1 /*
   2  * Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2015-2018, Azul Systems, Inc. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #ifndef SHARE_VM_C1_C1_LIR_HPP
  27 #define SHARE_VM_C1_C1_LIR_HPP
  28 
  29 #include "c1/c1_Defs.hpp"
  30 #include "c1/c1_ValueType.hpp"
  31 #include "oops/method.hpp"
  32 #include "utilities/globalDefinitions.hpp"
  33 
  34 class BlockBegin;
  35 class BlockList;
  36 class LIR_Assembler;
  37 class CodeEmitInfo;
  38 class CodeStub;
  39 class CodeStubList;
  40 class ArrayCopyStub;
  41 class LIR_Op;
  42 class ciType;
  43 class ValueType;
  44 class LIR_OpVisitState;
  45 class FpuStackSim;
  46 
  47 //---------------------------------------------------------------------
  48 //                 LIR Operands
  49 //  LIR_OprDesc
  50 //    LIR_OprPtr
  51 //      LIR_Const
  52 //      LIR_Address
  53 //---------------------------------------------------------------------
  54 class LIR_OprDesc;
  55 class LIR_OprPtr;
  56 class LIR_Const;
  57 class LIR_Address;
  58 class LIR_OprVisitor;
  59 
  60 
  61 typedef LIR_OprDesc* LIR_Opr;
  62 typedef int          RegNr;
  63 
  64 typedef GrowableArray<LIR_Opr> LIR_OprList;
  65 typedef GrowableArray<LIR_Op*> LIR_OpArray;
  66 typedef GrowableArray<LIR_Op*> LIR_OpList;
  67 
  68 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  69 class LIR_OprPtr: public CompilationResourceObj {
  70  public:
  71   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  72   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  73 
  74   virtual LIR_Const*  as_constant()              { return NULL; }
  75   virtual LIR_Address* as_address()              { return NULL; }
  76   virtual BasicType type() const                 = 0;
  77   virtual void print_value_on(outputStream* out) const = 0;
  78 };
  79 
  80 
  81 
  82 // LIR constants
  83 class LIR_Const: public LIR_OprPtr {
  84  private:
  85   JavaValue _value;
  86 
  87   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  88   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  89   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  90 
  91  public:
  92   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  93   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
  94   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
  95   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
  96   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
  97   LIR_Const(void* p) {
  98 #ifdef _LP64
  99     assert(sizeof(jlong) >= sizeof(p), "too small");;
 100     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 101 #else
 102     assert(sizeof(jint) >= sizeof(p), "too small");;
 103     _value.set_type(T_INT);     _value.set_jint((jint)p);
 104 #endif
 105   }
 106   LIR_Const(Metadata* m) {
 107     _value.set_type(T_METADATA);
 108 #ifdef _LP64
 109     _value.set_jlong((jlong)m);
 110 #else
 111     _value.set_jint((jint)m);
 112 #endif // _LP64
 113   }
 114 
 115   virtual BasicType type()       const { return _value.get_type(); }
 116   virtual LIR_Const* as_constant()     { return this; }
 117 
 118   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 119   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 120   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 121   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 122   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 123   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 124   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 125 
 126 #ifdef _LP64
 127   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 128   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
 129 #else
 130   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 131   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
 132 #endif
 133 
 134 
 135   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 136   jint      as_jint_lo_bits() const    {
 137     if (type() == T_DOUBLE) {
 138       return low(jlong_cast(_value.get_jdouble()));
 139     } else {
 140       return as_jint_lo();
 141     }
 142   }
 143   jint      as_jint_hi_bits() const    {
 144     if (type() == T_DOUBLE) {
 145       return high(jlong_cast(_value.get_jdouble()));
 146     } else {
 147       return as_jint_hi();
 148     }
 149   }
 150   jlong      as_jlong_bits() const    {
 151     if (type() == T_DOUBLE) {
 152       return jlong_cast(_value.get_jdouble());
 153     } else {
 154       return as_jlong();
 155     }
 156   }
 157 
 158   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 159 
 160 
 161   bool is_zero_float() {
 162     jfloat f = as_jfloat();
 163     jfloat ok = 0.0f;
 164     return jint_cast(f) == jint_cast(ok);
 165   }
 166 
 167   bool is_one_float() {
 168     jfloat f = as_jfloat();
 169     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 170   }
 171 
 172   bool is_zero_double() {
 173     jdouble d = as_jdouble();
 174     jdouble ok = 0.0;
 175     return jlong_cast(d) == jlong_cast(ok);
 176   }
 177 
 178   bool is_one_double() {
 179     jdouble d = as_jdouble();
 180     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 181   }
 182 };
 183 
 184 
 185 //---------------------LIR Operand descriptor------------------------------------
 186 //
 187 // The class LIR_OprDesc represents a LIR instruction operand;
 188 // it can be a register (ALU/FPU), stack location or a constant;
 189 // Constants and addresses are represented as resource area allocated
 190 // structures (see above).
 191 // Registers and stack locations are inlined into the this pointer
 192 // (see value function).
 193 
 194 class LIR_OprDesc: public CompilationResourceObj {
 195  public:
 196   // value structure:
 197   //     data       opr-type opr-kind
 198   // +--------------+-------+-------+
 199   // [max...........|7 6 5 4|3 2 1 0]
 200   //                               ^
 201   //                         is_pointer bit
 202   //
 203   // lowest bit cleared, means it is a structure pointer
 204   // we need  4 bits to represent types
 205 
 206  private:
 207   friend class LIR_OprFact;
 208 
 209   // Conversion
 210   intptr_t value() const                         { return (intptr_t) this; }
 211 
 212   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 213     return (value() & mask) == masked_value;
 214   }
 215 
 216   enum OprKind {
 217       pointer_value      = 0
 218     , stack_value        = 1
 219     , cpu_register       = 3
 220     , fpu_register       = 5
 221     , illegal_value      = 7
 222   };
 223 
 224   enum OprBits {
 225       pointer_bits   = 1
 226     , kind_bits      = 3
 227     , type_bits      = 4
 228     , size_bits      = 2
 229     , destroys_bits  = 1
 230     , virtual_bits   = 1
 231     , is_xmm_bits    = 1
 232     , last_use_bits  = 1
 233     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 234     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 235                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 236     , data_bits      = BitsPerInt - non_data_bits
 237     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 238   };
 239 
 240   enum OprShift {
 241       kind_shift     = 0
 242     , type_shift     = kind_shift     + kind_bits
 243     , size_shift     = type_shift     + type_bits
 244     , destroys_shift = size_shift     + size_bits
 245     , last_use_shift = destroys_shift + destroys_bits
 246     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 247     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 248     , is_xmm_shift   = virtual_shift + virtual_bits
 249     , data_shift     = is_xmm_shift + is_xmm_bits
 250     , reg1_shift = data_shift
 251     , reg2_shift = data_shift + reg_bits
 252 
 253   };
 254 
 255   enum OprSize {
 256       single_size = 0 << size_shift
 257     , double_size = 1 << size_shift
 258   };
 259 
 260   enum OprMask {
 261       kind_mask      = right_n_bits(kind_bits)
 262     , type_mask      = right_n_bits(type_bits) << type_shift
 263     , size_mask      = right_n_bits(size_bits) << size_shift
 264     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 265     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 266     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 267     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 268     , pointer_mask   = right_n_bits(pointer_bits)
 269     , lower_reg_mask = right_n_bits(reg_bits)
 270     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 271   };
 272 
 273   uintptr_t data() const                         { return value() >> data_shift; }
 274   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 275   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 276   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 277   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 278 
 279   static char type_char(BasicType t);
 280 
 281  public:
 282   enum {
 283     vreg_base = ConcreteRegisterImpl::number_of_registers,
 284     vreg_max = (1 << data_bits) - 1
 285   };
 286 
 287   static inline LIR_Opr illegalOpr();
 288 
 289   enum OprType {
 290       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 291     , int_type      = 1 << type_shift
 292     , long_type     = 2 << type_shift
 293     , object_type   = 3 << type_shift
 294     , address_type  = 4 << type_shift
 295     , float_type    = 5 << type_shift
 296     , double_type   = 6 << type_shift
 297     , metadata_type = 7 << type_shift
 298   };
 299   friend OprType as_OprType(BasicType t);
 300   friend BasicType as_BasicType(OprType t);
 301 
 302   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 303   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 304 
 305   static OprSize size_for(BasicType t) {
 306     switch (t) {
 307       case T_LONG:
 308       case T_DOUBLE:
 309         return double_size;
 310         break;
 311 
 312       case T_FLOAT:
 313       case T_BOOLEAN:
 314       case T_CHAR:
 315       case T_BYTE:
 316       case T_SHORT:
 317       case T_INT:
 318       case T_ADDRESS:
 319       case T_OBJECT:
 320       case T_ARRAY:
 321       case T_METADATA:
 322         return single_size;
 323         break;
 324 
 325       default:
 326         ShouldNotReachHere();
 327         return single_size;
 328       }
 329   }
 330 
 331 
 332   void validate_type() const PRODUCT_RETURN;
 333 
 334   BasicType type() const {
 335     if (is_pointer()) {
 336       return pointer()->type();
 337     }
 338     return as_BasicType(type_field());
 339   }
 340 
 341 
 342   ValueType* value_type() const                  { return as_ValueType(type()); }
 343 
 344   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 345 
 346   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 347   // checks whether types are same
 348   bool is_same_type(LIR_Opr opr) const     {
 349     assert(type_field() != unknown_type &&
 350            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 351     return type_field() == opr->type_field();
 352   }
 353   bool is_same_register(LIR_Opr opr) {
 354     return (is_register() && opr->is_register() &&
 355             kind_field() == opr->kind_field() &&
 356             (value() & no_type_mask) == (opr->value() & no_type_mask));
 357   }
 358 
 359   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 360   bool is_illegal() const      { return kind_field() == illegal_value; }
 361   bool is_valid() const        { return kind_field() != illegal_value; }
 362 
 363   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 364   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 365 
 366   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 367   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 368 
 369   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 370   bool is_oop() const;
 371 
 372   // semantic for fpu- and xmm-registers:
 373   // * is_float and is_double return true for xmm_registers
 374   //   (so is_single_fpu and is_single_xmm are true)
 375   // * So you must always check for is_???_xmm prior to is_???_fpu to
 376   //   distinguish between fpu- and xmm-registers
 377 
 378   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 379   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 380   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 381 
 382   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 383   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 384   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 385   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 386   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 387 
 388   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 389   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 390   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 391   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 392   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 393 
 394   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 395   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 396   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 397 
 398   // fast accessor functions for special bits that do not work for pointers
 399   // (in this functions, the check for is_pointer() is omitted)
 400   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 401   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 402   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 403   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 404   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 405 
 406   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 407   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 408   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 409   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 410 
 411 
 412   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 413   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 414   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 415   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 416   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 417   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 418   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 419   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 420   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 421   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 422   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 423   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 424 
 425   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 426   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 427   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 428 
 429   Register as_register()    const;
 430   Register as_register_lo() const;
 431   Register as_register_hi() const;
 432 
 433   Register as_pointer_register() {
 434 #ifdef _LP64
 435     if (is_double_cpu()) {
 436       assert(as_register_lo() == as_register_hi(), "should be a single register");
 437       return as_register_lo();
 438     }
 439 #endif
 440     return as_register();
 441   }
 442 
 443   FloatRegister as_float_reg   () const;
 444   FloatRegister as_double_reg  () const;
 445 #ifdef X86
 446   XMMRegister as_xmm_float_reg () const;
 447   XMMRegister as_xmm_double_reg() const;
 448   // for compatibility with RInfo
 449   int fpu() const { return lo_reg_half(); }
 450 #endif
 451 
 452   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 453   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 454   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 455   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 456   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 457 
 458   void print() const PRODUCT_RETURN;
 459   void print(outputStream* out) const PRODUCT_RETURN;
 460 };
 461 
 462 
 463 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 464   switch (type) {
 465   case T_INT:      return LIR_OprDesc::int_type;
 466   case T_LONG:     return LIR_OprDesc::long_type;
 467   case T_FLOAT:    return LIR_OprDesc::float_type;
 468   case T_DOUBLE:   return LIR_OprDesc::double_type;
 469   case T_OBJECT:
 470   case T_ARRAY:    return LIR_OprDesc::object_type;
 471   case T_ADDRESS:  return LIR_OprDesc::address_type;
 472   case T_METADATA: return LIR_OprDesc::metadata_type;
 473   case T_ILLEGAL:  // fall through
 474   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 475   }
 476 }
 477 
 478 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 479   switch (t) {
 480   case LIR_OprDesc::int_type:     return T_INT;
 481   case LIR_OprDesc::long_type:    return T_LONG;
 482   case LIR_OprDesc::float_type:   return T_FLOAT;
 483   case LIR_OprDesc::double_type:  return T_DOUBLE;
 484   case LIR_OprDesc::object_type:  return T_OBJECT;
 485   case LIR_OprDesc::address_type: return T_ADDRESS;
 486   case LIR_OprDesc::metadata_type:return T_METADATA;
 487   case LIR_OprDesc::unknown_type: // fall through
 488   default: ShouldNotReachHere();  return T_ILLEGAL;
 489   }
 490 }
 491 
 492 
 493 // LIR_Address
 494 class LIR_Address: public LIR_OprPtr {
 495  friend class LIR_OpVisitState;
 496 
 497  public:
 498   // NOTE: currently these must be the log2 of the scale factor (and
 499   // must also be equivalent to the ScaleFactor enum in
 500   // assembler_i486.hpp)
 501   enum Scale {
 502     times_1  =  0,
 503     times_2  =  1,
 504     times_4  =  2,
 505     times_8  =  3
 506   };
 507 
 508  private:
 509   LIR_Opr   _base;
 510   LIR_Opr   _index;
 511   Scale     _scale;
 512   intx      _disp;
 513   BasicType _type;
 514 
 515  public:
 516   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 517        _base(base)
 518      , _index(index)
 519      , _scale(times_1)
 520      , _type(type)
 521      , _disp(0) { verify(); }
 522 
 523   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 524        _base(base)
 525      , _index(LIR_OprDesc::illegalOpr())
 526      , _scale(times_1)
 527      , _type(type)
 528      , _disp(disp) { verify(); }
 529 
 530   LIR_Address(LIR_Opr base, BasicType type):
 531        _base(base)
 532      , _index(LIR_OprDesc::illegalOpr())
 533      , _scale(times_1)
 534      , _type(type)
 535      , _disp(0) { verify(); }
 536 
 537   LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type):
 538        _base(base)
 539      , _index(index)
 540      , _scale(times_1)
 541      , _type(type)
 542      , _disp(disp) { verify(); }
 543 
 544   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 545        _base(base)
 546      , _index(index)
 547      , _scale(scale)
 548      , _type(type)
 549      , _disp(disp) { verify(); }
 550 
 551   LIR_Opr base()  const                          { return _base;  }
 552   LIR_Opr index() const                          { return _index; }
 553   Scale   scale() const                          { return _scale; }
 554   intx    disp()  const                          { return _disp;  }
 555 
 556   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 557 
 558   virtual LIR_Address* as_address()              { return this;   }
 559   virtual BasicType type() const                 { return _type; }
 560   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 561 
 562   void verify() const PRODUCT_RETURN;
 563 
 564   static Scale scale(BasicType type);
 565 };
 566 
 567 
 568 // operand factory
 569 class LIR_OprFact: public AllStatic {
 570  public:
 571 
 572   static LIR_Opr illegalOpr;
 573 
 574   static LIR_Opr single_cpu(int reg) {
 575     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 576                                LIR_OprDesc::int_type             |
 577                                LIR_OprDesc::cpu_register         |
 578                                LIR_OprDesc::single_size);
 579   }
 580   static LIR_Opr single_cpu_oop(int reg) {
 581     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 582                                LIR_OprDesc::object_type          |
 583                                LIR_OprDesc::cpu_register         |
 584                                LIR_OprDesc::single_size);
 585   }
 586   static LIR_Opr single_cpu_address(int reg) {
 587     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 588                                LIR_OprDesc::address_type         |
 589                                LIR_OprDesc::cpu_register         |
 590                                LIR_OprDesc::single_size);
 591   }
 592   static LIR_Opr single_cpu_metadata(int reg) {
 593     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 594                                LIR_OprDesc::metadata_type        |
 595                                LIR_OprDesc::cpu_register         |
 596                                LIR_OprDesc::single_size);
 597   }
 598   static LIR_Opr double_cpu(int reg1, int reg2) {
 599     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 600     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 601                                (reg2 << LIR_OprDesc::reg2_shift) |
 602                                LIR_OprDesc::long_type            |
 603                                LIR_OprDesc::cpu_register         |
 604                                LIR_OprDesc::double_size);
 605   }
 606 
 607   static LIR_Opr single_fpu(int reg) {
 608     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 609                                LIR_OprDesc::float_type           |
 610                                LIR_OprDesc::fpu_register         |
 611                                LIR_OprDesc::single_size);
 612   }
 613 
 614   // Platform dependant.
 615   static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/);
 616 
 617 #ifdef ARM32
 618   static LIR_Opr single_softfp(int reg) {
 619     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 620                                LIR_OprDesc::float_type           |
 621                                LIR_OprDesc::cpu_register         |
 622                                LIR_OprDesc::single_size);
 623   }
 624   static LIR_Opr double_softfp(int reg1, int reg2) {
 625     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 626                                (reg2 << LIR_OprDesc::reg2_shift) |
 627                                LIR_OprDesc::double_type          |
 628                                LIR_OprDesc::cpu_register         |
 629                                LIR_OprDesc::double_size);
 630   }
 631 #endif // ARM32
 632 
 633 #if defined(X86)
 634   static LIR_Opr single_xmm(int reg) {
 635     return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
 636                                LIR_OprDesc::float_type          |
 637                                LIR_OprDesc::fpu_register        |
 638                                LIR_OprDesc::single_size         |
 639                                LIR_OprDesc::is_xmm_mask);
 640   }
 641   static LIR_Opr double_xmm(int reg) {
 642     return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
 643                                (reg << LIR_OprDesc::reg2_shift) |
 644                                LIR_OprDesc::double_type         |
 645                                LIR_OprDesc::fpu_register        |
 646                                LIR_OprDesc::double_size         |
 647                                LIR_OprDesc::is_xmm_mask);
 648   }
 649 #endif // X86
 650 
 651   static LIR_Opr virtual_register(int index, BasicType type) {
 652     LIR_Opr res;
 653     switch (type) {
 654       case T_OBJECT: // fall through
 655       case T_ARRAY:
 656         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 657                                             LIR_OprDesc::object_type  |
 658                                             LIR_OprDesc::cpu_register |
 659                                             LIR_OprDesc::single_size  |
 660                                             LIR_OprDesc::virtual_mask);
 661         break;
 662 
 663       case T_METADATA:
 664         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 665                                             LIR_OprDesc::metadata_type|
 666                                             LIR_OprDesc::cpu_register |
 667                                             LIR_OprDesc::single_size  |
 668                                             LIR_OprDesc::virtual_mask);
 669         break;
 670 
 671       case T_INT:
 672         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 673                                   LIR_OprDesc::int_type              |
 674                                   LIR_OprDesc::cpu_register          |
 675                                   LIR_OprDesc::single_size           |
 676                                   LIR_OprDesc::virtual_mask);
 677         break;
 678 
 679       case T_ADDRESS:
 680         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 681                                   LIR_OprDesc::address_type          |
 682                                   LIR_OprDesc::cpu_register          |
 683                                   LIR_OprDesc::single_size           |
 684                                   LIR_OprDesc::virtual_mask);
 685         break;
 686 
 687       case T_LONG:
 688         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 689                                   LIR_OprDesc::long_type             |
 690                                   LIR_OprDesc::cpu_register          |
 691                                   LIR_OprDesc::double_size           |
 692                                   LIR_OprDesc::virtual_mask);
 693         break;
 694 
 695 #ifdef __SOFTFP__
 696       case T_FLOAT:
 697 #ifdef AARCH32
 698         if (hasFPU()) {
 699             res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 700                                       LIR_OprDesc::float_type           |
 701                                       LIR_OprDesc::fpu_register         |
 702                                       LIR_OprDesc::single_size          |
 703                                       LIR_OprDesc::virtual_mask);
 704         } else
 705 #endif // AARCH32
 706         {
 707           res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 708                                     LIR_OprDesc::float_type  |
 709                                     LIR_OprDesc::cpu_register |
 710                                     LIR_OprDesc::single_size |
 711                                     LIR_OprDesc::virtual_mask);
 712         }
 713         break;
 714       case T_DOUBLE:
 715 #ifdef AARCH32
 716         if(hasFPU()) {
 717             res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 718                                                 LIR_OprDesc::double_type           |
 719                                                 LIR_OprDesc::fpu_register          |
 720                                                 LIR_OprDesc::double_size           |
 721                                                 LIR_OprDesc::virtual_mask);
 722         } else
 723 #endif
 724         {
 725           res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 726                                     LIR_OprDesc::double_type |
 727                                     LIR_OprDesc::cpu_register |
 728                                     LIR_OprDesc::double_size |
 729                                     LIR_OprDesc::virtual_mask);
 730         }
 731         break;
 732 #else // __SOFTFP__
 733       case T_FLOAT:
 734         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 735                                   LIR_OprDesc::float_type           |
 736                                   LIR_OprDesc::fpu_register         |
 737                                   LIR_OprDesc::single_size          |
 738                                   LIR_OprDesc::virtual_mask);
 739         break;
 740 
 741       case
 742         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 743                                             LIR_OprDesc::double_type           |
 744                                             LIR_OprDesc::fpu_register          |
 745                                             LIR_OprDesc::double_size           |
 746                                             LIR_OprDesc::virtual_mask);
 747         break;
 748 #endif // __SOFTFP__
 749       default:       ShouldNotReachHere(); res = illegalOpr;
 750     }
 751 
 752 #ifdef ASSERT
 753     res->validate_type();
 754     assert(res->vreg_number() == index, "conversion check");
 755     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 756     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 757 
 758     // old-style calculation; check if old and new method are equal
 759     LIR_OprDesc::OprType t = as_OprType(type);
 760 #ifdef __SOFTFP__
 761     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 762                                t |
 763                                LIR_OprDesc::cpu_register |
 764                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 765 #else // __SOFTFP__
 766     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 767                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 768                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 769     assert(res == old_res, "old and new method not equal");
 770 #endif // __SOFTFP__
 771 #endif // ASSERT
 772 
 773     return res;
 774   }
 775 
 776   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 777   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 778   // index 2.
 779   static LIR_Opr stack(int index, BasicType type) {
 780     LIR_Opr res;
 781     switch (type) {
 782       case T_OBJECT: // fall through
 783       case T_ARRAY:
 784         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 785                                   LIR_OprDesc::object_type           |
 786                                   LIR_OprDesc::stack_value           |
 787                                   LIR_OprDesc::single_size);
 788         break;
 789 
 790       case T_METADATA:
 791         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 792                                   LIR_OprDesc::metadata_type         |
 793                                   LIR_OprDesc::stack_value           |
 794                                   LIR_OprDesc::single_size);
 795         break;
 796       case T_INT:
 797         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 798                                   LIR_OprDesc::int_type              |
 799                                   LIR_OprDesc::stack_value           |
 800                                   LIR_OprDesc::single_size);
 801         break;
 802 
 803       case T_ADDRESS:
 804         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 805                                   LIR_OprDesc::address_type          |
 806                                   LIR_OprDesc::stack_value           |
 807                                   LIR_OprDesc::single_size);
 808         break;
 809 
 810       case T_LONG:
 811         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 812                                   LIR_OprDesc::long_type             |
 813                                   LIR_OprDesc::stack_value           |
 814                                   LIR_OprDesc::double_size);
 815         break;
 816 
 817       case T_FLOAT:
 818         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 819                                   LIR_OprDesc::float_type            |
 820                                   LIR_OprDesc::stack_value           |
 821                                   LIR_OprDesc::single_size);
 822         break;
 823       case T_DOUBLE:
 824         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 825                                   LIR_OprDesc::double_type           |
 826                                   LIR_OprDesc::stack_value           |
 827                                   LIR_OprDesc::double_size);
 828         break;
 829 
 830       default:       ShouldNotReachHere(); res = illegalOpr;
 831     }
 832 
 833 #ifdef ASSERT
 834     assert(index >= 0, "index must be positive");
 835     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 836 
 837     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 838                                           LIR_OprDesc::stack_value           |
 839                                           as_OprType(type)                   |
 840                                           LIR_OprDesc::size_for(type));
 841     assert(res == old_res, "old and new method not equal");
 842 #endif
 843 
 844     return res;
 845   }
 846 
 847   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 848   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 849   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 850   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 851   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 852   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 853   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 854   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 855   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 856   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 857   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
 858 
 859   static LIR_Opr value_type(ValueType* type);
 860   static LIR_Opr dummy_value_type(ValueType* type);
 861 };
 862 
 863 
 864 //-------------------------------------------------------------------------------
 865 //                   LIR Instructions
 866 //-------------------------------------------------------------------------------
 867 //
 868 // Note:
 869 //  - every instruction has a result operand
 870 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 871 //  - every instruction has a LIR_OpCode operand
 872 //  - LIR_OpN, means an instruction that has N input operands
 873 //
 874 // class hierarchy:
 875 //
 876 class  LIR_Op;
 877 class    LIR_Op0;
 878 class      LIR_OpLabel;
 879 class    LIR_Op1;
 880 class      LIR_OpBranch;
 881 class      LIR_OpConvert;
 882 class      LIR_OpAllocObj;
 883 class      LIR_OpRoundFP;
 884 class    LIR_Op2;
 885 class    LIR_OpDelay;
 886 class    LIR_Op3;
 887 class      LIR_OpAllocArray;
 888 class    LIR_OpCall;
 889 class      LIR_OpJavaCall;
 890 class      LIR_OpRTCall;
 891 class    LIR_OpArrayCopy;
 892 class    LIR_OpUpdateCRC32;
 893 class    LIR_OpLock;
 894 class    LIR_OpTypeCheck;
 895 class    LIR_OpCompareAndSwap;
 896 class    LIR_OpProfileCall;
 897 class    LIR_OpProfileType;
 898 #ifdef ASSERT
 899 class    LIR_OpAssert;
 900 #endif
 901 
 902 // LIR operation codes
 903 enum LIR_Code {
 904     lir_none
 905   , begin_op0
 906       , lir_word_align
 907       , lir_label
 908       , lir_nop
 909       , lir_backwardbranch_target
 910       , lir_std_entry
 911       , lir_osr_entry
 912       , lir_build_frame
 913       , lir_fpop_raw
 914       , lir_24bit_FPU
 915       , lir_reset_FPU
 916       , lir_breakpoint
 917       , lir_rtcall
 918       , lir_membar
 919       , lir_membar_acquire
 920       , lir_membar_release
 921       , lir_membar_loadload
 922       , lir_membar_storestore
 923       , lir_membar_loadstore
 924       , lir_membar_storeload
 925       , lir_get_thread
 926       , lir_on_spin_wait
 927   , end_op0
 928   , begin_op1
 929       , lir_fxch
 930       , lir_fld
 931       , lir_ffree
 932       , lir_push
 933       , lir_pop
 934       , lir_null_check
 935       , lir_return
 936       , lir_leal
 937       , lir_neg
 938       , lir_branch
 939       , lir_cond_float_branch
 940       , lir_move
 941       , lir_convert
 942       , lir_alloc_object
 943       , lir_monaddr
 944       , lir_roundfp
 945       , lir_safepoint
 946       , lir_pack64
 947       , lir_unpack64
 948       , lir_unwind
 949   , end_op1
 950   , begin_op2
 951       , lir_cmp
 952       , lir_cmp_l2i
 953       , lir_ucmp_fd2i
 954       , lir_cmp_fd2i
 955       , lir_cmove
 956       , lir_add
 957       , lir_sub
 958       , lir_mul
 959       , lir_mul_strictfp
 960       , lir_div
 961       , lir_div_strictfp
 962       , lir_rem
 963       , lir_sqrt
 964       , lir_abs
 965       , lir_tan
 966       , lir_log10
 967       , lir_logic_and
 968       , lir_logic_or
 969       , lir_logic_xor
 970       , lir_shl
 971       , lir_shr
 972       , lir_ushr
 973       , lir_alloc_array
 974       , lir_throw
 975       , lir_compare_to
 976       , lir_xadd
 977       , lir_xchg
 978   , end_op2
 979   , begin_op3
 980       , lir_idiv
 981       , lir_irem
 982       , lir_fmad
 983       , lir_fmaf
 984   , end_op3
 985   , begin_opJavaCall
 986       , lir_static_call
 987       , lir_optvirtual_call
 988       , lir_icvirtual_call
 989       , lir_virtual_call
 990       , lir_dynamic_call
 991   , end_opJavaCall
 992   , begin_opArrayCopy
 993       , lir_arraycopy
 994   , end_opArrayCopy
 995   , begin_opUpdateCRC32
 996       , lir_updatecrc32
 997   , end_opUpdateCRC32
 998   , begin_opLock
 999     , lir_lock
1000     , lir_unlock
1001   , end_opLock
1002   , begin_delay_slot
1003     , lir_delay_slot
1004   , end_delay_slot
1005   , begin_opTypeCheck
1006     , lir_instanceof
1007     , lir_checkcast
1008     , lir_store_check
1009   , end_opTypeCheck
1010   , begin_opCompareAndSwap
1011     , lir_cas_long
1012     , lir_cas_obj
1013     , lir_cas_int
1014   , end_opCompareAndSwap
1015   , begin_opMDOProfile
1016     , lir_profile_call
1017     , lir_profile_type
1018   , end_opMDOProfile
1019   , begin_opAssert
1020     , lir_assert
1021   , end_opAssert
1022 };
1023 
1024 
1025 enum LIR_Condition {
1026     lir_cond_equal
1027   , lir_cond_notEqual
1028   , lir_cond_less
1029   , lir_cond_lessEqual
1030   , lir_cond_greaterEqual
1031   , lir_cond_greater
1032   , lir_cond_belowEqual
1033   , lir_cond_aboveEqual
1034   , lir_cond_always
1035   , lir_cond_unknown = -1
1036 };
1037 
1038 
1039 enum LIR_PatchCode {
1040   lir_patch_none,
1041   lir_patch_low,
1042   lir_patch_high,
1043   lir_patch_normal
1044 };
1045 
1046 
1047 enum LIR_MoveKind {
1048   lir_move_normal,
1049   lir_move_volatile,
1050   lir_move_unaligned,
1051   lir_move_wide,
1052   lir_move_max_flag
1053 };
1054 
1055 
1056 // --------------------------------------------------
1057 // LIR_Op
1058 // --------------------------------------------------
1059 class LIR_Op: public CompilationResourceObj {
1060  friend class LIR_OpVisitState;
1061 
1062 #ifdef ASSERT
1063  private:
1064   const char *  _file;
1065   int           _line;
1066 #endif
1067 
1068  protected:
1069   LIR_Opr       _result;
1070   unsigned short _code;
1071   unsigned short _flags;
1072   CodeEmitInfo* _info;
1073   int           _id;     // value id for register allocation
1074   int           _fpu_pop_count;
1075   Instruction*  _source; // for debugging
1076 
1077   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1078 
1079  protected:
1080   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1081 
1082  public:
1083   LIR_Op()
1084     : _result(LIR_OprFact::illegalOpr)
1085     , _code(lir_none)
1086     , _flags(0)
1087     , _info(NULL)
1088 #ifdef ASSERT
1089     , _file(NULL)
1090     , _line(0)
1091 #endif
1092     , _fpu_pop_count(0)
1093     , _source(NULL)
1094     , _id(-1)                             {}
1095 
1096   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1097     : _result(result)
1098     , _code(code)
1099     , _flags(0)
1100     , _info(info)
1101 #ifdef ASSERT
1102     , _file(NULL)
1103     , _line(0)
1104 #endif
1105     , _fpu_pop_count(0)
1106     , _source(NULL)
1107     , _id(-1)                             {}
1108 
1109   CodeEmitInfo* info() const                  { return _info;   }
1110   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1111   LIR_Opr result_opr() const                  { return _result; }
1112   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1113 
1114 #ifdef ASSERT
1115   void set_file_and_line(const char * file, int line) {
1116     _file = file;
1117     _line = line;
1118   }
1119 #endif
1120 
1121   virtual const char * name() const PRODUCT_RETURN0;
1122   virtual void visit(LIR_OpVisitState* state);
1123 
1124   int id()             const                  { return _id;     }
1125   void set_id(int id)                         { _id = id; }
1126 
1127   // FPU stack simulation helpers -- only used on Intel
1128   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1129   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1130   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1131 
1132   Instruction* source() const                 { return _source; }
1133   void set_source(Instruction* ins)           { _source = ins; }
1134 
1135   virtual void emit_code(LIR_Assembler* masm) = 0;
1136   virtual void print_instr(outputStream* out) const   = 0;
1137   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1138 
1139   virtual bool is_patching() { return false; }
1140   virtual LIR_OpCall* as_OpCall() { return NULL; }
1141   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1142   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1143   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1144   virtual LIR_OpLock* as_OpLock() { return NULL; }
1145   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1146   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1147   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1148   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1149   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1150   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1151   virtual LIR_Op0* as_Op0() { return NULL; }
1152   virtual LIR_Op1* as_Op1() { return NULL; }
1153   virtual LIR_Op2* as_Op2() { return NULL; }
1154   virtual LIR_Op3* as_Op3() { return NULL; }
1155   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1156   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
1157   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1158   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1159   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1160   virtual LIR_OpProfileType* as_OpProfileType() { return NULL; }
1161 #ifdef ASSERT
1162   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1163 #endif
1164 
1165   virtual void verify() const {}
1166 };
1167 
1168 // for calls
1169 class LIR_OpCall: public LIR_Op {
1170  friend class LIR_OpVisitState;
1171 
1172  protected:
1173   address      _addr;
1174   LIR_OprList* _arguments;
1175  protected:
1176   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1177              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1178     : LIR_Op(code, result, info)
1179     , _arguments(arguments)
1180     , _addr(addr) {}
1181 
1182  public:
1183   address addr() const                           { return _addr; }
1184   const LIR_OprList* arguments() const           { return _arguments; }
1185   virtual LIR_OpCall* as_OpCall()                { return this; }
1186 };
1187 
1188 
1189 // --------------------------------------------------
1190 // LIR_OpJavaCall
1191 // --------------------------------------------------
1192 class LIR_OpJavaCall: public LIR_OpCall {
1193  friend class LIR_OpVisitState;
1194 
1195  private:
1196   ciMethod* _method;
1197   LIR_Opr   _receiver;
1198   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1199 
1200  public:
1201   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1202                  LIR_Opr receiver, LIR_Opr result,
1203                  address addr, LIR_OprList* arguments,
1204                  CodeEmitInfo* info)
1205   : LIR_OpCall(code, addr, result, arguments, info)
1206   , _receiver(receiver)
1207   , _method(method)
1208   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1209   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1210 
1211   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1212                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1213                  LIR_OprList* arguments, CodeEmitInfo* info)
1214   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1215   , _receiver(receiver)
1216   , _method(method)
1217   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1218   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1219 
1220   LIR_Opr receiver() const                       { return _receiver; }
1221   ciMethod* method() const                       { return _method;   }
1222 
1223   // JSR 292 support.
1224   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1225   bool is_method_handle_invoke() const {
1226     return method()->is_compiled_lambda_form() ||   // Java-generated lambda form
1227            method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1228   }
1229 
1230   intptr_t vtable_offset() const {
1231     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1232     return (intptr_t) addr();
1233   }
1234 
1235   virtual void emit_code(LIR_Assembler* masm);
1236   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1237   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1238 };
1239 
1240 // --------------------------------------------------
1241 // LIR_OpLabel
1242 // --------------------------------------------------
1243 // Location where a branch can continue
1244 class LIR_OpLabel: public LIR_Op {
1245  friend class LIR_OpVisitState;
1246 
1247  private:
1248   Label* _label;
1249  public:
1250   LIR_OpLabel(Label* lbl)
1251    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1252    , _label(lbl)                                 {}
1253   Label* label() const                           { return _label; }
1254 
1255   virtual void emit_code(LIR_Assembler* masm);
1256   virtual LIR_OpLabel* as_OpLabel() { return this; }
1257   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1258 };
1259 
1260 // LIR_OpArrayCopy
1261 class LIR_OpArrayCopy: public LIR_Op {
1262  friend class LIR_OpVisitState;
1263 
1264  private:
1265   ArrayCopyStub*  _stub;
1266   LIR_Opr   _src;
1267   LIR_Opr   _src_pos;
1268   LIR_Opr   _dst;
1269   LIR_Opr   _dst_pos;
1270   LIR_Opr   _length;
1271   LIR_Opr   _tmp;
1272   ciArrayKlass* _expected_type;
1273   int       _flags;
1274 
1275 public:
1276   enum Flags {
1277     src_null_check         = 1 << 0,
1278     dst_null_check         = 1 << 1,
1279     src_pos_positive_check = 1 << 2,
1280     dst_pos_positive_check = 1 << 3,
1281     length_positive_check  = 1 << 4,
1282     src_range_check        = 1 << 5,
1283     dst_range_check        = 1 << 6,
1284     type_check             = 1 << 7,
1285     overlapping            = 1 << 8,
1286     unaligned              = 1 << 9,
1287     src_objarray           = 1 << 10,
1288     dst_objarray           = 1 << 11,
1289     all_flags              = (1 << 12) - 1
1290   };
1291 
1292   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1293                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1294 
1295   LIR_Opr src() const                            { return _src; }
1296   LIR_Opr src_pos() const                        { return _src_pos; }
1297   LIR_Opr dst() const                            { return _dst; }
1298   LIR_Opr dst_pos() const                        { return _dst_pos; }
1299   LIR_Opr length() const                         { return _length; }
1300   LIR_Opr tmp() const                            { return _tmp; }
1301   int flags() const                              { return _flags; }
1302   ciArrayKlass* expected_type() const            { return _expected_type; }
1303   ArrayCopyStub* stub() const                    { return _stub; }
1304 
1305   virtual void emit_code(LIR_Assembler* masm);
1306   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1307   void print_instr(outputStream* out) const PRODUCT_RETURN;
1308 };
1309 
1310 // LIR_OpUpdateCRC32
1311 class LIR_OpUpdateCRC32: public LIR_Op {
1312   friend class LIR_OpVisitState;
1313 
1314 private:
1315   LIR_Opr   _crc;
1316   LIR_Opr   _val;
1317 
1318 public:
1319 
1320   LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1321 
1322   LIR_Opr crc() const                            { return _crc; }
1323   LIR_Opr val() const                            { return _val; }
1324 
1325   virtual void emit_code(LIR_Assembler* masm);
1326   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32()  { return this; }
1327   void print_instr(outputStream* out) const PRODUCT_RETURN;
1328 };
1329 
1330 // --------------------------------------------------
1331 // LIR_Op0
1332 // --------------------------------------------------
1333 class LIR_Op0: public LIR_Op {
1334  friend class LIR_OpVisitState;
1335 
1336  public:
1337   LIR_Op0(LIR_Code code)
1338    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1339   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1340    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1341 
1342   virtual void emit_code(LIR_Assembler* masm);
1343   virtual LIR_Op0* as_Op0() { return this; }
1344   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1345 };
1346 
1347 
1348 // --------------------------------------------------
1349 // LIR_Op1
1350 // --------------------------------------------------
1351 
1352 class LIR_Op1: public LIR_Op {
1353  friend class LIR_OpVisitState;
1354 
1355  protected:
1356   LIR_Opr         _opr;   // input operand
1357   BasicType       _type;  // Operand types
1358   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1359 
1360   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1361 
1362   void set_kind(LIR_MoveKind kind) {
1363     assert(code() == lir_move, "must be");
1364     _flags = kind;
1365   }
1366 
1367  public:
1368   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1369     : LIR_Op(code, result, info)
1370     , _opr(opr)
1371     , _patch(patch)
1372     , _type(type)                      { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1373 
1374   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1375     : LIR_Op(code, result, info)
1376     , _opr(opr)
1377     , _patch(patch)
1378     , _type(type)                      {
1379     assert(code == lir_move, "must be");
1380     set_kind(kind);
1381   }
1382 
1383   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1384     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1385     , _opr(opr)
1386     , _patch(lir_patch_none)
1387     , _type(T_ILLEGAL)                 { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1388 
1389   LIR_Opr in_opr()           const               { return _opr;   }
1390   LIR_PatchCode patch_code() const               { return _patch; }
1391   BasicType type()           const               { return _type;  }
1392 
1393   LIR_MoveKind move_kind() const {
1394     assert(code() == lir_move, "must be");
1395     return (LIR_MoveKind)_flags;
1396   }
1397 
1398   virtual bool is_patching() { return _patch != lir_patch_none; }
1399   virtual void emit_code(LIR_Assembler* masm);
1400   virtual LIR_Op1* as_Op1() { return this; }
1401   virtual const char * name() const PRODUCT_RETURN0;
1402 
1403   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1404 
1405   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1406   virtual void verify() const;
1407 };
1408 
1409 
1410 // for runtime calls
1411 class LIR_OpRTCall: public LIR_OpCall {
1412  friend class LIR_OpVisitState;
1413 
1414  private:
1415   LIR_Opr _tmp;
1416  public:
1417   LIR_OpRTCall(address addr, LIR_Opr tmp,
1418                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1419     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1420     , _tmp(tmp) {}
1421 
1422   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1423   virtual void emit_code(LIR_Assembler* masm);
1424   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1425 
1426   LIR_Opr tmp() const                            { return _tmp; }
1427 
1428   virtual void verify() const;
1429 };
1430 
1431 
1432 class LIR_OpBranch: public LIR_Op {
1433  friend class LIR_OpVisitState;
1434 
1435  private:
1436   LIR_Condition _cond;
1437   BasicType     _type;
1438   Label*        _label;
1439   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1440   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1441   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1442 
1443  public:
1444   LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
1445     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1446     , _cond(cond)
1447     , _type(type)
1448     , _label(lbl)
1449     , _block(NULL)
1450     , _ublock(NULL)
1451     , _stub(NULL) { }
1452 
1453   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1454   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1455 
1456   // for unordered comparisons
1457   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1458 
1459   LIR_Condition cond()        const              { return _cond;        }
1460   BasicType     type()        const              { return _type;        }
1461   Label*        label()       const              { return _label;       }
1462   BlockBegin*   block()       const              { return _block;       }
1463   BlockBegin*   ublock()      const              { return _ublock;      }
1464   CodeStub*     stub()        const              { return _stub;       }
1465 
1466   void          change_block(BlockBegin* b);
1467   void          change_ublock(BlockBegin* b);
1468   void          negate_cond();
1469 
1470   virtual void emit_code(LIR_Assembler* masm);
1471   virtual LIR_OpBranch* as_OpBranch() { return this; }
1472   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1473 };
1474 
1475 
1476 class ConversionStub;
1477 
1478 class LIR_OpConvert: public LIR_Op1 {
1479  friend class LIR_OpVisitState;
1480 
1481  private:
1482    Bytecodes::Code _bytecode;
1483    ConversionStub* _stub;
1484 
1485  public:
1486    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1487      : LIR_Op1(lir_convert, opr, result)
1488      , _stub(stub)
1489      , _bytecode(code)                           {}
1490 
1491   Bytecodes::Code bytecode() const               { return _bytecode; }
1492   ConversionStub* stub() const                   { return _stub; }
1493 
1494   virtual void emit_code(LIR_Assembler* masm);
1495   virtual LIR_OpConvert* as_OpConvert() { return this; }
1496   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1497 
1498   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1499 };
1500 
1501 
1502 // LIR_OpAllocObj
1503 class LIR_OpAllocObj : public LIR_Op1 {
1504  friend class LIR_OpVisitState;
1505 
1506  private:
1507   LIR_Opr _tmp1;
1508   LIR_Opr _tmp2;
1509   LIR_Opr _tmp3;
1510   LIR_Opr _tmp4;
1511   int     _hdr_size;
1512   int     _obj_size;
1513   CodeStub* _stub;
1514   bool    _init_check;
1515 
1516  public:
1517   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1518                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1519                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1520     : LIR_Op1(lir_alloc_object, klass, result)
1521     , _tmp1(t1)
1522     , _tmp2(t2)
1523     , _tmp3(t3)
1524     , _tmp4(t4)
1525     , _hdr_size(hdr_size)
1526     , _obj_size(obj_size)
1527     , _init_check(init_check)
1528     , _stub(stub)                                { }
1529 
1530   LIR_Opr klass()        const                   { return in_opr();     }
1531   LIR_Opr obj()          const                   { return result_opr(); }
1532   LIR_Opr tmp1()         const                   { return _tmp1;        }
1533   LIR_Opr tmp2()         const                   { return _tmp2;        }
1534   LIR_Opr tmp3()         const                   { return _tmp3;        }
1535   LIR_Opr tmp4()         const                   { return _tmp4;        }
1536   int     header_size()  const                   { return _hdr_size;    }
1537   int     object_size()  const                   { return _obj_size;    }
1538   bool    init_check()   const                   { return _init_check;  }
1539   CodeStub* stub()       const                   { return _stub;        }
1540 
1541   virtual void emit_code(LIR_Assembler* masm);
1542   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1543   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1544 };
1545 
1546 
1547 // LIR_OpRoundFP
1548 class LIR_OpRoundFP : public LIR_Op1 {
1549  friend class LIR_OpVisitState;
1550 
1551  private:
1552   LIR_Opr _tmp;
1553 
1554  public:
1555   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1556     : LIR_Op1(lir_roundfp, reg, result)
1557     , _tmp(stack_loc_temp) {}
1558 
1559   LIR_Opr tmp() const                            { return _tmp; }
1560   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1561   void print_instr(outputStream* out) const PRODUCT_RETURN;
1562 };
1563 
1564 // LIR_OpTypeCheck
1565 class LIR_OpTypeCheck: public LIR_Op {
1566  friend class LIR_OpVisitState;
1567 
1568  private:
1569   LIR_Opr       _object;
1570   LIR_Opr       _array;
1571   ciKlass*      _klass;
1572   LIR_Opr       _tmp1;
1573   LIR_Opr       _tmp2;
1574   LIR_Opr       _tmp3;
1575   bool          _fast_check;
1576   CodeEmitInfo* _info_for_patch;
1577   CodeEmitInfo* _info_for_exception;
1578   CodeStub*     _stub;
1579   ciMethod*     _profiled_method;
1580   int           _profiled_bci;
1581   bool          _should_profile;
1582 
1583 public:
1584   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1585                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1586                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1587   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1588                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1589 
1590   LIR_Opr object() const                         { return _object;         }
1591   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1592   LIR_Opr tmp1() const                           { return _tmp1;           }
1593   LIR_Opr tmp2() const                           { return _tmp2;           }
1594   LIR_Opr tmp3() const                           { return _tmp3;           }
1595   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1596   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1597   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1598   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1599   CodeStub* stub() const                         { return _stub;           }
1600 
1601   // MethodData* profiling
1602   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1603   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1604   void set_should_profile(bool b)                { _should_profile = b;       }
1605   ciMethod* profiled_method() const              { return _profiled_method;   }
1606   int       profiled_bci() const                 { return _profiled_bci;      }
1607   bool      should_profile() const               { return _should_profile;    }
1608 
1609   virtual bool is_patching() { return _info_for_patch != NULL; }
1610   virtual void emit_code(LIR_Assembler* masm);
1611   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1612   void print_instr(outputStream* out) const PRODUCT_RETURN;
1613 };
1614 
1615 // LIR_Op2
1616 class LIR_Op2: public LIR_Op {
1617  friend class LIR_OpVisitState;
1618 
1619   int  _fpu_stack_size; // for sin/cos implementation on Intel
1620 
1621  protected:
1622   LIR_Opr   _opr1;
1623   LIR_Opr   _opr2;
1624   BasicType _type;
1625   LIR_Opr   _tmp1;
1626   LIR_Opr   _tmp2;
1627   LIR_Opr   _tmp3;
1628   LIR_Opr   _tmp4;
1629   LIR_Opr   _tmp5;
1630   LIR_Condition _condition;
1631 
1632   void verify() const;
1633 
1634  public:
1635   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1636     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1637     , _opr1(opr1)
1638     , _opr2(opr2)
1639     , _type(T_ILLEGAL)
1640     , _condition(condition)
1641     , _fpu_stack_size(0)
1642     , _tmp1(LIR_OprFact::illegalOpr)
1643     , _tmp2(LIR_OprFact::illegalOpr)
1644     , _tmp3(LIR_OprFact::illegalOpr)
1645     , _tmp4(LIR_OprFact::illegalOpr)
1646     , _tmp5(LIR_OprFact::illegalOpr) {
1647     assert(code == lir_cmp || code == lir_assert, "code check");
1648   }
1649 
1650   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1651     : LIR_Op(code, result, NULL)
1652     , _opr1(opr1)
1653     , _opr2(opr2)
1654     , _type(type)
1655     , _condition(condition)
1656     , _fpu_stack_size(0)
1657     , _tmp1(LIR_OprFact::illegalOpr)
1658     , _tmp2(LIR_OprFact::illegalOpr)
1659     , _tmp3(LIR_OprFact::illegalOpr)
1660     , _tmp4(LIR_OprFact::illegalOpr)
1661     , _tmp5(LIR_OprFact::illegalOpr) {
1662     assert(code == lir_cmove, "code check");
1663     assert(type != T_ILLEGAL, "cmove should have type");
1664   }
1665 
1666   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1667           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1668     : LIR_Op(code, result, info)
1669     , _opr1(opr1)
1670     , _opr2(opr2)
1671     , _type(type)
1672     , _condition(lir_cond_unknown)
1673     , _fpu_stack_size(0)
1674     , _tmp1(LIR_OprFact::illegalOpr)
1675     , _tmp2(LIR_OprFact::illegalOpr)
1676     , _tmp3(LIR_OprFact::illegalOpr)
1677     , _tmp4(LIR_OprFact::illegalOpr)
1678     , _tmp5(LIR_OprFact::illegalOpr) {
1679     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1680   }
1681 
1682   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1683           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1684     : LIR_Op(code, result, NULL)
1685     , _opr1(opr1)
1686     , _opr2(opr2)
1687     , _type(T_ILLEGAL)
1688     , _condition(lir_cond_unknown)
1689     , _fpu_stack_size(0)
1690     , _tmp1(tmp1)
1691     , _tmp2(tmp2)
1692     , _tmp3(tmp3)
1693     , _tmp4(tmp4)
1694     , _tmp5(tmp5) {
1695     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1696   }
1697 
1698   LIR_Opr in_opr1() const                        { return _opr1; }
1699   LIR_Opr in_opr2() const                        { return _opr2; }
1700   BasicType type()  const                        { return _type; }
1701   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1702   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1703   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1704   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1705   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1706   LIR_Condition condition() const  {
1707     assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1708   }
1709   void set_condition(LIR_Condition condition) {
1710     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1711   }
1712 
1713   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1714   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1715 
1716   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1717   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1718 
1719   virtual void emit_code(LIR_Assembler* masm);
1720   virtual LIR_Op2* as_Op2() { return this; }
1721   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1722 };
1723 
1724 class LIR_OpAllocArray : public LIR_Op {
1725  friend class LIR_OpVisitState;
1726 
1727  private:
1728   LIR_Opr   _klass;
1729   LIR_Opr   _len;
1730   LIR_Opr   _tmp1;
1731   LIR_Opr   _tmp2;
1732   LIR_Opr   _tmp3;
1733   LIR_Opr   _tmp4;
1734   BasicType _type;
1735   CodeStub* _stub;
1736 
1737  public:
1738   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1739     : LIR_Op(lir_alloc_array, result, NULL)
1740     , _klass(klass)
1741     , _len(len)
1742     , _tmp1(t1)
1743     , _tmp2(t2)
1744     , _tmp3(t3)
1745     , _tmp4(t4)
1746     , _type(type)
1747     , _stub(stub) {}
1748 
1749   LIR_Opr   klass()   const                      { return _klass;       }
1750   LIR_Opr   len()     const                      { return _len;         }
1751   LIR_Opr   obj()     const                      { return result_opr(); }
1752   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1753   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1754   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1755   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1756   BasicType type()    const                      { return _type;        }
1757   CodeStub* stub()    const                      { return _stub;        }
1758 
1759   virtual void emit_code(LIR_Assembler* masm);
1760   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1761   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1762 };
1763 
1764 
1765 class LIR_Op3: public LIR_Op {
1766  friend class LIR_OpVisitState;
1767 
1768  private:
1769   LIR_Opr _opr1;
1770   LIR_Opr _opr2;
1771   LIR_Opr _opr3;
1772  public:
1773   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1774     : LIR_Op(code, result, info)
1775     , _opr1(opr1)
1776     , _opr2(opr2)
1777     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1778   LIR_Opr in_opr1() const                        { return _opr1; }
1779   LIR_Opr in_opr2() const                        { return _opr2; }
1780   LIR_Opr in_opr3() const                        { return _opr3; }
1781 
1782   virtual void emit_code(LIR_Assembler* masm);
1783   virtual LIR_Op3* as_Op3() { return this; }
1784   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1785 };
1786 
1787 
1788 //--------------------------------
1789 class LabelObj: public CompilationResourceObj {
1790  private:
1791   Label _label;
1792  public:
1793   LabelObj()                                     {}
1794   Label* label()                                 { return &_label; }
1795 };
1796 
1797 
1798 class LIR_OpLock: public LIR_Op {
1799  friend class LIR_OpVisitState;
1800 
1801  private:
1802   LIR_Opr _hdr;
1803   LIR_Opr _obj;
1804   LIR_Opr _lock;
1805   LIR_Opr _scratch;
1806   CodeStub* _stub;
1807  public:
1808   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1809     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1810     , _hdr(hdr)
1811     , _obj(obj)
1812     , _lock(lock)
1813     , _scratch(scratch)
1814     , _stub(stub)                      {}
1815 
1816   LIR_Opr hdr_opr() const                        { return _hdr; }
1817   LIR_Opr obj_opr() const                        { return _obj; }
1818   LIR_Opr lock_opr() const                       { return _lock; }
1819   LIR_Opr scratch_opr() const                    { return _scratch; }
1820   CodeStub* stub() const                         { return _stub; }
1821 
1822   virtual void emit_code(LIR_Assembler* masm);
1823   virtual LIR_OpLock* as_OpLock() { return this; }
1824   void print_instr(outputStream* out) const PRODUCT_RETURN;
1825 };
1826 
1827 
1828 class LIR_OpDelay: public LIR_Op {
1829  friend class LIR_OpVisitState;
1830 
1831  private:
1832   LIR_Op* _op;
1833 
1834  public:
1835   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1836     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1837     _op(op) {
1838     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1839   }
1840   virtual void emit_code(LIR_Assembler* masm);
1841   virtual LIR_OpDelay* as_OpDelay() { return this; }
1842   void print_instr(outputStream* out) const PRODUCT_RETURN;
1843   LIR_Op* delay_op() const { return _op; }
1844   CodeEmitInfo* call_info() const { return info(); }
1845 };
1846 
1847 #ifdef ASSERT
1848 // LIR_OpAssert
1849 class LIR_OpAssert : public LIR_Op2 {
1850  friend class LIR_OpVisitState;
1851 
1852  private:
1853   const char* _msg;
1854   bool        _halt;
1855 
1856  public:
1857   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1858     : LIR_Op2(lir_assert, condition, opr1, opr2)
1859     , _halt(halt)
1860     , _msg(msg) {
1861   }
1862 
1863   const char* msg() const                        { return _msg; }
1864   bool        halt() const                       { return _halt; }
1865 
1866   virtual void emit_code(LIR_Assembler* masm);
1867   virtual LIR_OpAssert* as_OpAssert()            { return this; }
1868   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1869 };
1870 #endif
1871 
1872 // LIR_OpCompareAndSwap
1873 class LIR_OpCompareAndSwap : public LIR_Op {
1874  friend class LIR_OpVisitState;
1875 
1876  private:
1877   LIR_Opr _addr;
1878   LIR_Opr _cmp_value;
1879   LIR_Opr _new_value;
1880   LIR_Opr _tmp1;
1881   LIR_Opr _tmp2;
1882 
1883  public:
1884   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1885                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1886     : LIR_Op(code, result, NULL)  // no result, no info
1887     , _addr(addr)
1888     , _cmp_value(cmp_value)
1889     , _new_value(new_value)
1890     , _tmp1(t1)
1891     , _tmp2(t2)                                  { }
1892 
1893   LIR_Opr addr()        const                    { return _addr;  }
1894   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1895   LIR_Opr new_value()   const                    { return _new_value; }
1896   LIR_Opr tmp1()        const                    { return _tmp1;      }
1897   LIR_Opr tmp2()        const                    { return _tmp2;      }
1898 
1899   virtual void emit_code(LIR_Assembler* masm);
1900   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1901   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1902 };
1903 
1904 // LIR_OpProfileCall
1905 class LIR_OpProfileCall : public LIR_Op {
1906  friend class LIR_OpVisitState;
1907 
1908  private:
1909   ciMethod* _profiled_method;
1910   int       _profiled_bci;
1911   ciMethod* _profiled_callee;
1912   LIR_Opr   _mdo;
1913   LIR_Opr   _recv;
1914   LIR_Opr   _tmp1;
1915   ciKlass*  _known_holder;
1916 
1917  public:
1918   // Destroys recv
1919   LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1920     : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1921     , _profiled_method(profiled_method)
1922     , _profiled_bci(profiled_bci)
1923     , _profiled_callee(profiled_callee)
1924     , _mdo(mdo)
1925     , _recv(recv)
1926     , _tmp1(t1)
1927     , _known_holder(known_holder)                { }
1928 
1929   ciMethod* profiled_method() const              { return _profiled_method;  }
1930   int       profiled_bci()    const              { return _profiled_bci;     }
1931   ciMethod* profiled_callee() const              { return _profiled_callee;  }
1932   LIR_Opr   mdo()             const              { return _mdo;              }
1933   LIR_Opr   recv()            const              { return _recv;             }
1934   LIR_Opr   tmp1()            const              { return _tmp1;             }
1935   ciKlass*  known_holder()    const              { return _known_holder;     }
1936 
1937   virtual void emit_code(LIR_Assembler* masm);
1938   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1939   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1940   bool should_profile_receiver_type() const {
1941     bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static();
1942     Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci);
1943     bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !_profiled_callee->can_be_statically_bound()) || bc == Bytecodes::_invokeinterface;
1944     return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static;
1945   }
1946 };
1947 
1948 // LIR_OpProfileType
1949 class LIR_OpProfileType : public LIR_Op {
1950  friend class LIR_OpVisitState;
1951 
1952  private:
1953   LIR_Opr      _mdp;
1954   LIR_Opr      _obj;
1955   LIR_Opr      _tmp;
1956   ciKlass*     _exact_klass;   // non NULL if we know the klass statically (no need to load it from _obj)
1957   intptr_t     _current_klass; // what the profiling currently reports
1958   bool         _not_null;      // true if we know statically that _obj cannot be null
1959   bool         _no_conflict;   // true if we're profling parameters, _exact_klass is not NULL and we know
1960                                // _exact_klass it the only possible type for this parameter in any context.
1961 
1962  public:
1963   // Destroys recv
1964   LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
1965     : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1966     , _mdp(mdp)
1967     , _obj(obj)
1968     , _exact_klass(exact_klass)
1969     , _current_klass(current_klass)
1970     , _tmp(tmp)
1971     , _not_null(not_null)
1972     , _no_conflict(no_conflict) { }
1973 
1974   LIR_Opr      mdp()              const             { return _mdp;              }
1975   LIR_Opr      obj()              const             { return _obj;              }
1976   LIR_Opr      tmp()              const             { return _tmp;              }
1977   ciKlass*     exact_klass()      const             { return _exact_klass;      }
1978   intptr_t     current_klass()    const             { return _current_klass;    }
1979   bool         not_null()         const             { return _not_null;         }
1980   bool         no_conflict()      const             { return _no_conflict;      }
1981 
1982   virtual void emit_code(LIR_Assembler* masm);
1983   virtual LIR_OpProfileType* as_OpProfileType() { return this; }
1984   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1985 };
1986 
1987 class LIR_InsertionBuffer;
1988 
1989 //--------------------------------LIR_List---------------------------------------------------
1990 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1991 // The LIR instructions are appended by the LIR_List class itself;
1992 //
1993 // Notes:
1994 // - all offsets are(should be) in bytes
1995 // - local positions are specified with an offset, with offset 0 being local 0
1996 
1997 class LIR_List: public CompilationResourceObj {
1998  private:
1999   LIR_OpList  _operations;
2000 
2001   Compilation*  _compilation;
2002 #ifndef PRODUCT
2003   BlockBegin*   _block;
2004 #endif
2005 #ifdef ASSERT
2006   const char *  _file;
2007   int           _line;
2008 #endif
2009 
2010  public:
2011   void append(LIR_Op* op) {
2012     if (op->source() == NULL)
2013       op->set_source(_compilation->current_instruction());
2014 #ifndef PRODUCT
2015     if (PrintIRWithLIR) {
2016       _compilation->maybe_print_current_instruction();
2017       op->print(); tty->cr();
2018     }
2019 #endif // PRODUCT
2020 
2021     _operations.append(op);
2022 
2023 #ifdef ASSERT
2024     op->verify();
2025     op->set_file_and_line(_file, _line);
2026     _file = NULL;
2027     _line = 0;
2028 #endif
2029   }
2030 
2031   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
2032 
2033 #ifdef ASSERT
2034   void set_file_and_line(const char * file, int line);
2035 #endif
2036 
2037   //---------- accessors ---------------
2038   LIR_OpList* instructions_list()                { return &_operations; }
2039   int         length() const                     { return _operations.length(); }
2040   LIR_Op*     at(int i) const                    { return _operations.at(i); }
2041 
2042   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
2043 
2044   // insert LIR_Ops in buffer to right places in LIR_List
2045   void append(LIR_InsertionBuffer* buffer);
2046 
2047   //---------- mutators ---------------
2048   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
2049   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
2050   void remove_at(int i)                          { _operations.remove_at(i); }
2051 
2052   //---------- printing -------------
2053   void print_instructions() PRODUCT_RETURN;
2054 
2055 
2056   //---------- instructions -------------
2057   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2058                         address dest, LIR_OprList* arguments,
2059                         CodeEmitInfo* info) {
2060     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2061   }
2062   void call_static(ciMethod* method, LIR_Opr result,
2063                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2064     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2065   }
2066   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2067                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2068     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2069   }
2070   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2071                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
2072     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
2073   }
2074   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2075                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2076     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2077   }
2078 
2079   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
2080   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
2081   void membar()                                  { append(new LIR_Op0(lir_membar)); }
2082   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
2083   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
2084   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
2085   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
2086   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
2087   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2088 
2089   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2090   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
2091 
2092   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2093   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2094 
2095   void on_spin_wait()                            { append(new LIR_Op0(lir_on_spin_wait)); }
2096 
2097   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2098 
2099   void negate(LIR_Opr from, LIR_Opr to)          { append(new LIR_Op1(lir_neg, from, to)); }
2100   void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); }
2101 
2102   // result is a stack location for old backend and vreg for UseLinearScan
2103   // stack_loc_temp is an illegal register for old backend
2104   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2105   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2106   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2107   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2108   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2109   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2110   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2111   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2112     if (UseCompressedOops) {
2113       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2114     } else {
2115       move(src, dst, info);
2116     }
2117   }
2118   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2119     if (UseCompressedOops) {
2120       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2121     } else {
2122       move(src, dst, info);
2123     }
2124   }
2125   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2126 
2127   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2128   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2129 
2130   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2131   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2132 
2133   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
2134 
2135   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2136 
2137   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2138 
2139   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2140   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2141   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2142 
2143   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
2144   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
2145 
2146   void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false);
2147   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2148     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2149   }
2150   void unwind_exception(LIR_Opr exceptionOop) {
2151     append(new LIR_Op1(lir_unwind, exceptionOop));
2152   }
2153 
2154   void compare_to (LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
2155     append(new LIR_Op2(lir_compare_to,  left, right, dst));
2156   }
2157 
2158   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2159   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2160 
2161   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2162     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2163   }
2164   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2165     cmp(condition, left, LIR_OprFact::intConst(right), info);
2166   }
2167 
2168   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2169   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2170 
2171   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2172     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2173   }
2174 
2175   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2176                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2177   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2178                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2179   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2180                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2181 
2182   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2183   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2184   void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); }
2185   void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); }
2186   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2187   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2188 
2189   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2190   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2191   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2192   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
2193   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2194   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
2195   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2196 
2197   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2198   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2199 
2200   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2201 
2202   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2203   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2204   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2205   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2206   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2207 
2208   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2209   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2210   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2211   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2212 
2213   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2214   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2215 
2216   // jump is an unconditional branch
2217   void jump(BlockBegin* block) {
2218     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
2219   }
2220   void jump(CodeStub* stub) {
2221     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
2222   }
2223   void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
2224   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
2225     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2226     append(new LIR_OpBranch(cond, type, block));
2227   }
2228   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
2229     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2230     append(new LIR_OpBranch(cond, type, stub));
2231   }
2232   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2233     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2234     append(new LIR_OpBranch(cond, type, block, unordered));
2235   }
2236 
2237   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2238   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2239   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2240 
2241   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2242   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2243   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2244 
2245   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2246   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2247 
2248   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2249     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2250   }
2251 
2252   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2253                     LIR_OprList* arguments, CodeEmitInfo* info) {
2254     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2255   }
2256 
2257   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2258   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2259   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2260 
2261   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2262   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2263   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2264 
2265   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2266 
2267   void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)  { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2268 
2269   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2270 
2271   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2272   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2273 
2274   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2275                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2276                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2277                   ciMethod* profiled_method, int profiled_bci);
2278   // MethodData* profiling
2279   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2280     append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2281   }
2282   void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2283     append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2284   }
2285 
2286   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2287   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2288 #ifdef ASSERT
2289   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2290 #endif
2291 };
2292 
2293 void print_LIR(BlockList* blocks);
2294 
2295 class LIR_InsertionBuffer : public CompilationResourceObj {
2296  private:
2297   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2298 
2299   // list of insertion points. index and count are stored alternately:
2300   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2301   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2302   intStack    _index_and_count;
2303 
2304   // the LIR_Ops to be inserted
2305   LIR_OpList  _ops;
2306 
2307   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2308   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2309   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2310 
2311 #ifdef ASSERT
2312   void verify();
2313 #endif
2314  public:
2315   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2316 
2317   // must be called before using the insertion buffer
2318   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2319   bool initialized() const  { return _lir != NULL; }
2320   // called automatically when the buffer is appended to the LIR_List
2321   void finish()             { _lir = NULL; }
2322 
2323   // accessors
2324   LIR_List*  lir_list() const             { return _lir; }
2325   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2326   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2327   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2328 
2329   int number_of_ops() const               { return _ops.length(); }
2330   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2331 
2332   // append an instruction to the buffer
2333   void append(int index, LIR_Op* op);
2334 
2335   // instruction
2336   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2337 };
2338 
2339 
2340 //
2341 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2342 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2343 // information about the input, output and temporaries used by the
2344 // op to be recorded.  It also records whether the op has call semantics
2345 // and also records all the CodeEmitInfos used by this op.
2346 //
2347 
2348 
2349 class LIR_OpVisitState: public StackObj {
2350  public:
2351   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2352 
2353   enum {
2354     maxNumberOfOperands = 20,
2355     maxNumberOfInfos = 4
2356   };
2357 
2358  private:
2359   LIR_Op*          _op;
2360 
2361   // optimization: the operands and infos are not stored in a variable-length
2362   //               list, but in a fixed-size array to save time of size checks and resizing
2363   int              _oprs_len[numModes];
2364   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2365   int _info_len;
2366   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2367 
2368   bool             _has_call;
2369   bool             _has_slow_case;
2370 
2371 
2372   // only include register operands
2373   // addresses are decomposed to the base and index registers
2374   // constants and stack operands are ignored
2375   void append(LIR_Opr& opr, OprMode mode) {
2376     assert(opr->is_valid(), "should not call this otherwise");
2377     assert(mode >= 0 && mode < numModes, "bad mode");
2378 
2379     if (opr->is_register()) {
2380        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2381       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2382 
2383     } else if (opr->is_pointer()) {
2384       LIR_Address* address = opr->as_address_ptr();
2385       if (address != NULL) {
2386         // special handling for addresses: add base and index register of the address
2387         // both are always input operands or temp if we want to extend
2388         // their liveness!
2389         if (mode == outputMode) {
2390           mode = inputMode;
2391         }
2392         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2393         if (address->_base->is_valid()) {
2394           assert(address->_base->is_register(), "must be");
2395           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2396           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2397         }
2398         if (address->_index->is_valid()) {
2399           assert(address->_index->is_register(), "must be");
2400           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2401           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2402         }
2403 
2404       } else {
2405         assert(opr->is_constant(), "constant operands are not processed");
2406       }
2407     } else {
2408       assert(opr->is_stack(), "stack operands are not processed");
2409     }
2410   }
2411 
2412   void append(CodeEmitInfo* info) {
2413     assert(info != NULL, "should not call this otherwise");
2414     assert(_info_len < maxNumberOfInfos, "array overflow");
2415     _info_new[_info_len++] = info;
2416   }
2417 
2418  public:
2419   LIR_OpVisitState()         { reset(); }
2420 
2421   LIR_Op* op() const         { return _op; }
2422   void set_op(LIR_Op* op)    { reset(); _op = op; }
2423 
2424   bool has_call() const      { return _has_call; }
2425   bool has_slow_case() const { return _has_slow_case; }
2426 
2427   void reset() {
2428     _op = NULL;
2429     _has_call = false;
2430     _has_slow_case = false;
2431 
2432     _oprs_len[inputMode] = 0;
2433     _oprs_len[tempMode] = 0;
2434     _oprs_len[outputMode] = 0;
2435     _info_len = 0;
2436   }
2437 
2438 
2439   int opr_count(OprMode mode) const {
2440     assert(mode >= 0 && mode < numModes, "bad mode");
2441     return _oprs_len[mode];
2442   }
2443 
2444   LIR_Opr opr_at(OprMode mode, int index) const {
2445     assert(mode >= 0 && mode < numModes, "bad mode");
2446     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2447     return *_oprs_new[mode][index];
2448   }
2449 
2450   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2451     assert(mode >= 0 && mode < numModes, "bad mode");
2452     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2453     *_oprs_new[mode][index] = opr;
2454   }
2455 
2456   int info_count() const {
2457     return _info_len;
2458   }
2459 
2460   CodeEmitInfo* info_at(int index) const {
2461     assert(index < _info_len, "index out of bounds");
2462     return _info_new[index];
2463   }
2464 
2465   XHandlers* all_xhandler();
2466 
2467   // collects all register operands of the instruction
2468   void visit(LIR_Op* op);
2469 
2470 #ifdef ASSERT
2471   // check that an operation has no operands
2472   bool no_operands(LIR_Op* op);
2473 #endif
2474 
2475   // LIR_Op visitor functions use these to fill in the state
2476   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2477   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2478   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2479   void do_info(CodeEmitInfo* info)        { append(info); }
2480 
2481   void do_stub(CodeStub* stub);
2482   void do_call()                          { _has_call = true; }
2483   void do_slow_case()                     { _has_slow_case = true; }
2484   void do_slow_case(CodeEmitInfo* info) {
2485     _has_slow_case = true;
2486     append(info);
2487   }
2488 };
2489 
2490 
2491 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2492 
2493 #endif // SHARE_VM_C1_C1_LIR_HPP