1 /*
   2  * Copyright (c) 2012, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "memory/allocation.inline.hpp"
  28 #include "runtime/os.hpp"
  29 #include "runtime/os_perf.hpp"
  30 #include "os_solaris.inline.hpp"
  31 #include "utilities/macros.hpp"
  32 
  33 #ifdef TARGET_ARCH_aarch32
  34 # include "vm_version_ext_aarch32.hpp"
  35 #endif
  36 #ifdef TARGET_ARCH_x86
  37 # include "vm_version_ext_x86.hpp"
  38 #endif
  39 #ifdef TARGET_ARCH_sparc
  40 # include "vm_version_ext_sparc.hpp"
  41 #endif
  42 #ifdef TARGET_ARCH_zero
  43 # include "vm_version_ext_zero.hpp"
  44 #endif
  45 #ifdef TARGET_ARCH_arm
  46 # include "vm_version_ext_arm.hpp"
  47 #endif
  48 #ifdef TARGET_ARCH_ppc
  49 # include "vm_version_ext_ppc.hpp"
  50 #endif
  51 
  52 #include <sys/types.h>
  53 #include <procfs.h>
  54 #include <dirent.h>
  55 #include <errno.h>
  56 #include <stdio.h>
  57 #include <stdlib.h>
  58 #include <strings.h>
  59 #include <unistd.h>
  60 #include <fcntl.h>
  61 #include <kstat.h>
  62 #include <unistd.h>
  63 #include <string.h>
  64 #include <sys/sysinfo.h>
  65 #include <sys/lwp.h>
  66 #include <pthread.h>
  67 #include <time.h>
  68 #include <utmpx.h>
  69 #include <dlfcn.h>
  70 #include <sys/loadavg.h>
  71 #include <limits.h>
  72 
  73 static const double NANOS_PER_SEC = 1000000000.0;
  74 
  75 struct CPUPerfTicks {
  76   kstat_t* kstat;
  77   uint64_t last_idle;
  78   uint64_t last_total;
  79   double   last_ratio;
  80 };
  81 
  82 struct CPUPerfCounters {
  83   int           nProcs;
  84   CPUPerfTicks* jvmTicks;
  85   kstat_ctl_t*  kstat_ctrl;
  86 };
  87 
  88 static int get_info(const char* path, void* info, size_t s, off_t o) {
  89   assert(path != NULL, "path is NULL!");
  90   assert(info != NULL, "info is NULL!");
  91 
  92   int fd = -1;
  93 
  94   if ((fd = open(path, O_RDONLY)) < 0) {
  95     return OS_ERR;
  96   }
  97   if (pread(fd, info, s, o) != s) {
  98     close(fd);
  99     return OS_ERR;
 100   }
 101   close(fd);
 102   return OS_OK;
 103 }
 104 
 105 static int get_psinfo2(void* info, size_t s, off_t o) {
 106   return get_info("/proc/self/psinfo", info, s, o);
 107 }
 108 
 109 static int get_psinfo(psinfo_t* info) {
 110   return get_psinfo2(info, sizeof(*info), 0);
 111 }
 112 
 113 static int get_psinfo(char* file, psinfo_t* info) {
 114   assert(file != NULL, "file is NULL!");
 115   assert(info != NULL, "info is NULL!");
 116   return get_info(file, info, sizeof(*info), 0);
 117 }
 118 
 119 
 120 static int get_usage(prusage_t* usage) {
 121   assert(usage != NULL, "usage is NULL!");
 122   return get_info("/proc/self/usage", usage, sizeof(*usage), 0);
 123 }
 124 
 125 static int read_cpustat(kstat_ctl_t* kstat_ctrl, CPUPerfTicks* load, cpu_stat_t* cpu_stat) {
 126   assert(kstat_ctrl != NULL, "kstat_ctrl pointer is NULL!");
 127   assert(load != NULL, "load pointer is NULL!");
 128   assert(cpu_stat != NULL, "cpu_stat pointer is NULL!");
 129 
 130   if (load->kstat == NULL) {
 131     // no handle.
 132     return OS_ERR;
 133   }
 134   if (kstat_read(kstat_ctrl, load->kstat, cpu_stat) == OS_ERR) {
 135     // disable handle for this CPU
 136      load->kstat = NULL;
 137      return OS_ERR;
 138   }
 139   return OS_OK;
 140 }
 141 
 142 static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters) {
 143   assert(counters != NULL, "counters pointer is NULL!");
 144 
 145   cpu_stat_t  cpu_stat = {0};
 146 
 147   if (which_logical_cpu >= counters->nProcs) {
 148     return .0;
 149   }
 150 
 151   CPUPerfTicks load = counters->jvmTicks[which_logical_cpu];
 152   if (read_cpustat(counters->kstat_ctrl, &load, &cpu_stat) != OS_OK) {
 153     return .0;
 154   }
 155 
 156   uint_t* usage = cpu_stat.cpu_sysinfo.cpu;
 157   if (usage == NULL) {
 158     return .0;
 159   }
 160 
 161   uint64_t c_idle  = usage[CPU_IDLE];
 162   uint64_t c_total = 0;
 163 
 164   for (int i = 0; i < CPU_STATES; i++) {
 165     c_total += usage[i];
 166   }
 167 
 168   // Calculate diff against previous snapshot
 169   uint64_t d_idle  = c_idle - load.last_idle;
 170   uint64_t d_total = c_total - load.last_total;
 171 
 172   /** update if weve moved */
 173   if (d_total > 0) {
 174     // Save current values for next time around
 175     load.last_idle  = c_idle;
 176     load.last_total = c_total;
 177     load.last_ratio = (double) (d_total - d_idle) / d_total;
 178   }
 179 
 180   return load.last_ratio;
 181 }
 182 
 183 static int get_boot_time(uint64_t* time) {
 184   assert(time != NULL, "time pointer is NULL!");
 185   setutxent();
 186   for(;;) {
 187     struct utmpx* u;
 188     if ((u = getutxent()) == NULL) {
 189       break;
 190     }
 191     if (u->ut_type == BOOT_TIME) {
 192       *time = u->ut_xtime;
 193       endutxent();
 194       return OS_OK;
 195     }
 196   }
 197   endutxent();
 198   return OS_ERR;
 199 }
 200 
 201 static int get_noof_context_switches(CPUPerfCounters* counters, uint64_t* switches) {
 202   assert(switches != NULL, "switches pointer is NULL!");
 203   assert(counters != NULL, "counter pointer is NULL!");
 204   *switches = 0;
 205   uint64_t s = 0;
 206 
 207   // Collect data from all CPUs
 208   for (int i = 0; i < counters->nProcs; i++) {
 209     cpu_stat_t cpu_stat = {0};
 210     CPUPerfTicks load = counters->jvmTicks[i];
 211 
 212     if (read_cpustat(counters->kstat_ctrl, &load, &cpu_stat) == OS_OK) {
 213       s += cpu_stat.cpu_sysinfo.pswitch;
 214     } else {
 215       //fail fast...
 216       return OS_ERR;
 217     }
 218   }
 219   *switches = s;
 220   return OS_OK;
 221 }
 222 
 223 static int perf_context_switch_rate(CPUPerfCounters* counters, double* rate) {
 224   assert(counters != NULL, "counters is NULL!");
 225   assert(rate != NULL, "rate pointer is NULL!");
 226   static pthread_mutex_t contextSwitchLock = PTHREAD_MUTEX_INITIALIZER;
 227   static uint64_t lastTime = 0;
 228   static uint64_t lastSwitches = 0;
 229   static double   lastRate = 0.0;
 230 
 231   uint64_t lt = 0;
 232   int res = 0;
 233 
 234   if (lastTime == 0) {
 235     uint64_t tmp;
 236     if (get_boot_time(&tmp) < 0) {
 237       return OS_ERR;
 238     }
 239     lt = tmp * 1000;
 240   }
 241 
 242   res = OS_OK;
 243 
 244   pthread_mutex_lock(&contextSwitchLock);
 245   {
 246 
 247     uint64_t sw = 0;
 248     clock_t t, d;
 249 
 250     if (lastTime == 0) {
 251       lastTime = lt;
 252     }
 253 
 254     t = clock();
 255     d = t - lastTime;
 256 
 257     if (d == 0) {
 258       *rate = lastRate;
 259     } else if (get_noof_context_switches(counters, &sw)== OS_OK) {
 260       *rate      = ((double)(sw - lastSwitches) / d) * 1000;
 261       lastRate     = *rate;
 262       lastSwitches = sw;
 263       lastTime     = t;
 264     } else {
 265       *rate = 0.0;
 266       res   = OS_ERR;
 267     }
 268     if (*rate < 0.0) {
 269       *rate = 0.0;
 270       lastRate = 0.0;
 271     }
 272   }
 273   pthread_mutex_unlock(&contextSwitchLock);
 274   return res;
 275  }
 276 
 277 
 278 
 279 class CPUPerformanceInterface::CPUPerformance : public CHeapObj<mtInternal> {
 280    friend class CPUPerformanceInterface;
 281  private:
 282   CPUPerfCounters _counters;
 283   int cpu_load(int which_logical_cpu, double* cpu_load);
 284   int context_switch_rate(double* rate);
 285   int cpu_load_total_process(double* cpu_load);
 286   int cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad);
 287 
 288   CPUPerformance();
 289   ~CPUPerformance();
 290   bool initialize();
 291 };
 292 
 293 CPUPerformanceInterface::CPUPerformance::CPUPerformance() {
 294   _counters.nProcs = 0;
 295   _counters.jvmTicks = NULL;
 296   _counters.kstat_ctrl = NULL;
 297 }
 298 
 299 bool CPUPerformanceInterface::CPUPerformance::initialize() {
 300   // initialize kstat control structure,
 301   _counters.kstat_ctrl = kstat_open();
 302   assert(_counters.kstat_ctrl != NULL, "error initializing kstat control structure!");
 303 
 304   if (NULL == _counters.kstat_ctrl) {
 305     return false;
 306   }
 307 
 308   // Get number of CPU(s)
 309   if ((_counters.nProcs = sysconf(_SC_NPROCESSORS_ONLN)) == OS_ERR) {
 310     // ignore error?
 311     _counters.nProcs = 1;
 312   }
 313 
 314   assert(_counters.nProcs > 0, "no CPUs detected in sysconf call!");
 315   if (_counters.nProcs == 0) {
 316     return false;
 317   }
 318 
 319   // Data structure(s) for saving CPU load (one per CPU)
 320   size_t tick_array_size = _counters.nProcs * sizeof(CPUPerfTicks);
 321   _counters.jvmTicks = (CPUPerfTicks*)NEW_C_HEAP_ARRAY(char, tick_array_size, mtInternal);
 322   if (NULL == _counters.jvmTicks) {
 323     return false;
 324   }
 325   memset(_counters.jvmTicks, 0, tick_array_size);
 326 
 327   // Get kstat cpu_stat counters for every CPU
 328   // loop over kstat to find our cpu_stat(s)
 329   int i = 0;
 330   for (kstat_t* kstat = _counters.kstat_ctrl->kc_chain; kstat != NULL; kstat = kstat->ks_next) {
 331     if (strncmp(kstat->ks_module, "cpu_stat", 8) == 0) {
 332       if (kstat_read(_counters.kstat_ctrl, kstat, NULL) == OS_ERR) {
 333         continue;
 334       }
 335       if (i == _counters.nProcs) {
 336         // more cpu_stats than reported CPUs
 337         break;
 338       }
 339       _counters.jvmTicks[i++].kstat = kstat;
 340     }
 341   }
 342   return true;
 343 }
 344 
 345 CPUPerformanceInterface::CPUPerformance::~CPUPerformance() {
 346   if (_counters.jvmTicks != NULL) {
 347     FREE_C_HEAP_ARRAY(char, _counters.jvmTicks, mtInternal);
 348   }
 349   if (_counters.kstat_ctrl != NULL) {
 350     kstat_close(_counters.kstat_ctrl);
 351   }
 352 }
 353 
 354 int CPUPerformanceInterface::CPUPerformance::cpu_load(int which_logical_cpu, double* cpu_load) {
 355   assert(cpu_load != NULL, "cpu_load pointer is NULL!");
 356   double t = .0;
 357   if (-1 == which_logical_cpu) {
 358     for (int i = 0; i < _counters.nProcs; i++) {
 359       t += get_cpu_load(i, &_counters);
 360     }
 361     // Cap total systemload to 1.0
 362     t = MIN2<double>((t / _counters.nProcs), 1.0);
 363   } else {
 364     t = MIN2<double>(get_cpu_load(which_logical_cpu, &_counters), 1.0);
 365   }
 366 
 367   *cpu_load = t;
 368   return OS_OK;
 369 }
 370 
 371 int CPUPerformanceInterface::CPUPerformance::cpu_load_total_process(double* cpu_load) {
 372   assert(cpu_load != NULL, "cpu_load pointer is NULL!");
 373 
 374   psinfo_t info;
 375 
 376   // Get the percentage of "recent cpu usage" from all the lwp:s in the JVM:s
 377   // process. This is returned as a value between 0.0 and 1.0 multiplied by 0x8000.
 378   if (get_psinfo2(&info.pr_pctcpu, sizeof(info.pr_pctcpu), offsetof(psinfo_t, pr_pctcpu)) != 0) {
 379     *cpu_load = 0.0;
 380     return OS_ERR;
 381   }
 382   *cpu_load = (double) info.pr_pctcpu / 0x8000;
 383   return OS_OK;
 384 }
 385 
 386 int CPUPerformanceInterface::CPUPerformance::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) {
 387   assert(pjvmUserLoad != NULL, "pjvmUserLoad not inited");
 388   assert(pjvmKernelLoad != NULL, "pjvmKernelLoad not inited");
 389   assert(psystemTotalLoad != NULL, "psystemTotalLoad not inited");
 390 
 391   static uint64_t lastTime;
 392   static uint64_t lastUser, lastKernel;
 393   static double lastUserRes, lastKernelRes;
 394 
 395   pstatus_t pss;
 396   psinfo_t  info;
 397 
 398   *pjvmKernelLoad = *pjvmUserLoad = *psystemTotalLoad = 0;
 399   if (get_info("/proc/self/status", &pss.pr_utime, sizeof(timestruc_t)*2, offsetof(pstatus_t, pr_utime)) != 0) {
 400     return OS_ERR;
 401   }
 402 
 403   if (get_psinfo(&info) != 0) {
 404     return OS_ERR;
 405   }
 406 
 407   // get the total time in user, kernel and total time
 408   // check ratios for 'lately' and multiply the 'recent load'.
 409   uint64_t time   = (info.pr_time.tv_sec * NANOS_PER_SEC) + info.pr_time.tv_nsec;
 410   uint64_t user   = (pss.pr_utime.tv_sec * NANOS_PER_SEC) + pss.pr_utime.tv_nsec;
 411   uint64_t kernel = (pss.pr_stime.tv_sec * NANOS_PER_SEC) + pss.pr_stime.tv_nsec;
 412   uint64_t diff   = time - lastTime;
 413   double load     = (double) info.pr_pctcpu / 0x8000;
 414 
 415   if (diff > 0) {
 416     lastUserRes = (load * (user - lastUser)) / diff;
 417     lastKernelRes = (load * (kernel - lastKernel)) / diff;
 418 
 419     // BUG9182835 - patch for clamping these values to sane ones.
 420     lastUserRes   = MIN2<double>(1, lastUserRes);
 421     lastUserRes   = MAX2<double>(0, lastUserRes);
 422     lastKernelRes = MIN2<double>(1, lastKernelRes);
 423     lastKernelRes = MAX2<double>(0, lastKernelRes);
 424   }
 425 
 426   double t = .0;
 427   cpu_load(-1, &t);
 428   // clamp at user+system and 1.0
 429   if (lastUserRes + lastKernelRes > t) {
 430     t = MIN2<double>(lastUserRes + lastKernelRes, 1.0);
 431   }
 432 
 433   *pjvmUserLoad   = lastUserRes;
 434   *pjvmKernelLoad = lastKernelRes;
 435   *psystemTotalLoad = t;
 436 
 437   lastTime   = time;
 438   lastUser   = user;
 439   lastKernel = kernel;
 440 
 441   return OS_OK;
 442 }
 443 
 444 int CPUPerformanceInterface::CPUPerformance::context_switch_rate(double* rate) {
 445   return perf_context_switch_rate(&_counters, rate);
 446 }
 447 
 448 CPUPerformanceInterface::CPUPerformanceInterface() {
 449   _impl = NULL;
 450 }
 451 
 452 bool CPUPerformanceInterface::initialize() {
 453   _impl = new CPUPerformanceInterface::CPUPerformance();
 454   return _impl != NULL && _impl->initialize();
 455 }
 456 
 457 CPUPerformanceInterface::~CPUPerformanceInterface(void) {
 458   if (_impl != NULL) {
 459     delete _impl;
 460   }
 461 }
 462 
 463 int CPUPerformanceInterface::cpu_load(int which_logical_cpu, double* const cpu_load) const {
 464   return _impl->cpu_load(which_logical_cpu, cpu_load);
 465 }
 466 
 467 int CPUPerformanceInterface::cpu_load_total_process(double* const cpu_load) const {
 468   return _impl->cpu_load_total_process(cpu_load);
 469 }
 470 
 471 int CPUPerformanceInterface::cpu_loads_process(double* const pjvmUserLoad, double* const pjvmKernelLoad, double* const psystemTotalLoad) const {
 472   return _impl->cpu_loads_process(pjvmUserLoad, pjvmKernelLoad, psystemTotalLoad);
 473 }
 474 
 475 int CPUPerformanceInterface::context_switch_rate(double* const rate) const {
 476   return _impl->context_switch_rate(rate);
 477 }
 478 
 479 class SystemProcessInterface::SystemProcesses : public CHeapObj<mtInternal> {
 480   friend class SystemProcessInterface;
 481  private:
 482   class ProcessIterator : public CHeapObj<mtInternal> {
 483     friend class SystemProcessInterface::SystemProcesses;
 484    private:
 485     DIR*           _dir;
 486     struct dirent* _entry;
 487     bool           _valid;
 488 
 489     ProcessIterator();
 490     ~ProcessIterator();
 491     bool initialize();
 492 
 493     bool is_valid() const { return _valid; }
 494     bool is_valid_entry(struct dirent* const entry) const;
 495     bool is_dir(const char* const name) const;
 496     char* allocate_string(const char* const str) const;
 497     int current(SystemProcess* const process_info);
 498     int next_process();
 499   };
 500 
 501   ProcessIterator* _iterator;
 502   SystemProcesses();
 503   bool initialize();
 504   ~SystemProcesses();
 505 
 506   //information about system processes
 507   int system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const;
 508 };
 509 
 510 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_dir(const char* name) const {
 511   struct stat64 mystat;
 512   int ret_val = 0;
 513 
 514   ret_val = ::stat64(name, &mystat);
 515 
 516   if (ret_val < 0) {
 517     return false;
 518   }
 519   ret_val = S_ISDIR(mystat.st_mode);
 520   return ret_val > 0;
 521 }
 522 
 523 // if it has a numeric name, is a directory and has a 'psinfo' file in it
 524 bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_valid_entry(struct dirent* entry) const {
 525   // ignore the "." and ".." directories
 526   if ((strcmp(entry->d_name, ".") == 0) ||
 527       (strcmp(entry->d_name, "..") == 0)) {
 528     return false;
 529   }
 530 
 531   char buffer[PATH_MAX] = {0};
 532   uint64_t size = 0;
 533   bool result = false;
 534   FILE *fp = NULL;
 535 
 536   if (atoi(entry->d_name) != 0) {
 537     jio_snprintf(buffer, PATH_MAX, "/proc/%s", entry->d_name);
 538 
 539     if (is_dir(buffer)) {
 540       memset(buffer, 0, PATH_MAX);
 541       jio_snprintf(buffer, PATH_MAX, "/proc/%s/psinfo", entry->d_name);
 542       if ((fp = fopen(buffer, "r")) != NULL) {
 543         int nread = 0;
 544         psinfo_t psinfo_data;
 545         if ((nread = fread(&psinfo_data, 1, sizeof(psinfo_t), fp)) != -1) {
 546           // only considering system process owned by root
 547           if (psinfo_data.pr_uid == 0) {
 548             result = true;
 549           }
 550         }
 551       }
 552     }
 553   }
 554 
 555   if (fp != NULL) {
 556     fclose(fp);
 557   }
 558 
 559   return result;
 560 }
 561 
 562 char* SystemProcessInterface::SystemProcesses::ProcessIterator::allocate_string(const char* str) const {
 563   if (str != NULL) {
 564     size_t len = strlen(str);
 565     char* tmp = NEW_C_HEAP_ARRAY(char, len+1, mtInternal);
 566     strncpy(tmp, str, len);
 567     tmp[len] = '\0';
 568     return tmp;
 569   }
 570   return NULL;
 571 }
 572 
 573 int SystemProcessInterface::SystemProcesses::ProcessIterator::current(SystemProcess* process_info) {
 574   if (!is_valid()) {
 575     return OS_ERR;
 576   }
 577 
 578   char psinfo_path[PATH_MAX] = {0};
 579   jio_snprintf(psinfo_path, PATH_MAX, "/proc/%s/psinfo", _entry->d_name);
 580 
 581   FILE *fp = NULL;
 582   if ((fp = fopen(psinfo_path, "r")) == NULL) {
 583     return OS_ERR;
 584   }
 585 
 586   int nread = 0;
 587   psinfo_t psinfo_data;
 588   if ((nread = fread(&psinfo_data, 1, sizeof(psinfo_t), fp)) == -1) {
 589     fclose(fp);
 590     return OS_ERR;
 591   }
 592 
 593   char *exe_path = NULL;
 594   if ((psinfo_data.pr_fname != NULL) &&
 595       (psinfo_data.pr_psargs != NULL)) {
 596     char *path_substring = strstr(psinfo_data.pr_psargs, psinfo_data.pr_fname);
 597     if (path_substring != NULL) {
 598       int len = path_substring - psinfo_data.pr_psargs;
 599       exe_path = NEW_C_HEAP_ARRAY(char, len+1, mtInternal);
 600       if (exe_path != NULL) {
 601         jio_snprintf(exe_path, len, "%s", psinfo_data.pr_psargs);
 602         exe_path[len] = '\0';
 603       }
 604     }
 605   }
 606 
 607   process_info->set_pid(atoi(_entry->d_name));
 608   process_info->set_name(allocate_string(psinfo_data.pr_fname));
 609   process_info->set_path(allocate_string(exe_path));
 610   process_info->set_command_line(allocate_string(psinfo_data.pr_psargs));
 611 
 612   if (exe_path != NULL) {
 613     FREE_C_HEAP_ARRAY(char, exe_path, mtInternal);
 614   }
 615 
 616   if (fp != NULL) {
 617     fclose(fp);
 618   }
 619 
 620   return OS_OK;
 621 }
 622 
 623 int SystemProcessInterface::SystemProcesses::ProcessIterator::next_process() {
 624   if (!is_valid()) {
 625     return OS_ERR;
 626   }
 627 
 628   do {
 629     _entry = os::readdir(_dir);
 630     if (_entry == NULL) {
 631       // Error or reached end.  Could use errno to distinguish those cases.
 632       _valid = false;
 633       return OS_ERR;
 634     }
 635   } while(!is_valid_entry(_entry));
 636 
 637   _valid = true;
 638   return OS_OK;
 639 }
 640 
 641 SystemProcessInterface::SystemProcesses::ProcessIterator::ProcessIterator() {
 642   _dir = NULL;
 643   _entry = NULL;
 644   _valid = false;
 645 }
 646 
 647 bool SystemProcessInterface::SystemProcesses::ProcessIterator::initialize() {
 648   _dir = os::opendir("/proc");
 649   _entry = NULL;
 650   _valid = true;
 651   next_process();
 652 
 653   return true;
 654 }
 655 
 656 SystemProcessInterface::SystemProcesses::ProcessIterator::~ProcessIterator() {
 657   if (_dir != NULL) {
 658     os::closedir(_dir);
 659   }
 660 }
 661 
 662 SystemProcessInterface::SystemProcesses::SystemProcesses() {
 663   _iterator = NULL;
 664 }
 665 
 666 bool SystemProcessInterface::SystemProcesses::initialize() {
 667   _iterator = new SystemProcessInterface::SystemProcesses::ProcessIterator();
 668   return _iterator != NULL && _iterator->initialize();
 669 }
 670 
 671 SystemProcessInterface::SystemProcesses::~SystemProcesses() {
 672   if (_iterator != NULL) {
 673     delete _iterator;
 674   }
 675 }
 676 
 677 int SystemProcessInterface::SystemProcesses::system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const {
 678   assert(system_processes != NULL, "system_processes pointer is NULL!");
 679   assert(no_of_sys_processes != NULL, "system_processes counter pointer is NULL!");
 680   assert(_iterator != NULL, "iterator is NULL!");
 681 
 682   // initialize pointers
 683   *no_of_sys_processes = 0;
 684   *system_processes = NULL;
 685 
 686   while (_iterator->is_valid()) {
 687     SystemProcess* tmp = new SystemProcess();
 688     _iterator->current(tmp);
 689 
 690     //if already existing head
 691     if (*system_processes != NULL) {
 692       //move "first to second"
 693       tmp->set_next(*system_processes);
 694     }
 695     // new head
 696     *system_processes = tmp;
 697     // increment
 698     (*no_of_sys_processes)++;
 699     // step forward
 700     _iterator->next_process();
 701   }
 702   return OS_OK;
 703 }
 704 
 705 int SystemProcessInterface::system_processes(SystemProcess** system_procs, int* const no_of_sys_processes) const {
 706   return _impl->system_processes(system_procs, no_of_sys_processes);
 707 }
 708 
 709 SystemProcessInterface::SystemProcessInterface() {
 710   _impl = NULL;
 711 }
 712 
 713 bool SystemProcessInterface::initialize() {
 714   _impl = new SystemProcessInterface::SystemProcesses();
 715   return _impl != NULL && _impl->initialize();
 716 
 717 }
 718 
 719 SystemProcessInterface::~SystemProcessInterface() {
 720   if (_impl != NULL) {
 721     delete _impl;
 722   }
 723 }
 724 
 725 CPUInformationInterface::CPUInformationInterface() {
 726   _cpu_info = NULL;
 727 }
 728 
 729 bool CPUInformationInterface::initialize() {
 730   _cpu_info = new CPUInformation();
 731   if (_cpu_info == NULL) {
 732     return false;
 733   }
 734   _cpu_info->set_number_of_hardware_threads(VM_Version_Ext::number_of_threads());
 735   _cpu_info->set_number_of_cores(VM_Version_Ext::number_of_cores());
 736   _cpu_info->set_number_of_sockets(VM_Version_Ext::number_of_sockets());
 737   _cpu_info->set_cpu_name(VM_Version_Ext::cpu_name());
 738   _cpu_info->set_cpu_description(VM_Version_Ext::cpu_description());
 739   return true;
 740 }
 741 
 742 CPUInformationInterface::~CPUInformationInterface() {
 743   if (_cpu_info != NULL) {
 744     if (_cpu_info->cpu_name() != NULL) {
 745       const char* cpu_name = _cpu_info->cpu_name();
 746       FREE_C_HEAP_ARRAY(char, cpu_name, mtInternal);
 747       _cpu_info->set_cpu_name(NULL);
 748     }
 749     if (_cpu_info->cpu_description() != NULL) {
 750       const char* cpu_desc = _cpu_info->cpu_description();
 751       FREE_C_HEAP_ARRAY(char, cpu_desc, mtInternal);
 752       _cpu_info->set_cpu_description(NULL);
 753     }
 754     delete _cpu_info;
 755   }
 756 }
 757 
 758 int CPUInformationInterface::cpu_information(CPUInformation& cpu_info) {
 759   if (_cpu_info == NULL) {
 760     return OS_ERR;
 761   }
 762 
 763   cpu_info = *_cpu_info; // shallow copy assignment
 764   return OS_OK;
 765 }
 766 
 767 class NetworkPerformanceInterface::NetworkPerformance : public CHeapObj<mtInternal> {
 768   friend class NetworkPerformanceInterface;
 769  private:
 770   NetworkPerformance();
 771   NetworkPerformance(const NetworkPerformance& rhs); // no impl
 772   NetworkPerformance& operator=(const NetworkPerformance& rhs); // no impl
 773   bool initialize();
 774   ~NetworkPerformance();
 775   int network_utilization(NetworkInterface** network_interfaces) const;
 776 };
 777 
 778 NetworkPerformanceInterface::NetworkPerformance::NetworkPerformance() {
 779 
 780 }
 781 
 782 bool NetworkPerformanceInterface::NetworkPerformance::initialize() {
 783   return true;
 784 }
 785 
 786 NetworkPerformanceInterface::NetworkPerformance::~NetworkPerformance() {
 787 
 788 }
 789 
 790 int NetworkPerformanceInterface::NetworkPerformance::network_utilization(NetworkInterface** network_interfaces) const
 791 {
 792   kstat_ctl_t* ctl = kstat_open();
 793   if (ctl == NULL) {
 794     return OS_ERR;
 795   }
 796 
 797   NetworkInterface* ret = NULL;
 798   for (kstat_t* k = ctl->kc_chain; k != NULL; k = k->ks_next) {
 799     if (strcmp(k->ks_class, "net") != 0) {
 800       continue;
 801     }
 802     if (strcmp(k->ks_module, "link") != 0) {
 803       continue;
 804     }
 805 
 806     if (kstat_read(ctl, k, NULL) == -1) {
 807       return OS_ERR;
 808     }
 809 
 810     uint64_t bytes_in = UINT64_MAX;
 811     uint64_t bytes_out = UINT64_MAX;
 812     for (int i = 0; i < k->ks_ndata; ++i) {
 813       kstat_named_t* data = &reinterpret_cast<kstat_named_t*>(k->ks_data)[i];
 814       if (strcmp(data->name, "rbytes64") == 0) {
 815         bytes_in = data->value.ui64;
 816       }
 817       else if (strcmp(data->name, "obytes64") == 0) {
 818         bytes_out = data->value.ui64;
 819       }
 820     }
 821 
 822     if ((bytes_in != UINT64_MAX) && (bytes_out != UINT64_MAX)) {
 823       NetworkInterface* cur = new NetworkInterface(k->ks_name, bytes_in, bytes_out, ret);
 824       ret = cur;
 825     }
 826   }
 827 
 828   kstat_close(ctl);
 829   *network_interfaces = ret;
 830 
 831   return OS_OK;
 832 }
 833 
 834 NetworkPerformanceInterface::NetworkPerformanceInterface() {
 835   _impl = NULL;
 836 }
 837 
 838 NetworkPerformanceInterface::~NetworkPerformanceInterface() {
 839   if (_impl != NULL) {
 840     delete _impl;
 841   }
 842 }
 843 
 844 bool NetworkPerformanceInterface::initialize() {
 845   _impl = new NetworkPerformanceInterface::NetworkPerformance();
 846   return _impl != NULL && _impl->initialize();
 847 }
 848 
 849 int NetworkPerformanceInterface::network_utilization(NetworkInterface** network_interfaces) const {
 850   return _impl->network_utilization(network_interfaces);
 851 }