1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "memory/resourceArea.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "os_solaris.inline.hpp"
  31 #include "runtime/handles.inline.hpp"
  32 #include "runtime/perfMemory.hpp"
  33 #include "services/memTracker.hpp"
  34 #include "utilities/exceptions.hpp"
  35 
  36 // put OS-includes here
  37 # include <sys/types.h>
  38 # include <sys/mman.h>
  39 # include <errno.h>
  40 # include <stdio.h>
  41 # include <unistd.h>
  42 # include <sys/stat.h>
  43 # include <signal.h>
  44 # include <pwd.h>
  45 # include <procfs.h>
  46 
  47 
  48 static char* backing_store_file_name = NULL;  // name of the backing store
  49                                               // file, if successfully created.
  50 
  51 // Standard Memory Implementation Details
  52 
  53 // create the PerfData memory region in standard memory.
  54 //
  55 static char* create_standard_memory(size_t size) {
  56 
  57   // allocate an aligned chuck of memory
  58   char* mapAddress = os::reserve_memory(size);
  59 
  60   if (mapAddress == NULL) {
  61     return NULL;
  62   }
  63 
  64   // commit memory
  65   if (!os::commit_memory(mapAddress, size, !ExecMem)) {
  66     if (PrintMiscellaneous && Verbose) {
  67       warning("Could not commit PerfData memory\n");
  68     }
  69     os::release_memory(mapAddress, size);
  70     return NULL;
  71   }
  72 
  73   return mapAddress;
  74 }
  75 
  76 // delete the PerfData memory region
  77 //
  78 static void delete_standard_memory(char* addr, size_t size) {
  79 
  80   // there are no persistent external resources to cleanup for standard
  81   // memory. since DestroyJavaVM does not support unloading of the JVM,
  82   // cleanup of the memory resource is not performed. The memory will be
  83   // reclaimed by the OS upon termination of the process.
  84   //
  85   return;
  86 }
  87 
  88 // save the specified memory region to the given file
  89 //
  90 // Note: this function might be called from signal handler (by os::abort()),
  91 // don't allocate heap memory.
  92 //
  93 static void save_memory_to_file(char* addr, size_t size) {
  94 
  95   const char* destfile = PerfMemory::get_perfdata_file_path();
  96   assert(destfile[0] != '\0', "invalid PerfData file path");
  97 
  98   int result;
  99 
 100   RESTARTABLE(::open(destfile, O_CREAT|O_WRONLY|O_TRUNC, S_IREAD|S_IWRITE),
 101               result);;
 102   if (result == OS_ERR) {
 103     if (PrintMiscellaneous && Verbose) {
 104       warning("Could not create Perfdata save file: %s: %s\n",
 105               destfile, strerror(errno));
 106     }
 107   } else {
 108 
 109     int fd = result;
 110 
 111     for (size_t remaining = size; remaining > 0;) {
 112 
 113       RESTARTABLE(::write(fd, addr, remaining), result);
 114       if (result == OS_ERR) {
 115         if (PrintMiscellaneous && Verbose) {
 116           warning("Could not write Perfdata save file: %s: %s\n",
 117                   destfile, strerror(errno));
 118         }
 119         break;
 120       }
 121       remaining -= (size_t)result;
 122       addr += result;
 123     }
 124 
 125     result = ::close(fd);
 126     if (PrintMiscellaneous && Verbose) {
 127       if (result == OS_ERR) {
 128         warning("Could not close %s: %s\n", destfile, strerror(errno));
 129       }
 130     }
 131   }
 132   FREE_C_HEAP_ARRAY(char, destfile, mtInternal);
 133 }
 134 
 135 
 136 // Shared Memory Implementation Details
 137 
 138 // Note: the solaris and linux shared memory implementation uses the mmap
 139 // interface with a backing store file to implement named shared memory.
 140 // Using the file system as the name space for shared memory allows a
 141 // common name space to be supported across a variety of platforms. It
 142 // also provides a name space that Java applications can deal with through
 143 // simple file apis.
 144 //
 145 // The solaris and linux implementations store the backing store file in
 146 // a user specific temporary directory located in the /tmp file system,
 147 // which is always a local file system and is sometimes a RAM based file
 148 // system.
 149 
 150 // return the user specific temporary directory name.
 151 //
 152 // the caller is expected to free the allocated memory.
 153 //
 154 static char* get_user_tmp_dir(const char* user) {
 155 
 156   const char* tmpdir = os::get_temp_directory();
 157   const char* perfdir = PERFDATA_NAME;
 158   size_t nbytes = strlen(tmpdir) + strlen(perfdir) + strlen(user) + 3;
 159   char* dirname = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 160 
 161   // construct the path name to user specific tmp directory
 162   snprintf(dirname, nbytes, "%s/%s_%s", tmpdir, perfdir, user);
 163 
 164   return dirname;
 165 }
 166 
 167 // convert the given file name into a process id. if the file
 168 // does not meet the file naming constraints, return 0.
 169 //
 170 static pid_t filename_to_pid(const char* filename) {
 171 
 172   // a filename that doesn't begin with a digit is not a
 173   // candidate for conversion.
 174   //
 175   if (!isdigit(*filename)) {
 176     return 0;
 177   }
 178 
 179   // check if file name can be converted to an integer without
 180   // any leftover characters.
 181   //
 182   char* remainder = NULL;
 183   errno = 0;
 184   pid_t pid = (pid_t)strtol(filename, &remainder, 10);
 185 
 186   if (errno != 0) {
 187     return 0;
 188   }
 189 
 190   // check for left over characters. If any, then the filename is
 191   // not a candidate for conversion.
 192   //
 193   if (remainder != NULL && *remainder != '\0') {
 194     return 0;
 195   }
 196 
 197   // successful conversion, return the pid
 198   return pid;
 199 }
 200 
 201 
 202 // Check if the given statbuf is considered a secure directory for
 203 // the backing store files. Returns true if the directory is considered
 204 // a secure location. Returns false if the statbuf is a symbolic link or
 205 // if an error occurred.
 206 //
 207 static bool is_statbuf_secure(struct stat *statp) {
 208   if (S_ISLNK(statp->st_mode) || !S_ISDIR(statp->st_mode)) {
 209     // The path represents a link or some non-directory file type,
 210     // which is not what we expected. Declare it insecure.
 211     //
 212     return false;
 213   }
 214   // We have an existing directory, check if the permissions are safe.
 215   //
 216   if ((statp->st_mode & (S_IWGRP|S_IWOTH)) != 0) {
 217     // The directory is open for writing and could be subjected
 218     // to a symlink or a hard link attack. Declare it insecure.
 219     //
 220     return false;
 221   }
 222   // If user is not root then see if the uid of the directory matches the effective uid of the process.
 223   uid_t euid = geteuid();
 224   if ((euid != 0) && (statp->st_uid != euid)) {
 225     // The directory was not created by this user, declare it insecure.
 226     //
 227     return false;
 228   }
 229   return true;
 230 }
 231 
 232 
 233 // Check if the given path is considered a secure directory for
 234 // the backing store files. Returns true if the directory exists
 235 // and is considered a secure location. Returns false if the path
 236 // is a symbolic link or if an error occurred.
 237 //
 238 static bool is_directory_secure(const char* path) {
 239   struct stat statbuf;
 240   int result = 0;
 241 
 242   RESTARTABLE(::lstat(path, &statbuf), result);
 243   if (result == OS_ERR) {
 244     return false;
 245   }
 246 
 247   // The path exists, see if it is secure.
 248   return is_statbuf_secure(&statbuf);
 249 }
 250 
 251 
 252 // Check if the given directory file descriptor is considered a secure
 253 // directory for the backing store files. Returns true if the directory
 254 // exists and is considered a secure location. Returns false if the path
 255 // is a symbolic link or if an error occurred.
 256 //
 257 static bool is_dirfd_secure(int dir_fd) {
 258   struct stat statbuf;
 259   int result = 0;
 260 
 261   RESTARTABLE(::fstat(dir_fd, &statbuf), result);
 262   if (result == OS_ERR) {
 263     return false;
 264   }
 265 
 266   // The path exists, now check its mode.
 267   return is_statbuf_secure(&statbuf);
 268 }
 269 
 270 
 271 // Check to make sure fd1 and fd2 are referencing the same file system object.
 272 //
 273 static bool is_same_fsobject(int fd1, int fd2) {
 274   struct stat statbuf1;
 275   struct stat statbuf2;
 276   int result = 0;
 277 
 278   RESTARTABLE(::fstat(fd1, &statbuf1), result);
 279   if (result == OS_ERR) {
 280     return false;
 281   }
 282   RESTARTABLE(::fstat(fd2, &statbuf2), result);
 283   if (result == OS_ERR) {
 284     return false;
 285   }
 286 
 287   if ((statbuf1.st_ino == statbuf2.st_ino) &&
 288       (statbuf1.st_dev == statbuf2.st_dev)) {
 289     return true;
 290   } else {
 291     return false;
 292   }
 293 }
 294 
 295 
 296 // Open the directory of the given path and validate it.
 297 // Return a DIR * of the open directory.
 298 //
 299 static DIR *open_directory_secure(const char* dirname) {
 300   // Open the directory using open() so that it can be verified
 301   // to be secure by calling is_dirfd_secure(), opendir() and then check
 302   // to see if they are the same file system object.  This method does not
 303   // introduce a window of opportunity for the directory to be attacked that
 304   // calling opendir() and is_directory_secure() does.
 305   int result;
 306   DIR *dirp = NULL;
 307   RESTARTABLE(::open(dirname, O_RDONLY|O_NOFOLLOW), result);
 308   if (result == OS_ERR) {
 309     // Directory doesn't exist or is a symlink, so there is nothing to cleanup.
 310     if (PrintMiscellaneous && Verbose) {
 311       if (errno == ELOOP) {
 312         warning("directory %s is a symlink and is not secure\n", dirname);
 313       } else {
 314         warning("could not open directory %s: %s\n", dirname, strerror(errno));
 315       }
 316     }
 317     return dirp;
 318   }
 319   int fd = result;
 320 
 321   // Determine if the open directory is secure.
 322   if (!is_dirfd_secure(fd)) {
 323     // The directory is not a secure directory.
 324     os::close(fd);
 325     return dirp;
 326   }
 327 
 328   // Open the directory.
 329   dirp = ::opendir(dirname);
 330   if (dirp == NULL) {
 331     // The directory doesn't exist, close fd and return.
 332     os::close(fd);
 333     return dirp;
 334   }
 335 
 336   // Check to make sure fd and dirp are referencing the same file system object.
 337   if (!is_same_fsobject(fd, dirp->dd_fd)) {
 338     // The directory is not secure.
 339     os::close(fd);
 340     os::closedir(dirp);
 341     dirp = NULL;
 342     return dirp;
 343   }
 344 
 345   // Close initial open now that we know directory is secure
 346   os::close(fd);
 347 
 348   return dirp;
 349 }
 350 
 351 // NOTE: The code below uses fchdir(), open() and unlink() because
 352 // fdopendir(), openat() and unlinkat() are not supported on all
 353 // versions.  Once the support for fdopendir(), openat() and unlinkat()
 354 // is available on all supported versions the code can be changed
 355 // to use these functions.
 356 
 357 // Open the directory of the given path, validate it and set the
 358 // current working directory to it.
 359 // Return a DIR * of the open directory and the saved cwd fd.
 360 //
 361 static DIR *open_directory_secure_cwd(const char* dirname, int *saved_cwd_fd) {
 362 
 363   // Open the directory.
 364   DIR* dirp = open_directory_secure(dirname);
 365   if (dirp == NULL) {
 366     // Directory doesn't exist or is insecure, so there is nothing to cleanup.
 367     return dirp;
 368   }
 369   int fd = dirp->dd_fd;
 370 
 371   // Open a fd to the cwd and save it off.
 372   int result;
 373   RESTARTABLE(::open(".", O_RDONLY), result);
 374   if (result == OS_ERR) {
 375     *saved_cwd_fd = -1;
 376   } else {
 377     *saved_cwd_fd = result;
 378   }
 379 
 380   // Set the current directory to dirname by using the fd of the directory and
 381   // handle errors, otherwise shared memory files will be created in cwd.
 382   result = fchdir(fd);
 383   if (result == OS_ERR) {
 384     if (PrintMiscellaneous && Verbose) {
 385       warning("could not change to directory %s", dirname);
 386     }
 387     if (*saved_cwd_fd != -1) {
 388       ::close(*saved_cwd_fd);
 389       *saved_cwd_fd = -1;
 390     }
 391     // Close the directory.
 392     os::closedir(dirp);
 393     return NULL;
 394   } else {
 395     return dirp;
 396   }
 397 }
 398 
 399 // Close the directory and restore the current working directory.
 400 //
 401 static void close_directory_secure_cwd(DIR* dirp, int saved_cwd_fd) {
 402 
 403   int result;
 404   // If we have a saved cwd change back to it and close the fd.
 405   if (saved_cwd_fd != -1) {
 406     result = fchdir(saved_cwd_fd);
 407     ::close(saved_cwd_fd);
 408   }
 409 
 410   // Close the directory.
 411   os::closedir(dirp);
 412 }
 413 
 414 // Check if the given file descriptor is considered a secure.
 415 //
 416 static bool is_file_secure(int fd, const char *filename) {
 417 
 418   int result;
 419   struct stat statbuf;
 420 
 421   // Determine if the file is secure.
 422   RESTARTABLE(::fstat(fd, &statbuf), result);
 423   if (result == OS_ERR) {
 424     if (PrintMiscellaneous && Verbose) {
 425       warning("fstat failed on %s: %s\n", filename, strerror(errno));
 426     }
 427     return false;
 428   }
 429   if (statbuf.st_nlink > 1) {
 430     // A file with multiple links is not expected.
 431     if (PrintMiscellaneous && Verbose) {
 432       warning("file %s has multiple links\n", filename);
 433     }
 434     return false;
 435   }
 436   return true;
 437 }
 438 
 439 // return the user name for the given user id
 440 //
 441 // the caller is expected to free the allocated memory.
 442 //
 443 static char* get_user_name(uid_t uid) {
 444 
 445   struct passwd pwent;
 446 
 447   // determine the max pwbuf size from sysconf, and hardcode
 448   // a default if this not available through sysconf.
 449   //
 450   long bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
 451   if (bufsize == -1)
 452     bufsize = 1024;
 453 
 454   char* pwbuf = NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 455 
 456 #ifdef _GNU_SOURCE
 457   struct passwd* p = NULL;
 458   int result = getpwuid_r(uid, &pwent, pwbuf, (size_t)bufsize, &p);
 459 #else  // _GNU_SOURCE
 460   struct passwd* p = getpwuid_r(uid, &pwent, pwbuf, (int)bufsize);
 461 #endif // _GNU_SOURCE
 462 
 463   if (p == NULL || p->pw_name == NULL || *(p->pw_name) == '\0') {
 464     if (PrintMiscellaneous && Verbose) {
 465       if (p == NULL) {
 466         warning("Could not retrieve passwd entry: %s\n",
 467                 strerror(errno));
 468       }
 469       else {
 470         warning("Could not determine user name: %s\n",
 471                 p->pw_name == NULL ? "pw_name = NULL" :
 472                                      "pw_name zero length");
 473       }
 474     }
 475     FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
 476     return NULL;
 477   }
 478 
 479   char* user_name = NEW_C_HEAP_ARRAY(char, strlen(p->pw_name) + 1, mtInternal);
 480   strcpy(user_name, p->pw_name);
 481 
 482   FREE_C_HEAP_ARRAY(char, pwbuf, mtInternal);
 483   return user_name;
 484 }
 485 
 486 // return the name of the user that owns the process identified by vmid.
 487 //
 488 // This method uses a slow directory search algorithm to find the backing
 489 // store file for the specified vmid and returns the user name, as determined
 490 // by the user name suffix of the hsperfdata_<username> directory name.
 491 //
 492 // the caller is expected to free the allocated memory.
 493 //
 494 static char* get_user_name_slow(int vmid, TRAPS) {
 495 
 496   // short circuit the directory search if the process doesn't even exist.
 497   if (kill(vmid, 0) == OS_ERR) {
 498     if (errno == ESRCH) {
 499       THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
 500                   "Process not found");
 501     }
 502     else /* EPERM */ {
 503       THROW_MSG_0(vmSymbols::java_io_IOException(), strerror(errno));
 504     }
 505   }
 506 
 507   // directory search
 508   char* oldest_user = NULL;
 509   time_t oldest_ctime = 0;
 510 
 511   const char* tmpdirname = os::get_temp_directory();
 512 
 513   // open the temp directory
 514   DIR* tmpdirp = os::opendir(tmpdirname);
 515 
 516   if (tmpdirp == NULL) {
 517     // Cannot open the directory to get the user name, return.
 518     return NULL;
 519   }
 520 
 521   // for each entry in the directory that matches the pattern hsperfdata_*,
 522   // open the directory and check if the file for the given vmid exists.
 523   // The file with the expected name and the latest creation date is used
 524   // to determine the user name for the process id.
 525   //
 526   struct dirent* dentry;
 527   char* tdbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(tmpdirname), mtInternal);
 528   errno = 0;
 529   while ((dentry = os::readdir(tmpdirp, (struct dirent *)tdbuf)) != NULL) {
 530 
 531     // check if the directory entry is a hsperfdata file
 532     if (strncmp(dentry->d_name, PERFDATA_NAME, strlen(PERFDATA_NAME)) != 0) {
 533       continue;
 534     }
 535 
 536     char* usrdir_name = NEW_C_HEAP_ARRAY(char,
 537                   strlen(tmpdirname) + strlen(dentry->d_name) + 2, mtInternal);
 538     strcpy(usrdir_name, tmpdirname);
 539     strcat(usrdir_name, "/");
 540     strcat(usrdir_name, dentry->d_name);
 541 
 542     // open the user directory
 543     DIR* subdirp = open_directory_secure(usrdir_name);
 544 
 545     if (subdirp == NULL) {
 546       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
 547       continue;
 548     }
 549 
 550     // Since we don't create the backing store files in directories
 551     // pointed to by symbolic links, we also don't follow them when
 552     // looking for the files. We check for a symbolic link after the
 553     // call to opendir in order to eliminate a small window where the
 554     // symlink can be exploited.
 555     //
 556     if (!is_directory_secure(usrdir_name)) {
 557       FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
 558       os::closedir(subdirp);
 559       continue;
 560     }
 561 
 562     struct dirent* udentry;
 563     char* udbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(usrdir_name), mtInternal);
 564     errno = 0;
 565     while ((udentry = os::readdir(subdirp, (struct dirent *)udbuf)) != NULL) {
 566 
 567       if (filename_to_pid(udentry->d_name) == vmid) {
 568         struct stat statbuf;
 569         int result;
 570 
 571         char* filename = NEW_C_HEAP_ARRAY(char,
 572                  strlen(usrdir_name) + strlen(udentry->d_name) + 2, mtInternal);
 573 
 574         strcpy(filename, usrdir_name);
 575         strcat(filename, "/");
 576         strcat(filename, udentry->d_name);
 577 
 578         // don't follow symbolic links for the file
 579         RESTARTABLE(::lstat(filename, &statbuf), result);
 580         if (result == OS_ERR) {
 581            FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 582            continue;
 583         }
 584 
 585         // skip over files that are not regular files.
 586         if (!S_ISREG(statbuf.st_mode)) {
 587           FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 588           continue;
 589         }
 590 
 591         // compare and save filename with latest creation time
 592         if (statbuf.st_size > 0 && statbuf.st_ctime > oldest_ctime) {
 593 
 594           if (statbuf.st_ctime > oldest_ctime) {
 595             char* user = strchr(dentry->d_name, '_') + 1;
 596 
 597             if (oldest_user != NULL) FREE_C_HEAP_ARRAY(char, oldest_user, mtInternal);
 598             oldest_user = NEW_C_HEAP_ARRAY(char, strlen(user)+1, mtInternal);
 599 
 600             strcpy(oldest_user, user);
 601             oldest_ctime = statbuf.st_ctime;
 602           }
 603         }
 604 
 605         FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 606       }
 607     }
 608     os::closedir(subdirp);
 609     FREE_C_HEAP_ARRAY(char, udbuf, mtInternal);
 610     FREE_C_HEAP_ARRAY(char, usrdir_name, mtInternal);
 611   }
 612   os::closedir(tmpdirp);
 613   FREE_C_HEAP_ARRAY(char, tdbuf, mtInternal);
 614 
 615   return(oldest_user);
 616 }
 617 
 618 // return the name of the user that owns the JVM indicated by the given vmid.
 619 //
 620 static char* get_user_name(int vmid, TRAPS) {
 621 
 622   char psinfo_name[PATH_MAX];
 623   int result;
 624 
 625   snprintf(psinfo_name, PATH_MAX, "/proc/%d/psinfo", vmid);
 626 
 627   RESTARTABLE(::open(psinfo_name, O_RDONLY), result);
 628 
 629   if (result != OS_ERR) {
 630     int fd = result;
 631 
 632     psinfo_t psinfo;
 633     char* addr = (char*)&psinfo;
 634 
 635     for (size_t remaining = sizeof(psinfo_t); remaining > 0;) {
 636 
 637       RESTARTABLE(::read(fd, addr, remaining), result);
 638       if (result == OS_ERR) {
 639         ::close(fd);
 640         THROW_MSG_0(vmSymbols::java_io_IOException(), "Read error");
 641       } else {
 642         remaining-=result;
 643         addr+=result;
 644       }
 645     }
 646 
 647     ::close(fd);
 648 
 649     // get the user name for the effective user id of the process
 650     char* user_name = get_user_name(psinfo.pr_euid);
 651 
 652     return user_name;
 653   }
 654 
 655   if (result == OS_ERR && errno == EACCES) {
 656 
 657     // In this case, the psinfo file for the process id existed,
 658     // but we didn't have permission to access it.
 659     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(),
 660                 strerror(errno));
 661   }
 662 
 663   // at this point, we don't know if the process id itself doesn't
 664   // exist or if the psinfo file doesn't exit. If the psinfo file
 665   // doesn't exist, then we are running on Solaris 2.5.1 or earlier.
 666   // since the structured procfs and old procfs interfaces can't be
 667   // mixed, we attempt to find the file through a directory search.
 668 
 669   return get_user_name_slow(vmid, CHECK_NULL);
 670 }
 671 
 672 // return the file name of the backing store file for the named
 673 // shared memory region for the given user name and vmid.
 674 //
 675 // the caller is expected to free the allocated memory.
 676 //
 677 static char* get_sharedmem_filename(const char* dirname, int vmid) {
 678 
 679   // add 2 for the file separator and a NULL terminator.
 680   size_t nbytes = strlen(dirname) + UINT_CHARS + 2;
 681 
 682   char* name = NEW_C_HEAP_ARRAY(char, nbytes, mtInternal);
 683   snprintf(name, nbytes, "%s/%d", dirname, vmid);
 684 
 685   return name;
 686 }
 687 
 688 
 689 // remove file
 690 //
 691 // this method removes the file specified by the given path
 692 //
 693 static void remove_file(const char* path) {
 694 
 695   int result;
 696 
 697   // if the file is a directory, the following unlink will fail. since
 698   // we don't expect to find directories in the user temp directory, we
 699   // won't try to handle this situation. even if accidentially or
 700   // maliciously planted, the directory's presence won't hurt anything.
 701   //
 702   RESTARTABLE(::unlink(path), result);
 703   if (PrintMiscellaneous && Verbose && result == OS_ERR) {
 704     if (errno != ENOENT) {
 705       warning("Could not unlink shared memory backing"
 706               " store file %s : %s\n", path, strerror(errno));
 707     }
 708   }
 709 }
 710 
 711 
 712 // cleanup stale shared memory resources
 713 //
 714 // This method attempts to remove all stale shared memory files in
 715 // the named user temporary directory. It scans the named directory
 716 // for files matching the pattern ^$[0-9]*$. For each file found, the
 717 // process id is extracted from the file name and a test is run to
 718 // determine if the process is alive. If the process is not alive,
 719 // any stale file resources are removed.
 720 //
 721 static void cleanup_sharedmem_resources(const char* dirname) {
 722 
 723   int saved_cwd_fd;
 724   // open the directory
 725   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
 726   if (dirp == NULL) {
 727      // directory doesn't exist or is insecure, so there is nothing to cleanup
 728     return;
 729   }
 730 
 731   // for each entry in the directory that matches the expected file
 732   // name pattern, determine if the file resources are stale and if
 733   // so, remove the file resources. Note, instrumented HotSpot processes
 734   // for this user may start and/or terminate during this search and
 735   // remove or create new files in this directory. The behavior of this
 736   // loop under these conditions is dependent upon the implementation of
 737   // opendir/readdir.
 738   //
 739   struct dirent* entry;
 740   char* dbuf = NEW_C_HEAP_ARRAY(char, os::readdir_buf_size(dirname), mtInternal);
 741 
 742   errno = 0;
 743   while ((entry = os::readdir(dirp, (struct dirent *)dbuf)) != NULL) {
 744 
 745     pid_t pid = filename_to_pid(entry->d_name);
 746 
 747     if (pid == 0) {
 748 
 749       if (strcmp(entry->d_name, ".") != 0 && strcmp(entry->d_name, "..") != 0) {
 750 
 751         // attempt to remove all unexpected files, except "." and ".."
 752         unlink(entry->d_name);
 753       }
 754 
 755       errno = 0;
 756       continue;
 757     }
 758 
 759     // we now have a file name that converts to a valid integer
 760     // that could represent a process id . if this process id
 761     // matches the current process id or the process is not running,
 762     // then remove the stale file resources.
 763     //
 764     // process liveness is detected by sending signal number 0 to
 765     // the process id (see kill(2)). if kill determines that the
 766     // process does not exist, then the file resources are removed.
 767     // if kill determines that that we don't have permission to
 768     // signal the process, then the file resources are assumed to
 769     // be stale and are removed because the resources for such a
 770     // process should be in a different user specific directory.
 771     //
 772     if ((pid == os::current_process_id()) ||
 773         (kill(pid, 0) == OS_ERR && (errno == ESRCH || errno == EPERM))) {
 774 
 775         unlink(entry->d_name);
 776     }
 777     errno = 0;
 778   }
 779 
 780   // close the directory and reset the current working directory
 781   close_directory_secure_cwd(dirp, saved_cwd_fd);
 782 
 783   FREE_C_HEAP_ARRAY(char, dbuf, mtInternal);
 784 }
 785 
 786 // make the user specific temporary directory. Returns true if
 787 // the directory exists and is secure upon return. Returns false
 788 // if the directory exists but is either a symlink, is otherwise
 789 // insecure, or if an error occurred.
 790 //
 791 static bool make_user_tmp_dir(const char* dirname) {
 792 
 793   // create the directory with 0755 permissions. note that the directory
 794   // will be owned by euid::egid, which may not be the same as uid::gid.
 795   //
 796   if (mkdir(dirname, S_IRWXU|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH) == OS_ERR) {
 797     if (errno == EEXIST) {
 798       // The directory already exists and was probably created by another
 799       // JVM instance. However, this could also be the result of a
 800       // deliberate symlink. Verify that the existing directory is safe.
 801       //
 802       if (!is_directory_secure(dirname)) {
 803         // directory is not secure
 804         if (PrintMiscellaneous && Verbose) {
 805           warning("%s directory is insecure\n", dirname);
 806         }
 807         return false;
 808       }
 809     }
 810     else {
 811       // we encountered some other failure while attempting
 812       // to create the directory
 813       //
 814       if (PrintMiscellaneous && Verbose) {
 815         warning("could not create directory %s: %s\n",
 816                 dirname, strerror(errno));
 817       }
 818       return false;
 819     }
 820   }
 821   return true;
 822 }
 823 
 824 // create the shared memory file resources
 825 //
 826 // This method creates the shared memory file with the given size
 827 // This method also creates the user specific temporary directory, if
 828 // it does not yet exist.
 829 //
 830 static int create_sharedmem_resources(const char* dirname, const char* filename, size_t size) {
 831 
 832   // make the user temporary directory
 833   if (!make_user_tmp_dir(dirname)) {
 834     // could not make/find the directory or the found directory
 835     // was not secure
 836     return -1;
 837   }
 838 
 839   int saved_cwd_fd;
 840   // open the directory and set the current working directory to it
 841   DIR* dirp = open_directory_secure_cwd(dirname, &saved_cwd_fd);
 842   if (dirp == NULL) {
 843     // Directory doesn't exist or is insecure, so cannot create shared
 844     // memory file.
 845     return -1;
 846   }
 847 
 848   // Open the filename in the current directory.
 849   // Cannot use O_TRUNC here; truncation of an existing file has to happen
 850   // after the is_file_secure() check below.
 851   int result;
 852   RESTARTABLE(::open(filename, O_RDWR|O_CREAT|O_NOFOLLOW, S_IREAD|S_IWRITE), result);
 853   if (result == OS_ERR) {
 854     if (PrintMiscellaneous && Verbose) {
 855       if (errno == ELOOP) {
 856         warning("file %s is a symlink and is not secure\n", filename);
 857       } else {
 858         warning("could not create file %s: %s\n", filename, strerror(errno));
 859       }
 860     }
 861     // close the directory and reset the current working directory
 862     close_directory_secure_cwd(dirp, saved_cwd_fd);
 863 
 864     return -1;
 865   }
 866   // close the directory and reset the current working directory
 867   close_directory_secure_cwd(dirp, saved_cwd_fd);
 868 
 869   // save the file descriptor
 870   int fd = result;
 871 
 872   // check to see if the file is secure
 873   if (!is_file_secure(fd, filename)) {
 874     ::close(fd);
 875     return -1;
 876   }
 877 
 878   // truncate the file to get rid of any existing data
 879   RESTARTABLE(::ftruncate(fd, (off_t)0), result);
 880   if (result == OS_ERR) {
 881     if (PrintMiscellaneous && Verbose) {
 882       warning("could not truncate shared memory file: %s\n", strerror(errno));
 883     }
 884     ::close(fd);
 885     return -1;
 886   }
 887   // set the file size
 888   RESTARTABLE(::ftruncate(fd, (off_t)size), result);
 889   if (result == OS_ERR) {
 890     if (PrintMiscellaneous && Verbose) {
 891       warning("could not set shared memory file size: %s\n", strerror(errno));
 892     }
 893     ::close(fd);
 894     return -1;
 895   }
 896 
 897   return fd;
 898 }
 899 
 900 // open the shared memory file for the given user and vmid. returns
 901 // the file descriptor for the open file or -1 if the file could not
 902 // be opened.
 903 //
 904 static int open_sharedmem_file(const char* filename, int oflags, TRAPS) {
 905 
 906   // open the file
 907   int result;
 908   RESTARTABLE(::open(filename, oflags), result);
 909   if (result == OS_ERR) {
 910     if (errno == ENOENT) {
 911       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
 912                   "Process not found", OS_ERR);
 913     }
 914     else if (errno == EACCES) {
 915       THROW_MSG_(vmSymbols::java_lang_IllegalArgumentException(),
 916                   "Permission denied", OS_ERR);
 917     }
 918     else {
 919       THROW_MSG_(vmSymbols::java_io_IOException(), strerror(errno), OS_ERR);
 920     }
 921   }
 922   int fd = result;
 923 
 924   // check to see if the file is secure
 925   if (!is_file_secure(fd, filename)) {
 926     ::close(fd);
 927     return -1;
 928   }
 929 
 930   return fd;
 931 }
 932 
 933 // create a named shared memory region. returns the address of the
 934 // memory region on success or NULL on failure. A return value of
 935 // NULL will ultimately disable the shared memory feature.
 936 //
 937 // On Solaris and Linux, the name space for shared memory objects
 938 // is the file system name space.
 939 //
 940 // A monitoring application attaching to a JVM does not need to know
 941 // the file system name of the shared memory object. However, it may
 942 // be convenient for applications to discover the existence of newly
 943 // created and terminating JVMs by watching the file system name space
 944 // for files being created or removed.
 945 //
 946 static char* mmap_create_shared(size_t size) {
 947 
 948   int result;
 949   int fd;
 950   char* mapAddress;
 951 
 952   int vmid = os::current_process_id();
 953 
 954   char* user_name = get_user_name(geteuid());
 955 
 956   if (user_name == NULL)
 957     return NULL;
 958 
 959   char* dirname = get_user_tmp_dir(user_name);
 960   char* filename = get_sharedmem_filename(dirname, vmid);
 961 
 962   // get the short filename
 963   char* short_filename = strrchr(filename, '/');
 964   if (short_filename == NULL) {
 965     short_filename = filename;
 966   } else {
 967     short_filename++;
 968   }
 969 
 970   // cleanup any stale shared memory files
 971   cleanup_sharedmem_resources(dirname);
 972 
 973   assert(((size > 0) && (size % os::vm_page_size() == 0)),
 974          "unexpected PerfMemory region size");
 975 
 976   fd = create_sharedmem_resources(dirname, short_filename, size);
 977 
 978   FREE_C_HEAP_ARRAY(char, user_name, mtInternal);
 979   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
 980 
 981   if (fd == -1) {
 982     FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 983     return NULL;
 984   }
 985 
 986   mapAddress = (char*)::mmap((char*)0, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
 987 
 988   result = ::close(fd);
 989   assert(result != OS_ERR, "could not close file");
 990 
 991   if (mapAddress == MAP_FAILED) {
 992     if (PrintMiscellaneous && Verbose) {
 993       warning("mmap failed -  %s\n", strerror(errno));
 994     }
 995     remove_file(filename);
 996     FREE_C_HEAP_ARRAY(char, filename, mtInternal);
 997     return NULL;
 998   }
 999 
1000   // save the file name for use in delete_shared_memory()
1001   backing_store_file_name = filename;
1002 
1003   // clear the shared memory region
1004   (void)::memset((void*) mapAddress, 0, size);
1005 
1006   // it does not go through os api, the operation has to record from here
1007   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
1008     size, CURRENT_PC, mtInternal);
1009 
1010   return mapAddress;
1011 }
1012 
1013 // release a named shared memory region
1014 //
1015 static void unmap_shared(char* addr, size_t bytes) {
1016   os::release_memory(addr, bytes);
1017 }
1018 
1019 // create the PerfData memory region in shared memory.
1020 //
1021 static char* create_shared_memory(size_t size) {
1022 
1023   // create the shared memory region.
1024   return mmap_create_shared(size);
1025 }
1026 
1027 // delete the shared PerfData memory region
1028 //
1029 static void delete_shared_memory(char* addr, size_t size) {
1030 
1031   // cleanup the persistent shared memory resources. since DestroyJavaVM does
1032   // not support unloading of the JVM, unmapping of the memory resource is
1033   // not performed. The memory will be reclaimed by the OS upon termination of
1034   // the process. The backing store file is deleted from the file system.
1035 
1036   assert(!PerfDisableSharedMem, "shouldn't be here");
1037 
1038   if (backing_store_file_name != NULL) {
1039     remove_file(backing_store_file_name);
1040     // Don't.. Free heap memory could deadlock os::abort() if it is called
1041     // from signal handler. OS will reclaim the heap memory.
1042     // FREE_C_HEAP_ARRAY(char, backing_store_file_name);
1043     backing_store_file_name = NULL;
1044   }
1045 }
1046 
1047 // return the size of the file for the given file descriptor
1048 // or 0 if it is not a valid size for a shared memory file
1049 //
1050 static size_t sharedmem_filesize(int fd, TRAPS) {
1051 
1052   struct stat statbuf;
1053   int result;
1054 
1055   RESTARTABLE(::fstat(fd, &statbuf), result);
1056   if (result == OS_ERR) {
1057     if (PrintMiscellaneous && Verbose) {
1058       warning("fstat failed: %s\n", strerror(errno));
1059     }
1060     THROW_MSG_0(vmSymbols::java_io_IOException(),
1061                 "Could not determine PerfMemory size");
1062   }
1063 
1064   if ((statbuf.st_size == 0) ||
1065      ((size_t)statbuf.st_size % os::vm_page_size() != 0)) {
1066     THROW_MSG_0(vmSymbols::java_lang_Exception(),
1067                 "Invalid PerfMemory size");
1068   }
1069 
1070   return (size_t)statbuf.st_size;
1071 }
1072 
1073 // attach to a named shared memory region.
1074 //
1075 static void mmap_attach_shared(const char* user, int vmid, PerfMemory::PerfMemoryMode mode, char** addr, size_t* sizep, TRAPS) {
1076 
1077   char* mapAddress;
1078   int result;
1079   int fd;
1080   size_t size = 0;
1081   const char* luser = NULL;
1082 
1083   int mmap_prot;
1084   int file_flags;
1085 
1086   ResourceMark rm;
1087 
1088   // map the high level access mode to the appropriate permission
1089   // constructs for the file and the shared memory mapping.
1090   if (mode == PerfMemory::PERF_MODE_RO) {
1091     mmap_prot = PROT_READ;
1092     file_flags = O_RDONLY | O_NOFOLLOW;
1093   }
1094   else if (mode == PerfMemory::PERF_MODE_RW) {
1095 #ifdef LATER
1096     mmap_prot = PROT_READ | PROT_WRITE;
1097     file_flags = O_RDWR | O_NOFOLLOW;
1098 #else
1099     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1100               "Unsupported access mode");
1101 #endif
1102   }
1103   else {
1104     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1105               "Illegal access mode");
1106   }
1107 
1108   if (user == NULL || strlen(user) == 0) {
1109     luser = get_user_name(vmid, CHECK);
1110   }
1111   else {
1112     luser = user;
1113   }
1114 
1115   if (luser == NULL) {
1116     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1117               "Could not map vmid to user Name");
1118   }
1119 
1120   char* dirname = get_user_tmp_dir(luser);
1121 
1122   // since we don't follow symbolic links when creating the backing
1123   // store file, we don't follow them when attaching either.
1124   //
1125   if (!is_directory_secure(dirname)) {
1126     FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
1127     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(),
1128               "Process not found");
1129   }
1130 
1131   char* filename = get_sharedmem_filename(dirname, vmid);
1132 
1133   // copy heap memory to resource memory. the open_sharedmem_file
1134   // method below need to use the filename, but could throw an
1135   // exception. using a resource array prevents the leak that
1136   // would otherwise occur.
1137   char* rfilename = NEW_RESOURCE_ARRAY(char, strlen(filename) + 1);
1138   strcpy(rfilename, filename);
1139 
1140   // free the c heap resources that are no longer needed
1141   if (luser != user) FREE_C_HEAP_ARRAY(char, luser, mtInternal);
1142   FREE_C_HEAP_ARRAY(char, dirname, mtInternal);
1143   FREE_C_HEAP_ARRAY(char, filename, mtInternal);
1144 
1145   // open the shared memory file for the give vmid
1146   fd = open_sharedmem_file(rfilename, file_flags, THREAD);
1147 
1148   if (fd == OS_ERR) {
1149     return;
1150   }
1151 
1152   if (HAS_PENDING_EXCEPTION) {
1153     ::close(fd);
1154     return;
1155   }
1156 
1157   if (*sizep == 0) {
1158     size = sharedmem_filesize(fd, CHECK);
1159   } else {
1160     size = *sizep;
1161   }
1162 
1163   assert(size > 0, "unexpected size <= 0");
1164 
1165   mapAddress = (char*)::mmap((char*)0, size, mmap_prot, MAP_SHARED, fd, 0);
1166 
1167   result = ::close(fd);
1168   assert(result != OS_ERR, "could not close file");
1169 
1170   if (mapAddress == MAP_FAILED) {
1171     if (PrintMiscellaneous && Verbose) {
1172       warning("mmap failed: %s\n", strerror(errno));
1173     }
1174     THROW_MSG(vmSymbols::java_lang_OutOfMemoryError(),
1175               "Could not map PerfMemory");
1176   }
1177 
1178   // it does not go through os api, the operation has to record from here
1179   MemTracker::record_virtual_memory_reserve_and_commit((address)mapAddress,
1180     size, CURRENT_PC, mtInternal);
1181 
1182   *addr = mapAddress;
1183   *sizep = size;
1184 
1185   if (PerfTraceMemOps) {
1186     tty->print("mapped " SIZE_FORMAT " bytes for vmid %d at "
1187                INTPTR_FORMAT "\n", size, vmid, (void*)mapAddress);
1188   }
1189 }
1190 
1191 
1192 
1193 
1194 // create the PerfData memory region
1195 //
1196 // This method creates the memory region used to store performance
1197 // data for the JVM. The memory may be created in standard or
1198 // shared memory.
1199 //
1200 void PerfMemory::create_memory_region(size_t size) {
1201 
1202   if (PerfDisableSharedMem) {
1203     // do not share the memory for the performance data.
1204     _start = create_standard_memory(size);
1205   }
1206   else {
1207     _start = create_shared_memory(size);
1208     if (_start == NULL) {
1209 
1210       // creation of the shared memory region failed, attempt
1211       // to create a contiguous, non-shared memory region instead.
1212       //
1213       if (PrintMiscellaneous && Verbose) {
1214         warning("Reverting to non-shared PerfMemory region.\n");
1215       }
1216       PerfDisableSharedMem = true;
1217       _start = create_standard_memory(size);
1218     }
1219   }
1220 
1221   if (_start != NULL) _capacity = size;
1222 
1223 }
1224 
1225 // delete the PerfData memory region
1226 //
1227 // This method deletes the memory region used to store performance
1228 // data for the JVM. The memory region indicated by the <address, size>
1229 // tuple will be inaccessible after a call to this method.
1230 //
1231 void PerfMemory::delete_memory_region() {
1232 
1233   assert((start() != NULL && capacity() > 0), "verify proper state");
1234 
1235   // If user specifies PerfDataSaveFile, it will save the performance data
1236   // to the specified file name no matter whether PerfDataSaveToFile is specified
1237   // or not. In other word, -XX:PerfDataSaveFile=.. overrides flag
1238   // -XX:+PerfDataSaveToFile.
1239   if (PerfDataSaveToFile || PerfDataSaveFile != NULL) {
1240     save_memory_to_file(start(), capacity());
1241   }
1242 
1243   if (PerfDisableSharedMem) {
1244     delete_standard_memory(start(), capacity());
1245   }
1246   else {
1247     delete_shared_memory(start(), capacity());
1248   }
1249 }
1250 
1251 // attach to the PerfData memory region for another JVM
1252 //
1253 // This method returns an <address, size> tuple that points to
1254 // a memory buffer that is kept reasonably synchronized with
1255 // the PerfData memory region for the indicated JVM. This
1256 // buffer may be kept in synchronization via shared memory
1257 // or some other mechanism that keeps the buffer updated.
1258 //
1259 // If the JVM chooses not to support the attachability feature,
1260 // this method should throw an UnsupportedOperation exception.
1261 //
1262 // This implementation utilizes named shared memory to map
1263 // the indicated process's PerfData memory region into this JVMs
1264 // address space.
1265 //
1266 void PerfMemory::attach(const char* user, int vmid, PerfMemoryMode mode, char** addrp, size_t* sizep, TRAPS) {
1267 
1268   if (vmid == 0 || vmid == os::current_process_id()) {
1269      *addrp = start();
1270      *sizep = capacity();
1271      return;
1272   }
1273 
1274   mmap_attach_shared(user, vmid, mode, addrp, sizep, CHECK);
1275 }
1276 
1277 // detach from the PerfData memory region of another JVM
1278 //
1279 // This method detaches the PerfData memory region of another
1280 // JVM, specified as an <address, size> tuple of a buffer
1281 // in this process's address space. This method may perform
1282 // arbitrary actions to accomplish the detachment. The memory
1283 // region specified by <address, size> will be inaccessible after
1284 // a call to this method.
1285 //
1286 // If the JVM chooses not to support the attachability feature,
1287 // this method should throw an UnsupportedOperation exception.
1288 //
1289 // This implementation utilizes named shared memory to detach
1290 // the indicated process's PerfData memory region from this
1291 // process's address space.
1292 //
1293 void PerfMemory::detach(char* addr, size_t bytes, TRAPS) {
1294 
1295   assert(addr != 0, "address sanity check");
1296   assert(bytes > 0, "capacity sanity check");
1297 
1298   if (PerfMemory::contains(addr) || PerfMemory::contains(addr + bytes - 1)) {
1299     // prevent accidental detachment of this process's PerfMemory region
1300     return;
1301   }
1302 
1303   unmap_shared(addr, bytes);
1304 }
1305 
1306 char* PerfMemory::backing_store_filename() {
1307   return backing_store_file_name;
1308 }