1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/javaClasses.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "gc_implementation/shared/gcTimer.hpp"
  29 #include "gc_implementation/shared/gcTraceTime.hpp"
  30 #include "gc_interface/collectedHeap.hpp"
  31 #include "gc_interface/collectedHeap.inline.hpp"
  32 #include "memory/referencePolicy.hpp"
  33 #include "memory/referenceProcessor.hpp"
  34 #include "oops/oop.inline.hpp"
  35 #include "runtime/java.hpp"
  36 #include "runtime/jniHandles.hpp"
  37 
  38 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  39 
  40 ReferencePolicy* ReferenceProcessor::_always_clear_soft_ref_policy = NULL;
  41 ReferencePolicy* ReferenceProcessor::_default_soft_ref_policy      = NULL;
  42 bool             ReferenceProcessor::_pending_list_uses_discovered_field = false;
  43 jlong            ReferenceProcessor::_soft_ref_timestamp_clock = 0;
  44 
  45 void referenceProcessor_init() {
  46   ReferenceProcessor::init_statics();
  47 }
  48 
  49 void ReferenceProcessor::init_statics() {
  50   // We need a monotonically non-deccreasing time in ms but
  51   // os::javaTimeMillis() does not guarantee monotonicity.
  52   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
  53 
  54   // Initialize the soft ref timestamp clock.
  55   _soft_ref_timestamp_clock = now;
  56   // Also update the soft ref clock in j.l.r.SoftReference
  57   java_lang_ref_SoftReference::set_clock(_soft_ref_timestamp_clock);
  58 
  59   _always_clear_soft_ref_policy = new AlwaysClearPolicy();
  60   _default_soft_ref_policy      = new COMPILER2_PRESENT(LRUMaxHeapPolicy())
  61                                       NOT_COMPILER2(LRUCurrentHeapPolicy());
  62   if (_always_clear_soft_ref_policy == NULL || _default_soft_ref_policy == NULL) {
  63     vm_exit_during_initialization("Could not allocate reference policy object");
  64   }
  65   guarantee(RefDiscoveryPolicy == ReferenceBasedDiscovery ||
  66             RefDiscoveryPolicy == ReferentBasedDiscovery,
  67             "Unrecongnized RefDiscoveryPolicy");
  68   _pending_list_uses_discovered_field = JDK_Version::current().pending_list_uses_discovered_field();
  69 }
  70 
  71 void ReferenceProcessor::enable_discovery(bool verify_disabled, bool check_no_refs) {
  72 #ifdef ASSERT
  73   // Verify that we're not currently discovering refs
  74   assert(!verify_disabled || !_discovering_refs, "nested call?");
  75 
  76   if (check_no_refs) {
  77     // Verify that the discovered lists are empty
  78     verify_no_references_recorded();
  79   }
  80 #endif // ASSERT
  81 
  82   // Someone could have modified the value of the static
  83   // field in the j.l.r.SoftReference class that holds the
  84   // soft reference timestamp clock using reflection or
  85   // Unsafe between GCs. Unconditionally update the static
  86   // field in ReferenceProcessor here so that we use the new
  87   // value during reference discovery.
  88 
  89   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
  90   _discovering_refs = true;
  91 }
  92 
  93 ReferenceProcessor::ReferenceProcessor(MemRegion span,
  94                                        bool      mt_processing,
  95                                        uint      mt_processing_degree,
  96                                        bool      mt_discovery,
  97                                        uint      mt_discovery_degree,
  98                                        bool      atomic_discovery,
  99                                        BoolObjectClosure* is_alive_non_header)  :
 100   _discovering_refs(false),
 101   _enqueuing_is_done(false),
 102   _is_alive_non_header(is_alive_non_header),
 103   _processing_is_mt(mt_processing),
 104   _next_id(0)
 105 {
 106   _span = span;
 107   _discovery_is_atomic = atomic_discovery;
 108   _discovery_is_mt     = mt_discovery;
 109   _num_q               = MAX2(1U, mt_processing_degree);
 110   _max_num_q           = MAX2(_num_q, mt_discovery_degree);
 111   _discovered_refs     = NEW_C_HEAP_ARRAY(DiscoveredList,
 112             _max_num_q * number_of_subclasses_of_ref(), mtGC);
 113 
 114   if (_discovered_refs == NULL) {
 115     vm_exit_during_initialization("Could not allocated RefProc Array");
 116   }
 117   _discoveredSoftRefs    = &_discovered_refs[0];
 118   _discoveredWeakRefs    = &_discoveredSoftRefs[_max_num_q];
 119   _discoveredFinalRefs   = &_discoveredWeakRefs[_max_num_q];
 120   _discoveredPhantomRefs = &_discoveredFinalRefs[_max_num_q];
 121   _discoveredCleanerRefs = &_discoveredPhantomRefs[_max_num_q];
 122 
 123   // Initialize all entries to NULL
 124   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 125     _discovered_refs[i].set_head(NULL);
 126     _discovered_refs[i].set_length(0);
 127   }
 128 
 129   setup_policy(false /* default soft ref policy */);
 130 }
 131 
 132 #ifndef PRODUCT
 133 void ReferenceProcessor::verify_no_references_recorded() {
 134   guarantee(!_discovering_refs, "Discovering refs?");
 135   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 136     guarantee(_discovered_refs[i].is_empty(),
 137               "Found non-empty discovered list");
 138   }
 139 }
 140 #endif
 141 
 142 void ReferenceProcessor::weak_oops_do(OopClosure* f) {
 143   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 144     if (UseCompressedOops) {
 145       f->do_oop((narrowOop*)_discovered_refs[i].adr_head());
 146     } else {
 147       f->do_oop((oop*)_discovered_refs[i].adr_head());
 148     }
 149   }
 150 }
 151 
 152 void ReferenceProcessor::update_soft_ref_master_clock() {
 153   // Update (advance) the soft ref master clock field. This must be done
 154   // after processing the soft ref list.
 155 
 156   // We need a monotonically non-deccreasing time in ms but
 157   // os::javaTimeMillis() does not guarantee monotonicity.
 158   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
 159   jlong soft_ref_clock = java_lang_ref_SoftReference::clock();
 160   assert(soft_ref_clock == _soft_ref_timestamp_clock, "soft ref clocks out of sync");
 161 
 162   NOT_PRODUCT(
 163   if (now < _soft_ref_timestamp_clock) {
 164     warning("time warp: "INT64_FORMAT" to "INT64_FORMAT,
 165             _soft_ref_timestamp_clock, now);
 166   }
 167   )
 168   // The values of now and _soft_ref_timestamp_clock are set using
 169   // javaTimeNanos(), which is guaranteed to be monotonically
 170   // non-decreasing provided the underlying platform provides such
 171   // a time source (and it is bug free).
 172   // In product mode, however, protect ourselves from non-monotonicty.
 173   if (now > _soft_ref_timestamp_clock) {
 174     _soft_ref_timestamp_clock = now;
 175     java_lang_ref_SoftReference::set_clock(now);
 176   }
 177   // Else leave clock stalled at its old value until time progresses
 178   // past clock value.
 179 }
 180 
 181 size_t ReferenceProcessor::total_count(DiscoveredList lists[]) {
 182   size_t total = 0;
 183   for (uint i = 0; i < _max_num_q; ++i) {
 184     total += lists[i].length();
 185   }
 186   return total;
 187 }
 188 
 189 ReferenceProcessorStats ReferenceProcessor::process_discovered_references(
 190   BoolObjectClosure*           is_alive,
 191   OopClosure*                  keep_alive,
 192   VoidClosure*                 complete_gc,
 193   AbstractRefProcTaskExecutor* task_executor,
 194   GCTimer*                     gc_timer,
 195   GCId                         gc_id) {
 196   NOT_PRODUCT(verify_ok_to_handle_reflists());
 197 
 198   assert(!enqueuing_is_done(), "If here enqueuing should not be complete");
 199   // Stop treating discovered references specially.
 200   disable_discovery();
 201 
 202   // If discovery was concurrent, someone could have modified
 203   // the value of the static field in the j.l.r.SoftReference
 204   // class that holds the soft reference timestamp clock using
 205   // reflection or Unsafe between when discovery was enabled and
 206   // now. Unconditionally update the static field in ReferenceProcessor
 207   // here so that we use the new value during processing of the
 208   // discovered soft refs.
 209 
 210   _soft_ref_timestamp_clock = java_lang_ref_SoftReference::clock();
 211 
 212   bool trace_time = PrintGCDetails && PrintReferenceGC;
 213 
 214   // Soft references
 215   size_t soft_count = 0;
 216   {
 217     GCTraceTime tt("SoftReference", trace_time, false, gc_timer, gc_id);
 218     soft_count =
 219       process_discovered_reflist(_discoveredSoftRefs, _current_soft_ref_policy, true,
 220                                  is_alive, keep_alive, complete_gc, task_executor);
 221   }
 222 
 223   update_soft_ref_master_clock();
 224 
 225   // Weak references
 226   size_t weak_count = 0;
 227   {
 228     GCTraceTime tt("WeakReference", trace_time, false, gc_timer, gc_id);
 229     weak_count =
 230       process_discovered_reflist(_discoveredWeakRefs, NULL, true,
 231                                  is_alive, keep_alive, complete_gc, task_executor);
 232   }
 233 
 234   // Final references
 235   size_t final_count = 0;
 236   {
 237     GCTraceTime tt("FinalReference", trace_time, false, gc_timer, gc_id);
 238     final_count =
 239       process_discovered_reflist(_discoveredFinalRefs, NULL, false,
 240                                  is_alive, keep_alive, complete_gc, task_executor);
 241   }
 242 
 243   // Phantom references
 244   size_t phantom_count = 0;
 245   {
 246     GCTraceTime tt("PhantomReference", trace_time, false, gc_timer, gc_id);
 247     phantom_count =
 248       process_discovered_reflist(_discoveredPhantomRefs, NULL, false,
 249                                  is_alive, keep_alive, complete_gc, task_executor);
 250 
 251     // Process cleaners, but include them in phantom statistics.  We expect
 252     // Cleaner references to be temporary, and don't want to deal with
 253     // possible incompatibilities arising from making it more visible.
 254     phantom_count +=
 255       process_discovered_reflist(_discoveredCleanerRefs, NULL, true,
 256                                  is_alive, keep_alive, complete_gc, task_executor);
 257   }
 258 
 259   // Weak global JNI references. It would make more sense (semantically) to
 260   // traverse these simultaneously with the regular weak references above, but
 261   // that is not how the JDK1.2 specification is. See #4126360. Native code can
 262   // thus use JNI weak references to circumvent the phantom references and
 263   // resurrect a "post-mortem" object.
 264   {
 265     GCTraceTime tt("JNI Weak Reference", trace_time, false, gc_timer, gc_id);
 266     if (task_executor != NULL) {
 267       task_executor->set_single_threaded_mode();
 268     }
 269     process_phaseJNI(is_alive, keep_alive, complete_gc);
 270   }
 271 
 272   return ReferenceProcessorStats(soft_count, weak_count, final_count, phantom_count);
 273 }
 274 
 275 #ifndef PRODUCT
 276 // Calculate the number of jni handles.
 277 uint ReferenceProcessor::count_jni_refs() {
 278   class AlwaysAliveClosure: public BoolObjectClosure {
 279   public:
 280     virtual bool do_object_b(oop obj) { return true; }
 281   };
 282 
 283   class CountHandleClosure: public OopClosure {
 284   private:
 285     int _count;
 286   public:
 287     CountHandleClosure(): _count(0) {}
 288     void do_oop(oop* unused)       { _count++; }
 289     void do_oop(narrowOop* unused) { ShouldNotReachHere(); }
 290     int count() { return _count; }
 291   };
 292   CountHandleClosure global_handle_count;
 293   AlwaysAliveClosure always_alive;
 294   JNIHandles::weak_oops_do(&always_alive, &global_handle_count);
 295   return global_handle_count.count();
 296 }
 297 #endif
 298 
 299 void ReferenceProcessor::process_phaseJNI(BoolObjectClosure* is_alive,
 300                                           OopClosure*        keep_alive,
 301                                           VoidClosure*       complete_gc) {
 302 #ifndef PRODUCT
 303   if (PrintGCDetails && PrintReferenceGC) {
 304     unsigned int count = count_jni_refs();
 305     gclog_or_tty->print(", %u refs", count);
 306   }
 307 #endif
 308   JNIHandles::weak_oops_do(is_alive, keep_alive);
 309   complete_gc->do_void();
 310 }
 311 
 312 
 313 template <class T>
 314 bool enqueue_discovered_ref_helper(ReferenceProcessor* ref,
 315                                    AbstractRefProcTaskExecutor* task_executor) {
 316 
 317   // Remember old value of pending references list
 318   T* pending_list_addr = (T*)java_lang_ref_Reference::pending_list_addr();
 319   T old_pending_list_value = *pending_list_addr;
 320 
 321   // Enqueue references that are not made active again, and
 322   // clear the decks for the next collection (cycle).
 323   ref->enqueue_discovered_reflists((HeapWord*)pending_list_addr, task_executor);
 324   // Do the post-barrier on pending_list_addr missed in
 325   // enqueue_discovered_reflist.
 326   oopDesc::bs()->write_ref_field(pending_list_addr, oopDesc::load_decode_heap_oop(pending_list_addr));
 327 
 328   // Stop treating discovered references specially.
 329   ref->disable_discovery();
 330 
 331   // Return true if new pending references were added
 332   return old_pending_list_value != *pending_list_addr;
 333 }
 334 
 335 bool ReferenceProcessor::enqueue_discovered_references(AbstractRefProcTaskExecutor* task_executor) {
 336   NOT_PRODUCT(verify_ok_to_handle_reflists());
 337   if (UseCompressedOops) {
 338     return enqueue_discovered_ref_helper<narrowOop>(this, task_executor);
 339   } else {
 340     return enqueue_discovered_ref_helper<oop>(this, task_executor);
 341   }
 342 }
 343 
 344 void ReferenceProcessor::enqueue_discovered_reflist(DiscoveredList& refs_list,
 345                                                     HeapWord* pending_list_addr) {
 346   // Given a list of refs linked through the "discovered" field
 347   // (java.lang.ref.Reference.discovered), self-loop their "next" field
 348   // thus distinguishing them from active References, then
 349   // prepend them to the pending list.
 350   //
 351   // The Java threads will see the Reference objects linked together through
 352   // the discovered field. Instead of trying to do the write barrier updates
 353   // in all places in the reference processor where we manipulate the discovered
 354   // field we make sure to do the barrier here where we anyway iterate through
 355   // all linked Reference objects. Note that it is important to not dirty any
 356   // cards during reference processing since this will cause card table
 357   // verification to fail for G1.
 358   //
 359   // BKWRD COMPATIBILITY NOTE: For older JDKs (prior to the fix for 4956777),
 360   // the "next" field is used to chain the pending list, not the discovered
 361   // field.
 362   if (TraceReferenceGC && PrintGCDetails) {
 363     gclog_or_tty->print_cr("ReferenceProcessor::enqueue_discovered_reflist list "
 364                            INTPTR_FORMAT, (address)refs_list.head());
 365   }
 366 
 367   oop obj = NULL;
 368   oop next_d = refs_list.head();
 369   if (pending_list_uses_discovered_field()) { // New behavior
 370     // Walk down the list, self-looping the next field
 371     // so that the References are not considered active.
 372     while (obj != next_d) {
 373       obj = next_d;
 374       assert(obj->is_instanceRef(), "should be reference object");
 375       next_d = java_lang_ref_Reference::discovered(obj);
 376       if (TraceReferenceGC && PrintGCDetails) {
 377         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 378                                (void *)obj, (void *)next_d);
 379       }
 380       assert(java_lang_ref_Reference::next(obj) == NULL,
 381              "Reference not active; should not be discovered");
 382       // Self-loop next, so as to make Ref not active.
 383       java_lang_ref_Reference::set_next_raw(obj, obj);
 384       if (next_d != obj) {
 385         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), next_d);
 386       } else {
 387         // This is the last object.
 388         // Swap refs_list into pending_list_addr and
 389         // set obj's discovered to what we read from pending_list_addr.
 390         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 391         // Need post-barrier on pending_list_addr. See enqueue_discovered_ref_helper() above.
 392         java_lang_ref_Reference::set_discovered_raw(obj, old); // old may be NULL
 393         oopDesc::bs()->write_ref_field(java_lang_ref_Reference::discovered_addr(obj), old);
 394       }
 395     }
 396   } else { // Old behaviour
 397     // Walk down the list, copying the discovered field into
 398     // the next field and clearing the discovered field.
 399     while (obj != next_d) {
 400       obj = next_d;
 401       assert(obj->is_instanceRef(), "should be reference object");
 402       next_d = java_lang_ref_Reference::discovered(obj);
 403       if (TraceReferenceGC && PrintGCDetails) {
 404         gclog_or_tty->print_cr("        obj " INTPTR_FORMAT "/next_d " INTPTR_FORMAT,
 405                                (void *)obj, (void *)next_d);
 406       }
 407       assert(java_lang_ref_Reference::next(obj) == NULL,
 408              "The reference should not be enqueued");
 409       if (next_d == obj) {  // obj is last
 410         // Swap refs_list into pendling_list_addr and
 411         // set obj's next to what we read from pending_list_addr.
 412         oop old = oopDesc::atomic_exchange_oop(refs_list.head(), pending_list_addr);
 413         // Need oop_check on pending_list_addr above;
 414         // see special oop-check code at the end of
 415         // enqueue_discovered_reflists() further below.
 416         if (old == NULL) {
 417           // obj should be made to point to itself, since
 418           // pending list was empty.
 419           java_lang_ref_Reference::set_next(obj, obj);
 420         } else {
 421           java_lang_ref_Reference::set_next(obj, old);
 422         }
 423       } else {
 424         java_lang_ref_Reference::set_next(obj, next_d);
 425       }
 426       java_lang_ref_Reference::set_discovered(obj, (oop) NULL);
 427     }
 428   }
 429 }
 430 
 431 // Parallel enqueue task
 432 class RefProcEnqueueTask: public AbstractRefProcTaskExecutor::EnqueueTask {
 433 public:
 434   RefProcEnqueueTask(ReferenceProcessor& ref_processor,
 435                      DiscoveredList      discovered_refs[],
 436                      HeapWord*           pending_list_addr,
 437                      int                 n_queues)
 438     : EnqueueTask(ref_processor, discovered_refs,
 439                   pending_list_addr, n_queues)
 440   { }
 441 
 442   virtual void work(unsigned int work_id) {
 443     assert(work_id < (unsigned int)_ref_processor.max_num_q(), "Index out-of-bounds");
 444     // Simplest first cut: static partitioning.
 445     int index = work_id;
 446     // The increment on "index" must correspond to the maximum number of queues
 447     // (n_queues) with which that ReferenceProcessor was created.  That
 448     // is because of the "clever" way the discovered references lists were
 449     // allocated and are indexed into.
 450     assert(_n_queues == (int) _ref_processor.max_num_q(), "Different number not expected");
 451     for (int j = 0;
 452          j < ReferenceProcessor::number_of_subclasses_of_ref();
 453          j++, index += _n_queues) {
 454       _ref_processor.enqueue_discovered_reflist(
 455         _refs_lists[index], _pending_list_addr);
 456       _refs_lists[index].set_head(NULL);
 457       _refs_lists[index].set_length(0);
 458     }
 459   }
 460 };
 461 
 462 // Enqueue references that are not made active again
 463 void ReferenceProcessor::enqueue_discovered_reflists(HeapWord* pending_list_addr,
 464   AbstractRefProcTaskExecutor* task_executor) {
 465   if (_processing_is_mt && task_executor != NULL) {
 466     // Parallel code
 467     RefProcEnqueueTask tsk(*this, _discovered_refs,
 468                            pending_list_addr, _max_num_q);
 469     task_executor->execute(tsk);
 470   } else {
 471     // Serial code: call the parent class's implementation
 472     for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 473       enqueue_discovered_reflist(_discovered_refs[i], pending_list_addr);
 474       _discovered_refs[i].set_head(NULL);
 475       _discovered_refs[i].set_length(0);
 476     }
 477   }
 478 }
 479 
 480 void DiscoveredListIterator::load_ptrs(DEBUG_ONLY(bool allow_null_referent)) {
 481   _discovered_addr = java_lang_ref_Reference::discovered_addr(_ref);
 482   oop discovered = java_lang_ref_Reference::discovered(_ref);
 483   assert(_discovered_addr && discovered->is_oop_or_null(),
 484          "discovered field is bad");
 485   _next = discovered;
 486   _referent_addr = java_lang_ref_Reference::referent_addr(_ref);
 487   _referent = java_lang_ref_Reference::referent(_ref);
 488   assert(Universe::heap()->is_in_reserved_or_null(_referent),
 489          "Wrong oop found in java.lang.Reference object");
 490   assert(allow_null_referent ?
 491              _referent->is_oop_or_null()
 492            : _referent->is_oop(),
 493          "bad referent");
 494 }
 495 
 496 void DiscoveredListIterator::remove() {
 497   assert(_ref->is_oop(), "Dropping a bad reference");
 498   oop_store_raw(_discovered_addr, NULL);
 499 
 500   // First _prev_next ref actually points into DiscoveredList (gross).
 501   oop new_next;
 502   if (_next == _ref) {
 503     // At the end of the list, we should make _prev point to itself.
 504     // If _ref is the first ref, then _prev_next will be in the DiscoveredList,
 505     // and _prev will be NULL.
 506     new_next = _prev;
 507   } else {
 508     new_next = _next;
 509   }
 510   // Remove Reference object from discovered list. Note that G1 does not need a
 511   // pre-barrier here because we know the Reference has already been found/marked,
 512   // that's how it ended up in the discovered list in the first place.
 513   oop_store_raw(_prev_next, new_next);
 514   NOT_PRODUCT(_removed++);
 515   _refs_list.dec_length(1);
 516 }
 517 
 518 // Make the Reference object active again.
 519 void DiscoveredListIterator::make_active() {
 520   // The pre barrier for G1 is probably just needed for the old
 521   // reference processing behavior. Should we guard this with
 522   // ReferenceProcessor::pending_list_uses_discovered_field() ?
 523   if (UseG1GC) {
 524     HeapWord* next_addr = java_lang_ref_Reference::next_addr(_ref);
 525     if (UseCompressedOops) {
 526       oopDesc::bs()->write_ref_field_pre((narrowOop*)next_addr, NULL);
 527     } else {
 528       oopDesc::bs()->write_ref_field_pre((oop*)next_addr, NULL);
 529     }
 530   }
 531   java_lang_ref_Reference::set_next_raw(_ref, NULL);
 532 }
 533 
 534 void DiscoveredListIterator::clear_referent() {
 535   oop_store_raw(_referent_addr, NULL);
 536 }
 537 
 538 // NOTE: process_phase*() are largely similar, and at a high level
 539 // merely iterate over the extant list applying a predicate to
 540 // each of its elements and possibly removing that element from the
 541 // list and applying some further closures to that element.
 542 // We should consider the possibility of replacing these
 543 // process_phase*() methods by abstracting them into
 544 // a single general iterator invocation that receives appropriate
 545 // closures that accomplish this work.
 546 
 547 // (SoftReferences only) Traverse the list and remove any SoftReferences whose
 548 // referents are not alive, but that should be kept alive for policy reasons.
 549 // Keep alive the transitive closure of all such referents.
 550 void
 551 ReferenceProcessor::process_phase1(DiscoveredList&    refs_list,
 552                                    ReferencePolicy*   policy,
 553                                    BoolObjectClosure* is_alive,
 554                                    OopClosure*        keep_alive,
 555                                    VoidClosure*       complete_gc) {
 556   assert(policy != NULL, "Must have a non-NULL policy");
 557   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 558   // Decide which softly reachable refs should be kept alive.
 559   while (iter.has_next()) {
 560     iter.load_ptrs(DEBUG_ONLY(!discovery_is_atomic() /* allow_null_referent */));
 561     bool referent_is_dead = (iter.referent() != NULL) && !iter.is_referent_alive();
 562     if (referent_is_dead &&
 563         !policy->should_clear_reference(iter.obj(), _soft_ref_timestamp_clock)) {
 564       if (TraceReferenceGC) {
 565         gclog_or_tty->print_cr("Dropping reference (" INTPTR_FORMAT ": %s"  ") by policy",
 566                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
 567       }
 568       // Remove Reference object from list
 569       iter.remove();
 570       // Make the Reference object active again
 571       iter.make_active();
 572       // keep the referent around
 573       iter.make_referent_alive();
 574       iter.move_to_next();
 575     } else {
 576       iter.next();
 577     }
 578   }
 579   // Close the reachable set
 580   complete_gc->do_void();
 581   NOT_PRODUCT(
 582     if (PrintGCDetails && TraceReferenceGC) {
 583       gclog_or_tty->print_cr(" Dropped %d dead Refs out of %d "
 584         "discovered Refs by policy, from list " INTPTR_FORMAT,
 585         iter.removed(), iter.processed(), (address)refs_list.head());
 586     }
 587   )
 588 }
 589 
 590 // Traverse the list and remove any Refs that are not active, or
 591 // whose referents are either alive or NULL.
 592 void
 593 ReferenceProcessor::pp2_work(DiscoveredList&    refs_list,
 594                              BoolObjectClosure* is_alive,
 595                              OopClosure*        keep_alive) {
 596   assert(discovery_is_atomic(), "Error");
 597   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 598   while (iter.has_next()) {
 599     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 600     DEBUG_ONLY(oop next = java_lang_ref_Reference::next(iter.obj());)
 601     assert(next == NULL, "Should not discover inactive Reference");
 602     if (iter.is_referent_alive()) {
 603       if (TraceReferenceGC) {
 604         gclog_or_tty->print_cr("Dropping strongly reachable reference (" INTPTR_FORMAT ": %s)",
 605                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
 606       }
 607       // The referent is reachable after all.
 608       // Remove Reference object from list.
 609       iter.remove();
 610       // Update the referent pointer as necessary: Note that this
 611       // should not entail any recursive marking because the
 612       // referent must already have been traversed.
 613       iter.make_referent_alive();
 614       iter.move_to_next();
 615     } else {
 616       iter.next();
 617     }
 618   }
 619   NOT_PRODUCT(
 620     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 621       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 622         "Refs in discovered list " INTPTR_FORMAT,
 623         iter.removed(), iter.processed(), (address)refs_list.head());
 624     }
 625   )
 626 }
 627 
 628 void
 629 ReferenceProcessor::pp2_work_concurrent_discovery(DiscoveredList&    refs_list,
 630                                                   BoolObjectClosure* is_alive,
 631                                                   OopClosure*        keep_alive,
 632                                                   VoidClosure*       complete_gc) {
 633   assert(!discovery_is_atomic(), "Error");
 634   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 635   while (iter.has_next()) {
 636     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 637     HeapWord* next_addr = java_lang_ref_Reference::next_addr(iter.obj());
 638     oop next = java_lang_ref_Reference::next(iter.obj());
 639     if ((iter.referent() == NULL || iter.is_referent_alive() ||
 640          next != NULL)) {
 641       assert(next->is_oop_or_null(), "bad next field");
 642       // Remove Reference object from list
 643       iter.remove();
 644       // Trace the cohorts
 645       iter.make_referent_alive();
 646       if (UseCompressedOops) {
 647         keep_alive->do_oop((narrowOop*)next_addr);
 648       } else {
 649         keep_alive->do_oop((oop*)next_addr);
 650       }
 651       iter.move_to_next();
 652     } else {
 653       iter.next();
 654     }
 655   }
 656   // Now close the newly reachable set
 657   complete_gc->do_void();
 658   NOT_PRODUCT(
 659     if (PrintGCDetails && TraceReferenceGC && (iter.processed() > 0)) {
 660       gclog_or_tty->print_cr(" Dropped %d active Refs out of %d "
 661         "Refs in discovered list " INTPTR_FORMAT,
 662         iter.removed(), iter.processed(), (address)refs_list.head());
 663     }
 664   )
 665 }
 666 
 667 // Traverse the list and process the referents, by either
 668 // clearing them or keeping them (and their reachable
 669 // closure) alive.
 670 void
 671 ReferenceProcessor::process_phase3(DiscoveredList&    refs_list,
 672                                    bool               clear_referent,
 673                                    BoolObjectClosure* is_alive,
 674                                    OopClosure*        keep_alive,
 675                                    VoidClosure*       complete_gc) {
 676   ResourceMark rm;
 677   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
 678   while (iter.has_next()) {
 679     iter.update_discovered();
 680     iter.load_ptrs(DEBUG_ONLY(false /* allow_null_referent */));
 681     if (clear_referent) {
 682       // NULL out referent pointer
 683       iter.clear_referent();
 684     } else {
 685       // keep the referent around
 686       iter.make_referent_alive();
 687     }
 688     if (TraceReferenceGC) {
 689       gclog_or_tty->print_cr("Adding %sreference (" INTPTR_FORMAT ": %s) as pending",
 690                              clear_referent ? "cleared " : "",
 691                              (void *)iter.obj(), iter.obj()->klass()->internal_name());
 692     }
 693     assert(iter.obj()->is_oop(UseConcMarkSweepGC), "Adding a bad reference");
 694     iter.next();
 695   }
 696   // Remember to update the next pointer of the last ref.
 697   iter.update_discovered();
 698   // Close the reachable set
 699   complete_gc->do_void();
 700 }
 701 
 702 void
 703 ReferenceProcessor::clear_discovered_references(DiscoveredList& refs_list) {
 704   oop obj = NULL;
 705   oop next = refs_list.head();
 706   while (next != obj) {
 707     obj = next;
 708     next = java_lang_ref_Reference::discovered(obj);
 709     java_lang_ref_Reference::set_discovered_raw(obj, NULL);
 710   }
 711   refs_list.set_head(NULL);
 712   refs_list.set_length(0);
 713 }
 714 
 715 void
 716 ReferenceProcessor::abandon_partial_discovered_list(DiscoveredList& refs_list) {
 717   clear_discovered_references(refs_list);
 718 }
 719 
 720 void ReferenceProcessor::abandon_partial_discovery() {
 721   // loop over the lists
 722   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 723     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 724       gclog_or_tty->print_cr("\nAbandoning %s discovered list", list_name(i));
 725     }
 726     abandon_partial_discovered_list(_discovered_refs[i]);
 727   }
 728 }
 729 
 730 class RefProcPhase1Task: public AbstractRefProcTaskExecutor::ProcessTask {
 731 public:
 732   RefProcPhase1Task(ReferenceProcessor& ref_processor,
 733                     DiscoveredList      refs_lists[],
 734                     ReferencePolicy*    policy,
 735                     bool                marks_oops_alive)
 736     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 737       _policy(policy)
 738   { }
 739   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 740                     OopClosure& keep_alive,
 741                     VoidClosure& complete_gc)
 742   {
 743     Thread* thr = Thread::current();
 744     int refs_list_index = ((WorkerThread*)thr)->id();
 745     _ref_processor.process_phase1(_refs_lists[refs_list_index], _policy,
 746                                   &is_alive, &keep_alive, &complete_gc);
 747   }
 748 private:
 749   ReferencePolicy* _policy;
 750 };
 751 
 752 class RefProcPhase2Task: public AbstractRefProcTaskExecutor::ProcessTask {
 753 public:
 754   RefProcPhase2Task(ReferenceProcessor& ref_processor,
 755                     DiscoveredList      refs_lists[],
 756                     bool                marks_oops_alive)
 757     : ProcessTask(ref_processor, refs_lists, marks_oops_alive)
 758   { }
 759   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 760                     OopClosure& keep_alive,
 761                     VoidClosure& complete_gc)
 762   {
 763     _ref_processor.process_phase2(_refs_lists[i],
 764                                   &is_alive, &keep_alive, &complete_gc);
 765   }
 766 };
 767 
 768 class RefProcPhase3Task: public AbstractRefProcTaskExecutor::ProcessTask {
 769 public:
 770   RefProcPhase3Task(ReferenceProcessor& ref_processor,
 771                     DiscoveredList      refs_lists[],
 772                     bool                clear_referent,
 773                     bool                marks_oops_alive)
 774     : ProcessTask(ref_processor, refs_lists, marks_oops_alive),
 775       _clear_referent(clear_referent)
 776   { }
 777   virtual void work(unsigned int i, BoolObjectClosure& is_alive,
 778                     OopClosure& keep_alive,
 779                     VoidClosure& complete_gc)
 780   {
 781     // Don't use "refs_list_index" calculated in this way because
 782     // balance_queues() has moved the Ref's into the first n queues.
 783     // Thread* thr = Thread::current();
 784     // int refs_list_index = ((WorkerThread*)thr)->id();
 785     // _ref_processor.process_phase3(_refs_lists[refs_list_index], _clear_referent,
 786     _ref_processor.process_phase3(_refs_lists[i], _clear_referent,
 787                                   &is_alive, &keep_alive, &complete_gc);
 788   }
 789 private:
 790   bool _clear_referent;
 791 };
 792 
 793 // Balances reference queues.
 794 // Move entries from all queues[0, 1, ..., _max_num_q-1] to
 795 // queues[0, 1, ..., _num_q-1] because only the first _num_q
 796 // corresponding to the active workers will be processed.
 797 void ReferenceProcessor::balance_queues(DiscoveredList ref_lists[])
 798 {
 799   // calculate total length
 800   size_t total_refs = 0;
 801   if (TraceReferenceGC && PrintGCDetails) {
 802     gclog_or_tty->print_cr("\nBalance ref_lists ");
 803   }
 804 
 805   for (uint i = 0; i < _max_num_q; ++i) {
 806     total_refs += ref_lists[i].length();
 807     if (TraceReferenceGC && PrintGCDetails) {
 808       gclog_or_tty->print("%d ", ref_lists[i].length());
 809     }
 810   }
 811   if (TraceReferenceGC && PrintGCDetails) {
 812     gclog_or_tty->print_cr(" = %d", total_refs);
 813   }
 814   size_t avg_refs = total_refs / _num_q + 1;
 815   uint to_idx = 0;
 816   for (uint from_idx = 0; from_idx < _max_num_q; from_idx++) {
 817     bool move_all = false;
 818     if (from_idx >= _num_q) {
 819       move_all = ref_lists[from_idx].length() > 0;
 820     }
 821     while ((ref_lists[from_idx].length() > avg_refs) ||
 822            move_all) {
 823       assert(to_idx < _num_q, "Sanity Check!");
 824       if (ref_lists[to_idx].length() < avg_refs) {
 825         // move superfluous refs
 826         size_t refs_to_move;
 827         // Move all the Ref's if the from queue will not be processed.
 828         if (move_all) {
 829           refs_to_move = MIN2(ref_lists[from_idx].length(),
 830                               avg_refs - ref_lists[to_idx].length());
 831         } else {
 832           refs_to_move = MIN2(ref_lists[from_idx].length() - avg_refs,
 833                               avg_refs - ref_lists[to_idx].length());
 834         }
 835 
 836         assert(refs_to_move > 0, "otherwise the code below will fail");
 837 
 838         oop move_head = ref_lists[from_idx].head();
 839         oop move_tail = move_head;
 840         oop new_head  = move_head;
 841         // find an element to split the list on
 842         for (size_t j = 0; j < refs_to_move; ++j) {
 843           move_tail = new_head;
 844           new_head = java_lang_ref_Reference::discovered(new_head);
 845         }
 846 
 847         // Add the chain to the to list.
 848         if (ref_lists[to_idx].head() == NULL) {
 849           // to list is empty. Make a loop at the end.
 850           java_lang_ref_Reference::set_discovered_raw(move_tail, move_tail);
 851         } else {
 852           java_lang_ref_Reference::set_discovered_raw(move_tail, ref_lists[to_idx].head());
 853         }
 854         ref_lists[to_idx].set_head(move_head);
 855         ref_lists[to_idx].inc_length(refs_to_move);
 856 
 857         // Remove the chain from the from list.
 858         if (move_tail == new_head) {
 859           // We found the end of the from list.
 860           ref_lists[from_idx].set_head(NULL);
 861         } else {
 862           ref_lists[from_idx].set_head(new_head);
 863         }
 864         ref_lists[from_idx].dec_length(refs_to_move);
 865         if (ref_lists[from_idx].length() == 0) {
 866           break;
 867         }
 868       } else {
 869         to_idx = (to_idx + 1) % _num_q;
 870       }
 871     }
 872   }
 873 #ifdef ASSERT
 874   size_t balanced_total_refs = 0;
 875   for (uint i = 0; i < _max_num_q; ++i) {
 876     balanced_total_refs += ref_lists[i].length();
 877     if (TraceReferenceGC && PrintGCDetails) {
 878       gclog_or_tty->print("%d ", ref_lists[i].length());
 879     }
 880   }
 881   if (TraceReferenceGC && PrintGCDetails) {
 882     gclog_or_tty->print_cr(" = %d", balanced_total_refs);
 883     gclog_or_tty->flush();
 884   }
 885   assert(total_refs == balanced_total_refs, "Balancing was incomplete");
 886 #endif
 887 }
 888 
 889 void ReferenceProcessor::balance_all_queues() {
 890   balance_queues(_discoveredSoftRefs);
 891   balance_queues(_discoveredWeakRefs);
 892   balance_queues(_discoveredFinalRefs);
 893   balance_queues(_discoveredPhantomRefs);
 894   balance_queues(_discoveredCleanerRefs);
 895 }
 896 
 897 size_t
 898 ReferenceProcessor::process_discovered_reflist(
 899   DiscoveredList               refs_lists[],
 900   ReferencePolicy*             policy,
 901   bool                         clear_referent,
 902   BoolObjectClosure*           is_alive,
 903   OopClosure*                  keep_alive,
 904   VoidClosure*                 complete_gc,
 905   AbstractRefProcTaskExecutor* task_executor)
 906 {
 907   bool mt_processing = task_executor != NULL && _processing_is_mt;
 908   // If discovery used MT and a dynamic number of GC threads, then
 909   // the queues must be balanced for correctness if fewer than the
 910   // maximum number of queues were used.  The number of queue used
 911   // during discovery may be different than the number to be used
 912   // for processing so don't depend of _num_q < _max_num_q as part
 913   // of the test.
 914   bool must_balance = _discovery_is_mt;
 915 
 916   if ((mt_processing && ParallelRefProcBalancingEnabled) ||
 917       must_balance) {
 918     balance_queues(refs_lists);
 919   }
 920 
 921   size_t total_list_count = total_count(refs_lists);
 922 
 923   if (PrintReferenceGC && PrintGCDetails) {
 924     gclog_or_tty->print(", %u refs", total_list_count);
 925   }
 926 
 927   // Phase 1 (soft refs only):
 928   // . Traverse the list and remove any SoftReferences whose
 929   //   referents are not alive, but that should be kept alive for
 930   //   policy reasons. Keep alive the transitive closure of all
 931   //   such referents.
 932   if (policy != NULL) {
 933     if (mt_processing) {
 934       RefProcPhase1Task phase1(*this, refs_lists, policy, true /*marks_oops_alive*/);
 935       task_executor->execute(phase1);
 936     } else {
 937       for (uint i = 0; i < _max_num_q; i++) {
 938         process_phase1(refs_lists[i], policy,
 939                        is_alive, keep_alive, complete_gc);
 940       }
 941     }
 942   } else { // policy == NULL
 943     assert(refs_lists != _discoveredSoftRefs,
 944            "Policy must be specified for soft references.");
 945   }
 946 
 947   // Phase 2:
 948   // . Traverse the list and remove any refs whose referents are alive.
 949   if (mt_processing) {
 950     RefProcPhase2Task phase2(*this, refs_lists, !discovery_is_atomic() /*marks_oops_alive*/);
 951     task_executor->execute(phase2);
 952   } else {
 953     for (uint i = 0; i < _max_num_q; i++) {
 954       process_phase2(refs_lists[i], is_alive, keep_alive, complete_gc);
 955     }
 956   }
 957 
 958   // Phase 3:
 959   // . Traverse the list and process referents as appropriate.
 960   if (mt_processing) {
 961     RefProcPhase3Task phase3(*this, refs_lists, clear_referent, true /*marks_oops_alive*/);
 962     task_executor->execute(phase3);
 963   } else {
 964     for (uint i = 0; i < _max_num_q; i++) {
 965       process_phase3(refs_lists[i], clear_referent,
 966                      is_alive, keep_alive, complete_gc);
 967     }
 968   }
 969 
 970   return total_list_count;
 971 }
 972 
 973 void ReferenceProcessor::clean_up_discovered_references() {
 974   // loop over the lists
 975   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
 976     if (TraceReferenceGC && PrintGCDetails && ((i % _max_num_q) == 0)) {
 977       gclog_or_tty->print_cr(
 978         "\nScrubbing %s discovered list of Null referents",
 979         list_name(i));
 980     }
 981     clean_up_discovered_reflist(_discovered_refs[i]);
 982   }
 983 }
 984 
 985 void ReferenceProcessor::clean_up_discovered_reflist(DiscoveredList& refs_list) {
 986   assert(!discovery_is_atomic(), "Else why call this method?");
 987   DiscoveredListIterator iter(refs_list, NULL, NULL);
 988   while (iter.has_next()) {
 989     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
 990     oop next = java_lang_ref_Reference::next(iter.obj());
 991     assert(next->is_oop_or_null(), "bad next field");
 992     // If referent has been cleared or Reference is not active,
 993     // drop it.
 994     if (iter.referent() == NULL || next != NULL) {
 995       debug_only(
 996         if (PrintGCDetails && TraceReferenceGC) {
 997           gclog_or_tty->print_cr("clean_up_discovered_list: Dropping Reference: "
 998             INTPTR_FORMAT " with next field: " INTPTR_FORMAT
 999             " and referent: " INTPTR_FORMAT,
1000             (void *)iter.obj(), (void *)next, (void *)iter.referent());
1001         }
1002       )
1003       // Remove Reference object from list
1004       iter.remove();
1005       iter.move_to_next();
1006     } else {
1007       iter.next();
1008     }
1009   }
1010   NOT_PRODUCT(
1011     if (PrintGCDetails && TraceReferenceGC) {
1012       gclog_or_tty->print(
1013         " Removed %d Refs with NULL referents out of %d discovered Refs",
1014         iter.removed(), iter.processed());
1015     }
1016   )
1017 }
1018 
1019 inline DiscoveredList* ReferenceProcessor::get_discovered_list(ReferenceType rt) {
1020   uint id = 0;
1021   // Determine the queue index to use for this object.
1022   if (_discovery_is_mt) {
1023     // During a multi-threaded discovery phase,
1024     // each thread saves to its "own" list.
1025     Thread* thr = Thread::current();
1026     id = thr->as_Worker_thread()->id();
1027   } else {
1028     // single-threaded discovery, we save in round-robin
1029     // fashion to each of the lists.
1030     if (_processing_is_mt) {
1031       id = next_id();
1032     }
1033   }
1034   assert(0 <= id && id < _max_num_q, "Id is out-of-bounds (call Freud?)");
1035 
1036   // Get the discovered queue to which we will add
1037   DiscoveredList* list = NULL;
1038   switch (rt) {
1039     case REF_OTHER:
1040       // Unknown reference type, no special treatment
1041       break;
1042     case REF_SOFT:
1043       list = &_discoveredSoftRefs[id];
1044       break;
1045     case REF_WEAK:
1046       list = &_discoveredWeakRefs[id];
1047       break;
1048     case REF_FINAL:
1049       list = &_discoveredFinalRefs[id];
1050       break;
1051     case REF_PHANTOM:
1052       list = &_discoveredPhantomRefs[id];
1053       break;
1054     case REF_CLEANER:
1055       list = &_discoveredCleanerRefs[id];
1056       break;
1057     case REF_NONE:
1058       // we should not reach here if we are an InstanceRefKlass
1059     default:
1060       ShouldNotReachHere();
1061   }
1062   if (TraceReferenceGC && PrintGCDetails) {
1063     gclog_or_tty->print_cr("Thread %d gets list " INTPTR_FORMAT, id, list);
1064   }
1065   return list;
1066 }
1067 
1068 inline void
1069 ReferenceProcessor::add_to_discovered_list_mt(DiscoveredList& refs_list,
1070                                               oop             obj,
1071                                               HeapWord*       discovered_addr) {
1072   assert(_discovery_is_mt, "!_discovery_is_mt should have been handled by caller");
1073   // First we must make sure this object is only enqueued once. CAS in a non null
1074   // discovered_addr.
1075   oop current_head = refs_list.head();
1076   // The last ref must have its discovered field pointing to itself.
1077   oop next_discovered = (current_head != NULL) ? current_head : obj;
1078 
1079   oop retest = oopDesc::atomic_compare_exchange_oop(next_discovered, discovered_addr,
1080                                                     NULL);
1081   if (retest == NULL) {
1082     // This thread just won the right to enqueue the object.
1083     // We have separate lists for enqueueing, so no synchronization
1084     // is necessary.
1085     refs_list.set_head(obj);
1086     refs_list.inc_length(1);
1087 
1088     if (TraceReferenceGC) {
1089       gclog_or_tty->print_cr("Discovered reference (mt) (" INTPTR_FORMAT ": %s)",
1090                              (void *)obj, obj->klass()->internal_name());
1091     }
1092   } else {
1093     // If retest was non NULL, another thread beat us to it:
1094     // The reference has already been discovered...
1095     if (TraceReferenceGC) {
1096       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1097                              (void *)obj, obj->klass()->internal_name());
1098     }
1099   }
1100 }
1101 
1102 #ifndef PRODUCT
1103 // Non-atomic (i.e. concurrent) discovery might allow us
1104 // to observe j.l.References with NULL referents, being those
1105 // cleared concurrently by mutators during (or after) discovery.
1106 void ReferenceProcessor::verify_referent(oop obj) {
1107   bool da = discovery_is_atomic();
1108   oop referent = java_lang_ref_Reference::referent(obj);
1109   assert(da ? referent->is_oop() : referent->is_oop_or_null(),
1110          err_msg("Bad referent " INTPTR_FORMAT " found in Reference "
1111                  INTPTR_FORMAT " during %satomic discovery ",
1112                  (void *)referent, (void *)obj, da ? "" : "non-"));
1113 }
1114 #endif
1115 
1116 // We mention two of several possible choices here:
1117 // #0: if the reference object is not in the "originating generation"
1118 //     (or part of the heap being collected, indicated by our "span"
1119 //     we don't treat it specially (i.e. we scan it as we would
1120 //     a normal oop, treating its references as strong references).
1121 //     This means that references can't be discovered unless their
1122 //     referent is also in the same span. This is the simplest,
1123 //     most "local" and most conservative approach, albeit one
1124 //     that may cause weak references to be enqueued least promptly.
1125 //     We call this choice the "ReferenceBasedDiscovery" policy.
1126 // #1: the reference object may be in any generation (span), but if
1127 //     the referent is in the generation (span) being currently collected
1128 //     then we can discover the reference object, provided
1129 //     the object has not already been discovered by
1130 //     a different concurrently running collector (as may be the
1131 //     case, for instance, if the reference object is in CMS and
1132 //     the referent in DefNewGeneration), and provided the processing
1133 //     of this reference object by the current collector will
1134 //     appear atomic to every other collector in the system.
1135 //     (Thus, for instance, a concurrent collector may not
1136 //     discover references in other generations even if the
1137 //     referent is in its own generation). This policy may,
1138 //     in certain cases, enqueue references somewhat sooner than
1139 //     might Policy #0 above, but at marginally increased cost
1140 //     and complexity in processing these references.
1141 //     We call this choice the "RefeferentBasedDiscovery" policy.
1142 bool ReferenceProcessor::discover_reference(oop obj, ReferenceType rt) {
1143   // Make sure we are discovering refs (rather than processing discovered refs).
1144   if (!_discovering_refs || !RegisterReferences) {
1145     return false;
1146   }
1147   // We only discover active references.
1148   oop next = java_lang_ref_Reference::next(obj);
1149   if (next != NULL) {   // Ref is no longer active
1150     return false;
1151   }
1152 
1153   HeapWord* obj_addr = (HeapWord*)obj;
1154   if (RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1155       !_span.contains(obj_addr)) {
1156     // Reference is not in the originating generation;
1157     // don't treat it specially (i.e. we want to scan it as a normal
1158     // object with strong references).
1159     return false;
1160   }
1161 
1162   // We only discover references whose referents are not (yet)
1163   // known to be strongly reachable.
1164   if (is_alive_non_header() != NULL) {
1165     verify_referent(obj);
1166     if (is_alive_non_header()->do_object_b(java_lang_ref_Reference::referent(obj))) {
1167       return false;  // referent is reachable
1168     }
1169   }
1170   if (rt == REF_SOFT) {
1171     // For soft refs we can decide now if these are not
1172     // current candidates for clearing, in which case we
1173     // can mark through them now, rather than delaying that
1174     // to the reference-processing phase. Since all current
1175     // time-stamp policies advance the soft-ref clock only
1176     // at a major collection cycle, this is always currently
1177     // accurate.
1178     if (!_current_soft_ref_policy->should_clear_reference(obj, _soft_ref_timestamp_clock)) {
1179       return false;
1180     }
1181   }
1182 
1183   ResourceMark rm;      // Needed for tracing.
1184 
1185   HeapWord* const discovered_addr = java_lang_ref_Reference::discovered_addr(obj);
1186   const oop  discovered = java_lang_ref_Reference::discovered(obj);
1187   assert(discovered->is_oop_or_null(), "bad discovered field");
1188   if (discovered != NULL) {
1189     // The reference has already been discovered...
1190     if (TraceReferenceGC) {
1191       gclog_or_tty->print_cr("Already discovered reference (" INTPTR_FORMAT ": %s)",
1192                              (void *)obj, obj->klass()->internal_name());
1193     }
1194     if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1195       // assumes that an object is not processed twice;
1196       // if it's been already discovered it must be on another
1197       // generation's discovered list; so we won't discover it.
1198       return false;
1199     } else {
1200       assert(RefDiscoveryPolicy == ReferenceBasedDiscovery,
1201              "Unrecognized policy");
1202       // Check assumption that an object is not potentially
1203       // discovered twice except by concurrent collectors that potentially
1204       // trace the same Reference object twice.
1205       assert(UseConcMarkSweepGC || UseG1GC,
1206              "Only possible with a concurrent marking collector");
1207       return true;
1208     }
1209   }
1210 
1211   if (RefDiscoveryPolicy == ReferentBasedDiscovery) {
1212     verify_referent(obj);
1213     // Discover if and only if EITHER:
1214     // .. reference is in our span, OR
1215     // .. we are an atomic collector and referent is in our span
1216     if (_span.contains(obj_addr) ||
1217         (discovery_is_atomic() &&
1218          _span.contains(java_lang_ref_Reference::referent(obj)))) {
1219       // should_enqueue = true;
1220     } else {
1221       return false;
1222     }
1223   } else {
1224     assert(RefDiscoveryPolicy == ReferenceBasedDiscovery &&
1225            _span.contains(obj_addr), "code inconsistency");
1226   }
1227 
1228   // Get the right type of discovered queue head.
1229   DiscoveredList* list = get_discovered_list(rt);
1230   if (list == NULL) {
1231     return false;   // nothing special needs to be done
1232   }
1233 
1234   if (_discovery_is_mt) {
1235     add_to_discovered_list_mt(*list, obj, discovered_addr);
1236   } else {
1237     // We do a raw store here: the field will be visited later when processing
1238     // the discovered references.
1239     oop current_head = list->head();
1240     // The last ref must have its discovered field pointing to itself.
1241     oop next_discovered = (current_head != NULL) ? current_head : obj;
1242 
1243     assert(discovered == NULL, "control point invariant");
1244     oop_store_raw(discovered_addr, next_discovered);
1245     list->set_head(obj);
1246     list->inc_length(1);
1247 
1248     if (TraceReferenceGC) {
1249       gclog_or_tty->print_cr("Discovered reference (" INTPTR_FORMAT ": %s)",
1250                                 (void *)obj, obj->klass()->internal_name());
1251     }
1252   }
1253   assert(obj->is_oop(), "Discovered a bad reference");
1254   verify_referent(obj);
1255   return true;
1256 }
1257 
1258 // Preclean the discovered references by removing those
1259 // whose referents are alive, and by marking from those that
1260 // are not active. These lists can be handled here
1261 // in any order and, indeed, concurrently.
1262 void ReferenceProcessor::preclean_discovered_references(
1263   BoolObjectClosure* is_alive,
1264   OopClosure* keep_alive,
1265   VoidClosure* complete_gc,
1266   YieldClosure* yield,
1267   GCTimer* gc_timer,
1268   GCId     gc_id) {
1269 
1270   NOT_PRODUCT(verify_ok_to_handle_reflists());
1271 
1272   // Soft references
1273   {
1274     GCTraceTime tt("Preclean SoftReferences", PrintGCDetails && PrintReferenceGC,
1275               false, gc_timer, gc_id);
1276     for (uint i = 0; i < _max_num_q; i++) {
1277       if (yield->should_return()) {
1278         return;
1279       }
1280       preclean_discovered_reflist(_discoveredSoftRefs[i], is_alive,
1281                                   keep_alive, complete_gc, yield);
1282     }
1283   }
1284 
1285   // Weak references
1286   {
1287     GCTraceTime tt("Preclean WeakReferences", PrintGCDetails && PrintReferenceGC,
1288               false, gc_timer, gc_id);
1289     for (uint i = 0; i < _max_num_q; i++) {
1290       if (yield->should_return()) {
1291         return;
1292       }
1293       preclean_discovered_reflist(_discoveredWeakRefs[i], is_alive,
1294                                   keep_alive, complete_gc, yield);
1295     }
1296   }
1297 
1298   // Final references
1299   {
1300     GCTraceTime tt("Preclean FinalReferences", PrintGCDetails && PrintReferenceGC,
1301               false, gc_timer, gc_id);
1302     for (uint i = 0; i < _max_num_q; i++) {
1303       if (yield->should_return()) {
1304         return;
1305       }
1306       preclean_discovered_reflist(_discoveredFinalRefs[i], is_alive,
1307                                   keep_alive, complete_gc, yield);
1308     }
1309   }
1310 
1311   // Phantom references
1312   {
1313     GCTraceTime tt("Preclean PhantomReferences", PrintGCDetails && PrintReferenceGC,
1314               false, gc_timer, gc_id);
1315     for (uint i = 0; i < _max_num_q; i++) {
1316       if (yield->should_return()) {
1317         return;
1318       }
1319       preclean_discovered_reflist(_discoveredPhantomRefs[i], is_alive,
1320                                   keep_alive, complete_gc, yield);
1321     }
1322 
1323     // Cleaner references.  Included in timing for phantom references.  We
1324     // expect Cleaner references to be temporary, and don't want to deal with
1325     // possible incompatibilities arising from making it more visible.
1326     for (uint i = 0; i < _max_num_q; i++) {
1327       if (yield->should_return()) {
1328         return;
1329       }
1330       preclean_discovered_reflist(_discoveredCleanerRefs[i], is_alive,
1331                                   keep_alive, complete_gc, yield);
1332     }
1333   }
1334 }
1335 
1336 // Walk the given discovered ref list, and remove all reference objects
1337 // whose referents are still alive, whose referents are NULL or which
1338 // are not active (have a non-NULL next field). NOTE: When we are
1339 // thus precleaning the ref lists (which happens single-threaded today),
1340 // we do not disable refs discovery to honour the correct semantics of
1341 // java.lang.Reference. As a result, we need to be careful below
1342 // that ref removal steps interleave safely with ref discovery steps
1343 // (in this thread).
1344 void
1345 ReferenceProcessor::preclean_discovered_reflist(DiscoveredList&    refs_list,
1346                                                 BoolObjectClosure* is_alive,
1347                                                 OopClosure*        keep_alive,
1348                                                 VoidClosure*       complete_gc,
1349                                                 YieldClosure*      yield) {
1350   DiscoveredListIterator iter(refs_list, keep_alive, is_alive);
1351   while (iter.has_next()) {
1352     iter.load_ptrs(DEBUG_ONLY(true /* allow_null_referent */));
1353     oop obj = iter.obj();
1354     oop next = java_lang_ref_Reference::next(obj);
1355     if (iter.referent() == NULL || iter.is_referent_alive() ||
1356         next != NULL) {
1357       // The referent has been cleared, or is alive, or the Reference is not
1358       // active; we need to trace and mark its cohort.
1359       if (TraceReferenceGC) {
1360         gclog_or_tty->print_cr("Precleaning Reference (" INTPTR_FORMAT ": %s)",
1361                                (void *)iter.obj(), iter.obj()->klass()->internal_name());
1362       }
1363       // Remove Reference object from list
1364       iter.remove();
1365       // Keep alive its cohort.
1366       iter.make_referent_alive();
1367       if (UseCompressedOops) {
1368         narrowOop* next_addr = (narrowOop*)java_lang_ref_Reference::next_addr(obj);
1369         keep_alive->do_oop(next_addr);
1370       } else {
1371         oop* next_addr = (oop*)java_lang_ref_Reference::next_addr(obj);
1372         keep_alive->do_oop(next_addr);
1373       }
1374       iter.move_to_next();
1375     } else {
1376       iter.next();
1377     }
1378   }
1379   // Close the reachable set
1380   complete_gc->do_void();
1381 
1382   NOT_PRODUCT(
1383     if (PrintGCDetails && PrintReferenceGC && (iter.processed() > 0)) {
1384       gclog_or_tty->print_cr(" Dropped %d Refs out of %d "
1385         "Refs in discovered list " INTPTR_FORMAT,
1386         iter.removed(), iter.processed(), (address)refs_list.head());
1387     }
1388   )
1389 }
1390 
1391 const char* ReferenceProcessor::list_name(uint i) {
1392    assert(i >= 0 && i <= _max_num_q * number_of_subclasses_of_ref(),
1393           "Out of bounds index");
1394 
1395    int j = i / _max_num_q;
1396    switch (j) {
1397      case 0: return "SoftRef";
1398      case 1: return "WeakRef";
1399      case 2: return "FinalRef";
1400      case 3: return "PhantomRef";
1401      case 4: return "CleanerRef";
1402    }
1403    ShouldNotReachHere();
1404    return NULL;
1405 }
1406 
1407 #ifndef PRODUCT
1408 void ReferenceProcessor::verify_ok_to_handle_reflists() {
1409   // empty for now
1410 }
1411 #endif
1412 
1413 #ifndef PRODUCT
1414 void ReferenceProcessor::clear_discovered_references() {
1415   guarantee(!_discovering_refs, "Discovering refs?");
1416   for (uint i = 0; i < _max_num_q * number_of_subclasses_of_ref(); i++) {
1417     clear_discovered_references(_discovered_refs[i]);
1418   }
1419 }
1420 
1421 #endif // PRODUCT