1 /*
   2  * Copyright (c) 2005, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CFGPrinter.hpp"
  27 #include "c1/c1_CodeStubs.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_FrameMap.hpp"
  30 #include "c1/c1_IR.hpp"
  31 #include "c1/c1_LIRGenerator.hpp"
  32 #include "c1/c1_LinearScan.hpp"
  33 #include "c1/c1_ValueStack.hpp"
  34 #include "utilities/bitMap.inline.hpp"
  35 #ifdef TARGET_ARCH_x86
  36 # include "vmreg_x86.inline.hpp"
  37 #endif
  38 #ifdef TARGET_ARCH_sparc
  39 # include "vmreg_sparc.inline.hpp"
  40 #endif
  41 #ifdef TARGET_ARCH_zero
  42 # include "vmreg_zero.inline.hpp"
  43 #endif
  44 #ifdef TARGET_ARCH_arm
  45 # include "vmreg_arm.inline.hpp"
  46 #endif
  47 #ifdef TARGET_ARCH_ppc
  48 # include "vmreg_ppc.inline.hpp"
  49 #endif
  50 #ifdef TARGET_ARCH_aarch32
  51 # include "vmreg_aarch32.inline.hpp"
  52 #endif
  53 
  54 
  55 #ifndef PRODUCT
  56 
  57   static LinearScanStatistic _stat_before_alloc;
  58   static LinearScanStatistic _stat_after_asign;
  59   static LinearScanStatistic _stat_final;
  60 
  61   static LinearScanTimers _total_timer;
  62 
  63   // helper macro for short definition of timer
  64   #define TIME_LINEAR_SCAN(timer_name)  TraceTime _block_timer("", _total_timer.timer(LinearScanTimers::timer_name), TimeLinearScan || TimeEachLinearScan, Verbose);
  65 
  66   // helper macro for short definition of trace-output inside code
  67   #define TRACE_LINEAR_SCAN(level, code)       \
  68     if (TraceLinearScanLevel >= level) {       \
  69       code;                                    \
  70     }
  71 
  72 #else
  73 
  74   #define TIME_LINEAR_SCAN(timer_name)
  75   #define TRACE_LINEAR_SCAN(level, code)
  76 
  77 #endif
  78 
  79 // Map BasicType to spill size in 32-bit words, matching VMReg's notion of words
  80 #ifdef _LP64
  81 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 2, 2, 0, 2,  1, 2, 1, -1};
  82 #else
  83 static int type2spill_size[T_CONFLICT+1]={ -1, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 0, 1, -1, 1, 1, -1};
  84 #endif
  85 
  86 
  87 // Implementation of LinearScan
  88 
  89 LinearScan::LinearScan(IR* ir, LIRGenerator* gen, FrameMap* frame_map)
  90  : _compilation(ir->compilation())
  91  , _ir(ir)
  92  , _gen(gen)
  93  , _frame_map(frame_map)
  94  , _num_virtual_regs(gen->max_virtual_register_number())
  95  , _has_fpu_registers(false)
  96  , _num_calls(-1)
  97  , _max_spills(0)
  98  , _unused_spill_slot(-1)
  99  , _intervals(0)   // initialized later with correct length
 100  , _new_intervals_from_allocation(new IntervalList())
 101  , _sorted_intervals(NULL)
 102  , _needs_full_resort(false)
 103  , _lir_ops(0)     // initialized later with correct length
 104  , _block_of_op(0) // initialized later with correct length
 105  , _has_info(0)
 106  , _has_call(0)
 107  , _scope_value_cache(0) // initialized later with correct length
 108  , _interval_in_loop(0, 0) // initialized later with correct length
 109  , _cached_blocks(*ir->linear_scan_order())
 110 #ifdef X86
 111  , _fpu_stack_allocator(NULL)
 112 #endif
 113 {
 114   assert(this->ir() != NULL,          "check if valid");
 115   assert(this->compilation() != NULL, "check if valid");
 116   assert(this->gen() != NULL,         "check if valid");
 117   assert(this->frame_map() != NULL,   "check if valid");
 118 }
 119 
 120 
 121 // ********** functions for converting LIR-Operands to register numbers
 122 //
 123 // Emulate a flat register file comprising physical integer registers,
 124 // physical floating-point registers and virtual registers, in that order.
 125 // Virtual registers already have appropriate numbers, since V0 is
 126 // the number of physical registers.
 127 // Returns -1 for hi word if opr is a single word operand.
 128 //
 129 // Note: the inverse operation (calculating an operand for register numbers)
 130 //       is done in calc_operand_for_interval()
 131 
 132 int LinearScan::reg_num(LIR_Opr opr) {
 133   assert(opr->is_register(), "should not call this otherwise");
 134 
 135   if (opr->is_virtual_register()) {
 136     assert(opr->vreg_number() >= nof_regs, "found a virtual register with a fixed-register number");
 137     return opr->vreg_number();
 138   } else if (opr->is_single_cpu()) {
 139     return opr->cpu_regnr();
 140   } else if (opr->is_double_cpu()) {
 141     return opr->cpu_regnrLo();
 142 #ifdef X86
 143   } else if (opr->is_single_xmm()) {
 144     return opr->fpu_regnr() + pd_first_xmm_reg;
 145   } else if (opr->is_double_xmm()) {
 146     return opr->fpu_regnrLo() + pd_first_xmm_reg;
 147 #endif
 148   } else if (opr->is_single_fpu()) {
 149     return opr->fpu_regnr() + pd_first_fpu_reg;
 150   } else if (opr->is_double_fpu()) {
 151     return opr->fpu_regnrLo() + pd_first_fpu_reg;
 152   } else {
 153     ShouldNotReachHere();
 154     return -1;
 155   }
 156 }
 157 
 158 int LinearScan::reg_numHi(LIR_Opr opr) {
 159   assert(opr->is_register(), "should not call this otherwise");
 160 
 161   if (opr->is_virtual_register()) {
 162     return -1;
 163   } else if (opr->is_single_cpu()) {
 164     return -1;
 165   } else if (opr->is_double_cpu()) {
 166     return opr->cpu_regnrHi();
 167 #ifdef X86
 168   } else if (opr->is_single_xmm()) {
 169     return -1;
 170   } else if (opr->is_double_xmm()) {
 171     return -1;
 172 #endif
 173   } else if (opr->is_single_fpu()) {
 174     return -1;
 175   } else if (opr->is_double_fpu()) {
 176     return opr->fpu_regnrHi() + pd_first_fpu_reg;
 177   } else {
 178     ShouldNotReachHere();
 179     return -1;
 180   }
 181 }
 182 
 183 
 184 // ********** functions for classification of intervals
 185 
 186 bool LinearScan::is_precolored_interval(const Interval* i) {
 187   return i->reg_num() < LinearScan::nof_regs;
 188 }
 189 
 190 bool LinearScan::is_virtual_interval(const Interval* i) {
 191   return i->reg_num() >= LIR_OprDesc::vreg_base;
 192 }
 193 
 194 bool LinearScan::is_precolored_cpu_interval(const Interval* i) {
 195   return i->reg_num() < LinearScan::nof_cpu_regs;
 196 }
 197 
 198 bool LinearScan::is_virtual_cpu_interval(const Interval* i) {
 199 #if defined(__SOFTFP__) || defined(E500V2)
 200   return i->reg_num() >= LIR_OprDesc::vreg_base;
 201 #else
 202   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() != T_FLOAT && i->type() != T_DOUBLE);
 203 #endif // __SOFTFP__ or E500V2
 204 }
 205 
 206 bool LinearScan::is_precolored_fpu_interval(const Interval* i) {
 207   return i->reg_num() >= LinearScan::nof_cpu_regs && i->reg_num() < LinearScan::nof_regs;
 208 }
 209 
 210 bool LinearScan::is_virtual_fpu_interval(const Interval* i) {
 211 #if defined(__SOFTFP__) || defined(E500V2)
 212   return false;
 213 #else
 214   return i->reg_num() >= LIR_OprDesc::vreg_base && (i->type() == T_FLOAT || i->type() == T_DOUBLE);
 215 #endif // __SOFTFP__ or E500V2
 216 }
 217 
 218 bool LinearScan::is_in_fpu_register(const Interval* i) {
 219   // fixed intervals not needed for FPU stack allocation
 220   return i->reg_num() >= nof_regs && pd_first_fpu_reg <= i->assigned_reg() && i->assigned_reg() <= pd_last_fpu_reg;
 221 }
 222 
 223 bool LinearScan::is_oop_interval(const Interval* i) {
 224   // fixed intervals never contain oops
 225   return i->reg_num() >= nof_regs && i->type() == T_OBJECT;
 226 }
 227 
 228 
 229 // ********** General helper functions
 230 
 231 // compute next unused stack index that can be used for spilling
 232 int LinearScan::allocate_spill_slot(bool double_word) {
 233   int spill_slot;
 234   if (double_word) {
 235     if ((_max_spills & 1) == 1) {
 236       // alignment of double-word values
 237       // the hole because of the alignment is filled with the next single-word value
 238       assert(_unused_spill_slot == -1, "wasting a spill slot");
 239       _unused_spill_slot = _max_spills;
 240       _max_spills++;
 241     }
 242     spill_slot = _max_spills;
 243     _max_spills += 2;
 244 
 245   } else if (_unused_spill_slot != -1) {
 246     // re-use hole that was the result of a previous double-word alignment
 247     spill_slot = _unused_spill_slot;
 248     _unused_spill_slot = -1;
 249 
 250   } else {
 251     spill_slot = _max_spills;
 252     _max_spills++;
 253   }
 254 
 255   int result = spill_slot + LinearScan::nof_regs + frame_map()->argcount();
 256 
 257   // the class OopMapValue uses only 11 bits for storing the name of the
 258   // oop location. So a stack slot bigger than 2^11 leads to an overflow
 259   // that is not reported in product builds. Prevent this by checking the
 260   // spill slot here (altough this value and the later used location name
 261   // are slightly different)
 262   if (result > 2000) {
 263     bailout("too many stack slots used");
 264   }
 265 
 266   return result;
 267 }
 268 
 269 void LinearScan::assign_spill_slot(Interval* it) {
 270   // assign the canonical spill slot of the parent (if a part of the interval
 271   // is already spilled) or allocate a new spill slot
 272   if (it->canonical_spill_slot() >= 0) {
 273     it->assign_reg(it->canonical_spill_slot());
 274   } else {
 275     int spill = allocate_spill_slot(type2spill_size[it->type()] == 2);
 276     it->set_canonical_spill_slot(spill);
 277     it->assign_reg(spill);
 278   }
 279 }
 280 
 281 void LinearScan::propagate_spill_slots() {
 282   if (!frame_map()->finalize_frame(max_spills())) {
 283     bailout("frame too large");
 284   }
 285 }
 286 
 287 // create a new interval with a predefined reg_num
 288 // (only used for parent intervals that are created during the building phase)
 289 Interval* LinearScan::create_interval(int reg_num) {
 290   assert(_intervals.at(reg_num) == NULL, "overwriting exisiting interval");
 291 
 292   Interval* interval = new Interval(reg_num);
 293   _intervals.at_put(reg_num, interval);
 294 
 295   // assign register number for precolored intervals
 296   if (reg_num < LIR_OprDesc::vreg_base) {
 297     interval->assign_reg(reg_num);
 298   }
 299   return interval;
 300 }
 301 
 302 // assign a new reg_num to the interval and append it to the list of intervals
 303 // (only used for child intervals that are created during register allocation)
 304 void LinearScan::append_interval(Interval* it) {
 305   it->set_reg_num(_intervals.length());
 306   _intervals.append(it);
 307   _new_intervals_from_allocation->append(it);
 308 }
 309 
 310 // copy the vreg-flags if an interval is split
 311 void LinearScan::copy_register_flags(Interval* from, Interval* to) {
 312   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::byte_reg)) {
 313     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::byte_reg);
 314   }
 315   if (gen()->is_vreg_flag_set(from->reg_num(), LIRGenerator::callee_saved)) {
 316     gen()->set_vreg_flag(to->reg_num(), LIRGenerator::callee_saved);
 317   }
 318 
 319   // Note: do not copy the must_start_in_memory flag because it is not necessary for child
 320   //       intervals (only the very beginning of the interval must be in memory)
 321 }
 322 
 323 
 324 // ********** spill move optimization
 325 // eliminate moves from register to stack if stack slot is known to be correct
 326 
 327 // called during building of intervals
 328 void LinearScan::change_spill_definition_pos(Interval* interval, int def_pos) {
 329   assert(interval->is_split_parent(), "can only be called for split parents");
 330 
 331   switch (interval->spill_state()) {
 332     case noDefinitionFound:
 333       assert(interval->spill_definition_pos() == -1, "must no be set before");
 334       interval->set_spill_definition_pos(def_pos);
 335       interval->set_spill_state(oneDefinitionFound);
 336       break;
 337 
 338     case oneDefinitionFound:
 339       assert(def_pos <= interval->spill_definition_pos(), "positions are processed in reverse order when intervals are created");
 340       if (def_pos < interval->spill_definition_pos() - 2) {
 341         // second definition found, so no spill optimization possible for this interval
 342         interval->set_spill_state(noOptimization);
 343       } else {
 344         // two consecutive definitions (because of two-operand LIR form)
 345         assert(block_of_op_with_id(def_pos) == block_of_op_with_id(interval->spill_definition_pos()), "block must be equal");
 346       }
 347       break;
 348 
 349     case noOptimization:
 350       // nothing to do
 351       break;
 352 
 353     default:
 354       assert(false, "other states not allowed at this time");
 355   }
 356 }
 357 
 358 // called during register allocation
 359 void LinearScan::change_spill_state(Interval* interval, int spill_pos) {
 360   switch (interval->spill_state()) {
 361     case oneDefinitionFound: {
 362       int def_loop_depth = block_of_op_with_id(interval->spill_definition_pos())->loop_depth();
 363       int spill_loop_depth = block_of_op_with_id(spill_pos)->loop_depth();
 364 
 365       if (def_loop_depth < spill_loop_depth) {
 366         // the loop depth of the spilling position is higher then the loop depth
 367         // at the definition of the interval -> move write to memory out of loop
 368         // by storing at definitin of the interval
 369         interval->set_spill_state(storeAtDefinition);
 370       } else {
 371         // the interval is currently spilled only once, so for now there is no
 372         // reason to store the interval at the definition
 373         interval->set_spill_state(oneMoveInserted);
 374       }
 375       break;
 376     }
 377 
 378     case oneMoveInserted: {
 379       // the interval is spilled more then once, so it is better to store it to
 380       // memory at the definition
 381       interval->set_spill_state(storeAtDefinition);
 382       break;
 383     }
 384 
 385     case storeAtDefinition:
 386     case startInMemory:
 387     case noOptimization:
 388     case noDefinitionFound:
 389       // nothing to do
 390       break;
 391 
 392     default:
 393       assert(false, "other states not allowed at this time");
 394   }
 395 }
 396 
 397 
 398 bool LinearScan::must_store_at_definition(const Interval* i) {
 399   return i->is_split_parent() && i->spill_state() == storeAtDefinition;
 400 }
 401 
 402 // called once before asignment of register numbers
 403 void LinearScan::eliminate_spill_moves() {
 404   TIME_LINEAR_SCAN(timer_eliminate_spill_moves);
 405   TRACE_LINEAR_SCAN(3, tty->print_cr("***** Eliminating unnecessary spill moves"));
 406 
 407   // collect all intervals that must be stored after their definion.
 408   // the list is sorted by Interval::spill_definition_pos
 409   Interval* interval;
 410   Interval* temp_list;
 411   create_unhandled_lists(&interval, &temp_list, must_store_at_definition, NULL);
 412 
 413 #ifdef ASSERT
 414   Interval* prev = NULL;
 415   Interval* temp = interval;
 416   while (temp != Interval::end()) {
 417     assert(temp->spill_definition_pos() > 0, "invalid spill definition pos");
 418     if (prev != NULL) {
 419       assert(temp->from() >= prev->from(), "intervals not sorted");
 420       assert(temp->spill_definition_pos() >= prev->spill_definition_pos(), "when intervals are sorted by from, then they must also be sorted by spill_definition_pos");
 421     }
 422 
 423     assert(temp->canonical_spill_slot() >= LinearScan::nof_regs, "interval has no spill slot assigned");
 424     assert(temp->spill_definition_pos() >= temp->from(), "invalid order");
 425     assert(temp->spill_definition_pos() <= temp->from() + 2, "only intervals defined once at their start-pos can be optimized");
 426 
 427     TRACE_LINEAR_SCAN(4, tty->print_cr("interval %d (from %d to %d) must be stored at %d", temp->reg_num(), temp->from(), temp->to(), temp->spill_definition_pos()));
 428 
 429     temp = temp->next();
 430   }
 431 #endif
 432 
 433   LIR_InsertionBuffer insertion_buffer;
 434   int num_blocks = block_count();
 435   for (int i = 0; i < num_blocks; i++) {
 436     BlockBegin* block = block_at(i);
 437     LIR_OpList* instructions = block->lir()->instructions_list();
 438     int         num_inst = instructions->length();
 439     bool        has_new = false;
 440 
 441     // iterate all instructions of the block. skip the first because it is always a label
 442     for (int j = 1; j < num_inst; j++) {
 443       LIR_Op* op = instructions->at(j);
 444       int op_id = op->id();
 445 
 446       if (op_id == -1) {
 447         // remove move from register to stack if the stack slot is guaranteed to be correct.
 448         // only moves that have been inserted by LinearScan can be removed.
 449         assert(op->code() == lir_move, "only moves can have a op_id of -1");
 450         assert(op->as_Op1() != NULL, "move must be LIR_Op1");
 451         assert(op->as_Op1()->result_opr()->is_virtual(), "LinearScan inserts only moves to virtual registers");
 452 
 453         LIR_Op1* op1 = (LIR_Op1*)op;
 454         Interval* interval = interval_at(op1->result_opr()->vreg_number());
 455 
 456         if (interval->assigned_reg() >= LinearScan::nof_regs && interval->always_in_memory()) {
 457           // move target is a stack slot that is always correct, so eliminate instruction
 458           TRACE_LINEAR_SCAN(4, tty->print_cr("eliminating move from interval %d to %d", op1->in_opr()->vreg_number(), op1->result_opr()->vreg_number()));
 459           instructions->at_put(j, NULL); // NULL-instructions are deleted by assign_reg_num
 460         }
 461 
 462       } else {
 463         // insert move from register to stack just after the beginning of the interval
 464         assert(interval == Interval::end() || interval->spill_definition_pos() >= op_id, "invalid order");
 465         assert(interval == Interval::end() || (interval->is_split_parent() && interval->spill_state() == storeAtDefinition), "invalid interval");
 466 
 467         while (interval != Interval::end() && interval->spill_definition_pos() == op_id) {
 468           if (!has_new) {
 469             // prepare insertion buffer (appended when all instructions of the block are processed)
 470             insertion_buffer.init(block->lir());
 471             has_new = true;
 472           }
 473 
 474           LIR_Opr from_opr = operand_for_interval(interval);
 475           LIR_Opr to_opr = canonical_spill_opr(interval);
 476           assert(from_opr->is_fixed_cpu() || from_opr->is_fixed_fpu(), "from operand must be a register");
 477           assert(to_opr->is_stack(), "to operand must be a stack slot");
 478 
 479           insertion_buffer.move(j, from_opr, to_opr);
 480           TRACE_LINEAR_SCAN(4, tty->print_cr("inserting move after definition of interval %d to stack slot %d at op_id %d", interval->reg_num(), interval->canonical_spill_slot() - LinearScan::nof_regs, op_id));
 481 
 482           interval = interval->next();
 483         }
 484       }
 485     } // end of instruction iteration
 486 
 487     if (has_new) {
 488       block->lir()->append(&insertion_buffer);
 489     }
 490   } // end of block iteration
 491 
 492   assert(interval == Interval::end(), "missed an interval");
 493 }
 494 
 495 
 496 // ********** Phase 1: number all instructions in all blocks
 497 // Compute depth-first and linear scan block orders, and number LIR_Op nodes for linear scan.
 498 
 499 void LinearScan::number_instructions() {
 500   {
 501     // dummy-timer to measure the cost of the timer itself
 502     // (this time is then subtracted from all other timers to get the real value)
 503     TIME_LINEAR_SCAN(timer_do_nothing);
 504   }
 505   TIME_LINEAR_SCAN(timer_number_instructions);
 506 
 507   // Assign IDs to LIR nodes and build a mapping, lir_ops, from ID to LIR_Op node.
 508   int num_blocks = block_count();
 509   int num_instructions = 0;
 510   int i;
 511   for (i = 0; i < num_blocks; i++) {
 512     num_instructions += block_at(i)->lir()->instructions_list()->length();
 513   }
 514 
 515   // initialize with correct length
 516   _lir_ops = LIR_OpArray(num_instructions);
 517   _block_of_op = BlockBeginArray(num_instructions);
 518 
 519   int op_id = 0;
 520   int idx = 0;
 521 
 522   for (i = 0; i < num_blocks; i++) {
 523     BlockBegin* block = block_at(i);
 524     block->set_first_lir_instruction_id(op_id);
 525     LIR_OpList* instructions = block->lir()->instructions_list();
 526 
 527     int num_inst = instructions->length();
 528     for (int j = 0; j < num_inst; j++) {
 529       LIR_Op* op = instructions->at(j);
 530       op->set_id(op_id);
 531 
 532       _lir_ops.at_put(idx, op);
 533       _block_of_op.at_put(idx, block);
 534       assert(lir_op_with_id(op_id) == op, "must match");
 535 
 536       idx++;
 537       op_id += 2; // numbering of lir_ops by two
 538     }
 539     block->set_last_lir_instruction_id(op_id - 2);
 540   }
 541   assert(idx == num_instructions, "must match");
 542   assert(idx * 2 == op_id, "must match");
 543 
 544   _has_call = BitMap(num_instructions); _has_call.clear();
 545   _has_info = BitMap(num_instructions); _has_info.clear();
 546 }
 547 
 548 
 549 // ********** Phase 2: compute local live sets separately for each block
 550 // (sets live_gen and live_kill for each block)
 551 
 552 void LinearScan::set_live_gen_kill(Value value, LIR_Op* op, BitMap& live_gen, BitMap& live_kill) {
 553   LIR_Opr opr = value->operand();
 554   Constant* con = value->as_Constant();
 555 
 556   // check some asumptions about debug information
 557   assert(!value->type()->is_illegal(), "if this local is used by the interpreter it shouldn't be of indeterminate type");
 558   assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands");
 559   assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
 560 
 561   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 562     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 563     int reg = opr->vreg_number();
 564     if (!live_kill.at(reg)) {
 565       live_gen.set_bit(reg);
 566       TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for value %c%d, LIR op_id %d, register number %d", value->type()->tchar(), value->id(), op->id(), reg));
 567     }
 568   }
 569 }
 570 
 571 
 572 void LinearScan::compute_local_live_sets() {
 573   TIME_LINEAR_SCAN(timer_compute_local_live_sets);
 574 
 575   int  num_blocks = block_count();
 576   int  live_size = live_set_size();
 577   bool local_has_fpu_registers = false;
 578   int  local_num_calls = 0;
 579   LIR_OpVisitState visitor;
 580 
 581   BitMap2D local_interval_in_loop = BitMap2D(_num_virtual_regs, num_loops());
 582   local_interval_in_loop.clear();
 583 
 584   // iterate all blocks
 585   for (int i = 0; i < num_blocks; i++) {
 586     BlockBegin* block = block_at(i);
 587 
 588     BitMap live_gen(live_size);  live_gen.clear();
 589     BitMap live_kill(live_size); live_kill.clear();
 590 
 591     if (block->is_set(BlockBegin::exception_entry_flag)) {
 592       // Phi functions at the begin of an exception handler are
 593       // implicitly defined (= killed) at the beginning of the block.
 594       for_each_phi_fun(block, phi,
 595         live_kill.set_bit(phi->operand()->vreg_number())
 596       );
 597     }
 598 
 599     LIR_OpList* instructions = block->lir()->instructions_list();
 600     int num_inst = instructions->length();
 601 
 602     // iterate all instructions of the block. skip the first because it is always a label
 603     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
 604     for (int j = 1; j < num_inst; j++) {
 605       LIR_Op* op = instructions->at(j);
 606 
 607       // visit operation to collect all operands
 608       visitor.visit(op);
 609 
 610       if (visitor.has_call()) {
 611         _has_call.set_bit(op->id() >> 1);
 612         local_num_calls++;
 613       }
 614       if (visitor.info_count() > 0) {
 615         _has_info.set_bit(op->id() >> 1);
 616       }
 617 
 618       // iterate input operands of instruction
 619       int k, n, reg;
 620       n = visitor.opr_count(LIR_OpVisitState::inputMode);
 621       for (k = 0; k < n; k++) {
 622         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
 623         assert(opr->is_register(), "visitor should only return register operands");
 624 
 625         if (opr->is_virtual_register()) {
 626           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 627           reg = opr->vreg_number();
 628           if (!live_kill.at(reg)) {
 629             live_gen.set_bit(reg);
 630             TRACE_LINEAR_SCAN(4, tty->print_cr("  Setting live_gen for register %d at instruction %d", reg, op->id()));
 631           }
 632           if (block->loop_index() >= 0) {
 633             local_interval_in_loop.set_bit(reg, block->loop_index());
 634           }
 635           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 636         }
 637 
 638 #ifdef ASSERT
 639         // fixed intervals are never live at block boundaries, so
 640         // they need not be processed in live sets.
 641         // this is checked by these assertions to be sure about it.
 642         // the entry block may have incoming values in registers, which is ok.
 643         if (!opr->is_virtual_register() && block != ir()->start()) {
 644           reg = reg_num(opr);
 645           if (is_processed_reg_num(reg)) {
 646             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 647           }
 648           reg = reg_numHi(opr);
 649           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 650             assert(live_kill.at(reg), "using fixed register that is not defined in this block");
 651           }
 652         }
 653 #endif
 654       }
 655 
 656       // Add uses of live locals from interpreter's point of view for proper debug information generation
 657       n = visitor.info_count();
 658       for (k = 0; k < n; k++) {
 659         CodeEmitInfo* info = visitor.info_at(k);
 660         ValueStack* stack = info->stack();
 661         for_each_state_value(stack, value,
 662           set_live_gen_kill(value, op, live_gen, live_kill)
 663         );
 664       }
 665 
 666       // iterate temp operands of instruction
 667       n = visitor.opr_count(LIR_OpVisitState::tempMode);
 668       for (k = 0; k < n; k++) {
 669         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
 670         assert(opr->is_register(), "visitor should only return register operands");
 671 
 672         if (opr->is_virtual_register()) {
 673           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 674           reg = opr->vreg_number();
 675           live_kill.set_bit(reg);
 676           if (block->loop_index() >= 0) {
 677             local_interval_in_loop.set_bit(reg, block->loop_index());
 678           }
 679           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 680         }
 681 
 682 #ifdef ASSERT
 683         // fixed intervals are never live at block boundaries, so
 684         // they need not be processed in live sets
 685         // process them only in debug mode so that this can be checked
 686         if (!opr->is_virtual_register()) {
 687           reg = reg_num(opr);
 688           if (is_processed_reg_num(reg)) {
 689             live_kill.set_bit(reg_num(opr));
 690           }
 691           reg = reg_numHi(opr);
 692           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 693             live_kill.set_bit(reg);
 694           }
 695         }
 696 #endif
 697       }
 698 
 699       // iterate output operands of instruction
 700       n = visitor.opr_count(LIR_OpVisitState::outputMode);
 701       for (k = 0; k < n; k++) {
 702         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
 703         assert(opr->is_register(), "visitor should only return register operands");
 704 
 705         if (opr->is_virtual_register()) {
 706           assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 707           reg = opr->vreg_number();
 708           live_kill.set_bit(reg);
 709           if (block->loop_index() >= 0) {
 710             local_interval_in_loop.set_bit(reg, block->loop_index());
 711           }
 712           local_has_fpu_registers = local_has_fpu_registers || opr->is_virtual_fpu();
 713         }
 714 
 715 #ifdef ASSERT
 716         // fixed intervals are never live at block boundaries, so
 717         // they need not be processed in live sets
 718         // process them only in debug mode so that this can be checked
 719         if (!opr->is_virtual_register()) {
 720           reg = reg_num(opr);
 721           if (is_processed_reg_num(reg)) {
 722             live_kill.set_bit(reg_num(opr));
 723           }
 724           reg = reg_numHi(opr);
 725           if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 726             live_kill.set_bit(reg);
 727           }
 728         }
 729 #endif
 730       }
 731     } // end of instruction iteration
 732 
 733     block->set_live_gen (live_gen);
 734     block->set_live_kill(live_kill);
 735     block->set_live_in  (BitMap(live_size)); block->live_in().clear();
 736     block->set_live_out (BitMap(live_size)); block->live_out().clear();
 737 
 738     TRACE_LINEAR_SCAN(4, tty->print("live_gen  B%d ", block->block_id()); print_bitmap(block->live_gen()));
 739     TRACE_LINEAR_SCAN(4, tty->print("live_kill B%d ", block->block_id()); print_bitmap(block->live_kill()));
 740   } // end of block iteration
 741 
 742   // propagate local calculated information into LinearScan object
 743   _has_fpu_registers = local_has_fpu_registers;
 744   compilation()->set_has_fpu_code(local_has_fpu_registers);
 745 
 746   _num_calls = local_num_calls;
 747   _interval_in_loop = local_interval_in_loop;
 748 }
 749 
 750 
 751 // ********** Phase 3: perform a backward dataflow analysis to compute global live sets
 752 // (sets live_in and live_out for each block)
 753 
 754 void LinearScan::compute_global_live_sets() {
 755   TIME_LINEAR_SCAN(timer_compute_global_live_sets);
 756 
 757   int  num_blocks = block_count();
 758   bool change_occurred;
 759   bool change_occurred_in_block;
 760   int  iteration_count = 0;
 761   BitMap live_out(live_set_size()); live_out.clear(); // scratch set for calculations
 762 
 763   // Perform a backward dataflow analysis to compute live_out and live_in for each block.
 764   // The loop is executed until a fixpoint is reached (no changes in an iteration)
 765   // Exception handlers must be processed because not all live values are
 766   // present in the state array, e.g. because of global value numbering
 767   do {
 768     change_occurred = false;
 769 
 770     // iterate all blocks in reverse order
 771     for (int i = num_blocks - 1; i >= 0; i--) {
 772       BlockBegin* block = block_at(i);
 773 
 774       change_occurred_in_block = false;
 775 
 776       // live_out(block) is the union of live_in(sux), for successors sux of block
 777       int n = block->number_of_sux();
 778       int e = block->number_of_exception_handlers();
 779       if (n + e > 0) {
 780         // block has successors
 781         if (n > 0) {
 782           live_out.set_from(block->sux_at(0)->live_in());
 783           for (int j = 1; j < n; j++) {
 784             live_out.set_union(block->sux_at(j)->live_in());
 785           }
 786         } else {
 787           live_out.clear();
 788         }
 789         for (int j = 0; j < e; j++) {
 790           live_out.set_union(block->exception_handler_at(j)->live_in());
 791         }
 792 
 793         if (!block->live_out().is_same(live_out)) {
 794           // A change occurred.  Swap the old and new live out sets to avoid copying.
 795           BitMap temp = block->live_out();
 796           block->set_live_out(live_out);
 797           live_out = temp;
 798 
 799           change_occurred = true;
 800           change_occurred_in_block = true;
 801         }
 802       }
 803 
 804       if (iteration_count == 0 || change_occurred_in_block) {
 805         // live_in(block) is the union of live_gen(block) with (live_out(block) & !live_kill(block))
 806         // note: live_in has to be computed only in first iteration or if live_out has changed!
 807         BitMap live_in = block->live_in();
 808         live_in.set_from(block->live_out());
 809         live_in.set_difference(block->live_kill());
 810         live_in.set_union(block->live_gen());
 811       }
 812 
 813 #ifndef PRODUCT
 814       if (TraceLinearScanLevel >= 4) {
 815         char c = ' ';
 816         if (iteration_count == 0 || change_occurred_in_block) {
 817           c = '*';
 818         }
 819         tty->print("(%d) live_in%c  B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_in());
 820         tty->print("(%d) live_out%c B%d ", iteration_count, c, block->block_id()); print_bitmap(block->live_out());
 821       }
 822 #endif
 823     }
 824     iteration_count++;
 825 
 826     if (change_occurred && iteration_count > 50) {
 827       BAILOUT("too many iterations in compute_global_live_sets");
 828     }
 829   } while (change_occurred);
 830 
 831 
 832 #ifdef ASSERT
 833   // check that fixed intervals are not live at block boundaries
 834   // (live set must be empty at fixed intervals)
 835   for (int i = 0; i < num_blocks; i++) {
 836     BlockBegin* block = block_at(i);
 837     for (int j = 0; j < LIR_OprDesc::vreg_base; j++) {
 838       assert(block->live_in().at(j)  == false, "live_in  set of fixed register must be empty");
 839       assert(block->live_out().at(j) == false, "live_out set of fixed register must be empty");
 840       assert(block->live_gen().at(j) == false, "live_gen set of fixed register must be empty");
 841     }
 842   }
 843 #endif
 844 
 845   // check that the live_in set of the first block is empty
 846   BitMap live_in_args(ir()->start()->live_in().size());
 847   live_in_args.clear();
 848   if (!ir()->start()->live_in().is_same(live_in_args)) {
 849 #ifdef ASSERT
 850     tty->print_cr("Error: live_in set of first block must be empty (when this fails, virtual registers are used before they are defined)");
 851     tty->print_cr("affected registers:");
 852     print_bitmap(ir()->start()->live_in());
 853 
 854     // print some additional information to simplify debugging
 855     for (unsigned int i = 0; i < ir()->start()->live_in().size(); i++) {
 856       if (ir()->start()->live_in().at(i)) {
 857         Instruction* instr = gen()->instruction_for_vreg(i);
 858         tty->print_cr("* vreg %d (HIR instruction %c%d)", i, instr == NULL ? ' ' : instr->type()->tchar(), instr == NULL ? 0 : instr->id());
 859 
 860         for (int j = 0; j < num_blocks; j++) {
 861           BlockBegin* block = block_at(j);
 862           if (block->live_gen().at(i)) {
 863             tty->print_cr("  used in block B%d", block->block_id());
 864           }
 865           if (block->live_kill().at(i)) {
 866             tty->print_cr("  defined in block B%d", block->block_id());
 867           }
 868         }
 869       }
 870     }
 871 
 872 #endif
 873     // when this fails, virtual registers are used before they are defined.
 874     assert(false, "live_in set of first block must be empty");
 875     // bailout of if this occurs in product mode.
 876     bailout("live_in set of first block not empty");
 877   }
 878 }
 879 
 880 
 881 // ********** Phase 4: build intervals
 882 // (fills the list _intervals)
 883 
 884 void LinearScan::add_use(Value value, int from, int to, IntervalUseKind use_kind) {
 885   assert(!value->type()->is_illegal(), "if this value is used by the interpreter it shouldn't be of indeterminate type");
 886   LIR_Opr opr = value->operand();
 887   Constant* con = value->as_Constant();
 888 
 889   if ((con == NULL || con->is_pinned()) && opr->is_register()) {
 890     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 891     add_use(opr, from, to, use_kind);
 892   }
 893 }
 894 
 895 
 896 void LinearScan::add_def(LIR_Opr opr, int def_pos, IntervalUseKind use_kind) {
 897   TRACE_LINEAR_SCAN(2, tty->print(" def "); opr->print(tty); tty->print_cr(" def_pos %d (%d)", def_pos, use_kind));
 898   assert(opr->is_register(), "should not be called otherwise");
 899 
 900   if (opr->is_virtual_register()) {
 901     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 902     add_def(opr->vreg_number(), def_pos, use_kind, opr->type_register());
 903 
 904   } else {
 905     int reg = reg_num(opr);
 906     if (is_processed_reg_num(reg)) {
 907       add_def(reg, def_pos, use_kind, opr->type_register());
 908     }
 909     reg = reg_numHi(opr);
 910     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 911       add_def(reg, def_pos, use_kind, opr->type_register());
 912     }
 913   }
 914 }
 915 
 916 void LinearScan::add_use(LIR_Opr opr, int from, int to, IntervalUseKind use_kind) {
 917   TRACE_LINEAR_SCAN(2, tty->print(" use "); opr->print(tty); tty->print_cr(" from %d to %d (%d)", from, to, use_kind));
 918   assert(opr->is_register(), "should not be called otherwise");
 919 
 920   if (opr->is_virtual_register()) {
 921     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 922     add_use(opr->vreg_number(), from, to, use_kind, opr->type_register());
 923 
 924   } else {
 925     int reg = reg_num(opr);
 926     if (is_processed_reg_num(reg)) {
 927       add_use(reg, from, to, use_kind, opr->type_register());
 928     }
 929     reg = reg_numHi(opr);
 930     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 931       add_use(reg, from, to, use_kind, opr->type_register());
 932     }
 933   }
 934 }
 935 
 936 void LinearScan::add_temp(LIR_Opr opr, int temp_pos, IntervalUseKind use_kind) {
 937   TRACE_LINEAR_SCAN(2, tty->print(" temp "); opr->print(tty); tty->print_cr(" temp_pos %d (%d)", temp_pos, use_kind));
 938   assert(opr->is_register(), "should not be called otherwise");
 939 
 940   if (opr->is_virtual_register()) {
 941     assert(reg_num(opr) == opr->vreg_number() && !is_valid_reg_num(reg_numHi(opr)), "invalid optimization below");
 942     add_temp(opr->vreg_number(), temp_pos, use_kind, opr->type_register());
 943 
 944   } else {
 945     int reg = reg_num(opr);
 946     if (is_processed_reg_num(reg)) {
 947       add_temp(reg, temp_pos, use_kind, opr->type_register());
 948     }
 949     reg = reg_numHi(opr);
 950     if (is_valid_reg_num(reg) && is_processed_reg_num(reg)) {
 951       add_temp(reg, temp_pos, use_kind, opr->type_register());
 952     }
 953   }
 954 }
 955 
 956 
 957 void LinearScan::add_def(int reg_num, int def_pos, IntervalUseKind use_kind, BasicType type) {
 958   Interval* interval = interval_at(reg_num);
 959   if (interval != NULL) {
 960     assert(interval->reg_num() == reg_num, "wrong interval");
 961 
 962     if (type != T_ILLEGAL) {
 963       interval->set_type(type);
 964     }
 965 
 966     Range* r = interval->first();
 967     if (r->from() <= def_pos) {
 968       // Update the starting point (when a range is first created for a use, its
 969       // start is the beginning of the current block until a def is encountered.)
 970       r->set_from(def_pos);
 971       interval->add_use_pos(def_pos, use_kind);
 972 
 973     } else {
 974       // Dead value - make vacuous interval
 975       // also add use_kind for dead intervals
 976       interval->add_range(def_pos, def_pos + 1);
 977       interval->add_use_pos(def_pos, use_kind);
 978       TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: def of reg %d at %d occurs without use", reg_num, def_pos));
 979     }
 980 
 981   } else {
 982     // Dead value - make vacuous interval
 983     // also add use_kind for dead intervals
 984     interval = create_interval(reg_num);
 985     if (type != T_ILLEGAL) {
 986       interval->set_type(type);
 987     }
 988 
 989     interval->add_range(def_pos, def_pos + 1);
 990     interval->add_use_pos(def_pos, use_kind);
 991     TRACE_LINEAR_SCAN(2, tty->print_cr("Warning: dead value %d at %d in live intervals", reg_num, def_pos));
 992   }
 993 
 994   change_spill_definition_pos(interval, def_pos);
 995   if (use_kind == noUse && interval->spill_state() <= startInMemory) {
 996         // detection of method-parameters and roundfp-results
 997         // TODO: move this directly to position where use-kind is computed
 998     interval->set_spill_state(startInMemory);
 999   }
1000 }
1001 
1002 void LinearScan::add_use(int reg_num, int from, int to, IntervalUseKind use_kind, BasicType type) {
1003   Interval* interval = interval_at(reg_num);
1004   if (interval == NULL) {
1005     interval = create_interval(reg_num);
1006   }
1007   assert(interval->reg_num() == reg_num, "wrong interval");
1008 
1009   if (type != T_ILLEGAL) {
1010     interval->set_type(type);
1011   }
1012 
1013   interval->add_range(from, to);
1014   interval->add_use_pos(to, use_kind);
1015 }
1016 
1017 void LinearScan::add_temp(int reg_num, int temp_pos, IntervalUseKind use_kind, BasicType type) {
1018   Interval* interval = interval_at(reg_num);
1019   if (interval == NULL) {
1020     interval = create_interval(reg_num);
1021   }
1022   assert(interval->reg_num() == reg_num, "wrong interval");
1023 
1024   if (type != T_ILLEGAL) {
1025     interval->set_type(type);
1026   }
1027 
1028   interval->add_range(temp_pos, temp_pos + 1);
1029   interval->add_use_pos(temp_pos, use_kind);
1030 }
1031 
1032 
1033 // the results of this functions are used for optimizing spilling and reloading
1034 // if the functions return shouldHaveRegister and the interval is spilled,
1035 // it is not reloaded to a register.
1036 IntervalUseKind LinearScan::use_kind_of_output_operand(LIR_Op* op, LIR_Opr opr) {
1037   if (op->code() == lir_move) {
1038     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1039     LIR_Op1* move = (LIR_Op1*)op;
1040     LIR_Opr res = move->result_opr();
1041     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1042 
1043     if (result_in_memory) {
1044       // Begin of an interval with must_start_in_memory set.
1045       // This interval will always get a stack slot first, so return noUse.
1046       return noUse;
1047 
1048     } else if (move->in_opr()->is_stack()) {
1049       // method argument (condition must be equal to handle_method_arguments)
1050       return noUse;
1051 
1052     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1053       // Move from register to register
1054       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1055         // special handling of phi-function moves inside osr-entry blocks
1056         // input operand must have a register instead of output operand (leads to better register allocation)
1057         return shouldHaveRegister;
1058       }
1059     }
1060   }
1061 
1062   if (opr->is_virtual() &&
1063       gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::must_start_in_memory)) {
1064     // result is a stack-slot, so prevent immediate reloading
1065     return noUse;
1066   }
1067 
1068   // all other operands require a register
1069   return mustHaveRegister;
1070 }
1071 
1072 IntervalUseKind LinearScan::use_kind_of_input_operand(LIR_Op* op, LIR_Opr opr) {
1073   if (op->code() == lir_move) {
1074     assert(op->as_Op1() != NULL, "lir_move must be LIR_Op1");
1075     LIR_Op1* move = (LIR_Op1*)op;
1076     LIR_Opr res = move->result_opr();
1077     bool result_in_memory = res->is_virtual() && gen()->is_vreg_flag_set(res->vreg_number(), LIRGenerator::must_start_in_memory);
1078 
1079     if (result_in_memory) {
1080       // Move to an interval with must_start_in_memory set.
1081       // To avoid moves from stack to stack (not allowed) force the input operand to a register
1082       return mustHaveRegister;
1083 
1084     } else if (move->in_opr()->is_register() && move->result_opr()->is_register()) {
1085       // Move from register to register
1086       if (block_of_op_with_id(op->id())->is_set(BlockBegin::osr_entry_flag)) {
1087         // special handling of phi-function moves inside osr-entry blocks
1088         // input operand must have a register instead of output operand (leads to better register allocation)
1089         return mustHaveRegister;
1090       }
1091 
1092       // The input operand is not forced to a register (moves from stack to register are allowed),
1093       // but it is faster if the input operand is in a register
1094       return shouldHaveRegister;
1095     }
1096   }
1097 
1098 
1099 #ifdef X86
1100   if (op->code() == lir_cmove) {
1101     // conditional moves can handle stack operands
1102     assert(op->result_opr()->is_register(), "result must always be in a register");
1103     return shouldHaveRegister;
1104   }
1105 
1106   // optimizations for second input operand of arithmehtic operations on Intel
1107   // this operand is allowed to be on the stack in some cases
1108   BasicType opr_type = opr->type_register();
1109   if (opr_type == T_FLOAT || opr_type == T_DOUBLE) {
1110     if ((UseSSE == 1 && opr_type == T_FLOAT) || UseSSE >= 2) {
1111       // SSE float instruction (T_DOUBLE only supported with SSE2)
1112       switch (op->code()) {
1113         case lir_cmp:
1114         case lir_add:
1115         case lir_sub:
1116         case lir_mul:
1117         case lir_div:
1118         {
1119           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1120           LIR_Op2* op2 = (LIR_Op2*)op;
1121           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1122             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1123             return shouldHaveRegister;
1124           }
1125         }
1126       }
1127     } else {
1128       // FPU stack float instruction
1129       switch (op->code()) {
1130         case lir_add:
1131         case lir_sub:
1132         case lir_mul:
1133         case lir_div:
1134         {
1135           assert(op->as_Op2() != NULL, "must be LIR_Op2");
1136           LIR_Op2* op2 = (LIR_Op2*)op;
1137           if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1138             assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1139             return shouldHaveRegister;
1140           }
1141         }
1142       }
1143     }
1144     // We want to sometimes use logical operations on pointers, in particular in GC barriers.
1145     // Since 64bit logical operations do not current support operands on stack, we have to make sure
1146     // T_OBJECT doesn't get spilled along with T_LONG.
1147   } else if (opr_type != T_LONG LP64_ONLY(&& opr_type != T_OBJECT)) {
1148     // integer instruction (note: long operands must always be in register)
1149     switch (op->code()) {
1150       case lir_cmp:
1151       case lir_add:
1152       case lir_sub:
1153       case lir_logic_and:
1154       case lir_logic_or:
1155       case lir_logic_xor:
1156       {
1157         assert(op->as_Op2() != NULL, "must be LIR_Op2");
1158         LIR_Op2* op2 = (LIR_Op2*)op;
1159         if (op2->in_opr1() != op2->in_opr2() && op2->in_opr2() == opr) {
1160           assert((op2->result_opr()->is_register() || op->code() == lir_cmp) && op2->in_opr1()->is_register(), "cannot mark second operand as stack if others are not in register");
1161           return shouldHaveRegister;
1162         }
1163       }
1164     }
1165   }
1166 #endif // X86
1167 
1168   // all other operands require a register
1169   return mustHaveRegister;
1170 }
1171 
1172 
1173 void LinearScan::handle_method_arguments(LIR_Op* op) {
1174   // special handling for method arguments (moves from stack to virtual register):
1175   // the interval gets no register assigned, but the stack slot.
1176   // it is split before the first use by the register allocator.
1177 
1178   if (op->code() == lir_move) {
1179     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1180     LIR_Op1* move = (LIR_Op1*)op;
1181 
1182     if (move->in_opr()->is_stack()) {
1183 #ifdef ASSERT
1184       int arg_size = compilation()->method()->arg_size();
1185       LIR_Opr o = move->in_opr();
1186       if (o->is_single_stack()) {
1187         assert(o->single_stack_ix() >= 0 && o->single_stack_ix() < arg_size, "out of range");
1188       } else if (o->is_double_stack()) {
1189         assert(o->double_stack_ix() >= 0 && o->double_stack_ix() < arg_size, "out of range");
1190       } else {
1191         ShouldNotReachHere();
1192       }
1193 
1194       assert(move->id() > 0, "invalid id");
1195       assert(block_of_op_with_id(move->id())->number_of_preds() == 0, "move from stack must be in first block");
1196       assert(move->result_opr()->is_virtual(), "result of move must be a virtual register");
1197 
1198       TRACE_LINEAR_SCAN(4, tty->print_cr("found move from stack slot %d to vreg %d", o->is_single_stack() ? o->single_stack_ix() : o->double_stack_ix(), reg_num(move->result_opr())));
1199 #endif
1200 
1201       Interval* interval = interval_at(reg_num(move->result_opr()));
1202 
1203       int stack_slot = LinearScan::nof_regs + (move->in_opr()->is_single_stack() ? move->in_opr()->single_stack_ix() : move->in_opr()->double_stack_ix());
1204       interval->set_canonical_spill_slot(stack_slot);
1205       interval->assign_reg(stack_slot);
1206     }
1207   }
1208 }
1209 
1210 void LinearScan::handle_doubleword_moves(LIR_Op* op) {
1211   // special handling for doubleword move from memory to register:
1212   // in this case the registers of the input address and the result
1213   // registers must not overlap -> add a temp range for the input registers
1214   if (op->code() == lir_move) {
1215     assert(op->as_Op1() != NULL, "must be LIR_Op1");
1216     LIR_Op1* move = (LIR_Op1*)op;
1217 
1218     if (move->result_opr()->is_double_cpu() && move->in_opr()->is_pointer()) {
1219       LIR_Address* address = move->in_opr()->as_address_ptr();
1220       if (address != NULL) {
1221         if (address->base()->is_valid()) {
1222           add_temp(address->base(), op->id(), noUse);
1223         }
1224         if (address->index()->is_valid()) {
1225           add_temp(address->index(), op->id(), noUse);
1226         }
1227       }
1228     }
1229   }
1230 }
1231 
1232 void LinearScan::add_register_hints(LIR_Op* op) {
1233   switch (op->code()) {
1234     case lir_move:      // fall through
1235     case lir_convert: {
1236       assert(op->as_Op1() != NULL, "lir_move, lir_convert must be LIR_Op1");
1237       LIR_Op1* move = (LIR_Op1*)op;
1238 
1239       LIR_Opr move_from = move->in_opr();
1240       LIR_Opr move_to = move->result_opr();
1241 
1242       if (move_to->is_register() && move_from->is_register()) {
1243         Interval* from = interval_at(reg_num(move_from));
1244         Interval* to = interval_at(reg_num(move_to));
1245         if (from != NULL && to != NULL) {
1246           to->set_register_hint(from);
1247           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", move->id(), from->reg_num(), to->reg_num()));
1248         }
1249       }
1250       break;
1251     }
1252     case lir_cmove: {
1253       assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
1254       LIR_Op2* cmove = (LIR_Op2*)op;
1255 
1256       LIR_Opr move_from = cmove->in_opr1();
1257       LIR_Opr move_to = cmove->result_opr();
1258 
1259       if (move_to->is_register() && move_from->is_register()) {
1260         Interval* from = interval_at(reg_num(move_from));
1261         Interval* to = interval_at(reg_num(move_to));
1262         if (from != NULL && to != NULL) {
1263           to->set_register_hint(from);
1264           TRACE_LINEAR_SCAN(4, tty->print_cr("operation at op_id %d: added hint from interval %d to %d", cmove->id(), from->reg_num(), to->reg_num()));
1265         }
1266       }
1267       break;
1268     }
1269   }
1270 }
1271 
1272 
1273 void LinearScan::build_intervals() {
1274   TIME_LINEAR_SCAN(timer_build_intervals);
1275 
1276   // initialize interval list with expected number of intervals
1277   // (32 is added to have some space for split children without having to resize the list)
1278   _intervals = IntervalList(num_virtual_regs() + 32);
1279   // initialize all slots that are used by build_intervals
1280   _intervals.at_put_grow(num_virtual_regs() - 1, NULL, NULL);
1281 
1282   // create a list with all caller-save registers (cpu, fpu, xmm)
1283   // when an instruction is a call, a temp range is created for all these registers
1284   int num_caller_save_registers = 0;
1285   int caller_save_registers[LinearScan::nof_regs];
1286 
1287   int i;
1288   for (i = 0; i < FrameMap::nof_caller_save_cpu_regs(); i++) {
1289     LIR_Opr opr = FrameMap::caller_save_cpu_reg_at(i);
1290     assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1291     assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1292     caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1293   }
1294 
1295   // temp ranges for fpu registers are only created when the method has
1296   // virtual fpu operands. Otherwise no allocation for fpu registers is
1297   // perfomed and so the temp ranges would be useless
1298   if (has_fpu_registers()) {
1299 #ifdef X86
1300     if (UseSSE < 2) {
1301 #endif
1302       for (i = 0; i < FrameMap::nof_caller_save_fpu_regs; i++) {
1303         LIR_Opr opr = FrameMap::caller_save_fpu_reg_at(i);
1304         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1305         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1306         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1307       }
1308 #ifdef X86
1309     }
1310     if (UseSSE > 0) {
1311       for (i = 0; i < FrameMap::nof_caller_save_xmm_regs; i++) {
1312         LIR_Opr opr = FrameMap::caller_save_xmm_reg_at(i);
1313         assert(opr->is_valid() && opr->is_register(), "FrameMap should not return invalid operands");
1314         assert(reg_numHi(opr) == -1, "missing addition of range for hi-register");
1315         caller_save_registers[num_caller_save_registers++] = reg_num(opr);
1316       }
1317     }
1318 #endif
1319   }
1320   assert(num_caller_save_registers <= LinearScan::nof_regs, "out of bounds");
1321 
1322 
1323   LIR_OpVisitState visitor;
1324 
1325   // iterate all blocks in reverse order
1326   for (i = block_count() - 1; i >= 0; i--) {
1327     BlockBegin* block = block_at(i);
1328     LIR_OpList* instructions = block->lir()->instructions_list();
1329     int         block_from =   block->first_lir_instruction_id();
1330     int         block_to =     block->last_lir_instruction_id();
1331 
1332     assert(block_from == instructions->at(0)->id(), "must be");
1333     assert(block_to   == instructions->at(instructions->length() - 1)->id(), "must be");
1334 
1335     // Update intervals for registers live at the end of this block;
1336     BitMap live = block->live_out();
1337     int size = (int)live.size();
1338     for (int number = (int)live.get_next_one_offset(0, size); number < size; number = (int)live.get_next_one_offset(number + 1, size)) {
1339       assert(live.at(number), "should not stop here otherwise");
1340       assert(number >= LIR_OprDesc::vreg_base, "fixed intervals must not be live on block bounds");
1341       TRACE_LINEAR_SCAN(2, tty->print_cr("live in %d to %d", number, block_to + 2));
1342 
1343       add_use(number, block_from, block_to + 2, noUse, T_ILLEGAL);
1344 
1345       // add special use positions for loop-end blocks when the
1346       // interval is used anywhere inside this loop.  It's possible
1347       // that the block was part of a non-natural loop, so it might
1348       // have an invalid loop index.
1349       if (block->is_set(BlockBegin::linear_scan_loop_end_flag) &&
1350           block->loop_index() != -1 &&
1351           is_interval_in_loop(number, block->loop_index())) {
1352         interval_at(number)->add_use_pos(block_to + 1, loopEndMarker);
1353       }
1354     }
1355 
1356     // iterate all instructions of the block in reverse order.
1357     // skip the first instruction because it is always a label
1358     // definitions of intervals are processed before uses
1359     assert(visitor.no_operands(instructions->at(0)), "first operation must always be a label");
1360     for (int j = instructions->length() - 1; j >= 1; j--) {
1361       LIR_Op* op = instructions->at(j);
1362       int op_id = op->id();
1363 
1364       // visit operation to collect all operands
1365       visitor.visit(op);
1366 
1367       // add a temp range for each register if operation destroys caller-save registers
1368       if (visitor.has_call()) {
1369         for (int k = 0; k < num_caller_save_registers; k++) {
1370           add_temp(caller_save_registers[k], op_id, noUse, T_ILLEGAL);
1371         }
1372         TRACE_LINEAR_SCAN(4, tty->print_cr("operation destroys all caller-save registers"));
1373       }
1374 
1375       // Add any platform dependent temps
1376       pd_add_temps(op);
1377 
1378       // visit definitions (output and temp operands)
1379       int k, n;
1380       n = visitor.opr_count(LIR_OpVisitState::outputMode);
1381       for (k = 0; k < n; k++) {
1382         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, k);
1383         assert(opr->is_register(), "visitor should only return register operands");
1384         add_def(opr, op_id, use_kind_of_output_operand(op, opr));
1385       }
1386 
1387       n = visitor.opr_count(LIR_OpVisitState::tempMode);
1388       for (k = 0; k < n; k++) {
1389         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, k);
1390         assert(opr->is_register(), "visitor should only return register operands");
1391         add_temp(opr, op_id, mustHaveRegister);
1392       }
1393 
1394       // visit uses (input operands)
1395       n = visitor.opr_count(LIR_OpVisitState::inputMode);
1396       for (k = 0; k < n; k++) {
1397         LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, k);
1398         assert(opr->is_register(), "visitor should only return register operands");
1399         add_use(opr, block_from, op_id, use_kind_of_input_operand(op, opr));
1400       }
1401 
1402       // Add uses of live locals from interpreter's point of view for proper
1403       // debug information generation
1404       // Treat these operands as temp values (if the life range is extended
1405       // to a call site, the value would be in a register at the call otherwise)
1406       n = visitor.info_count();
1407       for (k = 0; k < n; k++) {
1408         CodeEmitInfo* info = visitor.info_at(k);
1409         ValueStack* stack = info->stack();
1410         for_each_state_value(stack, value,
1411           add_use(value, block_from, op_id + 1, noUse);
1412         );
1413       }
1414 
1415       // special steps for some instructions (especially moves)
1416       handle_method_arguments(op);
1417       handle_doubleword_moves(op);
1418       add_register_hints(op);
1419 
1420     } // end of instruction iteration
1421   } // end of block iteration
1422 
1423 
1424   // add the range [0, 1[ to all fixed intervals
1425   // -> the register allocator need not handle unhandled fixed intervals
1426   for (int n = 0; n < LinearScan::nof_regs; n++) {
1427     Interval* interval = interval_at(n);
1428     if (interval != NULL) {
1429       interval->add_range(0, 1);
1430     }
1431   }
1432 }
1433 
1434 
1435 // ********** Phase 5: actual register allocation
1436 
1437 int LinearScan::interval_cmp(Interval** a, Interval** b) {
1438   if (*a != NULL) {
1439     if (*b != NULL) {
1440       return (*a)->from() - (*b)->from();
1441     } else {
1442       return -1;
1443     }
1444   } else {
1445     if (*b != NULL) {
1446       return 1;
1447     } else {
1448       return 0;
1449     }
1450   }
1451 }
1452 
1453 #ifndef PRODUCT
1454 bool LinearScan::is_sorted(IntervalArray* intervals) {
1455   int from = -1;
1456   int i, j;
1457   for (i = 0; i < intervals->length(); i ++) {
1458     Interval* it = intervals->at(i);
1459     if (it != NULL) {
1460       if (from > it->from()) {
1461         assert(false, "");
1462         return false;
1463       }
1464       from = it->from();
1465     }
1466   }
1467 
1468   // check in both directions if sorted list and unsorted list contain same intervals
1469   for (i = 0; i < interval_count(); i++) {
1470     if (interval_at(i) != NULL) {
1471       int num_found = 0;
1472       for (j = 0; j < intervals->length(); j++) {
1473         if (interval_at(i) == intervals->at(j)) {
1474           num_found++;
1475         }
1476       }
1477       assert(num_found == 1, "lists do not contain same intervals");
1478     }
1479   }
1480   for (j = 0; j < intervals->length(); j++) {
1481     int num_found = 0;
1482     for (i = 0; i < interval_count(); i++) {
1483       if (interval_at(i) == intervals->at(j)) {
1484         num_found++;
1485       }
1486     }
1487     assert(num_found == 1, "lists do not contain same intervals");
1488   }
1489 
1490   return true;
1491 }
1492 #endif
1493 
1494 void LinearScan::add_to_list(Interval** first, Interval** prev, Interval* interval) {
1495   if (*prev != NULL) {
1496     (*prev)->set_next(interval);
1497   } else {
1498     *first = interval;
1499   }
1500   *prev = interval;
1501 }
1502 
1503 void LinearScan::create_unhandled_lists(Interval** list1, Interval** list2, bool (is_list1)(const Interval* i), bool (is_list2)(const Interval* i)) {
1504   assert(is_sorted(_sorted_intervals), "interval list is not sorted");
1505 
1506   *list1 = *list2 = Interval::end();
1507 
1508   Interval* list1_prev = NULL;
1509   Interval* list2_prev = NULL;
1510   Interval* v;
1511 
1512   const int n = _sorted_intervals->length();
1513   for (int i = 0; i < n; i++) {
1514     v = _sorted_intervals->at(i);
1515     if (v == NULL) continue;
1516 
1517     if (is_list1(v)) {
1518       add_to_list(list1, &list1_prev, v);
1519     } else if (is_list2 == NULL || is_list2(v)) {
1520       add_to_list(list2, &list2_prev, v);
1521     }
1522   }
1523 
1524   if (list1_prev != NULL) list1_prev->set_next(Interval::end());
1525   if (list2_prev != NULL) list2_prev->set_next(Interval::end());
1526 
1527   assert(list1_prev == NULL || list1_prev->next() == Interval::end(), "linear list ends not with sentinel");
1528   assert(list2_prev == NULL || list2_prev->next() == Interval::end(), "linear list ends not with sentinel");
1529 }
1530 
1531 
1532 void LinearScan::sort_intervals_before_allocation() {
1533   TIME_LINEAR_SCAN(timer_sort_intervals_before);
1534 
1535   if (_needs_full_resort) {
1536     // There is no known reason why this should occur but just in case...
1537     assert(false, "should never occur");
1538     // Re-sort existing interval list because an Interval::from() has changed
1539     _sorted_intervals->sort(interval_cmp);
1540     _needs_full_resort = false;
1541   }
1542 
1543   IntervalList* unsorted_list = &_intervals;
1544   int unsorted_len = unsorted_list->length();
1545   int sorted_len = 0;
1546   int unsorted_idx;
1547   int sorted_idx = 0;
1548   int sorted_from_max = -1;
1549 
1550   // calc number of items for sorted list (sorted list must not contain NULL values)
1551   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1552     if (unsorted_list->at(unsorted_idx) != NULL) {
1553       sorted_len++;
1554     }
1555   }
1556   IntervalArray* sorted_list = new IntervalArray(sorted_len);
1557 
1558   // special sorting algorithm: the original interval-list is almost sorted,
1559   // only some intervals are swapped. So this is much faster than a complete QuickSort
1560   for (unsorted_idx = 0; unsorted_idx < unsorted_len; unsorted_idx++) {
1561     Interval* cur_interval = unsorted_list->at(unsorted_idx);
1562 
1563     if (cur_interval != NULL) {
1564       int cur_from = cur_interval->from();
1565 
1566       if (sorted_from_max <= cur_from) {
1567         sorted_list->at_put(sorted_idx++, cur_interval);
1568         sorted_from_max = cur_interval->from();
1569       } else {
1570         // the asumption that the intervals are already sorted failed,
1571         // so this interval must be sorted in manually
1572         int j;
1573         for (j = sorted_idx - 1; j >= 0 && cur_from < sorted_list->at(j)->from(); j--) {
1574           sorted_list->at_put(j + 1, sorted_list->at(j));
1575         }
1576         sorted_list->at_put(j + 1, cur_interval);
1577         sorted_idx++;
1578       }
1579     }
1580   }
1581   _sorted_intervals = sorted_list;
1582   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1583 }
1584 
1585 void LinearScan::sort_intervals_after_allocation() {
1586   TIME_LINEAR_SCAN(timer_sort_intervals_after);
1587 
1588   if (_needs_full_resort) {
1589     // Re-sort existing interval list because an Interval::from() has changed
1590     _sorted_intervals->sort(interval_cmp);
1591     _needs_full_resort = false;
1592   }
1593 
1594   IntervalArray* old_list      = _sorted_intervals;
1595   IntervalList*  new_list      = _new_intervals_from_allocation;
1596   int old_len = old_list->length();
1597   int new_len = new_list->length();
1598 
1599   if (new_len == 0) {
1600     // no intervals have been added during allocation, so sorted list is already up to date
1601     assert(is_sorted(_sorted_intervals), "intervals unsorted");
1602     return;
1603   }
1604 
1605   // conventional sort-algorithm for new intervals
1606   new_list->sort(interval_cmp);
1607 
1608   // merge old and new list (both already sorted) into one combined list
1609   IntervalArray* combined_list = new IntervalArray(old_len + new_len);
1610   int old_idx = 0;
1611   int new_idx = 0;
1612 
1613   while (old_idx + new_idx < old_len + new_len) {
1614     if (new_idx >= new_len || (old_idx < old_len && old_list->at(old_idx)->from() <= new_list->at(new_idx)->from())) {
1615       combined_list->at_put(old_idx + new_idx, old_list->at(old_idx));
1616       old_idx++;
1617     } else {
1618       combined_list->at_put(old_idx + new_idx, new_list->at(new_idx));
1619       new_idx++;
1620     }
1621   }
1622 
1623   _sorted_intervals = combined_list;
1624   assert(is_sorted(_sorted_intervals), "intervals unsorted");
1625 }
1626 
1627 
1628 void LinearScan::allocate_registers() {
1629   TIME_LINEAR_SCAN(timer_allocate_registers);
1630 
1631   Interval* precolored_cpu_intervals, *not_precolored_cpu_intervals;
1632   Interval* precolored_fpu_intervals, *not_precolored_fpu_intervals;
1633 
1634   // allocate cpu registers
1635   create_unhandled_lists(&precolored_cpu_intervals, &not_precolored_cpu_intervals,
1636                          is_precolored_cpu_interval, is_virtual_cpu_interval);
1637 
1638   // allocate fpu registers
1639   create_unhandled_lists(&precolored_fpu_intervals, &not_precolored_fpu_intervals,
1640                          is_precolored_fpu_interval, is_virtual_fpu_interval);
1641 
1642   // the fpu interval allocation cannot be moved down below with the fpu section as
1643   // the cpu_lsw.walk() changes interval positions.
1644 
1645   LinearScanWalker cpu_lsw(this, precolored_cpu_intervals, not_precolored_cpu_intervals);
1646   cpu_lsw.walk();
1647   cpu_lsw.finish_allocation();
1648 
1649   if (has_fpu_registers()) {
1650     LinearScanWalker fpu_lsw(this, precolored_fpu_intervals, not_precolored_fpu_intervals);
1651     fpu_lsw.walk();
1652     fpu_lsw.finish_allocation();
1653   }
1654 }
1655 
1656 
1657 // ********** Phase 6: resolve data flow
1658 // (insert moves at edges between blocks if intervals have been split)
1659 
1660 // wrapper for Interval::split_child_at_op_id that performs a bailout in product mode
1661 // instead of returning NULL
1662 Interval* LinearScan::split_child_at_op_id(Interval* interval, int op_id, LIR_OpVisitState::OprMode mode) {
1663   Interval* result = interval->split_child_at_op_id(op_id, mode);
1664   if (result != NULL) {
1665     return result;
1666   }
1667 
1668   assert(false, "must find an interval, but do a clean bailout in product mode");
1669   result = new Interval(LIR_OprDesc::vreg_base);
1670   result->assign_reg(0);
1671   result->set_type(T_INT);
1672   BAILOUT_("LinearScan: interval is NULL", result);
1673 }
1674 
1675 
1676 Interval* LinearScan::interval_at_block_begin(BlockBegin* block, int reg_num) {
1677   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1678   assert(interval_at(reg_num) != NULL, "no interval found");
1679 
1680   return split_child_at_op_id(interval_at(reg_num), block->first_lir_instruction_id(), LIR_OpVisitState::outputMode);
1681 }
1682 
1683 Interval* LinearScan::interval_at_block_end(BlockBegin* block, int reg_num) {
1684   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1685   assert(interval_at(reg_num) != NULL, "no interval found");
1686 
1687   return split_child_at_op_id(interval_at(reg_num), block->last_lir_instruction_id() + 1, LIR_OpVisitState::outputMode);
1688 }
1689 
1690 Interval* LinearScan::interval_at_op_id(int reg_num, int op_id) {
1691   assert(LinearScan::nof_regs <= reg_num && reg_num < num_virtual_regs(), "register number out of bounds");
1692   assert(interval_at(reg_num) != NULL, "no interval found");
1693 
1694   return split_child_at_op_id(interval_at(reg_num), op_id, LIR_OpVisitState::inputMode);
1695 }
1696 
1697 
1698 void LinearScan::resolve_collect_mappings(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1699   DEBUG_ONLY(move_resolver.check_empty());
1700 
1701   const int num_regs = num_virtual_regs();
1702   const int size = live_set_size();
1703   const BitMap live_at_edge = to_block->live_in();
1704 
1705   // visit all registers where the live_at_edge bit is set
1706   for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
1707     assert(r < num_regs, "live information set for not exisiting interval");
1708     assert(from_block->live_out().at(r) && to_block->live_in().at(r), "interval not live at this edge");
1709 
1710     Interval* from_interval = interval_at_block_end(from_block, r);
1711     Interval* to_interval = interval_at_block_begin(to_block, r);
1712 
1713     if (from_interval != to_interval && (from_interval->assigned_reg() != to_interval->assigned_reg() || from_interval->assigned_regHi() != to_interval->assigned_regHi())) {
1714       // need to insert move instruction
1715       move_resolver.add_mapping(from_interval, to_interval);
1716     }
1717   }
1718 }
1719 
1720 
1721 void LinearScan::resolve_find_insert_pos(BlockBegin* from_block, BlockBegin* to_block, MoveResolver &move_resolver) {
1722   if (from_block->number_of_sux() <= 1) {
1723     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at end of from_block B%d", from_block->block_id()));
1724 
1725     LIR_OpList* instructions = from_block->lir()->instructions_list();
1726     LIR_OpBranch* branch = instructions->last()->as_OpBranch();
1727     if (branch != NULL) {
1728       // insert moves before branch
1729       assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
1730       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 2);
1731     } else {
1732       move_resolver.set_insert_position(from_block->lir(), instructions->length() - 1);
1733     }
1734 
1735   } else {
1736     TRACE_LINEAR_SCAN(4, tty->print_cr("inserting moves at beginning of to_block B%d", to_block->block_id()));
1737 #ifdef ASSERT
1738     assert(from_block->lir()->instructions_list()->at(0)->as_OpLabel() != NULL, "block does not start with a label");
1739 
1740     // because the number of predecessor edges matches the number of
1741     // successor edges, blocks which are reached by switch statements
1742     // may have be more than one predecessor but it will be guaranteed
1743     // that all predecessors will be the same.
1744     for (int i = 0; i < to_block->number_of_preds(); i++) {
1745       assert(from_block == to_block->pred_at(i), "all critical edges must be broken");
1746     }
1747 #endif
1748 
1749     move_resolver.set_insert_position(to_block->lir(), 0);
1750   }
1751 }
1752 
1753 
1754 // insert necessary moves (spilling or reloading) at edges between blocks if interval has been split
1755 void LinearScan::resolve_data_flow() {
1756   TIME_LINEAR_SCAN(timer_resolve_data_flow);
1757 
1758   int num_blocks = block_count();
1759   MoveResolver move_resolver(this);
1760   BitMap block_completed(num_blocks);  block_completed.clear();
1761   BitMap already_resolved(num_blocks); already_resolved.clear();
1762 
1763   int i;
1764   for (i = 0; i < num_blocks; i++) {
1765     BlockBegin* block = block_at(i);
1766 
1767     // check if block has only one predecessor and only one successor
1768     if (block->number_of_preds() == 1 && block->number_of_sux() == 1 && block->number_of_exception_handlers() == 0) {
1769       LIR_OpList* instructions = block->lir()->instructions_list();
1770       assert(instructions->at(0)->code() == lir_label, "block must start with label");
1771       assert(instructions->last()->code() == lir_branch, "block with successors must end with branch");
1772       assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block with successor must end with unconditional branch");
1773 
1774       // check if block is empty (only label and branch)
1775       if (instructions->length() == 2) {
1776         BlockBegin* pred = block->pred_at(0);
1777         BlockBegin* sux = block->sux_at(0);
1778 
1779         // prevent optimization of two consecutive blocks
1780         if (!block_completed.at(pred->linear_scan_number()) && !block_completed.at(sux->linear_scan_number())) {
1781           TRACE_LINEAR_SCAN(3, tty->print_cr("**** optimizing empty block B%d (pred: B%d, sux: B%d)", block->block_id(), pred->block_id(), sux->block_id()));
1782           block_completed.set_bit(block->linear_scan_number());
1783 
1784           // directly resolve between pred and sux (without looking at the empty block between)
1785           resolve_collect_mappings(pred, sux, move_resolver);
1786           if (move_resolver.has_mappings()) {
1787             move_resolver.set_insert_position(block->lir(), 0);
1788             move_resolver.resolve_and_append_moves();
1789           }
1790         }
1791       }
1792     }
1793   }
1794 
1795 
1796   for (i = 0; i < num_blocks; i++) {
1797     if (!block_completed.at(i)) {
1798       BlockBegin* from_block = block_at(i);
1799       already_resolved.set_from(block_completed);
1800 
1801       int num_sux = from_block->number_of_sux();
1802       for (int s = 0; s < num_sux; s++) {
1803         BlockBegin* to_block = from_block->sux_at(s);
1804 
1805         // check for duplicate edges between the same blocks (can happen with switch blocks)
1806         if (!already_resolved.at(to_block->linear_scan_number())) {
1807           TRACE_LINEAR_SCAN(3, tty->print_cr("**** processing edge between B%d and B%d", from_block->block_id(), to_block->block_id()));
1808           already_resolved.set_bit(to_block->linear_scan_number());
1809 
1810           // collect all intervals that have been split between from_block and to_block
1811           resolve_collect_mappings(from_block, to_block, move_resolver);
1812           if (move_resolver.has_mappings()) {
1813             resolve_find_insert_pos(from_block, to_block, move_resolver);
1814             move_resolver.resolve_and_append_moves();
1815           }
1816         }
1817       }
1818     }
1819   }
1820 }
1821 
1822 
1823 void LinearScan::resolve_exception_entry(BlockBegin* block, int reg_num, MoveResolver &move_resolver) {
1824   if (interval_at(reg_num) == NULL) {
1825     // if a phi function is never used, no interval is created -> ignore this
1826     return;
1827   }
1828 
1829   Interval* interval = interval_at_block_begin(block, reg_num);
1830   int reg = interval->assigned_reg();
1831   int regHi = interval->assigned_regHi();
1832 
1833   if ((reg < nof_regs && interval->always_in_memory()) ||
1834       (use_fpu_stack_allocation() && reg >= pd_first_fpu_reg && reg <= pd_last_fpu_reg)) {
1835     // the interval is split to get a short range that is located on the stack
1836     // in the following two cases:
1837     // * the interval started in memory (e.g. method parameter), but is currently in a register
1838     //   this is an optimization for exception handling that reduces the number of moves that
1839     //   are necessary for resolving the states when an exception uses this exception handler
1840     // * the interval would be on the fpu stack at the begin of the exception handler
1841     //   this is not allowed because of the complicated fpu stack handling on Intel
1842 
1843     // range that will be spilled to memory
1844     int from_op_id = block->first_lir_instruction_id();
1845     int to_op_id = from_op_id + 1;  // short live range of length 1
1846     assert(interval->from() <= from_op_id && interval->to() >= to_op_id,
1847            "no split allowed between exception entry and first instruction");
1848 
1849     if (interval->from() != from_op_id) {
1850       // the part before from_op_id is unchanged
1851       interval = interval->split(from_op_id);
1852       interval->assign_reg(reg, regHi);
1853       append_interval(interval);
1854     } else {
1855       _needs_full_resort = true;
1856     }
1857     assert(interval->from() == from_op_id, "must be true now");
1858 
1859     Interval* spilled_part = interval;
1860     if (interval->to() != to_op_id) {
1861       // the part after to_op_id is unchanged
1862       spilled_part = interval->split_from_start(to_op_id);
1863       append_interval(spilled_part);
1864       move_resolver.add_mapping(spilled_part, interval);
1865     }
1866     assign_spill_slot(spilled_part);
1867 
1868     assert(spilled_part->from() == from_op_id && spilled_part->to() == to_op_id, "just checking");
1869   }
1870 }
1871 
1872 void LinearScan::resolve_exception_entry(BlockBegin* block, MoveResolver &move_resolver) {
1873   assert(block->is_set(BlockBegin::exception_entry_flag), "should not call otherwise");
1874   DEBUG_ONLY(move_resolver.check_empty());
1875 
1876   // visit all registers where the live_in bit is set
1877   int size = live_set_size();
1878   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1879     resolve_exception_entry(block, r, move_resolver);
1880   }
1881 
1882   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1883   for_each_phi_fun(block, phi,
1884     resolve_exception_entry(block, phi->operand()->vreg_number(), move_resolver)
1885   );
1886 
1887   if (move_resolver.has_mappings()) {
1888     // insert moves after first instruction
1889     move_resolver.set_insert_position(block->lir(), 0);
1890     move_resolver.resolve_and_append_moves();
1891   }
1892 }
1893 
1894 
1895 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, int reg_num, Phi* phi, MoveResolver &move_resolver) {
1896   if (interval_at(reg_num) == NULL) {
1897     // if a phi function is never used, no interval is created -> ignore this
1898     return;
1899   }
1900 
1901   // the computation of to_interval is equal to resolve_collect_mappings,
1902   // but from_interval is more complicated because of phi functions
1903   BlockBegin* to_block = handler->entry_block();
1904   Interval* to_interval = interval_at_block_begin(to_block, reg_num);
1905 
1906   if (phi != NULL) {
1907     // phi function of the exception entry block
1908     // no moves are created for this phi function in the LIR_Generator, so the
1909     // interval at the throwing instruction must be searched using the operands
1910     // of the phi function
1911     Value from_value = phi->operand_at(handler->phi_operand());
1912 
1913     // with phi functions it can happen that the same from_value is used in
1914     // multiple mappings, so notify move-resolver that this is allowed
1915     move_resolver.set_multiple_reads_allowed();
1916 
1917     Constant* con = from_value->as_Constant();
1918     if (con != NULL && !con->is_pinned()) {
1919       // unpinned constants may have no register, so add mapping from constant to interval
1920       move_resolver.add_mapping(LIR_OprFact::value_type(con->type()), to_interval);
1921     } else {
1922       // search split child at the throwing op_id
1923       Interval* from_interval = interval_at_op_id(from_value->operand()->vreg_number(), throwing_op_id);
1924       move_resolver.add_mapping(from_interval, to_interval);
1925     }
1926 
1927   } else {
1928     // no phi function, so use reg_num also for from_interval
1929     // search split child at the throwing op_id
1930     Interval* from_interval = interval_at_op_id(reg_num, throwing_op_id);
1931     if (from_interval != to_interval) {
1932       // optimization to reduce number of moves: when to_interval is on stack and
1933       // the stack slot is known to be always correct, then no move is necessary
1934       if (!from_interval->always_in_memory() || from_interval->canonical_spill_slot() != to_interval->assigned_reg()) {
1935         move_resolver.add_mapping(from_interval, to_interval);
1936       }
1937     }
1938   }
1939 }
1940 
1941 void LinearScan::resolve_exception_edge(XHandler* handler, int throwing_op_id, MoveResolver &move_resolver) {
1942   TRACE_LINEAR_SCAN(4, tty->print_cr("resolving exception handler B%d: throwing_op_id=%d", handler->entry_block()->block_id(), throwing_op_id));
1943 
1944   DEBUG_ONLY(move_resolver.check_empty());
1945   assert(handler->lir_op_id() == -1, "already processed this xhandler");
1946   DEBUG_ONLY(handler->set_lir_op_id(throwing_op_id));
1947   assert(handler->entry_code() == NULL, "code already present");
1948 
1949   // visit all registers where the live_in bit is set
1950   BlockBegin* block = handler->entry_block();
1951   int size = live_set_size();
1952   for (int r = (int)block->live_in().get_next_one_offset(0, size); r < size; r = (int)block->live_in().get_next_one_offset(r + 1, size)) {
1953     resolve_exception_edge(handler, throwing_op_id, r, NULL, move_resolver);
1954   }
1955 
1956   // the live_in bits are not set for phi functions of the xhandler entry, so iterate them separately
1957   for_each_phi_fun(block, phi,
1958     resolve_exception_edge(handler, throwing_op_id, phi->operand()->vreg_number(), phi, move_resolver)
1959   );
1960 
1961   if (move_resolver.has_mappings()) {
1962     LIR_List* entry_code = new LIR_List(compilation());
1963     move_resolver.set_insert_position(entry_code, 0);
1964     move_resolver.resolve_and_append_moves();
1965 
1966     entry_code->jump(handler->entry_block());
1967     handler->set_entry_code(entry_code);
1968   }
1969 }
1970 
1971 
1972 void LinearScan::resolve_exception_handlers() {
1973   MoveResolver move_resolver(this);
1974   LIR_OpVisitState visitor;
1975   int num_blocks = block_count();
1976 
1977   int i;
1978   for (i = 0; i < num_blocks; i++) {
1979     BlockBegin* block = block_at(i);
1980     if (block->is_set(BlockBegin::exception_entry_flag)) {
1981       resolve_exception_entry(block, move_resolver);
1982     }
1983   }
1984 
1985   for (i = 0; i < num_blocks; i++) {
1986     BlockBegin* block = block_at(i);
1987     LIR_List* ops = block->lir();
1988     int num_ops = ops->length();
1989 
1990     // iterate all instructions of the block. skip the first because it is always a label
1991     assert(visitor.no_operands(ops->at(0)), "first operation must always be a label");
1992     for (int j = 1; j < num_ops; j++) {
1993       LIR_Op* op = ops->at(j);
1994       int op_id = op->id();
1995 
1996       if (op_id != -1 && has_info(op_id)) {
1997         // visit operation to collect all operands
1998         visitor.visit(op);
1999         assert(visitor.info_count() > 0, "should not visit otherwise");
2000 
2001         XHandlers* xhandlers = visitor.all_xhandler();
2002         int n = xhandlers->length();
2003         for (int k = 0; k < n; k++) {
2004           resolve_exception_edge(xhandlers->handler_at(k), op_id, move_resolver);
2005         }
2006 
2007 #ifdef ASSERT
2008       } else {
2009         visitor.visit(op);
2010         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2011 #endif
2012       }
2013     }
2014   }
2015 }
2016 
2017 
2018 // ********** Phase 7: assign register numbers back to LIR
2019 // (includes computation of debug information and oop maps)
2020 
2021 VMReg LinearScan::vm_reg_for_interval(Interval* interval) {
2022   VMReg reg = interval->cached_vm_reg();
2023   if (!reg->is_valid() ) {
2024     reg = vm_reg_for_operand(operand_for_interval(interval));
2025     interval->set_cached_vm_reg(reg);
2026   }
2027   assert(reg == vm_reg_for_operand(operand_for_interval(interval)), "wrong cached value");
2028   return reg;
2029 }
2030 
2031 VMReg LinearScan::vm_reg_for_operand(LIR_Opr opr) {
2032   assert(opr->is_oop(), "currently only implemented for oop operands");
2033   return frame_map()->regname(opr);
2034 }
2035 
2036 
2037 LIR_Opr LinearScan::operand_for_interval(Interval* interval) {
2038   LIR_Opr opr = interval->cached_opr();
2039   if (opr->is_illegal()) {
2040     opr = calc_operand_for_interval(interval);
2041     interval->set_cached_opr(opr);
2042   }
2043 
2044   assert(opr == calc_operand_for_interval(interval), "wrong cached value");
2045   return opr;
2046 }
2047 
2048 LIR_Opr LinearScan::calc_operand_for_interval(const Interval* interval) {
2049   int assigned_reg = interval->assigned_reg();
2050   BasicType type = interval->type();
2051 
2052   if (assigned_reg >= nof_regs) {
2053     // stack slot
2054     assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2055     return LIR_OprFact::stack(assigned_reg - nof_regs, type);
2056 
2057   } else {
2058     // register
2059     switch (type) {
2060       case T_OBJECT: {
2061         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2062         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2063         return LIR_OprFact::single_cpu_oop(assigned_reg);
2064       }
2065 
2066       case T_ADDRESS: {
2067         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2068         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2069         return LIR_OprFact::single_cpu_address(assigned_reg);
2070       }
2071 
2072       case T_METADATA: {
2073         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2074         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2075         return LIR_OprFact::single_cpu_metadata(assigned_reg);
2076       }
2077 
2078 #ifdef __SOFTFP__
2079       case T_FLOAT:  // fall through
2080 #endif // __SOFTFP__
2081       case T_INT: {
2082         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2083         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2084         return LIR_OprFact::single_cpu(assigned_reg);
2085       }
2086 
2087 #ifdef __SOFTFP__
2088       case T_DOUBLE:  // fall through
2089 #endif // __SOFTFP__
2090       case T_LONG: {
2091         int assigned_regHi = interval->assigned_regHi();
2092         assert(assigned_reg >= pd_first_cpu_reg && assigned_reg <= pd_last_cpu_reg, "no cpu register");
2093         assert(num_physical_regs(T_LONG) == 1 ||
2094                (assigned_regHi >= pd_first_cpu_reg && assigned_regHi <= pd_last_cpu_reg), "no cpu register");
2095 
2096         assert(assigned_reg != assigned_regHi, "invalid allocation");
2097         assert(num_physical_regs(T_LONG) == 1 || assigned_reg < assigned_regHi,
2098                "register numbers must be sorted (ensure that e.g. a move from eax,ebx to ebx,eax can not occur)");
2099         assert((assigned_regHi != any_reg) ^ (num_physical_regs(T_LONG) == 1), "must be match");
2100         if (requires_adjacent_regs(T_LONG)) {
2101           assert(assigned_reg % 2 == 0 && assigned_reg + 1 == assigned_regHi, "must be sequential and even");
2102         }
2103 
2104 #ifdef _LP64
2105         return LIR_OprFact::double_cpu(assigned_reg, assigned_reg);
2106 #else
2107 #if defined(SPARC) || defined(PPC)
2108         return LIR_OprFact::double_cpu(assigned_regHi, assigned_reg);
2109 #else
2110         return LIR_OprFact::double_cpu(assigned_reg, assigned_regHi);
2111 #endif // SPARC
2112 #endif // LP64
2113       }
2114 
2115 #ifndef __SOFTFP__
2116       case T_FLOAT: {
2117 #ifdef X86
2118         if (UseSSE >= 1) {
2119           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2120           assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2121           return LIR_OprFact::single_xmm(assigned_reg - pd_first_xmm_reg);
2122         }
2123 #endif
2124 
2125         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2126         assert(interval->assigned_regHi() == any_reg, "must not have hi register");
2127         return LIR_OprFact::single_fpu(assigned_reg - pd_first_fpu_reg);
2128       }
2129 
2130       case T_DOUBLE: {
2131 #ifdef X86
2132         if (UseSSE >= 2) {
2133           assert(assigned_reg >= pd_first_xmm_reg && assigned_reg <= pd_last_xmm_reg, "no xmm register");
2134           assert(interval->assigned_regHi() == any_reg, "must not have hi register (double xmm values are stored in one register)");
2135           return LIR_OprFact::double_xmm(assigned_reg - pd_first_xmm_reg);
2136         }
2137 #endif
2138 
2139 #ifdef SPARC
2140         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2141         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2142         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2143         LIR_Opr result = LIR_OprFact::double_fpu(interval->assigned_regHi() - pd_first_fpu_reg, assigned_reg - pd_first_fpu_reg);
2144 #elif defined(ARM32) || defined(AARCH32)
2145         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2146         assert(interval->assigned_regHi() >= pd_first_fpu_reg && interval->assigned_regHi() <= pd_last_fpu_reg, "no fpu register");
2147         assert(assigned_reg % 2 == 0 && assigned_reg + 1 == interval->assigned_regHi(), "must be sequential and even");
2148         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg, interval->assigned_regHi() - pd_first_fpu_reg);
2149 #else
2150         assert(assigned_reg >= pd_first_fpu_reg && assigned_reg <= pd_last_fpu_reg, "no fpu register");
2151         assert(interval->assigned_regHi() == any_reg, "must not have hi register (double fpu values are stored in one register on Intel)");
2152         LIR_Opr result = LIR_OprFact::double_fpu(assigned_reg - pd_first_fpu_reg);
2153 #endif
2154         return result;
2155       }
2156 #endif // __SOFTFP__
2157 
2158       default: {
2159         ShouldNotReachHere();
2160         return LIR_OprFact::illegalOpr;
2161       }
2162     }
2163   }
2164 }
2165 
2166 LIR_Opr LinearScan::canonical_spill_opr(Interval* interval) {
2167   assert(interval->canonical_spill_slot() >= nof_regs, "canonical spill slot not set");
2168   return LIR_OprFact::stack(interval->canonical_spill_slot() - nof_regs, interval->type());
2169 }
2170 
2171 LIR_Opr LinearScan::color_lir_opr(LIR_Opr opr, int op_id, LIR_OpVisitState::OprMode mode) {
2172   assert(opr->is_virtual(), "should not call this otherwise");
2173 
2174   Interval* interval = interval_at(opr->vreg_number());
2175   assert(interval != NULL, "interval must exist");
2176 
2177   if (op_id != -1) {
2178 #ifdef ASSERT
2179     BlockBegin* block = block_of_op_with_id(op_id);
2180     if (block->number_of_sux() <= 1 && op_id == block->last_lir_instruction_id()) {
2181       // check if spill moves could have been appended at the end of this block, but
2182       // before the branch instruction. So the split child information for this branch would
2183       // be incorrect.
2184       LIR_OpBranch* branch = block->lir()->instructions_list()->last()->as_OpBranch();
2185       if (branch != NULL) {
2186         if (block->live_out().at(opr->vreg_number())) {
2187           assert(branch->cond() == lir_cond_always, "block does not end with an unconditional jump");
2188           assert(false, "can't get split child for the last branch of a block because the information would be incorrect (moves are inserted before the branch in resolve_data_flow)");
2189         }
2190       }
2191     }
2192 #endif
2193 
2194     // operands are not changed when an interval is split during allocation,
2195     // so search the right interval here
2196     interval = split_child_at_op_id(interval, op_id, mode);
2197   }
2198 
2199   LIR_Opr res = operand_for_interval(interval);
2200 
2201 #ifdef X86
2202   // new semantic for is_last_use: not only set on definite end of interval,
2203   // but also before hole
2204   // This may still miss some cases (e.g. for dead values), but it is not necessary that the
2205   // last use information is completely correct
2206   // information is only needed for fpu stack allocation
2207   if (res->is_fpu_register()) {
2208     if (opr->is_last_use() || op_id == interval->to() || (op_id != -1 && interval->has_hole_between(op_id, op_id + 1))) {
2209       assert(op_id == -1 || !is_block_begin(op_id), "holes at begin of block may also result from control flow");
2210       res = res->make_last_use();
2211     }
2212   }
2213 #endif
2214 
2215   assert(!gen()->is_vreg_flag_set(opr->vreg_number(), LIRGenerator::callee_saved) || !FrameMap::is_caller_save_register(res), "bad allocation");
2216 
2217   return res;
2218 }
2219 
2220 
2221 #ifdef ASSERT
2222 // some methods used to check correctness of debug information
2223 
2224 void assert_no_register_values(GrowableArray<ScopeValue*>* values) {
2225   if (values == NULL) {
2226     return;
2227   }
2228 
2229   for (int i = 0; i < values->length(); i++) {
2230     ScopeValue* value = values->at(i);
2231 
2232     if (value->is_location()) {
2233       Location location = ((LocationValue*)value)->location();
2234       assert(location.where() == Location::on_stack, "value is in register");
2235     }
2236   }
2237 }
2238 
2239 void assert_no_register_values(GrowableArray<MonitorValue*>* values) {
2240   if (values == NULL) {
2241     return;
2242   }
2243 
2244   for (int i = 0; i < values->length(); i++) {
2245     MonitorValue* value = values->at(i);
2246 
2247     if (value->owner()->is_location()) {
2248       Location location = ((LocationValue*)value->owner())->location();
2249       assert(location.where() == Location::on_stack, "owner is in register");
2250     }
2251     assert(value->basic_lock().where() == Location::on_stack, "basic_lock is in register");
2252   }
2253 }
2254 
2255 void assert_equal(Location l1, Location l2) {
2256   assert(l1.where() == l2.where() && l1.type() == l2.type() && l1.offset() == l2.offset(), "");
2257 }
2258 
2259 void assert_equal(ScopeValue* v1, ScopeValue* v2) {
2260   if (v1->is_location()) {
2261     assert(v2->is_location(), "");
2262     assert_equal(((LocationValue*)v1)->location(), ((LocationValue*)v2)->location());
2263   } else if (v1->is_constant_int()) {
2264     assert(v2->is_constant_int(), "");
2265     assert(((ConstantIntValue*)v1)->value() == ((ConstantIntValue*)v2)->value(), "");
2266   } else if (v1->is_constant_double()) {
2267     assert(v2->is_constant_double(), "");
2268     assert(((ConstantDoubleValue*)v1)->value() == ((ConstantDoubleValue*)v2)->value(), "");
2269   } else if (v1->is_constant_long()) {
2270     assert(v2->is_constant_long(), "");
2271     assert(((ConstantLongValue*)v1)->value() == ((ConstantLongValue*)v2)->value(), "");
2272   } else if (v1->is_constant_oop()) {
2273     assert(v2->is_constant_oop(), "");
2274     assert(((ConstantOopWriteValue*)v1)->value() == ((ConstantOopWriteValue*)v2)->value(), "");
2275   } else {
2276     ShouldNotReachHere();
2277   }
2278 }
2279 
2280 void assert_equal(MonitorValue* m1, MonitorValue* m2) {
2281   assert_equal(m1->owner(), m2->owner());
2282   assert_equal(m1->basic_lock(), m2->basic_lock());
2283 }
2284 
2285 void assert_equal(IRScopeDebugInfo* d1, IRScopeDebugInfo* d2) {
2286   assert(d1->scope() == d2->scope(), "not equal");
2287   assert(d1->bci() == d2->bci(), "not equal");
2288 
2289   if (d1->locals() != NULL) {
2290     assert(d1->locals() != NULL && d2->locals() != NULL, "not equal");
2291     assert(d1->locals()->length() == d2->locals()->length(), "not equal");
2292     for (int i = 0; i < d1->locals()->length(); i++) {
2293       assert_equal(d1->locals()->at(i), d2->locals()->at(i));
2294     }
2295   } else {
2296     assert(d1->locals() == NULL && d2->locals() == NULL, "not equal");
2297   }
2298 
2299   if (d1->expressions() != NULL) {
2300     assert(d1->expressions() != NULL && d2->expressions() != NULL, "not equal");
2301     assert(d1->expressions()->length() == d2->expressions()->length(), "not equal");
2302     for (int i = 0; i < d1->expressions()->length(); i++) {
2303       assert_equal(d1->expressions()->at(i), d2->expressions()->at(i));
2304     }
2305   } else {
2306     assert(d1->expressions() == NULL && d2->expressions() == NULL, "not equal");
2307   }
2308 
2309   if (d1->monitors() != NULL) {
2310     assert(d1->monitors() != NULL && d2->monitors() != NULL, "not equal");
2311     assert(d1->monitors()->length() == d2->monitors()->length(), "not equal");
2312     for (int i = 0; i < d1->monitors()->length(); i++) {
2313       assert_equal(d1->monitors()->at(i), d2->monitors()->at(i));
2314     }
2315   } else {
2316     assert(d1->monitors() == NULL && d2->monitors() == NULL, "not equal");
2317   }
2318 
2319   if (d1->caller() != NULL) {
2320     assert(d1->caller() != NULL && d2->caller() != NULL, "not equal");
2321     assert_equal(d1->caller(), d2->caller());
2322   } else {
2323     assert(d1->caller() == NULL && d2->caller() == NULL, "not equal");
2324   }
2325 }
2326 
2327 void check_stack_depth(CodeEmitInfo* info, int stack_end) {
2328   if (info->stack()->bci() != SynchronizationEntryBCI && !info->scope()->method()->is_native()) {
2329     Bytecodes::Code code = info->scope()->method()->java_code_at_bci(info->stack()->bci());
2330     switch (code) {
2331       case Bytecodes::_ifnull    : // fall through
2332       case Bytecodes::_ifnonnull : // fall through
2333       case Bytecodes::_ifeq      : // fall through
2334       case Bytecodes::_ifne      : // fall through
2335       case Bytecodes::_iflt      : // fall through
2336       case Bytecodes::_ifge      : // fall through
2337       case Bytecodes::_ifgt      : // fall through
2338       case Bytecodes::_ifle      : // fall through
2339       case Bytecodes::_if_icmpeq : // fall through
2340       case Bytecodes::_if_icmpne : // fall through
2341       case Bytecodes::_if_icmplt : // fall through
2342       case Bytecodes::_if_icmpge : // fall through
2343       case Bytecodes::_if_icmpgt : // fall through
2344       case Bytecodes::_if_icmple : // fall through
2345       case Bytecodes::_if_acmpeq : // fall through
2346       case Bytecodes::_if_acmpne :
2347         assert(stack_end >= -Bytecodes::depth(code), "must have non-empty expression stack at if bytecode");
2348         break;
2349     }
2350   }
2351 }
2352 
2353 #endif // ASSERT
2354 
2355 
2356 IntervalWalker* LinearScan::init_compute_oop_maps() {
2357   // setup lists of potential oops for walking
2358   Interval* oop_intervals;
2359   Interval* non_oop_intervals;
2360 
2361   create_unhandled_lists(&oop_intervals, &non_oop_intervals, is_oop_interval, NULL);
2362 
2363   // intervals that have no oops inside need not to be processed
2364   // to ensure a walking until the last instruction id, add a dummy interval
2365   // with a high operation id
2366   non_oop_intervals = new Interval(any_reg);
2367   non_oop_intervals->add_range(max_jint - 2, max_jint - 1);
2368 
2369   return new IntervalWalker(this, oop_intervals, non_oop_intervals);
2370 }
2371 
2372 
2373 OopMap* LinearScan::compute_oop_map(IntervalWalker* iw, LIR_Op* op, CodeEmitInfo* info, bool is_call_site) {
2374   TRACE_LINEAR_SCAN(3, tty->print_cr("creating oop map at op_id %d", op->id()));
2375 
2376   // walk before the current operation -> intervals that start at
2377   // the operation (= output operands of the operation) are not
2378   // included in the oop map
2379   iw->walk_before(op->id());
2380 
2381   int frame_size = frame_map()->framesize();
2382   int arg_count = frame_map()->oop_map_arg_count();
2383   OopMap* map = new OopMap(frame_size, arg_count);
2384 
2385   // Iterate through active intervals
2386   for (Interval* interval = iw->active_first(fixedKind); interval != Interval::end(); interval = interval->next()) {
2387     int assigned_reg = interval->assigned_reg();
2388 
2389     assert(interval->current_from() <= op->id() && op->id() <= interval->current_to(), "interval should not be active otherwise");
2390     assert(interval->assigned_regHi() == any_reg, "oop must be single word");
2391     assert(interval->reg_num() >= LIR_OprDesc::vreg_base, "fixed interval found");
2392 
2393     // Check if this range covers the instruction. Intervals that
2394     // start or end at the current operation are not included in the
2395     // oop map, except in the case of patching moves.  For patching
2396     // moves, any intervals which end at this instruction are included
2397     // in the oop map since we may safepoint while doing the patch
2398     // before we've consumed the inputs.
2399     if (op->is_patching() || op->id() < interval->current_to()) {
2400 
2401       // caller-save registers must not be included into oop-maps at calls
2402       assert(!is_call_site || assigned_reg >= nof_regs || !is_caller_save(assigned_reg), "interval is in a caller-save register at a call -> register will be overwritten");
2403 
2404       VMReg name = vm_reg_for_interval(interval);
2405       set_oop(map, name);
2406 
2407       // Spill optimization: when the stack value is guaranteed to be always correct,
2408       // then it must be added to the oop map even if the interval is currently in a register
2409       if (interval->always_in_memory() &&
2410           op->id() > interval->spill_definition_pos() &&
2411           interval->assigned_reg() != interval->canonical_spill_slot()) {
2412         assert(interval->spill_definition_pos() > 0, "position not set correctly");
2413         assert(interval->canonical_spill_slot() >= LinearScan::nof_regs, "no spill slot assigned");
2414         assert(interval->assigned_reg() < LinearScan::nof_regs, "interval is on stack, so stack slot is registered twice");
2415 
2416         set_oop(map, frame_map()->slot_regname(interval->canonical_spill_slot() - LinearScan::nof_regs));
2417       }
2418     }
2419   }
2420 
2421   // add oops from lock stack
2422   assert(info->stack() != NULL, "CodeEmitInfo must always have a stack");
2423   int locks_count = info->stack()->total_locks_size();
2424   for (int i = 0; i < locks_count; i++) {
2425     set_oop(map, frame_map()->monitor_object_regname(i));
2426   }
2427 
2428   return map;
2429 }
2430 
2431 
2432 void LinearScan::compute_oop_map(IntervalWalker* iw, const LIR_OpVisitState &visitor, LIR_Op* op) {
2433   assert(visitor.info_count() > 0, "no oop map needed");
2434 
2435   // compute oop_map only for first CodeEmitInfo
2436   // because it is (in most cases) equal for all other infos of the same operation
2437   CodeEmitInfo* first_info = visitor.info_at(0);
2438   OopMap* first_oop_map = compute_oop_map(iw, op, first_info, visitor.has_call());
2439 
2440   for (int i = 0; i < visitor.info_count(); i++) {
2441     CodeEmitInfo* info = visitor.info_at(i);
2442     OopMap* oop_map = first_oop_map;
2443 
2444     // compute worst case interpreter size in case of a deoptimization
2445     _compilation->update_interpreter_frame_size(info->interpreter_frame_size());
2446 
2447     if (info->stack()->locks_size() != first_info->stack()->locks_size()) {
2448       // this info has a different number of locks then the precomputed oop map
2449       // (possible for lock and unlock instructions) -> compute oop map with
2450       // correct lock information
2451       oop_map = compute_oop_map(iw, op, info, visitor.has_call());
2452     }
2453 
2454     if (info->_oop_map == NULL) {
2455       info->_oop_map = oop_map;
2456     } else {
2457       // a CodeEmitInfo can not be shared between different LIR-instructions
2458       // because interval splitting can occur anywhere between two instructions
2459       // and so the oop maps must be different
2460       // -> check if the already set oop_map is exactly the one calculated for this operation
2461       assert(info->_oop_map == oop_map, "same CodeEmitInfo used for multiple LIR instructions");
2462     }
2463   }
2464 }
2465 
2466 
2467 // frequently used constants
2468 // Allocate them with new so they are never destroyed (otherwise, a
2469 // forced exit could destroy these objects while they are still in
2470 // use).
2471 ConstantOopWriteValue* LinearScan::_oop_null_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantOopWriteValue(NULL);
2472 ConstantIntValue*      LinearScan::_int_m1_scope_value = new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(-1);
2473 ConstantIntValue*      LinearScan::_int_0_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(0);
2474 ConstantIntValue*      LinearScan::_int_1_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(1);
2475 ConstantIntValue*      LinearScan::_int_2_scope_value =  new (ResourceObj::C_HEAP, mtCompiler) ConstantIntValue(2);
2476 LocationValue*         _illegal_value = new (ResourceObj::C_HEAP, mtCompiler) LocationValue(Location());
2477 
2478 void LinearScan::init_compute_debug_info() {
2479   // cache for frequently used scope values
2480   // (cpu registers and stack slots)
2481   _scope_value_cache = ScopeValueArray((LinearScan::nof_cpu_regs + frame_map()->argcount() + max_spills()) * 2, NULL);
2482 }
2483 
2484 MonitorValue* LinearScan::location_for_monitor_index(int monitor_index) {
2485   Location loc;
2486   if (!frame_map()->location_for_monitor_object(monitor_index, &loc)) {
2487     bailout("too large frame");
2488   }
2489   ScopeValue* object_scope_value = new LocationValue(loc);
2490 
2491   if (!frame_map()->location_for_monitor_lock(monitor_index, &loc)) {
2492     bailout("too large frame");
2493   }
2494   return new MonitorValue(object_scope_value, loc);
2495 }
2496 
2497 LocationValue* LinearScan::location_for_name(int name, Location::Type loc_type) {
2498   Location loc;
2499   if (!frame_map()->locations_for_slot(name, loc_type, &loc)) {
2500     bailout("too large frame");
2501   }
2502   return new LocationValue(loc);
2503 }
2504 
2505 
2506 int LinearScan::append_scope_value_for_constant(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2507   assert(opr->is_constant(), "should not be called otherwise");
2508 
2509   LIR_Const* c = opr->as_constant_ptr();
2510   BasicType t = c->type();
2511   switch (t) {
2512     case T_OBJECT: {
2513       jobject value = c->as_jobject();
2514       if (value == NULL) {
2515         scope_values->append(_oop_null_scope_value);
2516       } else {
2517         scope_values->append(new ConstantOopWriteValue(c->as_jobject()));
2518       }
2519       return 1;
2520     }
2521 
2522     case T_INT: // fall through
2523     case T_FLOAT: {
2524       int value = c->as_jint_bits();
2525       switch (value) {
2526         case -1: scope_values->append(_int_m1_scope_value); break;
2527         case 0:  scope_values->append(_int_0_scope_value); break;
2528         case 1:  scope_values->append(_int_1_scope_value); break;
2529         case 2:  scope_values->append(_int_2_scope_value); break;
2530         default: scope_values->append(new ConstantIntValue(c->as_jint_bits())); break;
2531       }
2532       return 1;
2533     }
2534 
2535     case T_LONG: // fall through
2536     case T_DOUBLE: {
2537 #ifdef _LP64
2538       scope_values->append(_int_0_scope_value);
2539       scope_values->append(new ConstantLongValue(c->as_jlong_bits()));
2540 #else
2541       if (hi_word_offset_in_bytes > lo_word_offset_in_bytes) {
2542         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2543         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2544       } else {
2545         scope_values->append(new ConstantIntValue(c->as_jint_lo_bits()));
2546         scope_values->append(new ConstantIntValue(c->as_jint_hi_bits()));
2547       }
2548 #endif
2549       return 2;
2550     }
2551 
2552     case T_ADDRESS: {
2553 #ifdef _LP64
2554       scope_values->append(new ConstantLongValue(c->as_jint()));
2555 #else
2556       scope_values->append(new ConstantIntValue(c->as_jint()));
2557 #endif
2558       return 1;
2559     }
2560 
2561     default:
2562       ShouldNotReachHere();
2563       return -1;
2564   }
2565 }
2566 
2567 int LinearScan::append_scope_value_for_operand(LIR_Opr opr, GrowableArray<ScopeValue*>* scope_values) {
2568   if (opr->is_single_stack()) {
2569     int stack_idx = opr->single_stack_ix();
2570     bool is_oop = opr->is_oop_register();
2571     int cache_idx = (stack_idx + LinearScan::nof_cpu_regs) * 2 + (is_oop ? 1 : 0);
2572 
2573     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2574     if (sv == NULL) {
2575       Location::Type loc_type = is_oop ? Location::oop : Location::normal;
2576       sv = location_for_name(stack_idx, loc_type);
2577       _scope_value_cache.at_put(cache_idx, sv);
2578     }
2579 
2580     // check if cached value is correct
2581     DEBUG_ONLY(assert_equal(sv, location_for_name(stack_idx, is_oop ? Location::oop : Location::normal)));
2582 
2583     scope_values->append(sv);
2584     return 1;
2585 
2586   } else if (opr->is_single_cpu()) {
2587     bool is_oop = opr->is_oop_register();
2588     int cache_idx = opr->cpu_regnr() * 2 + (is_oop ? 1 : 0);
2589     Location::Type int_loc_type = NOT_LP64(Location::normal) LP64_ONLY(Location::int_in_long);
2590 
2591     ScopeValue* sv = _scope_value_cache.at(cache_idx);
2592     if (sv == NULL) {
2593       Location::Type loc_type = is_oop ? Location::oop : int_loc_type;
2594       VMReg rname = frame_map()->regname(opr);
2595       sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2596       _scope_value_cache.at_put(cache_idx, sv);
2597     }
2598 
2599     // check if cached value is correct
2600     DEBUG_ONLY(assert_equal(sv, new LocationValue(Location::new_reg_loc(is_oop ? Location::oop : int_loc_type, frame_map()->regname(opr)))));
2601 
2602     scope_values->append(sv);
2603     return 1;
2604 
2605 #ifdef X86
2606   } else if (opr->is_single_xmm()) {
2607     VMReg rname = opr->as_xmm_float_reg()->as_VMReg();
2608     LocationValue* sv = new LocationValue(Location::new_reg_loc(Location::normal, rname));
2609 
2610     scope_values->append(sv);
2611     return 1;
2612 #endif
2613 
2614   } else if (opr->is_single_fpu()) {
2615 #ifdef X86
2616     // the exact location of fpu stack values is only known
2617     // during fpu stack allocation, so the stack allocator object
2618     // must be present
2619     assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2620     assert(_fpu_stack_allocator != NULL, "must be present");
2621     opr = _fpu_stack_allocator->to_fpu_stack(opr);
2622 #endif
2623 
2624     Location::Type loc_type = float_saved_as_double ? Location::float_in_dbl : Location::normal;
2625     VMReg rname = frame_map()->fpu_regname(opr->fpu_regnr());
2626 #ifndef __SOFTFP__
2627 #ifndef VM_LITTLE_ENDIAN
2628     if (! float_saved_as_double) {
2629       // On big endian system, we may have an issue if float registers use only
2630       // the low half of the (same) double registers.
2631       // Both the float and the double could have the same regnr but would correspond
2632       // to two different addresses once saved.
2633 
2634       // get next safely (no assertion checks)
2635       VMReg next = VMRegImpl::as_VMReg(1+rname->value());
2636       if (next->is_reg() &&
2637           (next->as_FloatRegister() == rname->as_FloatRegister())) {
2638         // the back-end does use the same numbering for the double and the float
2639         rname = next; // VMReg for the low bits, e.g. the real VMReg for the float
2640       }
2641     }
2642 #endif
2643 #endif
2644     LocationValue* sv = new LocationValue(Location::new_reg_loc(loc_type, rname));
2645 
2646     scope_values->append(sv);
2647     return 1;
2648 
2649   } else {
2650     // double-size operands
2651 
2652     ScopeValue* first;
2653     ScopeValue* second;
2654 
2655     if (opr->is_double_stack()) {
2656 #ifdef _LP64
2657       Location loc1;
2658       Location::Type loc_type = opr->type() == T_LONG ? Location::lng : Location::dbl;
2659       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), loc_type, &loc1, NULL)) {
2660         bailout("too large frame");
2661       }
2662       // Does this reverse on x86 vs. sparc?
2663       first =  new LocationValue(loc1);
2664       second = _int_0_scope_value;
2665 #else
2666       Location loc1, loc2;
2667       if (!frame_map()->locations_for_slot(opr->double_stack_ix(), Location::normal, &loc1, &loc2)) {
2668         bailout("too large frame");
2669       }
2670       first =  new LocationValue(loc1);
2671       second = new LocationValue(loc2);
2672 #endif // _LP64
2673 
2674     } else if (opr->is_double_cpu()) {
2675 #ifdef _LP64
2676       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2677       first = new LocationValue(Location::new_reg_loc(Location::lng, rname_first));
2678       second = _int_0_scope_value;
2679 #else
2680       VMReg rname_first = opr->as_register_lo()->as_VMReg();
2681       VMReg rname_second = opr->as_register_hi()->as_VMReg();
2682 
2683       if (hi_word_offset_in_bytes < lo_word_offset_in_bytes) {
2684         // lo/hi and swapped relative to first and second, so swap them
2685         VMReg tmp = rname_first;
2686         rname_first = rname_second;
2687         rname_second = tmp;
2688       }
2689 
2690       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2691       second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2692 #endif //_LP64
2693 
2694 
2695 #ifdef X86
2696     } else if (opr->is_double_xmm()) {
2697       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation");
2698       VMReg rname_first  = opr->as_xmm_double_reg()->as_VMReg();
2699 #  ifdef _LP64
2700       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2701       second = _int_0_scope_value;
2702 #  else
2703       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2704       // %%% This is probably a waste but we'll keep things as they were for now
2705       if (true) {
2706         VMReg rname_second = rname_first->next();
2707         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2708       }
2709 #  endif
2710 #endif
2711 
2712     } else if (opr->is_double_fpu()) {
2713       // On SPARC, fpu_regnrLo/fpu_regnrHi represents the two halves of
2714       // the double as float registers in the native ordering. On X86,
2715       // fpu_regnrLo is a FPU stack slot whose VMReg represents
2716       // the low-order word of the double and fpu_regnrLo + 1 is the
2717       // name for the other half.  *first and *second must represent the
2718       // least and most significant words, respectively.
2719 
2720 #ifdef X86
2721       // the exact location of fpu stack values is only known
2722       // during fpu stack allocation, so the stack allocator object
2723       // must be present
2724       assert(use_fpu_stack_allocation(), "should not have float stack values without fpu stack allocation (all floats must be SSE2)");
2725       assert(_fpu_stack_allocator != NULL, "must be present");
2726       opr = _fpu_stack_allocator->to_fpu_stack(opr);
2727 
2728       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrLo is used)");
2729 #endif
2730 #ifdef SPARC
2731       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi() + 1, "assumed in calculation (only fpu_regnrHi is used)");
2732 #endif
2733 #if defined(ARM32) || defined(AARCH32)
2734       assert(opr->fpu_regnrHi() == opr->fpu_regnrLo() + 1, "assumed in calculation (only fpu_regnrLo is used)");
2735 #endif // ARM32 || AARCH32
2736 #ifdef PPC
2737       assert(opr->fpu_regnrLo() == opr->fpu_regnrHi(), "assumed in calculation (only fpu_regnrHi is used)");
2738 #endif
2739 
2740 #ifdef VM_LITTLE_ENDIAN
2741       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrLo());
2742 #else
2743       VMReg rname_first = frame_map()->fpu_regname(opr->fpu_regnrHi());
2744 #endif
2745 
2746 #ifdef _LP64
2747       first = new LocationValue(Location::new_reg_loc(Location::dbl, rname_first));
2748       second = _int_0_scope_value;
2749 #else
2750       first = new LocationValue(Location::new_reg_loc(Location::normal, rname_first));
2751       // %%% This is probably a waste but we'll keep things as they were for now
2752       if (true) {
2753         VMReg rname_second = rname_first->next();
2754         second = new LocationValue(Location::new_reg_loc(Location::normal, rname_second));
2755       }
2756 #endif
2757 
2758     } else {
2759       ShouldNotReachHere();
2760       first = NULL;
2761       second = NULL;
2762     }
2763 
2764     assert(first != NULL && second != NULL, "must be set");
2765     // The convention the interpreter uses is that the second local
2766     // holds the first raw word of the native double representation.
2767     // This is actually reasonable, since locals and stack arrays
2768     // grow downwards in all implementations.
2769     // (If, on some machine, the interpreter's Java locals or stack
2770     // were to grow upwards, the embedded doubles would be word-swapped.)
2771     scope_values->append(second);
2772     scope_values->append(first);
2773     return 2;
2774   }
2775 }
2776 
2777 
2778 int LinearScan::append_scope_value(int op_id, Value value, GrowableArray<ScopeValue*>* scope_values) {
2779   if (value != NULL) {
2780     LIR_Opr opr = value->operand();
2781     Constant* con = value->as_Constant();
2782 
2783     assert(con == NULL || opr->is_virtual() || opr->is_constant() || opr->is_illegal(), "asumption: Constant instructions have only constant operands (or illegal if constant is optimized away)");
2784     assert(con != NULL || opr->is_virtual(), "asumption: non-Constant instructions have only virtual operands");
2785 
2786     if (con != NULL && !con->is_pinned() && !opr->is_constant()) {
2787       // Unpinned constants may have a virtual operand for a part of the lifetime
2788       // or may be illegal when it was optimized away,
2789       // so always use a constant operand
2790       opr = LIR_OprFact::value_type(con->type());
2791     }
2792     assert(opr->is_virtual() || opr->is_constant(), "other cases not allowed here");
2793 
2794     if (opr->is_virtual()) {
2795       LIR_OpVisitState::OprMode mode = LIR_OpVisitState::inputMode;
2796 
2797       BlockBegin* block = block_of_op_with_id(op_id);
2798       if (block->number_of_sux() == 1 && op_id == block->last_lir_instruction_id()) {
2799         // generating debug information for the last instruction of a block.
2800         // if this instruction is a branch, spill moves are inserted before this branch
2801         // and so the wrong operand would be returned (spill moves at block boundaries are not
2802         // considered in the live ranges of intervals)
2803         // Solution: use the first op_id of the branch target block instead.
2804         if (block->lir()->instructions_list()->last()->as_OpBranch() != NULL) {
2805           if (block->live_out().at(opr->vreg_number())) {
2806             op_id = block->sux_at(0)->first_lir_instruction_id();
2807             mode = LIR_OpVisitState::outputMode;
2808           }
2809         }
2810       }
2811 
2812       // Get current location of operand
2813       // The operand must be live because debug information is considered when building the intervals
2814       // if the interval is not live, color_lir_opr will cause an assertion failure
2815       opr = color_lir_opr(opr, op_id, mode);
2816       assert(!has_call(op_id) || opr->is_stack() || !is_caller_save(reg_num(opr)), "can not have caller-save register operands at calls");
2817 
2818       // Append to ScopeValue array
2819       return append_scope_value_for_operand(opr, scope_values);
2820 
2821     } else {
2822       assert(value->as_Constant() != NULL, "all other instructions have only virtual operands");
2823       assert(opr->is_constant(), "operand must be constant");
2824 
2825       return append_scope_value_for_constant(opr, scope_values);
2826     }
2827   } else {
2828     // append a dummy value because real value not needed
2829     scope_values->append(_illegal_value);
2830     return 1;
2831   }
2832 }
2833 
2834 
2835 IRScopeDebugInfo* LinearScan::compute_debug_info_for_scope(int op_id, IRScope* cur_scope, ValueStack* cur_state, ValueStack* innermost_state) {
2836   IRScopeDebugInfo* caller_debug_info = NULL;
2837 
2838   ValueStack* caller_state = cur_state->caller_state();
2839   if (caller_state != NULL) {
2840     // process recursively to compute outermost scope first
2841     caller_debug_info = compute_debug_info_for_scope(op_id, cur_scope->caller(), caller_state, innermost_state);
2842   }
2843 
2844   // initialize these to null.
2845   // If we don't need deopt info or there are no locals, expressions or monitors,
2846   // then these get recorded as no information and avoids the allocation of 0 length arrays.
2847   GrowableArray<ScopeValue*>*   locals      = NULL;
2848   GrowableArray<ScopeValue*>*   expressions = NULL;
2849   GrowableArray<MonitorValue*>* monitors    = NULL;
2850 
2851   // describe local variable values
2852   int nof_locals = cur_state->locals_size();
2853   if (nof_locals > 0) {
2854     locals = new GrowableArray<ScopeValue*>(nof_locals);
2855 
2856     int pos = 0;
2857     while (pos < nof_locals) {
2858       assert(pos < cur_state->locals_size(), "why not?");
2859 
2860       Value local = cur_state->local_at(pos);
2861       pos += append_scope_value(op_id, local, locals);
2862 
2863       assert(locals->length() == pos, "must match");
2864     }
2865     assert(locals->length() == cur_scope->method()->max_locals(), "wrong number of locals");
2866     assert(locals->length() == cur_state->locals_size(), "wrong number of locals");
2867   } else if (cur_scope->method()->max_locals() > 0) {
2868     assert(cur_state->kind() == ValueStack::EmptyExceptionState, "should be");
2869     nof_locals = cur_scope->method()->max_locals();
2870     locals = new GrowableArray<ScopeValue*>(nof_locals);
2871     for(int i = 0; i < nof_locals; i++) {
2872       locals->append(_illegal_value);
2873     }
2874   }
2875 
2876   // describe expression stack
2877   int nof_stack = cur_state->stack_size();
2878   if (nof_stack > 0) {
2879     expressions = new GrowableArray<ScopeValue*>(nof_stack);
2880 
2881     int pos = 0;
2882     while (pos < nof_stack) {
2883       Value expression = cur_state->stack_at_inc(pos);
2884       append_scope_value(op_id, expression, expressions);
2885 
2886       assert(expressions->length() == pos, "must match");
2887     }
2888     assert(expressions->length() == cur_state->stack_size(), "wrong number of stack entries");
2889   }
2890 
2891   // describe monitors
2892   int nof_locks = cur_state->locks_size();
2893   if (nof_locks > 0) {
2894     int lock_offset = cur_state->caller_state() != NULL ? cur_state->caller_state()->total_locks_size() : 0;
2895     monitors = new GrowableArray<MonitorValue*>(nof_locks);
2896     for (int i = 0; i < nof_locks; i++) {
2897       monitors->append(location_for_monitor_index(lock_offset + i));
2898     }
2899   }
2900 
2901   return new IRScopeDebugInfo(cur_scope, cur_state->bci(), locals, expressions, monitors, caller_debug_info);
2902 }
2903 
2904 
2905 void LinearScan::compute_debug_info(CodeEmitInfo* info, int op_id) {
2906   TRACE_LINEAR_SCAN(3, tty->print_cr("creating debug information at op_id %d", op_id));
2907 
2908   IRScope* innermost_scope = info->scope();
2909   ValueStack* innermost_state = info->stack();
2910 
2911   assert(innermost_scope != NULL && innermost_state != NULL, "why is it missing?");
2912 
2913   DEBUG_ONLY(check_stack_depth(info, innermost_state->stack_size()));
2914 
2915   if (info->_scope_debug_info == NULL) {
2916     // compute debug information
2917     info->_scope_debug_info = compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state);
2918   } else {
2919     // debug information already set. Check that it is correct from the current point of view
2920     DEBUG_ONLY(assert_equal(info->_scope_debug_info, compute_debug_info_for_scope(op_id, innermost_scope, innermost_state, innermost_state)));
2921   }
2922 }
2923 
2924 
2925 void LinearScan::assign_reg_num(LIR_OpList* instructions, IntervalWalker* iw) {
2926   LIR_OpVisitState visitor;
2927   int num_inst = instructions->length();
2928   bool has_dead = false;
2929 
2930   for (int j = 0; j < num_inst; j++) {
2931     LIR_Op* op = instructions->at(j);
2932     if (op == NULL) {  // this can happen when spill-moves are removed in eliminate_spill_moves
2933       has_dead = true;
2934       continue;
2935     }
2936     int op_id = op->id();
2937 
2938     // visit instruction to get list of operands
2939     visitor.visit(op);
2940 
2941     // iterate all modes of the visitor and process all virtual operands
2942     for_each_visitor_mode(mode) {
2943       int n = visitor.opr_count(mode);
2944       for (int k = 0; k < n; k++) {
2945         LIR_Opr opr = visitor.opr_at(mode, k);
2946         if (opr->is_virtual_register()) {
2947           visitor.set_opr_at(mode, k, color_lir_opr(opr, op_id, mode));
2948         }
2949       }
2950     }
2951 
2952     if (visitor.info_count() > 0) {
2953       // exception handling
2954       if (compilation()->has_exception_handlers()) {
2955         XHandlers* xhandlers = visitor.all_xhandler();
2956         int n = xhandlers->length();
2957         for (int k = 0; k < n; k++) {
2958           XHandler* handler = xhandlers->handler_at(k);
2959           if (handler->entry_code() != NULL) {
2960             assign_reg_num(handler->entry_code()->instructions_list(), NULL);
2961           }
2962         }
2963       } else {
2964         assert(visitor.all_xhandler()->length() == 0, "missed exception handler");
2965       }
2966 
2967       // compute oop map
2968       assert(iw != NULL, "needed for compute_oop_map");
2969       compute_oop_map(iw, visitor, op);
2970 
2971       // compute debug information
2972       if (!use_fpu_stack_allocation()) {
2973         // compute debug information if fpu stack allocation is not needed.
2974         // when fpu stack allocation is needed, the debug information can not
2975         // be computed here because the exact location of fpu operands is not known
2976         // -> debug information is created inside the fpu stack allocator
2977         int n = visitor.info_count();
2978         for (int k = 0; k < n; k++) {
2979           compute_debug_info(visitor.info_at(k), op_id);
2980         }
2981       }
2982     }
2983 
2984 #ifdef ASSERT
2985     // make sure we haven't made the op invalid.
2986     op->verify();
2987 #endif
2988 
2989     // remove useless moves
2990     if (op->code() == lir_move) {
2991       assert(op->as_Op1() != NULL, "move must be LIR_Op1");
2992       LIR_Op1* move = (LIR_Op1*)op;
2993       LIR_Opr src = move->in_opr();
2994       LIR_Opr dst = move->result_opr();
2995       if (dst == src ||
2996           !dst->is_pointer() && !src->is_pointer() &&
2997           src->is_same_register(dst)) {
2998         instructions->at_put(j, NULL);
2999         has_dead = true;
3000       }
3001     }
3002   }
3003 
3004   if (has_dead) {
3005     // iterate all instructions of the block and remove all null-values.
3006     int insert_point = 0;
3007     for (int j = 0; j < num_inst; j++) {
3008       LIR_Op* op = instructions->at(j);
3009       if (op != NULL) {
3010         if (insert_point != j) {
3011           instructions->at_put(insert_point, op);
3012         }
3013         insert_point++;
3014       }
3015     }
3016     instructions->truncate(insert_point);
3017   }
3018 }
3019 
3020 void LinearScan::assign_reg_num() {
3021   TIME_LINEAR_SCAN(timer_assign_reg_num);
3022 
3023   init_compute_debug_info();
3024   IntervalWalker* iw = init_compute_oop_maps();
3025 
3026   int num_blocks = block_count();
3027   for (int i = 0; i < num_blocks; i++) {
3028     BlockBegin* block = block_at(i);
3029     assign_reg_num(block->lir()->instructions_list(), iw);
3030   }
3031 }
3032 
3033 
3034 void LinearScan::do_linear_scan() {
3035   NOT_PRODUCT(_total_timer.begin_method());
3036 
3037   number_instructions();
3038 
3039   NOT_PRODUCT(print_lir(1, "Before Register Allocation"));
3040 
3041   compute_local_live_sets();
3042   compute_global_live_sets();
3043   CHECK_BAILOUT();
3044 
3045   build_intervals();
3046   CHECK_BAILOUT();
3047   sort_intervals_before_allocation();
3048 
3049   NOT_PRODUCT(print_intervals("Before Register Allocation"));
3050   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_before_alloc));
3051 
3052   allocate_registers();
3053   CHECK_BAILOUT();
3054 
3055   resolve_data_flow();
3056   if (compilation()->has_exception_handlers()) {
3057     resolve_exception_handlers();
3058   }
3059   // fill in number of spill slots into frame_map
3060   propagate_spill_slots();
3061   CHECK_BAILOUT();
3062 
3063   NOT_PRODUCT(print_intervals("After Register Allocation"));
3064   NOT_PRODUCT(print_lir(2, "LIR after register allocation:"));
3065 
3066   sort_intervals_after_allocation();
3067 
3068   DEBUG_ONLY(verify());
3069 
3070   eliminate_spill_moves();
3071   assign_reg_num();
3072   CHECK_BAILOUT();
3073 
3074   NOT_PRODUCT(print_lir(2, "LIR after assignment of register numbers:"));
3075   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_after_asign));
3076 
3077   { TIME_LINEAR_SCAN(timer_allocate_fpu_stack);
3078 
3079     if (use_fpu_stack_allocation()) {
3080       allocate_fpu_stack(); // Only has effect on Intel
3081       NOT_PRODUCT(print_lir(2, "LIR after FPU stack allocation:"));
3082     }
3083   }
3084 
3085   { TIME_LINEAR_SCAN(timer_optimize_lir);
3086 
3087     EdgeMoveOptimizer::optimize(ir()->code());
3088     ControlFlowOptimizer::optimize(ir()->code());
3089     // check that cfg is still correct after optimizations
3090     ir()->verify();
3091   }
3092 
3093   NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
3094   NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
3095   NOT_PRODUCT(_total_timer.end_method(this));
3096 }
3097 
3098 
3099 // ********** Printing functions
3100 
3101 #ifndef PRODUCT
3102 
3103 void LinearScan::print_timers(double total) {
3104   _total_timer.print(total);
3105 }
3106 
3107 void LinearScan::print_statistics() {
3108   _stat_before_alloc.print("before allocation");
3109   _stat_after_asign.print("after assignment of register");
3110   _stat_final.print("after optimization");
3111 }
3112 
3113 void LinearScan::print_bitmap(BitMap& b) {
3114   for (unsigned int i = 0; i < b.size(); i++) {
3115     if (b.at(i)) tty->print("%d ", i);
3116   }
3117   tty->cr();
3118 }
3119 
3120 void LinearScan::print_intervals(const char* label) {
3121   if (TraceLinearScanLevel >= 1) {
3122     int i;
3123     tty->cr();
3124     tty->print_cr("%s", label);
3125 
3126     for (i = 0; i < interval_count(); i++) {
3127       Interval* interval = interval_at(i);
3128       if (interval != NULL) {
3129         interval->print();
3130       }
3131     }
3132 
3133     tty->cr();
3134     tty->print_cr("--- Basic Blocks ---");
3135     for (i = 0; i < block_count(); i++) {
3136       BlockBegin* block = block_at(i);
3137       tty->print("B%d [%d, %d, %d, %d] ", block->block_id(), block->first_lir_instruction_id(), block->last_lir_instruction_id(), block->loop_index(), block->loop_depth());
3138     }
3139     tty->cr();
3140     tty->cr();
3141   }
3142 
3143   if (PrintCFGToFile) {
3144     CFGPrinter::print_intervals(&_intervals, label);
3145   }
3146 }
3147 
3148 void LinearScan::print_lir(int level, const char* label, bool hir_valid) {
3149   if (TraceLinearScanLevel >= level) {
3150     tty->cr();
3151     tty->print_cr("%s", label);
3152     print_LIR(ir()->linear_scan_order());
3153     tty->cr();
3154   }
3155 
3156   if (level == 1 && PrintCFGToFile) {
3157     CFGPrinter::print_cfg(ir()->linear_scan_order(), label, hir_valid, true);
3158   }
3159 }
3160 
3161 #endif //PRODUCT
3162 
3163 
3164 // ********** verification functions for allocation
3165 // (check that all intervals have a correct register and that no registers are overwritten)
3166 #ifdef ASSERT
3167 
3168 void LinearScan::verify() {
3169   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying intervals ******************************************"));
3170   verify_intervals();
3171 
3172   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that no oops are in fixed intervals ****************"));
3173   verify_no_oops_in_fixed_intervals();
3174 
3175   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying that unpinned constants are not alive across block boundaries"));
3176   verify_constants();
3177 
3178   TRACE_LINEAR_SCAN(2, tty->print_cr("********* verifying register allocation ********************************"));
3179   verify_registers();
3180 
3181   TRACE_LINEAR_SCAN(2, tty->print_cr("********* no errors found **********************************************"));
3182 }
3183 
3184 void LinearScan::verify_intervals() {
3185   int len = interval_count();
3186   bool has_error = false;
3187 
3188   for (int i = 0; i < len; i++) {
3189     Interval* i1 = interval_at(i);
3190     if (i1 == NULL) continue;
3191 
3192     i1->check_split_children();
3193 
3194     if (i1->reg_num() != i) {
3195       tty->print_cr("Interval %d is on position %d in list", i1->reg_num(), i); i1->print(); tty->cr();
3196       has_error = true;
3197     }
3198 
3199     if (i1->reg_num() >= LIR_OprDesc::vreg_base && i1->type() == T_ILLEGAL) {
3200       tty->print_cr("Interval %d has no type assigned", i1->reg_num()); i1->print(); tty->cr();
3201       has_error = true;
3202     }
3203 
3204     if (i1->assigned_reg() == any_reg) {
3205       tty->print_cr("Interval %d has no register assigned", i1->reg_num()); i1->print(); tty->cr();
3206       has_error = true;
3207     }
3208 
3209     if (i1->assigned_reg() == i1->assigned_regHi()) {
3210       tty->print_cr("Interval %d: low and high register equal", i1->reg_num()); i1->print(); tty->cr();
3211       has_error = true;
3212     }
3213 
3214     if (!is_processed_reg_num(i1->assigned_reg())) {
3215       tty->print_cr("Can not have an Interval for an ignored register"); i1->print(); tty->cr();
3216       has_error = true;
3217     }
3218 
3219     if (i1->first() == Range::end()) {
3220       tty->print_cr("Interval %d has no Range", i1->reg_num()); i1->print(); tty->cr();
3221       has_error = true;
3222     }
3223 
3224     for (Range* r = i1->first(); r != Range::end(); r = r->next()) {
3225       if (r->from() >= r->to()) {
3226         tty->print_cr("Interval %d has zero length range", i1->reg_num()); i1->print(); tty->cr();
3227         has_error = true;
3228       }
3229     }
3230 
3231     for (int j = i + 1; j < len; j++) {
3232       Interval* i2 = interval_at(j);
3233       if (i2 == NULL) continue;
3234 
3235       // special intervals that are created in MoveResolver
3236       // -> ignore them because the range information has no meaning there
3237       if (i1->from() == 1 && i1->to() == 2) continue;
3238       if (i2->from() == 1 && i2->to() == 2) continue;
3239 
3240       int r1 = i1->assigned_reg();
3241       int r1Hi = i1->assigned_regHi();
3242       int r2 = i2->assigned_reg();
3243       int r2Hi = i2->assigned_regHi();
3244       if (i1->intersects(i2) && (r1 == r2 || r1 == r2Hi || (r1Hi != any_reg && (r1Hi == r2 || r1Hi == r2Hi)))) {
3245         tty->print_cr("Intervals %d and %d overlap and have the same register assigned", i1->reg_num(), i2->reg_num());
3246         i1->print(); tty->cr();
3247         i2->print(); tty->cr();
3248         has_error = true;
3249       }
3250     }
3251   }
3252 
3253   assert(has_error == false, "register allocation invalid");
3254 }
3255 
3256 
3257 void LinearScan::verify_no_oops_in_fixed_intervals() {
3258   Interval* fixed_intervals;
3259   Interval* other_intervals;
3260   create_unhandled_lists(&fixed_intervals, &other_intervals, is_precolored_cpu_interval, NULL);
3261 
3262   // to ensure a walking until the last instruction id, add a dummy interval
3263   // with a high operation id
3264   other_intervals = new Interval(any_reg);
3265   other_intervals->add_range(max_jint - 2, max_jint - 1);
3266   IntervalWalker* iw = new IntervalWalker(this, fixed_intervals, other_intervals);
3267 
3268   LIR_OpVisitState visitor;
3269   for (int i = 0; i < block_count(); i++) {
3270     BlockBegin* block = block_at(i);
3271 
3272     LIR_OpList* instructions = block->lir()->instructions_list();
3273 
3274     for (int j = 0; j < instructions->length(); j++) {
3275       LIR_Op* op = instructions->at(j);
3276       int op_id = op->id();
3277 
3278       visitor.visit(op);
3279 
3280       if (visitor.info_count() > 0) {
3281         iw->walk_before(op->id());
3282         bool check_live = true;
3283         if (op->code() == lir_move) {
3284           LIR_Op1* move = (LIR_Op1*)op;
3285           check_live = (move->patch_code() == lir_patch_none);
3286         }
3287         LIR_OpBranch* branch = op->as_OpBranch();
3288         if (branch != NULL && branch->stub() != NULL && branch->stub()->is_exception_throw_stub()) {
3289           // Don't bother checking the stub in this case since the
3290           // exception stub will never return to normal control flow.
3291           check_live = false;
3292         }
3293 
3294         // Make sure none of the fixed registers is live across an
3295         // oopmap since we can't handle that correctly.
3296         if (check_live) {
3297           for (Interval* interval = iw->active_first(fixedKind);
3298                interval != Interval::end();
3299                interval = interval->next()) {
3300             if (interval->current_to() > op->id() + 1) {
3301               // This interval is live out of this op so make sure
3302               // that this interval represents some value that's
3303               // referenced by this op either as an input or output.
3304               bool ok = false;
3305               for_each_visitor_mode(mode) {
3306                 int n = visitor.opr_count(mode);
3307                 for (int k = 0; k < n; k++) {
3308                   LIR_Opr opr = visitor.opr_at(mode, k);
3309                   if (opr->is_fixed_cpu()) {
3310                     if (interval_at(reg_num(opr)) == interval) {
3311                       ok = true;
3312                       break;
3313                     }
3314                     int hi = reg_numHi(opr);
3315                     if (hi != -1 && interval_at(hi) == interval) {
3316                       ok = true;
3317                       break;
3318                     }
3319                   }
3320                 }
3321               }
3322               assert(ok, "fixed intervals should never be live across an oopmap point");
3323             }
3324           }
3325         }
3326       }
3327 
3328       // oop-maps at calls do not contain registers, so check is not needed
3329       if (!visitor.has_call()) {
3330 
3331         for_each_visitor_mode(mode) {
3332           int n = visitor.opr_count(mode);
3333           for (int k = 0; k < n; k++) {
3334             LIR_Opr opr = visitor.opr_at(mode, k);
3335 
3336             if (opr->is_fixed_cpu() && opr->is_oop()) {
3337               // operand is a non-virtual cpu register and contains an oop
3338               TRACE_LINEAR_SCAN(4, op->print_on(tty); tty->print("checking operand "); opr->print(); tty->cr());
3339 
3340               Interval* interval = interval_at(reg_num(opr));
3341               assert(interval != NULL, "no interval");
3342 
3343               if (mode == LIR_OpVisitState::inputMode) {
3344                 if (interval->to() >= op_id + 1) {
3345                   assert(interval->to() < op_id + 2 ||
3346                          interval->has_hole_between(op_id, op_id + 2),
3347                          "oop input operand live after instruction");
3348                 }
3349               } else if (mode == LIR_OpVisitState::outputMode) {
3350                 if (interval->from() <= op_id - 1) {
3351                   assert(interval->has_hole_between(op_id - 1, op_id),
3352                          "oop input operand live after instruction");
3353                 }
3354               }
3355             }
3356           }
3357         }
3358       }
3359     }
3360   }
3361 }
3362 
3363 
3364 void LinearScan::verify_constants() {
3365   int num_regs = num_virtual_regs();
3366   int size = live_set_size();
3367   int num_blocks = block_count();
3368 
3369   for (int i = 0; i < num_blocks; i++) {
3370     BlockBegin* block = block_at(i);
3371     BitMap live_at_edge = block->live_in();
3372 
3373     // visit all registers where the live_at_edge bit is set
3374     for (int r = (int)live_at_edge.get_next_one_offset(0, size); r < size; r = (int)live_at_edge.get_next_one_offset(r + 1, size)) {
3375       TRACE_LINEAR_SCAN(4, tty->print("checking interval %d of block B%d", r, block->block_id()));
3376 
3377       Value value = gen()->instruction_for_vreg(r);
3378 
3379       assert(value != NULL, "all intervals live across block boundaries must have Value");
3380       assert(value->operand()->is_register() && value->operand()->is_virtual(), "value must have virtual operand");
3381       assert(value->operand()->vreg_number() == r, "register number must match");
3382       // TKR assert(value->as_Constant() == NULL || value->is_pinned(), "only pinned constants can be alive accross block boundaries");
3383     }
3384   }
3385 }
3386 
3387 
3388 class RegisterVerifier: public StackObj {
3389  private:
3390   LinearScan*   _allocator;
3391   BlockList     _work_list;      // all blocks that must be processed
3392   IntervalsList _saved_states;   // saved information of previous check
3393 
3394   // simplified access to methods of LinearScan
3395   Compilation*  compilation() const              { return _allocator->compilation(); }
3396   Interval*     interval_at(int reg_num) const   { return _allocator->interval_at(reg_num); }
3397   int           reg_num(LIR_Opr opr) const       { return _allocator->reg_num(opr); }
3398 
3399   // currently, only registers are processed
3400   int           state_size()                     { return LinearScan::nof_regs; }
3401 
3402   // accessors
3403   IntervalList* state_for_block(BlockBegin* block) { return _saved_states.at(block->block_id()); }
3404   void          set_state_for_block(BlockBegin* block, IntervalList* saved_state) { _saved_states.at_put(block->block_id(), saved_state); }
3405   void          add_to_work_list(BlockBegin* block) { if (!_work_list.contains(block)) _work_list.append(block); }
3406 
3407   // helper functions
3408   IntervalList* copy(IntervalList* input_state);
3409   void          state_put(IntervalList* input_state, int reg, Interval* interval);
3410   bool          check_state(IntervalList* input_state, int reg, Interval* interval);
3411 
3412   void process_block(BlockBegin* block);
3413   void process_xhandler(XHandler* xhandler, IntervalList* input_state);
3414   void process_successor(BlockBegin* block, IntervalList* input_state);
3415   void process_operations(LIR_List* ops, IntervalList* input_state);
3416 
3417  public:
3418   RegisterVerifier(LinearScan* allocator)
3419     : _allocator(allocator)
3420     , _work_list(16)
3421     , _saved_states(BlockBegin::number_of_blocks(), NULL)
3422   { }
3423 
3424   void verify(BlockBegin* start);
3425 };
3426 
3427 
3428 // entry function from LinearScan that starts the verification
3429 void LinearScan::verify_registers() {
3430   RegisterVerifier verifier(this);
3431   verifier.verify(block_at(0));
3432 }
3433 
3434 
3435 void RegisterVerifier::verify(BlockBegin* start) {
3436   // setup input registers (method arguments) for first block
3437   IntervalList* input_state = new IntervalList(state_size(), NULL);
3438   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
3439   for (int n = 0; n < args->length(); n++) {
3440     LIR_Opr opr = args->at(n);
3441     if (opr->is_register()) {
3442       Interval* interval = interval_at(reg_num(opr));
3443 
3444       if (interval->assigned_reg() < state_size()) {
3445         input_state->at_put(interval->assigned_reg(), interval);
3446       }
3447       if (interval->assigned_regHi() != LinearScan::any_reg && interval->assigned_regHi() < state_size()) {
3448         input_state->at_put(interval->assigned_regHi(), interval);
3449       }
3450     }
3451   }
3452 
3453   set_state_for_block(start, input_state);
3454   add_to_work_list(start);
3455 
3456   // main loop for verification
3457   do {
3458     BlockBegin* block = _work_list.at(0);
3459     _work_list.remove_at(0);
3460 
3461     process_block(block);
3462   } while (!_work_list.is_empty());
3463 }
3464 
3465 void RegisterVerifier::process_block(BlockBegin* block) {
3466   TRACE_LINEAR_SCAN(2, tty->cr(); tty->print_cr("process_block B%d", block->block_id()));
3467 
3468   // must copy state because it is modified
3469   IntervalList* input_state = copy(state_for_block(block));
3470 
3471   if (TraceLinearScanLevel >= 4) {
3472     tty->print_cr("Input-State of intervals:");
3473     tty->print("    ");
3474     for (int i = 0; i < state_size(); i++) {
3475       if (input_state->at(i) != NULL) {
3476         tty->print(" %4d", input_state->at(i)->reg_num());
3477       } else {
3478         tty->print("   __");
3479       }
3480     }
3481     tty->cr();
3482     tty->cr();
3483   }
3484 
3485   // process all operations of the block
3486   process_operations(block->lir(), input_state);
3487 
3488   // iterate all successors
3489   for (int i = 0; i < block->number_of_sux(); i++) {
3490     process_successor(block->sux_at(i), input_state);
3491   }
3492 }
3493 
3494 void RegisterVerifier::process_xhandler(XHandler* xhandler, IntervalList* input_state) {
3495   TRACE_LINEAR_SCAN(2, tty->print_cr("process_xhandler B%d", xhandler->entry_block()->block_id()));
3496 
3497   // must copy state because it is modified
3498   input_state = copy(input_state);
3499 
3500   if (xhandler->entry_code() != NULL) {
3501     process_operations(xhandler->entry_code(), input_state);
3502   }
3503   process_successor(xhandler->entry_block(), input_state);
3504 }
3505 
3506 void RegisterVerifier::process_successor(BlockBegin* block, IntervalList* input_state) {
3507   IntervalList* saved_state = state_for_block(block);
3508 
3509   if (saved_state != NULL) {
3510     // this block was already processed before.
3511     // check if new input_state is consistent with saved_state
3512 
3513     bool saved_state_correct = true;
3514     for (int i = 0; i < state_size(); i++) {
3515       if (input_state->at(i) != saved_state->at(i)) {
3516         // current input_state and previous saved_state assume a different
3517         // interval in this register -> assume that this register is invalid
3518         if (saved_state->at(i) != NULL) {
3519           // invalidate old calculation only if it assumed that
3520           // register was valid. when the register was already invalid,
3521           // then the old calculation was correct.
3522           saved_state_correct = false;
3523           saved_state->at_put(i, NULL);
3524 
3525           TRACE_LINEAR_SCAN(4, tty->print_cr("process_successor B%d: invalidating slot %d", block->block_id(), i));
3526         }
3527       }
3528     }
3529 
3530     if (saved_state_correct) {
3531       // already processed block with correct input_state
3532       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: previous visit already correct", block->block_id()));
3533     } else {
3534       // must re-visit this block
3535       TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: must re-visit because input state changed", block->block_id()));
3536       add_to_work_list(block);
3537     }
3538 
3539   } else {
3540     // block was not processed before, so set initial input_state
3541     TRACE_LINEAR_SCAN(2, tty->print_cr("process_successor B%d: initial visit", block->block_id()));
3542 
3543     set_state_for_block(block, copy(input_state));
3544     add_to_work_list(block);
3545   }
3546 }
3547 
3548 
3549 IntervalList* RegisterVerifier::copy(IntervalList* input_state) {
3550   IntervalList* copy_state = new IntervalList(input_state->length());
3551   copy_state->push_all(input_state);
3552   return copy_state;
3553 }
3554 
3555 void RegisterVerifier::state_put(IntervalList* input_state, int reg, Interval* interval) {
3556   if (reg != LinearScan::any_reg && reg < state_size()) {
3557     if (interval != NULL) {
3558       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = %d", reg, interval->reg_num()));
3559     } else if (input_state->at(reg) != NULL) {
3560       TRACE_LINEAR_SCAN(4, tty->print_cr("        reg[%d] = NULL", reg));
3561     }
3562 
3563     input_state->at_put(reg, interval);
3564   }
3565 }
3566 
3567 bool RegisterVerifier::check_state(IntervalList* input_state, int reg, Interval* interval) {
3568   if (reg != LinearScan::any_reg && reg < state_size()) {
3569     if (input_state->at(reg) != interval) {
3570       tty->print_cr("!! Error in register allocation: register %d does not contain interval %d", reg, interval->reg_num());
3571       return true;
3572     }
3573   }
3574   return false;
3575 }
3576 
3577 void RegisterVerifier::process_operations(LIR_List* ops, IntervalList* input_state) {
3578   // visit all instructions of the block
3579   LIR_OpVisitState visitor;
3580   bool has_error = false;
3581 
3582   for (int i = 0; i < ops->length(); i++) {
3583     LIR_Op* op = ops->at(i);
3584     visitor.visit(op);
3585 
3586     TRACE_LINEAR_SCAN(4, op->print_on(tty));
3587 
3588     // check if input operands are correct
3589     int j;
3590     int n = visitor.opr_count(LIR_OpVisitState::inputMode);
3591     for (j = 0; j < n; j++) {
3592       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::inputMode, j);
3593       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3594         Interval* interval = interval_at(reg_num(opr));
3595         if (op->id() != -1) {
3596           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::inputMode);
3597         }
3598 
3599         has_error |= check_state(input_state, interval->assigned_reg(),   interval->split_parent());
3600         has_error |= check_state(input_state, interval->assigned_regHi(), interval->split_parent());
3601 
3602         // When an operand is marked with is_last_use, then the fpu stack allocator
3603         // removes the register from the fpu stack -> the register contains no value
3604         if (opr->is_last_use()) {
3605           state_put(input_state, interval->assigned_reg(),   NULL);
3606           state_put(input_state, interval->assigned_regHi(), NULL);
3607         }
3608       }
3609     }
3610 
3611     // invalidate all caller save registers at calls
3612     if (visitor.has_call()) {
3613       for (j = 0; j < FrameMap::nof_caller_save_cpu_regs(); j++) {
3614         state_put(input_state, reg_num(FrameMap::caller_save_cpu_reg_at(j)), NULL);
3615       }
3616       for (j = 0; j < FrameMap::nof_caller_save_fpu_regs; j++) {
3617         state_put(input_state, reg_num(FrameMap::caller_save_fpu_reg_at(j)), NULL);
3618       }
3619 
3620 #ifdef X86
3621       for (j = 0; j < FrameMap::nof_caller_save_xmm_regs; j++) {
3622         state_put(input_state, reg_num(FrameMap::caller_save_xmm_reg_at(j)), NULL);
3623       }
3624 #endif
3625     }
3626 
3627     // process xhandler before output and temp operands
3628     XHandlers* xhandlers = visitor.all_xhandler();
3629     n = xhandlers->length();
3630     for (int k = 0; k < n; k++) {
3631       process_xhandler(xhandlers->handler_at(k), input_state);
3632     }
3633 
3634     // set temp operands (some operations use temp operands also as output operands, so can't set them NULL)
3635     n = visitor.opr_count(LIR_OpVisitState::tempMode);
3636     for (j = 0; j < n; j++) {
3637       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::tempMode, j);
3638       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3639         Interval* interval = interval_at(reg_num(opr));
3640         if (op->id() != -1) {
3641           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::tempMode);
3642         }
3643 
3644         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3645         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3646       }
3647     }
3648 
3649     // set output operands
3650     n = visitor.opr_count(LIR_OpVisitState::outputMode);
3651     for (j = 0; j < n; j++) {
3652       LIR_Opr opr = visitor.opr_at(LIR_OpVisitState::outputMode, j);
3653       if (opr->is_register() && LinearScan::is_processed_reg_num(reg_num(opr))) {
3654         Interval* interval = interval_at(reg_num(opr));
3655         if (op->id() != -1) {
3656           interval = interval->split_child_at_op_id(op->id(), LIR_OpVisitState::outputMode);
3657         }
3658 
3659         state_put(input_state, interval->assigned_reg(),   interval->split_parent());
3660         state_put(input_state, interval->assigned_regHi(), interval->split_parent());
3661       }
3662     }
3663   }
3664   assert(has_error == false, "Error in register allocation");
3665 }
3666 
3667 #endif // ASSERT
3668 
3669 
3670 
3671 // **** Implementation of MoveResolver ******************************
3672 
3673 MoveResolver::MoveResolver(LinearScan* allocator) :
3674   _allocator(allocator),
3675   _multiple_reads_allowed(false),
3676   _mapping_from(8),
3677   _mapping_from_opr(8),
3678   _mapping_to(8),
3679   _insert_list(NULL),
3680   _insert_idx(-1),
3681   _insertion_buffer()
3682 {
3683   for (int i = 0; i < LinearScan::nof_regs; i++) {
3684     _register_blocked[i] = 0;
3685   }
3686   DEBUG_ONLY(check_empty());
3687 }
3688 
3689 
3690 #ifdef ASSERT
3691 
3692 void MoveResolver::check_empty() {
3693   assert(_mapping_from.length() == 0 && _mapping_from_opr.length() == 0 && _mapping_to.length() == 0, "list must be empty before and after processing");
3694   for (int i = 0; i < LinearScan::nof_regs; i++) {
3695     assert(register_blocked(i) == 0, "register map must be empty before and after processing");
3696   }
3697   assert(_multiple_reads_allowed == false, "must have default value");
3698 }
3699 
3700 void MoveResolver::verify_before_resolve() {
3701   assert(_mapping_from.length() == _mapping_from_opr.length(), "length must be equal");
3702   assert(_mapping_from.length() == _mapping_to.length(), "length must be equal");
3703   assert(_insert_list != NULL && _insert_idx != -1, "insert position not set");
3704 
3705   int i, j;
3706   if (!_multiple_reads_allowed) {
3707     for (i = 0; i < _mapping_from.length(); i++) {
3708       for (j = i + 1; j < _mapping_from.length(); j++) {
3709         assert(_mapping_from.at(i) == NULL || _mapping_from.at(i) != _mapping_from.at(j), "cannot read from same interval twice");
3710       }
3711     }
3712   }
3713 
3714   for (i = 0; i < _mapping_to.length(); i++) {
3715     for (j = i + 1; j < _mapping_to.length(); j++) {
3716       assert(_mapping_to.at(i) != _mapping_to.at(j), "cannot write to same interval twice");
3717     }
3718   }
3719 
3720 
3721   BitMap used_regs(LinearScan::nof_regs + allocator()->frame_map()->argcount() + allocator()->max_spills());
3722   used_regs.clear();
3723   if (!_multiple_reads_allowed) {
3724     for (i = 0; i < _mapping_from.length(); i++) {
3725       Interval* it = _mapping_from.at(i);
3726       if (it != NULL) {
3727         assert(!used_regs.at(it->assigned_reg()), "cannot read from same register twice");
3728         used_regs.set_bit(it->assigned_reg());
3729 
3730         if (it->assigned_regHi() != LinearScan::any_reg) {
3731           assert(!used_regs.at(it->assigned_regHi()), "cannot read from same register twice");
3732           used_regs.set_bit(it->assigned_regHi());
3733         }
3734       }
3735     }
3736   }
3737 
3738   used_regs.clear();
3739   for (i = 0; i < _mapping_to.length(); i++) {
3740     Interval* it = _mapping_to.at(i);
3741     assert(!used_regs.at(it->assigned_reg()), "cannot write to same register twice");
3742     used_regs.set_bit(it->assigned_reg());
3743 
3744     if (it->assigned_regHi() != LinearScan::any_reg) {
3745       assert(!used_regs.at(it->assigned_regHi()), "cannot write to same register twice");
3746       used_regs.set_bit(it->assigned_regHi());
3747     }
3748   }
3749 
3750   used_regs.clear();
3751   for (i = 0; i < _mapping_from.length(); i++) {
3752     Interval* it = _mapping_from.at(i);
3753     if (it != NULL && it->assigned_reg() >= LinearScan::nof_regs) {
3754       used_regs.set_bit(it->assigned_reg());
3755     }
3756   }
3757   for (i = 0; i < _mapping_to.length(); i++) {
3758     Interval* it = _mapping_to.at(i);
3759     assert(!used_regs.at(it->assigned_reg()) || it->assigned_reg() == _mapping_from.at(i)->assigned_reg(), "stack slots used in _mapping_from must be disjoint to _mapping_to");
3760   }
3761 }
3762 
3763 #endif // ASSERT
3764 
3765 
3766 // mark assigned_reg and assigned_regHi of the interval as blocked
3767 void MoveResolver::block_registers(Interval* it) {
3768   int reg = it->assigned_reg();
3769   if (reg < LinearScan::nof_regs) {
3770     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3771     set_register_blocked(reg, 1);
3772   }
3773   reg = it->assigned_regHi();
3774   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3775     assert(_multiple_reads_allowed || register_blocked(reg) == 0, "register already marked as used");
3776     set_register_blocked(reg, 1);
3777   }
3778 }
3779 
3780 // mark assigned_reg and assigned_regHi of the interval as unblocked
3781 void MoveResolver::unblock_registers(Interval* it) {
3782   int reg = it->assigned_reg();
3783   if (reg < LinearScan::nof_regs) {
3784     assert(register_blocked(reg) > 0, "register already marked as unused");
3785     set_register_blocked(reg, -1);
3786   }
3787   reg = it->assigned_regHi();
3788   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3789     assert(register_blocked(reg) > 0, "register already marked as unused");
3790     set_register_blocked(reg, -1);
3791   }
3792 }
3793 
3794 // check if assigned_reg and assigned_regHi of the to-interval are not blocked (or only blocked by from)
3795 bool MoveResolver::save_to_process_move(Interval* from, Interval* to) {
3796   int from_reg = -1;
3797   int from_regHi = -1;
3798   if (from != NULL) {
3799     from_reg = from->assigned_reg();
3800     from_regHi = from->assigned_regHi();
3801   }
3802 
3803   int reg = to->assigned_reg();
3804   if (reg < LinearScan::nof_regs) {
3805     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3806       return false;
3807     }
3808   }
3809   reg = to->assigned_regHi();
3810   if (reg != LinearScan::any_reg && reg < LinearScan::nof_regs) {
3811     if (register_blocked(reg) > 1 || (register_blocked(reg) == 1 && reg != from_reg && reg != from_regHi)) {
3812       return false;
3813     }
3814   }
3815 
3816   return true;
3817 }
3818 
3819 
3820 void MoveResolver::create_insertion_buffer(LIR_List* list) {
3821   assert(!_insertion_buffer.initialized(), "overwriting existing buffer");
3822   _insertion_buffer.init(list);
3823 }
3824 
3825 void MoveResolver::append_insertion_buffer() {
3826   if (_insertion_buffer.initialized()) {
3827     _insertion_buffer.lir_list()->append(&_insertion_buffer);
3828   }
3829   assert(!_insertion_buffer.initialized(), "must be uninitialized now");
3830 
3831   _insert_list = NULL;
3832   _insert_idx = -1;
3833 }
3834 
3835 void MoveResolver::insert_move(Interval* from_interval, Interval* to_interval) {
3836   assert(from_interval->reg_num() != to_interval->reg_num(), "from and to interval equal");
3837   assert(from_interval->type() == to_interval->type(), "move between different types");
3838   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3839   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3840 
3841   LIR_Opr from_opr = LIR_OprFact::virtual_register(from_interval->reg_num(), from_interval->type());
3842   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3843 
3844   if (!_multiple_reads_allowed) {
3845     // the last_use flag is an optimization for FPU stack allocation. When the same
3846     // input interval is used in more than one move, then it is too difficult to determine
3847     // if this move is really the last use.
3848     from_opr = from_opr->make_last_use();
3849   }
3850   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3851 
3852   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: inserted move from register %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3853 }
3854 
3855 void MoveResolver::insert_move(LIR_Opr from_opr, Interval* to_interval) {
3856   assert(from_opr->type() == to_interval->type(), "move between different types");
3857   assert(_insert_list != NULL && _insert_idx != -1, "must setup insert position first");
3858   assert(_insertion_buffer.lir_list() == _insert_list, "wrong insertion buffer");
3859 
3860   LIR_Opr to_opr = LIR_OprFact::virtual_register(to_interval->reg_num(), to_interval->type());
3861   _insertion_buffer.move(_insert_idx, from_opr, to_opr);
3862 
3863   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: inserted move from constant "); from_opr->print(); tty->print_cr("  to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3864 }
3865 
3866 
3867 void MoveResolver::resolve_mappings() {
3868   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: resolving mappings for Block B%d, index %d", _insert_list->block() != NULL ? _insert_list->block()->block_id() : -1, _insert_idx));
3869   DEBUG_ONLY(verify_before_resolve());
3870 
3871   // Block all registers that are used as input operands of a move.
3872   // When a register is blocked, no move to this register is emitted.
3873   // This is necessary for detecting cycles in moves.
3874   int i;
3875   for (i = _mapping_from.length() - 1; i >= 0; i--) {
3876     Interval* from_interval = _mapping_from.at(i);
3877     if (from_interval != NULL) {
3878       block_registers(from_interval);
3879     }
3880   }
3881 
3882   int spill_candidate = -1;
3883   while (_mapping_from.length() > 0) {
3884     bool processed_interval = false;
3885 
3886     for (i = _mapping_from.length() - 1; i >= 0; i--) {
3887       Interval* from_interval = _mapping_from.at(i);
3888       Interval* to_interval = _mapping_to.at(i);
3889 
3890       if (save_to_process_move(from_interval, to_interval)) {
3891         // this inverval can be processed because target is free
3892         if (from_interval != NULL) {
3893           insert_move(from_interval, to_interval);
3894           unblock_registers(from_interval);
3895         } else {
3896           insert_move(_mapping_from_opr.at(i), to_interval);
3897         }
3898         _mapping_from.remove_at(i);
3899         _mapping_from_opr.remove_at(i);
3900         _mapping_to.remove_at(i);
3901 
3902         processed_interval = true;
3903       } else if (from_interval != NULL && from_interval->assigned_reg() < LinearScan::nof_regs) {
3904         // this interval cannot be processed now because target is not free
3905         // it starts in a register, so it is a possible candidate for spilling
3906         spill_candidate = i;
3907       }
3908     }
3909 
3910     if (!processed_interval) {
3911       // no move could be processed because there is a cycle in the move list
3912       // (e.g. r1 -> r2, r2 -> r1), so one interval must be spilled to memory
3913       assert(spill_candidate != -1, "no interval in register for spilling found");
3914 
3915       // create a new spill interval and assign a stack slot to it
3916       Interval* from_interval = _mapping_from.at(spill_candidate);
3917       Interval* spill_interval = new Interval(-1);
3918       spill_interval->set_type(from_interval->type());
3919 
3920       // add a dummy range because real position is difficult to calculate
3921       // Note: this range is a special case when the integrity of the allocation is checked
3922       spill_interval->add_range(1, 2);
3923 
3924       //       do not allocate a new spill slot for temporary interval, but
3925       //       use spill slot assigned to from_interval. Otherwise moves from
3926       //       one stack slot to another can happen (not allowed by LIR_Assembler
3927       int spill_slot = from_interval->canonical_spill_slot();
3928       if (spill_slot < 0) {
3929         spill_slot = allocator()->allocate_spill_slot(type2spill_size[spill_interval->type()] == 2);
3930         from_interval->set_canonical_spill_slot(spill_slot);
3931       }
3932       spill_interval->assign_reg(spill_slot);
3933       allocator()->append_interval(spill_interval);
3934 
3935       TRACE_LINEAR_SCAN(4, tty->print_cr("created new Interval %d for spilling", spill_interval->reg_num()));
3936 
3937       // insert a move from register to stack and update the mapping
3938       insert_move(from_interval, spill_interval);
3939       _mapping_from.at_put(spill_candidate, spill_interval);
3940       unblock_registers(from_interval);
3941     }
3942   }
3943 
3944   // reset to default value
3945   _multiple_reads_allowed = false;
3946 
3947   // check that all intervals have been processed
3948   DEBUG_ONLY(check_empty());
3949 }
3950 
3951 
3952 void MoveResolver::set_insert_position(LIR_List* insert_list, int insert_idx) {
3953   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: setting insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3954   assert(_insert_list == NULL && _insert_idx == -1, "use move_insert_position instead of set_insert_position when data already set");
3955 
3956   create_insertion_buffer(insert_list);
3957   _insert_list = insert_list;
3958   _insert_idx = insert_idx;
3959 }
3960 
3961 void MoveResolver::move_insert_position(LIR_List* insert_list, int insert_idx) {
3962   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: moving insert position to Block B%d, index %d", insert_list->block() != NULL ? insert_list->block()->block_id() : -1, insert_idx));
3963 
3964   if (_insert_list != NULL && (insert_list != _insert_list || insert_idx != _insert_idx)) {
3965     // insert position changed -> resolve current mappings
3966     resolve_mappings();
3967   }
3968 
3969   if (insert_list != _insert_list) {
3970     // block changed -> append insertion_buffer because it is
3971     // bound to a specific block and create a new insertion_buffer
3972     append_insertion_buffer();
3973     create_insertion_buffer(insert_list);
3974   }
3975 
3976   _insert_list = insert_list;
3977   _insert_idx = insert_idx;
3978 }
3979 
3980 void MoveResolver::add_mapping(Interval* from_interval, Interval* to_interval) {
3981   TRACE_LINEAR_SCAN(4, tty->print_cr("MoveResolver: adding mapping from %d (%d, %d) to %d (%d, %d)", from_interval->reg_num(), from_interval->assigned_reg(), from_interval->assigned_regHi(), to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3982 
3983   _mapping_from.append(from_interval);
3984   _mapping_from_opr.append(LIR_OprFact::illegalOpr);
3985   _mapping_to.append(to_interval);
3986 }
3987 
3988 
3989 void MoveResolver::add_mapping(LIR_Opr from_opr, Interval* to_interval) {
3990   TRACE_LINEAR_SCAN(4, tty->print("MoveResolver: adding mapping from "); from_opr->print(); tty->print_cr(" to %d (%d, %d)", to_interval->reg_num(), to_interval->assigned_reg(), to_interval->assigned_regHi()));
3991   assert(from_opr->is_constant(), "only for constants");
3992 
3993   _mapping_from.append(NULL);
3994   _mapping_from_opr.append(from_opr);
3995   _mapping_to.append(to_interval);
3996 }
3997 
3998 void MoveResolver::resolve_and_append_moves() {
3999   if (has_mappings()) {
4000     resolve_mappings();
4001   }
4002   append_insertion_buffer();
4003 }
4004 
4005 
4006 
4007 // **** Implementation of Range *************************************
4008 
4009 Range::Range(int from, int to, Range* next) :
4010   _from(from),
4011   _to(to),
4012   _next(next)
4013 {
4014 }
4015 
4016 // initialize sentinel
4017 Range* Range::_end = NULL;
4018 void Range::initialize(Arena* arena) {
4019   _end = new (arena) Range(max_jint, max_jint, NULL);
4020 }
4021 
4022 int Range::intersects_at(Range* r2) const {
4023   const Range* r1 = this;
4024 
4025   assert(r1 != NULL && r2 != NULL, "null ranges not allowed");
4026   assert(r1 != _end && r2 != _end, "empty ranges not allowed");
4027 
4028   do {
4029     if (r1->from() < r2->from()) {
4030       if (r1->to() <= r2->from()) {
4031         r1 = r1->next(); if (r1 == _end) return -1;
4032       } else {
4033         return r2->from();
4034       }
4035     } else if (r2->from() < r1->from()) {
4036       if (r2->to() <= r1->from()) {
4037         r2 = r2->next(); if (r2 == _end) return -1;
4038       } else {
4039         return r1->from();
4040       }
4041     } else { // r1->from() == r2->from()
4042       if (r1->from() == r1->to()) {
4043         r1 = r1->next(); if (r1 == _end) return -1;
4044       } else if (r2->from() == r2->to()) {
4045         r2 = r2->next(); if (r2 == _end) return -1;
4046       } else {
4047         return r1->from();
4048       }
4049     }
4050   } while (true);
4051 }
4052 
4053 #ifndef PRODUCT
4054 void Range::print(outputStream* out) const {
4055   out->print("[%d, %d[ ", _from, _to);
4056 }
4057 #endif
4058 
4059 
4060 
4061 // **** Implementation of Interval **********************************
4062 
4063 // initialize sentinel
4064 Interval* Interval::_end = NULL;
4065 void Interval::initialize(Arena* arena) {
4066   Range::initialize(arena);
4067   _end = new (arena) Interval(-1);
4068 }
4069 
4070 Interval::Interval(int reg_num) :
4071   _reg_num(reg_num),
4072   _type(T_ILLEGAL),
4073   _first(Range::end()),
4074   _use_pos_and_kinds(12),
4075   _current(Range::end()),
4076   _next(_end),
4077   _state(invalidState),
4078   _assigned_reg(LinearScan::any_reg),
4079   _assigned_regHi(LinearScan::any_reg),
4080   _cached_to(-1),
4081   _cached_opr(LIR_OprFact::illegalOpr),
4082   _cached_vm_reg(VMRegImpl::Bad()),
4083   _split_children(0),
4084   _canonical_spill_slot(-1),
4085   _insert_move_when_activated(false),
4086   _register_hint(NULL),
4087   _spill_state(noDefinitionFound),
4088   _spill_definition_pos(-1)
4089 {
4090   _split_parent = this;
4091   _current_split_child = this;
4092 }
4093 
4094 int Interval::calc_to() {
4095   assert(_first != Range::end(), "interval has no range");
4096 
4097   Range* r = _first;
4098   while (r->next() != Range::end()) {
4099     r = r->next();
4100   }
4101   return r->to();
4102 }
4103 
4104 
4105 #ifdef ASSERT
4106 // consistency check of split-children
4107 void Interval::check_split_children() {
4108   if (_split_children.length() > 0) {
4109     assert(is_split_parent(), "only split parents can have children");
4110 
4111     for (int i = 0; i < _split_children.length(); i++) {
4112       Interval* i1 = _split_children.at(i);
4113 
4114       assert(i1->split_parent() == this, "not a split child of this interval");
4115       assert(i1->type() == type(), "must be equal for all split children");
4116       assert(i1->canonical_spill_slot() == canonical_spill_slot(), "must be equal for all split children");
4117 
4118       for (int j = i + 1; j < _split_children.length(); j++) {
4119         Interval* i2 = _split_children.at(j);
4120 
4121         assert(i1->reg_num() != i2->reg_num(), "same register number");
4122 
4123         if (i1->from() < i2->from()) {
4124           assert(i1->to() <= i2->from() && i1->to() < i2->to(), "intervals overlapping");
4125         } else {
4126           assert(i2->from() < i1->from(), "intervals start at same op_id");
4127           assert(i2->to() <= i1->from() && i2->to() < i1->to(), "intervals overlapping");
4128         }
4129       }
4130     }
4131   }
4132 }
4133 #endif // ASSERT
4134 
4135 Interval* Interval::register_hint(bool search_split_child) const {
4136   if (!search_split_child) {
4137     return _register_hint;
4138   }
4139 
4140   if (_register_hint != NULL) {
4141     assert(_register_hint->is_split_parent(), "ony split parents are valid hint registers");
4142 
4143     if (_register_hint->assigned_reg() >= 0 && _register_hint->assigned_reg() < LinearScan::nof_regs) {
4144       return _register_hint;
4145 
4146     } else if (_register_hint->_split_children.length() > 0) {
4147       // search the first split child that has a register assigned
4148       int len = _register_hint->_split_children.length();
4149       for (int i = 0; i < len; i++) {
4150         Interval* cur = _register_hint->_split_children.at(i);
4151 
4152         if (cur->assigned_reg() >= 0 && cur->assigned_reg() < LinearScan::nof_regs) {
4153           return cur;
4154         }
4155       }
4156     }
4157   }
4158 
4159   // no hint interval found that has a register assigned
4160   return NULL;
4161 }
4162 
4163 
4164 Interval* Interval::split_child_at_op_id(int op_id, LIR_OpVisitState::OprMode mode) {
4165   assert(is_split_parent(), "can only be called for split parents");
4166   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4167 
4168   Interval* result;
4169   if (_split_children.length() == 0) {
4170     result = this;
4171   } else {
4172     result = NULL;
4173     int len = _split_children.length();
4174 
4175     // in outputMode, the end of the interval (op_id == cur->to()) is not valid
4176     int to_offset = (mode == LIR_OpVisitState::outputMode ? 0 : 1);
4177 
4178     int i;
4179     for (i = 0; i < len; i++) {
4180       Interval* cur = _split_children.at(i);
4181       if (cur->from() <= op_id && op_id < cur->to() + to_offset) {
4182         if (i > 0) {
4183           // exchange current split child to start of list (faster access for next call)
4184           _split_children.at_put(i, _split_children.at(0));
4185           _split_children.at_put(0, cur);
4186         }
4187 
4188         // interval found
4189         result = cur;
4190         break;
4191       }
4192     }
4193 
4194 #ifdef ASSERT
4195     for (i = 0; i < len; i++) {
4196       Interval* tmp = _split_children.at(i);
4197       if (tmp != result && tmp->from() <= op_id && op_id < tmp->to() + to_offset) {
4198         tty->print_cr("two valid result intervals found for op_id %d: %d and %d", op_id, result->reg_num(), tmp->reg_num());
4199         result->print();
4200         tmp->print();
4201         assert(false, "two valid result intervals found");
4202       }
4203     }
4204 #endif
4205   }
4206 
4207   assert(result != NULL, "no matching interval found");
4208   assert(result->covers(op_id, mode), "op_id not covered by interval");
4209 
4210   return result;
4211 }
4212 
4213 
4214 // returns the last split child that ends before the given op_id
4215 Interval* Interval::split_child_before_op_id(int op_id) {
4216   assert(op_id >= 0, "invalid op_id");
4217 
4218   Interval* parent = split_parent();
4219   Interval* result = NULL;
4220 
4221   int len = parent->_split_children.length();
4222   assert(len > 0, "no split children available");
4223 
4224   for (int i = len - 1; i >= 0; i--) {
4225     Interval* cur = parent->_split_children.at(i);
4226     if (cur->to() <= op_id && (result == NULL || result->to() < cur->to())) {
4227       result = cur;
4228     }
4229   }
4230 
4231   assert(result != NULL, "no split child found");
4232   return result;
4233 }
4234 
4235 
4236 // checks if op_id is covered by any split child
4237 bool Interval::split_child_covers(int op_id, LIR_OpVisitState::OprMode mode) {
4238   assert(is_split_parent(), "can only be called for split parents");
4239   assert(op_id >= 0, "invalid op_id (method can not be called for spill moves)");
4240 
4241   if (_split_children.length() == 0) {
4242     // simple case if interval was not split
4243     return covers(op_id, mode);
4244 
4245   } else {
4246     // extended case: check all split children
4247     int len = _split_children.length();
4248     for (int i = 0; i < len; i++) {
4249       Interval* cur = _split_children.at(i);
4250       if (cur->covers(op_id, mode)) {
4251         return true;
4252       }
4253     }
4254     return false;
4255   }
4256 }
4257 
4258 
4259 // Note: use positions are sorted descending -> first use has highest index
4260 int Interval::first_usage(IntervalUseKind min_use_kind) const {
4261   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4262 
4263   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4264     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4265       return _use_pos_and_kinds.at(i);
4266     }
4267   }
4268   return max_jint;
4269 }
4270 
4271 int Interval::next_usage(IntervalUseKind min_use_kind, int from) const {
4272   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4273 
4274   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4275     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4276       return _use_pos_and_kinds.at(i);
4277     }
4278   }
4279   return max_jint;
4280 }
4281 
4282 int Interval::next_usage_exact(IntervalUseKind exact_use_kind, int from) const {
4283   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4284 
4285   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4286     if (_use_pos_and_kinds.at(i) >= from && _use_pos_and_kinds.at(i + 1) == exact_use_kind) {
4287       return _use_pos_and_kinds.at(i);
4288     }
4289   }
4290   return max_jint;
4291 }
4292 
4293 int Interval::previous_usage(IntervalUseKind min_use_kind, int from) const {
4294   assert(LinearScan::is_virtual_interval(this), "cannot access use positions for fixed intervals");
4295 
4296   int prev = 0;
4297   for (int i = _use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4298     if (_use_pos_and_kinds.at(i) > from) {
4299       return prev;
4300     }
4301     if (_use_pos_and_kinds.at(i + 1) >= min_use_kind) {
4302       prev = _use_pos_and_kinds.at(i);
4303     }
4304   }
4305   return prev;
4306 }
4307 
4308 void Interval::add_use_pos(int pos, IntervalUseKind use_kind) {
4309   assert(covers(pos, LIR_OpVisitState::inputMode), "use position not covered by live range");
4310 
4311   // do not add use positions for precolored intervals because
4312   // they are never used
4313   if (use_kind != noUse && reg_num() >= LIR_OprDesc::vreg_base) {
4314 #ifdef ASSERT
4315     assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4316     for (int i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4317       assert(pos <= _use_pos_and_kinds.at(i), "already added a use-position with lower position");
4318       assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4319       if (i > 0) {
4320         assert(_use_pos_and_kinds.at(i) < _use_pos_and_kinds.at(i - 2), "not sorted descending");
4321       }
4322     }
4323 #endif
4324 
4325     // Note: add_use is called in descending order, so list gets sorted
4326     //       automatically by just appending new use positions
4327     int len = _use_pos_and_kinds.length();
4328     if (len == 0 || _use_pos_and_kinds.at(len - 2) > pos) {
4329       _use_pos_and_kinds.append(pos);
4330       _use_pos_and_kinds.append(use_kind);
4331     } else if (_use_pos_and_kinds.at(len - 1) < use_kind) {
4332       assert(_use_pos_and_kinds.at(len - 2) == pos, "list not sorted correctly");
4333       _use_pos_and_kinds.at_put(len - 1, use_kind);
4334     }
4335   }
4336 }
4337 
4338 void Interval::add_range(int from, int to) {
4339   assert(from < to, "invalid range");
4340   assert(first() == Range::end() || to < first()->next()->from(), "not inserting at begin of interval");
4341   assert(from <= first()->to(), "not inserting at begin of interval");
4342 
4343   if (first()->from() <= to) {
4344     // join intersecting ranges
4345     first()->set_from(MIN2(from, first()->from()));
4346     first()->set_to  (MAX2(to,   first()->to()));
4347   } else {
4348     // insert new range
4349     _first = new Range(from, to, first());
4350   }
4351 }
4352 
4353 Interval* Interval::new_split_child() {
4354   // allocate new interval
4355   Interval* result = new Interval(-1);
4356   result->set_type(type());
4357 
4358   Interval* parent = split_parent();
4359   result->_split_parent = parent;
4360   result->set_register_hint(parent);
4361 
4362   // insert new interval in children-list of parent
4363   if (parent->_split_children.length() == 0) {
4364     assert(is_split_parent(), "list must be initialized at first split");
4365 
4366     parent->_split_children = IntervalList(4);
4367     parent->_split_children.append(this);
4368   }
4369   parent->_split_children.append(result);
4370 
4371   return result;
4372 }
4373 
4374 // split this interval at the specified position and return
4375 // the remainder as a new interval.
4376 //
4377 // when an interval is split, a bi-directional link is established between the original interval
4378 // (the split parent) and the intervals that are split off this interval (the split children)
4379 // When a split child is split again, the new created interval is also a direct child
4380 // of the original parent (there is no tree of split children stored, but a flat list)
4381 // All split children are spilled to the same stack slot (stored in _canonical_spill_slot)
4382 //
4383 // Note: The new interval has no valid reg_num
4384 Interval* Interval::split(int split_pos) {
4385   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4386 
4387   // allocate new interval
4388   Interval* result = new_split_child();
4389 
4390   // split the ranges
4391   Range* prev = NULL;
4392   Range* cur = _first;
4393   while (cur != Range::end() && cur->to() <= split_pos) {
4394     prev = cur;
4395     cur = cur->next();
4396   }
4397   assert(cur != Range::end(), "split interval after end of last range");
4398 
4399   if (cur->from() < split_pos) {
4400     result->_first = new Range(split_pos, cur->to(), cur->next());
4401     cur->set_to(split_pos);
4402     cur->set_next(Range::end());
4403 
4404   } else {
4405     assert(prev != NULL, "split before start of first range");
4406     result->_first = cur;
4407     prev->set_next(Range::end());
4408   }
4409   result->_current = result->_first;
4410   _cached_to = -1; // clear cached value
4411 
4412   // split list of use positions
4413   int total_len = _use_pos_and_kinds.length();
4414   int start_idx = total_len - 2;
4415   while (start_idx >= 0 && _use_pos_and_kinds.at(start_idx) < split_pos) {
4416     start_idx -= 2;
4417   }
4418 
4419   intStack new_use_pos_and_kinds(total_len - start_idx);
4420   int i;
4421   for (i = start_idx + 2; i < total_len; i++) {
4422     new_use_pos_and_kinds.append(_use_pos_and_kinds.at(i));
4423   }
4424 
4425   _use_pos_and_kinds.truncate(start_idx + 2);
4426   result->_use_pos_and_kinds = _use_pos_and_kinds;
4427   _use_pos_and_kinds = new_use_pos_and_kinds;
4428 
4429 #ifdef ASSERT
4430   assert(_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4431   assert(result->_use_pos_and_kinds.length() % 2 == 0, "must have use kind for each use pos");
4432   assert(_use_pos_and_kinds.length() + result->_use_pos_and_kinds.length() == total_len, "missed some entries");
4433 
4434   for (i = 0; i < _use_pos_and_kinds.length(); i += 2) {
4435     assert(_use_pos_and_kinds.at(i) < split_pos, "must be");
4436     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4437   }
4438   for (i = 0; i < result->_use_pos_and_kinds.length(); i += 2) {
4439     assert(result->_use_pos_and_kinds.at(i) >= split_pos, "must be");
4440     assert(result->_use_pos_and_kinds.at(i + 1) >= firstValidKind && result->_use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4441   }
4442 #endif
4443 
4444   return result;
4445 }
4446 
4447 // split this interval at the specified position and return
4448 // the head as a new interval (the original interval is the tail)
4449 //
4450 // Currently, only the first range can be split, and the new interval
4451 // must not have split positions
4452 Interval* Interval::split_from_start(int split_pos) {
4453   assert(LinearScan::is_virtual_interval(this), "cannot split fixed intervals");
4454   assert(split_pos > from() && split_pos < to(), "can only split inside interval");
4455   assert(split_pos > _first->from() && split_pos <= _first->to(), "can only split inside first range");
4456   assert(first_usage(noUse) > split_pos, "can not split when use positions are present");
4457 
4458   // allocate new interval
4459   Interval* result = new_split_child();
4460 
4461   // the new created interval has only one range (checked by assertion above),
4462   // so the splitting of the ranges is very simple
4463   result->add_range(_first->from(), split_pos);
4464 
4465   if (split_pos == _first->to()) {
4466     assert(_first->next() != Range::end(), "must not be at end");
4467     _first = _first->next();
4468   } else {
4469     _first->set_from(split_pos);
4470   }
4471 
4472   return result;
4473 }
4474 
4475 
4476 // returns true if the op_id is inside the interval
4477 bool Interval::covers(int op_id, LIR_OpVisitState::OprMode mode) const {
4478   Range* cur  = _first;
4479 
4480   while (cur != Range::end() && cur->to() < op_id) {
4481     cur = cur->next();
4482   }
4483   if (cur != Range::end()) {
4484     assert(cur->to() != cur->next()->from(), "ranges not separated");
4485 
4486     if (mode == LIR_OpVisitState::outputMode) {
4487       return cur->from() <= op_id && op_id < cur->to();
4488     } else {
4489       return cur->from() <= op_id && op_id <= cur->to();
4490     }
4491   }
4492   return false;
4493 }
4494 
4495 // returns true if the interval has any hole between hole_from and hole_to
4496 // (even if the hole has only the length 1)
4497 bool Interval::has_hole_between(int hole_from, int hole_to) {
4498   assert(hole_from < hole_to, "check");
4499   assert(from() <= hole_from && hole_to <= to(), "index out of interval");
4500 
4501   Range* cur  = _first;
4502   while (cur != Range::end()) {
4503     assert(cur->to() < cur->next()->from(), "no space between ranges");
4504 
4505     // hole-range starts before this range -> hole
4506     if (hole_from < cur->from()) {
4507       return true;
4508 
4509     // hole-range completely inside this range -> no hole
4510     } else if (hole_to <= cur->to()) {
4511       return false;
4512 
4513     // overlapping of hole-range with this range -> hole
4514     } else if (hole_from <= cur->to()) {
4515       return true;
4516     }
4517 
4518     cur = cur->next();
4519   }
4520 
4521   return false;
4522 }
4523 
4524 
4525 #ifndef PRODUCT
4526 void Interval::print(outputStream* out) const {
4527   const char* SpillState2Name[] = { "no definition", "no spill store", "one spill store", "store at definition", "start in memory", "no optimization" };
4528   const char* UseKind2Name[] = { "N", "L", "S", "M" };
4529 
4530   const char* type_name;
4531   LIR_Opr opr = LIR_OprFact::illegal();
4532   if (reg_num() < LIR_OprDesc::vreg_base) {
4533     type_name = "fixed";
4534     // need a temporary operand for fixed intervals because type() cannot be called
4535     if (assigned_reg() >= pd_first_cpu_reg && assigned_reg() <= pd_last_cpu_reg) {
4536       opr = LIR_OprFact::single_cpu(assigned_reg());
4537     } else if (assigned_reg() >= pd_first_fpu_reg && assigned_reg() <= pd_last_fpu_reg) {
4538       opr = LIR_OprFact::single_fpu(assigned_reg() - pd_first_fpu_reg);
4539 #ifdef X86
4540     } else if (assigned_reg() >= pd_first_xmm_reg && assigned_reg() <= pd_last_xmm_reg) {
4541       opr = LIR_OprFact::single_xmm(assigned_reg() - pd_first_xmm_reg);
4542 #endif
4543     } else {
4544       ShouldNotReachHere();
4545     }
4546   } else {
4547     type_name = type2name(type());
4548     if (assigned_reg() != -1 &&
4549         (LinearScan::num_physical_regs(type()) == 1 || assigned_regHi() != -1)) {
4550       opr = LinearScan::calc_operand_for_interval(this);
4551     }
4552   }
4553 
4554   out->print("%d %s ", reg_num(), type_name);
4555   if (opr->is_valid()) {
4556     out->print("\"");
4557     opr->print(out);
4558     out->print("\" ");
4559   }
4560   out->print("%d %d ", split_parent()->reg_num(), (register_hint(false) != NULL ? register_hint(false)->reg_num() : -1));
4561 
4562   // print ranges
4563   Range* cur = _first;
4564   while (cur != Range::end()) {
4565     cur->print(out);
4566     cur = cur->next();
4567     assert(cur != NULL, "range list not closed with range sentinel");
4568   }
4569 
4570   // print use positions
4571   int prev = 0;
4572   assert(_use_pos_and_kinds.length() % 2 == 0, "must be");
4573   for (int i =_use_pos_and_kinds.length() - 2; i >= 0; i -= 2) {
4574     assert(_use_pos_and_kinds.at(i + 1) >= firstValidKind && _use_pos_and_kinds.at(i + 1) <= lastValidKind, "invalid use kind");
4575     assert(prev < _use_pos_and_kinds.at(i), "use positions not sorted");
4576 
4577     out->print("%d %s ", _use_pos_and_kinds.at(i), UseKind2Name[_use_pos_and_kinds.at(i + 1)]);
4578     prev = _use_pos_and_kinds.at(i);
4579   }
4580 
4581   out->print(" \"%s\"", SpillState2Name[spill_state()]);
4582   out->cr();
4583 }
4584 #endif
4585 
4586 
4587 
4588 // **** Implementation of IntervalWalker ****************************
4589 
4590 IntervalWalker::IntervalWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4591  : _compilation(allocator->compilation())
4592  , _allocator(allocator)
4593 {
4594   _unhandled_first[fixedKind] = unhandled_fixed_first;
4595   _unhandled_first[anyKind]   = unhandled_any_first;
4596   _active_first[fixedKind]    = Interval::end();
4597   _inactive_first[fixedKind]  = Interval::end();
4598   _active_first[anyKind]      = Interval::end();
4599   _inactive_first[anyKind]    = Interval::end();
4600   _current_position = -1;
4601   _current = NULL;
4602   next_interval();
4603 }
4604 
4605 
4606 // append interval at top of list
4607 void IntervalWalker::append_unsorted(Interval** list, Interval* interval) {
4608   interval->set_next(*list); *list = interval;
4609 }
4610 
4611 
4612 // append interval in order of current range from()
4613 void IntervalWalker::append_sorted(Interval** list, Interval* interval) {
4614   Interval* prev = NULL;
4615   Interval* cur  = *list;
4616   while (cur->current_from() < interval->current_from()) {
4617     prev = cur; cur = cur->next();
4618   }
4619   if (prev == NULL) {
4620     *list = interval;
4621   } else {
4622     prev->set_next(interval);
4623   }
4624   interval->set_next(cur);
4625 }
4626 
4627 void IntervalWalker::append_to_unhandled(Interval** list, Interval* interval) {
4628   assert(interval->from() >= current()->current_from(), "cannot append new interval before current walk position");
4629 
4630   Interval* prev = NULL;
4631   Interval* cur  = *list;
4632   while (cur->from() < interval->from() || (cur->from() == interval->from() && cur->first_usage(noUse) < interval->first_usage(noUse))) {
4633     prev = cur; cur = cur->next();
4634   }
4635   if (prev == NULL) {
4636     *list = interval;
4637   } else {
4638     prev->set_next(interval);
4639   }
4640   interval->set_next(cur);
4641 }
4642 
4643 
4644 inline bool IntervalWalker::remove_from_list(Interval** list, Interval* i) {
4645   while (*list != Interval::end() && *list != i) {
4646     list = (*list)->next_addr();
4647   }
4648   if (*list != Interval::end()) {
4649     assert(*list == i, "check");
4650     *list = (*list)->next();
4651     return true;
4652   } else {
4653     return false;
4654   }
4655 }
4656 
4657 void IntervalWalker::remove_from_list(Interval* i) {
4658   bool deleted;
4659 
4660   if (i->state() == activeState) {
4661     deleted = remove_from_list(active_first_addr(anyKind), i);
4662   } else {
4663     assert(i->state() == inactiveState, "invalid state");
4664     deleted = remove_from_list(inactive_first_addr(anyKind), i);
4665   }
4666 
4667   assert(deleted, "interval has not been found in list");
4668 }
4669 
4670 
4671 void IntervalWalker::walk_to(IntervalState state, int from) {
4672   assert (state == activeState || state == inactiveState, "wrong state");
4673   for_each_interval_kind(kind) {
4674     Interval** prev = state == activeState ? active_first_addr(kind) : inactive_first_addr(kind);
4675     Interval* next   = *prev;
4676     while (next->current_from() <= from) {
4677       Interval* cur = next;
4678       next = cur->next();
4679 
4680       bool range_has_changed = false;
4681       while (cur->current_to() <= from) {
4682         cur->next_range();
4683         range_has_changed = true;
4684       }
4685 
4686       // also handle move from inactive list to active list
4687       range_has_changed = range_has_changed || (state == inactiveState && cur->current_from() <= from);
4688 
4689       if (range_has_changed) {
4690         // remove cur from list
4691         *prev = next;
4692         if (cur->current_at_end()) {
4693           // move to handled state (not maintained as a list)
4694           cur->set_state(handledState);
4695           interval_moved(cur, kind, state, handledState);
4696         } else if (cur->current_from() <= from){
4697           // sort into active list
4698           append_sorted(active_first_addr(kind), cur);
4699           cur->set_state(activeState);
4700           if (*prev == cur) {
4701             assert(state == activeState, "check");
4702             prev = cur->next_addr();
4703           }
4704           interval_moved(cur, kind, state, activeState);
4705         } else {
4706           // sort into inactive list
4707           append_sorted(inactive_first_addr(kind), cur);
4708           cur->set_state(inactiveState);
4709           if (*prev == cur) {
4710             assert(state == inactiveState, "check");
4711             prev = cur->next_addr();
4712           }
4713           interval_moved(cur, kind, state, inactiveState);
4714         }
4715       } else {
4716         prev = cur->next_addr();
4717         continue;
4718       }
4719     }
4720   }
4721 }
4722 
4723 
4724 void IntervalWalker::next_interval() {
4725   IntervalKind kind;
4726   Interval* any   = _unhandled_first[anyKind];
4727   Interval* fixed = _unhandled_first[fixedKind];
4728 
4729   if (any != Interval::end()) {
4730     // intervals may start at same position -> prefer fixed interval
4731     kind = fixed != Interval::end() && fixed->from() <= any->from() ? fixedKind : anyKind;
4732 
4733     assert (kind == fixedKind && fixed->from() <= any->from() ||
4734             kind == anyKind   && any->from() <= fixed->from(), "wrong interval!!!");
4735     assert(any == Interval::end() || fixed == Interval::end() || any->from() != fixed->from() || kind == fixedKind, "if fixed and any-Interval start at same position, fixed must be processed first");
4736 
4737   } else if (fixed != Interval::end()) {
4738     kind = fixedKind;
4739   } else {
4740     _current = NULL; return;
4741   }
4742   _current_kind = kind;
4743   _current = _unhandled_first[kind];
4744   _unhandled_first[kind] = _current->next();
4745   _current->set_next(Interval::end());
4746   _current->rewind_range();
4747 }
4748 
4749 
4750 void IntervalWalker::walk_to(int lir_op_id) {
4751   assert(_current_position <= lir_op_id, "can not walk backwards");
4752   while (current() != NULL) {
4753     bool is_active = current()->from() <= lir_op_id;
4754     int id = is_active ? current()->from() : lir_op_id;
4755 
4756     TRACE_LINEAR_SCAN(2, if (_current_position < id) { tty->cr(); tty->print_cr("walk_to(%d) **************************************************************", id); })
4757 
4758     // set _current_position prior to call of walk_to
4759     _current_position = id;
4760 
4761     // call walk_to even if _current_position == id
4762     walk_to(activeState, id);
4763     walk_to(inactiveState, id);
4764 
4765     if (is_active) {
4766       current()->set_state(activeState);
4767       if (activate_current()) {
4768         append_sorted(active_first_addr(current_kind()), current());
4769         interval_moved(current(), current_kind(), unhandledState, activeState);
4770       }
4771 
4772       next_interval();
4773     } else {
4774       return;
4775     }
4776   }
4777 }
4778 
4779 void IntervalWalker::interval_moved(Interval* interval, IntervalKind kind, IntervalState from, IntervalState to) {
4780 #ifndef PRODUCT
4781   if (TraceLinearScanLevel >= 4) {
4782     #define print_state(state) \
4783     switch(state) {\
4784       case unhandledState: tty->print("unhandled"); break;\
4785       case activeState: tty->print("active"); break;\
4786       case inactiveState: tty->print("inactive"); break;\
4787       case handledState: tty->print("handled"); break;\
4788       default: ShouldNotReachHere(); \
4789     }
4790 
4791     print_state(from); tty->print(" to "); print_state(to);
4792     tty->fill_to(23);
4793     interval->print();
4794 
4795     #undef print_state
4796   }
4797 #endif
4798 }
4799 
4800 
4801 
4802 // **** Implementation of LinearScanWalker **************************
4803 
4804 LinearScanWalker::LinearScanWalker(LinearScan* allocator, Interval* unhandled_fixed_first, Interval* unhandled_any_first)
4805   : IntervalWalker(allocator, unhandled_fixed_first, unhandled_any_first)
4806   , _move_resolver(allocator)
4807 {
4808   for (int i = 0; i < LinearScan::nof_regs; i++) {
4809     _spill_intervals[i] = new IntervalList(2);
4810   }
4811 }
4812 
4813 
4814 inline void LinearScanWalker::init_use_lists(bool only_process_use_pos) {
4815   for (int i = _first_reg; i <= _last_reg; i++) {
4816     _use_pos[i] = max_jint;
4817 
4818     if (!only_process_use_pos) {
4819       _block_pos[i] = max_jint;
4820       _spill_intervals[i]->clear();
4821     }
4822   }
4823 }
4824 
4825 inline void LinearScanWalker::exclude_from_use(int reg) {
4826   assert(reg < LinearScan::nof_regs, "interval must have a register assigned (stack slots not allowed)");
4827   if (reg >= _first_reg && reg <= _last_reg) {
4828     _use_pos[reg] = 0;
4829   }
4830 }
4831 inline void LinearScanWalker::exclude_from_use(Interval* i) {
4832   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4833 
4834   exclude_from_use(i->assigned_reg());
4835   exclude_from_use(i->assigned_regHi());
4836 }
4837 
4838 inline void LinearScanWalker::set_use_pos(int reg, Interval* i, int use_pos, bool only_process_use_pos) {
4839   assert(use_pos != 0, "must use exclude_from_use to set use_pos to 0");
4840 
4841   if (reg >= _first_reg && reg <= _last_reg) {
4842     if (_use_pos[reg] > use_pos) {
4843       _use_pos[reg] = use_pos;
4844     }
4845     if (!only_process_use_pos) {
4846       _spill_intervals[reg]->append(i);
4847     }
4848   }
4849 }
4850 inline void LinearScanWalker::set_use_pos(Interval* i, int use_pos, bool only_process_use_pos) {
4851   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4852   if (use_pos != -1) {
4853     set_use_pos(i->assigned_reg(), i, use_pos, only_process_use_pos);
4854     set_use_pos(i->assigned_regHi(), i, use_pos, only_process_use_pos);
4855   }
4856 }
4857 
4858 inline void LinearScanWalker::set_block_pos(int reg, Interval* i, int block_pos) {
4859   if (reg >= _first_reg && reg <= _last_reg) {
4860     if (_block_pos[reg] > block_pos) {
4861       _block_pos[reg] = block_pos;
4862     }
4863     if (_use_pos[reg] > block_pos) {
4864       _use_pos[reg] = block_pos;
4865     }
4866   }
4867 }
4868 inline void LinearScanWalker::set_block_pos(Interval* i, int block_pos) {
4869   assert(i->assigned_reg() != any_reg, "interval has no register assigned");
4870   if (block_pos != -1) {
4871     set_block_pos(i->assigned_reg(), i, block_pos);
4872     set_block_pos(i->assigned_regHi(), i, block_pos);
4873   }
4874 }
4875 
4876 
4877 void LinearScanWalker::free_exclude_active_fixed() {
4878   Interval* list = active_first(fixedKind);
4879   while (list != Interval::end()) {
4880     assert(list->assigned_reg() < LinearScan::nof_regs, "active interval must have a register assigned");
4881     exclude_from_use(list);
4882     list = list->next();
4883   }
4884 }
4885 
4886 void LinearScanWalker::free_exclude_active_any() {
4887   Interval* list = active_first(anyKind);
4888   while (list != Interval::end()) {
4889     exclude_from_use(list);
4890     list = list->next();
4891   }
4892 }
4893 
4894 void LinearScanWalker::free_collect_inactive_fixed(Interval* cur) {
4895   Interval* list = inactive_first(fixedKind);
4896   while (list != Interval::end()) {
4897     if (cur->to() <= list->current_from()) {
4898       assert(list->current_intersects_at(cur) == -1, "must not intersect");
4899       set_use_pos(list, list->current_from(), true);
4900     } else {
4901       set_use_pos(list, list->current_intersects_at(cur), true);
4902     }
4903     list = list->next();
4904   }
4905 }
4906 
4907 void LinearScanWalker::free_collect_inactive_any(Interval* cur) {
4908   Interval* list = inactive_first(anyKind);
4909   while (list != Interval::end()) {
4910     set_use_pos(list, list->current_intersects_at(cur), true);
4911     list = list->next();
4912   }
4913 }
4914 
4915 void LinearScanWalker::free_collect_unhandled(IntervalKind kind, Interval* cur) {
4916   Interval* list = unhandled_first(kind);
4917   while (list != Interval::end()) {
4918     set_use_pos(list, list->intersects_at(cur), true);
4919     if (kind == fixedKind && cur->to() <= list->from()) {
4920       set_use_pos(list, list->from(), true);
4921     }
4922     list = list->next();
4923   }
4924 }
4925 
4926 void LinearScanWalker::spill_exclude_active_fixed() {
4927   Interval* list = active_first(fixedKind);
4928   while (list != Interval::end()) {
4929     exclude_from_use(list);
4930     list = list->next();
4931   }
4932 }
4933 
4934 void LinearScanWalker::spill_block_unhandled_fixed(Interval* cur) {
4935   Interval* list = unhandled_first(fixedKind);
4936   while (list != Interval::end()) {
4937     set_block_pos(list, list->intersects_at(cur));
4938     list = list->next();
4939   }
4940 }
4941 
4942 void LinearScanWalker::spill_block_inactive_fixed(Interval* cur) {
4943   Interval* list = inactive_first(fixedKind);
4944   while (list != Interval::end()) {
4945     if (cur->to() > list->current_from()) {
4946       set_block_pos(list, list->current_intersects_at(cur));
4947     } else {
4948       assert(list->current_intersects_at(cur) == -1, "invalid optimization: intervals intersect");
4949     }
4950 
4951     list = list->next();
4952   }
4953 }
4954 
4955 void LinearScanWalker::spill_collect_active_any() {
4956   Interval* list = active_first(anyKind);
4957   while (list != Interval::end()) {
4958     set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4959     list = list->next();
4960   }
4961 }
4962 
4963 void LinearScanWalker::spill_collect_inactive_any(Interval* cur) {
4964   Interval* list = inactive_first(anyKind);
4965   while (list != Interval::end()) {
4966     if (list->current_intersects(cur)) {
4967       set_use_pos(list, MIN2(list->next_usage(loopEndMarker, _current_position), list->to()), false);
4968     }
4969     list = list->next();
4970   }
4971 }
4972 
4973 
4974 void LinearScanWalker::insert_move(int op_id, Interval* src_it, Interval* dst_it) {
4975   // output all moves here. When source and target are equal, the move is
4976   // optimized away later in assign_reg_nums
4977 
4978   op_id = (op_id + 1) & ~1;
4979   BlockBegin* op_block = allocator()->block_of_op_with_id(op_id);
4980   assert(op_id > 0 && allocator()->block_of_op_with_id(op_id - 2) == op_block, "cannot insert move at block boundary");
4981 
4982   // calculate index of instruction inside instruction list of current block
4983   // the minimal index (for a block with no spill moves) can be calculated because the
4984   // numbering of instructions is known.
4985   // When the block already contains spill moves, the index must be increased until the
4986   // correct index is reached.
4987   LIR_OpList* list = op_block->lir()->instructions_list();
4988   int index = (op_id - list->at(0)->id()) / 2;
4989   assert(list->at(index)->id() <= op_id, "error in calculation");
4990 
4991   while (list->at(index)->id() != op_id) {
4992     index++;
4993     assert(0 <= index && index < list->length(), "index out of bounds");
4994   }
4995   assert(1 <= index && index < list->length(), "index out of bounds");
4996   assert(list->at(index)->id() == op_id, "error in calculation");
4997 
4998   // insert new instruction before instruction at position index
4999   _move_resolver.move_insert_position(op_block->lir(), index - 1);
5000   _move_resolver.add_mapping(src_it, dst_it);
5001 }
5002 
5003 
5004 int LinearScanWalker::find_optimal_split_pos(BlockBegin* min_block, BlockBegin* max_block, int max_split_pos) {
5005   int from_block_nr = min_block->linear_scan_number();
5006   int to_block_nr = max_block->linear_scan_number();
5007 
5008   assert(0 <= from_block_nr && from_block_nr < block_count(), "out of range");
5009   assert(0 <= to_block_nr && to_block_nr < block_count(), "out of range");
5010   assert(from_block_nr < to_block_nr, "must cross block boundary");
5011 
5012   // Try to split at end of max_block. If this would be after
5013   // max_split_pos, then use the begin of max_block
5014   int optimal_split_pos = max_block->last_lir_instruction_id() + 2;
5015   if (optimal_split_pos > max_split_pos) {
5016     optimal_split_pos = max_block->first_lir_instruction_id();
5017   }
5018 
5019   int min_loop_depth = max_block->loop_depth();
5020   for (int i = to_block_nr - 1; i >= from_block_nr; i--) {
5021     BlockBegin* cur = block_at(i);
5022 
5023     if (cur->loop_depth() < min_loop_depth) {
5024       // block with lower loop-depth found -> split at the end of this block
5025       min_loop_depth = cur->loop_depth();
5026       optimal_split_pos = cur->last_lir_instruction_id() + 2;
5027     }
5028   }
5029   assert(optimal_split_pos > allocator()->max_lir_op_id() || allocator()->is_block_begin(optimal_split_pos), "algorithm must move split pos to block boundary");
5030 
5031   return optimal_split_pos;
5032 }
5033 
5034 
5035 int LinearScanWalker::find_optimal_split_pos(Interval* it, int min_split_pos, int max_split_pos, bool do_loop_optimization) {
5036   int optimal_split_pos = -1;
5037   if (min_split_pos == max_split_pos) {
5038     // trivial case, no optimization of split position possible
5039     TRACE_LINEAR_SCAN(4, tty->print_cr("      min-pos and max-pos are equal, no optimization possible"));
5040     optimal_split_pos = min_split_pos;
5041 
5042   } else {
5043     assert(min_split_pos < max_split_pos, "must be true then");
5044     assert(min_split_pos > 0, "cannot access min_split_pos - 1 otherwise");
5045 
5046     // reason for using min_split_pos - 1: when the minimal split pos is exactly at the
5047     // beginning of a block, then min_split_pos is also a possible split position.
5048     // Use the block before as min_block, because then min_block->last_lir_instruction_id() + 2 == min_split_pos
5049     BlockBegin* min_block = allocator()->block_of_op_with_id(min_split_pos - 1);
5050 
5051     // reason for using max_split_pos - 1: otherwise there would be an assertion failure
5052     // when an interval ends at the end of the last block of the method
5053     // (in this case, max_split_pos == allocator()->max_lir_op_id() + 2, and there is no
5054     // block at this op_id)
5055     BlockBegin* max_block = allocator()->block_of_op_with_id(max_split_pos - 1);
5056 
5057     assert(min_block->linear_scan_number() <= max_block->linear_scan_number(), "invalid order");
5058     if (min_block == max_block) {
5059       // split position cannot be moved to block boundary, so split as late as possible
5060       TRACE_LINEAR_SCAN(4, tty->print_cr("      cannot move split pos to block boundary because min_pos and max_pos are in same block"));
5061       optimal_split_pos = max_split_pos;
5062 
5063     } else if (it->has_hole_between(max_split_pos - 1, max_split_pos) && !allocator()->is_block_begin(max_split_pos)) {
5064       // Do not move split position if the interval has a hole before max_split_pos.
5065       // Intervals resulting from Phi-Functions have more than one definition (marked
5066       // as mustHaveRegister) with a hole before each definition. When the register is needed
5067       // for the second definition, an earlier reloading is unnecessary.
5068       TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has hole just before max_split_pos, so splitting at max_split_pos"));
5069       optimal_split_pos = max_split_pos;
5070 
5071     } else {
5072       // seach optimal block boundary between min_split_pos and max_split_pos
5073       TRACE_LINEAR_SCAN(4, tty->print_cr("      moving split pos to optimal block boundary between block B%d and B%d", min_block->block_id(), max_block->block_id()));
5074 
5075       if (do_loop_optimization) {
5076         // Loop optimization: if a loop-end marker is found between min- and max-position,
5077         // then split before this loop
5078         int loop_end_pos = it->next_usage_exact(loopEndMarker, min_block->last_lir_instruction_id() + 2);
5079         TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization: loop end found at pos %d", loop_end_pos));
5080 
5081         assert(loop_end_pos > min_split_pos, "invalid order");
5082         if (loop_end_pos < max_split_pos) {
5083           // loop-end marker found between min- and max-position
5084           // if it is not the end marker for the same loop as the min-position, then move
5085           // the max-position to this loop block.
5086           // Desired result: uses tagged as shouldHaveRegister inside a loop cause a reloading
5087           // of the interval (normally, only mustHaveRegister causes a reloading)
5088           BlockBegin* loop_block = allocator()->block_of_op_with_id(loop_end_pos);
5089 
5090           TRACE_LINEAR_SCAN(4, tty->print_cr("      interval is used in loop that ends in block B%d, so trying to move max_block back from B%d to B%d", loop_block->block_id(), max_block->block_id(), loop_block->block_id()));
5091           assert(loop_block != min_block, "loop_block and min_block must be different because block boundary is needed between");
5092 
5093           optimal_split_pos = find_optimal_split_pos(min_block, loop_block, loop_block->last_lir_instruction_id() + 2);
5094           if (optimal_split_pos == loop_block->last_lir_instruction_id() + 2) {
5095             optimal_split_pos = -1;
5096             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization not necessary"));
5097           } else {
5098             TRACE_LINEAR_SCAN(4, tty->print_cr("      loop optimization successful"));
5099           }
5100         }
5101       }
5102 
5103       if (optimal_split_pos == -1) {
5104         // not calculated by loop optimization
5105         optimal_split_pos = find_optimal_split_pos(min_block, max_block, max_split_pos);
5106       }
5107     }
5108   }
5109   TRACE_LINEAR_SCAN(4, tty->print_cr("      optimal split position: %d", optimal_split_pos));
5110 
5111   return optimal_split_pos;
5112 }
5113 
5114 
5115 /*
5116   split an interval at the optimal position between min_split_pos and
5117   max_split_pos in two parts:
5118   1) the left part has already a location assigned
5119   2) the right part is sorted into to the unhandled-list
5120 */
5121 void LinearScanWalker::split_before_usage(Interval* it, int min_split_pos, int max_split_pos) {
5122   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting interval: "); it->print());
5123   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5124 
5125   assert(it->from() < min_split_pos,         "cannot split at start of interval");
5126   assert(current_position() < min_split_pos, "cannot split before current position");
5127   assert(min_split_pos <= max_split_pos,     "invalid order");
5128   assert(max_split_pos <= it->to(),          "cannot split after end of interval");
5129 
5130   int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, true);
5131 
5132   assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5133   assert(optimal_split_pos <= it->to(),  "cannot split after end of interval");
5134   assert(optimal_split_pos > it->from(), "cannot split at start of interval");
5135 
5136   if (optimal_split_pos == it->to() && it->next_usage(mustHaveRegister, min_split_pos) == max_jint) {
5137     // the split position would be just before the end of the interval
5138     // -> no split at all necessary
5139     TRACE_LINEAR_SCAN(4, tty->print_cr("      no split necessary because optimal split position is at end of interval"));
5140     return;
5141   }
5142 
5143   // must calculate this before the actual split is performed and before split position is moved to odd op_id
5144   bool move_necessary = !allocator()->is_block_begin(optimal_split_pos) && !it->has_hole_between(optimal_split_pos - 1, optimal_split_pos);
5145 
5146   if (!allocator()->is_block_begin(optimal_split_pos)) {
5147     // move position before actual instruction (odd op_id)
5148     optimal_split_pos = (optimal_split_pos - 1) | 1;
5149   }
5150 
5151   TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5152   assert(allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5153   assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5154 
5155   Interval* split_part = it->split(optimal_split_pos);
5156 
5157   allocator()->append_interval(split_part);
5158   allocator()->copy_register_flags(it, split_part);
5159   split_part->set_insert_move_when_activated(move_necessary);
5160   append_to_unhandled(unhandled_first_addr(anyKind), split_part);
5161 
5162   TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts (insert_move_when_activated: %d)", move_necessary));
5163   TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5164   TRACE_LINEAR_SCAN(2, tty->print   ("      "); split_part->print());
5165 }
5166 
5167 /*
5168   split an interval at the optimal position between min_split_pos and
5169   max_split_pos in two parts:
5170   1) the left part has already a location assigned
5171   2) the right part is always on the stack and therefore ignored in further processing
5172 */
5173 void LinearScanWalker::split_for_spilling(Interval* it) {
5174   // calculate allowed range of splitting position
5175   int max_split_pos = current_position();
5176   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, max_split_pos) + 1, it->from());
5177 
5178   TRACE_LINEAR_SCAN(2, tty->print   ("----- splitting and spilling interval: "); it->print());
5179   TRACE_LINEAR_SCAN(2, tty->print_cr("      between %d and %d", min_split_pos, max_split_pos));
5180 
5181   assert(it->state() == activeState,     "why spill interval that is not active?");
5182   assert(it->from() <= min_split_pos,    "cannot split before start of interval");
5183   assert(min_split_pos <= max_split_pos, "invalid order");
5184   assert(max_split_pos < it->to(),       "cannot split at end end of interval");
5185   assert(current_position() < it->to(),  "interval must not end before current position");
5186 
5187   if (min_split_pos == it->from()) {
5188     // the whole interval is never used, so spill it entirely to memory
5189     TRACE_LINEAR_SCAN(2, tty->print_cr("      spilling entire interval because split pos is at beginning of interval"));
5190     assert(it->first_usage(shouldHaveRegister) > current_position(), "interval must not have use position before current_position");
5191 
5192     allocator()->assign_spill_slot(it);
5193     allocator()->change_spill_state(it, min_split_pos);
5194 
5195     // Also kick parent intervals out of register to memory when they have no use
5196     // position. This avoids short interval in register surrounded by intervals in
5197     // memory -> avoid useless moves from memory to register and back
5198     Interval* parent = it;
5199     while (parent != NULL && parent->is_split_child()) {
5200       parent = parent->split_child_before_op_id(parent->from());
5201 
5202       if (parent->assigned_reg() < LinearScan::nof_regs) {
5203         if (parent->first_usage(shouldHaveRegister) == max_jint) {
5204           // parent is never used, so kick it out of its assigned register
5205           TRACE_LINEAR_SCAN(4, tty->print_cr("      kicking out interval %d out of its register because it is never used", parent->reg_num()));
5206           allocator()->assign_spill_slot(parent);
5207         } else {
5208           // do not go further back because the register is actually used by the interval
5209           parent = NULL;
5210         }
5211       }
5212     }
5213 
5214   } else {
5215     // search optimal split pos, split interval and spill only the right hand part
5216     int optimal_split_pos = find_optimal_split_pos(it, min_split_pos, max_split_pos, false);
5217 
5218     assert(min_split_pos <= optimal_split_pos && optimal_split_pos <= max_split_pos, "out of range");
5219     assert(optimal_split_pos < it->to(), "cannot split at end of interval");
5220     assert(optimal_split_pos >= it->from(), "cannot split before start of interval");
5221 
5222     if (!allocator()->is_block_begin(optimal_split_pos)) {
5223       // move position before actual instruction (odd op_id)
5224       optimal_split_pos = (optimal_split_pos - 1) | 1;
5225     }
5226 
5227     TRACE_LINEAR_SCAN(4, tty->print_cr("      splitting at position %d", optimal_split_pos));
5228     assert(allocator()->is_block_begin(optimal_split_pos)  || (optimal_split_pos % 2 == 1), "split pos must be odd when not on block boundary");
5229     assert(!allocator()->is_block_begin(optimal_split_pos) || (optimal_split_pos % 2 == 0), "split pos must be even on block boundary");
5230 
5231     Interval* spilled_part = it->split(optimal_split_pos);
5232     allocator()->append_interval(spilled_part);
5233     allocator()->assign_spill_slot(spilled_part);
5234     allocator()->change_spill_state(spilled_part, optimal_split_pos);
5235 
5236     if (!allocator()->is_block_begin(optimal_split_pos)) {
5237       TRACE_LINEAR_SCAN(4, tty->print_cr("      inserting move from interval %d to %d", it->reg_num(), spilled_part->reg_num()));
5238       insert_move(optimal_split_pos, it, spilled_part);
5239     }
5240 
5241     // the current_split_child is needed later when moves are inserted for reloading
5242     assert(spilled_part->current_split_child() == it, "overwriting wrong current_split_child");
5243     spilled_part->make_current_split_child();
5244 
5245     TRACE_LINEAR_SCAN(2, tty->print_cr("      split interval in two parts"));
5246     TRACE_LINEAR_SCAN(2, tty->print   ("      "); it->print());
5247     TRACE_LINEAR_SCAN(2, tty->print   ("      "); spilled_part->print());
5248   }
5249 }
5250 
5251 
5252 void LinearScanWalker::split_stack_interval(Interval* it) {
5253   int min_split_pos = current_position() + 1;
5254   int max_split_pos = MIN2(it->first_usage(shouldHaveRegister), it->to());
5255 
5256   split_before_usage(it, min_split_pos, max_split_pos);
5257 }
5258 
5259 void LinearScanWalker::split_when_partial_register_available(Interval* it, int register_available_until) {
5260   int min_split_pos = MAX2(it->previous_usage(shouldHaveRegister, register_available_until), it->from() + 1);
5261   int max_split_pos = register_available_until;
5262 
5263   split_before_usage(it, min_split_pos, max_split_pos);
5264 }
5265 
5266 void LinearScanWalker::split_and_spill_interval(Interval* it) {
5267   assert(it->state() == activeState || it->state() == inactiveState, "other states not allowed");
5268 
5269   int current_pos = current_position();
5270   if (it->state() == inactiveState) {
5271     // the interval is currently inactive, so no spill slot is needed for now.
5272     // when the split part is activated, the interval has a new chance to get a register,
5273     // so in the best case no stack slot is necessary
5274     assert(it->has_hole_between(current_pos - 1, current_pos + 1), "interval can not be inactive otherwise");
5275     split_before_usage(it, current_pos + 1, current_pos + 1);
5276 
5277   } else {
5278     // search the position where the interval must have a register and split
5279     // at the optimal position before.
5280     // The new created part is added to the unhandled list and will get a register
5281     // when it is activated
5282     int min_split_pos = current_pos + 1;
5283     int max_split_pos = MIN2(it->next_usage(mustHaveRegister, min_split_pos), it->to());
5284 
5285     split_before_usage(it, min_split_pos, max_split_pos);
5286 
5287     assert(it->next_usage(mustHaveRegister, current_pos) == max_jint, "the remaining part is spilled to stack and therefore has no register");
5288     split_for_spilling(it);
5289   }
5290 }
5291 
5292 
5293 int LinearScanWalker::find_free_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5294   int min_full_reg = any_reg;
5295   int max_partial_reg = any_reg;
5296 
5297   for (int i = _first_reg; i <= _last_reg; i++) {
5298     if (i == ignore_reg) {
5299       // this register must be ignored
5300 
5301     } else if (_use_pos[i] >= interval_to) {
5302       // this register is free for the full interval
5303       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5304         min_full_reg = i;
5305       }
5306     } else if (_use_pos[i] > reg_needed_until) {
5307       // this register is at least free until reg_needed_until
5308       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5309         max_partial_reg = i;
5310       }
5311     }
5312   }
5313 
5314   if (min_full_reg != any_reg) {
5315     return min_full_reg;
5316   } else if (max_partial_reg != any_reg) {
5317     *need_split = true;
5318     return max_partial_reg;
5319   } else {
5320     return any_reg;
5321   }
5322 }
5323 
5324 int LinearScanWalker::find_free_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5325   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5326 
5327   int min_full_reg = any_reg;
5328   int max_partial_reg = any_reg;
5329 
5330   for (int i = _first_reg; i < _last_reg; i+=2) {
5331     if (_use_pos[i] >= interval_to && _use_pos[i + 1] >= interval_to) {
5332       // this register is free for the full interval
5333       if (min_full_reg == any_reg || i == hint_reg || (_use_pos[i] < _use_pos[min_full_reg] && min_full_reg != hint_reg)) {
5334         min_full_reg = i;
5335       }
5336     } else if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5337       // this register is at least free until reg_needed_until
5338       if (max_partial_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_partial_reg] && max_partial_reg != hint_reg)) {
5339         max_partial_reg = i;
5340       }
5341     }
5342   }
5343 
5344   if (min_full_reg != any_reg) {
5345     return min_full_reg;
5346   } else if (max_partial_reg != any_reg) {
5347     *need_split = true;
5348     return max_partial_reg;
5349   } else {
5350     return any_reg;
5351   }
5352 }
5353 
5354 
5355 bool LinearScanWalker::alloc_free_reg(Interval* cur) {
5356   TRACE_LINEAR_SCAN(2, tty->print("trying to find free register for "); cur->print());
5357 
5358   init_use_lists(true);
5359   free_exclude_active_fixed();
5360   free_exclude_active_any();
5361   free_collect_inactive_fixed(cur);
5362   free_collect_inactive_any(cur);
5363 //  free_collect_unhandled(fixedKind, cur);
5364   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5365 
5366   // _use_pos contains the start of the next interval that has this register assigned
5367   // (either as a fixed register or a normal allocated register in the past)
5368   // only intervals overlapping with cur are processed, non-overlapping invervals can be ignored safely
5369   TRACE_LINEAR_SCAN(4, tty->print_cr("      state of registers:"));
5370   TRACE_LINEAR_SCAN(4, for (int i = _first_reg; i <= _last_reg; i++) tty->print_cr("      reg %d: use_pos: %d", i, _use_pos[i]));
5371 
5372   int hint_reg, hint_regHi;
5373   Interval* register_hint = cur->register_hint();
5374   if (register_hint != NULL) {
5375     hint_reg = register_hint->assigned_reg();
5376     hint_regHi = register_hint->assigned_regHi();
5377 
5378     if (allocator()->is_precolored_cpu_interval(register_hint)) {
5379       assert(hint_reg != any_reg && hint_regHi == any_reg, "must be for fixed intervals");
5380       hint_regHi = hint_reg + 1;  // connect e.g. eax-edx
5381     }
5382     TRACE_LINEAR_SCAN(4, tty->print("      hint registers %d, %d from interval ", hint_reg, hint_regHi); register_hint->print());
5383 
5384   } else {
5385     hint_reg = any_reg;
5386     hint_regHi = any_reg;
5387   }
5388   assert(hint_reg == any_reg || hint_reg != hint_regHi, "hint reg and regHi equal");
5389   assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned to interval");
5390 
5391   // the register must be free at least until this position
5392   int reg_needed_until = cur->from() + 1;
5393   int interval_to = cur->to();
5394 
5395   bool need_split = false;
5396   int split_pos = -1;
5397   int reg = any_reg;
5398   int regHi = any_reg;
5399 
5400   if (_adjacent_regs) {
5401     reg = find_free_double_reg(reg_needed_until, interval_to, hint_reg, &need_split);
5402     regHi = reg + 1;
5403     if (reg == any_reg) {
5404       return false;
5405     }
5406     split_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5407 
5408   } else {
5409     reg = find_free_reg(reg_needed_until, interval_to, hint_reg, any_reg, &need_split);
5410     if (reg == any_reg) {
5411       return false;
5412     }
5413     split_pos = _use_pos[reg];
5414 
5415     if (_num_phys_regs == 2) {
5416       regHi = find_free_reg(reg_needed_until, interval_to, hint_regHi, reg, &need_split);
5417 
5418       if (_use_pos[reg] < interval_to && regHi == any_reg) {
5419         // do not split interval if only one register can be assigned until the split pos
5420         // (when one register is found for the whole interval, split&spill is only
5421         // performed for the hi register)
5422         return false;
5423 
5424       } else if (regHi != any_reg) {
5425         split_pos = MIN2(split_pos, _use_pos[regHi]);
5426 
5427         // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5428         if (reg > regHi) {
5429           int temp = reg;
5430           reg = regHi;
5431           regHi = temp;
5432         }
5433       }
5434     }
5435   }
5436 
5437   cur->assign_reg(reg, regHi);
5438   TRACE_LINEAR_SCAN(2, tty->print_cr("selected register %d, %d", reg, regHi));
5439 
5440   assert(split_pos > 0, "invalid split_pos");
5441   if (need_split) {
5442     // register not available for full interval, so split it
5443     split_when_partial_register_available(cur, split_pos);
5444   }
5445 
5446   // only return true if interval is completely assigned
5447   return _num_phys_regs == 1 || regHi != any_reg;
5448 }
5449 
5450 
5451 int LinearScanWalker::find_locked_reg(int reg_needed_until, int interval_to, int hint_reg, int ignore_reg, bool* need_split) {
5452   int max_reg = any_reg;
5453 
5454   for (int i = _first_reg; i <= _last_reg; i++) {
5455     if (i == ignore_reg) {
5456       // this register must be ignored
5457 
5458     } else if (_use_pos[i] > reg_needed_until) {
5459       if (max_reg == any_reg || i == hint_reg || (_use_pos[i] > _use_pos[max_reg] && max_reg != hint_reg)) {
5460         max_reg = i;
5461       }
5462     }
5463   }
5464 
5465   if (max_reg != any_reg && _block_pos[max_reg] <= interval_to) {
5466     *need_split = true;
5467   }
5468 
5469   return max_reg;
5470 }
5471 
5472 int LinearScanWalker::find_locked_double_reg(int reg_needed_until, int interval_to, int hint_reg, bool* need_split) {
5473   assert((_last_reg - _first_reg + 1) % 2 == 0, "adjust algorithm");
5474 
5475   int max_reg = any_reg;
5476 
5477   for (int i = _first_reg; i < _last_reg; i+=2) {
5478     if (_use_pos[i] > reg_needed_until && _use_pos[i + 1] > reg_needed_until) {
5479       if (max_reg == any_reg || _use_pos[i] > _use_pos[max_reg]) {
5480         max_reg = i;
5481       }
5482     }
5483   }
5484 
5485   if (_block_pos[max_reg] <= interval_to || _block_pos[max_reg + 1] <= interval_to) {
5486     *need_split = true;
5487   }
5488 
5489   return max_reg;
5490 }
5491 
5492 void LinearScanWalker::split_and_spill_intersecting_intervals(int reg, int regHi) {
5493   assert(reg != any_reg, "no register assigned");
5494 
5495   for (int i = 0; i < _spill_intervals[reg]->length(); i++) {
5496     Interval* it = _spill_intervals[reg]->at(i);
5497     remove_from_list(it);
5498     split_and_spill_interval(it);
5499   }
5500 
5501   if (regHi != any_reg) {
5502     IntervalList* processed = _spill_intervals[reg];
5503     for (int i = 0; i < _spill_intervals[regHi]->length(); i++) {
5504       Interval* it = _spill_intervals[regHi]->at(i);
5505       if (processed->index_of(it) == -1) {
5506         remove_from_list(it);
5507         split_and_spill_interval(it);
5508       }
5509     }
5510   }
5511 }
5512 
5513 
5514 // Split an Interval and spill it to memory so that cur can be placed in a register
5515 void LinearScanWalker::alloc_locked_reg(Interval* cur) {
5516   TRACE_LINEAR_SCAN(2, tty->print("need to split and spill to get register for "); cur->print());
5517 
5518   // collect current usage of registers
5519   init_use_lists(false);
5520   spill_exclude_active_fixed();
5521 //  spill_block_unhandled_fixed(cur);
5522   assert(unhandled_first(fixedKind) == Interval::end(), "must not have unhandled fixed intervals because all fixed intervals have a use at position 0");
5523   spill_block_inactive_fixed(cur);
5524   spill_collect_active_any();
5525   spill_collect_inactive_any(cur);
5526 
5527 #ifndef PRODUCT
5528   if (TraceLinearScanLevel >= 4) {
5529     tty->print_cr("      state of registers:");
5530     for (int i = _first_reg; i <= _last_reg; i++) {
5531       tty->print("      reg %d: use_pos: %d, block_pos: %d, intervals: ", i, _use_pos[i], _block_pos[i]);
5532       for (int j = 0; j < _spill_intervals[i]->length(); j++) {
5533         tty->print("%d ", _spill_intervals[i]->at(j)->reg_num());
5534       }
5535       tty->cr();
5536     }
5537   }
5538 #endif
5539 
5540   // the register must be free at least until this position
5541   int reg_needed_until = MIN2(cur->first_usage(mustHaveRegister), cur->from() + 1);
5542   int interval_to = cur->to();
5543   assert (reg_needed_until > 0 && reg_needed_until < max_jint, "interval has no use");
5544 
5545   int split_pos = 0;
5546   int use_pos = 0;
5547   bool need_split = false;
5548   int reg, regHi;
5549 
5550   if (_adjacent_regs) {
5551     reg = find_locked_double_reg(reg_needed_until, interval_to, any_reg, &need_split);
5552     regHi = reg + 1;
5553 
5554     if (reg != any_reg) {
5555       use_pos = MIN2(_use_pos[reg], _use_pos[regHi]);
5556       split_pos = MIN2(_block_pos[reg], _block_pos[regHi]);
5557     }
5558   } else {
5559     reg = find_locked_reg(reg_needed_until, interval_to, any_reg, cur->assigned_reg(), &need_split);
5560     regHi = any_reg;
5561 
5562     if (reg != any_reg) {
5563       use_pos = _use_pos[reg];
5564       split_pos = _block_pos[reg];
5565 
5566       if (_num_phys_regs == 2) {
5567         if (cur->assigned_reg() != any_reg) {
5568           regHi = reg;
5569           reg = cur->assigned_reg();
5570         } else {
5571           regHi = find_locked_reg(reg_needed_until, interval_to, any_reg, reg, &need_split);
5572           if (regHi != any_reg) {
5573             use_pos = MIN2(use_pos, _use_pos[regHi]);
5574             split_pos = MIN2(split_pos, _block_pos[regHi]);
5575           }
5576         }
5577 
5578         if (regHi != any_reg && reg > regHi) {
5579           // sort register numbers to prevent e.g. a move from eax,ebx to ebx,eax
5580           int temp = reg;
5581           reg = regHi;
5582           regHi = temp;
5583         }
5584       }
5585     }
5586   }
5587 
5588   if (reg == any_reg || (_num_phys_regs == 2 && regHi == any_reg) || use_pos <= cur->first_usage(mustHaveRegister)) {
5589     // the first use of cur is later than the spilling position -> spill cur
5590     TRACE_LINEAR_SCAN(4, tty->print_cr("able to spill current interval. first_usage(register): %d, use_pos: %d", cur->first_usage(mustHaveRegister), use_pos));
5591 
5592     if (cur->first_usage(mustHaveRegister) <= cur->from() + 1) {
5593       assert(false, "cannot spill interval that is used in first instruction (possible reason: no register found)");
5594       // assign a reasonable register and do a bailout in product mode to avoid errors
5595       allocator()->assign_spill_slot(cur);
5596       BAILOUT("LinearScan: no register found");
5597     }
5598 
5599     split_and_spill_interval(cur);
5600   } else {
5601     TRACE_LINEAR_SCAN(4, tty->print_cr("decided to use register %d, %d", reg, regHi));
5602     assert(reg != any_reg && (_num_phys_regs == 1 || regHi != any_reg), "no register found");
5603     assert(split_pos > 0, "invalid split_pos");
5604     assert(need_split == false || split_pos > cur->from(), "splitting interval at from");
5605 
5606     cur->assign_reg(reg, regHi);
5607     if (need_split) {
5608       // register not available for full interval, so split it
5609       split_when_partial_register_available(cur, split_pos);
5610     }
5611 
5612     // perform splitting and spilling for all affected intervalls
5613     split_and_spill_intersecting_intervals(reg, regHi);
5614   }
5615 }
5616 
5617 bool LinearScanWalker::no_allocation_possible(Interval* cur) {
5618 #ifdef X86
5619   // fast calculation of intervals that can never get a register because the
5620   // the next instruction is a call that blocks all registers
5621   // Note: this does not work if callee-saved registers are available (e.g. on Sparc)
5622 
5623   // check if this interval is the result of a split operation
5624   // (an interval got a register until this position)
5625   int pos = cur->from();
5626   if ((pos & 1) == 1) {
5627     // the current instruction is a call that blocks all registers
5628     if (pos < allocator()->max_lir_op_id() && allocator()->has_call(pos + 1)) {
5629       TRACE_LINEAR_SCAN(4, tty->print_cr("      free register cannot be available because all registers blocked by following call"));
5630 
5631       // safety check that there is really no register available
5632       assert(alloc_free_reg(cur) == false, "found a register for this interval");
5633       return true;
5634     }
5635 
5636   }
5637 #endif
5638   return false;
5639 }
5640 
5641 void LinearScanWalker::init_vars_for_alloc(Interval* cur) {
5642   BasicType type = cur->type();
5643   _num_phys_regs = LinearScan::num_physical_regs(type);
5644   _adjacent_regs = LinearScan::requires_adjacent_regs(type);
5645 
5646   if (pd_init_regs_for_alloc(cur)) {
5647     // the appropriate register range was selected.
5648   } else if (type == T_FLOAT || type == T_DOUBLE) {
5649     _first_reg = pd_first_fpu_reg;
5650     _last_reg = pd_last_fpu_reg;
5651   } else {
5652     _first_reg = pd_first_cpu_reg;
5653     _last_reg = FrameMap::last_cpu_reg();
5654   }
5655 
5656   assert(0 <= _first_reg && _first_reg < LinearScan::nof_regs, "out of range");
5657   assert(0 <= _last_reg && _last_reg < LinearScan::nof_regs, "out of range");
5658 }
5659 
5660 
5661 bool LinearScanWalker::is_move(LIR_Op* op, Interval* from, Interval* to) {
5662   if (op->code() != lir_move) {
5663     return false;
5664   }
5665   assert(op->as_Op1() != NULL, "move must be LIR_Op1");
5666 
5667   LIR_Opr in = ((LIR_Op1*)op)->in_opr();
5668   LIR_Opr res = ((LIR_Op1*)op)->result_opr();
5669   return in->is_virtual() && res->is_virtual() && in->vreg_number() == from->reg_num() && res->vreg_number() == to->reg_num();
5670 }
5671 
5672 // optimization (especially for phi functions of nested loops):
5673 // assign same spill slot to non-intersecting intervals
5674 void LinearScanWalker::combine_spilled_intervals(Interval* cur) {
5675   if (cur->is_split_child()) {
5676     // optimization is only suitable for split parents
5677     return;
5678   }
5679 
5680   Interval* register_hint = cur->register_hint(false);
5681   if (register_hint == NULL) {
5682     // cur is not the target of a move, otherwise register_hint would be set
5683     return;
5684   }
5685   assert(register_hint->is_split_parent(), "register hint must be split parent");
5686 
5687   if (cur->spill_state() != noOptimization || register_hint->spill_state() != noOptimization) {
5688     // combining the stack slots for intervals where spill move optimization is applied
5689     // is not benefitial and would cause problems
5690     return;
5691   }
5692 
5693   int begin_pos = cur->from();
5694   int end_pos = cur->to();
5695   if (end_pos > allocator()->max_lir_op_id() || (begin_pos & 1) != 0 || (end_pos & 1) != 0) {
5696     // safety check that lir_op_with_id is allowed
5697     return;
5698   }
5699 
5700   if (!is_move(allocator()->lir_op_with_id(begin_pos), register_hint, cur) || !is_move(allocator()->lir_op_with_id(end_pos), cur, register_hint)) {
5701     // cur and register_hint are not connected with two moves
5702     return;
5703   }
5704 
5705   Interval* begin_hint = register_hint->split_child_at_op_id(begin_pos, LIR_OpVisitState::inputMode);
5706   Interval* end_hint = register_hint->split_child_at_op_id(end_pos, LIR_OpVisitState::outputMode);
5707   if (begin_hint == end_hint || begin_hint->to() != begin_pos || end_hint->from() != end_pos) {
5708     // register_hint must be split, otherwise the re-writing of use positions does not work
5709     return;
5710   }
5711 
5712   assert(begin_hint->assigned_reg() != any_reg, "must have register assigned");
5713   assert(end_hint->assigned_reg() == any_reg, "must not have register assigned");
5714   assert(cur->first_usage(mustHaveRegister) == begin_pos, "must have use position at begin of interval because of move");
5715   assert(end_hint->first_usage(mustHaveRegister) == end_pos, "must have use position at begin of interval because of move");
5716 
5717   if (begin_hint->assigned_reg() < LinearScan::nof_regs) {
5718     // register_hint is not spilled at begin_pos, so it would not be benefitial to immediately spill cur
5719     return;
5720   }
5721   assert(register_hint->canonical_spill_slot() != -1, "must be set when part of interval was spilled");
5722 
5723   // modify intervals such that cur gets the same stack slot as register_hint
5724   // delete use positions to prevent the intervals to get a register at beginning
5725   cur->set_canonical_spill_slot(register_hint->canonical_spill_slot());
5726   cur->remove_first_use_pos();
5727   end_hint->remove_first_use_pos();
5728 }
5729 
5730 
5731 // allocate a physical register or memory location to an interval
5732 bool LinearScanWalker::activate_current() {
5733   Interval* cur = current();
5734   bool result = true;
5735 
5736   TRACE_LINEAR_SCAN(2, tty->print   ("+++++ activating interval "); cur->print());
5737   TRACE_LINEAR_SCAN(4, tty->print_cr("      split_parent: %d, insert_move_when_activated: %d", cur->split_parent()->reg_num(), cur->insert_move_when_activated()));
5738 
5739   if (cur->assigned_reg() >= LinearScan::nof_regs) {
5740     // activating an interval that has a stack slot assigned -> split it at first use position
5741     // used for method parameters
5742     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval has spill slot assigned (method parameter) -> split it before first use"));
5743 
5744     split_stack_interval(cur);
5745     result = false;
5746 
5747   } else if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::must_start_in_memory)) {
5748     // activating an interval that must start in a stack slot, but may get a register later
5749     // used for lir_roundfp: rounding is done by store to stack and reload later
5750     TRACE_LINEAR_SCAN(4, tty->print_cr("      interval must start in stack slot -> split it before first use"));
5751     assert(cur->assigned_reg() == any_reg && cur->assigned_regHi() == any_reg, "register already assigned");
5752 
5753     allocator()->assign_spill_slot(cur);
5754     split_stack_interval(cur);
5755     result = false;
5756 
5757   } else if (cur->assigned_reg() == any_reg) {
5758     // interval has not assigned register -> normal allocation
5759     // (this is the normal case for most intervals)
5760     TRACE_LINEAR_SCAN(4, tty->print_cr("      normal allocation of register"));
5761 
5762     // assign same spill slot to non-intersecting intervals
5763     combine_spilled_intervals(cur);
5764 
5765     init_vars_for_alloc(cur);
5766     if (no_allocation_possible(cur) || !alloc_free_reg(cur)) {
5767       // no empty register available.
5768       // split and spill another interval so that this interval gets a register
5769       alloc_locked_reg(cur);
5770     }
5771 
5772     // spilled intervals need not be move to active-list
5773     if (cur->assigned_reg() >= LinearScan::nof_regs) {
5774       result = false;
5775     }
5776   }
5777 
5778   // load spilled values that become active from stack slot to register
5779   if (cur->insert_move_when_activated()) {
5780     assert(cur->is_split_child(), "must be");
5781     assert(cur->current_split_child() != NULL, "must be");
5782     assert(cur->current_split_child()->reg_num() != cur->reg_num(), "cannot insert move between same interval");
5783     TRACE_LINEAR_SCAN(4, tty->print_cr("Inserting move from interval %d to %d because insert_move_when_activated is set", cur->current_split_child()->reg_num(), cur->reg_num()));
5784 
5785     insert_move(cur->from(), cur->current_split_child(), cur);
5786   }
5787   cur->make_current_split_child();
5788 
5789   return result; // true = interval is moved to active list
5790 }
5791 
5792 
5793 // Implementation of EdgeMoveOptimizer
5794 
5795 EdgeMoveOptimizer::EdgeMoveOptimizer() :
5796   _edge_instructions(4),
5797   _edge_instructions_idx(4)
5798 {
5799 }
5800 
5801 void EdgeMoveOptimizer::optimize(BlockList* code) {
5802   EdgeMoveOptimizer optimizer = EdgeMoveOptimizer();
5803 
5804   // ignore the first block in the list (index 0 is not processed)
5805   for (int i = code->length() - 1; i >= 1; i--) {
5806     BlockBegin* block = code->at(i);
5807 
5808     if (block->number_of_preds() > 1 && !block->is_set(BlockBegin::exception_entry_flag)) {
5809       optimizer.optimize_moves_at_block_end(block);
5810     }
5811     if (block->number_of_sux() == 2) {
5812       optimizer.optimize_moves_at_block_begin(block);
5813     }
5814   }
5815 }
5816 
5817 
5818 // clear all internal data structures
5819 void EdgeMoveOptimizer::init_instructions() {
5820   _edge_instructions.clear();
5821   _edge_instructions_idx.clear();
5822 }
5823 
5824 // append a lir-instruction-list and the index of the current operation in to the list
5825 void EdgeMoveOptimizer::append_instructions(LIR_OpList* instructions, int instructions_idx) {
5826   _edge_instructions.append(instructions);
5827   _edge_instructions_idx.append(instructions_idx);
5828 }
5829 
5830 // return the current operation of the given edge (predecessor or successor)
5831 LIR_Op* EdgeMoveOptimizer::instruction_at(int edge) {
5832   LIR_OpList* instructions = _edge_instructions.at(edge);
5833   int idx = _edge_instructions_idx.at(edge);
5834 
5835   if (idx < instructions->length()) {
5836     return instructions->at(idx);
5837   } else {
5838     return NULL;
5839   }
5840 }
5841 
5842 // removes the current operation of the given edge (predecessor or successor)
5843 void EdgeMoveOptimizer::remove_cur_instruction(int edge, bool decrement_index) {
5844   LIR_OpList* instructions = _edge_instructions.at(edge);
5845   int idx = _edge_instructions_idx.at(edge);
5846   instructions->remove_at(idx);
5847 
5848   if (decrement_index) {
5849     _edge_instructions_idx.at_put(edge, idx - 1);
5850   }
5851 }
5852 
5853 
5854 bool EdgeMoveOptimizer::operations_different(LIR_Op* op1, LIR_Op* op2) {
5855   if (op1 == NULL || op2 == NULL) {
5856     // at least one block is already empty -> no optimization possible
5857     return true;
5858   }
5859 
5860   if (op1->code() == lir_move && op2->code() == lir_move) {
5861     assert(op1->as_Op1() != NULL, "move must be LIR_Op1");
5862     assert(op2->as_Op1() != NULL, "move must be LIR_Op1");
5863     LIR_Op1* move1 = (LIR_Op1*)op1;
5864     LIR_Op1* move2 = (LIR_Op1*)op2;
5865     if (move1->info() == move2->info() && move1->in_opr() == move2->in_opr() && move1->result_opr() == move2->result_opr()) {
5866       // these moves are exactly equal and can be optimized
5867       return false;
5868     }
5869 
5870   } else if (op1->code() == lir_fxch && op2->code() == lir_fxch) {
5871     assert(op1->as_Op1() != NULL, "fxch must be LIR_Op1");
5872     assert(op2->as_Op1() != NULL, "fxch must be LIR_Op1");
5873     LIR_Op1* fxch1 = (LIR_Op1*)op1;
5874     LIR_Op1* fxch2 = (LIR_Op1*)op2;
5875     if (fxch1->in_opr()->as_jint() == fxch2->in_opr()->as_jint()) {
5876       // equal FPU stack operations can be optimized
5877       return false;
5878     }
5879 
5880   } else if (op1->code() == lir_fpop_raw && op2->code() == lir_fpop_raw) {
5881     // equal FPU stack operations can be optimized
5882     return false;
5883   }
5884 
5885   // no optimization possible
5886   return true;
5887 }
5888 
5889 void EdgeMoveOptimizer::optimize_moves_at_block_end(BlockBegin* block) {
5890   TRACE_LINEAR_SCAN(4, tty->print_cr("optimizing moves at end of block B%d", block->block_id()));
5891 
5892   if (block->is_predecessor(block)) {
5893     // currently we can't handle this correctly.
5894     return;
5895   }
5896 
5897   init_instructions();
5898   int num_preds = block->number_of_preds();
5899   assert(num_preds > 1, "do not call otherwise");
5900   assert(!block->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
5901 
5902   // setup a list with the lir-instructions of all predecessors
5903   int i;
5904   for (i = 0; i < num_preds; i++) {
5905     BlockBegin* pred = block->pred_at(i);
5906     LIR_OpList* pred_instructions = pred->lir()->instructions_list();
5907 
5908     if (pred->number_of_sux() != 1) {
5909       // this can happen with switch-statements where multiple edges are between
5910       // the same blocks.
5911       return;
5912     }
5913 
5914     assert(pred->number_of_sux() == 1, "can handle only one successor");
5915     assert(pred->sux_at(0) == block, "invalid control flow");
5916     assert(pred_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5917     assert(pred_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5918     assert(pred_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5919 
5920     if (pred_instructions->last()->info() != NULL) {
5921       // can not optimize instructions when debug info is needed
5922       return;
5923     }
5924 
5925     // ignore the unconditional branch at the end of the block
5926     append_instructions(pred_instructions, pred_instructions->length() - 2);
5927   }
5928 
5929 
5930   // process lir-instructions while all predecessors end with the same instruction
5931   while (true) {
5932     LIR_Op* op = instruction_at(0);
5933     for (i = 1; i < num_preds; i++) {
5934       if (operations_different(op, instruction_at(i))) {
5935         // these instructions are different and cannot be optimized ->
5936         // no further optimization possible
5937         return;
5938       }
5939     }
5940 
5941     TRACE_LINEAR_SCAN(4, tty->print("found instruction that is equal in all %d predecessors: ", num_preds); op->print());
5942 
5943     // insert the instruction at the beginning of the current block
5944     block->lir()->insert_before(1, op);
5945 
5946     // delete the instruction at the end of all predecessors
5947     for (i = 0; i < num_preds; i++) {
5948       remove_cur_instruction(i, true);
5949     }
5950   }
5951 }
5952 
5953 
5954 void EdgeMoveOptimizer::optimize_moves_at_block_begin(BlockBegin* block) {
5955   TRACE_LINEAR_SCAN(4, tty->print_cr("optimization moves at begin of block B%d", block->block_id()));
5956 
5957   init_instructions();
5958   int num_sux = block->number_of_sux();
5959 
5960   LIR_OpList* cur_instructions = block->lir()->instructions_list();
5961 
5962   assert(num_sux == 2, "method should not be called otherwise");
5963   assert(cur_instructions->last()->code() == lir_branch, "block with successor must end with branch");
5964   assert(cur_instructions->last()->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
5965   assert(cur_instructions->last()->as_OpBranch()->cond() == lir_cond_always, "block must end with unconditional branch");
5966 
5967   if (cur_instructions->last()->info() != NULL) {
5968     // can no optimize instructions when debug info is needed
5969     return;
5970   }
5971 
5972   LIR_Op* branch = cur_instructions->at(cur_instructions->length() - 2);
5973   if (branch->info() != NULL || (branch->code() != lir_branch && branch->code() != lir_cond_float_branch)) {
5974     // not a valid case for optimization
5975     // currently, only blocks that end with two branches (conditional branch followed
5976     // by unconditional branch) are optimized
5977     return;
5978   }
5979 
5980   // now it is guaranteed that the block ends with two branch instructions.
5981   // the instructions are inserted at the end of the block before these two branches
5982   int insert_idx = cur_instructions->length() - 2;
5983 
5984   int i;
5985 #ifdef ASSERT
5986   for (i = insert_idx - 1; i >= 0; i--) {
5987     LIR_Op* op = cur_instructions->at(i);
5988     if ((op->code() == lir_branch || op->code() == lir_cond_float_branch) && ((LIR_OpBranch*)op)->block() != NULL) {
5989       assert(false, "block with two successors can have only two branch instructions");
5990     }
5991   }
5992 #endif
5993 
5994   // setup a list with the lir-instructions of all successors
5995   for (i = 0; i < num_sux; i++) {
5996     BlockBegin* sux = block->sux_at(i);
5997     LIR_OpList* sux_instructions = sux->lir()->instructions_list();
5998 
5999     assert(sux_instructions->at(0)->code() == lir_label, "block must start with label");
6000 
6001     if (sux->number_of_preds() != 1) {
6002       // this can happen with switch-statements where multiple edges are between
6003       // the same blocks.
6004       return;
6005     }
6006     assert(sux->pred_at(0) == block, "invalid control flow");
6007     assert(!sux->is_set(BlockBegin::exception_entry_flag), "exception handlers not allowed");
6008 
6009     // ignore the label at the beginning of the block
6010     append_instructions(sux_instructions, 1);
6011   }
6012 
6013   // process lir-instructions while all successors begin with the same instruction
6014   while (true) {
6015     LIR_Op* op = instruction_at(0);
6016     for (i = 1; i < num_sux; i++) {
6017       if (operations_different(op, instruction_at(i))) {
6018         // these instructions are different and cannot be optimized ->
6019         // no further optimization possible
6020         return;
6021       }
6022     }
6023 
6024     TRACE_LINEAR_SCAN(4, tty->print("----- found instruction that is equal in all %d successors: ", num_sux); op->print());
6025 
6026     // insert instruction at end of current block
6027     block->lir()->insert_before(insert_idx, op);
6028     insert_idx++;
6029 
6030     // delete the instructions at the beginning of all successors
6031     for (i = 0; i < num_sux; i++) {
6032       remove_cur_instruction(i, false);
6033     }
6034   }
6035 }
6036 
6037 
6038 // Implementation of ControlFlowOptimizer
6039 
6040 ControlFlowOptimizer::ControlFlowOptimizer() :
6041   _original_preds(4)
6042 {
6043 }
6044 
6045 void ControlFlowOptimizer::optimize(BlockList* code) {
6046   ControlFlowOptimizer optimizer = ControlFlowOptimizer();
6047 
6048   // push the OSR entry block to the end so that we're not jumping over it.
6049   BlockBegin* osr_entry = code->at(0)->end()->as_Base()->osr_entry();
6050   if (osr_entry) {
6051     int index = osr_entry->linear_scan_number();
6052     assert(code->at(index) == osr_entry, "wrong index");
6053     code->remove_at(index);
6054     code->append(osr_entry);
6055   }
6056 
6057   optimizer.reorder_short_loops(code);
6058   optimizer.delete_empty_blocks(code);
6059   optimizer.delete_unnecessary_jumps(code);
6060   optimizer.delete_jumps_to_return(code);
6061 }
6062 
6063 void ControlFlowOptimizer::reorder_short_loop(BlockList* code, BlockBegin* header_block, int header_idx) {
6064   int i = header_idx + 1;
6065   int max_end = MIN2(header_idx + ShortLoopSize, code->length());
6066   while (i < max_end && code->at(i)->loop_depth() >= header_block->loop_depth()) {
6067     i++;
6068   }
6069 
6070   if (i == code->length() || code->at(i)->loop_depth() < header_block->loop_depth()) {
6071     int end_idx = i - 1;
6072     BlockBegin* end_block = code->at(end_idx);
6073 
6074     if (end_block->number_of_sux() == 1 && end_block->sux_at(0) == header_block) {
6075       // short loop from header_idx to end_idx found -> reorder blocks such that
6076       // the header_block is the last block instead of the first block of the loop
6077       TRACE_LINEAR_SCAN(1, tty->print_cr("Reordering short loop: length %d, header B%d, end B%d",
6078                                          end_idx - header_idx + 1,
6079                                          header_block->block_id(), end_block->block_id()));
6080 
6081       for (int j = header_idx; j < end_idx; j++) {
6082         code->at_put(j, code->at(j + 1));
6083       }
6084       code->at_put(end_idx, header_block);
6085 
6086       // correct the flags so that any loop alignment occurs in the right place.
6087       assert(code->at(end_idx)->is_set(BlockBegin::backward_branch_target_flag), "must be backward branch target");
6088       code->at(end_idx)->clear(BlockBegin::backward_branch_target_flag);
6089       code->at(header_idx)->set(BlockBegin::backward_branch_target_flag);
6090     }
6091   }
6092 }
6093 
6094 void ControlFlowOptimizer::reorder_short_loops(BlockList* code) {
6095   for (int i = code->length() - 1; i >= 0; i--) {
6096     BlockBegin* block = code->at(i);
6097 
6098     if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
6099       reorder_short_loop(code, block, i);
6100     }
6101   }
6102 
6103   DEBUG_ONLY(verify(code));
6104 }
6105 
6106 // only blocks with exactly one successor can be deleted. Such blocks
6107 // must always end with an unconditional branch to this successor
6108 bool ControlFlowOptimizer::can_delete_block(BlockBegin* block) {
6109   if (block->number_of_sux() != 1 || block->number_of_exception_handlers() != 0 || block->is_entry_block()) {
6110     return false;
6111   }
6112 
6113   LIR_OpList* instructions = block->lir()->instructions_list();
6114 
6115   assert(instructions->length() >= 2, "block must have label and branch");
6116   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6117   assert(instructions->last()->as_OpBranch() != NULL, "last instrcution must always be a branch");
6118   assert(instructions->last()->as_OpBranch()->cond() == lir_cond_always, "branch must be unconditional");
6119   assert(instructions->last()->as_OpBranch()->block() == block->sux_at(0), "branch target must be the successor");
6120 
6121   // block must have exactly one successor
6122 
6123   if (instructions->length() == 2 && instructions->last()->info() == NULL) {
6124     return true;
6125   }
6126   return false;
6127 }
6128 
6129 // substitute branch targets in all branch-instructions of this blocks
6130 void ControlFlowOptimizer::substitute_branch_target(BlockBegin* block, BlockBegin* target_from, BlockBegin* target_to) {
6131   TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting empty block: substituting from B%d to B%d inside B%d", target_from->block_id(), target_to->block_id(), block->block_id()));
6132 
6133   LIR_OpList* instructions = block->lir()->instructions_list();
6134 
6135   assert(instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6136   for (int i = instructions->length() - 1; i >= 1; i--) {
6137     LIR_Op* op = instructions->at(i);
6138 
6139     if (op->code() == lir_branch || op->code() == lir_cond_float_branch) {
6140       assert(op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6141       LIR_OpBranch* branch = (LIR_OpBranch*)op;
6142 
6143       if (branch->block() == target_from) {
6144         branch->change_block(target_to);
6145       }
6146       if (branch->ublock() == target_from) {
6147         branch->change_ublock(target_to);
6148       }
6149     }
6150   }
6151 }
6152 
6153 void ControlFlowOptimizer::delete_empty_blocks(BlockList* code) {
6154   int old_pos = 0;
6155   int new_pos = 0;
6156   int num_blocks = code->length();
6157 
6158   while (old_pos < num_blocks) {
6159     BlockBegin* block = code->at(old_pos);
6160 
6161     if (can_delete_block(block)) {
6162       BlockBegin* new_target = block->sux_at(0);
6163 
6164       // propagate backward branch target flag for correct code alignment
6165       if (block->is_set(BlockBegin::backward_branch_target_flag)) {
6166         new_target->set(BlockBegin::backward_branch_target_flag);
6167       }
6168 
6169       // collect a list with all predecessors that contains each predecessor only once
6170       // the predecessors of cur are changed during the substitution, so a copy of the
6171       // predecessor list is necessary
6172       int j;
6173       _original_preds.clear();
6174       for (j = block->number_of_preds() - 1; j >= 0; j--) {
6175         BlockBegin* pred = block->pred_at(j);
6176         if (_original_preds.index_of(pred) == -1) {
6177           _original_preds.append(pred);
6178         }
6179       }
6180 
6181       for (j = _original_preds.length() - 1; j >= 0; j--) {
6182         BlockBegin* pred = _original_preds.at(j);
6183         substitute_branch_target(pred, block, new_target);
6184         pred->substitute_sux(block, new_target);
6185       }
6186     } else {
6187       // adjust position of this block in the block list if blocks before
6188       // have been deleted
6189       if (new_pos != old_pos) {
6190         code->at_put(new_pos, code->at(old_pos));
6191       }
6192       new_pos++;
6193     }
6194     old_pos++;
6195   }
6196   code->truncate(new_pos);
6197 
6198   DEBUG_ONLY(verify(code));
6199 }
6200 
6201 void ControlFlowOptimizer::delete_unnecessary_jumps(BlockList* code) {
6202   // skip the last block because there a branch is always necessary
6203   for (int i = code->length() - 2; i >= 0; i--) {
6204     BlockBegin* block = code->at(i);
6205     LIR_OpList* instructions = block->lir()->instructions_list();
6206 
6207     LIR_Op* last_op = instructions->last();
6208     if (last_op->code() == lir_branch) {
6209       assert(last_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6210       LIR_OpBranch* last_branch = (LIR_OpBranch*)last_op;
6211 
6212       assert(last_branch->block() != NULL, "last branch must always have a block as target");
6213       assert(last_branch->label() == last_branch->block()->label(), "must be equal");
6214 
6215       if (last_branch->info() == NULL) {
6216         if (last_branch->block() == code->at(i + 1)) {
6217 
6218           TRACE_LINEAR_SCAN(3, tty->print_cr("Deleting unconditional branch at end of block B%d", block->block_id()));
6219 
6220           // delete last branch instruction
6221           instructions->truncate(instructions->length() - 1);
6222 
6223         } else {
6224           LIR_Op* prev_op = instructions->at(instructions->length() - 2);
6225           if (prev_op->code() == lir_branch || prev_op->code() == lir_cond_float_branch) {
6226             assert(prev_op->as_OpBranch() != NULL, "branch must be of type LIR_OpBranch");
6227             LIR_OpBranch* prev_branch = (LIR_OpBranch*)prev_op;
6228 
6229             if (prev_branch->stub() == NULL) {
6230 
6231               LIR_Op2* prev_cmp = NULL;
6232 
6233               for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
6234                 prev_op = instructions->at(j);
6235                 if (prev_op->code() == lir_cmp) {
6236                   assert(prev_op->as_Op2() != NULL, "branch must be of type LIR_Op2");
6237                   prev_cmp = (LIR_Op2*)prev_op;
6238                   assert(prev_branch->cond() == prev_cmp->condition(), "should be the same");
6239                 }
6240               }
6241               assert(prev_cmp != NULL, "should have found comp instruction for branch");
6242               if (prev_branch->block() == code->at(i + 1) && prev_branch->info() == NULL) {
6243 
6244                 TRACE_LINEAR_SCAN(3, tty->print_cr("Negating conditional branch and deleting unconditional branch at end of block B%d", block->block_id()));
6245 
6246                 // eliminate a conditional branch to the immediate successor
6247                 prev_branch->change_block(last_branch->block());
6248                 prev_branch->negate_cond();
6249                 prev_cmp->set_condition(prev_branch->cond());
6250                 instructions->truncate(instructions->length() - 1);
6251               }
6252             }
6253           }
6254         }
6255       }
6256     }
6257   }
6258 
6259   DEBUG_ONLY(verify(code));
6260 }
6261 
6262 void ControlFlowOptimizer::delete_jumps_to_return(BlockList* code) {
6263 #ifdef ASSERT
6264   BitMap return_converted(BlockBegin::number_of_blocks());
6265   return_converted.clear();
6266 #endif
6267 
6268   for (int i = code->length() - 1; i >= 0; i--) {
6269     BlockBegin* block = code->at(i);
6270     LIR_OpList* cur_instructions = block->lir()->instructions_list();
6271     LIR_Op*     cur_last_op = cur_instructions->last();
6272 
6273     assert(cur_instructions->at(0)->code() == lir_label, "first instruction must always be a label");
6274     if (cur_instructions->length() == 2 && cur_last_op->code() == lir_return) {
6275       // the block contains only a label and a return
6276       // if a predecessor ends with an unconditional jump to this block, then the jump
6277       // can be replaced with a return instruction
6278       //
6279       // Note: the original block with only a return statement cannot be deleted completely
6280       //       because the predecessors might have other (conditional) jumps to this block
6281       //       -> this may lead to unnecesary return instructions in the final code
6282 
6283       assert(cur_last_op->info() == NULL, "return instructions do not have debug information");
6284       assert(block->number_of_sux() == 0 ||
6285              (return_converted.at(block->block_id()) && block->number_of_sux() == 1),
6286              "blocks that end with return must not have successors");
6287 
6288       assert(cur_last_op->as_Op1() != NULL, "return must be LIR_Op1");
6289       LIR_Opr return_opr = ((LIR_Op1*)cur_last_op)->in_opr();
6290 
6291       for (int j = block->number_of_preds() - 1; j >= 0; j--) {
6292         BlockBegin* pred = block->pred_at(j);
6293         LIR_OpList* pred_instructions = pred->lir()->instructions_list();
6294         LIR_Op*     pred_last_op = pred_instructions->last();
6295 
6296         if (pred_last_op->code() == lir_branch) {
6297           assert(pred_last_op->as_OpBranch() != NULL, "branch must be LIR_OpBranch");
6298           LIR_OpBranch* pred_last_branch = (LIR_OpBranch*)pred_last_op;
6299 
6300           if (pred_last_branch->block() == block && pred_last_branch->cond() == lir_cond_always && pred_last_branch->info() == NULL) {
6301             // replace the jump to a return with a direct return
6302             // Note: currently the edge between the blocks is not deleted
6303             pred_instructions->at_put(pred_instructions->length() - 1, new LIR_Op1(lir_return, return_opr));
6304 #ifdef ASSERT
6305             return_converted.set_bit(pred->block_id());
6306 #endif
6307           }
6308         }
6309       }
6310     }
6311   }
6312 }
6313 
6314 
6315 #ifdef ASSERT
6316 void ControlFlowOptimizer::verify(BlockList* code) {
6317   for (int i = 0; i < code->length(); i++) {
6318     BlockBegin* block = code->at(i);
6319     LIR_OpList* instructions = block->lir()->instructions_list();
6320 
6321     int j;
6322     for (j = 0; j < instructions->length(); j++) {
6323       LIR_OpBranch* op_branch = instructions->at(j)->as_OpBranch();
6324 
6325       if (op_branch != NULL) {
6326         assert(op_branch->block() == NULL || code->index_of(op_branch->block()) != -1, "branch target not valid");
6327         assert(op_branch->ublock() == NULL || code->index_of(op_branch->ublock()) != -1, "branch target not valid");
6328       }
6329     }
6330 
6331     for (j = 0; j < block->number_of_sux() - 1; j++) {
6332       BlockBegin* sux = block->sux_at(j);
6333       assert(code->index_of(sux) != -1, "successor not valid");
6334     }
6335 
6336     for (j = 0; j < block->number_of_preds() - 1; j++) {
6337       BlockBegin* pred = block->pred_at(j);
6338       assert(code->index_of(pred) != -1, "successor not valid");
6339     }
6340   }
6341 }
6342 #endif
6343 
6344 
6345 #ifndef PRODUCT
6346 
6347 // Implementation of LinearStatistic
6348 
6349 const char* LinearScanStatistic::counter_name(int counter_idx) {
6350   switch (counter_idx) {
6351     case counter_method:          return "compiled methods";
6352     case counter_fpu_method:      return "methods using fpu";
6353     case counter_loop_method:     return "methods with loops";
6354     case counter_exception_method:return "methods with xhandler";
6355 
6356     case counter_loop:            return "loops";
6357     case counter_block:           return "blocks";
6358     case counter_loop_block:      return "blocks inside loop";
6359     case counter_exception_block: return "exception handler entries";
6360     case counter_interval:        return "intervals";
6361     case counter_fixed_interval:  return "fixed intervals";
6362     case counter_range:           return "ranges";
6363     case counter_fixed_range:     return "fixed ranges";
6364     case counter_use_pos:         return "use positions";
6365     case counter_fixed_use_pos:   return "fixed use positions";
6366     case counter_spill_slots:     return "spill slots";
6367 
6368     // counter for classes of lir instructions
6369     case counter_instruction:     return "total instructions";
6370     case counter_label:           return "labels";
6371     case counter_entry:           return "method entries";
6372     case counter_return:          return "method returns";
6373     case counter_call:            return "method calls";
6374     case counter_move:            return "moves";
6375     case counter_cmp:             return "compare";
6376     case counter_cond_branch:     return "conditional branches";
6377     case counter_uncond_branch:   return "unconditional branches";
6378     case counter_stub_branch:     return "branches to stub";
6379     case counter_alu:             return "artithmetic + logic";
6380     case counter_alloc:           return "allocations";
6381     case counter_sync:            return "synchronisation";
6382     case counter_throw:           return "throw";
6383     case counter_unwind:          return "unwind";
6384     case counter_typecheck:       return "type+null-checks";
6385     case counter_fpu_stack:       return "fpu-stack";
6386     case counter_misc_inst:       return "other instructions";
6387     case counter_other_inst:      return "misc. instructions";
6388 
6389     // counter for different types of moves
6390     case counter_move_total:      return "total moves";
6391     case counter_move_reg_reg:    return "register->register";
6392     case counter_move_reg_stack:  return "register->stack";
6393     case counter_move_stack_reg:  return "stack->register";
6394     case counter_move_stack_stack:return "stack->stack";
6395     case counter_move_reg_mem:    return "register->memory";
6396     case counter_move_mem_reg:    return "memory->register";
6397     case counter_move_const_any:  return "constant->any";
6398 
6399     case blank_line_1:            return "";
6400     case blank_line_2:            return "";
6401 
6402     default: ShouldNotReachHere(); return "";
6403   }
6404 }
6405 
6406 LinearScanStatistic::Counter LinearScanStatistic::base_counter(int counter_idx) {
6407   if (counter_idx == counter_fpu_method || counter_idx == counter_loop_method || counter_idx == counter_exception_method) {
6408     return counter_method;
6409   } else if (counter_idx == counter_loop_block || counter_idx == counter_exception_block) {
6410     return counter_block;
6411   } else if (counter_idx >= counter_instruction && counter_idx <= counter_other_inst) {
6412     return counter_instruction;
6413   } else if (counter_idx >= counter_move_total && counter_idx <= counter_move_const_any) {
6414     return counter_move_total;
6415   }
6416   return invalid_counter;
6417 }
6418 
6419 LinearScanStatistic::LinearScanStatistic() {
6420   for (int i = 0; i < number_of_counters; i++) {
6421     _counters_sum[i] = 0;
6422     _counters_max[i] = -1;
6423   }
6424 
6425 }
6426 
6427 // add the method-local numbers to the total sum
6428 void LinearScanStatistic::sum_up(LinearScanStatistic &method_statistic) {
6429   for (int i = 0; i < number_of_counters; i++) {
6430     _counters_sum[i] += method_statistic._counters_sum[i];
6431     _counters_max[i] = MAX2(_counters_max[i], method_statistic._counters_sum[i]);
6432   }
6433 }
6434 
6435 void LinearScanStatistic::print(const char* title) {
6436   if (CountLinearScan || TraceLinearScanLevel > 0) {
6437     tty->cr();
6438     tty->print_cr("***** LinearScan statistic - %s *****", title);
6439 
6440     for (int i = 0; i < number_of_counters; i++) {
6441       if (_counters_sum[i] > 0 || _counters_max[i] >= 0) {
6442         tty->print("%25s: %8d", counter_name(i), _counters_sum[i]);
6443 
6444         if (base_counter(i) != invalid_counter) {
6445           tty->print("  (%5.1f%%) ", _counters_sum[i] * 100.0 / _counters_sum[base_counter(i)]);
6446         } else {
6447           tty->print("           ");
6448         }
6449 
6450         if (_counters_max[i] >= 0) {
6451           tty->print("%8d", _counters_max[i]);
6452         }
6453       }
6454       tty->cr();
6455     }
6456   }
6457 }
6458 
6459 void LinearScanStatistic::collect(LinearScan* allocator) {
6460   inc_counter(counter_method);
6461   if (allocator->has_fpu_registers()) {
6462     inc_counter(counter_fpu_method);
6463   }
6464   if (allocator->num_loops() > 0) {
6465     inc_counter(counter_loop_method);
6466   }
6467   inc_counter(counter_loop, allocator->num_loops());
6468   inc_counter(counter_spill_slots, allocator->max_spills());
6469 
6470   int i;
6471   for (i = 0; i < allocator->interval_count(); i++) {
6472     Interval* cur = allocator->interval_at(i);
6473 
6474     if (cur != NULL) {
6475       inc_counter(counter_interval);
6476       inc_counter(counter_use_pos, cur->num_use_positions());
6477       if (LinearScan::is_precolored_interval(cur)) {
6478         inc_counter(counter_fixed_interval);
6479         inc_counter(counter_fixed_use_pos, cur->num_use_positions());
6480       }
6481 
6482       Range* range = cur->first();
6483       while (range != Range::end()) {
6484         inc_counter(counter_range);
6485         if (LinearScan::is_precolored_interval(cur)) {
6486           inc_counter(counter_fixed_range);
6487         }
6488         range = range->next();
6489       }
6490     }
6491   }
6492 
6493   bool has_xhandlers = false;
6494   // Note: only count blocks that are in code-emit order
6495   for (i = 0; i < allocator->ir()->code()->length(); i++) {
6496     BlockBegin* cur = allocator->ir()->code()->at(i);
6497 
6498     inc_counter(counter_block);
6499     if (cur->loop_depth() > 0) {
6500       inc_counter(counter_loop_block);
6501     }
6502     if (cur->is_set(BlockBegin::exception_entry_flag)) {
6503       inc_counter(counter_exception_block);
6504       has_xhandlers = true;
6505     }
6506 
6507     LIR_OpList* instructions = cur->lir()->instructions_list();
6508     for (int j = 0; j < instructions->length(); j++) {
6509       LIR_Op* op = instructions->at(j);
6510 
6511       inc_counter(counter_instruction);
6512 
6513       switch (op->code()) {
6514         case lir_label:           inc_counter(counter_label); break;
6515         case lir_std_entry:
6516         case lir_osr_entry:       inc_counter(counter_entry); break;
6517         case lir_return:          inc_counter(counter_return); break;
6518 
6519         case lir_rtcall:
6520         case lir_static_call:
6521         case lir_optvirtual_call:
6522         case lir_virtual_call:    inc_counter(counter_call); break;
6523 
6524         case lir_move: {
6525           inc_counter(counter_move);
6526           inc_counter(counter_move_total);
6527 
6528           LIR_Opr in = op->as_Op1()->in_opr();
6529           LIR_Opr res = op->as_Op1()->result_opr();
6530           if (in->is_register()) {
6531             if (res->is_register()) {
6532               inc_counter(counter_move_reg_reg);
6533             } else if (res->is_stack()) {
6534               inc_counter(counter_move_reg_stack);
6535             } else if (res->is_address()) {
6536               inc_counter(counter_move_reg_mem);
6537             } else {
6538               ShouldNotReachHere();
6539             }
6540           } else if (in->is_stack()) {
6541             if (res->is_register()) {
6542               inc_counter(counter_move_stack_reg);
6543             } else {
6544               inc_counter(counter_move_stack_stack);
6545             }
6546           } else if (in->is_address()) {
6547             assert(res->is_register(), "must be");
6548             inc_counter(counter_move_mem_reg);
6549           } else if (in->is_constant()) {
6550             inc_counter(counter_move_const_any);
6551           } else {
6552             ShouldNotReachHere();
6553           }
6554           break;
6555         }
6556 
6557         case lir_cmp:             inc_counter(counter_cmp); break;
6558 
6559         case lir_branch:
6560         case lir_cond_float_branch: {
6561           LIR_OpBranch* branch = op->as_OpBranch();
6562           if (branch->block() == NULL) {
6563             inc_counter(counter_stub_branch);
6564           } else if (branch->cond() == lir_cond_always) {
6565             inc_counter(counter_uncond_branch);
6566           } else {
6567             inc_counter(counter_cond_branch);
6568           }
6569           break;
6570         }
6571 
6572         case lir_neg:
6573         case lir_add:
6574         case lir_sub:
6575         case lir_mul:
6576         case lir_mul_strictfp:
6577         case lir_div:
6578         case lir_div_strictfp:
6579         case lir_rem:
6580         case lir_sqrt:
6581         case lir_sin:
6582         case lir_cos:
6583         case lir_abs:
6584         case lir_log10:
6585         case lir_log:
6586         case lir_pow:
6587         case lir_exp:
6588         case lir_logic_and:
6589         case lir_logic_or:
6590         case lir_logic_xor:
6591         case lir_shl:
6592         case lir_shr:
6593         case lir_ushr:            inc_counter(counter_alu); break;
6594 
6595         case lir_alloc_object:
6596         case lir_alloc_array:     inc_counter(counter_alloc); break;
6597 
6598         case lir_monaddr:
6599         case lir_lock:
6600         case lir_unlock:          inc_counter(counter_sync); break;
6601 
6602         case lir_throw:           inc_counter(counter_throw); break;
6603 
6604         case lir_unwind:          inc_counter(counter_unwind); break;
6605 
6606         case lir_null_check:
6607         case lir_leal:
6608         case lir_instanceof:
6609         case lir_checkcast:
6610         case lir_store_check:     inc_counter(counter_typecheck); break;
6611 
6612         case lir_fpop_raw:
6613         case lir_fxch:
6614         case lir_fld:             inc_counter(counter_fpu_stack); break;
6615 
6616         case lir_nop:
6617         case lir_push:
6618         case lir_pop:
6619         case lir_convert:
6620         case lir_roundfp:
6621         case lir_cmove:           inc_counter(counter_misc_inst); break;
6622 
6623         default:                  inc_counter(counter_other_inst); break;
6624       }
6625     }
6626   }
6627 
6628   if (has_xhandlers) {
6629     inc_counter(counter_exception_method);
6630   }
6631 }
6632 
6633 void LinearScanStatistic::compute(LinearScan* allocator, LinearScanStatistic &global_statistic) {
6634   if (CountLinearScan || TraceLinearScanLevel > 0) {
6635 
6636     LinearScanStatistic local_statistic = LinearScanStatistic();
6637 
6638     local_statistic.collect(allocator);
6639     global_statistic.sum_up(local_statistic);
6640 
6641     if (TraceLinearScanLevel > 2) {
6642       local_statistic.print("current local statistic");
6643     }
6644   }
6645 }
6646 
6647 
6648 // Implementation of LinearTimers
6649 
6650 LinearScanTimers::LinearScanTimers() {
6651   for (int i = 0; i < number_of_timers; i++) {
6652     timer(i)->reset();
6653   }
6654 }
6655 
6656 const char* LinearScanTimers::timer_name(int idx) {
6657   switch (idx) {
6658     case timer_do_nothing:               return "Nothing (Time Check)";
6659     case timer_number_instructions:      return "Number Instructions";
6660     case timer_compute_local_live_sets:  return "Local Live Sets";
6661     case timer_compute_global_live_sets: return "Global Live Sets";
6662     case timer_build_intervals:          return "Build Intervals";
6663     case timer_sort_intervals_before:    return "Sort Intervals Before";
6664     case timer_allocate_registers:       return "Allocate Registers";
6665     case timer_resolve_data_flow:        return "Resolve Data Flow";
6666     case timer_sort_intervals_after:     return "Sort Intervals After";
6667     case timer_eliminate_spill_moves:    return "Spill optimization";
6668     case timer_assign_reg_num:           return "Assign Reg Num";
6669     case timer_allocate_fpu_stack:       return "Allocate FPU Stack";
6670     case timer_optimize_lir:             return "Optimize LIR";
6671     default: ShouldNotReachHere();       return "";
6672   }
6673 }
6674 
6675 void LinearScanTimers::begin_method() {
6676   if (TimeEachLinearScan) {
6677     // reset all timers to measure only current method
6678     for (int i = 0; i < number_of_timers; i++) {
6679       timer(i)->reset();
6680     }
6681   }
6682 }
6683 
6684 void LinearScanTimers::end_method(LinearScan* allocator) {
6685   if (TimeEachLinearScan) {
6686 
6687     double c = timer(timer_do_nothing)->seconds();
6688     double total = 0;
6689     for (int i = 1; i < number_of_timers; i++) {
6690       total += timer(i)->seconds() - c;
6691     }
6692 
6693     if (total >= 0.0005) {
6694       // print all information in one line for automatic processing
6695       tty->print("@"); allocator->compilation()->method()->print_name();
6696 
6697       tty->print("@ %d ", allocator->compilation()->method()->code_size());
6698       tty->print("@ %d ", allocator->block_at(allocator->block_count() - 1)->last_lir_instruction_id() / 2);
6699       tty->print("@ %d ", allocator->block_count());
6700       tty->print("@ %d ", allocator->num_virtual_regs());
6701       tty->print("@ %d ", allocator->interval_count());
6702       tty->print("@ %d ", allocator->_num_calls);
6703       tty->print("@ %d ", allocator->num_loops());
6704 
6705       tty->print("@ %6.6f ", total);
6706       for (int i = 1; i < number_of_timers; i++) {
6707         tty->print("@ %4.1f ", ((timer(i)->seconds() - c) / total) * 100);
6708       }
6709       tty->cr();
6710     }
6711   }
6712 }
6713 
6714 void LinearScanTimers::print(double total_time) {
6715   if (TimeLinearScan) {
6716     // correction value: sum of dummy-timer that only measures the time that
6717     // is necesary to start and stop itself
6718     double c = timer(timer_do_nothing)->seconds();
6719 
6720     for (int i = 0; i < number_of_timers; i++) {
6721       double t = timer(i)->seconds();
6722       tty->print_cr("    %25s: %6.3f s (%4.1f%%)  corrected: %6.3f s (%4.1f%%)", timer_name(i), t, (t / total_time) * 100.0, t - c, (t - c) / (total_time - 2 * number_of_timers * c) * 100);
6723     }
6724   }
6725 }
6726 
6727 #endif // #ifndef PRODUCT