1 /*
   2  * Copyright (c) 2012, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "memory/allocation.inline.hpp"
  28 #include "os_linux.inline.hpp"
  29 #include "runtime/os.hpp"
  30 #include "runtime/os_perf.hpp"
  31 
  32 #ifdef TARGET_ARCH_aarch32
  33 # include "vm_version_ext_aarch32.hpp"
  34 #endif
  35 #ifdef TARGET_ARCH_x86
  36 # include "vm_version_ext_x86.hpp"
  37 #endif
  38 #ifdef TARGET_ARCH_sparc
  39 # include "vm_version_ext_sparc.hpp"
  40 #endif
  41 #ifdef TARGET_ARCH_zero
  42 # include "vm_version_ext_zero.hpp"
  43 #endif
  44 #ifdef TARGET_ARCH_arm
  45 # include "vm_version_ext_arm.hpp"
  46 #endif
  47 #ifdef TARGET_ARCH_ppc
  48 # include "vm_version_ext_ppc.hpp"
  49 #endif
  50 
  51 #include <stdio.h>
  52 #include <stdarg.h>
  53 #include <unistd.h>
  54 #include <errno.h>
  55 #include <string.h>
  56 #include <sys/resource.h>
  57 #include <sys/types.h>
  58 #include <sys/stat.h>
  59 #include <dirent.h>
  60 #include <stdlib.h>
  61 #include <dlfcn.h>
  62 #include <pthread.h>
  63 #include <limits.h>
  64 #include <ifaddrs.h>
  65 #include <fcntl.h>
  66 
  67 /**
  68    /proc/[number]/stat
  69               Status information about the process.  This is used by ps(1).  It is defined in /usr/src/linux/fs/proc/array.c.
  70 
  71               The fields, in order, with their proper scanf(3) format specifiers, are:
  72 
  73               1. pid %d The process id.
  74 
  75               2. comm %s
  76                      The filename of the executable, in parentheses.  This is visible whether or not the executable is swapped out.
  77 
  78               3. state %c
  79                      One  character  from  the  string "RSDZTW" where R is running, S is sleeping in an interruptible wait, D is waiting in uninterruptible disk
  80                      sleep, Z is zombie, T is traced or stopped (on a signal), and W is paging.
  81 
  82               4. ppid %d
  83                      The PID of the parent.
  84 
  85               5. pgrp %d
  86                      The process group ID of the process.
  87 
  88               6. session %d
  89                      The session ID of the process.
  90 
  91               7. tty_nr %d
  92                      The tty the process uses.
  93 
  94               8. tpgid %d
  95                      The process group ID of the process which currently owns the tty that the process is connected to.
  96 
  97               9. flags %lu
  98                      The flags of the process.  The math bit is decimal 4, and the traced bit is decimal 10.
  99 
 100               10. minflt %lu
 101                      The number of minor faults the process has made which have not required loading a memory page from disk.
 102 
 103               11. cminflt %lu
 104                      The number of minor faults that the process's waited-for children have made.
 105 
 106               12. majflt %lu
 107                      The number of major faults the process has made which have required loading a memory page from disk.
 108 
 109               13. cmajflt %lu
 110                      The number of major faults that the process's waited-for children have made.
 111 
 112               14. utime %lu
 113                      The number of jiffies that this process has been scheduled in user mode.
 114 
 115               15. stime %lu
 116                      The number of jiffies that this process has been scheduled in kernel mode.
 117 
 118               16. cutime %ld
 119                      The number of jiffies that this process's waited-for children have been scheduled in user mode. (See also times(2).)
 120 
 121               17. cstime %ld
 122                      The number of jiffies that this process' waited-for children have been scheduled in kernel mode.
 123 
 124               18. priority %ld
 125                      The standard nice value, plus fifteen.  The value is never negative in the kernel.
 126 
 127               19. nice %ld
 128                      The nice value ranges from 19 (nicest) to -19 (not nice to others).
 129 
 130               20. 0 %ld  This value is hard coded to 0 as a placeholder for a removed field.
 131 
 132               21. itrealvalue %ld
 133                      The time in jiffies before the next SIGALRM is sent to the process due to an interval timer.
 134 
 135               22. starttime %lu
 136                      The time in jiffies the process started after system boot.
 137 
 138               23. vsize %lu
 139                      Virtual memory size in bytes.
 140 
 141               24. rss %ld
 142                      Resident Set Size: number of pages the process has in real memory, minus 3 for administrative purposes. This is just the pages which  count
 143                      towards text, data, or stack space.  This does not include pages which have not been demand-loaded in, or which are swapped out.
 144 
 145               25. rlim %lu
 146                      Current limit in bytes on the rss of the process (usually 4294967295 on i386).
 147 
 148               26. startcode %lu
 149                      The address above which program text can run.
 150 
 151               27. endcode %lu
 152                      The address below which program text can run.
 153 
 154               28. startstack %lu
 155                      The address of the start of the stack.
 156 
 157               29. kstkesp %lu
 158                      The current value of esp (stack pointer), as found in the kernel stack page for the process.
 159 
 160               30. kstkeip %lu
 161                      The current EIP (instruction pointer).
 162 
 163               31. signal %lu
 164                      The bitmap of pending signals (usually 0).
 165 
 166               32. blocked %lu
 167                      The bitmap of blocked signals (usually 0, 2 for shells).
 168 
 169               33. sigignore %lu
 170                      The bitmap of ignored signals.
 171 
 172               34. sigcatch %lu
 173                      The bitmap of catched signals.
 174 
 175               35. wchan %lu
 176                      This  is the "channel" in which the process is waiting.  It is the address of a system call, and can be looked up in a namelist if you need
 177                      a textual name.  (If you have an up-to-date /etc/psdatabase, then try ps -l to see the WCHAN field in action.)
 178 
 179               36. nswap %lu
 180                      Number of pages swapped - not maintained.
 181 
 182               37. cnswap %lu
 183                      Cumulative nswap for child processes.
 184 
 185               38. exit_signal %d
 186                      Signal to be sent to parent when we die.
 187 
 188               39. processor %d
 189                      CPU number last executed on.
 190 
 191 
 192 
 193  ///// SSCANF FORMAT STRING. Copy and use.
 194 
 195 field:        1  2  3  4  5  6  7  8  9   10  11  12  13  14  15  16  17  18  19  20  21  22  23  24  25  26  27  28  29  30  31  32  33  34  35  36  37  38 39
 196 format:       %d %s %c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %d %d
 197 
 198 
 199 */
 200 
 201 /**
 202  * For platforms that have them, when declaring
 203  * a printf-style function,
 204  *   formatSpec is the parameter number (starting at 1)
 205  *       that is the format argument ("%d pid %s")
 206  *   params is the parameter number where the actual args to
 207  *       the format starts. If the args are in a va_list, this
 208  *       should be 0.
 209  */
 210 #ifndef PRINTF_ARGS
 211 #  define PRINTF_ARGS(formatSpec,  params) ATTRIBUTE_PRINTF(formatSpec, params)
 212 #endif
 213 
 214 #ifndef SCANF_ARGS
 215 #  define SCANF_ARGS(formatSpec,   params) ATTRIBUTE_SCANF(formatSpec, params)
 216 #endif
 217 
 218 #ifndef _PRINTFMT_
 219 #  define _PRINTFMT_
 220 #endif
 221 
 222 #ifndef _SCANFMT_
 223 #  define _SCANFMT_
 224 #endif
 225 
 226 
 227 struct CPUPerfTicks {
 228   uint64_t  used;
 229   uint64_t  usedKernel;
 230   uint64_t  total;
 231 };
 232 
 233 typedef enum {
 234   CPU_LOAD_VM_ONLY,
 235   CPU_LOAD_GLOBAL,
 236 } CpuLoadTarget;
 237 
 238 enum {
 239   UNDETECTED,
 240   UNDETECTABLE,
 241   LINUX26_NPTL,
 242   BAREMETAL
 243 };
 244 
 245 struct CPUPerfCounters {
 246   int   nProcs;
 247   CPUPerfTicks jvmTicks;
 248   CPUPerfTicks* cpus;
 249 };
 250 
 251 static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target);
 252 
 253 /** reads /proc/<pid>/stat data, with some checks and some skips.
 254  *  Ensure that 'fmt' does _NOT_ contain the first two "%d %s"
 255  */
 256 static int SCANF_ARGS(2, 0) vread_statdata(const char* procfile, _SCANFMT_ const char* fmt, va_list args) {
 257   FILE*f;
 258   int n;
 259   char buf[2048];
 260 
 261   if ((f = fopen(procfile, "r")) == NULL) {
 262     return -1;
 263   }
 264 
 265   if ((n = fread(buf, 1, sizeof(buf), f)) != -1) {
 266     char *tmp;
 267 
 268     buf[n-1] = '\0';
 269     /** skip through pid and exec name. */
 270     if ((tmp = strrchr(buf, ')')) != NULL) {
 271       // skip the ')' and the following space
 272       // but check that buffer is long enough
 273       tmp += 2;
 274       if (tmp < buf + n) {
 275         n = vsscanf(tmp, fmt, args);
 276       }
 277     }
 278   }
 279 
 280   fclose(f);
 281 
 282   return n;
 283 }
 284 
 285 static int SCANF_ARGS(2, 3) read_statdata(const char* procfile, _SCANFMT_ const char* fmt, ...) {
 286   int   n;
 287   va_list args;
 288 
 289   va_start(args, fmt);
 290   n = vread_statdata(procfile, fmt, args);
 291   va_end(args);
 292   return n;
 293 }
 294 
 295 static FILE* open_statfile(void) {
 296   FILE *f;
 297 
 298   if ((f = fopen("/proc/stat", "r")) == NULL) {
 299     static int haveWarned = 0;
 300     if (!haveWarned) {
 301       haveWarned = 1;
 302     }
 303   }
 304   return f;
 305 }
 306 
 307 static void
 308 next_line(FILE *f) {
 309   int c;
 310   do {
 311     c = fgetc(f);
 312   } while (c != '\n' && c != EOF);
 313 }
 314 
 315 /**
 316  * Return the total number of ticks since the system was booted.
 317  * If the usedTicks parameter is not NULL, it will be filled with
 318  * the number of ticks spent on actual processes (user, system or
 319  * nice processes) since system boot. Note that this is the total number
 320  * of "executed" ticks on _all_ CPU:s, that is on a n-way system it is
 321  * n times the number of ticks that has passed in clock time.
 322  *
 323  * Returns a negative value if the reading of the ticks failed.
 324  */
 325 static OSReturn get_total_ticks(int which_logical_cpu, CPUPerfTicks* pticks) {
 326   FILE*         fh;
 327   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 328   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 329   int           logical_cpu = -1;
 330   const int     expected_assign_count = (-1 == which_logical_cpu) ? 4 : 5;
 331   int           n;
 332 
 333   if ((fh = open_statfile()) == NULL) {
 334     return OS_ERR;
 335   }
 336   if (-1 == which_logical_cpu) {
 337     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 338             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT,
 339             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 340             &iowTicks, &irqTicks, &sirqTicks);
 341   } else {
 342     // Move to next line
 343     next_line(fh);
 344 
 345     // find the line for requested cpu faster to just iterate linefeeds?
 346     for (int i = 0; i < which_logical_cpu; i++) {
 347       next_line(fh);
 348     }
 349 
 350     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 351                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT,
 352                &logical_cpu, &userTicks, &niceTicks,
 353                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks);
 354   }
 355 
 356   fclose(fh);
 357   if (n < expected_assign_count || logical_cpu != which_logical_cpu) {
 358 #ifdef DEBUG_LINUX_PROC_STAT
 359     vm_fprintf(stderr, "[stat] read failed");
 360 #endif
 361     return OS_ERR;
 362   }
 363 
 364 #ifdef DEBUG_LINUX_PROC_STAT
 365   vm_fprintf(stderr, "[stat] read "
 366           UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 367           UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " \n",
 368           userTicks, niceTicks, systemTicks, idleTicks,
 369           iowTicks, irqTicks, sirqTicks);
 370 #endif
 371 
 372   pticks->used       = userTicks + niceTicks;
 373   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 374   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 375                        iowTicks + irqTicks + sirqTicks;
 376 
 377   return OS_OK;
 378 }
 379 
 380 
 381 static int get_systemtype(void) {
 382   static int procEntriesType = UNDETECTED;
 383   DIR *taskDir;
 384 
 385   if (procEntriesType != UNDETECTED) {
 386     return procEntriesType;
 387   }
 388 
 389   // Check whether we have a task subdirectory
 390   if ((taskDir = opendir("/proc/self/task")) == NULL) {
 391     procEntriesType = UNDETECTABLE;
 392   } else {
 393     // The task subdirectory exists; we're on a Linux >= 2.6 system
 394     closedir(taskDir);
 395     procEntriesType = LINUX26_NPTL;
 396   }
 397 
 398   return procEntriesType;
 399 }
 400 
 401 /** read user and system ticks from a named procfile, assumed to be in 'stat' format then. */
 402 static int read_ticks(const char* procfile, uint64_t* userTicks, uint64_t* systemTicks) {
 403   return read_statdata(procfile, "%*c %*d %*d %*d %*d %*d %*u %*u %*u %*u %*u " UINT64_FORMAT " " UINT64_FORMAT,
 404     userTicks, systemTicks);
 405 }
 406 
 407 /**
 408  * Return the number of ticks spent in any of the processes belonging
 409  * to the JVM on any CPU.
 410  */
 411 static OSReturn get_jvm_ticks(CPUPerfTicks* pticks) {
 412   uint64_t userTicks;
 413   uint64_t systemTicks;
 414 
 415   if (get_systemtype() != LINUX26_NPTL) {
 416     return OS_ERR;
 417   }
 418 
 419   if (read_ticks("/proc/self/stat", &userTicks, &systemTicks) != 2) {
 420     return OS_ERR;
 421   }
 422 
 423   // get the total
 424   if (get_total_ticks(-1, pticks) != OS_OK) {
 425     return OS_ERR;
 426   }
 427 
 428   pticks->used       = userTicks;
 429   pticks->usedKernel = systemTicks;
 430 
 431   return OS_OK;
 432 }
 433 
 434 /**
 435  * Return the load of the CPU as a double. 1.0 means the CPU process uses all
 436  * available time for user or system processes, 0.0 means the CPU uses all time
 437  * being idle.
 438  *
 439  * Returns a negative value if there is a problem in determining the CPU load.
 440  */
 441 static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target) {
 442   uint64_t udiff, kdiff, tdiff;
 443   CPUPerfTicks* pticks;
 444   CPUPerfTicks  tmp;
 445   double user_load;
 446 
 447   *pkernelLoad = 0.0;
 448 
 449   if (target == CPU_LOAD_VM_ONLY) {
 450     pticks = &counters->jvmTicks;
 451   } else if (-1 == which_logical_cpu) {
 452     pticks = &counters->cpus[counters->nProcs];
 453   } else {
 454     pticks = &counters->cpus[which_logical_cpu];
 455   }
 456 
 457   tmp = *pticks;
 458 
 459   if (target == CPU_LOAD_VM_ONLY) {
 460     if (get_jvm_ticks(pticks) != OS_OK) {
 461       return -1.0;
 462     }
 463   } else if (get_total_ticks(which_logical_cpu, pticks) != OS_OK) {
 464     return -1.0;
 465   }
 466 
 467   // seems like we sometimes end up with less kernel ticks when
 468   // reading /proc/self/stat a second time, timing issue between cpus?
 469   if (pticks->usedKernel < tmp.usedKernel) {
 470     kdiff = 0;
 471   } else {
 472     kdiff = pticks->usedKernel - tmp.usedKernel;
 473   }
 474   tdiff = pticks->total - tmp.total;
 475   udiff = pticks->used - tmp.used;
 476 
 477   if (tdiff == 0) {
 478     return 0.0;
 479   } else if (tdiff < (udiff + kdiff)) {
 480     tdiff = udiff + kdiff;
 481   }
 482   *pkernelLoad = (kdiff / (double)tdiff);
 483   // BUG9044876, normalize return values to sane values
 484   *pkernelLoad = MAX2<double>(*pkernelLoad, 0.0);
 485   *pkernelLoad = MIN2<double>(*pkernelLoad, 1.0);
 486 
 487   user_load = (udiff / (double)tdiff);
 488   user_load = MAX2<double>(user_load, 0.0);
 489   user_load = MIN2<double>(user_load, 1.0);
 490 
 491   return user_load;
 492 }
 493 
 494 static int SCANF_ARGS(1, 2) parse_stat(_SCANFMT_ const char* fmt, ...) {
 495   FILE *f;
 496   va_list args;
 497 
 498   va_start(args, fmt);
 499 
 500   if ((f = open_statfile()) == NULL) {
 501     va_end(args);
 502     return OS_ERR;
 503   }
 504   for (;;) {
 505     char line[80];
 506     if (fgets(line, sizeof(line), f) != NULL) {
 507       if (vsscanf(line, fmt, args) == 1) {
 508         fclose(f);
 509         va_end(args);
 510         return OS_OK;
 511       }
 512     } else {
 513         fclose(f);
 514         va_end(args);
 515         return OS_ERR;
 516     }
 517   }
 518 }
 519 
 520 static int get_noof_context_switches(uint64_t* switches) {
 521   return parse_stat("ctxt " UINT64_FORMAT "\n", switches);
 522 }
 523 
 524 /** returns boot time in _seconds_ since epoch */
 525 static int get_boot_time(uint64_t* time) {
 526   return parse_stat("btime " UINT64_FORMAT "\n", time);
 527 }
 528 
 529 static int perf_context_switch_rate(double* rate) {
 530   static pthread_mutex_t contextSwitchLock = PTHREAD_MUTEX_INITIALIZER;
 531   static uint64_t      lastTime;
 532   static uint64_t      lastSwitches;
 533   static double        lastRate;
 534 
 535   uint64_t lt = 0;
 536   int res = 0;
 537 
 538   if (lastTime == 0) {
 539     uint64_t tmp;
 540     if (get_boot_time(&tmp) < 0) {
 541       return OS_ERR;
 542     }
 543     lt = tmp * 1000;
 544   }
 545 
 546   res = OS_OK;
 547 
 548   pthread_mutex_lock(&contextSwitchLock);
 549   {
 550 
 551     uint64_t sw;
 552     s8 t, d;
 553 
 554     if (lastTime == 0) {
 555       lastTime = lt;
 556     }
 557 
 558     t = os::javaTimeMillis();
 559     d = t - lastTime;
 560 
 561     if (d == 0) {
 562       *rate = lastRate;
 563     } else if (!get_noof_context_switches(&sw)) {
 564       *rate      = ( (double)(sw - lastSwitches) / d ) * 1000;
 565       lastRate     = *rate;
 566       lastSwitches = sw;
 567       lastTime     = t;
 568     } else {
 569       *rate = 0;
 570       res   = OS_ERR;
 571     }
 572     if (*rate <= 0) {
 573       *rate = 0;
 574       lastRate = 0;
 575     }
 576   }
 577   pthread_mutex_unlock(&contextSwitchLock);
 578 
 579   return res;
 580 }
 581 
 582 class CPUPerformanceInterface::CPUPerformance : public CHeapObj<mtInternal> {
 583   friend class CPUPerformanceInterface;
 584  private:
 585   CPUPerfCounters _counters;
 586 
 587   int cpu_load(int which_logical_cpu, double* cpu_load);
 588   int context_switch_rate(double* rate);
 589   int cpu_load_total_process(double* cpu_load);
 590   int cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad);
 591 
 592  public:
 593   CPUPerformance();
 594   bool initialize();
 595   ~CPUPerformance();
 596 };
 597 
 598 CPUPerformanceInterface::CPUPerformance::CPUPerformance() {
 599   _counters.nProcs = os::active_processor_count();
 600   _counters.cpus = NULL;
 601 }
 602 
 603 bool CPUPerformanceInterface::CPUPerformance::initialize() {
 604   size_t tick_array_size = (_counters.nProcs +1) * sizeof(CPUPerfTicks);
 605   _counters.cpus = (CPUPerfTicks*)NEW_C_HEAP_ARRAY(char, tick_array_size, mtInternal);
 606   if (NULL == _counters.cpus) {
 607     return false;
 608   }
 609   memset(_counters.cpus, 0, tick_array_size);
 610 
 611   // For the CPU load total
 612   get_total_ticks(-1, &_counters.cpus[_counters.nProcs]);
 613 
 614   // For each CPU
 615   for (int i = 0; i < _counters.nProcs; i++) {
 616     get_total_ticks(i, &_counters.cpus[i]);
 617   }
 618   // For JVM load
 619   get_jvm_ticks(&_counters.jvmTicks);
 620 
 621   // initialize context switch system
 622   // the double is only for init
 623   double init_ctx_switch_rate;
 624   perf_context_switch_rate(&init_ctx_switch_rate);
 625 
 626   return true;
 627 }
 628 
 629 CPUPerformanceInterface::CPUPerformance::~CPUPerformance() {
 630   if (_counters.cpus != NULL) {
 631     FREE_C_HEAP_ARRAY(char, _counters.cpus, mtInternal);
 632   }
 633 }
 634 
 635 int CPUPerformanceInterface::CPUPerformance::cpu_load(int which_logical_cpu, double* cpu_load) {
 636   double u, s;
 637   u = get_cpu_load(which_logical_cpu, &_counters, &s, CPU_LOAD_GLOBAL);
 638   if (u < 0) {
 639     *cpu_load = 0.0;
 640     return OS_ERR;
 641   }
 642   // Cap total systemload to 1.0
 643   *cpu_load = MIN2<double>((u + s), 1.0);
 644   return OS_OK;
 645 }
 646 
 647 int CPUPerformanceInterface::CPUPerformance::cpu_load_total_process(double* cpu_load) {
 648   double u, s;
 649   u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
 650   if (u < 0) {
 651     *cpu_load = 0.0;
 652     return OS_ERR;
 653   }
 654   *cpu_load = u + s;
 655   return OS_OK;
 656 }
 657 
 658 int CPUPerformanceInterface::CPUPerformance::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) {
 659   double u, s, t;
 660 
 661   assert(pjvmUserLoad != NULL, "pjvmUserLoad not inited");
 662   assert(pjvmKernelLoad != NULL, "pjvmKernelLoad not inited");
 663   assert(psystemTotalLoad != NULL, "psystemTotalLoad not inited");
 664 
 665   u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY);
 666   if (u < 0) {
 667     *pjvmUserLoad = 0.0;
 668     *pjvmKernelLoad = 0.0;
 669     *psystemTotalLoad = 0.0;
 670     return OS_ERR;
 671   }
 672 
 673   cpu_load(-1, &t);
 674   // clamp at user+system and 1.0
 675   if (u + s > t) {
 676     t = MIN2<double>(u + s, 1.0);
 677   }
 678 
 679   *pjvmUserLoad = u;
 680   *pjvmKernelLoad = s;
 681   *psystemTotalLoad = t;
 682 
 683   return OS_OK;
 684 }
 685 
 686 int CPUPerformanceInterface::CPUPerformance::context_switch_rate(double* rate) {
 687   return perf_context_switch_rate(rate);
 688 }
 689 
 690 CPUPerformanceInterface::CPUPerformanceInterface() {
 691   _impl = NULL;
 692 }
 693 
 694 bool CPUPerformanceInterface::initialize() {
 695   _impl = new CPUPerformanceInterface::CPUPerformance();
 696   return NULL == _impl ? false : _impl->initialize();
 697 }
 698 
 699 CPUPerformanceInterface::~CPUPerformanceInterface() {
 700   if (_impl != NULL) {
 701     delete _impl;
 702   }
 703 }
 704 
 705 int CPUPerformanceInterface::cpu_load(int which_logical_cpu, double* cpu_load) const {
 706   return _impl->cpu_load(which_logical_cpu, cpu_load);
 707 }
 708 
 709 int CPUPerformanceInterface::cpu_load_total_process(double* cpu_load) const {
 710   return _impl->cpu_load_total_process(cpu_load);
 711 }
 712 
 713 int CPUPerformanceInterface::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) const {
 714   return _impl->cpu_loads_process(pjvmUserLoad, pjvmKernelLoad, psystemTotalLoad);
 715 }
 716 
 717 int CPUPerformanceInterface::context_switch_rate(double* rate) const {
 718   return _impl->context_switch_rate(rate);
 719 }
 720 
 721 class SystemProcessInterface::SystemProcesses : public CHeapObj<mtInternal> {
 722   friend class SystemProcessInterface;
 723  private:
 724   class ProcessIterator : public CHeapObj<mtInternal> {
 725     friend class SystemProcessInterface::SystemProcesses;
 726    private:
 727     DIR*           _dir;
 728     struct dirent* _entry;
 729     bool           _valid;
 730     char           _exeName[PATH_MAX];
 731     char           _exePath[PATH_MAX];
 732 
 733     ProcessIterator();
 734     ~ProcessIterator();
 735     bool initialize();
 736 
 737     bool is_valid() const { return _valid; }
 738     bool is_valid_entry(struct dirent* entry) const;
 739     bool is_dir(const char* name) const;
 740     int  fsize(const char* name, uint64_t& size) const;
 741 
 742     char* allocate_string(const char* str) const;
 743     void  get_exe_name();
 744     char* get_exe_path();
 745     char* get_cmdline();
 746 
 747     int current(SystemProcess* process_info);
 748     int next_process();
 749   };
 750 
 751   ProcessIterator* _iterator;
 752   SystemProcesses();
 753   bool initialize();
 754   ~SystemProcesses();
 755 
 756   //information about system processes
 757   int system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const;
 758 };
 759 
 760 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_dir(const char* name) const {
 761   struct stat mystat;
 762   int ret_val = 0;
 763 
 764   ret_val = stat(name, &mystat);
 765   if (ret_val < 0) {
 766     return false;
 767   }
 768   ret_val = S_ISDIR(mystat.st_mode);
 769   return ret_val > 0;
 770 }
 771 
 772 int SystemProcessInterface::SystemProcesses::ProcessIterator::fsize(const char* name, uint64_t& size) const {
 773   assert(name != NULL, "name pointer is NULL!");
 774   size = 0;
 775   struct stat fbuf;
 776 
 777   if (stat(name, &fbuf) < 0) {
 778     return OS_ERR;
 779   }
 780   size = fbuf.st_size;
 781   return OS_OK;
 782 }
 783 
 784 // if it has a numeric name, is a directory and has a 'stat' file in it
 785 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_valid_entry(struct dirent* entry) const {
 786   char buffer[PATH_MAX];
 787   uint64_t size = 0;
 788 
 789   if (atoi(entry->d_name) != 0) {
 790     jio_snprintf(buffer, PATH_MAX, "/proc/%s", entry->d_name);
 791     buffer[PATH_MAX - 1] = '\0';
 792 
 793     if (is_dir(buffer)) {
 794       jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", entry->d_name);
 795       buffer[PATH_MAX - 1] = '\0';
 796       if (fsize(buffer, size) != OS_ERR) {
 797         return true;
 798       }
 799     }
 800   }
 801   return false;
 802 }
 803 
 804 // get exe-name from /proc/<pid>/stat
 805 void SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_name() {
 806   FILE* fp;
 807   char  buffer[PATH_MAX];
 808 
 809   jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", _entry->d_name);
 810   buffer[PATH_MAX - 1] = '\0';
 811   if ((fp = fopen(buffer, "r")) != NULL) {
 812     if (fgets(buffer, PATH_MAX, fp) != NULL) {
 813       char* start, *end;
 814       // exe-name is between the first pair of ( and )
 815       start = strchr(buffer, '(');
 816       if (start != NULL && start[1] != '\0') {
 817         start++;
 818         end = strrchr(start, ')');
 819         if (end != NULL) {
 820           size_t len;
 821           len = MIN2<size_t>(end - start, sizeof(_exeName) - 1);
 822           memcpy(_exeName, start, len);
 823           _exeName[len] = '\0';
 824         }
 825       }
 826     }
 827     fclose(fp);
 828   }
 829 }
 830 
 831 // get command line from /proc/<pid>/cmdline
 832 char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_cmdline() {
 833   FILE* fp;
 834   char  buffer[PATH_MAX];
 835   char* cmdline = NULL;
 836 
 837   jio_snprintf(buffer, PATH_MAX, "/proc/%s/cmdline", _entry->d_name);
 838   buffer[PATH_MAX - 1] = '\0';
 839   if ((fp = fopen(buffer, "r")) != NULL) {
 840     size_t size = 0;
 841     char   dummy;
 842 
 843     // find out how long the file is (stat always returns 0)
 844     while (fread(&dummy, 1, 1, fp) == 1) {
 845       size++;
 846     }
 847     if (size > 0) {
 848       cmdline = NEW_C_HEAP_ARRAY(char, size + 1, mtInternal);
 849       if (cmdline != NULL) {
 850         cmdline[0] = '\0';
 851         if (fseek(fp, 0, SEEK_SET) == 0) {
 852           if (fread(cmdline, 1, size, fp) == size) {
 853             // the file has the arguments separated by '\0',
 854             // so we translate '\0' to ' '
 855             for (size_t i = 0; i < size; i++) {
 856               if (cmdline[i] == '\0') {
 857                 cmdline[i] = ' ';
 858               }
 859             }
 860             cmdline[size] = '\0';
 861           }
 862         }
 863       }
 864     }
 865     fclose(fp);
 866   }
 867   return cmdline;
 868 }
 869 
 870 // get full path to exe from /proc/<pid>/exe symlink
 871 char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_path() {
 872   char buffer[PATH_MAX];
 873 
 874   jio_snprintf(buffer, PATH_MAX, "/proc/%s/exe", _entry->d_name);
 875   buffer[PATH_MAX - 1] = '\0';
 876   return realpath(buffer, _exePath);
 877 }
 878 
 879 char* SystemProcessInterface::SystemProcesses::ProcessIterator::allocate_string(const char* str) const {
 880   if (str != NULL) {
 881     size_t len = strlen(str);
 882     char* tmp = NEW_C_HEAP_ARRAY(char, len+1, mtInternal);
 883     strncpy(tmp, str, len);
 884     tmp[len] = '\0';
 885     return tmp;
 886   }
 887   return NULL;
 888 }
 889 
 890 int SystemProcessInterface::SystemProcesses::ProcessIterator::current(SystemProcess* process_info) {
 891   if (!is_valid()) {
 892     return OS_ERR;
 893   }
 894 
 895   process_info->set_pid(atoi(_entry->d_name));
 896 
 897   get_exe_name();
 898   process_info->set_name(allocate_string(_exeName));
 899 
 900   if (get_exe_path() != NULL) {
 901      process_info->set_path(allocate_string(_exePath));
 902   }
 903 
 904   char* cmdline = NULL;
 905   cmdline = get_cmdline();
 906   if (cmdline != NULL) {
 907     process_info->set_command_line(allocate_string(cmdline));
 908     FREE_C_HEAP_ARRAY(char, cmdline, mtInternal);
 909   }
 910 
 911   return OS_OK;
 912 }
 913 
 914 int SystemProcessInterface::SystemProcesses::ProcessIterator::next_process() {
 915   if (!is_valid()) {
 916     return OS_ERR;
 917   }
 918 
 919   do {
 920     _entry = os::readdir(_dir);
 921     if (_entry == NULL) {
 922       // Error or reached end.  Could use errno to distinguish those cases.
 923       _valid = false;
 924       return OS_ERR;
 925     }
 926   } while(!is_valid_entry(_entry));
 927 
 928   _valid = true;
 929   return OS_OK;
 930 }
 931 
 932 SystemProcessInterface::SystemProcesses::ProcessIterator::ProcessIterator() {
 933   _dir = NULL;
 934   _entry = NULL;
 935   _valid = false;
 936 }
 937 
 938 bool SystemProcessInterface::SystemProcesses::ProcessIterator::initialize() {
 939   _dir = os::opendir("/proc");
 940   _entry = NULL;
 941   _valid = true;
 942   next_process();
 943 
 944   return true;
 945 }
 946 
 947 SystemProcessInterface::SystemProcesses::ProcessIterator::~ProcessIterator() {
 948   if (_dir != NULL) {
 949     os::closedir(_dir);
 950   }
 951 }
 952 
 953 SystemProcessInterface::SystemProcesses::SystemProcesses() {
 954   _iterator = NULL;
 955 }
 956 
 957 bool SystemProcessInterface::SystemProcesses::initialize() {
 958   _iterator = new SystemProcessInterface::SystemProcesses::ProcessIterator();
 959   return NULL == _iterator ? false : _iterator->initialize();
 960 }
 961 
 962 SystemProcessInterface::SystemProcesses::~SystemProcesses() {
 963   if (_iterator != NULL) {
 964     delete _iterator;
 965   }
 966 }
 967 
 968 int SystemProcessInterface::SystemProcesses::system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const {
 969   assert(system_processes != NULL, "system_processes pointer is NULL!");
 970   assert(no_of_sys_processes != NULL, "system_processes counter pointers is NULL!");
 971   assert(_iterator != NULL, "iterator is NULL!");
 972 
 973   // initialize pointers
 974   *no_of_sys_processes = 0;
 975   *system_processes = NULL;
 976 
 977   while (_iterator->is_valid()) {
 978     SystemProcess* tmp = new SystemProcess();
 979     _iterator->current(tmp);
 980 
 981     //if already existing head
 982     if (*system_processes != NULL) {
 983       //move "first to second"
 984       tmp->set_next(*system_processes);
 985     }
 986     // new head
 987     *system_processes = tmp;
 988     // increment
 989     (*no_of_sys_processes)++;
 990     // step forward
 991     _iterator->next_process();
 992   }
 993   return OS_OK;
 994 }
 995 
 996 int SystemProcessInterface::system_processes(SystemProcess** system_procs, int* no_of_sys_processes) const {
 997   return _impl->system_processes(system_procs, no_of_sys_processes);
 998 }
 999 
1000 SystemProcessInterface::SystemProcessInterface() {
1001   _impl = NULL;
1002 }
1003 
1004 bool SystemProcessInterface::initialize() {
1005   _impl = new SystemProcessInterface::SystemProcesses();
1006   return NULL == _impl ? false : _impl->initialize();
1007 }
1008 
1009 SystemProcessInterface::~SystemProcessInterface() {
1010   if (_impl != NULL) {
1011     delete _impl;
1012   }
1013 }
1014 
1015 CPUInformationInterface::CPUInformationInterface() {
1016   _cpu_info = NULL;
1017 }
1018 
1019 bool CPUInformationInterface::initialize() {
1020   _cpu_info = new CPUInformation();
1021   if (NULL == _cpu_info) {
1022     return false;
1023   }
1024   _cpu_info->set_number_of_hardware_threads(VM_Version_Ext::number_of_threads());
1025   _cpu_info->set_number_of_cores(VM_Version_Ext::number_of_cores());
1026   _cpu_info->set_number_of_sockets(VM_Version_Ext::number_of_sockets());
1027   _cpu_info->set_cpu_name(VM_Version_Ext::cpu_name());
1028   _cpu_info->set_cpu_description(VM_Version_Ext::cpu_description());
1029 
1030   return true;
1031 }
1032 
1033 CPUInformationInterface::~CPUInformationInterface() {
1034   if (_cpu_info != NULL) {
1035     if (_cpu_info->cpu_name() != NULL) {
1036       const char* cpu_name = _cpu_info->cpu_name();
1037       FREE_C_HEAP_ARRAY(char, cpu_name, mtInternal);
1038       _cpu_info->set_cpu_name(NULL);
1039     }
1040     if (_cpu_info->cpu_description() != NULL) {
1041        const char* cpu_desc = _cpu_info->cpu_description();
1042        FREE_C_HEAP_ARRAY(char, cpu_desc, mtInternal);
1043       _cpu_info->set_cpu_description(NULL);
1044     }
1045     delete _cpu_info;
1046   }
1047 }
1048 
1049 int CPUInformationInterface::cpu_information(CPUInformation& cpu_info) {
1050   if (_cpu_info == NULL) {
1051     return OS_ERR;
1052   }
1053 
1054   cpu_info = *_cpu_info; // shallow copy assignment
1055   return OS_OK;
1056 }
1057 
1058 class NetworkPerformanceInterface::NetworkPerformance : public CHeapObj<mtInternal> {
1059   friend class NetworkPerformanceInterface;
1060  private:
1061   NetworkPerformance();
1062   NetworkPerformance(const NetworkPerformance& rhs); // no impl
1063   NetworkPerformance& operator=(const NetworkPerformance& rhs); // no impl
1064   bool initialize();
1065   ~NetworkPerformance();
1066   int64_t read_counter(const char* iface, const char* counter) const;
1067   int network_utilization(NetworkInterface** network_interfaces) const;
1068 };
1069 
1070 NetworkPerformanceInterface::NetworkPerformance::NetworkPerformance() {
1071 
1072 }
1073 
1074 bool NetworkPerformanceInterface::NetworkPerformance::initialize() {
1075   return true;
1076 }
1077 
1078 NetworkPerformanceInterface::NetworkPerformance::~NetworkPerformance() {
1079 }
1080 
1081 int64_t NetworkPerformanceInterface::NetworkPerformance::read_counter(const char* iface, const char* counter) const {
1082   char buf[128];
1083 
1084   snprintf(buf, sizeof(buf), "/sys/class/net/%s/statistics/%s", iface, counter);
1085 
1086   int fd = open(buf, O_RDONLY);
1087   if (fd == -1) {
1088     return -1;
1089   }
1090 
1091   ssize_t num_bytes = read(fd, buf, sizeof(buf));
1092   close(fd);
1093   if ((num_bytes == -1) || (num_bytes >= static_cast<ssize_t>(sizeof(buf))) || (num_bytes < 1)) {
1094     return -1;
1095   }
1096 
1097   buf[num_bytes] = '\0';
1098   int64_t value = strtoll(buf, NULL, 10);
1099 
1100   return value;
1101 }
1102 
1103 int NetworkPerformanceInterface::NetworkPerformance::network_utilization(NetworkInterface** network_interfaces) const
1104 {
1105   ifaddrs* addresses;
1106   ifaddrs* cur_address;
1107 
1108   if (getifaddrs(&addresses) != 0) {
1109     return OS_ERR;
1110   }
1111 
1112   NetworkInterface* ret = NULL;
1113   for (cur_address = addresses; cur_address != NULL; cur_address = cur_address->ifa_next) {
1114     if ((cur_address->ifa_addr == NULL) || (cur_address->ifa_addr->sa_family != AF_PACKET)) {
1115       continue;
1116     }
1117 
1118     int64_t bytes_in = read_counter(cur_address->ifa_name, "rx_bytes");
1119     int64_t bytes_out = read_counter(cur_address->ifa_name, "tx_bytes");
1120 
1121     NetworkInterface* cur = new NetworkInterface(cur_address->ifa_name, bytes_in, bytes_out, ret);
1122     ret = cur;
1123   }
1124 
1125   freeifaddrs(addresses);
1126   *network_interfaces = ret;
1127 
1128   return OS_OK;
1129 }
1130 
1131 NetworkPerformanceInterface::NetworkPerformanceInterface() {
1132   _impl = NULL;
1133 }
1134 
1135 NetworkPerformanceInterface::~NetworkPerformanceInterface() {
1136   if (_impl != NULL) {
1137     delete _impl;
1138   }
1139 }
1140 
1141 bool NetworkPerformanceInterface::initialize() {
1142   _impl = new NetworkPerformanceInterface::NetworkPerformance();
1143   return _impl != NULL && _impl->initialize();
1144 }
1145 
1146 int NetworkPerformanceInterface::network_utilization(NetworkInterface** network_interfaces) const {
1147   return _impl->network_utilization(network_interfaces);
1148 }