1 /*
   2  * Copyright (c) 2014, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  27 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  28 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "oops/oop.pcgc.inline.hpp"
  31 #include "runtime/prefetch.inline.hpp"
  32 
  33 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
  34   : _g1h(g1h),
  35     _refs(g1h->task_queue(queue_num)),
  36     _dcq(&g1h->dirty_card_queue_set()),
  37     _ct_bs(g1h->g1_barrier_set()),
  38     _g1_rem(g1h->g1_rem_set()),
  39     _hash_seed(17), _queue_num(queue_num),
  40     _term_attempts(0),
  41     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
  42     _age_table(false), _scanner(g1h, rp),
  43     _strong_roots_time(0), _term_time(0) {
  44   _scanner.set_par_scan_thread_state(this);
  45   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  46   // we "sacrifice" entry 0 to keep track of surviving bytes for
  47   // non-young regions (where the age is -1)
  48   // We also add a few elements at the beginning and at the end in
  49   // an attempt to eliminate cache contention
  50   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  51   uint array_length = PADDING_ELEM_NUM +
  52                       real_length +
  53                       PADDING_ELEM_NUM;
  54   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  55   if (_surviving_young_words_base == NULL)
  56     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  57                           "Not enough space for young surv histo.");
  58   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  59   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  60 
  61   _g1_par_allocator = G1ParGCAllocator::create_allocator(_g1h);
  62 
  63   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
  64   // The dest for Young is used when the objects are aged enough to
  65   // need to be moved to the next space.
  66   _dest[InCSetState::Young]        = InCSetState::Old;
  67   _dest[InCSetState::Old]          = InCSetState::Old;
  68 
  69   _start = os::elapsedTime();
  70 }
  71 
  72 G1ParScanThreadState::~G1ParScanThreadState() {
  73   _g1_par_allocator->retire_alloc_buffers();
  74   delete _g1_par_allocator;
  75   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base, mtGC);
  76 }
  77 
  78 void
  79 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  80 {
  81   st->print_raw_cr("GC Termination Stats");
  82   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  83                    " ------waste (KiB)------");
  84   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  85                    "  total   alloc    undo");
  86   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  87                    " ------- ------- -------");
  88 }
  89 
  90 void
  91 G1ParScanThreadState::print_termination_stats(int i,
  92                                               outputStream* const st) const
  93 {
  94   const double elapsed_ms = elapsed_time() * 1000.0;
  95   const double s_roots_ms = strong_roots_time() * 1000.0;
  96   const double term_ms    = term_time() * 1000.0;
  97   const size_t alloc_buffer_waste = _g1_par_allocator->alloc_buffer_waste();
  98   const size_t undo_waste         = _g1_par_allocator->undo_waste();
  99   st->print_cr("%3d %9.2f %9.2f %6.2f "
 100                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
 101                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
 102                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 103                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
 104                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
 105                alloc_buffer_waste * HeapWordSize / K,
 106                undo_waste * HeapWordSize / K);
 107 }
 108 
 109 #ifdef ASSERT
 110 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
 111   assert(ref != NULL, "invariant");
 112   assert(UseCompressedOops, "sanity");
 113   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref)));
 114   oop p = oopDesc::load_decode_heap_oop(ref);
 115   assert(_g1h->is_in_g1_reserved(p),
 116          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 117   return true;
 118 }
 119 
 120 bool G1ParScanThreadState::verify_ref(oop* ref) const {
 121   assert(ref != NULL, "invariant");
 122   if (has_partial_array_mask(ref)) {
 123     // Must be in the collection set--it's already been copied.
 124     oop p = clear_partial_array_mask(ref);
 125     assert(_g1h->obj_in_cs(p),
 126            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 127   } else {
 128     oop p = oopDesc::load_decode_heap_oop(ref);
 129     assert(_g1h->is_in_g1_reserved(p),
 130            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 131   }
 132   return true;
 133 }
 134 
 135 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 136   if (ref.is_narrow()) {
 137     return verify_ref((narrowOop*) ref);
 138   } else {
 139     return verify_ref((oop*) ref);
 140   }
 141 }
 142 #endif // ASSERT
 143 
 144 void G1ParScanThreadState::trim_queue() {
 145   assert(_evac_failure_cl != NULL, "not set");
 146 
 147   StarTask ref;
 148   do {
 149     // Drain the overflow stack first, so other threads can steal.
 150     while (_refs->pop_overflow(ref)) {
 151       if (!_refs->try_push_to_taskqueue(ref)) {
 152         dispatch_reference(ref);
 153       }
 154     }
 155 
 156     while (_refs->pop_local(ref)) {
 157       dispatch_reference(ref);
 158     }
 159   } while (!_refs->is_empty());
 160 }
 161 
 162 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
 163                                                       InCSetState* dest,
 164                                                       size_t word_sz,
 165                                                       AllocationContext_t const context) {
 166   assert(state.is_in_cset_or_humongous(), err_msg("Unexpected state: " CSETSTATE_FORMAT, state.value()));
 167   assert(dest->is_in_cset_or_humongous(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
 168 
 169   // Right now we only have two types of regions (young / old) so
 170   // let's keep the logic here simple. We can generalize it when necessary.
 171   if (dest->is_young()) {
 172     HeapWord* const obj_ptr = _g1_par_allocator->allocate(InCSetState::Old,
 173                                                           word_sz, context);
 174     if (obj_ptr == NULL) {
 175       return NULL;
 176     }
 177     // Make sure that we won't attempt to copy any other objects out
 178     // of a survivor region (given that apparently we cannot allocate
 179     // any new ones) to avoid coming into this slow path.
 180     _tenuring_threshold = 0;
 181     dest->set_old();
 182     return obj_ptr;
 183   } else {
 184     assert(dest->is_old(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
 185     // no other space to try.
 186     return NULL;
 187   }
 188 }
 189 
 190 void G1ParScanThreadState::report_promotion_event(InCSetState const dest_state,
 191                                                   oop const old, size_t word_sz, uint age,
 192                                                   HeapWord * const obj_ptr,
 193                                                   AllocationContext_t context) const {
 194   ParGCAllocBuffer* alloc_buf = _g1_par_allocator->alloc_buffer(dest_state, context);
 195   if (alloc_buf->contains(obj_ptr)) {
 196     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz, age,
 197                                                              dest_state.value() == InCSetState::Old,
 198                                                              alloc_buf->word_sz());
 199   } else {
 200     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz, age,
 201                                                               dest_state.value() == InCSetState::Old);
 202   }
 203 }
 204 
 205 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
 206   if (state.is_young()) {
 207     age = !m->has_displaced_mark_helper() ? m->age()
 208                                           : m->displaced_mark_helper()->age();
 209     if (age < _tenuring_threshold) {
 210       return state;
 211     }
 212   }
 213   return dest(state);
 214 }
 215 
 216 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
 217                                                  oop const old,
 218                                                  markOop const old_mark) {
 219   const size_t word_sz = old->size();
 220   HeapRegion* const from_region = _g1h->heap_region_containing_raw(old);
 221   // +1 to make the -1 indexes valid...
 222   const int young_index = from_region->young_index_in_cset()+1;
 223   assert( (from_region->is_young() && young_index >  0) ||
 224          (!from_region->is_young() && young_index == 0), "invariant" );
 225   const AllocationContext_t context = from_region->allocation_context();
 226 
 227   uint age = 0;
 228   InCSetState dest_state = next_state(state, old_mark, age);
 229   HeapWord* obj_ptr = _g1_par_allocator->plab_allocate(dest_state, word_sz, context);
 230 
 231   // PLAB allocations should succeed most of the time, so we'll
 232   // normally check against NULL once and that's it.
 233   if (obj_ptr == NULL) {
 234     obj_ptr = _g1_par_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context);
 235     if (obj_ptr == NULL) {
 236       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context);
 237       if (obj_ptr == NULL) {
 238         // This will either forward-to-self, or detect that someone else has
 239         // installed a forwarding pointer.
 240         return _g1h->handle_evacuation_failure_par(this, old);
 241       }
 242     }
 243     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
 244       // The events are checked individually as part of the actual commit
 245       report_promotion_event(dest_state, old, word_sz, age, obj_ptr, context);
 246     }
 247   }
 248 
 249   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 250 #ifndef PRODUCT
 251   // Should this evacuation fail?
 252   if (_g1h->evacuation_should_fail()) {
 253     // Doing this after all the allocation attempts also tests the
 254     // undo_allocation() method too.
 255     _g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 256     return _g1h->handle_evacuation_failure_par(this, old);
 257   }
 258 #endif // !PRODUCT
 259 
 260   // We're going to allocate linearly, so might as well prefetch ahead.
 261   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 262 
 263   const oop obj = oop(obj_ptr);
 264   const oop forward_ptr = old->forward_to_atomic(obj);
 265   if (forward_ptr == NULL) {
 266     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 267 
 268     if (dest_state.is_young()) {
 269       if (age < markOopDesc::max_age) {
 270         age++;
 271       }
 272       if (old_mark->has_displaced_mark_helper()) {
 273         // In this case, we have to install the mark word first,
 274         // otherwise obj looks to be forwarded (the old mark word,
 275         // which contains the forward pointer, was copied)
 276         obj->set_mark(old_mark);
 277         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
 278         old_mark->set_displaced_mark_helper(new_mark);
 279       } else {
 280         obj->set_mark(old_mark->set_age(age));
 281       }
 282       age_table()->add(age, word_sz);
 283     } else {
 284       obj->set_mark(old_mark);
 285     }
 286 
 287     if (G1StringDedup::is_enabled()) {
 288       const bool is_from_young = state.is_young();
 289       const bool is_to_young = dest_state.is_young();
 290       assert(is_from_young == _g1h->heap_region_containing_raw(old)->is_young(),
 291              "sanity");
 292       assert(is_to_young == _g1h->heap_region_containing_raw(obj)->is_young(),
 293              "sanity");
 294       G1StringDedup::enqueue_from_evacuation(is_from_young,
 295                                              is_to_young,
 296                                              queue_num(),
 297                                              obj);
 298     }
 299 
 300     size_t* const surv_young_words = surviving_young_words();
 301     surv_young_words[young_index] += word_sz;
 302 
 303     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 304       // We keep track of the next start index in the length field of
 305       // the to-space object. The actual length can be found in the
 306       // length field of the from-space object.
 307       arrayOop(obj)->set_length(0);
 308       oop* old_p = set_partial_array_mask(old);
 309       push_on_queue(old_p);
 310     } else {
 311       HeapRegion* const to_region = _g1h->heap_region_containing_raw(obj_ptr);
 312       _scanner.set_region(to_region);
 313       obj->oop_iterate_backwards(&_scanner);
 314     }
 315     return obj;
 316   } else {
 317     _g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 318     return forward_ptr;
 319   }
 320 }