller->constants());
718 LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK_NULL);
719 return result.field_holder();
720 }
721
722
723 //
724 // This routine patches sites where a class wasn't loaded or
725 // initialized at the time the code was generated. It handles
726 // references to classes, fields and forcing of initialization. Most
727 // of the cases are straightforward and involving simply forcing
728 // resolution of a class, rewriting the instruction stream with the
729 // needed constant and replacing the call in this function with the
730 // patched code. The case for static field is more complicated since
731 // the thread which is in the process of initializing a class can
732 // access it's static fields but other threads can't so the code
733 // either has to deoptimize when this case is detected or execute a
734 // check that the current thread is the initializing thread. The
735 // current
736 //
737 // Patches basically look like this:
738 //
739 //
740 // patch_site: jmp patch stub ;; will be patched
741 // continue: ...
742 // ...
743 // ...
744 // ...
745 //
746 // They have a stub which looks like this:
747 //
748 // ;; patch body
749 // movl <const>, reg (for class constants)
750 // <or> movl [reg1 + <const>], reg (for field offsets)
751 // <or> movl reg, [reg1 + <const>] (for field offsets)
752 // <being_init offset> <bytes to copy> <bytes to skip>
753 // patch_stub: call Runtime1::patch_code (through a runtime stub)
754 // jmp patch_site
755 //
756 //
757 // A normal patch is done by rewriting the patch body, usually a move,
758 // and then copying it into place over top of the jmp instruction
759 // being careful to flush caches and doing it in an MP-safe way. The
760 // constants following the patch body are used to find various pieces
761 // of the patch relative to the call site for Runtime1::patch_code.
762 // The case for getstatic and putstatic is more complicated because
763 // getstatic and putstatic have special semantics when executing while
764 // the class is being initialized. getstatic/putstatic on a class
765 // which is being_initialized may be executed by the initializing
766 // thread but other threads have to block when they execute it. This
767 // is accomplished in compiled code by executing a test of the current
768 // thread against the initializing thread of the class. It's emitted
769 // as boilerplate in their stub which allows the patched code to be
770 // executed before it's copied back into the main body of the nmethod.
771 //
772 // being_init: get_thread(<tmp reg>
773 // cmpl [reg1 + <init_thread_offset>], <tmp reg>
774 // jne patch_stub
775 // movl [reg1 + <const>], reg (for field offsets) <or>
776 // movl reg, [reg1 + <const>] (for field offsets)
777 // jmp continue
778 // <being_init offset> <bytes to copy> <bytes to skip>
779 // patch_stub: jmp Runtim1::patch_code (through a runtime stub)
780 // jmp patch_site
781 //
782 // If the class is being initialized the patch body is rewritten and
783 // the patch site is rewritten to jump to being_init, instead of
784 // patch_stub. Whenever this code is executed it checks the current
785 // thread against the intializing thread so other threads will enter
786 // the runtime and end up blocked waiting the class to finish
787 // initializing inside the calls to resolve_field below. The
788 // initializing class will continue on it's way. Once the class is
789 // fully_initialized, the intializing_thread of the class becomes
790 // NULL, so the next thread to execute this code will fail the test,
791 // call into patch_code and complete the patching process by copying
792 // the patch body back into the main part of the nmethod and resume
793 // executing.
794 //
795 //
796
797 JRT_ENTRY(void, Runtime1::patch_code(JavaThread* thread, Runtime1::StubID stub_id ))
798 NOT_PRODUCT(_patch_code_slowcase_cnt++;)
799
800 ResourceMark rm(thread);
801 RegisterMap reg_map(thread, false);
802 frame runtime_frame = thread->last_frame();
803 frame caller_frame = runtime_frame.sender(®_map);
804
805 // last java frame on stack
806 vframeStream vfst(thread, true);
807 assert(!vfst.at_end(), "Java frame must exist");
808
809 methodHandle caller_method(THREAD, vfst.method());
810 // Note that caller_method->code() may not be same as caller_code because of OSR's
811 // Note also that in the presence of inlining it is not guaranteed
812 // that caller_method() == caller_code->method()
813
814 int bci = vfst.bci();
815 Bytecodes::Code code = caller_method()->java_code_at(bci);
816
817 #ifndef PRODUCT
818 // this is used by assertions in the access_field_patching_id
819 BasicType patch_field_type = T_ILLEGAL;
820 #endif // PRODUCT
821 bool deoptimize_for_volatile = false;
822 int patch_field_offset = -1;
823 KlassHandle init_klass(THREAD, NULL); // klass needed by load_klass_patching code
824 KlassHandle load_klass(THREAD, NULL); // klass needed by load_klass_patching code
825 Handle mirror(THREAD, NULL); // oop needed by load_mirror_patching code
826 Handle appendix(THREAD, NULL); // oop needed by appendix_patching code
827 bool load_klass_or_mirror_patch_id =
828 (stub_id == Runtime1::load_klass_patching_id || stub_id == Runtime1::load_mirror_patching_id);
829
830 if (stub_id == Runtime1::access_field_patching_id) {
831
832 Bytecode_field field_access(caller_method, bci);
833 fieldDescriptor result; // initialize class if needed
834 Bytecodes::Code code = field_access.code();
835 constantPoolHandle constants(THREAD, caller_method->constants());
836 LinkResolver::resolve_field_access(result, constants, field_access.index(), Bytecodes::java_code(code), CHECK);
837 patch_field_offset = result.offset();
838
839 // If we're patching a field which is volatile then at compile it
840 // must not have been know to be volatile, so the generated code
841 // isn't correct for a volatile reference. The nmethod has to be
842 // deoptimized so that the code can be regenerated correctly.
843 // This check is only needed for access_field_patching since this
844 // is the path for patching field offsets. load_klass is only
845 // used for patching references to oops which don't need special
846 // handling in the volatile case.
847 deoptimize_for_volatile = result.access_flags().is_volatile();
848
849 #ifndef PRODUCT
850 patch_field_type = result.field_type();
851 #endif
852 } else if (load_klass_or_mirror_patch_id) {
853 Klass* k = NULL;
854 switch (code) {
855 case Bytecodes::_putstatic:
856 case Bytecodes::_getstatic:
857 { Klass* klass = resolve_field_return_klass(caller_method, bci, CHECK);
858 init_klass = KlassHandle(THREAD, klass);
859 mirror = Handle(THREAD, klass->java_mirror());
860 }
861 break;
862 case Bytecodes::_new:
863 { Bytecode_new bnew(caller_method(), caller_method->bcp_from(bci));
864 k = caller_method->constants()->klass_at(bnew.index(), CHECK);
865 }
866 break;
867 case Bytecodes::_multianewarray:
868 { Bytecode_multianewarray mna(caller_method(), caller_method->bcp_from(bci));
869 k = caller_method->constants()->klass_at(mna.index(), CHECK);
870 }
871 break;
872 case Bytecodes::_instanceof:
873 { Bytecode_instanceof io(caller_method(), caller_method->bcp_from(bci));
874 k = caller_method->constants()->klass_at(io.index(), CHECK);
875 }
876 break;
877 case Bytecodes::_checkcast:
878 { Bytecode_checkcast cc(caller_method(), caller_method->bcp_from(bci));
879 k = caller_method->constants()->klass_at(cc.index(), CHECK);
880 }
881 break;
882 case Bytecodes::_anewarray:
883 { Bytecode_anewarray anew(caller_method(), caller_method->bcp_from(bci));
884 Klass* ek = caller_method->constants()->klass_at(anew.index(), CHECK);
885 k = ek->array_klass(CHECK);
886 }
887 break;
888 case Bytecodes::_ldc:
889 case Bytecodes::_ldc_w:
890 {
891 Bytecode_loadconstant cc(caller_method, bci);
892 oop m = cc.resolve_constant(CHECK);
893 mirror = Handle(THREAD, m);
894 }
895 break;
896 default: fatal("unexpected bytecode for load_klass_or_mirror_patch_id");
897 }
898 // convert to handle
899 load_klass = KlassHandle(THREAD, k);
900 } else if (stub_id == load_appendix_patching_id) {
901 Bytecode_invoke bytecode(caller_method, bci);
902 Bytecodes::Code bc = bytecode.invoke_code();
903
904 CallInfo info;
905 constantPoolHandle pool(thread, caller_method->constants());
906 int index = bytecode.index();
907 LinkResolver::resolve_invoke(info, Handle(), pool, index, bc, CHECK);
908 appendix = info.resolved_appendix();
909 switch (bc) {
910 case Bytecodes::_invokehandle: {
911 int cache_index = ConstantPool::decode_cpcache_index(index, true);
912 assert(cache_index >= 0 && cache_index < pool->cache()->length(), "unexpected cache index");
913 pool->cache()->entry_at(cache_index)->set_method_handle(pool, info);
914 break;
915 }
916 case Bytecodes::_invokedynamic: {
917 pool->invokedynamic_cp_cache_entry_at(index)->set_dynamic_call(pool, info);
918 break;
919 }
920 default: fatal("unexpected bytecode for load_appendix_patching_id");
921 }
922 } else {
923 ShouldNotReachHere();
924 }
925
926 if (deoptimize_for_volatile) {
927 // At compile time we assumed the field wasn't volatile but after
928 // loading it turns out it was volatile so we have to throw the
929 // compiled code out and let it be regenerated.
930 if (TracePatching) {
931 tty->print_cr("Deoptimizing for patching volatile field reference");
932 }
933 // It's possible the nmethod was invalidated in the last
934 // safepoint, but if it's still alive then make it not_entrant.
935 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
936 if (nm != NULL) {
937 nm->make_not_entrant();
938 }
939
940 Deoptimization::deoptimize_frame(thread, caller_frame.id());
941
942 // Return to the now deoptimized frame.
943 }
944
945 // Now copy code back
946
947 {
948 MutexLockerEx ml_patch (Patching_lock, Mutex::_no_safepoint_check_flag);
949 //
950 // Deoptimization may have happened while we waited for the lock.
951 // In that case we don't bother to do any patching we just return
952 // and let the deopt happen
953 if (!caller_is_deopted()) {
954 NativeGeneralJump* jump = nativeGeneralJump_at(caller_frame.pc());
955 address instr_pc = jump->jump_destination();
956 NativeInstruction* ni = nativeInstruction_at(instr_pc);
957 if (ni->is_jump() ) {
958 // the jump has not been patched yet
959 // The jump destination is slow case and therefore not part of the stubs
960 // (stubs are only for StaticCalls)
961
962 // format of buffer
963 // ....
964 // instr byte 0 <-- copy_buff
965 // instr byte 1
966 // ..
967 // instr byte n-1
968 // n
969 // .... <-- call destination
970
971 address stub_location = caller_frame.pc() + PatchingStub::patch_info_offset();
972 unsigned char* byte_count = (unsigned char*) (stub_location - 1);
973 unsigned char* byte_skip = (unsigned char*) (stub_location - 2);
974 unsigned char* being_initialized_entry_offset = (unsigned char*) (stub_location - 3);
975 address copy_buff = stub_location - *byte_skip - *byte_count;
976 address being_initialized_entry = stub_location - *being_initialized_entry_offset;
977 if (TracePatching) {
978 tty->print_cr(" Patching %s at bci %d at address " INTPTR_FORMAT " (%s)", Bytecodes::name(code), bci,
979 p2i(instr_pc), (stub_id == Runtime1::access_field_patching_id) ? "field" : "klass");
980 nmethod* caller_code = CodeCache::find_nmethod(caller_frame.pc());
981 assert(caller_code != NULL, "nmethod not found");
982
983 // NOTE we use pc() not original_pc() because we already know they are
984 // identical otherwise we'd have never entered this block of code
985
986 OopMap* map = caller_code->oop_map_for_return_address(caller_frame.pc());
987 assert(map != NULL, "null check");
988 map->print();
989 tty->cr();
990
991 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
992 }
993 // depending on the code below, do_patch says whether to copy the patch body back into the nmethod
994 bool do_patch = true;
995 if (stub_id == Runtime1::access_field_patching_id) {
996 // The offset may not be correct if the class was not loaded at code generation time.
997 // Set it now.
998 NativeMovRegMem* n_move = nativeMovRegMem_at(copy_buff);
999 assert(n_move->offset() == 0 || (n_move->offset() == 4 && (patch_field_type == T_DOUBLE || patch_field_type == T_LONG)), "illegal offset for type");
1000 assert(patch_field_offset >= 0, "illegal offset");
1001 n_move->add_offset_in_bytes(patch_field_offset);
1002 } else if (load_klass_or_mirror_patch_id) {
1003 // If a getstatic or putstatic is referencing a klass which
1004 // isn't fully initialized, the patch body isn't copied into
1005 // place until initialization is complete. In this case the
1006 // patch site is setup so that any threads besides the
1007 // initializing thread are forced to come into the VM and
1008 // block.
1009 do_patch = (code != Bytecodes::_getstatic && code != Bytecodes::_putstatic) ||
1010 InstanceKlass::cast(init_klass())->is_initialized();
1011 NativeGeneralJump* jump = nativeGeneralJump_at(instr_pc);
1012 if (jump->jump_destination() == being_initialized_entry) {
1013 assert(do_patch == true, "initialization must be complete at this point");
1014 } else {
1015 // patch the instruction <move reg, klass>
1016 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1017
1018 assert(n_copy->data() == 0 ||
1019 n_copy->data() == (intptr_t)Universe::non_oop_word(),
1020 "illegal init value");
1021 if (stub_id == Runtime1::load_klass_patching_id) {
1022 assert(load_klass() != NULL, "klass not set");
1023 n_copy->set_data((intx) (load_klass()));
1024 } else {
1025 assert(mirror() != NULL, "klass not set");
1026 // Don't need a G1 pre-barrier here since we assert above that data isn't an oop.
1027 n_copy->set_data(cast_from_oop<intx>(mirror()));
1028 }
1029
1030 if (TracePatching) {
1031 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1032 }
1033 }
1034 } else if (stub_id == Runtime1::load_appendix_patching_id) {
1035 NativeMovConstReg* n_copy = nativeMovConstReg_at(copy_buff);
1036 assert(n_copy->data() == 0 ||
1037 n_copy->data() == (intptr_t)Universe::non_oop_word(),
1038 "illegal init value");
1039 n_copy->set_data(cast_from_oop<intx>(appendix()));
1040
1041 if (TracePatching) {
1042 Disassembler::decode(copy_buff, copy_buff + *byte_count, tty);
1043 }
1044 } else {
1045 ShouldNotReachHere();
1046 }
1047
1048 #if defined(SPARC) || defined(PPC)
1049 if (load_klass_or_mirror_patch_id ||
1050 stub_id == Runtime1::load_appendix_patching_id) {
1051 // Update the location in the nmethod with the proper
1052 // metadata. When the code was generated, a NULL was stuffed
1053 // in the metadata table and that table needs to be update to
1054 // have the right value. On intel the value is kept
1055 // directly in the instruction instead of in the metadata
1056 // table, so set_data above effectively updated the value.
1057 nmethod* nm = CodeCache::find_nmethod(instr_pc);
1058 assert(nm != NULL, "invalid nmethod_pc");
1059 RelocIterator mds(nm, copy_buff, copy_buff + 1);
1060 bool found = false;
1061 while (mds.next() && !found) {
1062 if (mds.type() == relocInfo::oop_type) {
1063 assert(stub_id == Runtime1::load_mirror_patching_id ||
1064 stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1065 oop_Relocation* r = mds.oop_reloc();
1066 oop* oop_adr = r->oop_addr();
1067 *oop_adr = stub_id == Runtime1::load_mirror_patching_id ? mirror() : appendix();
1068 r->fix_oop_relocation();
1069 found = true;
1070 } else if (mds.type() == relocInfo::metadata_type) {
1071 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1072 metadata_Relocation* r = mds.metadata_reloc();
1073 Metadata** metadata_adr = r->metadata_addr();
1074 *metadata_adr = load_klass();
1075 r->fix_metadata_relocation();
1076 found = true;
1077 }
1078 }
1079 assert(found, "the metadata must exist!");
1080 }
1081 #endif
1082 if (do_patch) {
1083 // replace instructions
1084 // first replace the tail, then the call
1085 #ifdef ARM
1086 if((load_klass_or_mirror_patch_id ||
1087 stub_id == Runtime1::load_appendix_patching_id) &&
1088 nativeMovConstReg_at(copy_buff)->is_pc_relative()) {
1089 nmethod* nm = CodeCache::find_nmethod(instr_pc);
1090 address addr = NULL;
1091 assert(nm != NULL, "invalid nmethod_pc");
1092 RelocIterator mds(nm, copy_buff, copy_buff + 1);
1093 while (mds.next()) {
1094 if (mds.type() == relocInfo::oop_type) {
1095 assert(stub_id == Runtime1::load_mirror_patching_id ||
1096 stub_id == Runtime1::load_appendix_patching_id, "wrong stub id");
1097 oop_Relocation* r = mds.oop_reloc();
1098 addr = (address)r->oop_addr();
1099 break;
1100 } else if (mds.type() == relocInfo::metadata_type) {
1101 assert(stub_id == Runtime1::load_klass_patching_id, "wrong stub id");
1102 metadata_Relocation* r = mds.metadata_reloc();
1103 addr = (address)r->metadata_addr();
1104 break;
1105 }
1106 }
1107 assert(addr != NULL, "metadata relocation must exist");
1108 copy_buff -= *byte_count;
1109 NativeMovConstReg* n_copy2 = nativeMovConstReg_at(copy_buff);
1110 n_copy2->set_pc_relative_offset(addr, instr_pc);
1111 }
1112 #endif
1113
1114 for (int i = NativeCall::instruction_size; i < *byte_count; i++) {
1115 address ptr = copy_buff + i;
1116 int a_byte = (*ptr) & 0xFF;
1117 address dst = instr_pc + i;
1118 *(unsigned char*)dst = (unsigned char) a_byte;
1119 }
1120 ICache::invalidate_range(instr_pc, *byte_count);
1121 NativeGeneralJump::replace_mt_safe(instr_pc, copy_buff);
1122
1123 if (load_klass_or_mirror_patch_id ||
1124 stub_id == Runtime1::load_appendix_patching_id) {
1125 relocInfo::relocType rtype =
1126 (stub_id == Runtime1::load_klass_patching_id) ?
1127 relocInfo::metadata_type :
1128 relocInfo::oop_type;
1129 // update relocInfo to metadata
1130 nmethod* nm = CodeCache::find_nmethod(instr_pc);
1131 assert(nm != NULL, "invalid nmethod_pc");
1132
1133 // The old patch site is now a move instruction so update
1134 // the reloc info so that it will get updated during
1135 // future GCs.
1136 RelocIterator iter(nm, (address)instr_pc, (address)(instr_pc + 1));
1137 relocInfo::change_reloc_info_for_address(&iter, (address) instr_pc,
1138 relocInfo::none, rtype);
1139 #ifdef SPARC
1140 // Sparc takes two relocations for an metadata so update the second one.
1141 address instr_pc2 = instr_pc + NativeMovConstReg::add_offset;
1142 RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1143 relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1144 relocInfo::none, rtype);
1145 #endif
1146 #ifdef PPC
1147 { address instr_pc2 = instr_pc + NativeMovConstReg::lo_offset;
1148 RelocIterator iter2(nm, instr_pc2, instr_pc2 + 1);
1149 relocInfo::change_reloc_info_for_address(&iter2, (address) instr_pc2,
1150 relocInfo::none, rtype);
1151 }
1152 #endif
1153 }
1154
1155 } else {
1156 ICache::invalidate_range(copy_buff, *byte_count);
1157 NativeGeneralJump::insert_unconditional(instr_pc, being_initialized_entry);
1158 }
1159 }
1160 }
1161 }
1162
1163 // If we are patching in a non-perm oop, make sure the nmethod
1164 // is on the right list.
1165 if (ScavengeRootsInCode && ((mirror.not_null() && mirror()->is_scavengable()) ||
1166 (appendix.not_null() && appendix->is_scavengable()))) {
1167 MutexLockerEx ml_code (CodeCache_lock, Mutex::_no_safepoint_check_flag);
1168 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1169 guarantee(nm != NULL, "only nmethods can contain non-perm oops");
1170 if (!nm->on_scavenge_root_list()) {
1171 CodeCache::add_scavenge_root_nmethod(nm);
1172 }
1173
1174 // Since we've patched some oops in the nmethod,
1175 // (re)register it with the heap.
1176 Universe::heap()->register_nmethod(nm);
1177 }
1178 JRT_END
1179
1180 //
1181 // Entry point for compiled code. We want to patch a nmethod.
1182 // We don't do a normal VM transition here because we want to
1183 // know after the patching is complete and any safepoint(s) are taken
1184 // if the calling nmethod was deoptimized. We do this by calling a
1185 // helper method which does the normal VM transition and when it
1186 // completes we can check for deoptimization. This simplifies the
1187 // assembly code in the cpu directories.
1188 //
1189 int Runtime1::move_klass_patching(JavaThread* thread) {
1190 //
1191 // NOTE: we are still in Java
1192 //
1193 Thread* THREAD = thread;
1194 debug_only(NoHandleMark nhm;)
1195 {
1196 // Enter VM mode
1197
1198 ResetNoHandleMark rnhm;
1199 patch_code(thread, load_klass_patching_id);
1200 }
1201 // Back in JAVA, use no oops DON'T safepoint
1202
1203 // Return true if calling code is deoptimized
1204
1205 return caller_is_deopted();
1206 }
1207
1208 int Runtime1::move_mirror_patching(JavaThread* thread) {
1209 //
1210 // NOTE: we are still in Java
1211 //
1212 Thread* THREAD = thread;
1213 debug_only(NoHandleMark nhm;)
1214 {
1215 // Enter VM mode
1216
1217 ResetNoHandleMark rnhm;
1218 patch_code(thread, load_mirror_patching_id);
1219 }
1220 // Back in JAVA, use no oops DON'T safepoint
1221
1222 // Return true if calling code is deoptimized
1223
1224 return caller_is_deopted();
1225 }
1226
1227 int Runtime1::move_appendix_patching(JavaThread* thread) {
1228 //
1229 // NOTE: we are still in Java
1230 //
1231 Thread* THREAD = thread;
1232 debug_only(NoHandleMark nhm;)
1233 {
1234 // Enter VM mode
1235
1236 ResetNoHandleMark rnhm;
1237 patch_code(thread, load_appendix_patching_id);
1238 }
1239 // Back in JAVA, use no oops DON'T safepoint
1240
1241 // Return true if calling code is deoptimized
1242
1243 return caller_is_deopted();
1244 }
1245 //
1246 // Entry point for compiled code. We want to patch a nmethod.
1247 // We don't do a normal VM transition here because we want to
1248 // know after the patching is complete and any safepoint(s) are taken
1249 // if the calling nmethod was deoptimized. We do this by calling a
1250 // helper method which does the normal VM transition and when it
1251 // completes we can check for deoptimization. This simplifies the
1252 // assembly code in the cpu directories.
1253 //
1254
1255 int Runtime1::access_field_patching(JavaThread* thread) {
1256 //
1257 // NOTE: we are still in Java
1258 //
1259 Thread* THREAD = thread;
1260 debug_only(NoHandleMark nhm;)
1261 {
1262 // Enter VM mode
1263
1264 ResetNoHandleMark rnhm;
1265 patch_code(thread, access_field_patching_id);
1266 }
1267 // Back in JAVA, use no oops DON'T safepoint
1268
1269 // Return true if calling code is deoptimized
1270
1271 return caller_is_deopted();
1272 JRT_END
1273
1274
1275 JRT_LEAF(void, Runtime1::trace_block_entry(jint block_id))
1276 // for now we just print out the block id
1277 tty->print("%d ", block_id);
1278 JRT_END
1279
1280
1281 // Array copy return codes.
1282 enum {
1283 ac_failed = -1, // arraycopy failed
1284 ac_ok = 0 // arraycopy succeeded
1285 };
1286
1287
1288 // Below length is the # elements copied.
1289 template <class T> int obj_arraycopy_work(oopDesc* src, T* src_addr,
1290 oopDesc* dst, T* dst_addr,
1291 int length) {
1292
1293 // For performance reasons, we assume we are using a card marking write
1294 // barrier. The assert will fail if this is not the case.
1295 // Note that we use the non-virtual inlineable variant of write_ref_array.
1296 BarrierSet* bs = Universe::heap()->barrier_set();
1297 assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1298 assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1299 if (src == dst) {
1300 // same object, no check
1301 bs->write_ref_array_pre(dst_addr, length);
1302 Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1303 bs->write_ref_array((HeapWord*)dst_addr, length);
1304 return ac_ok;
1305 } else {
1306 Klass* bound = ObjArrayKlass::cast(dst->klass())->element_klass();
1307 Klass* stype = ObjArrayKlass::cast(src->klass())->element_klass();
1308 if (stype == bound || stype->is_subtype_of(bound)) {
1309 // Elements are guaranteed to be subtypes, so no check necessary
1310 bs->write_ref_array_pre(dst_addr, length);
1311 Copy::conjoint_oops_atomic(src_addr, dst_addr, length);
1312 bs->write_ref_array((HeapWord*)dst_addr, length);
1313 return ac_ok;
1314 }
1315 }
1316 return ac_failed;
1317 }
1318
1319 // fast and direct copy of arrays; returning -1, means that an exception may be thrown
1320 // and we did not copy anything
1321 JRT_LEAF(int, Runtime1::arraycopy(oopDesc* src, int src_pos, oopDesc* dst, int dst_pos, int length))
1322 #ifndef PRODUCT
1323 _generic_arraycopy_cnt++; // Slow-path oop array copy
1324 #endif
1325
1326 if (src == NULL || dst == NULL || src_pos < 0 || dst_pos < 0 || length < 0) return ac_failed;
1327 if (!dst->is_array() || !src->is_array()) return ac_failed;
1328 if ((unsigned int) arrayOop(src)->length() < (unsigned int)src_pos + (unsigned int)length) return ac_failed;
1329 if ((unsigned int) arrayOop(dst)->length() < (unsigned int)dst_pos + (unsigned int)length) return ac_failed;
1330
1331 if (length == 0) return ac_ok;
1332 if (src->is_typeArray()) {
1333 Klass* klass_oop = src->klass();
1334 if (klass_oop != dst->klass()) return ac_failed;
1335 TypeArrayKlass* klass = TypeArrayKlass::cast(klass_oop);
1336 const int l2es = klass->log2_element_size();
1337 const int ihs = klass->array_header_in_bytes() / wordSize;
1338 char* src_addr = (char*) ((oopDesc**)src + ihs) + (src_pos << l2es);
1339 char* dst_addr = (char*) ((oopDesc**)dst + ihs) + (dst_pos << l2es);
1340 // Potential problem: memmove is not guaranteed to be word atomic
1341 // Revisit in Merlin
1342 memmove(dst_addr, src_addr, length << l2es);
1343 return ac_ok;
1344 } else if (src->is_objArray() && dst->is_objArray()) {
1345 if (UseCompressedOops) {
1346 narrowOop *src_addr = objArrayOop(src)->obj_at_addr<narrowOop>(src_pos);
1347 narrowOop *dst_addr = objArrayOop(dst)->obj_at_addr<narrowOop>(dst_pos);
1348 return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1349 } else {
1350 oop *src_addr = objArrayOop(src)->obj_at_addr<oop>(src_pos);
1351 oop *dst_addr = objArrayOop(dst)->obj_at_addr<oop>(dst_pos);
1352 return obj_arraycopy_work(src, src_addr, dst, dst_addr, length);
1353 }
1354 }
1355 return ac_failed;
1356 JRT_END
1357
1358
1359 JRT_LEAF(void, Runtime1::primitive_arraycopy(HeapWord* src, HeapWord* dst, int length))
1360 #ifndef PRODUCT
1361 _primitive_arraycopy_cnt++;
1362 #endif
1363
1364 if (length == 0) return;
1365 // Not guaranteed to be word atomic, but that doesn't matter
1366 // for anything but an oop array, which is covered by oop_arraycopy.
1367 Copy::conjoint_jbytes(src, dst, length);
1368 JRT_END
1369
1370 JRT_LEAF(void, Runtime1::oop_arraycopy(HeapWord* src, HeapWord* dst, int num))
1371 #ifndef PRODUCT
1372 _oop_arraycopy_cnt++;
1373 #endif
1374
1375 if (num == 0) return;
1376 BarrierSet* bs = Universe::heap()->barrier_set();
1377 assert(bs->has_write_ref_array_opt(), "Barrier set must have ref array opt");
1378 assert(bs->has_write_ref_array_pre_opt(), "For pre-barrier as well.");
1379 if (UseCompressedOops) {
1380 bs->write_ref_array_pre((narrowOop*)dst, num);
1381 Copy::conjoint_oops_atomic((narrowOop*) src, (narrowOop*) dst, num);
1382 } else {
1383 bs->write_ref_array_pre((oop*)dst, num);
1384 Copy::conjoint_oops_atomic((oop*) src, (oop*) dst, num);
1385 }
1386 bs->write_ref_array(dst, num);
1387 JRT_END
1388
1389
1390 JRT_LEAF(int, Runtime1::is_instance_of(oopDesc* mirror, oopDesc* obj))
1391 // had to return int instead of bool, otherwise there may be a mismatch
1392 // between the C calling convention and the Java one.
1393 // e.g., on x86, GCC may clear only %al when returning a bool false, but
1394 // JVM takes the whole %eax as the return value, which may misinterpret
1395 // the return value as a boolean true.
1396
1397 assert(mirror != NULL, "should null-check on mirror before calling");
1398 Klass* k = java_lang_Class::as_Klass(mirror);
1399 return (k != NULL && obj != NULL && obj->is_a(k)) ? 1 : 0;
1400 JRT_END
1401
1402 JRT_ENTRY(void, Runtime1::predicate_failed_trap(JavaThread* thread))
1403 ResourceMark rm;
1404
1405 assert(!TieredCompilation, "incompatible with tiered compilation");
1406
1407 RegisterMap reg_map(thread, false);
1408 frame runtime_frame = thread->last_frame();
1409 frame caller_frame = runtime_frame.sender(®_map);
1410
1411 nmethod* nm = CodeCache::find_nmethod(caller_frame.pc());
1412 assert (nm != NULL, "no more nmethod?");
1413 nm->make_not_entrant();
1414
1415 methodHandle m(nm->method());
1416 MethodData* mdo = m->method_data();
1417
1418 if (mdo == NULL && !HAS_PENDING_EXCEPTION) {
1419 // Build an MDO. Ignore errors like OutOfMemory;
1420 // that simply means we won't have an MDO to update.
1421 Method::build_interpreter_method_data(m, THREAD);
1422 if (HAS_PENDING_EXCEPTION) {
1423 assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1424 CLEAR_PENDING_EXCEPTION;
1425 }
1426 mdo = m->method_data();
1427 }
1428
1429 if (mdo != NULL) {
1430 mdo->inc_trap_count(Deoptimization::Reason_none);
1431 }
1432
1433 if (TracePredicateFailedTraps) {
1434 stringStream ss1, ss2;
1435 vframeStream vfst(thread);
1436 methodHandle inlinee = methodHandle(vfst.method());
1437 inlinee->print_short_name(&ss1);
1438 m->print_short_name(&ss2);
1439 tty->print_cr("Predicate failed trap in method %s at bci %d inlined in %s at pc " INTPTR_FORMAT, ss1.as_string(), vfst.bci(), ss2.as_string(), p2i(caller_frame.pc()));
1440 }
1441
1442
1443 Deoptimization::deoptimize_frame(thread, caller_frame.id());
1444
1445 JRT_END
1446
1447 #ifndef PRODUCT
1448 void Runtime1::print_statistics() {
1449 tty->print_cr("C1 Runtime statistics:");
1450 tty->print_cr(" _resolve_invoke_virtual_cnt: %d", SharedRuntime::_resolve_virtual_ctr);
1451 tty->print_cr(" _resolve_invoke_opt_virtual_cnt: %d", SharedRuntime::_resolve_opt_virtual_ctr);
1452 tty->print_cr(" _resolve_invoke_static_cnt: %d", SharedRuntime::_resolve_static_ctr);
1453 tty->print_cr(" _handle_wrong_method_cnt: %d", SharedRuntime::_wrong_method_ctr);
1454 tty->print_cr(" _ic_miss_cnt: %d", SharedRuntime::_ic_miss_ctr);
1455 tty->print_cr(" _generic_arraycopy_cnt: %d", _generic_arraycopy_cnt);
1456 tty->print_cr(" _generic_arraycopystub_cnt: %d", _generic_arraycopystub_cnt);
1457 tty->print_cr(" _byte_arraycopy_cnt: %d", _byte_arraycopy_cnt);
1458 tty->print_cr(" _short_arraycopy_cnt: %d", _short_arraycopy_cnt);
1459 tty->print_cr(" _int_arraycopy_cnt: %d", _int_arraycopy_cnt);
1460 tty->print_cr(" _long_arraycopy_cnt: %d", _long_arraycopy_cnt);
1461 tty->print_cr(" _primitive_arraycopy_cnt: %d", _primitive_arraycopy_cnt);
1462 tty->print_cr(" _oop_arraycopy_cnt (C): %d", Runtime1::_oop_arraycopy_cnt);
1463 tty->print_cr(" _oop_arraycopy_cnt (stub): %d", _oop_arraycopy_cnt);
1464 tty->print_cr(" _arraycopy_slowcase_cnt: %d", _arraycopy_slowcase_cnt);
1465 tty->print_cr(" _arraycopy_checkcast_cnt: %d", _arraycopy_checkcast_cnt);
1466 tty->print_cr(" _arraycopy_checkcast_attempt_cnt:%d", _arraycopy_checkcast_attempt_cnt);
1467
1468 tty->print_cr(" _new_type_array_slowcase_cnt: %d", _new_type_array_slowcase_cnt);
1469 tty->print_cr(" _new_object_array_slowcase_cnt: %d", _new_object_array_slowcase_cnt);
1470 tty->print_cr(" _new_instance_slowcase_cnt: %d", _new_instance_slowcase_cnt);
1471 tty->print_cr(" _new_multi_array_slowcase_cnt: %d", _new_multi_array_slowcase_cnt);
1472 tty->print_cr(" _monitorenter_slowcase_cnt: %d", _monitorenter_slowcase_cnt);
1473 tty->print_cr(" _monitorexit_slowcase_cnt: %d", _monitorexit_slowcase_cnt);
1474 tty->print_cr(" _patch_code_slowcase_cnt: %d", _patch_code_slowcase_cnt);
1475
1476 tty->print_cr(" _throw_range_check_exception_count: %d:", _throw_range_check_exception_count);
1477 tty->print_cr(" _throw_index_exception_count: %d:", _throw_index_exception_count);
1478 tty->print_cr(" _throw_div0_exception_count: %d:", _throw_div0_exception_count);
1479 tty->print_cr(" _throw_null_pointer_exception_count: %d:", _throw_null_pointer_exception_count);
1480 tty->print_cr(" _throw_class_cast_exception_count: %d:", _throw_class_cast_exception_count);
1481 tty->print_cr(" _throw_incompatible_class_change_error_count: %d:", _throw_incompatible_class_change_error_count);
1482 tty->print_cr(" _throw_array_store_exception_count: %d:", _throw_array_store_exception_count);
1483 tty->print_cr(" _throw_count: %d:", _throw_count);
1484
1485 SharedRuntime::print_ic_miss_histogram();
1486 tty->cr();
1487 }
1488 #endif // PRODUCT
--- EOF ---