1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "os_linux.inline.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 #include "runtime/perfMemory.hpp"
  33 #include "services/memTracker.hpp"
  34 #include "utilities/exceptions.hpp"
  35 
  36 // put OS-includes here
  37 # include <sys/types.h>
  38 # include <sys/mman.h>
  39 # include <errno.h>
  40 # include <stdio.h>
  41 # include <unistd.h>
  42 # include <sys/stat.h>
  43 # include <signal.h>
  44 # include <pwd.h>
  45 
  46 static char* backing_store_file_name = NULL;  // name of the backing store
  47                                               // file, if successfully created.
  48 
  49 // Standard Memory Implementation Details
  50 
  51 // create the PerfData memory region in standard memory.
  52 //
  53 static char* create_standard_memory(size_t size) {
  54 
  55   // allocate an aligned chuck of memory
  56   char* mapAddress = os::reserve_memory(size);
  57 
  58   if (mapAddress == NULL) {
  59     return NULL;
  60   }
  61 
  62   // commit memory
  63   if (!os::commit_memory(mapAddress, size, !ExecMem)) {
  64     if (PrintMiscellaneous && Verbose) {
  65       warning("Could not commit PerfData memory\n");
  66     }
  67     os::release_memory(mapAddress, size);
  68     return NULL;
  69   }
  70 
  71   return mapAddress;
  72 }
  73 
  74 // delete the PerfData memory region
  75 //
  76 static void delete_standard_memory(char* addr, size_t size) {
  77 
  78   // there are no persistent external resources to cleanup for standard
  79   // memory. since DestroyJavaVM does not support unloading of the JVM,
  80   // cleanup of the memory resource is not performed. The memory will be
  81   // reclaimed by the OS upon termination of the process.
  82   //
  83   return;
  84 }
  85 
  86 // save the specified memory region to the given file
  87 //
  88 // Note: this function might be called from signal handler (by os::abort()),
  89 // don't allocate heap memory.
  90 //
  91 static void save_memory_to_file(char* addr, size_t size) {
  92 
  93  const char* destfile = PerfMemory::get_perfdata_file_path();
  94  assert(destfile[0] != '\0', "invalid PerfData file path");
  95 
  96   int result;
  97 
  98   RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
  99               result);;
 100   if (result == OS_ERR) {
 101     if (PrintMiscellaneous && Verbose) {
 102       warning("Could not create Perfdata save file: %s: %s\n",
 103               destfile, strerror(errno));
 104     }
 105   } else {
 106     int fd = result;
 107 
 108     for (size_t remaining = size; remaining > 0;) {
 109 
 110       RESTARTABLE(::write(fd, addr, remaining), result);
 111       if (result == OS_ERR) {
 112         if (PrintMiscellaneous && Verbose) {
 113           warning("Could not write Perfdata save file: %s: %s\n",
 114                   destfile, strerror(errno));
 115         }
 116         break;
 117       }
 118 
 119       remaining -= (size_t)result;
 120       addr += result;
 121     }
 122 
 123     result = ::close(fd);
 124     if (PrintMiscellaneous && Verbose) {
 125       if (result == OS_ERR) {
 126         warning("Could not close %s: %s\n", destfile, strerror(errno));
 127       }
 128     }
 129   }
 130   FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
 131 }
 132 
 133 
 134 // Shared Memory Implementation Details
 135 
 136 // Note: the solaris and linux shared memory implementation uses the mmap
 137 // interface with a backing store file to implement named shared memory.
 138 // Using the file system as the name space for shared memory allows a
 139 // common name space to be supported across a variety of platforms. It
 140 // also provides a name space that Java applications can deal with through
 141 // simple file apis.
 142 //
 143 // The solaris and linux implementations store the backing store file in
 144 // a user specific temporary directory located in the /tmp file system,
 145 // which is always a local file system and is sometimes a RAM based file
 146 // system.
 147 
 148 // return the user specific temporary directory name.
 149 //
 150 // the caller is expected to free the allocated memory.
 151 //
 152 static char* get_user_tmp_dir(const char* user) {
 153 
 154   const char* tmpdir = os::get_temp_directory();
 155   const char* perfdir = PERFDATA_NAME;
 156   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
 157   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 158 
 159   // construct the path name to user specific tmp directory
 160   snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
 161 
 162   return dirname;
 163 }
 164 
 165 // convert the given file name into a process id. if the file
 166 // does not meet the file naming constraints, return 0.
 167 //
 168 static pid_t filename_to_pid(const char* filename) {
 169 
 170   // a filename that doesn't begin with a digit is not a
 171   // candidate for conversion.
 172   //
 173   if (!isdigit(*filename)) {
 174     return 0;
 175   }
 176 
 177   // check if file name can be converted to an integer without
 178   // any leftover characters.
 179   //
 180   char* remainder = NULL;
 181   errno = 0;
 182   pid_t pid = (pid_t)strtol(filename, &remainder, 10);
 183 
 184   if (errno != 0) {
 185     return 0;
 186   }
 187 
 188   // check for left over characters. If any, then the filename is
 189   // not a candidate for conversion.
 190   //
 191   if (remainder != NULL && *remainder != '\0') {
 192     return 0;
 193   }
 194 
 195   // successful conversion, return the pid
 196   return pid;
 197 }
 198 
 199 
 200 // Check if the given statbuf is considered a secure directory for
 201 // the backing store files. Returns true if the directory is considered
 202 // a secure location. Returns false if the statbuf is a symbolic link or
 203 // if an error occurred.
 204 //
 205 static bool is_statbuf_secure(struct stat *statp) {
 206   if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) {
 207     // The path represents a link or some non-directory file type,
 208     // which is not what we expected. Declare it insecure.
 209     //
 210     return false;
 211   }
 212   // We have an existing directory, check if the permissions are safe.
 213   //
 214   if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) {
 215     // The directory is open for writing and could be subjected
 216     // to a symlink or a hard link attack. Declare it insecure.
 217     //
 218     return false;
 219   }
 220   // If user is not root then see if the uid of the directory matches the effective uid of the process.
 221   uid_t euid = geteuid();
 222   if ((euid != 0) && (statp->st_uid != euid)) {
 223     // The directory was not created by this user, declare it insecure.
 224     //
 225     return false;
 226   }
 227   return true;
 228 }
 229 
 230 
 231 // Check if the given path is considered a secure directory for
 232 // the backing store files. Returns true if the directory exists
 233 // and is considered a secure location. Returns false if the path
 234 // is a symbolic link or if an error occurred.
 235 //
 236 static bool is_directory_secure(const char* path) {
 237   struct stat statbuf;
 238   int result = 0;
 239 
 240   RESTARTABLE(::lstat(path, &statbuf), result);
 241   if (result == OS_ERR) {
 242     return false;
 243   }
 244 
 245   // The path exists, see if it is secure.
 246   return is_statbuf_secure(&statbuf);
 247 }
 248 
 249 
 250 // Check if the given directory file descriptor is considered a secure
 251 // directory for the backing store files. Returns true if the directory
 252 // exists and is considered a secure location. Returns false if the path
 253 // is a symbolic link or if an error occurred.
 254 //
 255 static bool is_dirfd_secure(int dir_fd) {
 256   struct stat statbuf;
 257   int result = 0;
 258 
 259   RESTARTABLE(::fstat(dir_fd, &statbuf), result);
 260   if (result == OS_ERR) {
 261     return false;
 262   }
 263 
 264   // The path exists, now check its mode.
 265   return is_statbuf_secure(&statbuf);
 266 }
 267 
 268 
 269 // Check to make sure fd1 and fd2 are referencing the same file system object.
 270 //
 271 static bool is_same_fsobject(int fd1, int fd2) {
 272   struct stat statbuf1;
 273   struct stat statbuf2;
 274   int result = 0;
 275 
 276   RESTARTABLE(::fstat(fd1, &statbuf1), result);
 277   if (result == OS_ERR) {
 278     return false;
 279   }
 280   RESTARTABLE(::fstat(fd2, &statbuf2), result);
 281   if (result == OS_ERR) {
 282     return false;
 283   }
 284 
 285   if ((statbuf1.st_ino == statbuf2.st_ino) &&
 286       (statbuf1.st_dev == statbuf2.st_dev)) {
 287     return true;
 288   } else {
 289     return false;
 290   }
 291 }
 292 
 293 
 294 // Open the directory of the given path and validate it.
 295 // Return a DIR * of the open directory.
 296 //
 297 static DIR *open_directory_secure(const char* dirname) {
 298   // Open the directory using open() so that it can be verified
 299   // to be secure by calling is_dirfd_secure(), opendir() and then check
 300   // to see if they are the same file system object.  This method does not
 301   // introduce a window of opportunity for the directory to be attacked that
 302   // calling opendir() and is_directory_secure() does.
 303   int result;
 304   DIR *dirp = NULL;
 305   RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result);
 306   if (result == OS_ERR) {
 307     if (PrintMiscellaneous && Verbose) {
 308       if (errno == ELOOP) {
 309         warning("directory %s is a symlink and is not secure\n", dirname);
 310       } else {
 311         warning("could not open directory %s: %s\n", dirname, strerror(errno));
 312       }
 313     }
 314     return dirp;
 315   }
 316   int fd = result;
 317 
 318   // Determine if the open directory is secure.
 319   if (!is_dirfd_secure(fd)) {
 320     // The directory is not a secure directory.
 321     os::close(fd);
 322     return dirp;
 323   }
 324 
 325   // Open the directory.
 326   dirp = ::opendir(dirname);
 327   if (dirp == NULL) {
 328     // The directory doesn't exist, close fd and return.
 329     os::close(fd);
 330     return dirp;
 331   }
 332 
 333   // Check to make sure fd and dirp are referencing the same file system object.
 334   if (!is_same_fsobject(fd, dirfd(dirp))) {
 335     // The directory is not secure.
 336     os::close(fd);
 337     os::closedir(dirp);
 338     dirp = NULL;
 339     return dirp;
 340   }
 341 
 342   // Close initial open now that we know directory is secure
 343   os::close(fd);
 344 
 345   return dirp;
 346 }
 347 
 348 // NOTE: The code below uses fchdir(), open() and unlink() because
 349 // fdopendir(), openat() and unlinkat() are not supported on all
 350 // versions.  Once the support for fdopendir(), openat() and unlinkat()
 351 // is available on all supported versions the code can be changed
 352 // to use these functions.
 353 
 354 // Open the directory of the given path, validate it and set the
 355 // current working directory to it.
 356 // Return a DIR * of the open directory and the saved cwd fd.
 357 //
 358 static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) {
 359 
 360   // Open the directory.
 361   DIR* dirp = open_directory_secure(dirname);
 362   if (dirp == NULL) {
 363     // Directory doesn't exist or is insecure, so there is nothing to cleanup.
 364     return dirp;
 365   }
 366   int fd = dirfd(dirp);
 367 
 368   // Open a fd to the cwd and save it off.
 369   int result;
 370   RESTARTABLE(::open(".", O_RDONLY), result);
 371   if (result == OS_ERR) {
 372     *saved_cwd_fd = -1;
 373   } else {
 374     *saved_cwd_fd = result;
 375   }
 376 
 377   // Set the current directory to dirname by using the fd of the directory and
 378   // handle errors, otherwise shared memory files will be created in cwd.
 379   result = fchdir(fd);
 380   if (result == OS_ERR) {
 381     if (PrintMiscellaneous && Verbose) {
 382       warning("could not change to directory %s", dirname);
 383     }
 384     if (*saved_cwd_fd != -1) {
 385       ::close(*saved_cwd_fd);
 386       *saved_cwd_fd = -1;
 387     }
 388     // Close the directory.
 389     os::closedir(dirp);
 390     return NULL;
 391   } else {
 392     return dirp;
 393   }
 394 }
 395 
 396 // Close the directory and restore the current working directory.
 397 //
 398 static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) {
 399 
 400   int result;
 401   // If we have a saved cwd change back to it and close the fd.
 402   if (saved_cwd_fd != -1) {
 403     result = fchdir(saved_cwd_fd);
 404     ::close(saved_cwd_fd);
 405   }
 406 
 407   // Close the directory.
 408   os::closedir(dirp);
 409 }
 410 
 411 // Check if the given file descriptor is considered a secure.
 412 //
 413 static bool is_file_secure(int fd, const char *filename) {
 414 
 415   int result;
 416   struct stat statbuf;
 417 
 418   // Determine if the file is secure.
 419   RESTARTABLE(::fstat(fd, &statbuf), result);
 420   if (result == OS_ERR) {
 421     if (PrintMiscellaneous && Verbose) {
 422       warning("fstat failed on %s: %s\n", filename, strerror(errno));
 423     }
 424     return false;
 425   }
 426   if (statbuf.st_nlink > 1) {
 427     // A file with multiple links is not expected.
 428     if (PrintMiscellaneous && Verbose) {
 429       warning("file %s has multiple links\n", filename);
 430     }
 431     return false;
 432   }
 433   return true;
 434 }
 435 
 436 
 437 // return the user name for the given user id
 438 //
 439 // the caller is expected to free the allocated memory.
 440 //
 441 static char* get_user_name(uid_t uid) {
 442 
 443   struct passwd pwent;
 444 
 445   // determine the max pwbuf size from sysconf, and hardcode
 446   // a default if this not available through sysconf.
 447   //
 448   long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 449   if (bufsize == -1)
 450     bufsize = 1024;
 451 
 452   char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 453 
 454   // POSIX interface to getpwuid_r is used on LINUX
 455   struct passwd* p;
 456   int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
 457 
 458   if (result != 0 || p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
 459     if (PrintMiscellaneous && Verbose) {
 460       if (result != 0) {
 461         warning("Could not retrieve passwd entry: %s\n",
 462                 strerror(result));
 463       }
 464       else if (p == NULL) {
 465         // this check is added to protect against an observed problem
 466         // with getpwuid_r() on RedHat 9 where getpwuid_r returns 0,
 467         // indicating success, but has p == NULL. This was observed when
 468         // inserting a file descriptor exhaustion fault prior to the call
 469         // getpwuid_r() call. In this case, error is set to the appropriate
 470         // error condition, but this is undocumented behavior. This check
 471         // is safe under any condition, but the use of errno in the output
 472         // message may result in an erroneous message.
 473         // Bug Id 89052 was opened with RedHat.
 474         //
 475         warning("Could not retrieve passwd entry: %s\n",
 476                 strerror(errno));
 477       }
 478       else {
 479         warning("Could not determine user name: %s\n",
 480                 p->pw_name == NULL ? "pw_name = NULL" :
 481                                      "pw_name zero length");
 482       }
 483     }
 484     FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
 485     return NULL;
 486   }
 487 
 488   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
 489   strcpy(user_name, p->pw_name);
 490 
 491   FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
 492   return user_name;
 493 }
 494 
 495 // return the name of the user that owns the process identified by vmid.
 496 //
 497 // This method uses a slow directory search algorithm to find the backing
 498 // store file for the specified vmid and returns the user name, as determined
 499 // by the user name suffix of the hsperfdata_<username> directory name.
 500 //
 501 // the caller is expected to free the allocated memory.
 502 //
 503 static char* get_user_name_slow(int vmid, TRAPS) {
 504 
 505   // short circuit the directory search if the process doesn't even exist.
 506   if (kill(vmid, 0) == OS_ERR) {
 507     if (errno == ESRCH) {
 508       THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
 509                   "Process not found");
 510     }
 511     else /* EPERM */ {
 512       THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
 513     }
 514   }
 515 
 516   // directory search
 517   char* oldest_user = NULL;
 518   time_t oldest_ctime = 0;
 519 
 520   const char* tmpdirname = os::get_temp_directory();
 521 
 522   // open the temp directory
 523   DIR* tmpdirp = os::opendir(tmpdirname);
 524 
 525   if (tmpdirp == NULL) {
 526     // Cannot open the directory to get the user name, return.
 527     return NULL;
 528   }
 529 
 530   // for each entry in the directory that matches the pattern hsperfdata_*,
 531   // open the directory and check if the file for the given vmid exists.
 532   // The file with the expected name and the latest creation date is used
 533   // to determine the user name for the process id.
 534   //
 535   struct dirent* dentry;
 536   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
 537   errno = 0;
 538   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
 539 
 540     // check if the directory entry is a hsperfdata file
 541     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
 542       continue;
 543     }
 544 
 545     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
 546                      strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
 547     strcpy(usrdir_name, tmpdirname);
 548     strcat(usrdir_name, "/");
 549     strcat(usrdir_name, dentry->d_name);
 550 
 551     // open the user directory
 552     DIR* subdirp = open_directory_secure(usrdir_name);
 553 
 554     if (subdirp == NULL) {
 555       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
 556       continue;
 557     }
 558 
 559     // Since we don't create the backing store files in directories
 560     // pointed to by symbolic links, we also don't follow them when
 561     // looking for the files. We check for a symbolic link after the
 562     // call to opendir in order to eliminate a small window where the
 563     // symlink can be exploited.
 564     //
 565     if (!is_directory_secure(usrdir_name)) {
 566       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
 567       os::closedir(subdirp);
 568       continue;
 569     }
 570 
 571     struct dirent* udentry;
 572     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
 573     errno = 0;
 574     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
 575 
 576       if (filename_to_pid(udentry->d_name) == vmid) {
 577         struct stat statbuf;
 578         int result;
 579 
 580         char* filename = NEW_C_HEAP_ARRAY(char,
 581                    strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
 582 
 583         strcpy(filename, usrdir_name);
 584         strcat(filename, "/");
 585         strcat(filename, udentry->d_name);
 586 
 587         // don't follow symbolic links for the file
 588         RESTARTABLE(::lstat(filename, &statbuf), result);
 589         if (result == OS_ERR) {
 590            FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 591            continue;
 592         }
 593 
 594         // skip over files that are not regular files.
 595         if (!S_ISREG(statbuf.st_mode)) {
 596           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 597           continue;
 598         }
 599 
 600         // compare and save filename with latest creation time
 601         if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
 602 
 603           if (statbuf.st_ctime > oldest_ctime) {
 604             char* user = strchr(dentry->d_name, '_') + 1;
 605 
 606             if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user, mtInternal);
 607             oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
 608 
 609             strcpy(oldest_user, user);
 610             oldest_ctime = statbuf.st_ctime;
 611           }
 612         }
 613 
 614         FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 615       }
 616     }
 617     os::closedir(subdirp);
 618     FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
 619     FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
 620   }
 621   os::closedir(tmpdirp);
 622   FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);
 623 
 624   return(oldest_user);
 625 }
 626 
 627 // return the name of the user that owns the JVM indicated by the given vmid.
 628 //
 629 static char* get_user_name(int vmid, TRAPS) {
 630   return get_user_name_slow(vmid, CHECK_NULL);
 631 }
 632 
 633 // return the file name of the backing store file for the named
 634 // shared memory region for the given user name and vmid.
 635 //
 636 // the caller is expected to free the allocated memory.
 637 //
 638 static char* get_sharedmem_filename(const char* dirname, int vmid) {
 639 
 640   // add 2 for the file separator and a null terminator.
 641   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
 642 
 643   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 644   snprintf(name, nbytes, "%s/%d", dirname, vmid);
 645 
 646   return name;
 647 }
 648 
 649 
 650 // remove file
 651 //
 652 // this method removes the file specified by the given path
 653 //
 654 static void remove_file(const char* path) {
 655 
 656   int result;
 657 
 658   // if the file is a directory, the following unlink will fail. since
 659   // we don't expect to find directories in the user temp directory, we
 660   // won't try to handle this situation. even if accidentially or
 661   // maliciously planted, the directory's presence won't hurt anything.
 662   //
 663   RESTARTABLE(::unlink(path), result);
 664   if (PrintMiscellaneous && Verbose && result == OS_ERR) {
 665     if (errno != ENOENT) {
 666       warning("Could not unlink shared memory backing"
 667               " store file %s : %s\n", path, strerror(errno));
 668     }
 669   }
 670 }
 671 
 672 
 673 // cleanup stale shared memory resources
 674 //
 675 // This method attempts to remove all stale shared memory files in
 676 // the named user temporary directory. It scans the named directory
 677 // for files matching the pattern ^$[0-9]*$. For each file found, the
 678 // process id is extracted from the file name and a test is run to
 679 // determine if the process is alive. If the process is not alive,
 680 // any stale file resources are removed.
 681 //
 682 static void cleanup_sharedmem_resources(const char* dirname) {
 683 
 684   int saved_cwd_fd;
 685   // open the directory
 686   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
 687   if (dirp == NULL) {
 688     // directory doesn't exist or is insecure, so there is nothing to cleanup
 689     return;
 690   }
 691 
 692   // for each entry in the directory that matches the expected file
 693   // name pattern, determine if the file resources are stale and if
 694   // so, remove the file resources. Note, instrumented HotSpot processes
 695   // for this user may start and/or terminate during this search and
 696   // remove or create new files in this directory. The behavior of this
 697   // loop under these conditions is dependent upon the implementation of
 698   // opendir/readdir.
 699   //
 700   struct dirent* entry;
 701   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
 702 
 703   errno = 0;
 704   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
 705 
 706     pid_t pid = filename_to_pid(entry->d_name);
 707 
 708     if (pid == 0) {
 709 
 710       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
 711         // attempt to remove all unexpected files, except "." and ".."
 712         unlink(entry->d_name);
 713       }
 714 
 715       errno = 0;
 716       continue;
 717     }
 718 
 719     // we now have a file name that converts to a valid integer
 720     // that could represent a process id . if this process id
 721     // matches the current process id or the process is not running,
 722     // then remove the stale file resources.
 723     //
 724     // process liveness is detected by sending signal number 0 to
 725     // the process id (see kill(2)). if kill determines that the
 726     // process does not exist, then the file resources are removed.
 727     // if kill determines that that we don't have permission to
 728     // signal the process, then the file resources are assumed to
 729     // be stale and are removed because the resources for such a
 730     // process should be in a different user specific directory.
 731     //
 732     if ((pid == os::current_process_id()) ||
 733         (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
 734         unlink(entry->d_name);
 735     }
 736     errno = 0;
 737   }
 738 
 739   // close the directory and reset the current working directory
 740   close_directory_secure_cwd(dirp, saved_cwd_fd);
 741 
 742   FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
 743 }
 744 
 745 // make the user specific temporary directory. Returns true if
 746 // the directory exists and is secure upon return. Returns false
 747 // if the directory exists but is either a symlink, is otherwise
 748 // insecure, or if an error occurred.
 749 //
 750 static bool make_user_tmp_dir(const char* dirname) {
 751 
 752   // create the directory with 0755 permissions. note that the directory
 753   // will be owned by euid::egid, which may not be the same as uid::gid.
 754   //
 755   if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
 756     if (errno == EEXIST) {
 757       // The directory already exists and was probably created by another
 758       // JVM instance. However, this could also be the result of a
 759       // deliberate symlink. Verify that the existing directory is safe.
 760       //
 761       if (!is_directory_secure(dirname)) {
 762         // directory is not secure
 763         if (PrintMiscellaneous && Verbose) {
 764           warning("%s directory is insecure\n", dirname);
 765         }
 766         return false;
 767       }
 768     }
 769     else {
 770       // we encountered some other failure while attempting
 771       // to create the directory
 772       //
 773       if (PrintMiscellaneous && Verbose) {
 774         warning("could not create directory %s: %s\n",
 775                 dirname, strerror(errno));
 776       }
 777       return false;
 778     }
 779   }
 780   return true;
 781 }
 782 
 783 // create the shared memory file resources
 784 //
 785 // This method creates the shared memory file with the given size
 786 // This method also creates the user specific temporary directory, if
 787 // it does not yet exist.
 788 //
 789 static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
 790 
 791   // make the user temporary directory
 792   if (!make_user_tmp_dir(dirname)) {
 793     // could not make/find the directory or the found directory
 794     // was not secure
 795     return -1;
 796   }
 797 
 798   int saved_cwd_fd;
 799   // open the directory and set the current working directory to it
 800   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
 801   if (dirp == NULL) {
 802     // Directory doesn't exist or is insecure, so cannot create shared
 803     // memory file.
 804     return -1;
 805   }
 806 
 807   // Open the filename in the current directory.
 808   // Cannot use O_TRUNC here; truncation of an existing file has to happen
 809   // after the is_file_secure() check below.
 810   int result;
 811   RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IREAD|S_IWRITE), result);
 812   if (result == OS_ERR) {
 813     if (PrintMiscellaneous && Verbose) {
 814       if (errno == ELOOP) {
 815         warning("file %s is a symlink and is not secure\n", filename);
 816       } else {
 817         warning("could not create file %s: %s\n", filename, strerror(errno));
 818       }
 819     }
 820     // close the directory and reset the current working directory
 821     close_directory_secure_cwd(dirp, saved_cwd_fd);
 822 
 823     return -1;
 824   }
 825   // close the directory and reset the current working directory
 826   close_directory_secure_cwd(dirp, saved_cwd_fd);
 827 
 828   // save the file descriptor
 829   int fd = result;
 830 
 831   // check to see if the file is secure
 832   if (!is_file_secure(fd, filename)) {
 833     ::close(fd);
 834     return -1;
 835   }
 836 
 837   // truncate the file to get rid of any existing data
 838   RESTARTABLE(::ftruncate(fd, (off_t)0), result);
 839   if (result == OS_ERR) {
 840     if (PrintMiscellaneous && Verbose) {
 841       warning("could not truncate shared memory file: %s\n", strerror(errno));
 842     }
 843     ::close(fd);
 844     return -1;
 845   }
 846   // set the file size
 847   RESTARTABLE(::ftruncate(fd, (off_t)size), result);
 848   if (result == OS_ERR) {
 849     if (PrintMiscellaneous && Verbose) {
 850       warning("could not set shared memory file size: %s\n", strerror(errno));
 851     }
 852     ::close(fd);
 853     return -1;
 854   }
 855 
 856   // Verify that we have enough disk space for this file.
 857   // We'll get random SIGBUS crashes on memory accesses if
 858   // we don't.
 859 
 860   for (size_t seekpos = 0; seekpos < size; seekpos += os::vm_page_size()) {
 861     int zero_int = 0;
 862     result = (int)os::seek_to_file_offset(fd, (jlong)(seekpos));
 863     if (result == -1 ) break;
 864     RESTARTABLE(::write(fd, &zero_int, 1), result);
 865     if (result != 1) {
 866       if (errno == ENOSPC) {
 867         warning("Insufficient space for shared memory file:\n   %s\nTry using the -Djava.io.tmpdir= option to select an alternate temp location.\n", filename);
 868       }
 869       break;
 870     }
 871   }
 872 
 873   if (result != -1) {
 874     return fd;
 875   } else {
 876     ::close(fd);
 877     return -1;
 878   }
 879 }
 880 
 881 // open the shared memory file for the given user and vmid. returns
 882 // the file descriptor for the open file or -1 if the file could not
 883 // be opened.
 884 //
 885 static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
 886 
 887   // open the file
 888   int result;
 889   RESTARTABLE(::open(filename, oflags), result);
 890   if (result == OS_ERR) {
 891     if (errno == ENOENT) {
 892       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
 893                   "Process not found", OS_ERR);
 894     }
 895     else if (errno == EACCES) {
 896       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
 897                   "Permission denied", OS_ERR);
 898     }
 899     else {
 900       THROW_MSG_(vmSymbols::java_io_IOException(), strerror(errno), OS_ERR);
 901     }
 902   }
 903   int fd = result;
 904 
 905   // check to see if the file is secure
 906   if (!is_file_secure(fd, filename)) {
 907     ::close(fd);
 908     return -1;
 909   }
 910 
 911   return fd;
 912 }
 913 
 914 // create a named shared memory region. returns the address of the
 915 // memory region on success or NULL on failure. A return value of
 916 // NULL will ultimately disable the shared memory feature.
 917 //
 918 // On Solaris and Linux, the name space for shared memory objects
 919 // is the file system name space.
 920 //
 921 // A monitoring application attaching to a JVM does not need to know
 922 // the file system name of the shared memory object. However, it may
 923 // be convenient for applications to discover the existence of newly
 924 // created and terminating JVMs by watching the file system name space
 925 // for files being created or removed.
 926 //
 927 static char* mmap_create_shared(size_t size) {
 928 
 929   int result;
 930   int fd;
 931   char* mapAddress;
 932 
 933   int vmid = os::current_process_id();
 934 
 935   char* user_name = get_user_name(geteuid());
 936 
 937   if (user_name == NULL)
 938     return NULL;
 939 
 940   char* dirname = get_user_tmp_dir(user_name);
 941   char* filename = get_sharedmem_filename(dirname, vmid);
 942   // get the short filename
 943   char* short_filename = strrchr(filename, '/');
 944   if (short_filename == NULL) {
 945     short_filename = filename;
 946   } else {
 947     short_filename++;
 948   }
 949 
 950   // cleanup any stale shared memory files
 951   cleanup_sharedmem_resources(dirname);
 952 
 953   assert(((size > 0) && (size % os::vm_page_size() == 0)),
 954          "unexpected PerfMemory region size");
 955 
 956   fd = create_sharedmem_resources(dirname, short_filename, size);
 957 
 958   FREE_C_HEAP_ARRAY(char, user_name, mtInternal);
 959   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
 960 
 961   if (fd == -1) {
 962     FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 963     return NULL;
 964   }
 965 
 966   mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 967 
 968   result = ::close(fd);
 969   assert(result != OS_ERR, "could not close file");
 970 
 971   if (mapAddress == MAP_FAILED) {
 972     if (PrintMiscellaneous && Verbose) {
 973       warning("mmap failed -  %s\n", strerror(errno));
 974     }
 975     remove_file(filename);
 976     FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 977     return NULL;
 978   }
 979 
 980   // save the file name for use in delete_shared_memory()
 981   backing_store_file_name = filename;
 982 
 983   // clear the shared memory region
 984   (void)::memset((void*) mapAddress, 0, size);
 985 
 986   // it does not go through os api, the operation has to record from here
 987   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal);
 988 
 989   return mapAddress;
 990 }
 991 
 992 // release a named shared memory region
 993 //
 994 static void unmap_shared(char* addr, size_t bytes) {
 995   os::release_memory(addr, bytes);
 996 }
 997 
 998 // create the PerfData memory region in shared memory.
 999 //
1000 static char* create_shared_memory(size_t size) {
1001 
1002   // create the shared memory region.
1003   return mmap_create_shared(size);
1004 }
1005 
1006 // delete the shared PerfData memory region
1007 //
1008 static void delete_shared_memory(char* addr, size_t size) {
1009 
1010   // cleanup the persistent shared memory resources. since DestroyJavaVM does
1011   // not support unloading of the JVM, unmapping of the memory resource is
1012   // not performed. The memory will be reclaimed by the OS upon termination of
1013   // the process. The backing store file is deleted from the file system.
1014 
1015   assert(!PerfDisableSharedMem, "shouldn't be here");
1016 
1017   if (backing_store_file_name != NULL) {
1018     remove_file(backing_store_file_name);
1019     // Don't.. Free heap memory could deadlock os::abort() if it is called
1020     // from signal handler. OS will reclaim the heap memory.
1021     // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
1022     backing_store_file_name = NULL;
1023   }
1024 }
1025 
1026 // return the size of the file for the given file descriptor
1027 // or 0 if it is not a valid size for a shared memory file
1028 //
1029 static size_t sharedmem_filesize(int fd, TRAPS) {
1030 
1031   struct stat statbuf;
1032   int result;
1033 
1034   RESTARTABLE(::fstat(fd, &statbuf), result);
1035   if (result == OS_ERR) {
1036     if (PrintMiscellaneous && Verbose) {
1037       warning("fstat failed: %s\n", strerror(errno));
1038     }
1039     THROW_MSG_0(vmSymbols::java_io_IOException(),
1040                 "Could not determine PerfMemory size");
1041   }
1042 
1043   if ((statbuf.st_size == 0) ||
1044      ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
1045     THROW_MSG_0(vmSymbols::java_lang_Exception(),
1046                 "Invalid PerfMemory size");
1047   }
1048 
1049   return (size_t)statbuf.st_size;
1050 }
1051 
1052 // attach to a named shared memory region.
1053 //
1054 static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
1055 
1056   char* mapAddress;
1057   int result;
1058   int fd;
1059   size_t size = 0;
1060   const char* luser = NULL;
1061 
1062   int mmap_prot;
1063   int file_flags;
1064 
1065   ResourceMark rm;
1066 
1067   // map the high level access mode to the appropriate permission
1068   // constructs for the file and the shared memory mapping.
1069   if (mode == PerfMemory::PERF_MODE_RO) {
1070     mmap_prot = PROT_READ;
1071     file_flags = O_RDONLY | O_NOFOLLOW;
1072   }
1073   else if (mode == PerfMemory::PERF_MODE_RW) {
1074 #ifdef LATER
1075     mmap_prot = PROT_READ | PROT_WRITE;
1076     file_flags = O_RDWR | O_NOFOLLOW;
1077 #else
1078     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1079               "Unsupported access mode");
1080 #endif
1081   }
1082   else {
1083     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1084               "Illegal access mode");
1085   }
1086 
1087   if (user == NULL || strlen(user) == 0) {
1088     luser = get_user_name(vmid, CHECK);
1089   }
1090   else {
1091     luser = user;
1092   }
1093 
1094   if (luser == NULL) {
1095     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1096               "Could not map vmid to user Name");
1097   }
1098 
1099   char* dirname = get_user_tmp_dir(luser);
1100 
1101   // since we don't follow symbolic links when creating the backing
1102   // store file, we don't follow them when attaching either.
1103   //
1104   if (!is_directory_secure(dirname)) {
1105     FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
1106     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1107               "Process not found");
1108   }
1109 
1110   char* filename = get_sharedmem_filename(dirname, vmid);
1111 
1112   // copy heap memory to resource memory. the open_sharedmem_file
1113   // method below need to use the filename, but could throw an
1114   // exception. using a resource array prevents the leak that
1115   // would otherwise occur.
1116   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1117   strcpy(rfilename, filename);
1118 
1119   // free the c heap resources that are no longer needed
1120   if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
1121   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
1122   FREE_C_HEAP_ARRAY(char, filename, mtInternal);
1123 
1124   // open the shared memory file for the give vmid
1125   fd = open_sharedmem_file(rfilename, file_flags, THREAD);
1126 
1127   if (fd == OS_ERR) {
1128     return;
1129   }
1130 
1131   if (HAS_PENDING_EXCEPTION) {
1132     ::close(fd);
1133     return;
1134   }
1135 
1136   if (*sizep == 0) {
1137     size = sharedmem_filesize(fd, CHECK);
1138   } else {
1139     size = *sizep;
1140   }
1141 
1142   assert(size > 0, "unexpected size <= 0");
1143 
1144   mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
1145 
1146   result = ::close(fd);
1147   assert(result != OS_ERR, "could not close file");
1148 
1149   if (mapAddress == MAP_FAILED) {
1150     if (PrintMiscellaneous && Verbose) {
1151       warning("mmap failed: %s\n", strerror(errno));
1152     }
1153     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1154               "Could not map PerfMemory");
1155   }
1156 
1157   // it does not go through os api, the operation has to record from here
1158   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress, size, CURRENT_PC, mtInternal);
1159 
1160   *addr = mapAddress;
1161   *sizep = size;
1162 
1163   if (PerfTraceMemOps) {
1164     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1165                INTPTR_FORMAT "\n", size, vmid, p2i((void*)mapAddress));
1166   }
1167 }
1168 
1169 
1170 
1171 
1172 // create the PerfData memory region
1173 //
1174 // This method creates the memory region used to store performance
1175 // data for the JVM. The memory may be created in standard or
1176 // shared memory.
1177 //
1178 void PerfMemory::create_memory_region(size_t size) {
1179 
1180   if (PerfDisableSharedMem) {
1181     // do not share the memory for the performance data.
1182     _start = create_standard_memory(size);
1183   }
1184   else {
1185     _start = create_shared_memory(size);
1186     if (_start == NULL) {
1187 
1188       // creation of the shared memory region failed, attempt
1189       // to create a contiguous, non-shared memory region instead.
1190       //
1191       if (PrintMiscellaneous && Verbose) {
1192         warning("Reverting to non-shared PerfMemory region.\n");
1193       }
1194       PerfDisableSharedMem = true;
1195       _start = create_standard_memory(size);
1196     }
1197   }
1198 
1199   if (_start != NULL) _capacity = size;
1200 
1201 }
1202 
1203 // delete the PerfData memory region
1204 //
1205 // This method deletes the memory region used to store performance
1206 // data for the JVM. The memory region indicated by the <address, size>
1207 // tuple will be inaccessible after a call to this method.
1208 //
1209 void PerfMemory::delete_memory_region() {
1210 
1211   assert((start() != NULL && capacity() > 0), "verify proper state");
1212 
1213   // If user specifies PerfDataSaveFile, it will save the performance data
1214   // to the specified file name no matter whether PerfDataSaveToFile is specified
1215   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1216   // -XX:+PerfDataSaveToFile.
1217   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1218     save_memory_to_file(start(), capacity());
1219   }
1220 
1221   if (PerfDisableSharedMem) {
1222     delete_standard_memory(start(), capacity());
1223   }
1224   else {
1225     delete_shared_memory(start(), capacity());
1226   }
1227 }
1228 
1229 // attach to the PerfData memory region for another JVM
1230 //
1231 // This method returns an <address, size> tuple that points to
1232 // a memory buffer that is kept reasonably synchronized with
1233 // the PerfData memory region for the indicated JVM. This
1234 // buffer may be kept in synchronization via shared memory
1235 // or some other mechanism that keeps the buffer updated.
1236 //
1237 // If the JVM chooses not to support the attachability feature,
1238 // this method should throw an UnsupportedOperation exception.
1239 //
1240 // This implementation utilizes named shared memory to map
1241 // the indicated process's PerfData memory region into this JVMs
1242 // address space.
1243 //
1244 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
1245 
1246   if (vmid == 0 || vmid == os::current_process_id()) {
1247      *addrp = start();
1248      *sizep = capacity();
1249      return;
1250   }
1251 
1252   mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
1253 }
1254 
1255 // detach from the PerfData memory region of another JVM
1256 //
1257 // This method detaches the PerfData memory region of another
1258 // JVM, specified as an <address, size> tuple of a buffer
1259 // in this process's address space. This method may perform
1260 // arbitrary actions to accomplish the detachment. The memory
1261 // region specified by <address, size> will be inaccessible after
1262 // a call to this method.
1263 //
1264 // If the JVM chooses not to support the attachability feature,
1265 // this method should throw an UnsupportedOperation exception.
1266 //
1267 // This implementation utilizes named shared memory to detach
1268 // the indicated process's PerfData memory region from this
1269 // process's address space.
1270 //
1271 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1272 
1273   assert(addr != 0, "address sanity check");
1274   assert(bytes > 0, "capacity sanity check");
1275 
1276   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1277     // prevent accidental detachment of this process's PerfMemory region
1278     return;
1279   }
1280 
1281   unmap_shared(addr, bytes);
1282 }
1283 
1284 char* PerfMemory::backing_store_filename() {
1285   return backing_store_file_name;
1286 }