/* * Copyright (c) 2017, 2018, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "jfr/jfrEvents.hpp" #include "jfr/periodic/jfrThreadCPULoadEvent.hpp" #include "jfr/support/jfrThreadId.hpp" #include "jfr/support/jfrThreadLocal.hpp" #include "jfr/utilities/jfrTime.hpp" #include "utilities/globalDefinitions.hpp" #include "runtime/os.hpp" #include "runtime/thread.inline.hpp" jlong JfrThreadCPULoadEvent::get_wallclock_time() { return os::javaTimeNanos(); } int JfrThreadCPULoadEvent::_last_active_processor_count = 0; int JfrThreadCPULoadEvent::get_processor_count() { int cur_processor_count = os::active_processor_count(); int last_processor_count = _last_active_processor_count; _last_active_processor_count = cur_processor_count; // If the number of processors decreases, we don't know at what point during // the sample interval this happened, so use the largest number to try // to avoid percentages above 100% return MAX2(cur_processor_count, last_processor_count); } // Returns false if the thread has not been scheduled since the last call to updateEvent // (i.e. the delta for both system and user time is 0 milliseconds) bool JfrThreadCPULoadEvent::update_event(EventThreadCPULoad& event, JavaThread* thread, jlong cur_wallclock_time, int processor_count) { JfrThreadLocal* const tl = thread->jfr_thread_local(); jlong cur_cpu_time = os::thread_cpu_time(thread, true); jlong prev_cpu_time = tl->get_cpu_time(); jlong prev_wallclock_time = tl->get_wallclock_time(); tl->set_wallclock_time(cur_wallclock_time); // Threshold of 1 ms if (cur_cpu_time - prev_cpu_time < 1 * NANOSECS_PER_MILLISEC) { return false; } jlong cur_user_time = os::thread_cpu_time(thread, false); jlong prev_user_time = tl->get_user_time(); jlong cur_system_time = cur_cpu_time - cur_user_time; jlong prev_system_time = prev_cpu_time - prev_user_time; // The user and total cpu usage clocks can have different resolutions, which can // make us see decreasing system time. Ensure time doesn't go backwards. if (prev_system_time > cur_system_time) { cur_cpu_time += prev_system_time - cur_system_time; cur_system_time = prev_system_time; } jlong user_time = cur_user_time - prev_user_time; jlong system_time = cur_system_time - prev_system_time; jlong wallclock_time = cur_wallclock_time - prev_wallclock_time; jlong total_available_time = wallclock_time * processor_count; // Avoid reporting percentages above the theoretical max if (user_time + system_time > wallclock_time) { jlong excess = user_time + system_time - wallclock_time; if (user_time > excess) { user_time -= excess; cur_user_time -= excess; cur_cpu_time -= excess; } else { cur_cpu_time -= excess; excess -= user_time; user_time = 0; cur_user_time = 0; system_time -= excess; } } event.set_user(total_available_time > 0 ? (double)user_time / total_available_time : 0); event.set_system(total_available_time > 0 ? (double)system_time / total_available_time : 0); tl->set_user_time(cur_user_time); tl->set_cpu_time(cur_cpu_time); return true; } void JfrThreadCPULoadEvent::send_events() { Thread* periodic_thread = Thread::current(); JfrThreadLocal* const periodic_thread_tl = periodic_thread->jfr_thread_local(); traceid periodic_thread_id = periodic_thread_tl->thread_id(); const int processor_count = JfrThreadCPULoadEvent::get_processor_count(); JfrTicks event_time = JfrTicks::now(); jlong cur_wallclock_time = JfrThreadCPULoadEvent::get_wallclock_time(); { MutexLockerEx ml(Threads_lock); unsigned jt_count = 0; for (JavaThread *jt = Threads::first(); jt != NULL; jt = jt->next()) { EventThreadCPULoad event(UNTIMED); if (JfrThreadCPULoadEvent::update_event(event, jt, cur_wallclock_time, processor_count)) { event.set_starttime(event_time); if (jt != periodic_thread) { // Commit reads the thread id from this thread's trace data, so put it there temporarily periodic_thread_tl->set_thread_id(JFR_THREAD_ID(jt)); } else { periodic_thread_tl->set_thread_id(periodic_thread_id); } event.commit(); } jt_count++; } if (LogJFR && Verbose) tty->print_cr("Measured CPU usage for %d threads in %.3f milliseconds", jt_count, (double)(JfrTicks::now() - event_time).milliseconds()); } // Restore this thread's thread id periodic_thread_tl->set_thread_id(periodic_thread_id); } void JfrThreadCPULoadEvent::send_event_for_thread(JavaThread* jt) { EventThreadCPULoad event; if (event.should_commit()) { if (update_event(event, jt, get_wallclock_time(), get_processor_count())) { event.commit(); } } }